[go: up one dir, main page]

WO2010126141A1 - Optical glass, optical element, and preform for precision press molding - Google Patents

Optical glass, optical element, and preform for precision press molding Download PDF

Info

Publication number
WO2010126141A1
WO2010126141A1 PCT/JP2010/057705 JP2010057705W WO2010126141A1 WO 2010126141 A1 WO2010126141 A1 WO 2010126141A1 JP 2010057705 W JP2010057705 W JP 2010057705W WO 2010126141 A1 WO2010126141 A1 WO 2010126141A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
glass
mass
optical
less
Prior art date
Application number
PCT/JP2010/057705
Other languages
French (fr)
Japanese (ja)
Inventor
菜那 土淵
道子 荻野
Original Assignee
株式会社オハラ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2009111308A external-priority patent/JP2010260740A/en
Priority claimed from JP2009111405A external-priority patent/JP5698442B2/en
Priority claimed from JP2009111301A external-priority patent/JP2010260739A/en
Priority claimed from JP2009111313A external-priority patent/JP2010260742A/en
Priority claimed from JP2009111386A external-priority patent/JP5630968B2/en
Priority claimed from JP2009111384A external-priority patent/JP5694647B2/en
Application filed by 株式会社オハラ filed Critical 株式会社オハラ
Priority to CN2010800026088A priority Critical patent/CN102159512A/en
Publication of WO2010126141A1 publication Critical patent/WO2010126141A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/12Silica-free oxide glass compositions
    • C03C3/16Silica-free oxide glass compositions containing phosphorus
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B11/00Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/062Glass compositions containing silica with less than 40% silica by weight
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/062Glass compositions containing silica with less than 40% silica by weight
    • C03C3/064Glass compositions containing silica with less than 40% silica by weight containing boron
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/062Glass compositions containing silica with less than 40% silica by weight
    • C03C3/064Glass compositions containing silica with less than 40% silica by weight containing boron
    • C03C3/066Glass compositions containing silica with less than 40% silica by weight containing boron containing zinc
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/062Glass compositions containing silica with less than 40% silica by weight
    • C03C3/064Glass compositions containing silica with less than 40% silica by weight containing boron
    • C03C3/068Glass compositions containing silica with less than 40% silica by weight containing boron containing rare earths
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/12Silica-free oxide glass compositions
    • C03C3/16Silica-free oxide glass compositions containing phosphorus
    • C03C3/17Silica-free oxide glass compositions containing phosphorus containing aluminium or beryllium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/12Silica-free oxide glass compositions
    • C03C3/16Silica-free oxide glass compositions containing phosphorus
    • C03C3/19Silica-free oxide glass compositions containing phosphorus containing boron
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/12Silica-free oxide glass compositions
    • C03C3/16Silica-free oxide glass compositions containing phosphorus
    • C03C3/21Silica-free oxide glass compositions containing phosphorus containing titanium, zirconium, vanadium, tungsten or molybdenum
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements

Definitions

  • the present invention relates to an optical glass, an optical element, and a precision press-molding preform.
  • optical glasses for producing optical elements in particular, it has a high refractive index (n d ) of 1.70 or more and 2.20 or less, which can reduce the weight and size of the optical element, and is 10 or more and 25 or less.
  • n d refractive index
  • a glass represented by Patent Document 1 is known as an optical glass having a refractive index (n d ) of 1.91 or more and an Abbe number of 21 or less. It has been.
  • a glass represented by Patent Document 2 is known as an optical glass having a refractive index (n d ) of 1.65 or more and an Abbe number of 17.2 or more and 33.1 or less.
  • JP 2005-206433 A Japanese Patent Application Laid-Open No. 06-345481
  • the glass disclosed in Patent Document 1 has lower transparency to visible light as the Abbe number ( ⁇ d ) is lower ( ⁇ 70 is larger), and the glass having a lower Abbe number ( ⁇ d ) is yellow or orange. Is colored. Therefore, even if the glass disclosed in Patent Document 1 has a desired high dispersion, it is not suitable for applications that transmit light in the visible region.
  • the glasses disclosed in Patent Documents 1 and 2 have a problem that devitrification is likely to occur when the glass is produced. Furthermore, the glass that is free from devitrification when the glass is produced tends to become cloudy when the glass press-molded by reheat press is polished or when the preform is produced by polishing the glass. There was a problem. It has been difficult to produce an optical element that can control light in the visible region from glass once devitrified or cloudy.
  • the glass disclosed in Patent Documents 1 and 2 can be used to clean the preform material after polishing the glass press-molded by, for example, reheat press, or after polishing the glass.
  • clouding was likely to occur during fabrication. It has been difficult to produce an optical element that can control light in the visible region, especially from glass that has once fogged.
  • the present invention has been made in view of the above problems, and its object is to have a low Abbe number ( ⁇ d ) while the refractive index (n d ) is within a desired range, And it is providing the optical glass and optical element with high transparency with respect to visible light.
  • the present invention has the above-described refractive index (n d ), Abbe number ( ⁇ d ), and transparency to visible light, but is less susceptible to devitrification and clouding during glass production and processing. It is another object of the present invention to provide an optical glass and an optical element that are easy to produce a preform material and an optical element.
  • the present invention also provides an optical glass and an optical element that are easy to perform polishing and press molding while having transparency to the refractive index (n d ), Abbe number ( ⁇ d ), and visible light described above. Also aimed.
  • the present invention has a refractive index of above (n d), Abbe number ([nu d) and while having a transparency to visible light, easy optical glass softened at a low temperature, optics and precision press-molding flop The purpose is to provide renovation.
  • the present invention provides an optical glass and an optical element that are easy to clean in the production of a preform material and an optical element while having transparency to the above-described refractive index (n d ), Abbe number ( ⁇ d ), and visible light. It is also intended to provide.
  • the present inventors have conducted intensive test studies, and as a result, the glass has a high refractive index by containing a predetermined amount of P 2 O 5 component and Nb 2 O 5 component.
  • the present inventors have found that the dispersion is increased to obtain a low Abbe number and that the transparency of the glass with respect to visible light is enhanced, thereby completing the present invention.
  • the present inventors include a predetermined amount of P 2 O 5 component and Nb 2 O 5 component, so that the refractive index (n d ), dispersion, and transparency to visible light are enhanced, but It has also been found that the liquidus temperature is lowered and the acid resistance is increased.
  • the present inventors contain moderate amounts of P 2 O 5 component and Nb 2 O 5 component, so that the refractive index (n d ), dispersion, and transparency to visible light are enhanced, but moderate It has also been found that the degree of wear is brought about and the average coefficient of linear expansion ( ⁇ ) is reduced.
  • the present inventors use the P 2 O 5 component and the Nb 2 O 5 component in combination, and suppress the contents of the P 2 O 5 component, the Nb 2 O 5 component, and the TiO 2 component within a predetermined range. It was also found that the glass transition point (Tg) is lowered while the refractive index ( nd ), dispersion and transparency to visible light are enhanced.
  • the present inventors include a P 2 O 5 component and an Nb 2 O 5 component in combination, and by containing at least one of a Li 2 O component, a Na 2 O component, and a K 2 O component as an essential component. It was also found that the glass transition point (Tg) is lowered while the refractive index ( nd ), dispersion and transparency to visible light are enhanced.
  • the present inventors have found that by containing a predetermined amount of P 2 O 5 component and Nb 2 O 5 component, a refractive index (n d), while the transparency is improved for dispersion and visible light, liquid phase It has also been found that the temperature is increased and the detergent resistance of the glass is increased. Specifically, the present invention provides the following.
  • the optical glass according to (1) which contains at least one of a Li 2 O component, a Na 2 O component, and a K 2 O component as an essential component and has a glass transition point (Tg) of 700 ° C. or lower.
  • the content of TiO 2 component is less than 30.0% by mass% (1) to (5) any description of the optical glass.
  • the entire mass of the glass in terms of oxide composition the content of TiO 2 component in terms of mass% is less than 10.0% (6), wherein the optical glass.
  • the content of TiO 2 component is less than 10.0% by mass% with respect to the total glass mass of the oxide equivalent composition, and has a glass transition point (Tg) of 700 ° C. or less. Optical glass.
  • the composition further contains, in mass%, each of WO 3 components greater than 0% and 20.0% or less, and BaO components greater than 0% and 30.0% or less.
  • WO 3 components greater than 0% and 20.0% or less
  • BaO components greater than 0% and 30.0% or less.
  • optical glass according to any one of (11) to (18), which contains more than 2.0% of SiO 2 component by mass% with respect to the total glass mass of the oxide equivalent composition.
  • optical glass according to (22) to (32) which contains two or more kinds of components among Li 2 O component, Na 2 O component, and K 2 O component.
  • optical glass according to any one of (1) to (33), further comprising:
  • optical glass according to any one of (1) to (39), wherein chemical durability (acid resistance) by a powder method is class 1 to 5.
  • the dispersion of the glass is enhanced and the transparency of the glass with respect to visible light is enhanced while the refractive index of the glass is increased. Therefore, it is possible to provide an optical glass and an optical element having a low Abbe number ( ⁇ d ) while having a refractive index (n d ) within a desired range and having high transparency to visible light.
  • the present invention by containing a predetermined amount of P 2 O 5 component and Nb 2 O 5 component, desired refractive index (n d), the transparency to the Abbe number ([nu d) and visible light While having the glass, it is possible to provide an optical glass and an optical element that are less likely to be devitrified and cloudy during the production and processing of the glass and that are easy to produce a preform material and an optical element by polishing.
  • the desired refractive index (n d ), Abbe number ( ⁇ d ), and transparency to visible light can be obtained. It is possible to provide an optical glass and an optical element that are easy to perform polishing and press molding while having.
  • an optical glass that has transparency to a desired refractive index (n d ), Abbe number ( ⁇ d ), and visible light but is easily softened at a low temperature, an optical element using the optical glass, and a precision press molding process renovation can be provided.
  • an optical glass that has transparency to a desired refractive index (n d ), Abbe number ( ⁇ d ), and visible light but is easily softened at a low temperature, an optical element using the optical glass, and a precision press molding process renovation can be provided.
  • the desired refractive index (n d ), Abbe number ( ⁇ d ), and transparency to visible light can be obtained. It is possible to provide an optical glass and an optical element that can be easily cleaned in the production of a preform material and an optical element while having the same.
  • the P 2 O 5 component is 5.0% or more and 40.0% or less
  • the Nb 2 O 5 component is 10.0% or more by mass% with respect to the total glass mass of the oxide equivalent composition. Contains 60.0% or less. While the P 2 O 5 component and the Nb 2 O 5 component are used in combination, and the content ratio of the P 2 O 5 component and the Nb 2 O 5 component is kept within a predetermined range, the glass has a high refractive index. Dispersion is enhanced and the transparency of glass to visible light is enhanced. Therefore, it is possible to provide an optical glass and an optical element that have a low Abbe number ( ⁇ d ) while having a refractive index (n d ) within a desired range and that are highly transparent to visible light.
  • ⁇ d Abbe number
  • n d refractive index
  • the first optical glass of the present invention in terms of oxide entire mass of the glass composition, P 2 O 5 ingredient 40.0% 5.0% or more of the following in weight%, Nb 2 O 5 component
  • the wavelength ( ⁇ 70 ) in which the spectral transmittance is 70% is 500 nm or less and the liquidus temperature is 500 ° C. or more and 1200 ° C. or less. While the P 2 O 5 component and the Nb 2 O 5 component are used in combination, and the content ratio of the P 2 O 5 component and the Nb 2 O 5 component is kept within a predetermined range, the glass has a high refractive index.
  • the refractive index (n d ) is within the desired range, but has a low Abbe number ( ⁇ d ), high transparency to visible light, and devitrification and cloudiness during glass production and processing. It is possible to provide an optical glass and an optical element that are less likely to be produced and that facilitate the production of a preform material and an optical element by polishing.
  • the second optical glass of the present invention the entire mass of the glass in terms of oxide composition, P 2 O 5 ingredient 40.0% 5.0% or more of the following in weight%, the Nb 2 O 5 component It contains 10.0% or more and 60.0% or less, and has a wear degree of 100 or more and 400 or less. While the P 2 O 5 component and the Nb 2 O 5 component are used in combination, and the content ratio of the P 2 O 5 component and the Nb 2 O 5 component is kept within a predetermined range, the glass has a high refractive index. The dispersion is increased to obtain a low Abbe number, the transparency of the glass to visible light is increased, a moderate degree of wear is brought about, and the average coefficient of linear expansion ( ⁇ ) is reduced.
  • the refractive index (n d ) is within a desired range but has high dispersion (low Abbe number), high transparency to visible light, easy polishing, and press molding to the lens.
  • An optical glass and an optical element with reduced depressions and cracks can be provided.
  • the third optical glass of the present invention the entire mass of the glass in terms of oxide composition, P 2 O 5 ingredient 40.0% 5.0% or more of the following in weight%, the Nb 2 O 5 component It contains 10.0% or more and 60.0% or less, the content of the TiO 2 component is less than 10.0%, and has a glass transition point (Tg) of 700 ° C. or less.
  • Tg glass transition point
  • the dispersion is increased to obtain a low Abbe number, the transparency of the glass to visible light is increased, and the glass transition point (Tg) is lowered. Therefore, an optical element having a low Abbe number ( ⁇ d ) while having a refractive index (n d ) within a desired range, high transparency to visible light, and being easy to soften and press-mold at a low temperature. Glass, an optical element using the glass, and a precision press-molding preform can be provided.
  • the fourth optical glass of the present invention the entire mass of the glass in terms of oxide composition, P 2 O 5 ingredient 40.0% 5.0% or more of the following in weight%, the Nb 2 O 5 component
  • the content is 10.0% or more and 60.0% or less
  • the detergent resistance (PR) according to the ISO test method is a grade 1 to 3. While the P 2 O 5 component and the Nb 2 O 5 component are used in combination, and the content ratio of the P 2 O 5 component and the Nb 2 O 5 component is kept within a predetermined range, the glass has a high refractive index.
  • the refractive index (n d ) is in the desired range, but has a low Abbe number ( ⁇ d ), high transparency to visible light, and hardly fogging during cleaning after glass polishing. It is possible to provide an optical glass and an optical element that can be easily cleaned in the production of a preform material and an optical element.
  • the fifth optical glass of the present invention the entire mass of the glass in terms of oxide composition, P 2 O 5 ingredient 40.0% 5.0% or more of the following in weight%, the Nb 2 O 5 component It contains 10.0% or more and 60.0% or less, and a TiO 2 component of 10.0% or more and 30.0% or less, and has a glass transition point (Tg) of 700 ° C. or less.
  • Tg glass transition point
  • the sixth optical glass of the present invention contains 5.0% or more and 40.0% or less of the P 2 O 5 component and Nb 2 O 5 component in mass% with respect to the total glass mass of the oxide equivalent composition. 10.0% or more and 60.0% or less, containing at least one of Li 2 O component, Na 2 O component, and K 2 O component as an essential component, and having a glass transition point (Tg) of 700 ° C. or less .
  • Tg glass transition point
  • the dispersion is increased to obtain a low Abbe number, the transparency of the glass to visible light is increased, and the glass transition point (Tg) is lowered. Therefore, an optical element having a low Abbe number ( ⁇ d ) while having a refractive index (n d ) within a desired range, high transparency to visible light, and being easy to soften and press-mold at a low temperature. Glass, an optical element using the glass, and a precision press-molding preform can be provided.
  • each component constituting the optical glass of the present invention The composition range of each component constituting the optical glass of the present invention is described below. In the present specification, unless otherwise specified, the content of each component is expressed in mass% with respect to the total mass of the glass in terms of oxide.
  • the “oxide equivalent composition” means that the oxide, composite salt, metal fluoride, etc. used as the raw material of the glass component of the present invention are all decomposed and changed into oxides when melted. It is the composition which described each component contained in glass by making the total mass of the said production
  • the P 2 O 5 component is a glass forming component and is a component that lowers the melting temperature of glass.
  • the content ratio of the P 2 O 5 component 5.0% or more it is difficult to increase the degree of wear of the glass to a predetermined level or more while increasing the transmittance in the visible region of the glass. The occurrence of scratches can be reduced.
  • by making the content ratio of the P 2 O 5 component 40.0% or less, while obtaining the desired high refractive index it is difficult to reduce the abrasion degree of the glass beyond a predetermined level, thereby improving the processing efficiency of the polishing process. Can be increased.
  • the content of the P 2 O 5 component with respect to the total glass mass of the oxide conversion composition is preferably 5.0%, more preferably 8.0%, and most preferably 10.0%, and preferably 40%.
  • the upper limit is 0.0%, more preferably 35.0%, still more preferably 33.0%, and most preferably 30.0%.
  • the P 2 O 5 component can be contained in the glass using, for example, Al (PO 3 ) 3 , Ca (PO 3 ) 2 , Ba (PO 3 ) 2 , BPO 4 , H 3 PO 4 or the like as a raw material.
  • Nb 2 O 5 component is a component for increasing the refractive index and dispersion of the glass.
  • the desired high refractive index and high dispersion can be obtained by setting the content of the Nb 2 O 5 component to 10.0% or more.
  • the content of the Nb 2 O 5 component is 60.0% or less, the stability of the glass is increased by suppressing the increase in the liquidus temperature of the glass, and thus the devitrification resistance of the glass is increased. be able to. Therefore, the content of the Nb 2 O 5 component with respect to the total glass mass of the oxide conversion composition is preferably 10.0%, more preferably 20.0%, and most preferably 30.0%, and preferably 60%.
  • the upper limit is 0.0%, more preferably 58.0%, still more preferably 57.0%, still more preferably 56.0%, and most preferably 55.0%.
  • the content of the Nb 2 O 5 component is preferably 60.0%, more preferably 50.0%, and most preferably 45.0%.
  • the Nb 2 O 5 component can be contained in the glass using, for example, Nb 2 O 5 as a raw material.
  • the TiO 2 component is a component that increases the refractive index and dispersion of the glass, and is a component that increases the chemical durability of the glass, particularly the detergent resistance and acid resistance, and is an optional component in the optical glass of the present invention. .
  • the content of the TiO 2 component is preferably 30.0%, more preferably 28.0%, most preferably 25.0%, and most preferably 20.0%. The upper limit.
  • the content of the TiO 2 component is preferably 12.0%, more preferably 11.0%, and most preferably less than 10.0%.
  • the content of the TiO 2 component is preferably less than 10.0%, more preferably 9.8%, and most preferably 9.5%.
  • the content of the TiO 2 component may be less than 5.0% in order to obtain a highly transparent glass particularly for visible light.
  • the dispersion of the glass can be further increased by setting the content of the TiO 2 component to 10.0% or more. Therefore, when the glass is further highly dispersed, the content of the TiO 2 component is preferably 10.0%, more preferably 12.0%, still more preferably 13.0%, and most preferably 14%. 0.0% is the lower limit.
  • the content of the TiO 2 component with respect to the total amount of glass in the oxide-converted composition is preferably 0.1%, more preferably 1.0%, and most preferably 2.0%.
  • the content of the above-mentioned TiO 2 component is preferably 5.0%, more preferably 11.0%, and most preferably 12.0%.
  • the TiO 2 component can be contained in the glass using, for example, TiO 2 as a raw material.
  • the BaO component is a component that increases the refractive index of glass and is a component that increases devitrification resistance by lowering the liquidus temperature of the glass, and is an optional component in the optical glass of the present invention.
  • the content of the BaO component 30.0% or less, it is easy to obtain a desired high refractive index, and while suppressing deterioration in devitrification resistance, chemical durability including acid resistance Can be suppressed.
  • the increase in the average linear expansion coefficient ( ⁇ ) of the glass can be suppressed by setting the content of the BaO component to 20.0% or less.
  • the content of the BaO component with respect to the total glass mass of the oxide conversion composition is preferably 30.0%, more preferably 28.0%, further preferably 25.0%, and most preferably 20.0%.
  • the content of the BaO component is preferably 20.0%, more preferably 18.0%, and most preferably 15.0%.
  • the content of the BaO component is preferably 20.0%, more preferably 19.0%, and most preferably 18.0%.
  • the content of the BaO component with respect to the total glass mass of the oxide conversion composition is preferably less than 17.0%, more preferably 13.
  • the upper limit is 0%, and most preferably the upper limit is 4.5%.
  • the content of the BaO component is preferably 13.0% as an upper limit, more preferably less than 10.0%, and most preferably 4.5%.
  • the content of the BaO component is preferably less than 17.0%, more preferably less than 15.0%, and most preferably less than 13.0%.
  • the content of the BaO component is preferably 15.0%, more preferably 13.0%, and most preferably less than 10,000%.
  • the content of the BaO component is preferably less than 7.0%, more preferably less than 5.0%, and most preferably less than 4,0%.
  • the liquidus temperature of the glass is lowered by containing more than 0% of the BaO component. Therefore, a glass having high devitrification resistance and easy to produce stably can be obtained. Therefore, when obtaining a glass with high devitrification resistance, the content of the BaO component with respect to the total glass mass of the oxide conversion composition is preferably more than 0%, more preferably 1.0%, most preferably 3. 0.0% is the lower limit.
  • the content of the BaO component is preferably 1.0%, more preferably 3.0%, and most preferably 4.5%.
  • the content of the BaO component is preferably more than 0%, more preferably 1.0%, and most preferably 2.0%.
