[go: up one dir, main page]

WO2010134202A1 - 無線通信システム、無線通信基地局装置、および制御ノード - Google Patents

無線通信システム、無線通信基地局装置、および制御ノード Download PDF

Info

Publication number
WO2010134202A1
WO2010134202A1 PCT/JP2009/059462 JP2009059462W WO2010134202A1 WO 2010134202 A1 WO2010134202 A1 WO 2010134202A1 JP 2009059462 W JP2009059462 W JP 2009059462W WO 2010134202 A1 WO2010134202 A1 WO 2010134202A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
wireless communication
radio
station apparatus
communication base
Prior art date
Application number
PCT/JP2009/059462
Other languages
English (en)
French (fr)
Inventor
誠之 花岡
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to EP09844934A priority Critical patent/EP2434801A1/en
Priority to US13/321,391 priority patent/US20120100854A1/en
Priority to JP2011514273A priority patent/JP5412512B2/ja
Priority to PCT/JP2009/059462 priority patent/WO2010134202A1/ja
Publication of WO2010134202A1 publication Critical patent/WO2010134202A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/18Negotiating wireless communication parameters
    • H04W28/20Negotiating bandwidth
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/04Interfaces between hierarchically different network devices
    • H04W92/045Interfaces between hierarchically different network devices between access point and backbone network device

Definitions

  • the present invention relates to a high-speed switching technology between a plurality of wireless communication systems including a wireless communication system using ADSL or FTTH in the home for a wired line on the network side, and a system switching technology between a macro cell and a femto cell.
  • wireless communication operators install base stations, gateways, and core networks, as represented by third-generation mobile phones, and wireless communication operators also install wired cables between base stations and gateways. Have been operating.
  • a single base station can cover a wide area and support the communication of all users located within that wide area. It is becoming difficult to use multiple systems by combining different wireless communication systems such as WiMAX and wireless LAN existing in a wide area as well as cellular, and the same as represented by femtocell For example, a base station that covers a smaller area is being studied.
  • Access point # 1 covers the service area (102).
  • the wireless communication method of access point # 1 is assumed to be cellular, WiMAX, wireless LAN, or the like.
  • Access point # 2 (103) covers the service area (104).
  • the wireless communication method of the access point # 2 is assumed to be cellular, WiMAX, wireless LAN, or the like.
  • the system configuration shown in FIG. 1 is a system that handles multiple systems.
  • the system configuration shown in FIG. 1 is a system in which a plurality of cell configurations, for example, macro cell and femto cell base stations are mixed in the same system. .
  • the service area (102) of the access point # 1 (101) is larger than the service area (104) of the access point # 2 (103) and completely includes the service area (104).
  • the service area (104) may be wider than the service area (102), and the service areas of both access points do not need to overlap completely.
  • the control node (106) is connected to both access points via wired cables (109, 110).
  • a server (108) that is a communication partner or connection destination via a network (107).
  • gateways that controls a plurality of access points (base stations) integrated like a cellular, as shown in FIG. 2, between the access points (101, 103) and the control node (106). Gateways (201, 202) for each system are installed.
  • the access point and the gateway are connected by wired cables (203, 204), respectively, and the wired cable has been installed and operated by the wireless communication carrier as described above.
  • the band of the wired cable has been designed to guarantee communication at the maximum communication speed of the wireless line according to the capacity of the access point and base station accommodated and the number of base stations accommodated by the gateway.
  • the downlink of Rev.0 wireless communication system is 2.4 Mb / s at the maximum regardless of the number of people accommodated. Therefore, the bandwidth required for the downlink for one base station (101) is 2.4 Mb / s.
  • the gateway (201) accommodates 10 base stations
  • the wired cable (205) between the control node and the gateway is 24Mb / s. It is designed to enable communication over s, and the cable between the gateway and each access point is designed to enable communication over 2.4Mb / s.
  • the bandwidth of a wired line has been designed to always accommodate a wireless line from the viewpoint of installation and operation by a wireless communication provider.
  • Patent Document 1 secures the necessary bandwidth according to the content requested by the user terminal using a wired line and a wireless line.
  • a wireless terminal (1 in FIG. 1 of Patent Document 1) transmits a content transmission request (S1) to a server (7 in FIG. 1 of Patent Document 1) via a wireless base station (3 in FIG. 1 of Patent Document 1).
  • the server selects the wired band information corresponding to the content requested from the wireless terminal from the wired band information 10 corresponding to each content and transmits the content between the server and the wireless base station. Determine the bandwidth.
  • the radio base station creates radio band information for transmitting the content from the radio base station to the radio terminal based on the wired band information notified from the server, and transmits the content from the radio base station to the radio terminal.
  • a band to be used in the wireless section is determined, and the wireless section is set (paragraph 0019 of Patent Document 1).
  • the cognitive base station (20 in Patent Literature 2) grasps the status of the radio bandwidth that can be communicated with the cognitive terminal (40 in Patent Literature 2), and then determines the bandwidth required for communication. A comparison is made and communication bandwidth is allocated.
  • the cognitive gateway (10 of Patent Document 2) When communication occurs, the cognitive gateway (10 of Patent Document 2) first transmits a radio band allocation request to the cognitive base station.
  • the cognitive base station determines information on the band that can be allocated between the cognitive base station and the cognitive terminal based on the information on the radio wave utilization status obtained through communication with the cognitive terminal, and notifies the cognitive gateway of this information.
  • the cognitive gateway compares the allocatable band information notified from the cognitive base station with the band necessary for communication, and notifies the cognitive base station of the band information actually allocated to the radio section (see Patent Document 2). 0084 paragraph).
  • a wireless terminal sends a request to receive streaming and decides to stream at a rate of 300 kb / s on the server side, and 300 kb / s on the wired side between the server and the wireless base station.
  • Bandwidth is secured, wireless band information is created so that the wireless side between the wireless base station and the wireless terminal can secure 300 kb / s, and the wireless section is set.
  • the server side determines the wired band and the wireless band according to only the wired band information and the wireless band information used for the content transmission.
  • the wired band and the wireless band to be used for transmission of the content are not determined in consideration of the band condition of the wired line between the wireless base station and the wireless band between the wireless base station and the wireless terminal.
  • these flows operate for each user's content, and when a plurality of users (wireless terminals) communicating with a certain wireless base station issue a content transmission request, between the wireless base station and the wireless terminal Since there is a limit to the bandwidth that can be used in the wireless section, it is necessary to control the bandwidth setting of the wireless section between the wireless base station and the wireless terminal, but the operation of creating wireless band information is described. Absent. As described above, in Patent Document 1, it is not possible to perform bandwidth allocation according to the available wired band and wireless band. *
  • the cognitive gateway inquires of the cognitive base station about the state of the radio section.
  • the cognitive base station grasps the radio wave usage status and responds to the cognitive gateway that 400 kb / s can be allocated in the wireless section.
  • the bandwidth required for the streaming communication is 300 kb / s. Compares the required bandwidth of 300 kb / s with the information of 400 kb / s that was replied that it can be allocated from the cognitive base station. As a result, the bandwidth allocation information is allocated to the cognitive base station so that 300 kb / s is allocated to the radio section Send.
  • the band of the wireless section is determined by comparing the band necessary for the streaming communication with the band that can be allocated in the wireless section, and the status of the wired band is not included in the comparison.
  • Patent Document 2 it is not possible to allocate a bandwidth of a wired line and a wireless line to be used according to a usable wired band and a wireless band.
  • wireless communication carriers have installed base stations, gateways, and core networks, and wireless communication carriers have also installed and operated wired cables between the base stations and gateways. Therefore, wireless communication carriers have constructed systems so that the bandwidth of the wired line between the base station, the gateway, and the control node can be ensured. Therefore, when allocating the radio band between the radio base station and the radio terminal, the band of the wired line between the base station and the gateway and the control node is narrower than the radio band between the radio base station and the radio terminal, Therefore, there was no problem that the radio band had to be controlled in consideration of the band of the wired line.
  • the wired cable between the wireless base station and the gateway that has been installed and operated so far by the wireless communication operator is expensive because it is a cable laid exclusively for the operation, and recent wireless communication speedup and communication applications
  • wireless carriers have replaced the wired cable connecting the wireless base station and the gateway with an inexpensive, narrow-band cable to reduce costs.
  • the system configuration is changing to a system that borrows a wired network from an ADSL provider and does not install a dedicated line.
  • a wireless cable provider uses a low-cost narrow-band cable instead of a wired cable that connects the wireless base station and the gateway. This corresponds to the case where the wired cable (204) is a narrow-band cable.
  • the wireless communication system cannot guarantee communication with the wireless terminal.
  • cellular (EVDO) Rev.0 is used as an example and the wired cable (204) is capable of 1Mb / s communication in a narrow band
  • the bandwidth required for the downlink in one base station (103) is 2.4Mb / s Therefore, it is possible to transmit only 1 Mb / s of 2.4 Mb / s that should originally be transmitted by wired cable, and as a result, all data does not reach the wireless terminal (105) and communication becomes impossible Occurs.
  • the gateway # 2 (202) and the base station There is a case where the bandwidth of the wired line with the station # 2 (103) is narrow and the wireless terminal 105 cannot continue the communication being performed.
  • the base station # 1 (101) or the base station is considered in consideration of only the wireless band information of the wireless section in the conventional technique.
  • Station # 2 (103) was used to control whether to perform wireless communication, but if the wired bandwidth between the gateway and the base station is not sufficient for the communication bandwidth required by the wireless terminal, the wired line is It becomes a bottleneck and cannot communicate.
  • the situation shown in FIG. 3 is a situation in which a wireless communication company uses a network of an ADSL provider without laying a wired cable for connecting a wireless base station and a gateway in order to reduce costs. It becomes composition.
  • the wireless communication carrier connects to the network (301) of the ADSL carrier and uses the optical cable (303) owned by the ADSL carrier or the wired cable (304, 305) to the home to the base station (103). Corresponds to the connection.
  • the wireless communication carrier only needs to install the cable (308) from the gateway (202) to the network of the ADSL operator, the cost can be reduced.
  • the ADSL operator can, for example, install the ADSL operator installed in the home. Since the line control of the ADSL network (301) is performed in the control station (302) including the modem (306, 307) etc., the bandwidth between the base station (103) and the gateway (202) It varies depending on the situation of the ADSL line user. Here, control of the bandwidth (304, 305) of the wired line is performed by the control station (302).
  • the wireless communication system cannot guarantee communication with the wireless terminal.
  • the bandwidth required for the downlink in one base station (103) is 2.4 Mb / s. Is 2.4 Mb / s.
  • the cable (303) that accommodates the base station (103) and the ADSL modem (306, 307) in the ADSL network (301) is a broadband line of 20 Mb / s, for example, the ADSL modem (306, 307) is large.
  • the wired cable (304) connected to the base station could only be assigned 1Mb / s, and should be transmitted by wired cable originally 2.4 As a result, only 1 Mb / s of Mb / s can be transmitted, and as a result, when a base station is selected at the time of handover or communication start between base stations based on only radio band information as in the prior art, a wireless terminal ( There is a problem that communication cannot be performed because all data does not reach 105).
  • the wired line between the femtocell base station and the gateway is matched to the uplink and downlink. Only 1.5Mb / s can be secured, and when viewed from the user, for example, even if data is transmitted using the bandwidth allocated in the wireless section in the uplink, not all of it can be transmitted on the wired line, resulting in data loss. There was a problem that could not communicate correctly.
  • the wireless condition is good and a high-speed band of 20Mb / s can be allocated. Even if a band of 20Mb / s is actually allocated to the wireless line, only 1.5Mb / s of the wired line between the femtocell base station and the gateway is secured. If this is not possible, the femtocell base station is using an unnecessarily high radio band, and there is a problem of causing interference to adjacent macrocell base stations.
  • the femto base station installed in the home is not powered on for 24 hours 365 days, when the user connected to the macro cell tries to switch to the destination femto cell base station, the femto cell base station Although there is a situation where the power is turned off and switching is not possible, the conventional technology cannot know the status of the bandwidth of the wired line between the base station and the gateway and switches to the base station where the power is turned off, thus interrupting communication. There was a problem such as.
  • an object of the present invention is to enable a wireless terminal to communicate even when the total band of the cable cable between the base station and the gateway is narrower than the total band of the wireless line.
  • the present invention also aims to enable a wireless communication terminal to communicate even when a wired cable between a base station and a gateway is shared with another network such as an ADSL provider.
  • the present invention realizes high-speed communication as a whole system by reducing interference in a wireless line when the total band of the cable cable between the base station and the gateway is narrower than the total band of the wireless line. With the goal.
  • the present invention aims to allow communication to be continued without interruption even when the base station cannot be switched (handover) to the base station when the power is off.
  • a wireless communication system including a wireless communication base station apparatus, a gateway, and a wireless communication terminal accommodated in the wireless communication base station apparatus, wherein the gateway is a wired line between the wireless communication base station apparatus and the gateway Controlling a radio band between the radio communication base station apparatus and the radio communication terminal based on an available band and a radio band usable between the radio communication base station apparatus and the radio communication terminal.
  • the wired bandwidth that can be used between the control node, gateway, and base station and the base station can be used.
  • a wired band and a wireless band can be assigned to the wireless band according to fluctuations. Furthermore, it is possible to switch the system according to fluctuations in the wire band that can be used between the control node, the gateway, and the base station and the wireless band that can be used in the base station.
  • the system configuration in the first embodiment is the same as the conventional system configuration shown in FIG. 1, but the total bandwidth of the wired cables (109 and 110 in FIG. 1) between the access point and the control node is the conventional system. It is characterized in that it may be narrower than the bandwidth in the wireless line, not the dedicated line as in the configuration.
  • FIG. 4 shows a block diagram of the control node and base station corresponding to FIG.
  • the control node (401) stores information such as a switching control unit (402) for switching between the access point # 1 (406) and the access point # 2 (406), and a wired cable between the control node (401) and each base station.
  • Wired bandwidth information database (403) held as a database, bandwidth measurement function (404) for measuring the bandwidth of the wired cable between the control node (401) and each base station, and the base station (406) based on this measurement result
  • a radio band instruction function (405) for instructing the bandwidth of the radio line to be used is configured.
  • the base station (406) cooperates with the control node (401) to measure a wired bandwidth between the control node (401) and the base station, and according to an instruction from the control node, a wireless line Bandwidth information for notifying neighboring base stations of information on available frequency bands based on the information on the bandwidth of the wireless link set in (408) and (408). Has a notification function (409).
  • FIG. 5 shows a control flow in the first embodiment.
  • a wired communication line has been installed and operated by a wireless communication provider, and a band sufficient to accommodate the wireless line has been secured. It is necessary to know how much bandwidth is available on the line.
  • the base station may be referred to as an access point, but in this sentence, the base station and the access point are synonymous) "base station-control node "Interband information request" is transmitted (501).
  • the base station responds with information necessary for grasping the wired bandwidth between the base station and the control node (502). For example, when a ping is sent from the control node as (501), the base station sends a response to the ping as (502) toward the control node.
  • a message requesting bandwidth information is sent from the control node as (501), and the base station stores the bandwidth information of the wired line that was grasped when establishing the link between the base station and the control node in the message. May be sent to the control node.
  • the control node that has received this information updates the corresponding data as a database as shown in FIG. 6 in order to determine whether to switch between base stations or between systems (504).
  • FIG. 6 will be described.
  • the status (601) of the wireless link collected from each base station was held and updated as a database, but here the status of the wired link between each base station and the control node (whether the link was established) (602) that is related to the line stability required by the total bandwidth, delay time, total bandwidth and delay time dispersion, standard deviation, etc.
  • the feature is that it is held and updated as needed.
  • Another feature is that information (603) on the total bandwidth of the currently available wireless channel is newly stored and updated as needed.
  • the information (603) of the total bandwidth of the wireless line may be information on the bandwidth set in the wireless line (for example, 10 MHz) or the maximum bandwidth (for example, 40 Mb / s) that can be communicated as a result of the setting. Good.
  • FIG. 7 shows a determination flow performed in the switching control unit (402) of the control node in the base station switching determination (501).
  • a situation is assumed in which the base station # 1 and the wireless terminal start communication (701) and the wireless terminal moves toward the base station # 2.
  • the status (601) of the wireless line is ascertained (702), and this is updated as a database.
  • information on the wired band between the base station and the control node is ascertained (703), and FIG.
  • the database is updated including the information on the wired line (704).
  • the base station # 2 When the RSSI value is larger than the RSSI (Receive Signal Strength Indication) value of the base station # 1, conventionally, the connection destination was switched to the base station # 2 (705). The flow shown is added. That is, compare the wired line status between the control node and base station # 1, and between the control node and base station # 2, and the wired line of base station # 2 rather than the wired line of currently connected base station # 1 (In the example of FIG.
  • the connection destination is switched to the base station # 2. If the state of the wired line cannot satisfy the minimum bandwidth of application communication, good communication cannot be expected even if the connection is switched, so the connection destination is not switched. Note that the minimum bandwidth information required for application communication is determined in advance for each application applied in the wireless system, and switching is determined by comparison with this value.
  • the continuation of the control flow in FIG. 5 will be described.
  • the communication between the base station and the control node can be performed over the wireless band between the terminal and the base station. Therefore, a control signal for limiting the bandwidth of the wireless section is generated (505).
  • FIG. 8 shows details of the control flow performed in the radio band instruction function (405) of the control node (401) in this case.
  • a base station capable of communicating at a maximum of 20 Mb / s in a radio channel between a plurality of accommodated radio terminals and a base station is connected to this control node, and the measurement result of the bandwidth of the wired channel between the base station and the control node is In the case of 1.5 Mb / s, first, the information is grasped by updating the database in (704) of FIG. Next, no matter how good the wireless line is, the wired line becomes a bottleneck and it is difficult to communicate over 1.5Mb / s.
  • the bandwidth of the wired line (“BW" in 602) and the bandwidth of the wireless line ( 603) is compared (802), and the total bandwidth used as a wireless line is limited to 1.5 Mb / s which is the same as the bandwidth of the wired line (803).
  • the information of 1.5 Mb / s is transmitted as a message from the radio bandwidth indication function (405) of the control node to the base station (506).
  • the base station sets the frequency band to be used in the space-time scheduling performed in the base station in consideration of the information of 1.5 Mb / s in the radio band control function (408 in FIG. 4). (507).
  • this spatio-temporal scheduling for example, in the case of a base station capable of 20 Mb / s communication in all radio frequency bands following the previous example, only the frequency band capable of 1.5 Mb / s communication is operated, and the remaining 18.5 The frequency band used for Mb / s is not used.
  • FIG. 9A shows radio frequency bands that can be set in the radio section.
  • a bandwidth (901) that enables 20 Mb / s communication is set in the radio section.
  • all of this (901) bandwidth was used, and communication data was assigned to frequency bands according to the radio wave situation (902) (this is called spatio-temporal scheduling because the assignment is done in terms of time and frequency (space)).
  • the wireless line bandwidth control information (804, 505) from the control node that is, based on the usable wireless bandwidth indicated based on the bandwidth of the wired line usable between the control node and the base station.
  • FIG. 9A shows radio frequency bands that can be set in the radio section.
  • a bandwidth (901) that enables 20 Mb / s communication is set in the radio section.
  • all of this (901) bandwidth was used, and communication data was assigned to frequency bands according to the radio wave situation (902) (this is called spatio-temporal scheduling because the assignment is done in terms of time and frequency (space)).
  • information on the unused frequency band corresponding to 18.5 Mb / s is notified to neighboring base stations (508).
  • the frequency band information (904) may be notified as vacant frequency band information itself, but it can be substituted by notifying the band (903) being used in the entire band (901). .
  • the neighboring base station ((D) in FIG. 9) performs the spatio-temporal scheduling, this time, when the bandwidth of the wireless line is limited to 1.0 Mb / s due to the situation of the wired line, FIG. Therefore, the frequency band of 1.0 Mb / s is set avoiding the frequency band of (903) (905).
  • adjacent base stations can be controlled so that they do not use the same frequency band, so scheduling that avoids interference between adjacent base stations can be performed, and average throughput is improved in communication with each terminal. Or communication with high communication efficiency is possible with a high probability of satisfying QoS.
  • the period for grasping the wired band is moderate compared with the fluctuation of the wireless band.
  • the free frequency band information 508 (508) transmitted by base station # 1 and the radio channel bandwidth according to the state of the wired line between base station # 2 and the control node are limited information (506).
  • the used radio frequency of the radio section of base station # 2 is determined (507). Further, as a result of this, information on the surplus frequency band is transmitted to another base station (508).
  • FIG. 10 shows two base stations, the same control flow is used when three or more base stations are installed.