  • the content of the BaO component is preferably 0.1%, more preferably 0.5%, and most preferably 1.0%.
  • the content of the BaO component in the case of obtaining a glass having high detergent resistance is preferably 7.0%, more preferably 10.0%, and most preferably 15.0%.
  • the BaO component can be contained in the glass using, for example, BaCO 3 , Ba (NO 3 ) 2 , BaF 2 or the like as a raw material.
  • the SiO 2 component is a component that reduces coloring and increases the transmittance for short-wavelength visible light, and promotes stable glass formation to increase the devitrification resistance of the glass, and is an optional component in the optical glass of the present invention. It is. In particular, by setting the content of the SiO 2 component to 10.0% or less, a decrease in the refractive index due to the SiO 2 component can be suppressed, so that a desired high refractive index can be easily obtained. Accordingly, the content of the SiO 2 component with respect to the total glass mass of the oxide conversion composition is preferably 10.0%, more preferably 8.0%, still more preferably 6.0%, and most preferably 5.0%.
  • the content of the above-mentioned SiO 2 component is preferably 2.0%, more preferably 1.5%, and most preferably in that it is easy to obtain a glass having a particularly large dispersion (small Abbe number). The upper limit is 1.0%.
  • the content of the SiO 2 component with respect to the total glass mass of the oxide conversion composition is preferably more than 2.0%, more preferably 3.0%, and most preferably 4.0%.
  • SiO 2 component as a raw material such as SiO 2, K 2 SiF 6, Na 2 SiF 6 and the like can contain in the glass by using.
  • the WO 3 component is a component that increases the dispersion of the glass while increasing the refractive index of the glass, and is an optional component in the optical glass of the present invention.
  • the content of the WO 3 component 20.0% or less the glass transition point (Tg) can be lowered while improving the devitrification resistance of the glass, and the transmittance of the glass with respect to short-wavelength visible light. Can be suppressed. Therefore, the content of the WO 3 component with respect to the total glass mass of the oxide conversion composition is preferably 20.0%, more preferably 17.0%, still more preferably 15.0%, and most preferably 10.0%. The upper limit.
  • the content of the WO 3 component is preferably 10.0% or less from the viewpoint that a glass having a desired high dispersion and a low glass transition point (Tg) can be easily obtained. Therefore, in this case, the content of the above-mentioned WO 3 component is preferably 10.0%, more preferably 8.0%, still more preferably 7.0%, and most preferably 5.0%. .
  • the content of the WO 3 component with respect to the total glass mass of the oxide-converted composition in this case is preferably more than 0%, more preferably 1.0%, even more preferably 3.0%, and most preferably 4. 0.0% is the lower limit.
  • the WO 3 component can be contained in the glass using, for example, WO 3 as a raw material.
  • the Li 2 O component is a component that lowers the melting temperature and glass transition point (Tg) of glass, and is a component that increases devitrification resistance during glass formation, and is an optional component in the optical glass of the present invention.
  • Tg melting temperature and glass transition point
  • the Li 2 O component is a component that increases devitrification resistance during glass formation, and is an optional component in the optical glass of the present invention.
  • by making the content rate of the Li 2 O component 20.0% or less it is possible to easily obtain a desired high refractive index, and the stability of the glass is reduced by lowering the liquidus temperature of the glass. Since it raises, generation
  • the increase in the average linear expansion coefficient ( ⁇ ) of the glass can be suppressed by setting the content of the Li 2 O component to 10.0% or less.
  • the content of the Li 2 O component with respect to the total glass mass of the oxide-converted composition is preferably 20.0%, more preferably 10.0%, and most preferably 5.0%.
  • the content of the above-described Li 2 O component is preferably 10.0%, more preferably 8.0%, and most preferably 5.0%.
  • the content of the above Li 2 O component is preferably 20.0%, more preferably 15.0%, and most preferably 10.0%.
  • the content of the Li 2 O component is preferably 20.0%, more preferably 18.0%, still more preferably 15.0%, and most preferably 10%. 0.0% is the upper limit.
  • Li 2 O component is possible to obtain an optical glass having a desired high dispersion and high transmittance even without containing the Li 2 O component that contains more than 0%, the glass transition point ( Since Tg) becomes low, it is possible to obtain a glass that has a high dispersion and is easily softened at a low temperature. Accordingly, the content of the Li 2 O component with respect to the total glass mass of the oxide-converted composition in this case is preferably more than 0%, more preferably more than 0.3%, and most preferably 0.5%. The lower limit.
  • the Li 2 O component can be contained in the glass using, for example, Li 2 CO 3 , LiNO 3 , LiF or the like as a raw material.
  • the Na 2 O component is a component that lowers the melting temperature and glass transition point (Tg) of glass, and is a component that increases devitrification resistance during glass formation, and is an optional component in the optical glass of the present invention.
  • Tg melting temperature and glass transition point
  • the Na 2 O component is a component that lowers the melting temperature and glass transition point (Tg) of glass, and is a component that increases devitrification resistance during glass formation, and is an optional component in the optical glass of the present invention.
  • Tg melting temperature and glass transition point
  • the content of the Na 2 O component is preferably 35.0%, more preferably 25.0%, and most preferably 15.0%.
  • the content of Na 2 O component described above preferably 15.0% is more preferably 12.0%, most preferably up to 10.0%.
  • the content of the Na 2 O component is preferably 15.0%, more preferably 13.0%, and most preferably 12.0%.
  • the content of the Na 2 O component is preferably 35.0%, more preferably 30.0%, further preferably 25.0%, and most preferably 15%. 0.0% is the upper limit.
  • the content of the Na 2 O component is preferably 35.0%, more preferably 30.0%, still more preferably 25.0%, and most preferably 20. 0.0% is the upper limit.
  • Na 2 O but component it is possible to obtain an optical glass having desired properties without containing, by containing a Na 2 O component 0.1%, the liquidus temperature of the glass is increased Further, the devitrification resistance of the glass can be further increased. Therefore, in this case, the content of the Na 2 O component with respect to the total amount of glass in the oxide conversion composition is preferably 0.1%, more preferably 0.5%, still more preferably 1.0%, most preferably 2.0% is the lower limit.
  • the Na 2 O component can be contained in the glass using, for example, Na 2 CO 3 , NaNO 3 , NaF, Na 2 SiF 6 or the like as a raw material.
  • the K 2 O component is a component that lowers the melting temperature and glass transition point (Tg) of the glass, and is a component that increases devitrification resistance during glass formation, and is an optional component in the optical glass of the present invention.
  • Tg melting temperature and glass transition point
  • the K 2 O component is a component that increases devitrification resistance during glass formation, and is an optional component in the optical glass of the present invention.
  • the content of the K 2 O component is preferably 20.0%, more preferably 15.0%, and most preferably less than 10.0%.
  • the content of the above K 2 O component is preferably less than 10.0%, more preferably 8.0%, even more preferably 6.0%, and most preferably.
  • the upper limit is 5.0%.
  • the content of the K 2 O component is preferably 20.0%, more preferably 15.0%, still more preferably 12.0%, and most preferably 10%. 0.0% is the upper limit.
  • the K 2 O component content is preferably 20.0%, more preferably 15.0%, and most preferably 10.0%.
  • K 2 O component may be obtained an optical glass having desired properties without containing, by containing K 2 O ingredient 0.1%, the liquidus temperature of the glass is increased Further, the devitrification resistance of the glass can be further increased. Accordingly, in this case, the content of the K 2 O component with respect to the total amount of glass in the oxide conversion composition is preferably 0.1%, more preferably 0.15%, still more preferably 0.2%, and even more preferably. The lower limit is 0.5%, most preferably 1.0%.
  • the K 2 O component can be contained in the glass using, for example, K 2 CO 3 , KNO 3 , KF, KHF 2 , K 2 SiF 6 or the like as a raw material.
  • the optical glass of the sixth preferably contains as essential components at least one of Li 2 O component, Na 2 O component, and K 2 O component.
  • Tg glass transition point
  • molding temperature in press molding can be lowered
  • the devitrification resistance of the optical glass is enhanced, an optical glass having desired optical characteristics can be more stably produced.
  • the mass sum of the contents of the Rn 2 O component (wherein Rn is one or more selected from the group consisting of Li, Na, and K) is 35.0% or less. preferable.
  • Rn is one or more selected from the group consisting of Li, Na, and K
  • the mass sum of the content ratio of the Rn 2 O component with respect to the total glass mass of the oxide conversion composition is preferably 35.0%, more preferably 25.0%, and most preferably 15.0%.
  • the above-mentioned mass sum is preferably 15.0%, more preferably 13.0%, and most preferably 12.0%.
  • the upper limit of this mass sum is preferably 35.0%, more preferably 32.0%, and most preferably 30.0%.
  • the upper limit of this mass sum is preferably 35.0%, more preferably 25.0%, and most preferably 20.0%.
  • this mass sum is preferably 35.0%, more preferably 30.0%, and most preferably 25.0%.
  • An optical glass having desired characteristics can be obtained without containing any Rn 2 O component.
  • a glass liquid can be obtained. Since the phase temperature is increased, the devitrification resistance of the glass can be further increased. Therefore, in this case, the mass sum of the content ratio of the Rn 2 O component with respect to the total amount of glass in the oxide conversion composition is preferably 0.1%, more preferably 1.0%, still more preferably 2.0%, Most preferably, the lower limit is 3.0%.
  • the mass sum of the content ratio of the Rn 2 O component with respect to the total glass mass of the oxide conversion composition is preferably 5.0%, more preferably 8.0%, and most preferably 10.0%.
  • this mass sum is preferably more than 7.0%, more preferably 9.0%, and most preferably 10.0%.
  • this mass sum is preferably more than 8.0%, more preferably more than 9.0%, and most preferably more than 10.0%.
  • this mass sum is preferably 5.0%, more preferably 6.0%, and most preferably 7.0%.
  • this mass sum is preferably 5.0%, more preferably 8.0%, and most preferably 10.0%.
  • the BaO component is contained at 15.0% or more by mass% with respect to the total glass mass of the oxide conversion composition, and the Rn 2 O component is 10.0% in total. It is particularly preferable to contain more.
  • the detergent resistance of the glass is particularly enhanced, so that the occurrence of fogging on the glass can be reduced even when the glass is in contact with the polishing liquid or cleaning liquid.
  • the optical glass of the present invention preferably contains two or more components of the Li 2 O component, Na 2 O component, and K 2 O component.
  • Tg glass transition point
  • the molding temperature in press molding is lowered, and surface irregularities and fogging after the press molding can be further reduced.
  • an optical glass having desired optical characteristics can be more stably produced.
  • the MgO component is a component that lowers the liquidus temperature of the glass and increases the devitrification resistance of the glass, and is an optional component in the optical glass of the present invention.
  • the content of the MgO component is 5.0% or less, a desired high refractive index and high dispersion can be easily obtained. Therefore, the content of the MgO component with respect to the total glass mass of the oxide-converted composition is preferably 5.0%, more preferably 4.0%, and most preferably 3.0%.
  • the MgO component can be contained in the glass using, for example, MgCO 3 or MgF 2 as a raw material.
  • the CaO component is a component that lowers the liquidus temperature of the glass and increases the devitrification resistance of the glass, and is an optional component in the optical glass of the present invention.
  • the upper limit of the CaO component content with respect to the total glass mass of the oxide conversion composition is preferably 10.0%, more preferably 8.0%, still more preferably 6.0%, and most preferably 5.0%.
  • the CaO component can be contained in the glass using, for example, CaCO 3 , CaF 2 or the like as a raw material.
  • the SrO component is a component that lowers the liquidus temperature of the glass and increases the devitrification resistance of the glass, and is an optional component in the glass.
  • the content of the SrO component is preferably 10.0%, more preferably 8.0%, and most preferably 5.0%.
  • the SrO component can be contained in the glass using, for example, Sr (NO 3 ) 2 , SrF 2 or the like as a raw material.
  • the mass sum of the content ratio of the RO component (wherein R is one or more selected from the group consisting of Mg, Ca, Sr, and Ba) is 30.0% or less. preferable.
  • the upper limit of the mass sum of the content rate of the RO component with respect to the total glass mass of the oxide conversion composition is preferably 30.0%, more preferably 20.0%, and most preferably 10.0%.
  • this mass sum is preferably 20.0%, more preferably 17.0%, more preferably 15.0%, and most preferably 10.0%.
  • this mass sum is preferably 30.0%, more preferably 28.0%, still more preferably 27.0%, and most preferably 25.0%.
  • the upper limit of this mass sum is preferably 30.0%, more preferably 25.0%, and most preferably 20.0%.
  • An optical glass having desired characteristics can be obtained without containing any RO component, but the liquid phase temperature of the glass is increased by containing at least one of the RO components by 0.1% or more. Therefore, the devitrification resistance of the glass can be further increased. Therefore, in this case, the mass sum of the content ratio of the RO component with respect to the total glass substance amount of the oxide conversion composition is preferably 0.1%, more preferably 0.5%, still more preferably 1.0%, and most preferably. Has a lower limit of 3.0%.
  • the Y 2 O 3 component is a component that increases the refractive index of the glass and improves the chemical durability of the glass, and is an optional component in the optical glass of the present invention.
  • the content of the Y 2 O 3 component 10.0% or less, desired high dispersion can be easily obtained, and the devitrification resistance of the glass can be improved. Therefore, the content of the Y 2 O 3 component with respect to the total glass mass of the oxide conversion composition is preferably 10.0%, more preferably 8.0%, and most preferably 5.0%.
  • the Y 2 O 3 component can be contained in the glass using, for example, Y 2 O 3 , YF 3 or the like as a raw material.
  • the La 2 O 3 component is a component that increases the refractive index of the glass and improves the chemical durability of the glass, and is an optional component in the optical glass of the present invention.
  • the content of the La 2 O 3 component 10.0% or less, desired high dispersion can be easily obtained, and the devitrification resistance of the glass can be improved. Therefore, the content of the La 2 O 3 component with respect to the total glass mass of the oxide conversion composition is preferably 10.0%, more preferably 8.0%, and most preferably 5.0%.
  • the La 2 O 3 component can be contained in the glass using, for example, La 2 O 3 , La (NO 3 ) 3 .XH 2 O (X is an arbitrary integer) or the like as a raw material.
  • the Gd 2 O 3 component is a component that increases the refractive index of the glass and improves the chemical durability of the glass, and is an optional component in the optical glass of the present invention.
  • the content of the Gd 2 O 3 component is 10.0% or less, desired high dispersion can be easily obtained, and the devitrification resistance of the glass can be improved. Therefore, the content of the Gd 2 O 3 component with respect to the total glass mass of the oxide conversion composition is preferably 10.0%, more preferably 8.0%, and most preferably 5.0%.
  • the Gd 2 O 3 component can be contained in the glass using, for example, Gd 2 O 3 , GdF 3 or the like as a raw material.
  • the mass sum of the contents of the Ln 2 O 3 component (wherein Ln is one or more selected from the group consisting of Y, La, and Gd) is 20.0% or less. Is preferred. By making this mass sum 20.0% or less, an increase in the Abbe number due to the Ln 2 O 3 component can be suppressed, so that desired high dispersion can be easily obtained. Therefore, the mass sum of the content ratio of the Ln 2 O 3 component with respect to the total glass mass of the oxide conversion composition is preferably 20.0%, more preferably 18.0%, and most preferably 15.0%. .
  • the B 2 O 3 component is a component that promotes formation of a stable glass and increases devitrification resistance, and is an optional component in the optical glass of the present invention.
  • the content of the B 2 O 3 component is preferably 10.0%, more preferably 8.0%, still more preferably 6.0%, and most preferably 5.0. % Is the upper limit.
  • B 2 O 3 component can be obtained an optical glass having desired properties without containing, by containing B 2 O 3 component of 0.1% or more, the liquidus temperature of the glass is increased Therefore, the devitrification resistance of the glass can be further increased. Therefore, in this case, the content of the B 2 O 3 component with respect to the total amount of glass in the oxide-converted composition is preferably 0.1%, more preferably 0.2%, still more preferably 0.3%, and most preferably Has a lower limit of 0.5%.
  • the B 2 O 3 component can be contained in the glass using, for example, H 3 BO 3 , Na 2 B 4 O 7 , Na 2 B 4 O 7 ⁇ 10H 2 O, BPO 4 or the like as a raw material.
  • the GeO 2 component is a component that increases the refractive index of the glass and promotes stable glass formation to increase the devitrification resistance of the glass, and is an optional component in the optical glass of the present invention.
  • the content of the GeO 2 component is 10.0% or less, can reduce material costs of the glass. Therefore, the content of the GeO 2 component with respect to the total glass mass of the oxide conversion composition is preferably 10.0%, more preferably 8.0%, and most preferably 5.0%.
  • the GeO 2 component can be contained in the glass using, for example, GeO 2 as a raw material.
  • the Bi 2 O 3 component increasing the refractive index of the glass, or to enhance the dispersion of the glass, an optional component of the optical glass of the present invention.
  • the content of the Bi 2 O 3 component 20.0% or less, it is possible to increase the stability of the glass and suppress a decrease in devitrification resistance, and to suppress a decrease in the transmittance of the glass. it can. Therefore, the content of the Bi 2 O 3 component with respect to the total glass mass of the oxide-converted composition is preferably 20.0%, more preferably 15.0%, and even more preferably less than 10.0%. Preferably it is less than 5.0%.
  • the ZrO 2 component is a component that reduces coloration and increases the transmittance for visible light with a short wavelength, and promotes stable glass formation to increase the devitrification resistance of the glass.
  • the optional component in the optical glass of the present invention It is.
  • the content of the ZrO 2 component 10.0% or less, a decrease in the refractive index due to the ZrO 2 component can be suppressed, so that a desired high refractive index can be easily obtained. Therefore, the content of the ZrO 2 component with respect to the total glass mass of the oxide conversion composition is preferably 10.0%, more preferably 8.0%, and most preferably 5.0%.
  • the ZrO 2 component can be contained in the glass using, for example, ZrO 2 , ZrF 4 or the like as a raw material.
  • the ZnO component is a component that lowers the liquidus temperature of the glass and increases the devitrification resistance of the glass, and is an optional component in the optical glass of the present invention.
  • the desired high refractive index and high dispersion can be easily obtained by setting the content of the ZnO component to 10.0% or less. Therefore, the content of the ZnO component with respect to the total glass mass of the oxide-converted composition is preferably 10.0%, more preferably 8.0%, and most preferably 5.0%.
  • the ZnO component can be contained in the glass using, for example, ZnO, ZnF 2 or the like as a raw material.
  • the Al 2 O 3 component is a component that improves the chemical durability of the glass and increases the viscosity when the glass is melted, and is an optional component in the optical glass of the present invention.
  • the content of the Al 2 O 3 component 10.0% or less, it is possible to weaken the devitrification tendency of the glass while improving the meltability of the glass.
  • an increase in the average linear expansion coefficient ( ⁇ ) can be suppressed. Therefore, the content of the Al 2 O 3 component with respect to the total glass mass of the oxide-converted composition is preferably 10.0%, more preferably 8.0%, and most preferably 5.0%.
  • the Al 2 O 3 component can be contained in the glass using, for example, Al 2 O 3 , Al (OH) 3 , AlF 3 or the like as a raw material.
  • Ta 2 O 5 component is a component that raises the refractive index of the glass, an optional component of the optical glass of the present invention.
  • the content of the Ta 2 O 5 component 10.0% or less, the glass can be made hard to devitrify. Therefore, the content of the Ta 2 O 5 component with respect to the total glass mass of the oxide conversion composition is preferably 10.0%, more preferably 8.0%, and most preferably 4.0%.
  • the Ta 2 O 5 component can be contained in the glass using, for example, Ta 2 O 5 as a raw material.
  • the Sb 2 O 3 component is a component that increases the transmittance of the glass with respect to visible light having a short wavelength and has a defoaming effect when the glass is melted.
  • the content of the Sb 2 O 3 component 1.0% or less, it becomes difficult for the Sb 2 O 3 component to be alloyed with the melting equipment (especially noble metals such as Pt), and the impurities attached to the mold are reduced. Therefore, the formation of irregularities and cloudiness on the surface of the glass molded body can be reduced. Therefore, the upper limit of the content of the Sb 2 O 3 component with respect to the total mass of the oxide is preferably 1.0%, more preferably 0.8%, and most preferably 0.5%.
  • the Sb 2 O 3 component can be contained in the glass using, for example, Sb 2 O 3 , Sb 2 O 5 , Na 2 H 2 Sb 2 O 7 ⁇ 5H 2 O, or the like as a raw material.
  • components defoamed fining glass is not limited to the above Sb 2 O 3 component, a known refining agents in the field of glass production, it is possible to use a defoamer or a combination thereof.
  • optical glass of the present invention can be added to the optical glass of the present invention as necessary within a range not impairing the properties of the glass of the present invention.
  • each transition metal component such as V, Cr, Mn, Fe, Co, Ni, Cu, Ag, and Mo, except Ti, Zr, Nb, W, La, Gd, Y, Yb, and Lu, is independent of each other. Or, even when it is contained in a small amount in combination, the glass is colored and has the property of causing absorption at a specific wavelength in the visible range. .
  • the optical glass is substantially free of substances that pollute the environment. Therefore, the optical glass can be manufactured, processed, and discarded without taking special environmental measures.