  • the system configuration in the second embodiment is the same as the conventional system configuration shown in FIG. 2, but the total bandwidth of the wired cables (205 and 206 in FIG. 2) between the access point and the gateway is the conventional system configuration. As described above, the bandwidth may be narrower than a dedicated line, not a dedicated line.
  • FIG. 11 shows a block diagram of the control node 1103, the base station 1108, and the gateway 1104 in the present embodiment.
  • FIG. 11 is different from the first embodiment in that a gateway 1104 of each communication system is included in the system configuration between each base station and the control node.
  • the control node (1101) has a switching control unit (1102) for switching a plurality of systems, and a wired band information database (1103) serving as a judgment material for switching.
  • the data held in the wired bandwidth information database (1103) is the wired line information in FIG. 6 (602), which corresponds to the wired line between the gateway and the base station, and the data to be handled is described in the first embodiment.
  • system type information may be added to the wireless line information (603), and the system type information may be used as one of the materials for determining system switching. For example, when cellular and wireless LAN are system types, a determination method such as “perform cellular communication when cellular communication is possible” can be considered.
  • a bandwidth measurement function (1105) for measuring the bandwidth of the wired line between the base station and the gateway, which corresponds to the CN-AP bandwidth measurement function 404 provided in the control node
  • the bandwidth notification function (1106) for notifying the control node of the measured wired line information and the measured wired line information, which is a function corresponding to the wireless bandwidth instruction function 405 provided in the control node in the first embodiment.
  • a wireless bandwidth instruction function (1107) for sending an instruction for controlling the bandwidth of the wireless line.
  • the band measurement function (1105) and the radio band instruction function (1107) have the same functions as (404) and (405) in FIG. 4 described in the first embodiment, and will not be described here.
  • a bandwidth measurement function (1109) that measures the bandwidth of the wired line between the gateway and the base station, and a wireless bandwidth control function that controls the bandwidth of the wireless line according to instructions from the gateway (1110) and a wireless band information notification function (1111) for notifying neighboring base stations of information on available frequency bands based on the information on the band of the wireless channel set in (1110).
  • the bandwidth measurement function (1109), the wireless bandwidth control function (1110), and the wireless bandwidth information notification function (1111) are respectively (407), (408), and (409) in FIG. 4 described in the first embodiment. The functions are the same and will not be described here.
  • FIG. 12 shows a control flow in the second embodiment.
  • a wired communication line has been installed and operated by a wireless communication provider, and a band sufficient to accommodate the wireless line has been secured. It is necessary to know how much bandwidth is available on the line.
  • the gateway GW-AP band measurement function 1105 transmits a “base station-gateway band information request” (1201). Upon receiving this request, the GW-AP bandwidth measuring function 1109 of the base station responds with information necessary for grasping the wired bandwidth between the base station and the gateway (1202). Specific examples for realizing (1201) and (1202) have already been described in the first embodiment, and since there is no difference in this embodiment, it will not be described here.
  • the gateway grasps the information on the wired bandwidth transmitted from the base station.
  • the method for grasping the information on the wired bandwidth has already been described in the first embodiment, and since there is no difference in this embodiment, it will not be described here.
  • the control node receives this information, and updates the corresponding data as the database 1103 as shown in FIG. 6 in order to make a switching determination when switching between base stations or switching between systems performed by the switching control unit 1102 (1209).
  • a feature is that information on the state of the wired line between each base station and the gateway notified from the gateway, the total bandwidth, delay time, and line stability is newly maintained and updated as needed.
  • a control signal for limiting the bandwidth of the wireless section is generated (1205) and transmitted to the base station (1206). Since the processing in the base station is the same as that described in the first embodiment, it is omitted here.
  • the base station since a gateway for controlling a plurality of base stations is present in the upper station, the base station directly transmits information on free frequency bands to the adjacent base station as shown in (1208) of FIG. May be notified, or information on an empty frequency band may be notified to the gateway as shown in (1302) of FIG.
  • the gateway in addition to the information on the wired line, in consideration of the information on the vacant frequency band of the surrounding base station, the frequency band where interference does not occur is selected, and the band limit of the radio line is limited to the base station to be controlled. Information can be sent, and radio channel control at the base station is facilitated.
  • the base station is a femtocell base station.
  • the femtocell is intended for a relatively small cover area that is assumed to be installed in the home or office, and the wired line is turned off because the base station is installed in the home or office. Therefore, there is a high possibility that band fluctuation will occur due to sharing of the ADSL line (303) with other users, which is one of candidates for the application of the present invention.
  • the distance between femtocell base stations and wireless terminals is relatively close to several tens to several tens of meters in order to accommodate wireless terminals that are installed in the home or office and within that range.
  • a lot of femtocell base stations must be installed to cover a wide area where the user is active, and one of the points of realizing the interference reduction to adjacent base stations is shown in FIG. As shown in FIG. 13, it is possible to reduce interference by limiting the use band of the wireless section and sharing information on unused frequency bands with each other.
  • the femtocell base station described in this embodiment it is conceivable to use a line of another ADSL communication carrier as a wired line between the femtocell base station and the gateway, and the system configuration in this case is shown in FIG. Show. As shown in FIG. 14, the point that the wired line between the femtocell base station and the gateway is the line of another ADSL carrier is different from the other embodiments. It is possible to operate with the functions described in the first embodiment and the second embodiment.
  • the fourth embodiment it is assumed that, when a terminal moves indoors from outdoors, a base station to be connected switches from a macro cell that supports outdoors to a femto cell that supports indoors.
  • the system configuration in this embodiment can be seen as the left gateway # 1 and base station # 1101 corresponding to the macro cell in the configuration of FIG. 14 described in the third embodiment, and the right gateway # 2 and base station # 2 1108 corresponding to the femto cell. That's fine.
  • the macro cell is installed and operated by a wireless carrier between the base station and the gateway, and operates 24 hours a day, 365 days a year. There is no need to measure the bandwidth of the line.
  • the base station since the base station is installed in a home or office, there is a high possibility that the wired line will be turned off or a band fluctuation will occur. As described in, it is necessary to measure the state of the wired line. Also, when moving from outdoors to indoors, when switching from a macro cell to a femto cell, the femto cell may be used if the femto cell is in operation, or if the wired line is slow even in operation.
  • FIG. 15 shows an example of a database held by the control node
  • FIG. 16 shows a control flow when the control node switches between base stations.
  • the total bandwidth (1501), RSSI (601), etc. of the radio channel bandwidth of each base station are held as radio channel information. Also, as the wired line information, whether the link between each base station and the control node is established (ex. When the power of the femto base station is off, etc., “disconnected”), the wired line between each base station and the control node Total bandwidth, delay time between each base station and control node, line stability, and database update time.
  • a wireless terminal establishes a communication with a macro cell (base station # 1101) and performs communication (1601).
  • the control node grasps the state of the wireless line (702) and the state of the wired line between each base station and the control node, and updates the database (FIG. 15) (704).
  • the control node compares the BW of the wireless line information and the BW of the wired line information for each base station, and limits the total bandwidth used as the wireless line to the same bandwidth as the bandwidth of the wired line ( 801). Specifically, the total bandwidth of the radio line to be restricted is notified to each base station.
  • the wireless conditions (601) of the macro cell and the femto cell are compared. Specifically, the RSSI is compared, and if the RSSI of the femto base station is equal to or less than the RSSI of the macro cell, the base station is not switched.
  • the bandwidth (1502 BW) that can be used on the wired line, the delay time, and the wired line status such as stability are compared (1603).
  • the wire band that can be used between the femto base station and the gateway is large, the wire band that can be used between the macro cell and the gateway is switched to the femto cell.
  • the process proceeds to 1604.
  • the bandwidth of the wired line that can be used between the femto base station and the gateway is larger than the bandwidth required for application communication that the wireless terminal 105 is currently communicating in the macro cell, the femto base station is switched to the femto base station.
  • the switch to the femto cell is not performed, and the macro cell communicates continue.
  • the bandwidth of the wired line is the same between the macro cell and the femto cell, considering the stability, switching to a base station connected to a wired line that is more stable, that is, with less fluctuation in bandwidth is performed.
  • the delay time information is compared. If the delay time of the femtocell is smaller than the delay time of the macrocell, Switch to femtocell.
  • the control node switches to the femtocell, thereby widening the bandwidth of the wireless section and enabling faster communication. Switching to femtocells is possible because it is possible to communicate at 20 Mb / s over wired lines.
  • the radio line bandwidth can be expected to be 20 Mb / s, but the femto cell base station is turned off or the ADSL line with another user is connected.
  • the wired link of the femtocell base station is recognized as disconnected by sharing. In this case, even when switching to the femtocell base station by comparing only the status of the radio line, the wired line is in a disconnected state and actual communication is not possible. Therefore, switching to the femtocell is not performed and communication in the macrocell is continued.
  • the base station is installed in a home or office, and the flow when the apparatus is turned on will be described.
  • a wireless communication company installs and operates a wired line or the like, the wired line is operated on the assumption that it operates 24 hours a day, 365 days, so that it has not been assumed so far.
  • the base station when the base station is powered on (1701), a link is established between the base station and the gateway (1702). Subsequently, a “base station-gateway bandwidth information request” is transmitted from the gateway to the base station (1703). Upon receiving this request, the base station responds with information on the wired band (1704). As a result, the control node can receive notification of the wired band that can be used between the base station and the gateway from the gateway, and can update the database (1502), so that communication using the base station and the base station can be performed. Can be switched.
  • control flow for limiting the bandwidth of the wireless line according to the bandwidth of the wired line is the same as the flow described in the first or second embodiment.
  • the base station is installed in a home or office, and the flow when the apparatus is turned on will be described.
  • a wireless communication company installs and operates a wired line or the like, the wired line is operated on the assumption that it operates 24 hours a day, 365 days, so that it has not been assumed so far.
  • the flow after link establishment is different from the fifth embodiment.
  • the base station and the gateway are connected to each other.
  • the gateway side is also connected to the base station, the bandwidth of the wired line is grasped only by the gateway (1203), and this information is transmitted to the control node that controls switching (1204).
  • the control node that controls switching (1204 since each device independently grasps the bandwidth of the wired line, communication between the base station and the gateway becomes unnecessary, so that high-speed bandwidth control of the wireless line can be realized.
  • the base station is installed in a home or office, and the flow when the apparatus is turned off will be described.
  • a wireless communication company installs and operates a wired line or the like
  • the wired line is operated on the assumption that it operates 24 hours a day, 365 days, so that it has not been assumed so far.
  • the power of the base station is turned off, even if this base station is selected as the connection destination, there is a problem that communication cannot be performed because the bandwidth of the wired line is not secured, so this needs to be avoided.
  • the base station side is suddenly turned off by a user in the home or office (1901).
  • the gateway side periodically requests the bandwidth information of the wired line (1201), and no response is returned (1202). If this response is not returned for a certain period of time, it is determined that the power supply on the base station side has been cut off, the bandwidth between the base station and the gateway is set to 0 (1902), and this information is notified to the control node side (1903).
  • the control node updates the database (1904) and controls the corresponding base station not to use it as a switching destination. Specifically, when the wired line is disconnected as shown in FIG. 15B (1502), switching to the base station is not selected regardless of the state of the wireless line. By doing so, it is possible to avoid unnecessary switching to the base station where the communication of the wireless terminal is disconnected, and to continue communication.
  • the base station is installed in a home or office, and the flow when the apparatus is turned off will be described.
  • a wireless communication company installs and operates a wired line or the like, the wired line is operated on the assumption that it operates 24 hours a day, 365 days, so that it has not been assumed so far.
  • FIG. 19 it is assumed that the power is suddenly turned off by a user in the home or office on the base station side (1901).
  • FIG. 20 when a power-off button or the like is pressed in the base station circuit, A difference from the seventh embodiment is that a message indicating that the power is not turned off immediately and the power is turned off is transmitted to the gateway side (2002), and then the device is turned off (2003).
  • the gateway side can grasp the situation at the timing when the power is turned off, the situation of the base station can be grasped and the database can be updated earlier than the seventh embodiment, and the communication of the wireless terminal can be performed. It is possible to avoid unnecessary switching to a disconnected base station and to continue communication.
  • the present invention is characterized by the following points.
  • the gateway can be used on a wired line between the wireless communication base station apparatus and the gateway And a radio band between the radio communication base station apparatus and the radio communication terminal based on a radio band that can be used between the radio communication base station apparatus and the radio communication terminal.
  • the station apparatus is characterized in that the radio communication base station apparatus notifies the other radio communication base station apparatus of a radio frequency band used for communication between the radio communication base station apparatus and the radio communication terminal.
  • a band that can be used on a wired line between the radio communication base station apparatus and the gateway, and between the radio communication base station apparatus and the radio communication terminal Based on the wireless band that can be used in the wireless communication base station, the wireless communication base station apparatus and the wireless communication terminal are used to control the use band, and the gateway is connected to a plurality of other wireless communication base station apparatuses or other nodes and wired lines
  • the wired line between the wireless communication base station apparatus and the control node is variable depending on the use state of the wired band between the other plurality of wireless communication base station apparatuses or other nodes and the gateway. It is characterized by.
  • the radio communication base station apparatus described above is connected to a plurality of radio communication base station apparatuses via a gateway, and the radio base station apparatus is connected to the radio communication base station apparatus and the radio in the radio communication base station apparatus.
  • a radio frequency band not used for communication with a communication terminal is notified to another radio communication base station apparatus.
  • the radio communication base station apparatus uses other radio frequency bands used for communication between the radio communication base station apparatus and the radio communication terminal in the radio communication base station apparatus.
  • the wireless communication base station apparatus is notified. *
  • the radio communication base station apparatus does not transmit radio waves in a frequency band other than the selected radio frequency band.
  • the radio communication base station apparatus described above wherein the other radio communication base station apparatus is used for communication between the radio communication base station apparatus and the radio communication terminal notified from the radio communication base station apparatus.
  • the radio frequency band to be used is determined avoiding the notified radio frequency band.
  • the wireless communication base station apparatus can be used on a wired line between the wireless communication base station apparatus and the control node.
  • a use band between the radio communication base station apparatus and the radio communication terminal is determined based on an available band and a radio band usable between the radio communication base station apparatus and the radio communication terminal.
  • control node is connected to a plurality of other wireless communication base station devices or other nodes via a wired line, and a wired line between the wireless communication base station device and the control node. Is variable depending on the usage status of the wired band between the other plurality of radio communication base station apparatuses or other nodes and the control node.
  • the wireless communication system wherein the wireless communication system includes the plurality of wireless communication base station apparatuses, and the control node can be used on a wired line between the wireless communication base station apparatus and the control node.
  • the radio communication base station apparatus to which the radio communication terminal is connected is switched based on a clear band and a radio band that can be used between the radio communication base station apparatus and the radio communication terminal.
  • a control node connected to a plurality of radio communication base station apparatuses accommodating radio communication terminals wherein the control node can use a band that can be used on a wired line between the radio communication base station apparatus and the control node, and Based on a radio band usable between the radio communication base station apparatus and the radio communication terminal, the radio communication base station apparatus connected to the radio communication terminal is switched, and the radio communication terminal is necessary for data communication during communication.
  • a wired band satisfying a band is usable between another radio communication base station apparatus and the control node, communication between the radio communication terminal and the radio communication base station apparatus is performed by the other radio communication base station apparatus. It switches to communication with.
  • a gateway connected to a radio communication base station apparatus that accommodates a radio communication terminal; measuring bandwidth information of a wired line with the radio communication base station apparatus; and notifying the radio communication base station apparatus Features.
  • the gateway described above further connected to a control node that switches between a plurality of wireless communication systems, and notifying the control node of bandwidth information of a wired line with the measured wireless communication base station device It is characterized by.
  • the present invention is particularly applicable to a high-speed switching technology between a plurality of wireless communication systems including a wireless communication system using ADSL or FTTH in the home on a wired line on the network side, and a system switching technology between a macro cell and a femto cell. Is available.
  • Access point # 1 101 ... Access point # 1 102: Access point # 1 service area 103... Access point # 2 104... Service area of access point # 2 105 ... terminal 106 ... Control node 107 ... Network 108 ... Communication partner or server 109 ... Wired line between access point and control node 110 ... Wired line between access point and control node 201 ... Gateway # 1 202... Gateway # 2 203 ... Wired line between access point and gateway 204... Wired line between access point and gateway 205 ... Wired line between gateway and control node 206 ... Gateway-control node wired line 301 ... ADSL network 302 ... ADSL shared line controller 303... ADSL shared line 304 ... ADSL individual line 305... ADSL individual line 306 ...
  • Control node 402 Switching control unit 403 ... Wired bandwidth information database 404... Control node-base station bandwidth measurement function 405... Wireless bandwidth indication function 406 ... Access point 407 ... Bandwidth measurement function between control node and base station 408 ... Radio bandwidth control function 409... Radio band information notification function 501 ... Base station-control node bandwidth information request 502 ... Band information response 503 ... Band judgment between base station and control node 504 ... Database update 505 ... Radio section band control signal generation 506 ... Wireless band information transmission 507 ... Wireless zone bandwidth control 508 ... Free frequency band information transmission 509: Communication occurred 510 ... Switching judgment 601 ...
  • Wireless line information database 602 Wired line information database 603 ... Wireless link maximum allocatable bandwidth information database 701... Establish communication via access point # 1 and start communication 702... Understanding of wireless connection status 703... Understanding of the wired line status between base station and control node 704 ... Database update 705... Comparison of wireless connection status 706 ... Control flow added by the present invention 707 ... Comparison of wired bandwidth 708... Comparison of wired line bandwidth and desired application bandwidth 801 ... Band limiting flow in the control node 802 ... Comparison of wireless bandwidth and wired bandwidth 803 ... Setting of wireless line bandwidth 804 ... Radio section band control signal generation 805 ... Wireless band information transmission 901... Maximum wireless bandwidth that can be allocated to the base station 902... Radio frequency signal conditions 903 ...
  • Assigned radio frequency band 904 ... Available radio frequency band 905... Radio frequency band allocated in the surrounding base station 1001... Periodic control at access point # 1 1002: Periodic control at access point # 2 1101 ... Control unit 1102: Switching control unit 1103... Wired bandwidth information database 1104 ... Gateway 1105... Gateway-base station bandwidth measurement function 1106... Gateway-base station bandwidth notification function 1107: Wireless bandwidth instruction function 1108: Base station 1109... Bandwidth measurement function between gateway and base station 1110... Radio bandwidth control function 1111... Radio band information notification function 1201 ... Band information request between base station and gateway 1202 ... Band information response 1203... Bandwidth determination between base station and gateway 1204 ... Band information transmission between base station and gateway 1205... Radio section band control signal generation 1206 ...

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

 基地局とゲートウェイ間の有線回線で使用可能な帯域や有線回線の電源オン・オフ状態等を周期的に収集して把握し「基地局-ゲートウェイ間の有線帯域=フェムトセルの無線区間の稼動帯域幅の上限値」となるよう、基地局における無線区間の使用周波数や使用帯域幅等を決定し、未使用の無線周波数の情報を周辺基地局に通知することで、有線回線の状態を考慮したシステム切替を実現すると同時に無線回線における余剰な電波送信を防ぎ干渉を低減する。

Description

無線通信システム、無線通信基地局装置、および制御ノード
 特にネットワーク側の有線回線に家庭内のADSLやFTTH等を用いた無線通信システムを含む複数の無線通信システム間の高速な切替技術や、マクロセルとフェムトセル間でのシステム切替技術に関する。
 従来の無線システムでは、第3世代携帯電話等に代表されるように無線通信事業者が基地局やゲートウェイ、コアネットワークを設置し、基地局とゲートウェイ間の有線ケーブルについても無線通信事業者が設置、運用してきた。
 また近年の無線通信の高速化や通信アプリケーション多様化のニーズの高まりを受け、一つの基地局で広範囲なエリアをカバーし、その広範囲なエリア内に位置するすべてのユーザの通信をサポートすることが困難になりつつあり、セルラだけでなく、広範囲なエリア内に存在するWiMAXや無線LAN等の異なった無線通信システムを組み合わせて複数システムを利用する方法や、フェムトセルに代表されるように、同一の無線システムにおいてより小さなエリアをカバーする基地局を設置するなどの検討がなされている。
 これらの状況を示す従来のシステム構成の例を図1に示す。アクセスポイント#1(101)はサービスエリア(102)をカバーする。ここでアクセスポイント#1の無線通信方式はセルラやWiMAX、無線LAN等を想定する。アクセスポイント#2(103)はサービスエリア(104)をカバーする。ここでアクセスポイント#2の無線通信方式はアクセスポイント#1と同様、セルラやWiMAX、無線LAN等を想定する。
 アクセスポイント#1とアクセスポイント#2の無線通信方式が異なる場合、図1に示すシステム構成は複数システムを扱うシステムとなる。
 アクセスポイント#1とアクセスポイント#2の無線通信方式が同一の場合、図1に示すシステム構成は同一システム内で複数のセル構成、例えばマクロセルとフェムトセルの基地局が混在しているシステムとなる。
 ここで図1ではアクセスポイント#1(101)のサービスエリア(102)がアクセスポイント#2(103)のサービスエリア(104)よりも広く、かつサービスエリア(104)を完全に含んだ図となっているがこれは一例であり、サービスエリア(104)がサービスエリア(102)よりも広範囲であっても構わないし、両アクセスポイントのサービスエリアが完全に重なっている必要もない。
 いずれの場合にせよ、端末(105)がこれらのエリア内を移動する際、端末にとってより高速な(もしくはよりQoSが保証された)通信が可能となるようシステム間ハンドオーバやマクロセル-フェムトセル間ハンドオーバが生じる。ネットワーク上ではこれらのハンドオーバを実現するため、両アクセスポイントと有線ケーブル(109、110)を介して、制御ノード(106)が接続される。制御ノードの先にはネットワーク(107)を介して通信相手もしくは接続先のサーバ(108)が存在する。
 またセルラのように複数のアクセスポイント(基地局)を統合して制御するゲートウェイが存在する場合には、図2に示すようにアクセスポイント(101、103)と制御ノード(106)との間にそれぞれのシステムのゲートウェイ(201、202)が設置される。
 ここでアクセスポイントとゲートウェイ間は有線ケーブル(203、204)でそれぞれ接続されるが、この有線ケーブルは先ほど述べた通り無線通信事業者が設置、運用してきた。またこの有線ケーブルの帯域は、収容するアクセスポイントや基地局の能力、ゲートウェイで収容する基地局数に応じて無線回線の最大通信速度での通信を保証するよう設計してきた。例えば、セルラ(EVDO) Rev.0を例に取ると、Rev.0の無線通信方式の下り回線は収容する人数に関係なく最大で2.4Mb/s(逆に言えば2.4Mb/sを複数ユーザで共有)であるため、一つの基地局(101)に下り回線に必要な帯域は2.4Mb/sである。ゲートウェイ(201)が10局の基地局を収容する場合、下り回線に最低限必要な帯域は2.4M×10 = 24Mb/sとなることから制御ノードとゲートウェイ間の有線ケーブル(205)は24Mb/s以上の通信が可能となるように設計し、またゲートウェイと各アクセスポイント間のケーブルでは2.4Mb/s以上の通信が可能となるように設計する。このように有線回線の帯域は無線通信事業者が設置、運用する観点から、常に無線回線を収容できるように設計されてきた。
 有線側は常に無線回線を収容できるという前提で、これまでユーザのQoSを実現するための帯域制御方法がいくつか検討されている。
 例えば特許文献1ではユーザ端末の要求するコンテンツに応じた必要帯域を有線回線及び無線回線でそれぞれ確保するものである。無線端末(特許文献1の図1の1)は、コンテンツ送信要求(S1)を無線基地局(特許文献1の図1の3)を介してサーバ(特許文献1の図1の7)に送信する。サーバは各コンテンツに対応して保持する有線帯域情報10から、無線端末から要求されたコンテンツに対応する有線帯域情報を選択してサーバから無線基地局間に該コンテンツを送信する際に使用する有線帯域を決定する。また無線基地局は、サーバから通知される有線帯域情報に基づいて無線基地局から無線端末に該コンテンツを送信する際の無線帯域情報を作成し、無線基地局から無線端末に該コンテンツを送信する際に無線区間で使用する帯域を決定し、無線区間の設定を行う(特許文献1の0019段落等)。
 一方特許文献2では、コグニティブ基地局(特許文献2の20)がコグニティブ端末(特許文献2の40)との間で通信可能な無線帯域の状況を把握したうえで、通信に必要な帯域との比較を行い、通信帯域の割当を行っている。
 通信が発生した場合、コグニティブゲートウェイ(特許文献2の10)は、まずコグニティブ基地局に無線帯域の割当要求を送信する。コグニティブ基地局は、コグニティブ端末との通信等を通じ把握した電波利用状況の情報を元にコグニティブ基地局―コグニティブ端末間で割当可能な帯域の情報を決定し、この情報をコグニティブゲートウェイに通知する。コグニティブゲートウェイは、コグニティブ基地局から通知された割当可能な帯域の情報と通信に必要な帯域との比較を行い、実際に無線区間に割り当てる帯域の情報をコグニティブ基地局に通知する(特許文献2の0084段落等)。
特開2005-79740号公報 特開2007-306206号公報
 特許文献1の場合、例えば、ストリーミングを受信したいとの要求を無線端末が送出し、サーバ側で300kb/sのレートでストリーミングすると決定し、サーバから無線基地局間の有線側で300kb/sの帯域を確保し、無線基地局から無線端末間の無線側も300kb/sが確保できるよう無線帯域情報を作成して、無線区間の設定を行う。
 この場合、サーバ側は無線端末からのコンテンツ送信要求があった場合に該コンテンツ送信に使用する有線帯域情報及び無線帯域情報にのみに応じて有線帯域及び無線帯域の帯域を確定しており、サーバから無線基地局間の有線回線の帯域の状況及び無線基地局から無線端末間の無線帯域の状況を考慮して該コンテンツの送信に使用する有線帯域及び無線帯域を決定していない。またユーザのコンテンツごとにこれらのフローが動作することとなり、ある一つの無線基地局と通信している複数のユーザ(無線端末)がコンテンツ送信要求を出した場合、無線基地局と無線端末間の無線区間で使用可能な帯域には限度があるため、無線基地局と無線端末間の無線区間の帯域設定に制御が必要であるが、無線帯域情報作成がどのような動作をするのか述べられていない。以上より、特許文献1では、使用可能な有線帯域及び無線帯域に応じた帯域割当をすることができない。 
 また、特許文献2では、例えば、300kb/s以上でのストリーミング通信が発生すると、コグニティブゲートウェイは、コグニティブ基地局に無線区間の状況を問合せる。コグニティブ基地局は、電波利用状況等を把握し、無線区間で400kb/s割当可能とコグニティブゲートウェイに回答する、コグニティブゲートウェイでは、該ストリーミング通信に必要な帯域が300kb/sなので、この該ストリーミング通信に必要な帯域である300kb/sとコグニティブ基地局から割当可能と回答された400kb/sの情報との比較を行い、その結果、300kb/sを無線区間に割り当てるようコグニティブ基地局側に帯域割当情報を送信する。
 この場合、該ストリーミング通信に必要な帯域と無線区間で割当可能な帯域との比較を行って、無線区間の帯域を決定しており、有線の帯域の状況は比較対象に入っていない。以上より、特許文献2では、使用可能な有線帯域及び無線帯域に応じて使用する有線回線及び無線回線の帯域割当をすることができない。
 これらの特許文献では、いづれも無線通信事業者が基地局やゲートウェイ、コアネットワークを設置し、基地局とゲートウェイ間の有線ケーブルについても無線通信事業者が設置、運用してきた。それゆえ、基地局とゲートウェイ、制御ノード間の有線回線の帯域は必ず確保できるよう、システムを無線通信事業者が構築してきた。よって、無線基地局と無線端末間の無線帯域を割り当てる際に、基地局とゲートウェイ、制御ノード間の有線回線の帯域の方が無線基地局と無線端末間の無線帯域よりも細くなること、またそのため有線回線の帯域を考慮して無線帯域を制御しなければならないという問題はなかった。
 しかしながら、無線通信事業者がこれまで設置、運用してきた無線基地局とゲートウェイ間の有線ケーブルはその運用専用に敷設されたケーブルであることから高価であり、近年の無線通信の高速化や通信アプリケーション多様化のニーズに応じるために無線基地局を新設もしくは増設する際、無線通信事業者はコストを下げるために無線基地局とゲートウェイ間を接続する有線ケーブルを、安価な狭帯域なケーブルで代用して敷設したり、専用線を敷設せず、ADSL業者の有線ネットワークを借りて運用するシステム構成に変わりつつある。
 無線通信事業者がコストを下げるために無線基地局とゲートウェイ間を接続する有線ケーブルを、安価な狭帯域なケーブルで代用して敷設した状況は、図2におけるゲートウェイと無線基地局間を接続する有線ケーブル(204)が狭帯域なケーブルとなる場合に対応する。
 この場合、無線通信システムは無線端末との通信を保証できなくなる。例えば、セルラ(EVDO) Rev.0を例に取り、有線ケーブル(204)が狭帯域で1Mb/s通信が可能だとすると、一つの基地局(103)における下り回線に必要な帯域は2.4Mb/sであることから、本来有線ケーブルにて伝送すべき2.4Mb/sのうち1Mb/s分しか伝送することができず、結果として、無線端末(105)にすべてのデータが届かず通信できなくなる課題が生じる。すなわち、無線端末105がセル102からセル104にハンドオーバする場合、従来技術のように無線区間の無線帯域情報のみを考慮して基地局103へハンドオーバしてしまうと、ゲートウェイ#2(202)と基地局#2(103)との間の有線回線の帯域が狭く、無線端末105が通信中の通信を継続できない場合がある。また、無線端末105が、セル102かつセル104の位置にいる場合に無線通信を開始する場合、従来技術であれば無線区間の無線帯域情報のみを考慮して基地局#1(101)または基地局#2(103)のいづれを用いて無線通信を行うかを制御していたが、ゲートウェイと基地局間の有線帯域が無線端末の要求する通信帯域に対して十分確保されない場合は有線回線がボトルネックとなり通信ができない。
 また、無線通信事業者がコストを下げるために無線基地局とゲートウェイ間を接続する有線ケーブルを、自社で敷設せず、ADSL事業者のネットワークを利用して接続した状況は、図3に示すシステム構成となる。無線通信事業者はADSL事業者のネットワーク(301)に接続し、ADSL事業者が保有する光ケーブル(303)や宅内までの有線ケーブル(304、305)等を利用して、基地局(103)に接続する場合に対応する。
 無線通信事業者はゲートウェイ(202)からADSL事業者のネットワークまでのケーブル(308)の敷設のみでよいためコストを下げることが可能となるが、ADSL事業者は例えば家庭内に設置されているADSLモデム(306、307)等を含めて、制御局(302)においてADSLネットワーク(301)の回線制御を行っているため、基地局(103)とゲートウェイ(202)との間の帯域は、他のADSL回線使用者の状況により変化する。ここで、有線回線の帯域(304、305)制御は制御局(302)が行う。
 この場合、無線通信システムは無線端末との通信を保証できなくなる。例えば、セルラ(EVDO) Rev.0を例に取ると一つの基地局(103)における下り回線に必要な帯域は2.4Mb/sであることから、本来有線ケーブル(304)にて伝送すべき帯域は2.4Mb/sである。ADSLネットワーク(301)において基地局(103)とADSLモデム(306、307)を収容するケーブル(303)が例えば20Mb/sの広帯域な回線であったとしても、ADSLモデム(306、307)が大容量のストリーミング等の通信中でそのうちの19Mb/sを使用していた場合、基地局と接続している有線ケーブル(304)は1Mb/sしか割り当てられず、本来有線ケーブルにて伝送すべき2.4Mb/sのうち1Mb/s分しか伝送することができず、結果として、従来技術のように無線帯域の情報のみに基づいて基地局間のハンドオーバまたは通信開始時に基地局を選択すると無線端末(105)にすべてのデータが届かず通信できなくなる課題が生じる。
 さらに、フェムトセルのような比較的小エリアをカバーする基地局を有し、この基地局がコアネットワーク側への接続として家庭内に敷設されたADSL等の有線回線を使用する場合、これまで無線通信事業者が24時間365日運用する前提で設置・運用してきた回線と異なり、基地局の電源オフによる基地局-ゲートウェイ間のリンク切断が起きたり、また図3の例のように回線(303)を他のユーザ(306、307)と通信回線を共用するため、有線回線の帯域が時間的に変動する。 
 この結果、無線状況がよく上り回線・下り回線合わせて合計20Mb/sの高速な帯域が無線回線で割当可能であっても、フェムトセル基地局-ゲートウェイ間の有線回線が上り回線・下り回線合わせて1.5Mb/sしか確保できず、ユーザから見た時に例えば上り回線において無線区間で割り当てた帯域を用いてデータを伝送してもそのすべてが有線回線で伝送できず、結果としてデータロスが生じ正しく通信できない問題があった。
 また無線状況がよく20Mb/sの高速な帯域が割当可能で、実際に20Mb/sの帯域を無線回線に割り当てたとしても、フェムトセル基地局-ゲートウェイ間の有線回線が1.5Mb/sしか確保できない場合、フェムトセル基地局において必要以上の無線帯域を使用していることとなり、隣接マクロセル基地局へ干渉を及ぼす問題があり、システム全体として高速通信できない問題があった。
 さらに家庭内に設置されているフェムト基地局は24時間365日電源オンの状態ではないため、マクロセルに接続されているユーザが移動先のフェムトセル基地局に切り替えようとした時にフェムトセル基地局の電源が切れていて切替できない状況が生じるが、従来技術では基地局とゲートウェイ間の有線回線の帯域の状況を知ることができずに電源の切れた基地局への切替を実施し、通信が途切れる等の問題があった。
 そこで、本願発明は、基地局とゲートウェイ間の有線ケーブルの総帯域が無線回線の総帯域と比較して狭帯域である場合においても無線端末が通信可能となることを目的とする。
 また本願発明は、基地局とゲートウェイ間の有線ケーブルをADSL事業者等の他のネットワークと共用することで実現する場合においても無線通信端末が通信可能となることを目的とする。
 また本願発明は、基地局とゲートウェイ間の有線ケーブルの総帯域が、無線回線の総帯域と比較して狭帯域である場合において、無線回線における干渉を低減しシステム全体として高速通信を実現することを目的とする。
 また本願発明は、基地局が電源オフの状態でその基地局に切替(ハンドオーバ)不可能な場合においても通信が途切れず、継続可能となることを目的とする。
 無線通信基地局装置、ゲートウェイ、及び、前記無線通信基地局装置に収容される無線通信端末を含む無線通信システムであって、前記ゲートウェイは、前記無線通信基地局装置と前記ゲートウェイ間の有線回線で使用可能な帯域と、前記無線通信基地局装置と前記無線通信端末間で使用可能な無線帯域とに基づいて、前記無線通信基地局装置と前記無線通信端末間の無線帯域を制御することを特徴とする。
 基地局の電源オフによる基地局-ゲートウェイ間のリンク切断や有線回線の総帯域の変動が起きた場合においても、制御ノード、ゲートウェイ、基地局間の使用可能な有線帯域及び基地局の使用可能な無線帯域に変動に応じて有線帯域及び無線帯域を割り当てることができる。さらに、制御ノード、ゲートウェイ、基地局間の使用可能な有線帯域及び基地局の使用可能な無線帯域に変動に応じてシステムを切り替えることができる。
従来のシステム構成 ゲートウェイを含む従来のシステム構成 本発明が解決しようとする従来のシステム構成 本発明によるシステム構成 本発明による制御フロー 本発明による有線回線帯域情報を含むデータベース 本発明による基地局・システム切替判断フロー 本発明による制御ノードにおける帯域制限フロー 本発明による基地局側での帯域制限方法 本発明による干渉低減を実現する制御フロー 本発明によるゲートウェイを含むシステム構成 ゲートウェイを含むシステム構成における制御フロー ゲートウェイに無線情報を集約する場合の制御フロー ADSL回線を有線回線に含む本発明によるシステム構成 ADSL回線を有線回線に含んだ場合のデータベース例 フェムトセル基地局を含む基地局切替制御フロー 電源オン時の制御フロー(ゲートウェイ主導) 電源オン時の制御フロー(基地局主導) 電源オフ時の制御フロー(ゲートウェイ主導) 電源オフ時の制御フロー(基地局主導)
 本発明における第1の実施形態について説明する。
 第1の実施形態におけるシステム構成は、図1で示した従来のシステム構成と同一であるが、アクセスポイントと制御ノード間の有線ケーブル(図1の109、110)の総帯域幅が従来のシステム構成のように専用線ではなく、無線回線における帯域幅よりも狭くなる場合がある点が特徴である。
 図1に対応する制御ノード、基地局のブロック図を図4に示す。