  • the glass composition of the present invention cannot be expressed directly in the description of mol% because the composition is expressed by mass% with respect to the total mass of the glass of oxide conversion composition, but various properties required in the present invention.
  • the composition expressed by mol% of each component present in the glass composition satisfying the above conditions generally takes the following values in terms of oxide conversion.
  • the composition by mol% display of each component takes the following values in an oxide conversion composition in general.
  • the composition expressed by mol% of each component generally takes the following values in terms of oxide composition.
  • the composition by mol% display of each component takes the following values in an oxide conversion composition in general.
  • the composition expressed by mol% of each component generally takes the following values in terms of oxide equivalent composition.
  • the composition expressed by mol% of each component generally takes the following values in terms of oxide.
  • WO 3 component 0 to 15.0 mol% and / or MgO component 0 to 20.0 mol% and / or CaO component 0 to 25.0 mol% and / or SrO component 0 to 15.0 mol% and / or Y 2 O 3
  • the optical glass of the present invention is produced, for example, as follows. That is, the above raw materials are uniformly mixed so that each component is within a predetermined content range, and the prepared mixture is put into a quartz crucible or an alumina crucible and roughly melted, and then a platinum crucible, a platinum alloy crucible or iridium Put in a crucible and melt in the temperature range of 1000 to 1300 ° C for 2 to 10 hours, stir and homogenize to eliminate bubbles, etc., then lower the temperature to 1250 ° C or less and then stir to finish to remove striae It is produced by casting into a mold and slow cooling.
  • the optical glass of the present invention needs to have a high refractive index (n d ) and a high dispersion.
  • the refractive index (n d ) of the optical glass of the present invention is preferably 1.70, more preferably 1.75, still more preferably 1.80, most preferably 1.90, and preferably 2.90. 20, more preferably 2.15, and most preferably 2.10.
  • the upper limit of the Abbe number ( ⁇ d ) of the optical glass of the present invention is preferably 25, more preferably 22, more preferably 20, and most preferably 19.
  • the lower limit of the Abbe number ( ⁇ d ) of the optical glass of the present invention is not particularly limited, but the Abbe number ( ⁇ d ) of the glass obtained by the present invention is generally 10 or more, specifically 12 or more, more specifically. In many cases, it is 15 or more.
  • the optical glass of this invention has little coloring.
  • the wavelength ( ⁇ 70 ) showing a spectral transmittance of 70% in a sample having a thickness of 10 mm is 500 nm or less, more preferably 480 nm or less, and still more preferably. Is 460 nm or less, most preferably 450 nm or less.
  • this optical glass can be used as a material for an optical element such as a lens.
  • the first optical glass of the present invention preferably has high devitrification resistance.
  • the optical glass of the present invention preferably has a low liquidus temperature of 1200 ° C. or lower. More specifically, the upper limit of the liquidus temperature of the optical glass of the present invention is preferably 1200 ° C, more preferably 1150 ° C, and most preferably 1100 ° C. As a result, even if the molten glass flows out at a lower temperature, crystallization of the produced glass is reduced, so that the devitrification resistance when the glass is formed from the molten state can be increased. The influence on the optical characteristics of the optical element can be reduced.
  • the lower limit of the liquidus temperature of the optical glass of the present invention is not particularly limited, but the liquidus temperature of the glass obtained by the present invention is approximately 500 ° C. or higher, specifically 550 ° C. or higher, more specifically 600. Often above °C.
  • liquid phase temperature refers to a glass sample pulverized to a particle size of about 2 mm on a platinum plate and held in a furnace with a temperature gradient from 800 ° C. to 1220 ° C. for 30 minutes. It is the lowest temperature at which no crystal is observed in the glass and devitrification does not occur, which is measured by observing the presence or absence of crystals in the glass with a microscope with a magnification of 80 after cooling.
  • the first optical glass of the present invention preferably has high acid resistance.
  • the chemical durability (acid resistance) of the glass powder method according to JOGIS06-1999 is preferably class 1 to 5, more preferably class 1 to 4, and most preferably class 1 to 3.
  • acid resistance refers to durability against erosion of glass by acid, and this acid resistance is measured according to the Japan Optical Glass Industry Association Standard “Measurement Method of Chemical Durability of Optical Glass” JOGIS06-1999. Can do.
  • the chemical durability (acid resistance) by the powder method is class 1 to 5” means that the chemical durability (acid resistance) performed according to JOGIS06-1999 is the mass of the sample before and after the measurement. It means a weight loss rate of less than 2.20% by mass.
  • “Class 1” of chemical durability (acid resistance) has a weight loss rate of the sample before and after the measurement of less than 0.20% by mass
  • “Class 2” indicates the weight loss of the sample before and after the measurement. The rate is 0.20% by mass or more and less than 0.35% by mass
  • “Class 3” indicates that the weight reduction rate of the sample before and after the measurement is 0.35% by mass or more and less than 0.65% by mass.
  • “4” indicates that the weight loss rate of the sample before and after the measurement is 0.65 mass% or more and less than 1.20 mass%
  • “Class 5” indicates that the weight loss rate of the sample before and after the measurement is 1.20 mass%.
  • the amount is less than 2.20% by mass
  • “Class 6” has a mass reduction rate of the sample before and after the measurement of 2.20% by mass or more.
  • the second optical glass of the present invention has a predetermined degree of wear.
  • the abrasion degree in the measuring method according to “JOGIS10-1994 Optical Glass Abrasion Measuring Method” of optical glass is preferably 100, more preferably 150, most preferably 200 as the lower limit, preferably 400, more
  • the upper limit is preferably 350, and most preferably 300.
  • the 2nd optical glass of this invention has a small average coefficient of linear expansion ((alpha)).
  • the optical glass of the present invention preferably has a low liquid phase of 150 ⁇ 10 ⁇ 7 K ⁇ 1 or less, more preferably 120 ⁇ 10 ⁇ 7 K ⁇ 1 or less, and most preferably 100 ⁇ 10 ⁇ 7 K ⁇ 1 or less.
  • the third, fifth and sixth optical glasses of the present invention have a glass transition point (Tg) of 700 ° C. or lower.
  • Tg glass transition point
  • the upper limit of the glass transition point (Tg) of the optical glass of the present invention is preferably 700 ° C., more preferably 680 ° C., more preferably 670 ° C., and most preferably 650 ° C.
  • the lower limit of the glass transition point (Tg) of the optical glass of the present invention is not particularly limited, but the glass transition point (Tg) of the glass obtained by the present invention is generally 100 ° C. or higher, specifically 150 ° C. or higher. More specifically, it is often 200 ° C. or higher.
  • the fourth optical glass of the present invention preferably has high detergent resistance.
  • the detergent resistance (PR) carried out in accordance with the ISO test method detergent resistance (ISO 9689: 1990 (E)) is preferably class 1 to 3, more preferably class 1 to 2, most preferably class 1.
  • “detergent resistance” means that when a lens preform material is washed before molding, or when a molded lens is washed, it is exposed to chemicals used for washing for a certain period of time. Indicates the superiority or inferiority of the discoloration.
  • detergent resistance can be measured by the ISO test method detergent resistance (ISO 9689: 1990 (E)). Further, “detergent resistance (PR) is grade 1 to 3” means that the detergent resistance (PR) determined according to the ISO test method detergent resistance (ISO9689: 1990 (E)) is 0.00. It means that the time required to erode the 1 ⁇ m glass layer is longer than 15 minutes.
  • the optical glass of the present invention is useful for various optical elements and optical designs. Among them, in particular, a lens, a prism, a mirror, and the like using a means for press molding (such as precision press molding) from the optical glass of the present invention. It is preferable to prepare the optical element. As a result, when used in optical devices that transmit visible light to optical elements such as cameras and projectors, the optical system in these optical devices can be miniaturized while realizing high-definition and high-precision imaging characteristics. Can be planned.
  • an optical element made of the optical glass of the present invention it is possible to omit cutting and polishing, so that glass in a molten state is dropped from an outlet of an outflow pipe of platinum or the like to form a spherical shape. It is preferable to prepare a precision press-molding preform such as, and perform precision press-molding on the precision press-molding preform.
  • Wavelength at which the composition, refractive index (n d ), Abbe number ( ⁇ d ), and spectral transmittance of the glass of Examples (No. A1 to No. A7) and Comparative Example (No. A1) of the present invention are 70%.
  • Table 1 shows ( ⁇ 70 ), liquid phase temperature, and chemical durability (acid resistance) by the powder method.
  • the composition, refractive index (n d ), Abbe number ( ⁇ d ), and spectral transmittance of the glass of Examples (No. B1 to No. B5) and Comparative Example (No. B1) of the present invention are 70%.
  • Table 2 shows the wavelength ( ⁇ 70 ), the degree of wear, and the average linear expansion coefficient.
  • compositions, refractive index (n d ), Abbe number ( ⁇ d ), and spectral transmittance of the glass of Examples (No. C1 to No. C5) and Comparative Example (No. C1) of the present invention are 70%.
  • Table 3 shows the wavelength ( ⁇ 70 ) and the glass transition point (Tg).
  • composition, refractive index (n d ), Abbe number ( ⁇ d ), and spectral transmittance of the glass of Examples (No. D1 to No. D5) and Comparative Example (No. D1) of the present invention are 70%.
  • Table 4 shows the wavelength ( ⁇ 70 ) shown and the detergent resistance (PR) by the ISO test method.
  • Wavelength at which the composition, refractive index (n d ), Abbe number ( ⁇ d ), and spectral transmittance of the glass of Examples (No. E1 to No. E14) and Comparative Example (No. E1) of the present invention are 70%.
  • Tables 5 to 7 show ( ⁇ 70 ) and glass transition point (Tg).
  • the composition, refractive index (n d ), Abbe number ( ⁇ d ), and spectral transmittance of the glass of Examples (No. F1 to No. F5) and Comparative Example (No. F1) of the present invention are 70%.
  • Table 8 shows the wavelength ( ⁇ 70 ) and the glass transition point (Tg). The following examples are merely for illustrative purposes, and are not limited to these examples.
  • optical glass and comparative examples are all oxidized corresponding to the raw materials of the respective components. Selected from high-purity raw materials used in ordinary optical glass such as oxides, hydroxides, carbonates, nitrates, fluorides, hydroxides, metaphosphate compounds, etc.
  • the refractive index (n d ) and the Abbe number ( ⁇ d ) of the optical glass of the example and the glass of the comparative example were measured based on Japan Optical Glass Industry Association Standard JOGIS01-2003.
  • the glass used in this measurement was annealed under a slow cooling furnace at a slow cooling rate of ⁇ 25 ° C./hr.
  • permeability of the optical glass of an Example and the glass of a comparative example was measured according to Japan Optical Glass Industry Association standard JOGIS02.
  • the presence / absence and degree of coloration of the glass were determined by measuring the transmittance of the glass.
  • a face parallel polished product having a thickness of 10 ⁇ 0.1 mm was measured for a spectral transmittance of 200 to 800 nm in accordance with JISZ8722, and ⁇ 70 (wavelength when the transmittance was 70%) was obtained.
  • the acid resistance of the optical glass of the examples (No. A1 to No. A7) and the glass of the comparative example (No. A1) was determined by the Japan Optical Glass Industry Standard “Method for Measuring Chemical Durability of Optical Glass” JOGIS06. -Measured according to 1999. That is, a glass sample crushed to a particle size of 425 to 600 ⁇ m was placed in a specific gravity bottle and placed in a platinum basket. The platinum basket was placed in a quartz glass round bottom flask containing a 0.01N nitric acid aqueous solution and treated in a boiling water bath for 60 minutes.
  • the degree of wear of the optical glass of the examples (No. B1 to No. B5) and the glass of the comparative example (No. B1), which corresponds to the second optical glass is “the degree of wear of the JOGIS 10-1994 optical glass”. Measured according to “Measurement method”. That is, a sample of a glass square plate having a size of 30 ⁇ 30 ⁇ 10 mm is placed on a fixed position of 80 mm from the center of a flat plate made of cast iron (250 mm ⁇ ) horizontally rotating 60 times per minute, and a load of 9.8 N (1 kgf) is applied.
  • the average linear expansion coefficient ( ⁇ ) of the optical glass of the examples (No. B1 to No. B5) and the glass of the comparative example (No. B1) was determined by the Japan Optical Glass Industry Association Standard JOGIS08-2003 “Heat of optical glass”. According to “Method of measuring expansion”, an average linear expansion coefficient at ⁇ 30 to + 70 ° C. was determined.
  • optical glasses of Examples No. C1 to No. C5, No. E1 to No. E14, No. F1 to No. F5 corresponding to the third, fifth and sixth optical glasses and comparative examples
  • the glass transition point (Tg) of the glass of (No. C1, No. E1, No. F1) was obtained by performing measurement using a horizontal expansion measuring instrument.
  • the sample used for the measurement was ⁇ 4.5 mm and a length of 5 mm, and the heating rate was 4 ° C./min.
  • the detergent resistance (PR) of the optical glasses of the examples (No. D1 to No. D5) and the glasses of the comparative examples (No. D1) corresponding to the fourth optical glass is the ISO test method detergent resistance. (ISO 9689: 1990 (E)). That is, a 30 mm ⁇ 30 mm ⁇ 2 mm glass sample having 6 surfaces polished as a test piece was suspended using a platinum wire in a purified sodium tripolyphosphate aqueous solution having a concentration of 0.01 mol / L heated to 50 ° C. Immersion treatment was performed for a given time (15 minutes, 1 hour, 4 hours, 16 hours).
  • the weight loss of the sample was weighed, and the time required to erode a 0.1 ⁇ m thick glass layer was calculated by the following formula. However, this calculation used the value obtained by the minimum test time in which the mass reduction per sample was 1 mg or more. And when the time required to erode the 0.1 ⁇ m glass layer is longer than 240 minutes, it is class 1, when it is longer than 60 minutes and 240 minutes or less, it is class 2, and when it is 15 minutes or more and 60 minutes or less The case of less than 3 and 15 minutes was set to grade 4. At this time, the smaller the class number, the better the detergent resistance of the glass.
  • t0.1 te ⁇ d ⁇ S / ((m1-m2) ⁇ 100)
  • t0.1 Time (minutes) required to erode the 0.1 ⁇ m glass layer
  • te Processing time (minutes)
  • d Specific gravity
  • S Surface area of the sample (cm2)
  • m1-m2 Sample mass loss (mg)
  • the optical glasses of the examples of the present invention all have a liquidus temperature of 1200 ° C. or lower, more specifically less than 1120 ° C., and the liquidus temperature is 500 ° C. or higher. It was.
  • the glass of the comparative example (No. A1) had a liquidus temperature of 1120 ° C.
  • the optical glass of Examples (No. A1 to No. A7) of the present invention has a lower liquidus temperature and is less devitrified than the glass of Comparative Example (No. A1).
  • the optical glasses of Examples (No. B1 to No. B5) of the present invention all have a wear degree of 400 or less, more specifically less than 300. The degree was 100 or more, more specifically 200 or more.
  • the glass of the comparative example (No. B1) had an abrasion degree of 300. For this reason, it has been clarified that the optical glass of the examples (No. B1 to No. B5) of the present invention has a lower degree of wear than the glass of the comparative example (No. B1).
  • optical glass of Examples No. C1 to No. C5, No. E1 to No. E14, No. F1 to No. F5 of the present invention.
  • Tg glass transition point
  • the optical glasses of Examples (No. C1 to No. C5, No. F1 to No. F5) of the present invention had a glass transition point (Tg) of 650 ° C. or lower.
  • the glass of the comparative example (No. C1, No. F1) had a glass transition point (Tg) higher than 650 ° C.
  • the optical glass of the examples (No. C1 to No. C5, No. F1 to No. F5) of the present invention has a lower glass transition point than the glass of the comparative examples (No. C1, No. F1). It has become clear that it has a (Tg) and is easily softened at a low heating temperature.
  • the optical glasses of the examples (No. D1 to No. D5) of the present invention all have a detergent resistance (PR) according to the ISO test method of grades 1 to 3, more details. Was grade 1.
  • the glass of the comparative example (No. D1) had a class 3 detergent resistance (PR) according to the ISO test method. For this reason, it was clarified that the optical glass of Examples (No. D1 to No. D5) of the present invention is superior in detergent resistance as compared with the glass of Comparative Example (No. D1).
  • ⁇ 70 (wavelength at 70% transmittance) was 500 nm or less, more specifically, 492 nm or less, and was in a desired range.
  • the optical glasses of Examples (No. A1 to No. A7) of the present invention all had ⁇ 70 of 450 nm or less.
  • ⁇ 70 was larger than 450 nm.
  • the optical glass of the examples (No. A1 to No. A7) of the present invention is less colored than the glass of the comparative example (No. A1).
  • the optical glasses of Examples (No. B1 to No. B5) of the present invention all had a ⁇ 70 (wavelength at 70% transmittance) of 480 nm or less.
  • ⁇ 70 was larger than 480 nm.
  • the optical glass of the examples (No. B1 to No. B5) of the present invention is less likely to be colored than the glass of the comparative example (No. B1).
  • the optical glasses of the examples of the present invention (No. C1 to No. C5, No. D1 to No. D5) all had a ⁇ 70 (wavelength at a transmittance of 70%) of 450 nm or less.
  • the glass of the comparative example (No. D1) had a ⁇ 70 of 500 nm. For this reason, it became clear that the optical glass of the examples (No. D1 to No. D5) of the present invention is less colored than the glass of the comparative example (No. D1).
  • the optical glasses of Examples (No. F1 to No. F5) all had a ⁇ 70 (wavelength at 70% transmittance) of 470 nm or less.
  • ⁇ 70 was larger than 470 nm.
  • the optical glass of Examples (No. F1 to No. F5) of the present invention is less likely to be colored than the glass of Comparative Example (No. F1).
  • the optical glasses of the examples of the present invention all have a refractive index (n d ) of 1.70 or more, more specifically 1.80 or more, and this refractive index (n d ) of 2.20 or less. More specifically, it was 2.10 or less, and was within the desired range.
  • the optical glass of Examples (No. C1 to No. C5) had a refractive index (n d ) of 1.86 or more.
  • the optical glasses of the examples (No. D1 to No. D5) had a refractive index (n d ) of 1.84 or more.
  • the optical glasses of the examples (No. E1 to No. E14) had a refractive index (n d ) of 1.90 or more.
  • the optical glasses of the examples had a refractive index (n d ) of 1.92 or more.
  • the optical of Examples No. B1 to No. B5, No. C1 to No. C5, No. D1 to No. D5, No. E1 to No. E14, No. F1 to No. F5 of the present invention. All the glasses had a refractive index (n d ) of 2.00 or less.
  • the optical glasses of the examples of the present invention all have an Abbe number ( ⁇ d ) of 10 or more, more specifically 15 or more, and this Abbe number ( ⁇ d ) is 25 or less, and a desired range. It was in. In particular, the optical glasses of Examples (No. B1 to No. B5) of the present invention all had an Abbe number ( ⁇ d ) of 17 or more. On the other hand, all of the optical glasses of Examples (No. B1 to No. B5, No. D1 to No. D5) of the present invention had an Abbe number ( ⁇ d ) of 23 or less. Further, the optical glass of Examples (No. C1 to No. C5) had an Abbe number ( ⁇ d ) of 24 or less.
  • the optical glass of Examples had an Abbe number ( ⁇ d ) of 20 or less.
  • the glass of the comparative examples No. E1, No. F1 had an Abbe number ( ⁇ d ) greater than 20.
  • the optical glasses of the examples (No. E1 to No. E14, No. F1 to No. F5) of the present invention are highly dispersed compared to the glasses of the comparative examples (No. E1, No. F1). The Abbe number ( ⁇ d ) was found to be low.
  • the optical glasses of Examples (No. A1 to No. A7) of the present invention all have chemical durability (acid resistance) by the powder method of class 1 to 5, more specifically, class 1 to 2. It was.
  • the glass of the comparative example (No. A1) had class 4 chemical durability (acid resistance) by the powder method. For this reason, it was revealed that the optical glasses of the examples (No. A1 to No. A7) of the present invention are superior in acid resistance compared to the glass of the comparative example (No. A1).
  • the optical glasses of Examples (No. B1 to No. B5) of the present invention all have an average linear expansion coefficient ( ⁇ ) of 150 ⁇ 10 ⁇ 7 K ⁇ 1 or less, more specifically 100 ⁇ 10 ⁇ 7. K- 1 or less.
  • the glass of the comparative example (No. B1) had an average linear expansion coefficient ( ⁇ ) larger than 100 ⁇ 10 ⁇ 7 K ⁇ 1 or less. For this reason, it has been clarified that the optical glass of Examples (No. B1 to No. B5) of the present invention has a smaller average linear expansion coefficient ( ⁇ ) than the glass of Comparative Example (No. B1).
  • optical glass of Examples (No. A1 to No. A7) of the present invention is cut and polished to form a preform, and this preform is put into a mold and heated and softened to perform press molding, When the obtained molded body was polished, the optical glass could be stably processed into various lens shapes.
  • the optical glass of Examples (No. B1 to No. B5) of the present invention is put into a mold, press molding is performed while the optical glass is heated and softened, and the obtained molded body is polished. As a result, it was possible to stably process the optical glass into various lens shapes.