 制御ノード(401)は、アクセスポイント#1(406)とアクセスポイント#2(406)を切り替えるための切替制御部(402)、制御ノード(401)と各基地局間の有線ケーブル等の情報をデータベースとして保有する有線帯域情報データベース(403)、制御ノード(401)と各基地局間の有線ケーブルの帯域幅を測定する帯域測定機能(404)、この測定結果を元に基地局(406)が使用する無線回線の帯域幅を指示する無線帯域指示機能(405)から構成される。
 また基地局(406)では、制御ノード(401)と連携して制御ノード(401)と基地局間の有線帯域幅を測定する帯域測定機能(407)と、制御ノードからの指示に従い、無線回線の帯域幅や使用帯域を制御する無線帯域制御機能(408)、(408)において設定した無線回線の帯域の情報を元に、空いている周波数帯の情報を周辺基地局に通知する無線帯域情報通知機能(409)を持つ。
 図5に第1の実施形態における制御フローを示す。無線通信システムを構成する有線ネットワーク側において、従来、有線回線は無線通信事業者が設置、運用を行い、無線回線を収容するに十分な帯域が確保されてきたが、本実施形態においては、有線回線においてどの程度の帯域幅が使用可能かを把握する必要がある。
 そこで、まず制御ノード(401)から基地局(システムによっては基地局のことをアクセスポイントと呼ぶ場合があるがこの文章では基地局とアクセスポイントは同義である)に向けて「基地局-制御ノード間帯域情報要求」を送信する(501)。この要求を受けた基地局は基地局と制御ノード間の有線帯域幅を把握するために必要な情報を応答する(502)。例えば(501)として制御ノードからpingが送出された場合には、基地局は(502)としてpingに対する応答を制御ノードに向けて送出する。あるいは(501)として制御ノードから帯域幅の情報を要求するメッセージを送出し、基地局において、基地局と制御ノードの有線回線のリンク確立時に把握した有線回線の帯域幅の情報をメッセージに格納して制御ノードに送出してもよい。
 これらの基地局からの応答を元に制御ノードにおいては、基地局から送信された有線帯域幅の情報を把握する。例えば、(502)においてping等のコマンド応答を用いる場合には有線回線の帯域幅=(送信バイト数/(ping応答受信時刻-ping送出時刻))などの算出式を用いて、有線回線の帯域幅を把握する(503)。あるいは基地局から有線回線の帯域幅の情報がメッセージに格納されて制御ノードに送出された場合はメッセージの中から有線回線の帯域幅の情報を抽出する。なお、応答がない場合には対応する有線回線の帯域=0と判断する。
 この情報を受信した制御ノードは基地局間切替もしくはシステム間切替を行う際の切替判断のため、図6に示すようなデータベースとして該当データを更新する(504)。
 ここで図6について説明する。従来は各基地局から収集された無線回線の状況(601)をデータベースとして保持・更新していたが、ここに各基地局と制御ノードとの間の有線回線の状態(リンクが確立されているかリンクが切断されている状態等)や現在使用可能な総帯域幅、遅延時間、回線の総帯域幅や遅延時間それぞれの分散や標準偏差等により求められる回線安定性に関する情報(602)が新たに保持され、これを随時更新する点が特徴である。また、現在使用可能な無線回線の総帯域の情報(603)が新たに保持され、随時更新する点も特徴である。
 ここで、図5に戻り説明を続ける。尚、505から508については後述する。
 実際に通信が発生した場合には(509)、この更新されたデータベースを元に、無線回線の状態(601)だけでなく、基地局の現在使用可能な無線回線の総帯域の情報(603)、及び有線回線の状態(602)を考慮して切替するかしないかの判断が行われる(510)。ここで無線回線の総帯域の情報(603)は、無線回線で設定する帯域幅の情報(例えば10MHz等)でもよいし、設定した結果として通信可能な最大帯域(例えば40Mb/s)のどちらでもよい。
 基地局間切替判断(501)における制御ノードの切替制御部(402)において行われる判断フローを図7に示す。例として、基地局#1と無線端末が通信している状況(701)から開始し、基地局#2の方へ無線端末が移動する状況を仮定する。従来は無線回線の状況(601)を把握(702)し、これをデータベースとして更新するが、本実施形態では、基地局と制御ノード間の有線帯域の情報を把握し(703)、図6で示したように有線回線の情報も含めてデータベースを更新する(704)。無線端末が基地局#2の方に移動し、基地局#2の無線回線の状況が基地局#1の無線回線よりも良好となった場合(図6の例では、例えば基地局#2のRSSI値が基地局#1のRSSI(Receive Signal Strength Indication)値よりも大きくなった場合)、従来は基地局#2に接続先を切り替えていた(705)が、本実施形態では(706)に示すフローが追加される。すなわち、制御ノードと基地局#1間と、制御ノードと基地局#2間の有線回線の状況を比較し、現在接続している基地局#1の有線回線よりも基地局#2の有線回線の状況が良好の場合(図6の例では、例えばまず有線回線の帯域幅(BW)がそれぞれの無線回線の帯域幅(603)以上の値となっていることを確認した上で、基地局#1と基地局#2の帯域幅(BW)の情報を比較し、基地局#2の帯域幅が大きな値の場合や、基地局#1と基地局#2の遅延時間の情報を比較し、基地局#2の遅延時間が小さな値の場合や、あるいは基地局#1と基地局#2の帯域幅(BW)の分散や標準偏差等から算出される安定性の情報を比較し、基地局#2の変動幅が小さな値の場合)(707)、基地局#2に接続先を切り替える。基地局#2の有線回線の状況が基地局#1よりも悪い場合、それ(基地局#2の有線回線の状況(603))がアプリケーション通信を行う最低限の帯域幅を満たしているかどうか比較し(708)、これを満たしている場合には基地局#2に接続先を切り替える。有線回線の状況がアプリケーション通信の最低限の帯域幅を満たせない場合、切り替えても良好な通信が見込めないため、接続先の切替は行わない。なお、アプリケーション通信に最低限必要な帯域幅の情報は無線システムで適用される各アプリケーション毎にあらかじめ決定されており、この値との比較により切替の判断を行うことになる。
 さて、図5の制御フローの続きを説明する。制御ノードにおいて、基地局-制御ノード間の有線帯域の状況(602)を把握した段階で、基地局-制御ノード間で使用可能な有線帯域以上の帯域の通信は端末―基地局間の無線区間で使用出来ないため、無線区間の帯域制限をかけるための制御信号を生成する(505)。
 この場合の制御ノード(401)の無線帯域指示機能(405)において行われる制御フローの詳細を図8に示す。例えば収容する複数の無線端末―基地局間の無線回線において最大20Mb/s通信が可能な基地局がこの制御ノードと接続されており、基地局-制御ノード間の有線回線の帯域の測定結果が1.5Mb/sであった場合、まず、図7の(704)におけるデータベース更新によりこれらの情報を把握する。次にいくら無線回線の状況がよくても有線回線がボトルネックとなり1.5Mb/s以上の通信は困難であることから、有線回線の帯域幅(602の「BW」)と無線回線の帯域幅(603)の比較を行い(802)、無線回線として使用する総帯域を有線回線の帯域幅と同じ1.5Mb/sとするように制限する(803)。次に無線回線の総帯域幅を1.5Mb/sとするために、この1.5Mb/sという情報をメッセージとして制御ノードの無線帯域指示機能(405)から基地局に送信する(506)。
 ここで図5のフローに戻り説明する。これを受けた基地局は基地局内における無線帯域制御機能(図4の408)において、この1.5Mb/sという情報を考慮した上で、基地局内で行われる時空間スケジューリングにおける使用する周波数帯の設定を行う(507)。この時空間スケジューリングでは、例えば先の例の続きで全無線周波数帯で20Mb/sの通信が可能な基地局の場合、1.5Mb/sの通信が可能な周波数帯のみを稼動させ、残りの18.5Mb/s相当に用いる周波数帯は使用しない。
 この様子を図9に示す。図9(A)は無線区間で設定可能な無線周波数帯であり、図9の例では20Mb/sの通信が可能な帯域幅(901)が無線区間に設定されている。従来はこの(901)の帯域幅すべてを用い、電波状況(902)に応じて通信データを周波数帯に割り当てていた(割り当てを時間的、周波数(空間)的に行う為、時空間スケジューリングという)。本実施形態においては制御ノードからの無線回線帯域制御情報(804、 505)、すなわち、制御ノードと基地局間で使用可能な有線回線の帯域に基づいて指示される使用可能な無線帯域幅に基づき、図9(C)のように電波状況のよい区間に1.5Mb/sの通信を割り当て(903)、残りの周波数帯(904)での電波送出を止める。こうすることで基地局周辺に無用の電波(904)を送信することがなくなり、他の基地局が図9(A)と同じ無線周波数帯を使用していることによる他の基地局への干渉を低減することが可能である。さらに、残りの周波数帯(904)での電波送出を止めることにより、装置の消費電力を低減することが可能となる。
 また未使用となった18.5Mb/s相当の周波数帯の情報(図9(C)における(904)の情報)を周辺の基地局に通知する(508)。周波数帯の情報(904)は空いている周波数帯の情報そのものとして通知してもよいが、全帯域(901)の中で、使用されている帯域(903)を通知することでも代用可能である。こうすることで周辺の基地局(図9の(D))が時空間スケジューリングを行う際に、今度は有線回線の状況から無線回線を1.0Mb/sに帯域制限する際、図9(C)の情報を取得しているため、(903)の周波数帯を避けて1.0Mb/sの周波数帯を設定する(905)。
 以上の制御により隣接する基地局で同じ周波数帯を使用しないよう制御することができるため隣接する基地局間の干渉を避けたスケジューリングをすることが可能となり、各端末との通信において平均スループットが向上したり、あるいはQoSを満足する確率が高くなるような通信効率のよい通信が可能となる。
 これらの状況を図10により詳しく記載している。各基地局ではこれまでに本実施形態で述べてきたように有線帯域の情報の把握、また「有線回線の帯域=無線の稼動帯域の上限値」となるような制御を周期的に行っている(1001、1002)。有線帯域を把握する周期は、無線帯域の変動と比較すれば緩やかなものであるが、ユーザの家庭内に設置されている基地局の場合、電源がオン、オフされる状況も検知する必要があることから、秒単位から分単位のオーダが考えられる。最もそれ以外の周期でも構わない。
 さて基地局#2では、基地局#1が送信した空き周波数帯の情報 (508)と、基地局#2-制御ノード間の有線回線の状態に応じた無線回線の帯域を制限情報 (506)に基づいて、図9で示した制御方法に従い、基地局#2の無線区間の使用無線周波数が決定される(507)。さらにこの結果として余剰の周波数帯の情報は他の基地局に伝送される(508)。図10では基地局は2局分として記載しているが、基地局が3局以上設置されている場合も同様の制御フローとなる。
 本発明における第2の実施形態について説明する。
 第2の実施形態におけるシステム構成は、図2で示した従来のシステム構成と同一であるが、アクセスポイントとゲートウェイ間の有線ケーブル(図2の205、206)の総帯域幅が従来のシステム構成のように専用線ではなく、無線回線における帯域幅よりも狭くなる場合がある点が特徴である。
 本実施形態における制御ノード1103、基地局1108、及びゲートウェイ1104のブロック図を図11に示す。図11は第1の実施形態と比較した場合、各基地局と制御ノードの間に各通信システムのゲートウェイ1104をシステム構成に含む点が異なる。
 図11に示すように、制御ノード(1101)は複数のシステムを切り替えるための切替制御部(1102)と、切り替えるための判断材料となる有線帯域情報データベース(1103)を有する。ここで、有線帯域情報データベース(1103)にて保持するデータは図6(602)の有線回線情報が、ゲートウェイと基地局間の有線回線に該当し、扱うデータは第1の実施形態で述べた図6のデータベースに記載されているデータと特に変わりはないが、無線回線情報(603)にシステム種別の情報を追加し、システム種別の情報をシステム切替の判断材料の一つとしても構わない。例えばセルラと無線LANをシステム種別とした場合に、「セルラでの通信が可能な場合はセルラでの通信を行う」、などのような判断方法が考えられる。
 ゲートウェイ(1104)においては、第1の実施形態では制御ノードが備えていたCN-AP間帯域測定機能404に相当する基地局とゲートウェイ間の有線回線の帯域を測定する帯域測定機能(1105)と、測定した有線回線の情報を制御ノードに通知する帯域通知機能(1106)と、第1の実施形態では制御ノードが備えていた無線帯域指示機能405に相当する機能である測定した有線回線の情報に基づき、無線回線の帯域幅を制御するための指示を送出する無線帯域指示機能(1107)を有する。帯域測定機能(1105)及び無線帯域指示機能(1107)はそれぞれ、第1の実施形態で述べた図4の(404)と(405)と機能は同一でありここでは説明しない。
 基地局(1108)においては、ゲートウェイと連携し、ゲートウェイと基地局間の有線回線の帯域を測定する帯域測定機能(1109)と、ゲートウェイからの指示に従い無線回線の帯域制御を行う無線帯域制御機能(1110)と、(1110)において設定した無線回線の帯域の情報を元に、空いている周波数帯の情報を周辺基地局に通知する無線帯域情報通知機能(1111)を有する。ここで帯域測定機能(1109)、無線帯域制御機能(1110)、無線帯域情報通知機能(1111)はそれぞれ、第1の実施形態で述べた図4の(407)と(408)と(409)と機能は同一でありここでは説明しない。
 第2の実施形態における制御フローを図12に示す。
 無線通信システムを構成する有線ネットワーク側において、従来、有線回線は無線通信事業者が設置、運用を行い、無線回線を収容するに十分な帯域が確保されてきたが、本実施形態においては、有線回線においてどの程度の帯域幅が使用可能かを把握する必要がある。
 そこでまずゲートウェイから基地局に向けて、ゲートウェイのGW-AP間帯域測定機能1105は、「基地局-ゲートウェイ間帯域情報要求」を送信する(1201)。この要求を受けた基地局のGW-AP間帯域測定機能1109は、基地局とゲートウェイ間の有線帯域幅を把握するために必要な情報を応答する(1202)。(1201)(1202)を実現する具体例は第1の実施形態にて既に述べており、本実施形態においてもこれと差異はないためここでは説明しない。
 基地局からの応答(1202)を元にゲートウェイは、基地局から送信された有線帯域幅の情報を把握する。有線帯域幅の情報の把握方法は第1の実施形態で既に述べており、本実施形態においてもこれと差異はないためここでは説明しない。
 基地局とゲートウェイ間の有線回線の帯域情報を把握したゲートウェイのGW-AP間帯域通知機能1106は、この情報を制御ノードに通知する(1204)。制御ノードは、この情報を受信し、切替制御部1102が行う基地局間切替もしくはシステム間切替を行う際の切替判断のため、図6に示すようなデータベース1103として該当データを更新する(1209)。ゲートウェイから通知された各基地局とゲートウェイとの間の有線回線の状態や総帯域幅、遅延時間、回線安定性に関する情報が新たに保持され、これを随時更新する点が特徴である。
 実際に通信が発生した場合や切替判断における判断フローは第1の実施形態と同一であるためここでは説明しない。
 ゲートウェイにおいて、基地局-ゲートウェイ間の有線帯域の状況を把握した段階で、基地局-ゲートウェイ間で使用可能な有線帯域以上の帯域の通信は端末―基地局間の無線区間で使用出来ないため、無線区間の帯域制限をかけるための制御信号を生成し(1205)、基地局に送信する(1206)。基地局における処理は第1の実施形態で述べた内容と同一のためここでは割愛する。
 なお第2の実施形態においては、複数の基地局を制御するゲートウェイが上位局に存在するため、図12の(1208)のように基地局が隣接基地局に対して直接、空き周波数帯の情報を通知してもよいし、図13の(1302)のように空き周波数帯の情報をゲートウェイに通知してもよい。この場合、ゲートウェイにおいては有線回線の情報に加え、周辺基地局の空き周波数帯の情報を考慮して、干渉が起きない周波数帯を選択して、制御対象とする基地局に無線回線の帯域制限情報を送ることが可能となり、基地局における無線回線制御が容易となる。
 本発明における第3の実施形態について説明する。
 第3の実施形態では、基地局がフェムトセル基地局の場合を考える。フェムトセルは家庭内もしくはオフィス内に設置されることを想定した比較的小さなカバーエリアを想定したものであり、基地局が家庭内もしくはオフィス内に設置されることから有線回線が電源オフになったり、ADSL回線(303)を他のユーザと共用することによる帯域変動が起きる可能性が高く、本発明の適用先の候補の一つである。
 またフェムトセルでは、家庭内もしくはオフィス内に設置しその範囲内にいる無線端末を収容することを想定するためにフェムトセル基地局と無線端末間の距離は数mから数10mと比較的近距離であり、結果としてユーザが活動する広範囲をカバーするにはたくさんのフェムトセル基地局を設置しなければならず、隣接基地局への干渉低減が実現のポイントの一つであり、図4から図13までに示すように無線区間の使用帯域を制限し、かつ未使用周波数帯の情報を互いに共有することにより干渉低減を実現することが可能となる。なお本実施形態で述べたフェムトセル基地局の場合、フェムトセル基地局とゲートウェイ間の有線回線を他のADSL通信事業者の回線を使用することが考えられ、この場合のシステム構成を図14に示す。図14に示す通り、フェムトセル基地局とゲートウェイ間の有線回線を他のADSL通信事業者の回線を使用している点が他の実施形態と異なるが、システムを構成するゲートウェイ及び基地局は第1の実施形態及び第2の実施形態で述べた機能で動作することが可能である。
 本発明における第4の実施形態について説明する。
 第4の実施形態では、端末が屋外から屋内に移動した場合、接続先の基地局が屋外をサポートするマクロセルから屋内をサポートするフェムトセルに切り替わる場合を想定する。本実施形態におけるシステム構成は第3の実施形態で述べた図14の構成において左側のゲートウェイ#1及び基地局#1101がマクロセル対応、右側のゲートウェイ#2と基地局#21108がフェムトセル対応と見ればよい。マクロセルは既存のセルラ通信システムで用いられている通り、基地局-ゲートウェイ間は無線通信事業者が設置、運用しており、また24時間365日稼動しているため、基地局-ゲートウェイ間で有線回線の帯域を測定する必要はない。一方、フェムトセル基地局の場合は、基地局が家庭内もしくはオフィス内に設置されることから有線回線が電源オフになったり、帯域変動が起きる可能性が高く、第1から第3の実施形態で述べてきたように有線回線の状況を測定する必要がある。また屋外から屋内に移動した場合、マクロセルからフェムトセルに切替を行う場合にも、該当フェムトセルが稼動状態にあるかどうかや、稼動状態にあっても有線回線が低速である場合等にはフェムトセルに切替えずにマクロセルでの通信を継続した方がよい場合もあることから、切替を行う制御ノードにおいてフェムトセル基地局-ゲートウェイ間の有線情報のデータベースを周期的に更新し、これらの状況も加味して切替判断を行う。図15に制御ノードの保持するデータベースの例を示し、制御ノードの基地局間切替時の制御フローを図16に示す。
 図15において、それぞれ、無線回線情報として、各基地局の無線回線帯域の総帯域(1501)、RSSI(601)等を保持する。また、有線回線情報として、各基地局と制御ノードのリンクが確立されているか(ex.フェムト基地局の電源がオフの場合等は「切断」となる)、各基地局と制御ノードの有線回線の総帯域、各基地局と制御ノード間の遅延時間、回線の安定性、及びデータベースの更新時間を保持する。
 図16において、まず、無線端末がマクロセル(基地局#1101)で回線を確立し、通信していたとする(1601)。制御ノードは無線回線の状況(702)、各基地局と制御ノード間の有線回線の状況を把握し、データベース(図15)を更新する(704)。この際、制御ノードは各基地局毎に無線回線情報のBWと有線回線情報のBWを比較し、無線回線として使用する総帯域を有線回線の帯域幅と同じ帯域幅にするように制限する(801)。具体的には各基地局に制限すべき無線回線の総帯域を通知する。
 次に、図14に示すように無線通信端末105の移動により、無線通信端末がフェムト基地局(1108)のセル内104に入った場合にマクロセルとフェムトセルの無線状況(601)を比較する。具体的にはRSSIを比較し、フェムト基地局のRSSIがマクロセルのRSSI以下の場合は基地局の切替は行わない。
 一方、フェムト基地局のRSSIがマクロセルのRSSIより大きい場合、さらに、有線回線で使用可能な帯域帯域(1502のBW)や遅延時間、安定性等の有線回線状況を比較する(1603)。ここで、フェムト基地局とゲートウェイ間で使用可能な有線帯域がマクロセルとゲートウェイ間で使用可能な有線回線帯域が大きい場合にはフェムトセルに切り替える。
 一方、フェムト基地局とゲートウェイ間で使用可能な有線帯域がマクロセルとゲートウェイ間で使用可能な有線回線帯域以下である場合は1604に進む。1604では、フェムト基地局とゲートウェイ間で使用可能な有線回線の帯域が、現在無線端末105がマクロセルで通信中のアプリケーション通信に必要な帯域よりも大きい場合にはフェムト基地局に切り替える。一方、フェムト基地局とゲートウェイ間で使用可能な有線回線の帯域が、現在無線端末105がマクロセルで通信中のアプリケーション通信に必要な帯域以下の場合はフェムトセルに切替を行わず、マクロセルで通信を継続する。マクロセルとフェムトセルで有線回線の帯域幅が等しい場合は、その安定性を考慮し、より安定している、すなわち帯域幅の変動の少ない有線回線と接続される基地局への切替を行う。さらに安定性の値にも差が見られない場合や安定性の値で比較できない場合、遅延時間の情報を比較し、フェムトセルの遅延時間の方がマクロセルの遅延時間よりも小さい場合には、フェムトセルへの切替を行う。
 マクロセルでの通信時からフェムトセル基地局に切り替える際、データベースが図15の(A)の状態であった場合、制御ノードはフェムトセルに切り替えることで、無線区間の帯域が広くなりより高速な通信が見込まれること、また有線回線においても20Mb/sでの通信が可能であることからフェムトセルへの切替を実施する。一方別の時刻(B)において同じく端末がマクロセルからフェムトセルに切り替えようとした場合、無線回線の帯域は20Mb/sが見込めるがフェムトセル基地局が電源オフやあるいは他のユーザとのADSL回線の共用によって、フェムトセル基地局の有線回線のリンクが切断状態と認識されたとする。この場合、無線回線の状況だけ比較してフェムトセル基地局に切り替えても有線回線が切断状態であるため実際通信ができないため、フェムトセルへの切替を行わず、マクロセルでの通信を継続する。
 本発明における第5の実施形態について説明する。
 本実施形態では基地局が家庭内もしくはオフィス内に設置されることを想定し、装置の電源を入れた時のフローについて述べる。無線通信事業者が有線回線等を設置、運用してきた時には有線回線は24時間365日稼動する前提で動作しているため、これまで想定されていない状況である。
 制御フローを図17に示す。
 まず基地局の電源が投入される(1701)と、基地局とゲートウェイ間でリンクが確立される(1702)。続いてゲートウェイから基地局に向けて「基地局-ゲートウェイ間帯域情報要求」を送信する(1703)。この要求を受けた基地局は有線帯域の情報を応答する(1704)。これにより、制御ノードは、ゲートウェイから、基地局とゲートウェイ間で使用可能な有線帯域の通知を受け、データベース(1502)を更新することができるため、該基地局を用いた通信及び該基地局への切替が可能となる。
 有線回線の帯域に応じて無線回線の帯域制限を行う為の制御フローは第1もしくは第2の実施形態で述べたフローに準じる。
 本発明における第6の実施形態について説明する。
 本実施形態では基地局が家庭内もしくはオフィス内に設置されることを想定し、装置の電源を入れた時のフローについて述べる。無線通信事業者が有線回線等を設置、運用してきた時には有線回線は24時間365日稼動する前提で動作しているため、これまで想定されていない状況である。
 第5の実施形態とは、リンク確立後のフローが異なる。
 本実施形態では図18に示すように、基地局とゲートウェイ間のリンク確立後(1702)、基地局とゲートウェイが接続された状態であることから基地局、ゲートウェイそれぞれが単独に基地局とゲートウェイの有線区間の帯域を測定し(1801、 1203)、「有線区間の帯域=無線区間で使用する帯域の上限値」として無線区間の帯域制御を行う(1207)。ゲートウェイ側でも基地局と接続されていることから有線回線の帯域をゲートウェイのみで把握し(1203)、この情報を切替をつかさどる制御ノードに伝送する(1204)。このように有線回線の帯域をそれぞれの装置が単独で把握することにより、基地局―ゲートウェイ間での通信が不要となるため高速な無線回線の帯域制御を実現することが可能となる。
 本発明における第7の実施形態について説明する。
 本実施形態では基地局が家庭内もしくはオフィス内に設置されることを想定し、装置の電源が切られた時のフローについて述べる。無線通信事業者が有線回線等を設置、運用してきた時には有線回線は24時間365日稼動する前提で動作しているため、これまで想定されていない状況である。基地局の電源が切られた場合、接続先としてこの基地局を選択しても有線回線の帯域が確保されていないことから通信ができない問題が生じるため、これを回避する必要がある。
 図19に示すように基地局側では家庭内やオフィス内のユーザによりいきなり電源が切られる(1901)。ゲートウェイ側は周期的に有線回線の帯域情報を要求しており(1201)、これに対する応答が返ってこない状況となる(1202)。ある一定期間この応答が返ってこない場合、基地局側の電源が切れたと判断し、該当基地局とゲートウェイ間の帯域=0として(1902)、この情報を制御ノード側に通知する(1903)。基地局-ゲートウェイ間の帯域=0と判断する方法は、このようにメッセージの応答が返ってこないことで判断する方法以外に、ゲートウェイ側で基地局との間のリンクが切断されたことを示すメッセージやアラートなどの起動で代用してもよい。制御ノード側ではデータベースを更新し(1904)、該当基地局が切替先として使用しないように制御する。具体的には図15の(B)の(1502)のように有線回線が切断した場合、無線回線の状況によらずにこの基地局への切替を選択しない。こうすることで無線端末の通信が切断されている基地局への無用な切替を回避し、通信を継続させることが可能となる。
 本発明における第8の実施形態について説明する。
 本実施形態では基地局が家庭内もしくはオフィス内に設置されることを想定し、装置の電源が切られた時のフローについて述べる。無線通信事業者が有線回線等を設置、運用してきた時には有線回線は24時間365日稼動する前提で動作しているため、これまで想定されていない状況である。
 図19では、基地局側では家庭内やオフィス内のユーザによりいきなり電源が切られる(1901)場合を想定したが、図20では基地局の回路の中に電源オフのボタン等を押した場合、すぐには電源が切れず、電源オフとなる旨のメッセージをゲートウェイ側に送信し(2002)、その後に装置の電源がオフとなる(2003)となる点が第7の実施形態と異なる。
 この実施形態では電源オフとなるタイミングでゲートウェイ側がその状況を把握することが可能であることから、第7の実施形態よりも早く基地局の状況把握及びデータベース更新が可能となり、無線端末の通信が切断されている基地局への無用な切替を回避し、通信を継続させることが可能となる。
 また、本願発明は以下の点を特徴とする。
 無線通信基地局装置、ゲートウェイ、及び、前記無線通信基地局装置に収容される無線通信端末を含む無線通信システムにおいて、前記ゲートウェイは、前記無線通信基地局装置と前記ゲートウェイ間の有線回線で使用可能な帯域と、前記無線通信基地局装置と前記無線通信端末間で使用可能な無線帯域とに基づいて、前記無線通信基地局装置と前記無線通信端末間の無線帯域を制御し、前記無線通信基地局装置は、該無線通信基地局装置において、該無線通信基地局装置と前記無線通信端末との通信に使用する無線周波数帯域を他の無線通信基地局装置に通知することを特徴とする。
 ゲートウェイに接続され、無線通信端末を収容する無線通信基地局装置において、前記無線通信基地局装置と前記ゲートウェイ間の有線回線で使用可能な帯域と、前記無線通信基地局装置と前記無線通信端末間で使用可能な無線帯域とに基づいて、前記無線通信基地局装置と前記無線通信端末間の使用帯域を制御し、前記ゲートウェイは、他の複数の無線通信基地局装置または他のノードと有線回線を介して接続され、前記無線通信基地局装置と制御ノード間の有線回線は、前記他の複数の無線通信基地局装置または他のノードと前記ゲートウェイ間の有線帯域の使用状況により可変であることを特徴とする。
 上記に記載の無線通信基地局装置において、複数の無線通信基地局装置とゲートウェイを介して接続され、前記無線基地局装置は、該無線通信基地局装置において、該無線通信基地局装置と前記無線通信端末との通信に使用しない無線周波数帯域を他の無線通信基地局装置に通知することを特徴とする。
 上記に記載の無線通信基地局装置において、前記無線通信基地局装置は、該無線通信基地局装置において、該無線通信基地局装置と前記無線通信端末との通信に使用する無線周波数帯域を他の無線通信基地局装置に通知することを特徴とする。 
 上記に記載の無線通信基地局装置において、前記無線通信基地局装置は、前記選択した無線周波数帯域以外の周波数帯の電波を送出しないことを特徴とする。
 上記に記載の無線通信基地局装置であって、前記他の無線通信基地局装置は、前記無線通信基地局装置から通知される前記無線通信基地局装置と前記無線通信端末との通信に使用する無線周波数帯域情報を通知された場合に、該通知された無線周波数帯を避けて、使用する無線周波数帯域を決定することを特徴とする。
 また、無線通信基地局装置、制御ノード、及び、前記無線通信基地局装置に収容される無線通信端末を含む無線通信システムにおいて、前記無線通信基地局装置と前記制御ノード間の有線回線で使用可能な帯域と、前記無線通信基地局装置と前記無線通信端末間で使用可能な無線帯域とに基づいて、前記無線通信基地局装置と前記無線通信端末間の使用帯域を決定することを特徴とする。
 上記に記載の無線通信システムにおいて、前記制御ノードは、他の複数の無線通信基地局装置または他のノードと有線回線を介して接続され、前記無線通信基地局装置と前記制御ノード間の有線回線は、前記他の複数の無線通信基地局装置または他のノードと前記制御ノード間の有線帯域の使用状況により可変であることを特徴とする。
 上記に記載の無線通信システムであって、前記無線通信システムは、前記複数の無線通信基地局装置を備え、前記制御ノードは、前記無線通信基地局装置と前記制御ノード間の有線回線で使用可能な帯域と、前記無線通信基地局装置と前記無線通信端末間で使用可能な無線帯域とに基づいて、前記無線通信端末が接続する無線通信基地局装置を切り替えることを特徴とする。
 無線通信端末を収容する複数の無線通信基地局装置を接続された制御ノードであって、前記制御ノードは、前記無線通信基地局装置と前記制御ノード間の有線回線で使用可能な帯域と、前記無線通信基地局装置と前記無線通信端末間で使用可能な無線帯域とに基づいて、前記無線通信端末が接続する無線通信基地局装置を切り替え、前記無線通信端末が通信中のデータ通信に必要な帯域を満たす有線帯域が他の無線通信基地局装置と前記制御ノードとの間で使用可能な場合に、前記無線通信端末と前記無線通信基地局装置との通信を前記他の無線通信基地局装置との通信に切り替えることを特徴とする。
 また、無線通信端末を収容する無線通信基地局装置に接続されたゲートウェイであって、前記無線通信基地局装置との有線回線の帯域情報を測定し、前記無線通信基地局装置に通知することを特徴とする。
 上記に記載のゲートウェイであって、さらに複数の無線通信システム間の切替を行う制御ノードと接続され、前記測定した前記無線通信基地局装置との有線回線の帯域情報を前記制御ノードに通知することを特徴とする。
 本発明は、特にネットワーク側の有線回線に家庭内のADSLやFTTH等を用いた無線通信システムを含む複数の無線通信システム間の高速な切替技術や、マクロセルとフェムトセル間でのシステム切替技術に利用可能である。
101…アクセスポイント#1
102…アクセスポイント#1のサービスエリア
103…アクセスポイント#2
104…アクセスポイント#2のサービスエリア
105…端末
106…制御ノード
107…ネットワーク
108…通信相手もしくはサーバ
109…アクセスポイント-制御ノード間有線回線
110…アクセスポイント-制御ノード間有線回線
201…ゲートウェイ#1
202…ゲートウェイ#2
203…アクセスポイント-ゲートウェイ間有線回線
204…アクセスポイント-ゲートウェイ間有線回線
205…ゲートウェイ-制御ノード間有線回線
206…ゲートウェイ-制御ノード間有線回線
301…ADSLネットワーク
302…ADSL共用回線制御部
303…ADSL共用回線
304…ADSL個別回線
305…ADSL個別回線
306…ADSLモデム
307…ADSLモデム
308…ケーブル
401…制御ノード
402…切替制御部
403…有線帯域情報データベース
404…制御ノード-基地局間帯域測定機能
405…無線回線帯域指示機能
406…アクセスポイント
407…制御ノード-基地局間帯域測定機能
408…無線帯域制御機能
409…無線帯域情報通知機能
501…基地局-制御ノード間帯域情報要求
502…帯域情報応答
503…基地局-制御ノード間帯域判断
504…データベース更新
505…無線区間帯域制御信号生成
506…無線区間帯域情報送信
507…無線区間帯域制御
508…空き周波数帯情報伝送
509…通信発生
510…切替判断
601…無線回線情報データベース
602…有線回線情報データベース
603…無線回線最大割当可能帯域幅情報データベース
701…アクセスポイント#1経由の回線確立・通信開始
702…無線回線状況把握
703…基地局-制御ノード間有線回線状況把握
704…データベース更新
705…無線回線状況の比較
706…本発明により追加される制御フロー
707…有線回線帯域幅の比較
708…有線回線帯域幅とアプリケーション所望帯域幅との比較
801…制御ノードにおける帯域制限フロー
802…無線回線帯域幅と有線回線帯域幅の比較
803…無線回線帯域幅の設定
804…無線区間帯域制御信号生成
805…無線区間帯域情報送信
901…基地局に割当可能な最大無線帯域幅
902…無線周波数の電波状況
903…割り当てた無線周波数帯
904…空いている無線周波数帯
905…周辺基地局において割り当てた無線周波数帯
1001…アクセスポイント#1における周期的な制御
1002…アクセスポイント#2における周期的な制御
1101…制御部
1102…切替制御部
1103…有線帯域情報データベース
1104…ゲートウェイ
1105…ゲートウェイ-基地局間帯域測定機能
1106…ゲートウェイ-基地局間帯域通知機能
1107…無線帯域指示機能
1108…基地局
1109…ゲートウェイ-基地局間帯域測定機能
1110…無線帯域制御機能
1111…無線帯域情報通知機能
1201…基地局-ゲートウェイ間帯域情報要求
1202…帯域情報応答
1203…基地局-ゲートウェイ間帯域判断
1204…基地局-ゲートウェイ間帯域情報送信
1205…無線区間帯域制御信号生成
1206…無線区間帯域情報送信
1207…無線区間帯域制御
1208…空き周波数帯情報伝送
1209…データベース更新
1210…周期的に行われる制御
1301…基地局からゲートウェイへの空き周波数情報伝送
1302…ゲートウェイから基地局への空き周波数情報伝送
1501…マクロセルとフェムトセルの無線回線情報データベース
1502…マクロセルとフェムトセルの有線回線情報データベース
1601…マクロセルでの回線確立、通信開始
1602…マクロセルとフェムトセルの無線回線状況の比較
1603…マクロセルとフェムトセルの有線回線状況の比較
1604…有線回線帯域幅とアプリケーション所望帯域幅との比較
1605…フェムトセル切替時において追加となる制御フロー
1701…電源オン
1702…リンク確立
1703…基地局-ゲートウェイ間帯域情報要求
1704…帯域情報応答
1801…有線区間帯域測定
1901…電源オフ
1902…基地局-ゲートウェイ間帯域判断(帯域=0)
1903…帯域情報送信(帯域=0)
1904…データベース更新
2001…電源オフの起動
2002…電源オフ情報送信
2003…電源オフ