  • a precision press molding preform was formed using the optical glass of the examples of the present invention (No. C1 to No. C5, No. E1 to No. E14, No. F1 to No. F5).
  • the preform for molding was precision press-molded, it could be stably processed into various lens shapes.
  • optical glass of Examples (No. D1 to No. D5) of the present invention was cut and polished to form a preform, and this preform was put into a mold and heated and softened to perform press molding, When the obtained molded product was polished and the glass after polishing was washed, the optical glass could be stably processed into various lens shapes.
  • the optical glass of the embodiment of the present invention has high dispersion (low Abbe number ⁇ d ) while its refractive index (n d ) is within a desired range, and is transparent to light having a wavelength in the visible region. It became clear that the nature was high.
  • the optical glass of Examples (No. A1 to No. A7) of the present invention has high devitrification resistance when forming glass, and it is difficult for the glass to be fogged when an abrasive ball is produced from the glass. Became clear.
  • optical glass of Examples (No. B1 to No. B5) of the present invention is easily polished and hardly expands or contracts even when the glass changes in temperature.
  • optical glasses of the examples of the present invention are easily softened at a low temperature.
  • optical glass of Examples (No. D1 to No. D5) of the present invention can be easily cleaned in the production of preform materials and optical elements.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Glass Compositions (AREA)

Abstract

Disclosed is optical glass which has a low Abbe number (νd) even though the refractive index (nd) thereof is within a desired range, and which is highly transparent to visible light. Also disclosed are an optical element and a preform for precision press molding. The optical glass contains, in mass% relative to the total mass of the glass in terms of oxides, 5.0-40.0% of a P2O5 component and 10.0%-60.0% of an Nb2O5 component. The optical element and the preform for precision press molding are composed of the optical glass.

Description

光学ガラス、光学素子及び精密プレス成形用プリフォームOptical glass, optical element and precision press molding preform
 本発明は、光学ガラス、光学素子及び精密プレス成形用プリフォームに関する。 The present invention relates to an optical glass, an optical element, and a precision press-molding preform.
 近年、光学系を使用する機器のデジタル化や高精細化が急速に進んでおり、デジタルカメラやビデオカメラ等の撮影機器をはじめ、各種光学機器に用いられるレンズ等の光学素子に対する高精度化、軽量、及び小型化の要求は、ますます強まっている。 In recent years, the digitization and high definition of devices that use optical systems have been rapidly progressing, and the precision of optical elements such as lenses used in various optical devices, including photography devices such as digital cameras and video cameras, The demand for light weight and downsizing is increasing.
 光学素子を作製する光学ガラスの中でも特に、光学素子の軽量化及び小型化を図ることが可能な、1.70以上2.20以下の高い屈折率(n)を有し、10以上25以下のアッベ数(ν)を有し、高屈折率及び高分散を有するガラスの需要が非常に高まっている。このような高屈折率高分散ガラスとしては、例えば屈折率(n)が1.91以上であり、21以下のアッベ数を有する光学ガラスとして、特許文献1に代表されるようなガラスが知られている。また、屈折率(n)が1.65以上であり、17.2以上33.1以下のアッベ数を有する光学ガラスとして、特許文献2に代表されるようなガラスが知られている。 Among optical glasses for producing optical elements, in particular, it has a high refractive index (n d ) of 1.70 or more and 2.20 or less, which can reduce the weight and size of the optical element, and is 10 or more and 25 or less. The demand for glass having a high Abbe number (ν d ) and high refractive index and high dispersion is greatly increasing. As such a high refractive index and high dispersion glass, for example, a glass represented by Patent Document 1 is known as an optical glass having a refractive index (n d ) of 1.91 or more and an Abbe number of 21 or less. It has been. Further, as an optical glass having a refractive index (n d ) of 1.65 or more and an Abbe number of 17.2 or more and 33.1 or less, a glass represented by Patent Document 2 is known.
特開2005-206433号公報JP 2005-206433 A 特開平06-345481号公報Japanese Patent Application Laid-Open No. 06-345481
 こうしたガラスを用いて光学素子を製造する場合には、ガラス材料を加熱軟化してプレス成形(リヒートプレス成形)して得られたガラス成形品(成形ガラス)を研削及び研磨する方法や、ゴブ又はガラスブロックを切断して研削及び研磨したプリフォーム材、若しくは公知の浮上成形等により成形されたプリフォーム材を加熱軟化して、高精度な成形面を持つ金型でプレス成形する方法(精密プレス成形)が用いられている。 When manufacturing an optical element using such glass, a method of grinding and polishing a glass molded product (molded glass) obtained by heat-softening a glass material and press-molding (reheat press molding), a gob or A method in which a preform material that has been cut and ground by grinding a glass block, or a preform material that has been molded by known flotation molding, is heat-softened and press-molded with a mold having a high-precision molding surface (precision press) Molding) is used.
 しかしながら、特許文献1で開示されたガラスは、アッベ数(ν)が低いほど可視光に対する透明性が低く(λ70の値が大きく)、アッベ数(ν)の低いガラスは黄色や橙色に着色している。そのため、特許文献1で開示されたガラスは、所望の高分散を有していても、可視領域の光を透過させる用途には適さない。 However, the glass disclosed in Patent Document 1 has lower transparency to visible light as the Abbe number (ν d ) is lower (λ 70 is larger), and the glass having a lower Abbe number (ν d ) is yellow or orange. Is colored. Therefore, even if the glass disclosed in Patent Document 1 has a desired high dispersion, it is not suitable for applications that transmit light in the visible region.
 また、特許文献1及び2で開示されたガラスは、ガラスを作製する際に失透が発生し易い問題点があった。さらに、ガラスを作製した際の失透を免れたガラスは、リヒートプレスによりプレス成形されたガラスを研磨加工する際や、ガラスを研磨加工してプリフォーム材を作製する際に、曇りが生じ易い問題点があった。ひとたび失透や曇りが生じたガラスからは、特に可視領域の光を制御するような光学素子を作製することが困難であった。 Further, the glasses disclosed in Patent Documents 1 and 2 have a problem that devitrification is likely to occur when the glass is produced. Furthermore, the glass that is free from devitrification when the glass is produced tends to become cloudy when the glass press-molded by reheat press is polished or when the preform is produced by polishing the glass. There was a problem. It has been difficult to produce an optical element that can control light in the visible region from glass once devitrified or cloudy.
 また、特許文献1及び2で開示されたガラスは、研磨加工やプレス成形を行い難いものも多かった。具体的には、プレス成形後のガラス成形品に対して研磨加工を行って光学素子を得るときや、ゴブ又はガラスブロックに対して研磨加工を行うときに、ガラスに傷が入り易かった。また、ガラスを金型内で加熱してプレス成形を行い、ガラスを光学素子やそのプリフォームの形状にするときに、ガラスに窪みや割れが発生するものが多かった。 In addition, many of the glasses disclosed in Patent Documents 1 and 2 are difficult to perform polishing or press molding. Specifically, when polishing was performed on a glass molded product after press molding to obtain an optical element, or when polishing was performed on a gob or a glass block, the glass was easily damaged. Further, when glass is heated in a mold and press-molded to make the glass into the shape of an optical element or its preform, there are many cases in which dents and cracks are generated in the glass.
 また、特許文献1及び2で開示されたガラスには、ガラス転移点(Tg)が高いものが多く、これらのガラスは加熱しても軟化し難い。このため、特許文献1のガラスからプリフォーム材を作製し、プリフォーム材を加熱軟化及びプレス成形して光学素子を作製しようとすると、プリフォーム材を加熱軟化してプレス成形する温度を高める必要があるため、プレス成形に用いた金型とプリフォーム材とが融着を起こしたり、光学素子の光学特性に影響が及んだりする。 Moreover, many of the glasses disclosed in Patent Documents 1 and 2 have a high glass transition point (Tg), and these glasses are difficult to soften even when heated. For this reason, when a preform material is produced from the glass of Patent Document 1, and an optical element is produced by heat-softening and press-molding the preform material, it is necessary to heat-soften the preform material and increase the temperature for press-molding. For this reason, the die used for press molding and the preform material are fused, and the optical characteristics of the optical element are affected.
 また、特許文献1及び2で開示されたガラスは、例えばリヒートプレスによりプレス成形されたガラスを研磨加工した後でガラスを洗浄する際や、ガラスを研磨加工した後で洗浄してプリフォーム材を作製する際に、曇りが生じ易い問題点があった。ひとたび曇りが生じたガラスからは、特に可視領域の光を制御するような光学素子を作製することが困難であった。 In addition, the glass disclosed in Patent Documents 1 and 2 can be used to clean the preform material after polishing the glass press-molded by, for example, reheat press, or after polishing the glass. There was a problem that clouding was likely to occur during fabrication. It has been difficult to produce an optical element that can control light in the visible region, especially from glass that has once fogged.
 本発明は、上記問題点に鑑みてなされたものであって、その目的とするところは、屈折率(n)が所望の範囲内にありながらも低いアッベ数(ν)を有し、且つ、可視光に対する透明性が高い光学ガラス、及び光学素子を提供することにある。 The present invention has been made in view of the above problems, and its object is to have a low Abbe number (ν d ) while the refractive index (n d ) is within a desired range, And it is providing the optical glass and optical element with high transparency with respect to visible light.
 また、本発明は、上述の屈折率(n)、アッベ数(ν)及び可視光に対する透明性を有しながらも、ガラスの作製時及び加工時に失透や曇りが生じ難く、研磨加工によるプリフォーム材や光学素子の作製を行い易い光学ガラス、及び光学素子を提供することも目的とする。 Further, the present invention has the above-described refractive index (n d ), Abbe number (ν d ), and transparency to visible light, but is less susceptible to devitrification and clouding during glass production and processing. It is another object of the present invention to provide an optical glass and an optical element that are easy to produce a preform material and an optical element.
 また、本発明は、上述の屈折率(n)、アッベ数(ν)及び可視光に対する透明性を有しながらも、研磨加工やプレス成形を行い易い光学ガラス及び光学素子を提供することも目的とする。 The present invention also provides an optical glass and an optical element that are easy to perform polishing and press molding while having transparency to the refractive index (n d ), Abbe number (ν d ), and visible light described above. Also aimed.
 また、本発明は、上述の屈折率(n)、アッベ数(ν)及び可視光に対する透明性を有しながらも、低い温度で軟化し易い光学ガラス、光学素子及び精密プレス成形用プリフォームを提供することも目的とする。 Further, the present invention has a refractive index of above (n d), Abbe number ([nu d) and while having a transparency to visible light, easy optical glass softened at a low temperature, optics and precision press-molding flop The purpose is to provide renovation.
 本発明は、上述の屈折率(n)、アッベ数(ν)及び可視光に対する透明性を有しながらも、プリフォーム材や光学素子の作製における洗浄を行い易い光学ガラス及び光学素子を提供することも目的とする。 The present invention provides an optical glass and an optical element that are easy to clean in the production of a preform material and an optical element while having transparency to the above-described refractive index (n d ), Abbe number (ν d ), and visible light. It is also intended to provide.
 本発明者らは、上記課題を解決するために、鋭意試験研究を重ねた結果、所定量のP成分及びNb成分を含有することによって、ガラスの高屈折率化が図られながらも、分散が高められて低いアッベ数が得られ、且つ、ガラスの可視光に対する透明性が高められることを見出し、本発明を完成するに至った。 In order to solve the above-mentioned problems, the present inventors have conducted intensive test studies, and as a result, the glass has a high refractive index by containing a predetermined amount of P 2 O 5 component and Nb 2 O 5 component. However, the present inventors have found that the dispersion is increased to obtain a low Abbe number and that the transparency of the glass with respect to visible light is enhanced, thereby completing the present invention.
 また、本発明者らは、所定量のP成分及びNb成分を含有することによって、屈折率(n)、分散及び可視光に対する透明性が高められながらも、ガラスの液相温度が低くなり、且つ耐酸性が高められることをも見出した。 In addition, the present inventors include a predetermined amount of P 2 O 5 component and Nb 2 O 5 component, so that the refractive index (n d ), dispersion, and transparency to visible light are enhanced, but It has also been found that the liquidus temperature is lowered and the acid resistance is increased.
 また、本発明者らは、所定量のP成分及びNb成分を含有することによって、屈折率(n)、分散及び可視光に対する透明性が高められながらも、適度な磨耗度がもたらされ、且つ平均線膨張係数(α)が小さくなることをも見出した。 In addition, the present inventors contain moderate amounts of P 2 O 5 component and Nb 2 O 5 component, so that the refractive index (n d ), dispersion, and transparency to visible light are enhanced, but moderate It has also been found that the degree of wear is brought about and the average coefficient of linear expansion (α) is reduced.
 また、本発明者らは、P成分及びNb成分を併用し、P成分、Nb成分及びTiO成分の含有率を所定の範囲内に抑えることによって、屈折率(n)、分散及び可視光に対する透明性が高められながらも、ガラス転移点(Tg)が低くなることをも見出した。 In addition, the present inventors use the P 2 O 5 component and the Nb 2 O 5 component in combination, and suppress the contents of the P 2 O 5 component, the Nb 2 O 5 component, and the TiO 2 component within a predetermined range. It was also found that the glass transition point (Tg) is lowered while the refractive index ( nd ), dispersion and transparency to visible light are enhanced.
 また、本発明者らは、P成分及びNb成分を併用しつつ、LiO成分、NaO成分、KO成分の少なくともいずれかを必須成分として含有することによって、屈折率(n)、分散及び可視光に対する透明性が高められながらも、ガラス転移点(Tg)が低くなることをも見出した。 In addition, the present inventors include a P 2 O 5 component and an Nb 2 O 5 component in combination, and by containing at least one of a Li 2 O component, a Na 2 O component, and a K 2 O component as an essential component. It was also found that the glass transition point (Tg) is lowered while the refractive index ( nd ), dispersion and transparency to visible light are enhanced.
 また、本発明者らは、所定量のP成分及びNb成分を含有することによって、屈折率(n)、分散及び可視光に対する透明性が高められながらも、液相温度が高められ、且つガラスの耐洗剤性が高められることをも見出した。具体的には、本発明は以下のようなものを提供する。 Further, the present inventors have found that by containing a predetermined amount of P 2 O 5 component and Nb 2 O 5 component, a refractive index (n d), while the transparency is improved for dispersion and visible light, liquid phase It has also been found that the temperature is increased and the detergent resistance of the glass is increased. Specifically, the present invention provides the following.
 (1) 酸化物換算組成のガラス全質量に対して、質量%でP成分を5.0%以上40.0%以下、Nb成分を10.0%以上60.0%以下含有する光学ガラス。 (1) the entire mass of the glass in terms of oxide composition, P 2 O 5 ingredient 40.0% 5.0% or more of the following in mass%, Nb 2 O 5 ingredient 10.0% or more 60.0% Optical glass containing below.
 (2) 分光透過率が70%を示す波長(λ70)が500nm以下であり、500℃以上1200℃以下の液相温度を有する(1)記載の光学ガラス。 (2) The optical glass according to (1), wherein a wavelength (λ 70 ) having a spectral transmittance of 70% is 500 nm or less, and has a liquidus temperature of 500 ° C. or more and 1200 ° C. or less.
 (3) 100以上400以下の磨耗度を有する(1)記載の光学ガラス。 (3) The optical glass according to (1), which has a degree of wear of 100 to 400.
 (4) ISO試験法による耐洗剤性(PR)が級1~3である(1)記載の光学ガラス。 (4) The optical glass according to (1), which has a detergent resistance (PR) of 1 to 3 according to ISO test method.
 (5) LiO成分、NaO成分、KO成分の少なくともいずれかを必須成分として含有し、700℃以下のガラス転移点(Tg)を有する(1)記載の光学ガラス。 (5) The optical glass according to (1), which contains at least one of a Li 2 O component, a Na 2 O component, and a K 2 O component as an essential component and has a glass transition point (Tg) of 700 ° C. or lower.
 (6) 酸化物換算組成のガラス全質量に対して、質量%でTiO成分の含有量が30.0%以下である(1)から(5)のいずれか記載の光学ガラス。 (6) as oxide entire mass of the glass composition, the content of TiO 2 component is less than 30.0% by mass% (1) to (5) any description of the optical glass.
 (7) 酸化物換算組成のガラス全質量に対して、質量%でTiO成分の含有量が12.0%以下である(6)記載の光学ガラス。 (7) the entire mass of the glass in terms of oxide composition, the content of TiO 2 component in terms of mass% is not more than 12.0 percent (6), wherein the optical glass.
 (8) 酸化物換算組成のガラス全質量に対して、質量%でTiO成分の含有量が10.0%未満である(6)記載の光学ガラス。 (8) the entire mass of the glass in terms of oxide composition, the content of TiO 2 component in terms of mass% is less than 10.0% (6), wherein the optical glass.
 (9) 酸化物換算組成のガラス全質量に対して、質量%でTiO成分の含有量が10.0%未満であり、700℃以下のガラス転移点(Tg)を有する(1)記載の光学ガラス。 (9) The content of TiO 2 component is less than 10.0% by mass% with respect to the total glass mass of the oxide equivalent composition, and has a glass transition point (Tg) of 700 ° C. or less. Optical glass.
 (10) 酸化物換算組成のガラス全質量に対して、質量%でTiO成分を10.0%以上30.0%以下含有し、700℃以下のガラス転移点(Tg)を有する(1)記載の光学ガラス。 (10) It contains 10.0% or more and 30.0% or less of TiO 2 component in mass% with respect to the total mass of the glass in oxide equivalent composition, and has a glass transition point (Tg) of 700 ° C. or less (1). The optical glass described.
 (11) 酸化物換算組成のガラス全質量に対して、質量%で
WO成分 0~20.0%及び/又は
BaO成分 0~30.0%及び/又は
SiO成分 0~10.0%
の各成分をさらに含有する(1)から(10)のいずれか記載の光学ガラス。
(11) WO 3 component 0 to 20.0% and / or BaO component 0 to 30.0% and / or SiO 2 component 0 to 10.0% by mass% with respect to the total glass mass of the oxide equivalent composition
The optical glass according to any one of (1) to (10), further containing each component of
 (12) 酸化物換算組成のガラス全質量に対して、質量%で
WO成分 0%より多く20.0%以下、及び
BaO成分 0%より多く30.0%以下
の各成分をさらに含有する(11)記載の光学ガラス。
(12) With respect to the total glass mass of the oxide-converted composition, the composition further contains, in mass%, each of WO 3 components greater than 0% and 20.0% or less, and BaO components greater than 0% and 30.0% or less. (11) The optical glass as described.
 (13) 酸化物換算組成のガラス全質量に対して、質量%でBaO成分の含有量が13.0%以下である(11)又は(12)記載の光学ガラス。 (13) The optical glass according to (11) or (12), wherein the content of the BaO component is 13.0% or less by mass with respect to the total mass of the glass having an oxide equivalent composition.
 (14) 酸化物換算組成のガラス全質量に対して、質量%でBaO成分の含有量が7.0%未満である(11)又は(12)記載の光学ガラス。 (14) The optical glass according to (11) or (12), wherein the content of the BaO component is less than 7.0% by mass with respect to the total mass of the glass having an oxide equivalent composition.
 (15) 酸化物換算組成のガラス全質量に対して、質量%でBaO成分の含有量が4.5%以下である(11)又は(12)記載の光学ガラス。 (15) The optical glass according to (11) or (12), wherein the BaO component content is 4.5% or less by mass with respect to the total mass of the glass having an oxide equivalent composition.
 (16) 酸化物換算組成のガラス全質量に対して、質量%でBaO成分の含有量が1.0%以上17.0%未満である(11)又は(12)記載の光学ガラス。 (16) The optical glass according to (11) or (12), wherein the content of the BaO component is 1.0% or more and less than 17.0% by mass% with respect to the total glass mass of the oxide equivalent composition.
 (17) 酸化物換算組成のガラス全質量に対して、質量%でBaO成分の含有量が2.0%以上15.0%以下である(11)又は(12)記載の光学ガラス。 (17) The optical glass according to (11) or (12), wherein the content of the BaO component is 2.0% or more and 15.0% or less with respect to the total mass of the glass having an oxide equivalent composition.
 (18) 酸化物換算組成のガラス全質量に対して、質量%でBaO成分の含有量が7.0%より多く30.0%以下である(11)又は(12)記載の光学ガラス。 (18) The optical glass according to (11) or (12), wherein the BaO component content is greater than 7.0% and less than or equal to 30.0% by mass% relative to the total mass of the glass with an oxide equivalent composition.
 (19) 酸化物換算組成のガラス全質量に対して、質量%でSiO成分の含有量が2.0%以下である(11)から(18)のいずれか記載の光学ガラス。 (19) The optical glass according to any one of (11) to (18), wherein the content of the SiO 2 component is 2.0% or less by mass with respect to the total mass of the glass having an oxide equivalent composition.
 (20) 酸化物換算組成のガラス全質量に対して、質量%でSiO成分を2.0%より多く含有する(11)から(18)のいずれか記載の光学ガラス。 (20) The optical glass according to any one of (11) to (18), which contains more than 2.0% of SiO 2 component by mass% with respect to the total glass mass of the oxide equivalent composition.
 (21) 酸化物換算組成のガラス全質量に対して、質量%でWO成分の含有量が10.0%以下である(11)から(20)のいずれか記載の光学ガラス。 (21) The optical glass according to any one of (11) to (20), wherein the content of the WO 3 component is 10.0% or less by mass% with respect to the total glass mass of the oxide equivalent composition.
 (22) 酸化物換算組成のガラス全質量に対して、質量%で
LiO成分 0~20.0%及び/又は
NaO成分 0~35.0%及び/又は
O成分 0~20.0%
の各成分をさらに含有する(1)から(21)のいずれか記載の光学ガラス。
(22) Li 2 O component 0 to 20.0% and / or Na 2 O component 0 to 35.0% and / or K 2 O component 0 to 0% by mass with respect to the total glass mass of the oxide equivalent composition 20.0%
The optical glass according to any one of (1) to (21), further containing each component of
 (23) 酸化物換算組成のガラス全質量に対して、質量%で
LiO成分 0~10.0%及び/又は
NaO成分 0~15.0%及び/又は
O成分 0~10.0%未満
の各成分をさらに含有する(22)記載の光学ガラス。
(23) 0 to 10.0% Li 2 O component and / or 0 to 15.0% Na 2 O component and / or K 2 O component 0 to 0% by mass with respect to the total glass mass of the oxide equivalent composition The optical glass according to (22), further containing less than 10.0% of each component.
 (24) LiO成分を必須成分として含有する(22)又は(23)記載の光学ガラス。 (24) The optical glass according to (22) or (23), which contains a Li 2 O component as an essential component.
 (25) 酸化物換算組成のガラス全質量に対して、質量%でKO成分の含有量が0.1%以上である(22)から(24)のいずれか記載の光学ガラス。 (25) The optical glass according to any one of (22) to (24), wherein the content of the K 2 O component is 0.1% or more by mass% with respect to the total glass mass of the oxide equivalent composition.
 (26) 酸化物換算組成のガラス全質量に対する質量和LiO+NaO+KOが35.0%以下である(22)から(25)のいずれか記載の光学ガラス。 (26) The optical glass according to any one of (22) to (25), wherein the mass sum Li 2 O + Na 2 O + K 2 O with respect to the total glass mass of the oxide equivalent composition is 35.0% or less.
 (27) 酸化物換算組成のガラス全質量に対する質量和LiO+NaO+KOが5.0%以上35.0%以下である(22)から(26)のいずれか記載の光学ガラス。 (27) The optical glass according to any one of (22) to (26), wherein the mass sum Li 2 O + Na 2 O + K 2 O with respect to the total glass mass of the oxide conversion composition is 5.0% or more and 35.0% or less.
 (28) 酸化物換算組成のガラス全質量に対する質量和LiO+NaO+KOが7.0%より多く35.0%以下である(22)から(27)のいずれか記載の光学ガラス。 (28) The optical glass according to any one of (22) to (27), wherein the total mass Li 2 O + Na 2 O + K 2 O with respect to the total glass mass of the oxide-converted composition is more than 7.0% and 35.0% or less.
 (29) 酸化物換算組成のガラス全質量に対する質量和LiO+NaO+KOが8.0%より多い(22)から(28)のいずれか記載の光学ガラス。 (29) The optical glass according to any one of (22) to (28), wherein the mass sum Li 2 O + Na 2 O + K 2 O with respect to the total glass mass of the oxide equivalent composition is more than 8.0%.
 (30) 酸化物換算組成のガラス全質量に対する質量和LiO+NaO+KOが10.0%より多い(22)から(29)のいずれか記載の光学ガラス。 (30) The optical glass according to any one of (22) to (29), wherein the mass sum Li 2 O + Na 2 O + K 2 O with respect to the total glass mass of the oxide equivalent composition is more than 10.0%.
 (31) 酸化物換算組成のガラス全質量に対する質量和LiO+NaO+KOが15.0%以下である(22)から(30)のいずれか記載の光学ガラス。 (31) The optical glass according to any one of (22) to (30), wherein the mass sum Li 2 O + Na 2 O + K 2 O with respect to the total glass mass of the oxide-converted composition is 15.0% or less.
 (32) 酸化物換算組成のガラス全質量に対して、質量%でBaO成分を15.0%以上含有し、質量和LiO+NaO+KOが10.0%より多い(22)から(31)のいずれか記載の光学ガラス。 (32) 15.0% or more of BaO component is contained in mass% with respect to the total glass mass of the oxide equivalent composition, and the mass sum Li 2 O + Na 2 O + K 2 O is more than 10.0% from (22) ( 31) The optical glass described in any one of 31).
 (33) LiO成分、NaO成分、及びKO成分のうち2種以上の成分を含んでいる(22)から(32)記載の光学ガラス。 (33) The optical glass according to (22) to (32), which contains two or more kinds of components among Li 2 O component, Na 2 O component, and K 2 O component.
 (34) 酸化物換算組成のガラス全質量に対して、質量%で
MgO成分 0~5.0%及び/又は
CaO成分 0~10.0%及び/又は
SrO成分 0~10.0%
の各成分をさらに含有する(1)から(33)のいずれか記載の光学ガラス。
(34) 0 to 5.0% of MgO component and / or 0 to 10.0% of CaO component and / or 0 to 10.0% of SrO component in mass% with respect to the total glass mass of the oxide equivalent composition
The optical glass according to any one of (1) to (33), further comprising:
 (35) 酸化物換算組成のガラス全質量に対する質量和MgO+CaO+SrO+BaOが30.0%以下である(34)記載の光学ガラス。 (35) The optical glass according to (34), wherein the mass sum MgO + CaO + SrO + BaO is 30.0% or less with respect to the total mass of the glass having an oxide equivalent composition.
 (36) 酸化物換算組成のガラス全質量に対して、質量%で
成分 0~10.0%及び/又は
La成分 0~10.0%及び/又は
Gd成分 0~10.0%
の各成分をさらに含有する(1)から(35)のいずれか記載の光学ガラス。
(36) 0 to 10.0% of Y 2 O 3 component and / or La 2 O 3 component 0 to 10.0% and / or Gd 2 O 3 in mass% with respect to the total glass mass of the oxide equivalent composition Ingredient 0 ~ 10.0%
The optical glass according to any one of (1) to (35), further comprising:
 (37) 酸化物換算組成のガラス全質量に対する質量和Y+La+Gdが20.0%以下である(36)記載の光学ガラス。 (37) The optical glass according to (36), wherein the mass sum Y 2 O 3 + La 2 O 3 + Gd 2 O 3 with respect to the total glass mass of the oxide equivalent composition is 20.0% or less.
 (38) 酸化物換算組成のガラス全質量に対して、質量%で
成分 0~10.0%及び/又は
GeO成分 0~10.0%及び/又は
Bi成分 0~20.0%及び/又は
ZrO成分 0~10.0%及び/又は
ZnO成分 0~10.0%及び/又は
Al成分 0~10.0%及び/又は
Ta成分 0~10.0%及び/又は
Sb成分 0~1.0%
の各成分をさらに含有する(1)から(37)のいずれか記載の光学ガラス。
(38) B 2 O 3 component 0 to 10.0% and / or GeO 2 component 0 to 10.0% and / or Bi 2 O 3 component 0% by mass with respect to the total glass mass of the oxide equivalent composition ˜20.0% and / or ZrO 2 component 0 to 10.0% and / or ZnO component 0 to 10.0% and / or Al 2 O 3 component 0 to 10.0% and / or Ta 2 O 5 component 0 to 10.0% and / or Sb 2 O 3 component 0 to 1.0%
The optical glass according to any one of (1) to (37), further comprising:
 (39) 1.70以上2.20以下の屈折率(nd)を有し、10以上25以下のアッベ数(νd)を有する(1)から(38)のいずれか記載の光学ガラス。 (39) The optical glass according to any one of (1) to (38), having a refractive index (nd) of 1.70 to 2.20 and an Abbe number (νd) of 10 to 25.
 (40) 粉末法による化学的耐久性(耐酸性)がクラス1~5である(1)から(39)のいずれか記載の光学ガラス。 (40) The optical glass according to any one of (1) to (39), wherein chemical durability (acid resistance) by a powder method is class 1 to 5.
 (41) 分光透過率が70%を示す波長(λ70)が500nm以下である(1)から(40)のいずれか記載の光学ガラス。 (41) The optical glass according to any one of (1) to (40), wherein a wavelength (λ 70 ) showing a spectral transmittance of 70% is 500 nm or less.
 (42) -30~+70℃における平均線膨張係数(α)が150×10-7-1以下である(1)から(41)のいずれか記載の光学ガラス。 (42) The optical glass according to any one of (1) to (41), wherein the average linear expansion coefficient (α) at −30 to + 70 ° C. is 150 × 10 −7 K −1 or less.
 (43) (1)から(42)のいずれか記載の光学ガラスからなる光学素子。 (43) An optical element made of the optical glass according to any one of (1) to (42).
 (44) (1)から(42)のいずれか記載の光学ガラスからなる精密プレス成形用プリフォーム。 (44) A precision press-molding preform made of the optical glass according to any one of (1) to (42).
 (45) (44)記載の精密プレス成形用プリフォームを精密プレス成形してなる光学素子。 (45) An optical element obtained by precision press molding the preform for precision press molding described in (44).
 本発明によれば、ガラスの高屈折率化が図られながらも、ガラスの分散が高められ、ガラスの可視光に対する透明性が高められる。このため、屈折率(n)が所望の範囲内にありながらも低いアッベ数(ν)を有し、且つ、可視光に対する透明性が高い光学ガラス、及び光学素子を提供できる。 According to the present invention, the dispersion of the glass is enhanced and the transparency of the glass with respect to visible light is enhanced while the refractive index of the glass is increased. Therefore, it is possible to provide an optical glass and an optical element having a low Abbe number (ν d ) while having a refractive index (n d ) within a desired range and having high transparency to visible light.
 特に、本発明によれば、所定量のP成分及びNb成分を含有することによって、所望の屈折率(n)、アッベ数(ν)及び可視光に対する透明性を有しながらも、ガラスの作製時及び加工時に失透や曇りが生じ難く、研磨加工によるプリフォーム材や光学素子の作製を行い易い光学ガラス、及び光学素子を提供できる。 In particular, according to the present invention, by containing a predetermined amount of P 2 O 5 component and Nb 2 O 5 component, desired refractive index (n d), the transparency to the Abbe number ([nu d) and visible light While having the glass, it is possible to provide an optical glass and an optical element that are less likely to be devitrified and cloudy during the production and processing of the glass and that are easy to produce a preform material and an optical element by polishing.
 また、本発明によれば、所定量のP成分及びNb成分を含有することによって、所望の屈折率(n)、アッベ数(ν)及び可視光に対する透明性を有しながらも、研磨加工やプレス成形を行い易い光学ガラス及び光学素子を提供できる。 Further, according to the present invention, by containing a predetermined amount of P 2 O 5 component and Nb 2 O 5 component, the desired refractive index (n d ), Abbe number (ν d ), and transparency to visible light can be obtained. It is possible to provide an optical glass and an optical element that are easy to perform polishing and press molding while having.
 また、本発明によれば、P成分及びNb成分を併用し、P成分、Nb成分及びTiO成分の含有率を所定の範囲内に抑えることによって、所望の屈折率(n)、アッベ数(ν)及び可視光に対する透明性を有しながらも、低い温度で軟化し易い光学ガラスと、これを用いた光学素子及び精密プレス成形用プリフォームを提供できる。 Further, according to the present invention, by a combination of P 2 O 5 component and Nb 2 O 5 component, suppresses P 2 O 5 component, the content of Nb 2 O 5 component and TiO 2 component within a predetermined range An optical glass that has transparency to a desired refractive index (n d ), Abbe number (ν d ), and visible light but is easily softened at a low temperature, an optical element using the optical glass, and a precision press molding process Renovation can be provided.
 また、本発明によれば、P成分及びNb成分を併用しつつ、LiO成分、NaO成分、KO成分の少なくともいずれかを必須成分として含有することによって、所望の屈折率(n)、アッベ数(ν)及び可視光に対する透明性を有しながらも、低い温度で軟化し易い光学ガラスと、これを用いた光学素子及び精密プレス成形用プリフォームを提供できる。 Further, according to the present invention, while a combination of P 2 O 5 component and Nb 2 O 5 component, Li 2 O component, Na 2 O component, by containing as an essential ingredient at least one of K 2 O component An optical glass that has transparency to a desired refractive index (n d ), Abbe number (ν d ), and visible light but is easily softened at a low temperature, an optical element using the optical glass, and a precision press molding process Renovation can be provided.
 また、本発明によれば、所定量のP成分及びNb成分を含有することによって、所望の屈折率(n)、アッベ数(ν)及び可視光に対する透明性を有しながらも、プリフォーム材や光学素子の作製における洗浄を行い易い光学ガラス及び光学素子を提供できる。 Further, according to the present invention, by containing a predetermined amount of P 2 O 5 component and Nb 2 O 5 component, the desired refractive index (n d ), Abbe number (ν d ), and transparency to visible light can be obtained. It is possible to provide an optical glass and an optical element that can be easily cleaned in the production of a preform material and an optical element while having the same.
 本発明の光学ガラスは、酸化物換算組成のガラス全質量に対して、質量%でP成分を5.0%以上40.0%以下、Nb成分を10.0%以上60.0%以下含有する。P成分及びNb成分を併用し、P成分及びNb成分の含有率を所定の範囲内に抑えることによって、ガラスの高屈折率化が図られながらも分散が高められ、ガラスの可視光に対する透明性が高められる。このため、屈折率(n)が所望の範囲内にありながらも低いアッベ数(ν)を有し、可視光に対する透明性が高い光学ガラス、及び光学素子を提供できる。 In the optical glass of the present invention, the P 2 O 5 component is 5.0% or more and 40.0% or less, and the Nb 2 O 5 component is 10.0% or more by mass% with respect to the total glass mass of the oxide equivalent composition. Contains 60.0% or less. While the P 2 O 5 component and the Nb 2 O 5 component are used in combination, and the content ratio of the P 2 O 5 component and the Nb 2 O 5 component is kept within a predetermined range, the glass has a high refractive index. Dispersion is enhanced and the transparency of glass to visible light is enhanced. Therefore, it is possible to provide an optical glass and an optical element that have a low Abbe number (ν d ) while having a refractive index (n d ) within a desired range and that are highly transparent to visible light.
 このうち、本発明の第1の光学ガラスは、酸化物換算組成のガラス全質量に対して、質量%でP成分を5.0%以上40.0%以下、Nb成分を10.0%以上60.0%以下含有し、分光透過率が70%を示す波長(λ70)が500nm以下であり、500℃以上1200℃以下の液相温度を有する。P成分及びNb成分を併用し、P成分及びNb成分の含有率を所定の範囲内に抑えることによって、ガラスの高屈折率化が図られながらも分散が高められ、ガラスの可視光に対する透明性が高められ、ガラスの液相温度が低くなり、且つ、ガラスの耐酸性が高められてガラスと研磨液や洗浄液とが接触してもガラスが侵され難くなる。このため、屈折率(n)が所望の範囲内にありながらも低いアッベ数(ν)を有し、可視光に対する透明性が高く、且つガラスの作製時及び加工時に失透や曇りが生じ難く、研磨加工によるプリフォーム材や光学素子の作製を行い易い光学ガラス、及び光学素子を提供できる。 Of these, the first optical glass of the present invention, in terms of oxide entire mass of the glass composition, P 2 O 5 ingredient 40.0% 5.0% or more of the following in weight%, Nb 2 O 5 component The wavelength (λ 70 ) in which the spectral transmittance is 70% is 500 nm or less and the liquidus temperature is 500 ° C. or more and 1200 ° C. or less. While the P 2 O 5 component and the Nb 2 O 5 component are used in combination, and the content ratio of the P 2 O 5 component and the Nb 2 O 5 component is kept within a predetermined range, the glass has a high refractive index. Dispersion is enhanced, the transparency of the glass to visible light is increased, the liquidus temperature of the glass is lowered, and the acid resistance of the glass is enhanced so that the glass does not corrode even if it comes into contact with the polishing liquid or cleaning liquid. It becomes difficult to be done. For this reason, the refractive index (n d ) is within the desired range, but has a low Abbe number (ν d ), high transparency to visible light, and devitrification and cloudiness during glass production and processing. It is possible to provide an optical glass and an optical element that are less likely to be produced and that facilitate the production of a preform material and an optical element by polishing.
 また、本発明の第2の光学ガラスは、酸化物換算組成のガラス全質量に対して、質量%でP成分を5.0%以上40.0%以下、Nb成分を10.0%以上60.0%以下含有し、100以上400以下の磨耗度を有する。P成分及びNb成分を併用し、P成分及びNb成分の含有率を所定の範囲内に抑えることによって、ガラスの高屈折率化が図られながらも、分散が高められて低いアッベ数が得られ、ガラスの可視光に対する透明性が高められ、適度な磨耗度がもたらされ、且つ平均線膨張係数(α)が小さくなる。このため、屈折率(n)が所望の範囲内にありながらも高い分散(低いアッベ数)を有し、可視光に対する透明性が高く、研磨加工を行い易く、且つプレス成形によるレンズへの窪み(ヒケ)や割れが低減された光学ガラス及び光学素子を提供できる。 The second optical glass of the present invention, the entire mass of the glass in terms of oxide composition, P 2 O 5 ingredient 40.0% 5.0% or more of the following in weight%, the Nb 2 O 5 component It contains 10.0% or more and 60.0% or less, and has a wear degree of 100 or more and 400 or less. While the P 2 O 5 component and the Nb 2 O 5 component are used in combination, and the content ratio of the P 2 O 5 component and the Nb 2 O 5 component is kept within a predetermined range, the glass has a high refractive index. The dispersion is increased to obtain a low Abbe number, the transparency of the glass to visible light is increased, a moderate degree of wear is brought about, and the average coefficient of linear expansion (α) is reduced. For this reason, the refractive index (n d ) is within a desired range but has high dispersion (low Abbe number), high transparency to visible light, easy polishing, and press molding to the lens. An optical glass and an optical element with reduced depressions and cracks can be provided.
 また、本発明の第3の光学ガラスは、酸化物換算組成のガラス全質量に対して、質量%でP成分を5.0%以上40.0%以下、Nb成分を10.0%以上60.0%以下含有し、TiO成分の含有量が10.0%未満であり、700℃以下のガラス転移点(Tg)を有する。P成分及びNb成分を併用し、P成分、Nb成分及びTiO成分の含有率を所定の範囲内に抑えることによって、ガラスの高屈折率化が図られながらも、分散が高められて低いアッベ数が得られ、ガラスの可視光に対する透明性が高められ、且つガラス転移点(Tg)が低くなる。このため、屈折率(n)が所望の範囲内にありながらも低いアッベ数(ν)を有し、可視光に対する透明性が高く、且つ低い温度で軟化し易くプレス成形を行い易い光学ガラスと、これを用いた光学素子及び精密プレス成形用プリフォームを提供できる。 The third optical glass of the present invention, the entire mass of the glass in terms of oxide composition, P 2 O 5 ingredient 40.0% 5.0% or more of the following in weight%, the Nb 2 O 5 component It contains 10.0% or more and 60.0% or less, the content of the TiO 2 component is less than 10.0%, and has a glass transition point (Tg) of 700 ° C. or less. By using the P 2 O 5 component and the Nb 2 O 5 component together, and suppressing the contents of the P 2 O 5 component, the Nb 2 O 5 component, and the TiO 2 component within a predetermined range, it is possible to increase the refractive index of the glass. Although being achieved, the dispersion is increased to obtain a low Abbe number, the transparency of the glass to visible light is increased, and the glass transition point (Tg) is lowered. Therefore, an optical element having a low Abbe number (ν d ) while having a refractive index (n d ) within a desired range, high transparency to visible light, and being easy to soften and press-mold at a low temperature. Glass, an optical element using the glass, and a precision press-molding preform can be provided.
 また、本発明の第4の光学ガラスは、酸化物換算組成のガラス全質量に対して、質量%でP成分を5.0%以上40.0%以下、Nb成分を10.0%以上60.0%以下含有し、ISO試験法による耐洗剤性(PR)が級1~3である。P成分及びNb成分を併用し、P成分及びNb成分の含有率を所定の範囲内に抑えることによって、ガラスの高屈折率化が図られながらも分散が高められ、ガラスの可視光に対する透明性が高められ、且つ、ガラスの耐洗剤性が高められてガラスと研磨液や洗浄液とが接触してもガラスが侵され難くなる。このため、屈折率(n)が所望の範囲内にありながらも低いアッベ数(ν)を有し、可視光に対する透明性が高く、且つガラスの研磨加工後の洗浄時に曇りが生じ難く、プリフォーム材や光学素子の作製における洗浄を行い易い光学ガラス及び光学素子を提供できる。 The fourth optical glass of the present invention, the entire mass of the glass in terms of oxide composition, P 2 O 5 ingredient 40.0% 5.0% or more of the following in weight%, the Nb 2 O 5 component The content is 10.0% or more and 60.0% or less, and the detergent resistance (PR) according to the ISO test method is a grade 1 to 3. While the P 2 O 5 component and the Nb 2 O 5 component are used in combination, and the content ratio of the P 2 O 5 component and the Nb 2 O 5 component is kept within a predetermined range, the glass has a high refractive index. Dispersion is enhanced, transparency of the glass with respect to visible light is enhanced, and detergent resistance of the glass is enhanced so that the glass is less likely to be corroded even if the glass comes into contact with the polishing liquid or the cleaning liquid. For this reason, the refractive index (n d ) is in the desired range, but has a low Abbe number (ν d ), high transparency to visible light, and hardly fogging during cleaning after glass polishing. It is possible to provide an optical glass and an optical element that can be easily cleaned in the production of a preform material and an optical element.