Claims (20)

  1.  無線通信基地局装置、ゲートウェイ、及び、前記無線通信基地局装置に収容される無線通信端末を含む無線通信システムであって、
     前記ゲートウェイは、
     前記無線通信基地局装置と前記ゲートウェイ間の有線回線で使用可能な帯域と、前記無線通信基地局装置と前記無線通信端末間で使用可能な無線帯域とに基づいて、前記無線通信基地局装置と前記無線通信端末間の無線帯域を制御することを特徴とする無線通信システム。
  2.  請求項1に記載の無線通信システムであって、
     前記ゲートウェイは、他の複数の無線通信基地局装置または他のノードと有線回線を介して接続され、前記無線通信基地局装置と制御ノード間の有線回線は、前記他の複数の無線通信基地局装置または他のノードと前記ゲートウェイ間の有線帯域の使用状況により可変であることを特徴とする無線通信システム。
  3.  請求項1に記載の無線通信システムであって、
     前記無線通信基地局装置は、
     前記無線通信基地局装置と前記無線通信端末との間の無線区間の周波数帯域の上限値が、該無線通信基地局装置と該ゲートウェイ間で使用可能な有線回線の帯域となるように制御することを特徴とする無線通信システム。
  4.  請求項1に記載の無線通信システムであって、
     前記無線通信システムは、複数の無線通信基地局装置、及び前記無線通信基地局装置と接続される複数のゲートウェイ及び複数のゲートウェイが接続された制御ノードを備え、
     前記制御ノードは、
     前記無線通信基地局装置と前記制御ノード間の有線回線で使用可能な帯域と、前記無線通信基地局装置と前記無線通信端末間で使用可能な無線帯域とに基づいて、前記無線通信端末が接続する無線通信基地局装置を切り替えることを特徴とする無線通信システム。
  5.  請求項4に記載の無線通信システムであって、
     前記制御ノードは、
     前記無線通信基地局装置と前記制御ノード間の有線回線で使用可能な帯域と、前記無線通信基地局装置と前記無線通信端末間で使用可能な無線帯域に関する情報を保持することを特徴とする無線通信システム。
  6.  請求項4に記載の無線通信システムであって、
     前記制御ノードは、
     前記無線通信端末が通信している無線通信基地局装置よりも他の無線通信基地局装置との無線回線の通信状態が良好であり、かつ、該無線通信端末が通信に必要としている有線回線の帯域が他の無線通信基地局装置と前記制御ノードとの間で使用可能な場合に、前記無線通信端末と前記無線通信基地局装置との通信を前記他の無線通信基地局装置との通信に切り替えることを特徴とする無線通信システム。
  7.  請求項6に記載の無線通信システムであって、
     前記制御ノードは、
     前記無線通信端末が通信中のデータ通信に必要な帯域を満たす有線帯域が他の無線通信基地局装置と前記制御ノードとの間で使用可能な場合に、前記無線通信端末と前記無線通信基地局装置との通信を前記他の無線通信基地局装置との通信に切り替えることを特徴とする無線通信システム。
  8.  請求項1に記載の無線通信システムであって、
     前記無線通信システムは、複数の無線通信基地局装置、及び前記無線通信基地局装置と接続される複数のゲートウェイ及び複数のゲートウェイが接続された制御ノードを備え、
     前記各無線通信基地局装置はそれぞれ異なる無線通信システムに対応する無線通信基地局装置であり、
     前記制御ノードは、
     前記各制御ノードと前記無線通信基地局装置間で使用可能な有線帯域情報と、前記無線通信基地局装置と前記各制御ノード間で使用可能な無線帯域情報に基づいて、前記無線通信端末の通信に使用する前記無線通信システムを切り替えるか否かを判断することを特徴とする無線通信システム
  9.  請求項1に記載の無線通信システムであって、
     前記無線通信基地局装置は、
     前記無線通信基地局装置が前記無線通信端末との通信に用いる無線回線の帯域の上限値が、該無線通信基地局装置と制御ノード間で使用可能な有線回線の帯域となるように使用する無線周波数帯域を選択することを特徴とする無線通信システム。
  10.  請求項1に記載の無線通信システムであって、
     前記無線通信システムは、前記無線通信基地局装置を複数含み、
     前記無線通信基地局装置は、該無線通信基地局装置において、該無線通信基地局装置と前記無線通信端末との通信に使用しない無線周波数帯域を他の無線通信基地局装置に通知することを特徴とする無線通信システム。
  11.  請求項1に記載の無線通信システムであって、
     前記無線通信基地局装置は、該無線通信基地局装置において、該無線通信基地局装置と前記無線通信端末との通信に使用する無線周波数帯域を他の無線通信基地局装置に通知することを特徴とする無線通信システム。
  12.  請求項9に記載の無線通信システムであって、
     前記無線通信基地局装置は、前記選択した無線周波数帯域以外の周波数帯の電波を送出しないことを特徴とする無線通信システム。
  13.  請求項10に記載の無線通信システムであって、
     前記他の無線通信基地局装置は、前記無線通信基地局装置から通知される前記無線通信基地局装置と前記無線通信端末との通信に使用する無線周波数帯域情報を通知された場合に、該通知された無線周波数帯を避けて、使用する無線周波数帯域を決定することを特徴とする無線通信システム。
  14.  ゲートウェイに接続され、無線通信端末を収容する無線通信基地局装置であって、
     前記無線通信基地局装置と前記ゲートウェイ間の有線回線で使用可能な帯域と、前記無線通信基地局装置と前記無線通信端末間で使用可能な無線帯域とに基づいて、前記無線通信基地局装置と前記無線通信端末間の使用帯域を制御することを特徴とする無線通信基地局装置。
  15.  請求項14に記載の無線通信基地局装置であって、
     前記無線通信基地局装置と前記無線通信端末との間の無線区間の周波数帯域の上限値が、該無線通信基地局装置と該ゲートウェイ間で使用可能な有線回線の帯域となるように制御することを特徴とする無線通信基地局装置。
  16.  請求項14に記載の無線通信基地局装置であって、
     前記無線通信基地局装置は、
     前記無線通信基地局装置が前記無線通信端末との通信に用いる無線回線の帯域の上限値が、該無線通信基地局装置と該ゲートウェイ間で使用可能な有線回線の帯域となるように使用する無線周波数帯域を選択することを特徴とする無線通信基地局装置。
  17.  請求項14に記載の無線通信基地局装置であって、
     複数の無線通信基地局装置とゲートウェイを介して接続され、
     前記無線通信基地局装置は、該無線通信基地局装置において、該無線通信基地局装置と前記無線通信端末との通信に使用しない無線周波数帯域を他の無線通信基地局装置に通知し、
     前記他の無線通信基地局装置は、前記無線通信基地局装置から通知される前記無線通信基地局装置と前記無線通信端末との通信に使用する無線周波数帯域情報を通知された場合に、該通知された無線周波数帯を避けて、使用する無線周波数帯域を決定することを特徴とする無線通信基地局装置。
  18.  無線通信端末を収容する複数の無線通信基地局装置を接続された制御ノードであって、
     前記制御ノードは、
     前記無線通信基地局装置と前記制御ノード間の有線回線で使用可能な帯域と、前記無線通信基地局装置と前記無線通信端末間で使用可能な無線帯域とに基づいて、前記無線通信端末が接続する無線通信基地局装置を切り替えることを特徴とする制御ノード。
  19.  請求項18に記載の制御ノードであって、
     前記制御ノードは、
     前記無線通信基地局装置と前記制御ノード間の有線回線で使用可能な帯域と、前記無線通信基地局装置と前記無線通信端末間で使用可能な無線帯域に関する情報を保持することを特徴とする制御ノード。
  20.  請求項18に記載の制御ノードであって、
     前記制御ノードは複数のゲートウェイを介して複数の無線通信基地局装置と接続され、
     前記各無線通信基地局装置はそれぞれ異なる無線通信システムに対応する無線通信基地局装置であり、
     前記制御ノードは、
     前記各制御ノードと前記無線通信基地局装置間で使用可能な有線帯域情報と、前記無線通信基地局装置と前記各制御ノード間で使用可能な無線帯域情報に基づいて、前記無線通信端末の通信に使用する前記無線通信システムを切り替えるか否かを判断することを特徴とする制御ノード。
     