 また、本発明の第5の光学ガラスは、酸化物換算組成のガラス全質量に対して、質量%でP成分を5.0%以上40.0%以下、Nb成分を10.0%以上60.0%以下、及びTiO成分を10.0%以上30.0%以下含有し、700℃以下のガラス転移点(Tg)を有する。P成分、Nb成分及びTiO成分を併用し、P成分、Nb成分及びTiO成分の含有率を所定の範囲内に抑えることによって、ガラスの高屈折率化が図られながらも、分散が高められて低いアッベ数が得られ、ガラスの可視光に対する透明性が高められ、且つガラス転移点(Tg)が低くなる。このため、屈折率(n)が所望の範囲内にありながらも低いアッベ数(ν)を有し、可視光に対する透明性が高く、且つ低い温度で軟化し易くプレス成形を行い易い光学ガラスと、これを用いた光学素子及び精密プレス成形用プリフォームを提供できる。 The fifth optical glass of the present invention, the entire mass of the glass in terms of oxide composition, P 2 O 5 ingredient 40.0% 5.0% or more of the following in weight%, the Nb 2 O 5 component It contains 10.0% or more and 60.0% or less, and a TiO 2 component of 10.0% or more and 30.0% or less, and has a glass transition point (Tg) of 700 ° C. or less. P 2 O 5 component, a combination of Nb 2 O 5 component and TiO 2 component, by reducing P 2 O 5 component, the content of Nb 2 O 5 component and TiO 2 component within a predetermined range, the glass high Although the refractive index is increased, the dispersion is increased to obtain a low Abbe number, the transparency of the glass to visible light is increased, and the glass transition point (Tg) is lowered. Therefore, an optical element having a low Abbe number (ν d ) while having a refractive index (n d ) within a desired range, high transparency to visible light, and being easy to soften and press-mold at a low temperature. Glass, an optical element using the glass, and a precision press-molding preform can be provided.
 また、本発明の第6の光学ガラスは、酸化物換算組成のガラス全質量に対して、質量%でP成分を5.0%以上40.0%以下、Nb成分を10.0%以上60.0%以下含有し、LiO成分、NaO成分、KO成分の少なくともいずれかを必須成分として含有し、700℃以下のガラス転移点(Tg)を有する。P成分及びNb成分を併用しつつ、LiO成分、NaO成分、KO成分の少なくともいずれかを必須成分として含有することによって、ガラスの高屈折率化が図られながらも、分散が高められて低いアッベ数が得られ、ガラスの可視光に対する透明性が高められ、且つガラス転移点(Tg)が低くなる。このため、屈折率(n)が所望の範囲内にありながらも低いアッベ数(ν)を有し、可視光に対する透明性が高く、且つ低い温度で軟化し易くプレス成形を行い易い光学ガラスと、これを用いた光学素子及び精密プレス成形用プリフォームを提供できる。 In addition, the sixth optical glass of the present invention contains 5.0% or more and 40.0% or less of the P 2 O 5 component and Nb 2 O 5 component in mass% with respect to the total glass mass of the oxide equivalent composition. 10.0% or more and 60.0% or less, containing at least one of Li 2 O component, Na 2 O component, and K 2 O component as an essential component, and having a glass transition point (Tg) of 700 ° C. or less . By using at least one of the Li 2 O component, the Na 2 O component, and the K 2 O component as an essential component while using the P 2 O 5 component and the Nb 2 O 5 component together, the refractive index of the glass can be increased. Although being achieved, the dispersion is increased to obtain a low Abbe number, the transparency of the glass to visible light is increased, and the glass transition point (Tg) is lowered. Therefore, an optical element having a low Abbe number (ν d ) while having a refractive index (n d ) within a desired range, high transparency to visible light, and being easy to soften and press-mold at a low temperature. Glass, an optical element using the glass, and a precision press-molding preform can be provided.
 以下、本発明の光学ガラスの実施形態について詳細に説明するが、本発明は、以下の実施形態に何ら限定されるものではなく、本発明の目的の範囲内において、適宜変更を加えて実施することができる。なお、説明が重複する箇所については、適宜説明を省略する場合があるが、発明の趣旨を限定するものではない。 Hereinafter, embodiments of the optical glass of the present invention will be described in detail. However, the present invention is not limited to the following embodiments, and may be implemented with appropriate modifications within the scope of the object of the present invention. be able to. In addition, although description may be abbreviate | omitted suitably about the location where description overlaps, the meaning of invention is not limited.
[ガラス成分]
 本発明の光学ガラスを構成する各成分の組成範囲を以下に述べる。本明細書中において、各成分の含有率は特に断りがない場合は、全て酸化物換算組成のガラス全質量に対する質量%で表示されるものとする。ここで、「酸化物換算組成」とは、本発明のガラス構成成分の原料として使用される酸化物、複合塩、金属弗化物等が溶融時に全て分解され酸化物へ変化すると仮定した場合に、当該生成酸化物の総質量を100質量%として、ガラス中に含有される各成分を表記した組成である。
[Glass component]
The composition range of each component constituting the optical glass of the present invention is described below. In the present specification, unless otherwise specified, the content of each component is expressed in mass% with respect to the total mass of the glass in terms of oxide. Here, the “oxide equivalent composition” means that the oxide, composite salt, metal fluoride, etc. used as the raw material of the glass component of the present invention are all decomposed and changed into oxides when melted. It is the composition which described each component contained in glass by making the total mass of the said production | generation oxide into 100 mass%.
<必須成分、任意成分について>
 P成分は、ガラス形成成分であり、ガラスの溶解温度を下げる成分である。特に、P成分の含有率を5.0%以上にすることで、ガラスの可視域における透過率を高めつつ、ガラスの磨耗度を所定以上に上昇し難くすることで、研磨加工による傷の発生を低減できる。一方、P成分の含有率を40.0%以下にすることで、所望の高い屈折率を得つつ、ガラスの磨耗度を所定以上に低下し難くすることで研磨加工の加工効率を高めることができる。従って、酸化物換算組成のガラス全質量に対するP成分の含有率は、好ましくは5.0%、より好ましくは8.0%、最も好ましくは10.0%を下限とし、好ましくは40.0%、より好ましくは35.0%、さらに好ましくは33.0%、最も好ましくは30.0%を上限とする。P成分は、原料として例えばAl(PO、Ca(PO、Ba(PO、BPO、HPO等を用いてガラス内に含有できる。
<About essential and optional components>
The P 2 O 5 component is a glass forming component and is a component that lowers the melting temperature of glass. In particular, by making the content ratio of the P 2 O 5 component 5.0% or more, it is difficult to increase the degree of wear of the glass to a predetermined level or more while increasing the transmittance in the visible region of the glass. The occurrence of scratches can be reduced. On the other hand, by making the content ratio of the P 2 O 5 component 40.0% or less, while obtaining the desired high refractive index, it is difficult to reduce the abrasion degree of the glass beyond a predetermined level, thereby improving the processing efficiency of the polishing process. Can be increased. Therefore, the content of the P 2 O 5 component with respect to the total glass mass of the oxide conversion composition is preferably 5.0%, more preferably 8.0%, and most preferably 10.0%, and preferably 40%. The upper limit is 0.0%, more preferably 35.0%, still more preferably 33.0%, and most preferably 30.0%. The P 2 O 5 component can be contained in the glass using, for example, Al (PO 3 ) 3 , Ca (PO 3 ) 2 , Ba (PO 3 ) 2 , BPO 4 , H 3 PO 4 or the like as a raw material.
 Nb成分は、ガラスの屈折率及び分散を高める成分である。特に、Nb成分の含有率を10.0%以上にすることで、所望の高屈折率及び高分散を得ることができる。一方、Nb成分の含有率を60.0%以下にすることで、ガラスの液相温度の上昇が抑えられることによりガラスの安定性が高められるため、ガラスの耐失透性を高めることができる。従って、酸化物換算組成のガラス全質量に対するNb成分の含有率は、好ましくは10.0%、より好ましくは20.0%、最も好ましくは30.0%を下限とし、好ましくは60.0%、より好ましくは58.0%、さらに好ましくは57.0%、さらに好ましくは56.0%、最も好ましくは55.0%を上限とする。特に第6の光学ガラスでは、上述のNb成分の含有率は、好ましくは60.0%、より好ましくは50.0%、最も好ましくは45.0%を上限とする。Nb成分は、原料として例えばNb等を用いてガラス内に含有できる。 Nb 2 O 5 component is a component for increasing the refractive index and dispersion of the glass. In particular, the desired high refractive index and high dispersion can be obtained by setting the content of the Nb 2 O 5 component to 10.0% or more. On the other hand, when the content of the Nb 2 O 5 component is 60.0% or less, the stability of the glass is increased by suppressing the increase in the liquidus temperature of the glass, and thus the devitrification resistance of the glass is increased. be able to. Therefore, the content of the Nb 2 O 5 component with respect to the total glass mass of the oxide conversion composition is preferably 10.0%, more preferably 20.0%, and most preferably 30.0%, and preferably 60%. The upper limit is 0.0%, more preferably 58.0%, still more preferably 57.0%, still more preferably 56.0%, and most preferably 55.0%. Particularly in the sixth optical glass, the content of the Nb 2 O 5 component is preferably 60.0%, more preferably 50.0%, and most preferably 45.0%. The Nb 2 O 5 component can be contained in the glass using, for example, Nb 2 O 5 as a raw material.
 TiO成分は、ガラスの屈折率及び分散を高める成分であり、且つ、ガラスの化学的耐久性、特に耐洗剤性や耐酸性を高める成分であり、本発明の光学ガラス中の任意成分である。特に、TiO成分の含有率を30.0%以下にすることで、高い屈折率及び分散が得られながらも、ガラスの液相温度の上昇が抑えられることでガラスの安定性が高められるため、ガラスの耐失透性を高めることができる。従って、酸化物換算組成のガラス全質量に対するTiO成分の含有率は、好ましくは30.0%、より好ましくは28.0%、最も好ましくは25.0%、最も好ましくは20.0%を上限とする。ここで、第1及び第2の光学ガラスでは、TiO成分の含有率を12.0%以下にすることで、高い屈折率及び分散を得つつ、ガラスの可視光に対する透明性が特に高めることができる。この場合、上述のTiO成分の含有率は、好ましくは12.0%、より好ましくは11.0%を上限とし、最も好ましくは10.0%未満とする。また、第3の光学ガラスでは、TiO成分の含有率を10.0%未満にすることで、高い屈折率及び分散を得つつ、ガラスの可視光に対する透明性を高めることができる。この場合、上述のTiO成分の含有率は、好ましくは10.0%未満とし、より好ましくは9.8%、最も好ましくは9.5%を上限とする。本発明の光学ガラスでは、特に可視光に対する透明性の高いガラスを得るためにTiO成分の含有率を5.0%未満としてもよい。一方、第5の光学ガラスでは、TiO成分の含有率を10.0%以上にすることで、ガラスの分散をより高めることができる。従って、ガラスの更なる高分散化を図る場合、上述のTiO成分の含有率は、好ましくは10.0%、より好ましくは12.0%、さらに好ましくは13.0%、最も好ましくは14.0%を下限とする。 The TiO 2 component is a component that increases the refractive index and dispersion of the glass, and is a component that increases the chemical durability of the glass, particularly the detergent resistance and acid resistance, and is an optional component in the optical glass of the present invention. . In particular, by setting the content of the TiO 2 component to 30.0% or less, the stability of the glass is enhanced by suppressing an increase in the liquidus temperature of the glass while obtaining a high refractive index and dispersion. The devitrification resistance of the glass can be increased. Accordingly, the content of the TiO 2 component with respect to the total glass mass of the oxide conversion composition is preferably 30.0%, more preferably 28.0%, most preferably 25.0%, and most preferably 20.0%. The upper limit. Here, in the first and second optical glasses, by making the content of the TiO 2 component 12.0% or less, transparency of the glass with respect to visible light is particularly improved while obtaining a high refractive index and dispersion. Can do. In this case, the content of the TiO 2 component is preferably 12.0%, more preferably 11.0%, and most preferably less than 10.0%. In the third optical glass, by the content of TiO 2 component to less than 10.0%, while obtaining a high refractive index and dispersion, it is possible to enhance the transparency to visible light of the glass. In this case, the content of the TiO 2 component is preferably less than 10.0%, more preferably 9.8%, and most preferably 9.5%. In the optical glass of the present invention, the content of the TiO 2 component may be less than 5.0% in order to obtain a highly transparent glass particularly for visible light. On the other hand, in the fifth optical glass, the dispersion of the glass can be further increased by setting the content of the TiO 2 component to 10.0% or more. Therefore, when the glass is further highly dispersed, the content of the TiO 2 component is preferably 10.0%, more preferably 12.0%, still more preferably 13.0%, and most preferably 14%. 0.0% is the lower limit.
 なお、TiO成分は含有しなくとも所望の特性を備えた光学ガラスを得ることができるが、TiO成分を0.1%以上含有することで、ガラスの耐酸性が高められるため、ガラスの加工時における変色を低減することができる。従って、この場合における酸化物換算組成のガラス全物質量に対するTiO成分の含有率は、好ましくは0.1%、より好ましくは1.0%、最も好ましくは2.0%を下限とする。ここで、より高い耐酸性を図る場合、上述のTiO成分の含有率は、好ましくは5.0%、より好ましくは11.0%、最も好ましくは12.0%を下限とする。TiO成分は、原料として例えばTiO等を用いてガラス内に含有できる。 Although TiO 2 component can be obtained an optical glass having desired properties without containing, by containing a TiO 2 component than 0.1%, the acid resistance of the glass is increased, the glass Discoloration during processing can be reduced. Therefore, in this case, the content of the TiO 2 component with respect to the total amount of glass in the oxide-converted composition is preferably 0.1%, more preferably 1.0%, and most preferably 2.0%. Here, when aiming at higher acid resistance, the content of the above-mentioned TiO 2 component is preferably 5.0%, more preferably 11.0%, and most preferably 12.0%. The TiO 2 component can be contained in the glass using, for example, TiO 2 as a raw material.
 BaO成分は、ガラスの屈折率を高める成分であり、且つ、ガラスの液相温度を下げることで耐失透性を高める成分であり、本発明の光学ガラス中の任意成分である。ここで、BaO成分の含有率を30.0%以下にすることで、所望の高屈折率を得易くするとともに、耐失透性の低下を抑えつつ、耐酸性をはじめとした化学的耐久性の低下を抑えることができる。特に、BaO成分の含有率を20.0%以下にすることで、ガラスの平均線膨張係数(α)の増加を抑えることができる。従って、酸化物換算組成のガラス全質量に対するBaO成分の含有率は、好ましくは30.0%、より好ましくは28.0%、さらに好ましくは25.0%、最も好ましくは20.0%を上限とする。このうち、第1及び第2の光学ガラスでは、上述のBaO成分の含有率は、好ましくは20.0%、より好ましくは18.0%、最も好ましくは15.0%を上限とする。また、第3の光学ガラスでは、上述のBaO成分の含有率は、好ましくは20.0%、より好ましくは19.0%、最も好ましくは18.0%を上限とする。 The BaO component is a component that increases the refractive index of glass and is a component that increases devitrification resistance by lowering the liquidus temperature of the glass, and is an optional component in the optical glass of the present invention. Here, by making the content of the BaO component 30.0% or less, it is easy to obtain a desired high refractive index, and while suppressing deterioration in devitrification resistance, chemical durability including acid resistance Can be suppressed. In particular, the increase in the average linear expansion coefficient (α) of the glass can be suppressed by setting the content of the BaO component to 20.0% or less. Therefore, the content of the BaO component with respect to the total glass mass of the oxide conversion composition is preferably 30.0%, more preferably 28.0%, further preferably 25.0%, and most preferably 20.0%. And Of these, in the first and second optical glasses, the content of the BaO component is preferably 20.0%, more preferably 18.0%, and most preferably 15.0%. In the third optical glass, the content of the BaO component is preferably 20.0%, more preferably 19.0%, and most preferably 18.0%.
 ここで、特に分散の大きい(アッベ数の小さい)ガラスが得られる点では、酸化物換算組成のガラス全質量に対するBaO成分の含有率は、好ましくは17.0%未満とし、より好ましくは13.0%を上限とし、最も好ましくは4.5%を上限とする。このうち、第1及び第2の光学ガラスでは、上述のBaO成分の含有率は、好ましくは13.0%を上限とし、より好ましくは10.0%未満とし、最も好ましくは4.5%を上限とする。また、第3の光学ガラスでは、上述のBaO成分の含有率は、好ましくは17.0%未満とし、より好ましくは15.0%未満とし、最も好ましくは13.0%未満とする。また、第5の光学ガラスでは、上述のBaO成分の含有率は、好ましくは15.0%、より好ましくは13.0%を上限とし、最も好ましくは10,0%未満とする。また、第6の光学ガラスでは、上述のBaO成分の含有率は、好ましくは7.0%未満とし、より好ましくは5.0%未満とし、最も好ましくは4,0%未満とする。 Here, in terms of obtaining a glass having particularly large dispersion (small Abbe number), the content of the BaO component with respect to the total glass mass of the oxide conversion composition is preferably less than 17.0%, more preferably 13. The upper limit is 0%, and most preferably the upper limit is 4.5%. Of these, in the first and second optical glasses, the content of the BaO component is preferably 13.0% as an upper limit, more preferably less than 10.0%, and most preferably 4.5%. The upper limit. In the third optical glass, the content of the BaO component is preferably less than 17.0%, more preferably less than 15.0%, and most preferably less than 13.0%. In the fifth optical glass, the content of the BaO component is preferably 15.0%, more preferably 13.0%, and most preferably less than 10,000%. In the sixth optical glass, the content of the BaO component is preferably less than 7.0%, more preferably less than 5.0%, and most preferably less than 4,0%.
 なお、BaO成分は含有しなくとも所望の高分散及び高透過率を有する光学ガラスを得ることは可能であるが、BaO成分を0%より多く含有することで、ガラスの液相温度が低くなるため、耐失透性が高く安定的に生産し易いガラスを得ることができる。従って、耐失透性の高いガラスを得る場合における、酸化物換算組成のガラス全質量に対するBaO成分の含有率は、好ましくは0%より多くし、より好ましくは1,0%、最も好ましくは3.0%を下限とする。このうち、第3の光学ガラスでは、上述のBaO成分の含有率は、好ましくは1.0%、より好ましくは3.0%、最も好ましくは4.5%を下限とする。また、第5の光学ガラスでは、上述のBaO成分の含有率は、好ましくは0%より多くし、より好ましくは1.0%、最も好ましくは2.0%を下限とする。また、第6の光学ガラスでは、上述のBaO成分の含有率は、好ましくは0.1%、より好ましくは0.5%、最も好ましくは1.0%を下限とする。一方で、BaO成分を7.0%より多く含有することで、ガラスの液相温度を低くしつつ、ガラスの耐洗剤性を高めることができる。従って、耐洗剤性の高いガラスを得る場合における、上述のBaO成分の含有率は、好ましくは7.0%、より好ましくは10.0%、最も好ましくは15.0%を下限とする。BaO成分は、原料として例えばBaCO、Ba(NO、BaF等を用いてガラス内に含有できる。 Although it is possible to obtain an optical glass having a desired high dispersion and high transmittance without containing a BaO component, the liquidus temperature of the glass is lowered by containing more than 0% of the BaO component. Therefore, a glass having high devitrification resistance and easy to produce stably can be obtained. Therefore, when obtaining a glass with high devitrification resistance, the content of the BaO component with respect to the total glass mass of the oxide conversion composition is preferably more than 0%, more preferably 1.0%, most preferably 3. 0.0% is the lower limit. Among these, in the third optical glass, the content of the BaO component is preferably 1.0%, more preferably 3.0%, and most preferably 4.5%. In the fifth optical glass, the content of the BaO component is preferably more than 0%, more preferably 1.0%, and most preferably 2.0%. In the sixth optical glass, the content of the BaO component is preferably 0.1%, more preferably 0.5%, and most preferably 1.0%. On the other hand, by containing more than 7.0% of BaO component, it is possible to increase the detergent resistance of the glass while lowering the liquidus temperature of the glass. Therefore, the content of the BaO component in the case of obtaining a glass having high detergent resistance is preferably 7.0%, more preferably 10.0%, and most preferably 15.0%. The BaO component can be contained in the glass using, for example, BaCO 3 , Ba (NO 3 ) 2 , BaF 2 or the like as a raw material.
 SiO成分は、着色を低減して短波長の可視光に対する透過率を高めるとともに、安定なガラス形成を促してガラスの耐失透性を高める成分であり、本発明の光学ガラス中の任意成分である。特に、SiO成分の含有率を10.0%以下にすることで、SiO成分による屈折率の低下が抑えられるため、所望の高屈折率を得易くすることができる。従って、酸化物換算組成のガラス全質量に対するSiO成分の含有率は、好ましくは10.0%、より好ましくは8.0%、さらに好ましくは6.0%、最も好ましくは5.0%を上限とする。ここで、特に分散の大きい(アッベ数の小さい)ガラスが得られ易くなる点では、上述のSiO成分の含有率は、好ましくは2.0%、より好ましくは1.5%、最も好ましくは1.0%を上限とする。 The SiO 2 component is a component that reduces coloring and increases the transmittance for short-wavelength visible light, and promotes stable glass formation to increase the devitrification resistance of the glass, and is an optional component in the optical glass of the present invention. It is. In particular, by setting the content of the SiO 2 component to 10.0% or less, a decrease in the refractive index due to the SiO 2 component can be suppressed, so that a desired high refractive index can be easily obtained. Accordingly, the content of the SiO 2 component with respect to the total glass mass of the oxide conversion composition is preferably 10.0%, more preferably 8.0%, still more preferably 6.0%, and most preferably 5.0%. The upper limit. Here, the content of the above-mentioned SiO 2 component is preferably 2.0%, more preferably 1.5%, and most preferably in that it is easy to obtain a glass having a particularly large dispersion (small Abbe number). The upper limit is 1.0%.
 このように、SiO成分の含有量を低減し、又はSiO成分を含有しなくとも、所望の高分散及び高透過率を有する光学ガラスを得ることは可能である。その一方で、特に第2の光学ガラスでは、SiO成分を2.0%より多く含有することで、ガラスの磨耗度が高められるため、研磨加工による成形を行い易いガラスを得ることができる。従って、この場合における、酸化物換算組成のガラス全質量に対するSiO成分の含有率は、好ましくは2.0%より多くし、より好ましくは3.0%、最も好ましくは4.0%を下限とする。SiO成分は、原料として例えばSiO、KSiF、NaSiF等を用いてガラス内に含有できる。 Thus, to reduce the content of SiO 2 component, or even without containing SiO 2 component, it is possible to obtain an optical glass having a desired high dispersion and high transmittance. On the other hand, particularly in the second optical glass, since the wear level of the glass is increased by containing more than 2.0% of the SiO 2 component, it is possible to obtain a glass that can be easily molded by polishing. Accordingly, in this case, the content of the SiO 2 component with respect to the total glass mass of the oxide conversion composition is preferably more than 2.0%, more preferably 3.0%, and most preferably 4.0%. And SiO 2 component as a raw material such as SiO 2, K 2 SiF 6, Na 2 SiF 6 and the like can contain in the glass by using.
 WO成分は、ガラスの屈折率を上げつつ、ガラスの分散を高める成分であり、本発明の光学ガラス中の任意成分である。特に、WO成分の含有率を20.0%以下にすることで、ガラスの耐失透性を高めつつ、ガラス転移点(Tg)を低くできるとともに、短波長の可視光に対するガラスの透過率の低下を抑えることができる。従って、酸化物換算組成のガラス全質量に対するWO成分の含有率は、好ましくは20.0%、より好ましくは17.0%、さらに好ましくは15.0%、最も好ましくは10.0%を上限とする。ここで特に、所望の高分散を有しつつ低いガラス転移点(Tg)を有するガラスが得られ易くなる点では、WO成分の含有率を10.0%以下にすることが好ましい。従って、この場合における、上述のWO成分の含有率は、好ましくは10.0%、より好ましくは8.0%、さらに好ましくは7.0%、最も好ましくは5.0%を上限とする。 The WO 3 component is a component that increases the dispersion of the glass while increasing the refractive index of the glass, and is an optional component in the optical glass of the present invention. In particular, by making the content of the WO 3 component 20.0% or less, the glass transition point (Tg) can be lowered while improving the devitrification resistance of the glass, and the transmittance of the glass with respect to short-wavelength visible light. Can be suppressed. Therefore, the content of the WO 3 component with respect to the total glass mass of the oxide conversion composition is preferably 20.0%, more preferably 17.0%, still more preferably 15.0%, and most preferably 10.0%. The upper limit. In particular, the content of the WO 3 component is preferably 10.0% or less from the viewpoint that a glass having a desired high dispersion and a low glass transition point (Tg) can be easily obtained. Therefore, in this case, the content of the above-mentioned WO 3 component is preferably 10.0%, more preferably 8.0%, still more preferably 7.0%, and most preferably 5.0%. .
 なお、WO成分は含有しなくとも所望の高分散及び高透過率を有する光学ガラスを得ることは可能であるが、WO成分を0%より多く含有することで、ガラスの分散が高められるため、ガラスの高い分散と可視光に対する透明性とを両立し易くすることができる。従って、この場合における酸化物換算組成のガラス全質量に対するWO成分の含有率は、好ましくは0%より多くし、より好ましくは1.0%、さらに好ましくは3.0%、最も好ましくは4.0%を下限とする。WO成分は、原料として例えばWO等を用いてガラス内に含有できる。 Although WO 3 ingredient is possible to obtain an optical glass having a desired high dispersion and high transmittance even without containing a WO 3 components that contain more than 0%, the dispersion of the glass is enhanced Therefore, it is possible to easily achieve both high dispersion of glass and transparency to visible light. Accordingly, the content of the WO 3 component with respect to the total glass mass of the oxide-converted composition in this case is preferably more than 0%, more preferably 1.0%, even more preferably 3.0%, and most preferably 4. 0.0% is the lower limit. The WO 3 component can be contained in the glass using, for example, WO 3 as a raw material.
 LiO成分は、ガラスの溶解温度及びガラス転移点(Tg)を下げる成分であるとともに、ガラス形成時の耐失透性を高める成分であり、本発明の光学ガラス中の任意成分である。ここで、LiO成分の含有率を20.0%以下にすることで、所望の高屈折率を得易くすることができるとともに、ガラスの液相温度が低くなることでガラスの安定性が高められるため、ガラスへの失透等の発生を低減できる。特に、LiO成分の含有率を10.0%以下にすることで、ガラスの平均線膨張係数(α)の増加を抑えることができる。従って、酸化物換算組成のガラス全質量に対するLiO成分の含有率は、好ましくは20.0%、より好ましくは10.0%、最も好ましくは5.0%を上限とする。特に、第1及び第2の光学ガラスでは、上述のLiO成分の含有率は、好ましくは10.0%、より好ましくは8.0%、最も好ましくは5.0%を上限とする。また、第3及び第4の光学ガラスでは、上述のLiO成分の含有率は、好ましくは20.0%、より好ましくは15.0%、最も好ましくは10.0%を上限とする。また、第5及び第6の光学ガラスでは、上述のLiO成分の含有率は、好ましくは20.0%、より好ましくは18.0%、さらに好ましくは15.0%、最も好ましくは10.0%を上限とする。 The Li 2 O component is a component that lowers the melting temperature and glass transition point (Tg) of glass, and is a component that increases devitrification resistance during glass formation, and is an optional component in the optical glass of the present invention. Here, by making the content rate of the Li 2 O component 20.0% or less, it is possible to easily obtain a desired high refractive index, and the stability of the glass is reduced by lowering the liquidus temperature of the glass. Since it raises, generation | occurrence | production of the devitrification etc. to glass can be reduced. In particular, the increase in the average linear expansion coefficient (α) of the glass can be suppressed by setting the content of the Li 2 O component to 10.0% or less. Therefore, the content of the Li 2 O component with respect to the total glass mass of the oxide-converted composition is preferably 20.0%, more preferably 10.0%, and most preferably 5.0%. In particular, in the first and second optical glasses, the content of the above-described Li 2 O component is preferably 10.0%, more preferably 8.0%, and most preferably 5.0%. In the third and fourth optical glasses, the content of the above Li 2 O component is preferably 20.0%, more preferably 15.0%, and most preferably 10.0%. In the fifth and sixth optical glasses, the content of the Li 2 O component is preferably 20.0%, more preferably 18.0%, still more preferably 15.0%, and most preferably 10%. 0.0% is the upper limit.
 なお、LiO成分は含有しなくとも所望の高分散及び高透過率を有する光学ガラスを得ることは可能であるが、LiO成分を0%より多く含有することで、ガラス転移点(Tg)が低くなるため、高い分散を有しつつ低い温度で軟化し易いガラスを得ることができる。従って、この場合における酸化物換算組成のガラス全質量に対するLiO成分の含有率は、好ましくは0%より多くし、より好ましくは0.3%より多くし、最も好ましくは0.5%を下限とする。LiO成分は、原料として例えばLiCO、LiNO、LiF等を用いてガラス内に含有できる。 Although Li 2 O component is possible to obtain an optical glass having a desired high dispersion and high transmittance even without containing the Li 2 O component that contains more than 0%, the glass transition point ( Since Tg) becomes low, it is possible to obtain a glass that has a high dispersion and is easily softened at a low temperature. Accordingly, the content of the Li 2 O component with respect to the total glass mass of the oxide-converted composition in this case is preferably more than 0%, more preferably more than 0.3%, and most preferably 0.5%. The lower limit. The Li 2 O component can be contained in the glass using, for example, Li 2 CO 3 , LiNO 3 , LiF or the like as a raw material.
 NaO成分は、ガラスの溶解温度及びガラス転移点(Tg)を下げる成分であるとともに、ガラス形成時の耐失透性を高める成分であり、本発明の光学ガラス中の任意成分である。特に、NaO成分の含有率を35.0%以下にすることで、所望の高屈折率を得易くすることができ、ガラスの液相温度が低くなることでガラスの安定性が高められるため、ガラスへの失透等の発生を低減できる。従って、酸化物換算組成のガラス全質量に対するNaO成分の含有率は、好ましくは35.0%、より好ましくは25.0%、最も好ましくは15.0%を上限とする。特に、第1の光学ガラスでは、上述のNaO成分の含有率は、好ましくは15.0%、より好ましくは12.0%、最も好ましくは10.0%を上限とする。また、第2の光学ガラスでは、上述のNaO成分の含有率は、好ましくは15.0%、より好ましくは13.0%、最も好ましくは12.0%を上限とする。また、第3及び第4の光学ガラスでは、上述のNaO成分の含有率は、好ましくは35.0%、より好ましくは30.0%、さらに好ましくは25.0%、最も好ましくは15.0%を上限とする。また、第5及び第6の光学ガラスでは、上述のNaO成分の含有率は、好ましくは35.0%、より好ましくは30.0%、さらに好ましくは25.0%、最も好ましくは20.0%を上限とする。 The Na 2 O component is a component that lowers the melting temperature and glass transition point (Tg) of glass, and is a component that increases devitrification resistance during glass formation, and is an optional component in the optical glass of the present invention. In particular, by setting the content of the Na 2 O component to 35.0% or less, it is possible to easily obtain a desired high refractive index, and the stability of the glass is enhanced by lowering the liquidus temperature of the glass. Therefore, generation | occurrence | production of devitrification etc. to glass can be reduced. Therefore, the content of the Na 2 O component with respect to the total glass mass of the oxide conversion composition is preferably 35.0%, more preferably 25.0%, and most preferably 15.0%. In particular, in the first optical glass, the content of Na 2 O component described above, preferably 15.0% is more preferably 12.0%, most preferably up to 10.0%. In the second optical glass, the content of the Na 2 O component is preferably 15.0%, more preferably 13.0%, and most preferably 12.0%. In the third and fourth optical glasses, the content of the Na 2 O component is preferably 35.0%, more preferably 30.0%, further preferably 25.0%, and most preferably 15%. 0.0% is the upper limit. In the fifth and sixth optical glasses, the content of the Na 2 O component is preferably 35.0%, more preferably 30.0%, still more preferably 25.0%, and most preferably 20. 0.0% is the upper limit.
 なお、NaO成分は含有しなくとも所望の特性を備えた光学ガラスを得ることができるが、NaO成分を0.1%以上含有することで、ガラスの液相温度が高められるため、ガラスの耐失透性をより高めることができる。従って、この場合における酸化物換算組成のガラス全物質量に対するNaO成分の含有率は、好ましくは0.1%、より好ましくは0.5%、さらに好ましくは1.0%、最も好ましくは2.0%を下限とする。NaO成分は、原料として例えばNaCO、NaNO、NaF、NaSiF等を用いてガラス内に含有できる。 Incidentally, Na 2 O but component it is possible to obtain an optical glass having desired properties without containing, by containing a Na 2 O component 0.1%, the liquidus temperature of the glass is increased Further, the devitrification resistance of the glass can be further increased. Therefore, in this case, the content of the Na 2 O component with respect to the total amount of glass in the oxide conversion composition is preferably 0.1%, more preferably 0.5%, still more preferably 1.0%, most preferably 2.0% is the lower limit. The Na 2 O component can be contained in the glass using, for example, Na 2 CO 3 , NaNO 3 , NaF, Na 2 SiF 6 or the like as a raw material.
 KO成分は、ガラスの溶解温度及びガラス転移点(Tg)を下げる成分であるとともに、ガラス形成時の耐失透性を高める成分であり、本発明の光学ガラス中の任意成分である。特に、KO成分の含有率を20.0%以下にすることで、所望の高屈折率を得易くすることができ、ガラスの液相温度が低くなることでガラスの安定性が高められるため、ガラスへの失透等の発生を低減できる。従って、酸化物換算組成のガラス全質量に対するKO成分の含有率は、好ましくは20.0%、より好ましくは15.0%を上限とし、最も好ましくは10.0%未満とする。特に、第1及び第2の光学ガラスでは、上述のKO成分の含有率は、好ましくは10.0%未満とし、より好ましくは8.0%、さらに好ましくは6.0%、最も好ましくは5.0%を上限とする。また、第3及び第4の光学ガラスでは、上述のKO成分の含有率は、好ましくは20.0%、より好ましくは15.0%、さらに好ましくは12.0%、最も好ましくは10.0%を上限とする。また、第5及び第6の光学ガラスでは、上述のKO成分の含有率は、好ましくは20.0%、より好ましくは15.0%、最も好ましくは10.0%を上限とする。 The K 2 O component is a component that lowers the melting temperature and glass transition point (Tg) of the glass, and is a component that increases devitrification resistance during glass formation, and is an optional component in the optical glass of the present invention. In particular, by setting the content of the K 2 O component to 20.0% or less, it is possible to easily obtain a desired high refractive index, and the stability of the glass is enhanced by lowering the liquidus temperature of the glass. Therefore, generation | occurrence | production of the devitrification etc. to glass can be reduced. Accordingly, the content of the K 2 O component with respect to the total glass mass of the oxide conversion composition is preferably 20.0%, more preferably 15.0%, and most preferably less than 10.0%. In particular, in the first and second optical glasses, the content of the above K 2 O component is preferably less than 10.0%, more preferably 8.0%, even more preferably 6.0%, and most preferably. The upper limit is 5.0%. In the third and fourth optical glasses, the content of the K 2 O component is preferably 20.0%, more preferably 15.0%, still more preferably 12.0%, and most preferably 10%. 0.0% is the upper limit. In the fifth and sixth optical glasses, the K 2 O component content is preferably 20.0%, more preferably 15.0%, and most preferably 10.0%.
 なお、KO成分は含有しなくとも所望の特性を備えた光学ガラスを得ることができるが、KO成分を0.1%以上含有することで、ガラスの液相温度が高められるため、ガラスの耐失透性をより高めることができる。従って、この場合における酸化物換算組成のガラス全物質量に対するKO成分の含有率は、好ましくは0.1%、より好ましくは0.15%、さらに好ましくは0.2%、さらに好ましくは0.5%、最も好ましくは1.0%を下限とする。KO成分は、原料として例えばKCO、KNO、KF、KHF、KSiF等を用いてガラス内に含有できる。 Although K 2 O component may be obtained an optical glass having desired properties without containing, by containing K 2 O ingredient 0.1%, the liquidus temperature of the glass is increased Further, the devitrification resistance of the glass can be further increased. Accordingly, in this case, the content of the K 2 O component with respect to the total amount of glass in the oxide conversion composition is preferably 0.1%, more preferably 0.15%, still more preferably 0.2%, and even more preferably. The lower limit is 0.5%, most preferably 1.0%. The K 2 O component can be contained in the glass using, for example, K 2 CO 3 , KNO 3 , KF, KHF 2 , K 2 SiF 6 or the like as a raw material.
 ここで、第6の光学ガラスは、LiO成分、NaO成分、及びKO成分の少なくともいずれかを必須成分として含有することが好ましい。これにより、光学ガラスのガラス転移点(Tg)が低くなるため、プレス成形における成形温度を下げることができ、プレス成形を行った後における表面の凹凸や曇りを、より一層低減できる。また、光学ガラスの耐失透性が高められるため、所望の光学特性を有する光学ガラスをより安定的に作製できる。 Here, the optical glass of the sixth preferably contains as essential components at least one of Li 2 O component, Na 2 O component, and K 2 O component. Thereby, since the glass transition point (Tg) of optical glass becomes low, the shaping | molding temperature in press molding can be lowered | hung, and the unevenness | corrugation and cloudiness of the surface after performing press molding can be reduced further. Moreover, since the devitrification resistance of the optical glass is enhanced, an optical glass having desired optical characteristics can be more stably produced.
 本発明の光学ガラスでは、RnO成分(式中、RnはLi、Na、Kからなる群より選択される1種以上)の含有率の質量和が、35.0%以下であることが好ましい。これにより、ガラスの屈折率の低下が抑えられるため、所望の高屈折率を得易くすることができる。また、ガラスの液相温度が低くなることでガラスの安定性が高められるため、ガラスの耐失透性を高めることができる。従って、酸化物換算組成のガラス全質量に対するRnO成分の含有率の質量和は、好ましくは35.0%、より好ましくは25.0%、最も好ましくは15.0%を上限とする。特に、第1及び第2の光学ガラスでは、上述の質量和は、好ましくは15.0%、より好ましくは13.0%、最も好ましくは12.0%を上限とする。このうち、第3の光学ガラスでは、この質量和は、好ましくは35.0%、より好ましくは32.0%、最も好ましくは30.0%を上限とする。また、第4の光学ガラスでは、この質量和は、好ましくは35.0%、より好ましくは25.0%、最も好ましくは20.0%を上限とする。また、第5及び第6の光学ガラスでは、この質量和は、好ましくは35.0%、より好ましくは30.0%、最も好ましくは25.0%を上限とする。 In the optical glass of the present invention, the mass sum of the contents of the Rn 2 O component (wherein Rn is one or more selected from the group consisting of Li, Na, and K) is 35.0% or less. preferable. Thereby, since the fall of the refractive index of glass is suppressed, it can make it easy to obtain a desired high refractive index. Moreover, since stability of glass is improved because the liquidus temperature of glass becomes low, devitrification resistance of glass can be improved. Therefore, the mass sum of the content ratio of the Rn 2 O component with respect to the total glass mass of the oxide conversion composition is preferably 35.0%, more preferably 25.0%, and most preferably 15.0%. In particular, in the first and second optical glasses, the above-mentioned mass sum is preferably 15.0%, more preferably 13.0%, and most preferably 12.0%. Of these, in the third optical glass, the upper limit of this mass sum is preferably 35.0%, more preferably 32.0%, and most preferably 30.0%. In the fourth optical glass, the upper limit of this mass sum is preferably 35.0%, more preferably 25.0%, and most preferably 20.0%. In the fifth and sixth optical glasses, this mass sum is preferably 35.0%, more preferably 30.0%, and most preferably 25.0%.
 なお、RnO成分はいずれも含有しなくとも所望の特性を備えた光学ガラスを得ることができるが、RnO成分の少なくともいずれかを0.1%以上含有することで、ガラスの液相温度が高められるため、ガラスの耐失透性をより高めることができる。従って、この場合における酸化物換算組成のガラス全物質量に対するRnO成分の含有率の質量和は、好ましくは0.1%、より好ましくは1.0%、さらに好ましくは2.0%、最も好ましくは3.0%を下限とする。 An optical glass having desired characteristics can be obtained without containing any Rn 2 O component. However, by containing at least one of the Rn 2 O components in an amount of 0.1% or more, a glass liquid can be obtained. Since the phase temperature is increased, the devitrification resistance of the glass can be further increased. Therefore, in this case, the mass sum of the content ratio of the Rn 2 O component with respect to the total amount of glass in the oxide conversion composition is preferably 0.1%, more preferably 1.0%, still more preferably 2.0%, Most preferably, the lower limit is 3.0%.
 また、RnO成分の含有率の質量和が5.0%以上であることにより、ガラスの高分散化を図りつつ、ガラス転移点(Tg)を下げることができ、且つ、ガラスの耐水性及び耐洗剤性を高めることができる。従って、酸化物換算組成のガラス全質量に対するRnO成分の含有率の質量和は、好ましくは5.0%、より好ましくは8.0%、最も好ましくは10.0%を下限とする。このうち、第3の光学ガラスでは、この質量和は、好ましくは7.0%より多くし、より好ましくは9.0%、最も好ましくは10.0%を下限とする。また、第4の光学ガラスでは、この質量和は、好ましくは8.0%より多くし、より好ましくは9.0%より多くし、最も好ましくは10.0%より多くする。また、第5の光学ガラスでは、この質量和は、好ましくは5.0%、より好ましくは6.0%、最も好ましくは7.0%を下限とする。また、第6の光学ガラスでは、この質量和は、好ましくは5.0%、より好ましくは8.0%、最も好ましくは10.0%を下限とする。 Further, when the mass sum of the content of the Rn 2 O component is 5.0% or more, the glass transition point (Tg) can be lowered while achieving high dispersion of the glass, and the water resistance of the glass is increased. And the detergent resistance can be increased. Therefore, the mass sum of the content ratio of the Rn 2 O component with respect to the total glass mass of the oxide conversion composition is preferably 5.0%, more preferably 8.0%, and most preferably 10.0%. Of these, in the third optical glass, this mass sum is preferably more than 7.0%, more preferably 9.0%, and most preferably 10.0%. In the fourth optical glass, this mass sum is preferably more than 8.0%, more preferably more than 9.0%, and most preferably more than 10.0%. In the fifth optical glass, this mass sum is preferably 5.0%, more preferably 6.0%, and most preferably 7.0%. In the sixth optical glass, this mass sum is preferably 5.0%, more preferably 8.0%, and most preferably 10.0%.