     
PCT/JP2009/059462 2009-05-22 2009-05-22 無線通信システム、無線通信基地局装置、および制御ノード WO2010134202A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP09844934A EP2434801A1 (en) 2009-05-22 2009-05-22 Wireless communication system, wireless communication access point device, and control node
US13/321,391 US20120100854A1 (en) 2009-05-22 2009-05-22 Wireless Communication System, Wireless Communication Base Station Device, and Control Node
JP2011514273A JP5412512B2 (ja) 2009-05-22 2009-05-22 無線通信システム、無線通信基地局装置、および制御ノード
PCT/JP2009/059462 WO2010134202A1 (ja) 2009-05-22 2009-05-22 無線通信システム、無線通信基地局装置、および制御ノード

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/059462 WO2010134202A1 (ja) 2009-05-22 2009-05-22 無線通信システム、無線通信基地局装置、および制御ノード

Publications (1)

Publication Number Publication Date
WO2010134202A1 true WO2010134202A1 (ja) 2010-11-25

Family

ID=43125898

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/059462 WO2010134202A1 (ja) 2009-05-22 2009-05-22 無線通信システム、無線通信基地局装置、および制御ノード

Country Status (4)

Country Link
US (1) US20120100854A1 (ja)
EP (1) EP2434801A1 (ja)
JP (1) JP5412512B2 (ja)
WO (1) WO2010134202A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014086921A (ja) * 2012-10-24 2014-05-12 Kddi Corp 移動局が中継局を介して接続されているか否かを判別する通信設備装置、方法及びプログラム
WO2014156156A1 (ja) * 2013-03-27 2014-10-02 パナソニック株式会社 電力量計、電力量計量システム
JP2015033073A (ja) * 2013-08-06 2015-02-16 株式会社日立製作所 モバイルゲートウェイ、その制御方法、それを備える無線アクセスネットワークシステム
WO2017126013A1 (ja) * 2016-01-18 2017-07-27 ソフトバンク株式会社 基地局装置及び通信システム
US10257778B2 (en) 2014-04-16 2019-04-09 Fujitsu Limited Wireless communication system, base station, and terminal
US10555298B2 (en) 2014-04-11 2020-02-04 Fujitsu Limited Wireless communication system, base station, and terminal
US10575190B2 (en) 2014-04-04 2020-02-25 Fujitsu Limited Wireless communication system, base station, and terminal for selecting at least one cell from among multiple cells
WO2020202384A1 (ja) * 2019-03-29 2020-10-08 本田技研工業株式会社 端末装置、通信システム、通信方法、及びプログラム

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5654335B2 (ja) 2010-12-13 2015-01-14 京セラ株式会社 無線通信システム、基地局及びその制御方法
WO2013178250A1 (en) * 2012-05-29 2013-12-05 Nec Europe Ltd. Method and system for data communication in hierarchically structured network
US9894713B2 (en) * 2013-08-07 2018-02-13 Telefonaktiebolaget Lm Ericsson (Publ) Method of controlling a base station system
CN104837187B (zh) * 2015-05-13 2019-06-04 新华三技术有限公司 无线接入设备的节能方法及装置
US10999345B2 (en) * 2015-10-19 2021-05-04 At&T Intellectual Property I, L.P. Real-time video delivery for connected home applications
US10823822B2 (en) * 2017-10-02 2020-11-03 Higher Ground Llc System and method for deploying self-coordinated devices in an environment with incumbent receivers

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004032428A (ja) * 2002-06-26 2004-01-29 Mitsubishi Electric Corp 無線通信システムおよび通信方法
JP2005079740A (ja) 2003-08-29 2005-03-24 Nippon Telegr & Teleph Corp <Ntt> 帯域設定方法
JP2005539445A (ja) * 2002-09-18 2005-12-22 ノキア コーポレイション 無線リソースを管理する方法及び無線システム
JP2007524330A (ja) * 2004-03-11 2007-08-23 モトローラ・インコーポレイテッド 無線通信システムにおける動的なバックホールリソースの管理の方法及び装置
JP2007306206A (ja) 2006-05-10 2007-11-22 Advanced Telecommunication Research Institute International 通信システム

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100547852B1 (ko) * 2002-01-09 2006-02-01 삼성전자주식회사 이동통신 시스템에서 호 수락 방법
WO2005041609A1 (ja) * 2003-10-27 2005-05-06 Fujitsu Limited 接続先基地局決定装置
KR100842579B1 (ko) * 2004-03-05 2008-07-01 삼성전자주식회사 광대역 무선 접속 통신 시스템에서 핑퐁 현상에 따른서비스 지연을 최소화하는 핸드오버 시스템 및 방법
CN100452891C (zh) * 2004-04-22 2009-01-14 Ut斯达康通讯有限公司 一种资源集中控制的分布式无线系统
KR100678054B1 (ko) * 2005-01-31 2007-02-02 삼성전자주식회사 무선 통신 시스템에서 핸드오버 방법
JPWO2007100108A1 (ja) * 2006-03-03 2009-07-23 株式会社エヌ・ティ・ティ・ドコモ 基地局およびハンドオーバ制御方法
FR2898759B1 (fr) * 2006-03-14 2008-05-16 Cell & Sat Soc Par Actions Sim Procede d'optimisation de l'allocation des ressources dans un reseau cellulaire mettant en oeuvre une liaison de transmission radio partagee, reseau et adaptateurs de reseau correspondants.

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004032428A (ja) * 2002-06-26 2004-01-29 Mitsubishi Electric Corp 無線通信システムおよび通信方法
JP2005539445A (ja) * 2002-09-18 2005-12-22 ノキア コーポレイション 無線リソースを管理する方法及び無線システム
JP2005079740A (ja) 2003-08-29 2005-03-24 Nippon Telegr & Teleph Corp <Ntt> 帯域設定方法
JP2007524330A (ja) * 2004-03-11 2007-08-23 モトローラ・インコーポレイテッド 無線通信システムにおける動的なバックホールリソースの管理の方法及び装置
JP2007306206A (ja) 2006-05-10 2007-11-22 Advanced Telecommunication Research Institute International 通信システム

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014086921A (ja) * 2012-10-24 2014-05-12 Kddi Corp 移動局が中継局を介して接続されているか否かを判別する通信設備装置、方法及びプログラム
WO2014156156A1 (ja) * 2013-03-27 2014-10-02 パナソニック株式会社 電力量計、電力量計量システム
JP2015033073A (ja) * 2013-08-06 2015-02-16 株式会社日立製作所 モバイルゲートウェイ、その制御方法、それを備える無線アクセスネットワークシステム
US10575190B2 (en) 2014-04-04 2020-02-25 Fujitsu Limited Wireless communication system, base station, and terminal for selecting at least one cell from among multiple cells
US10555298B2 (en) 2014-04-11 2020-02-04 Fujitsu Limited Wireless communication system, base station, and terminal
US10257778B2 (en) 2014-04-16 2019-04-09 Fujitsu Limited Wireless communication system, base station, and terminal
WO2017126013A1 (ja) * 2016-01-18 2017-07-27 ソフトバンク株式会社 基地局装置及び通信システム
JPWO2017126013A1 (ja) * 2016-01-18 2018-02-01 ソフトバンク株式会社 基地局装置及び通信システム
US10123233B2 (en) 2016-01-18 2018-11-06 Softbank Corp. Base station apparatus and communication system
WO2020202384A1 (ja) * 2019-03-29 2020-10-08 本田技研工業株式会社 端末装置、通信システム、通信方法、及びプログラム
US12096301B2 (en) 2019-03-29 2024-09-17 Honda Motor Co., Ltd. Terminal apparatus, communication system, communication method, and computer-readable storage medium

Also Published As

Publication number Publication date
EP2434801A1 (en) 2012-03-28
JP5412512B2 (ja) 2014-02-12
US20120100854A1 (en) 2012-04-26
JPWO2010134202A1 (ja) 2012-11-08

Similar Documents

Publication Publication Date Title
JP5412512B2 (ja) 無線通信システム、無線通信基地局装置、および制御ノード
USRE50092E1 (en) Small cell network architecture for servicing multiple network operators
RU2439848C2 (ru) Ретрансляционная сеть для базовых фемтостанций
EP1924114B1 (en) Wireless access point operation based upon historical information
JP4180236B2 (ja) ハンドオーバ制御方法及びシステム
US9049648B2 (en) Cognitive communication network system and communicating method thereof
US7313112B2 (en) Apparatus and method for interworking CDMA2000 networks and wireless local area networks
WO2016058924A1 (en) Configuration of communication devices
KR101902343B1 (ko) 네트워크 장치 및 사용자 장치, 및 그 방법들
US20220224492A1 (en) Systems and methods for customizing wireless communication beacons and transmitting wireless communication beacons
JP5278893B2 (ja) コグニティブ無線通信ネットワークシステムおよびコグニティブ通信方法
JP5278892B2 (ja) コグニティブ無線通信ネットワークシステムおよびコグニティブ通信方法
CN106537965A (zh) 用于频谱分配的方法和设备
JP2011091853A (ja) ハンドオーバ制御方法及びシステム
Takeo et al. QoS management and peer-to-peer mobility in fixed-mobile convergence
EP2182759B1 (en) Method and equipment for improving radio network communications

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09844934

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2011514273

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009844934

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13321391

Country of ref document: US