 特に、本発明の第4の光学ガラスでは、酸化物換算組成のガラス全質量に対して、質量%でBaO成分を15.0%以上含有し、且つRnO成分を合計で10.0%より多く含有することが特に好ましい。これにより、ガラスの耐洗剤性が特に高められるため、ガラスと研磨液や洗浄液とが接触してもガラスへの曇りの発生を低減できる。 In particular, in the fourth optical glass of the present invention, the BaO component is contained at 15.0% or more by mass% with respect to the total glass mass of the oxide conversion composition, and the Rn 2 O component is 10.0% in total. It is particularly preferable to contain more. As a result, the detergent resistance of the glass is particularly enhanced, so that the occurrence of fogging on the glass can be reduced even when the glass is in contact with the polishing liquid or cleaning liquid.
 本発明の光学ガラスでは、LiO成分、NaO成分、及びKO成分のうち2種以上の成分を含有することが好ましい。これにより、光学ガラスのガラス転移点(Tg)が低くなり、プレス成形における成形温度を下げ、プレス成形を行った後における表面の凹凸や曇りを、より一層低減できる。また、光学ガラスの耐失透性が高められるため、所望の光学特性を有する光学ガラスをより安定的に作製できる。 In the optical glass of the present invention preferably contains two or more components of the Li 2 O component, Na 2 O component, and K 2 O component. Thereby, the glass transition point (Tg) of the optical glass is lowered, the molding temperature in press molding is lowered, and surface irregularities and fogging after the press molding can be further reduced. Moreover, since the devitrification resistance of the optical glass is enhanced, an optical glass having desired optical characteristics can be more stably produced.
 MgO成分は、ガラスの液相温度を下げ、ガラスの耐失透性を高める成分であり、本発明の光学ガラス中の任意成分である。特に、MgO成分の含有率を5.0%以下にすることで、所望の高屈折率及び高分散を得易くすることができる。従って、酸化物換算組成のガラス全質量に対するMgO成分の含有率は、好ましくは5.0%、より好ましくは4.0%、最も好ましくは3.0%を上限とする。MgO成分は、原料として例えばMgCO、MgF等を用いてガラス内に含有できる。 The MgO component is a component that lowers the liquidus temperature of the glass and increases the devitrification resistance of the glass, and is an optional component in the optical glass of the present invention. In particular, when the content of the MgO component is 5.0% or less, a desired high refractive index and high dispersion can be easily obtained. Therefore, the content of the MgO component with respect to the total glass mass of the oxide-converted composition is preferably 5.0%, more preferably 4.0%, and most preferably 3.0%. The MgO component can be contained in the glass using, for example, MgCO 3 or MgF 2 as a raw material.
 CaO成分は、ガラスの液相温度を下げ、ガラスの耐失透性を高める成分であり、本発明の光学ガラス中の任意成分である。特に、CaO成分の含有率を10.0%以下にすることで、所望の高屈折率及び高分散を得易くし、耐失透性や化学的耐久性の低下を抑えることができる。従って、酸化物換算組成のガラス全質量に対するCaO成分の含有率は、好ましくは10.0%、より好ましくは8.0%、さらに好ましくは6.0%、最も好ましくは5.0%を上限とする。CaO成分は、原料として例えばCaCO、CaF等を用いてガラス内に含有できる。 The CaO component is a component that lowers the liquidus temperature of the glass and increases the devitrification resistance of the glass, and is an optional component in the optical glass of the present invention. In particular, by setting the content of the CaO component to 10.0% or less, it is possible to easily obtain a desired high refractive index and high dispersion, and it is possible to suppress a decrease in devitrification resistance and chemical durability. Therefore, the upper limit of the CaO component content with respect to the total glass mass of the oxide conversion composition is preferably 10.0%, more preferably 8.0%, still more preferably 6.0%, and most preferably 5.0%. And The CaO component can be contained in the glass using, for example, CaCO 3 , CaF 2 or the like as a raw material.
 SrO成分は、ガラスの液相温度を下げ、ガラスの耐失透性を高める成分であり、ガラス中の任意成分である。特に、SrO成分の含有率を10.0%以下にすることで、所望の高屈折率及び高分散を得易くし、耐失透性や化学的耐久性の低下を抑えることができる。従って、酸化物換算組成のガラス全質量に対するSrO成分の含有率は、好ましくは10.0%、より好ましくは8.0%、最も好ましくは5.0%を上限とする。SrO成分は、原料として例えばSr(NO、SrF等を用いてガラス内に含有できる。 The SrO component is a component that lowers the liquidus temperature of the glass and increases the devitrification resistance of the glass, and is an optional component in the glass. In particular, by setting the content of the SrO component to 10.0% or less, it is possible to easily obtain a desired high refractive index and high dispersion, and it is possible to suppress a decrease in devitrification resistance and chemical durability. Therefore, the content of the SrO component with respect to the total glass mass of the oxide conversion composition is preferably 10.0%, more preferably 8.0%, and most preferably 5.0%. The SrO component can be contained in the glass using, for example, Sr (NO 3 ) 2 , SrF 2 or the like as a raw material.
 本発明の光学ガラスでは、RO成分(式中、RはMg、Ca、Sr、Baからなる群より選択される1種以上)の含有率の質量和が、30.0%以下であることが好ましい。これにより、RO成分による屈折率及び分散の低下が抑えられるため、所望の高屈折率及び高分散を得易くすることができる。従って、酸化物換算組成のガラス全質量に対するRO成分の含有率の質量和は、好ましくは30.0%、より好ましくは20.0%、最も好ましくは10.0%を上限とする。特に、第1及び第2の光学ガラスでは、この質量和は、好ましくは20.0%、より好ましくは17.0%、より好ましくは15.0%、最も好ましくは10.0%を上限とする。また、第3及び第4の光学ガラスでは、この質量和は、好ましくは30.0%、より好ましくは28.0%、さらに好ましくは27.0%、最も好ましくは25.0%を上限とする。また、第5及び第6の光学ガラスでは、この質量和は、好ましくは30.0%、より好ましくは25.0%、最も好ましくは20.0%を上限とする。 In the optical glass of the present invention, the mass sum of the content ratio of the RO component (wherein R is one or more selected from the group consisting of Mg, Ca, Sr, and Ba) is 30.0% or less. preferable. Thereby, since the fall of the refractive index and dispersion | distribution by RO component is suppressed, it can make it easy to obtain desired high refractive index and high dispersion | distribution. Therefore, the upper limit of the mass sum of the content rate of the RO component with respect to the total glass mass of the oxide conversion composition is preferably 30.0%, more preferably 20.0%, and most preferably 10.0%. In particular, in the first and second optical glasses, this mass sum is preferably 20.0%, more preferably 17.0%, more preferably 15.0%, and most preferably 10.0%. To do. In the third and fourth optical glasses, this mass sum is preferably 30.0%, more preferably 28.0%, still more preferably 27.0%, and most preferably 25.0%. To do. In the fifth and sixth optical glasses, the upper limit of this mass sum is preferably 30.0%, more preferably 25.0%, and most preferably 20.0%.
 なお、RO成分はいずれも含有しなくとも所望の特性を備えた光学ガラスを得ることができるが、RO成分の少なくともいずれかを0.1%以上含有することで、ガラスの液相温度が高められるため、ガラスの耐失透性をより高めることができる。従って、この場合における酸化物換算組成のガラス全物質量に対するRO成分の含有率の質量和は、好ましくは0.1%、より好ましくは0.5%、さらに好ましくは1.0%、最も好ましくは3.0%を下限とする。 An optical glass having desired characteristics can be obtained without containing any RO component, but the liquid phase temperature of the glass is increased by containing at least one of the RO components by 0.1% or more. Therefore, the devitrification resistance of the glass can be further increased. Therefore, in this case, the mass sum of the content ratio of the RO component with respect to the total glass substance amount of the oxide conversion composition is preferably 0.1%, more preferably 0.5%, still more preferably 1.0%, and most preferably. Has a lower limit of 3.0%.
 Y成分は、ガラスの屈折率を高めるとともに、ガラスの化学的耐久性を向上する成分であり、本発明の光学ガラス中の任意成分である。特に、Y成分の含有率を10.0%以下にすることで、所望の高分散を得易くすることができ、ガラスの耐失透性を高めることができる。従って、酸化物換算組成のガラス全質量に対するY成分の含有率は、好ましくは10.0%、より好ましくは8.0%、最も好ましくは5.0%を上限とする。Y成分は、原料として例えばY、YF等を用いてガラス内に含有できる。 The Y 2 O 3 component is a component that increases the refractive index of the glass and improves the chemical durability of the glass, and is an optional component in the optical glass of the present invention. In particular, by making the content of the Y 2 O 3 component 10.0% or less, desired high dispersion can be easily obtained, and the devitrification resistance of the glass can be improved. Therefore, the content of the Y 2 O 3 component with respect to the total glass mass of the oxide conversion composition is preferably 10.0%, more preferably 8.0%, and most preferably 5.0%. The Y 2 O 3 component can be contained in the glass using, for example, Y 2 O 3 , YF 3 or the like as a raw material.
 La成分は、ガラスの屈折率を高めるとともに、ガラスの化学的耐久性を向上する成分であり、本発明の光学ガラス中の任意成分である。特に、La成分の含有率を10.0%以下にすることで、所望の高分散を得易くすることができ、ガラスの耐失透性を高めることができる。従って、酸化物換算組成のガラス全質量に対するLa成分の含有率は、好ましくは10.0%、より好ましくは8.0%、最も好ましくは5.0%を上限とする。La成分は、原料として例えばLa、La(NO・XHO(Xは任意の整数)等を用いてガラス内に含有できる。 The La 2 O 3 component is a component that increases the refractive index of the glass and improves the chemical durability of the glass, and is an optional component in the optical glass of the present invention. In particular, by making the content of the La 2 O 3 component 10.0% or less, desired high dispersion can be easily obtained, and the devitrification resistance of the glass can be improved. Therefore, the content of the La 2 O 3 component with respect to the total glass mass of the oxide conversion composition is preferably 10.0%, more preferably 8.0%, and most preferably 5.0%. The La 2 O 3 component can be contained in the glass using, for example, La 2 O 3 , La (NO 3 ) 3 .XH 2 O (X is an arbitrary integer) or the like as a raw material.
 Gd成分は、ガラスの屈折率を高めるとともに、ガラスの化学的耐久性を向上する成分であり、本発明の光学ガラス中の任意成分である。特に、Gd成分の含有率を10.0%以下にすることで、所望の高分散を得易くすることができ、ガラスの耐失透性を高めることができる。従って、酸化物換算組成のガラス全質量に対するGd成分の含有率は、好ましくは10.0%、より好ましくは8.0%、最も好ましくは5.0%を上限とする。Gd成分は、原料として例えばGd、GdF等を用いてガラス内に含有できる。 The Gd 2 O 3 component is a component that increases the refractive index of the glass and improves the chemical durability of the glass, and is an optional component in the optical glass of the present invention. In particular, when the content of the Gd 2 O 3 component is 10.0% or less, desired high dispersion can be easily obtained, and the devitrification resistance of the glass can be improved. Therefore, the content of the Gd 2 O 3 component with respect to the total glass mass of the oxide conversion composition is preferably 10.0%, more preferably 8.0%, and most preferably 5.0%. The Gd 2 O 3 component can be contained in the glass using, for example, Gd 2 O 3 , GdF 3 or the like as a raw material.
 本発明の光学ガラスでは、Ln成分(式中、LnはY、La、Gdからなる群より選択される1種以上)の含有率の質量和が、20.0%以下であることが好ましい。この質量和を20.0%以下にすることで、Ln成分によるアッベ数の上昇が抑えられるため、所望の高分散を得易くすることができる。従って、酸化物換算組成のガラス全質量に対するLn成分の含有率の質量和は、好ましくは20.0%、より好ましくは18.0%、最も好ましくは15.0%を上限とする。 In the optical glass of the present invention, the mass sum of the contents of the Ln 2 O 3 component (wherein Ln is one or more selected from the group consisting of Y, La, and Gd) is 20.0% or less. Is preferred. By making this mass sum 20.0% or less, an increase in the Abbe number due to the Ln 2 O 3 component can be suppressed, so that desired high dispersion can be easily obtained. Therefore, the mass sum of the content ratio of the Ln 2 O 3 component with respect to the total glass mass of the oxide conversion composition is preferably 20.0%, more preferably 18.0%, and most preferably 15.0%. .
 B成分は、安定なガラスの形成を促し、耐失透性を高める成分であり、本発明の光学ガラス中の任意成分である。特に、B成分の含有率を10.0%以下にすることで、B成分による屈折率の低下が抑えられるため、所望の高屈折率を得易くすることができる。また、これにより、ガラスの平均線膨張係数(α)の増加を抑制できる。従って、酸化物換算組成のガラス全質量に対するB成分の含有率は、好ましくは10.0%、より好ましくは8.0%、さらに好ましくは6.0%、最も好ましくは5.0%を上限とする。なお、B成分は含有しなくとも所望の特性を備えた光学ガラスを得ることができるが、B成分を0.1%以上含有することで、ガラスの液相温度が高められるため、ガラスの耐失透性をより高めることができる。従って、この場合における酸化物換算組成のガラス全物質量に対するB成分の含有率は、好ましくは0.1%、より好ましくは0.2%、さらに好ましくは0.3%、最も好ましくは0.5%を下限とする。B成分は、原料として例えばHBO、Na、Na・10HO、BPO等を用いてガラス内に含有できる。 The B 2 O 3 component is a component that promotes formation of a stable glass and increases devitrification resistance, and is an optional component in the optical glass of the present invention. In particular, by setting the content of the B 2 O 3 component to 10.0% or less, a decrease in the refractive index due to the B 2 O 3 component can be suppressed, so that a desired high refractive index can be easily obtained. Thereby, the increase in the average linear expansion coefficient (α) of the glass can be suppressed. Therefore, the content ratio of the B 2 O 3 component with respect to the total glass mass of the oxide conversion composition is preferably 10.0%, more preferably 8.0%, still more preferably 6.0%, and most preferably 5.0. % Is the upper limit. Although B 2 O 3 component can be obtained an optical glass having desired properties without containing, by containing B 2 O 3 component of 0.1% or more, the liquidus temperature of the glass is increased Therefore, the devitrification resistance of the glass can be further increased. Therefore, in this case, the content of the B 2 O 3 component with respect to the total amount of glass in the oxide-converted composition is preferably 0.1%, more preferably 0.2%, still more preferably 0.3%, and most preferably Has a lower limit of 0.5%. The B 2 O 3 component can be contained in the glass using, for example, H 3 BO 3 , Na 2 B 4 O 7 , Na 2 B 4 O 7 · 10H 2 O, BPO 4 or the like as a raw material.
 GeO成分は、ガラスの屈折率を高めるとともに、安定なガラス形成を促してガラスの耐失透性を高める成分であり、本発明の光学ガラス中の任意成分である。特に、GeO成分の含有率を10.0%以下にすることで、ガラスの材料コストを低減できる。従って、酸化物換算組成のガラス全質量に対するGeO成分の含有率は、好ましくは10.0%、より好ましくは8.0%、最も好ましくは5.0%を上限とする。GeO成分は、原料として例えばGeO等を用いてガラス内に含有できる。 The GeO 2 component is a component that increases the refractive index of the glass and promotes stable glass formation to increase the devitrification resistance of the glass, and is an optional component in the optical glass of the present invention. In particular, by setting the content of the GeO 2 component is 10.0% or less, can reduce material costs of the glass. Therefore, the content of the GeO 2 component with respect to the total glass mass of the oxide conversion composition is preferably 10.0%, more preferably 8.0%, and most preferably 5.0%. The GeO 2 component can be contained in the glass using, for example, GeO 2 as a raw material.
 Bi成分は、ガラスの屈折率を上げ、ガラスの分散を高める成分であり、本発明の光学ガラス中の任意成分である。特に、Bi成分の含有率を20.0%以下にすることで、ガラスの安定性を高めて耐失透性の低下を抑えることができ、ガラスの透過率の低下を抑えることができる。従って、酸化物換算組成のガラス全質量に対するBi成分の含有率は、好ましくは20.0%、より好ましくは15.0%を上限とし、さらに好ましくは10.0%未満とし、最も好ましくは5.0%未満とする。 Bi 2 O 3 component, increasing the refractive index of the glass, or to enhance the dispersion of the glass, an optional component of the optical glass of the present invention. In particular, by making the content of the Bi 2 O 3 component 20.0% or less, it is possible to increase the stability of the glass and suppress a decrease in devitrification resistance, and to suppress a decrease in the transmittance of the glass. it can. Therefore, the content of the Bi 2 O 3 component with respect to the total glass mass of the oxide-converted composition is preferably 20.0%, more preferably 15.0%, and even more preferably less than 10.0%. Preferably it is less than 5.0%.
 ZrO成分は、着色を低減して短波長の可視光に対する透過率を高めるとともに、安定なガラス形成を促してガラスの耐失透性を高める成分であり、本発明の光学ガラス中の任意成分である。特に、ZrO成分の含有率を10.0%以下にすることで、ZrO成分による屈折率の低下が抑えられるため、所望の高屈折率を得易くすることができる。従って、酸化物換算組成のガラス全質量に対するZrO成分の含有率は、好ましくは10.0%、より好ましくは8.0%、最も好ましくは5.0%を上限とする。ZrO成分は、原料として例えばZrO、ZrF等を用いてガラス内に含有できる。 The ZrO 2 component is a component that reduces coloration and increases the transmittance for visible light with a short wavelength, and promotes stable glass formation to increase the devitrification resistance of the glass. The optional component in the optical glass of the present invention It is. In particular, by making the content of the ZrO 2 component 10.0% or less, a decrease in the refractive index due to the ZrO 2 component can be suppressed, so that a desired high refractive index can be easily obtained. Therefore, the content of the ZrO 2 component with respect to the total glass mass of the oxide conversion composition is preferably 10.0%, more preferably 8.0%, and most preferably 5.0%. The ZrO 2 component can be contained in the glass using, for example, ZrO 2 , ZrF 4 or the like as a raw material.
 ZnO成分は、ガラスの液相温度を下げ、ガラスの耐失透性を高める成分であり、本発明の光学ガラス中の任意成分である。特に、ZnO成分の含有率を10.0%以下にすることで、所望の高屈折率及び高分散を得易くすることができる。従って、酸化物換算組成のガラス全質量に対するZnO成分の含有率は、好ましくは10.0%、より好ましくは8.0%、最も好ましくは5.0%を上限とする。ZnO成分は、原料として例えばZnO、ZnF等を用いてガラス内に含有できる。 The ZnO component is a component that lowers the liquidus temperature of the glass and increases the devitrification resistance of the glass, and is an optional component in the optical glass of the present invention. In particular, the desired high refractive index and high dispersion can be easily obtained by setting the content of the ZnO component to 10.0% or less. Therefore, the content of the ZnO component with respect to the total glass mass of the oxide-converted composition is preferably 10.0%, more preferably 8.0%, and most preferably 5.0%. The ZnO component can be contained in the glass using, for example, ZnO, ZnF 2 or the like as a raw material.
 Al成分は、ガラスの化学的耐久性を向上し、ガラス溶融時の粘度を高める成分であり、本発明の光学ガラス中の任意成分である。特に、Al成分の含有率を10.0%以下にすることで、ガラスの溶融性を高めつつ、ガラスの失透傾向を弱めることができる。また、平均線膨張係数(α)の増加を抑えることができる。従って、酸化物換算組成のガラス全質量に対するAl成分の含有率は、好ましくは10.0%、より好ましくは8.0%、最も好ましくは5.0%を上限とする。Al成分は、原料として例えばAl、Al(OH)、AlF等を用いてガラス内に含有できる。 The Al 2 O 3 component is a component that improves the chemical durability of the glass and increases the viscosity when the glass is melted, and is an optional component in the optical glass of the present invention. In particular, by making the content of the Al 2 O 3 component 10.0% or less, it is possible to weaken the devitrification tendency of the glass while improving the meltability of the glass. In addition, an increase in the average linear expansion coefficient (α) can be suppressed. Therefore, the content of the Al 2 O 3 component with respect to the total glass mass of the oxide-converted composition is preferably 10.0%, more preferably 8.0%, and most preferably 5.0%. The Al 2 O 3 component can be contained in the glass using, for example, Al 2 O 3 , Al (OH) 3 , AlF 3 or the like as a raw material.
 Ta成分は、ガラスの屈折率を高める成分であり、本発明の光学ガラス中の任意成分である。特に、Ta成分の含有率を10.0%以下にすることで、ガラスを失透し難くすることができる。従って、酸化物換算組成のガラス全質量に対するTa成分の含有率は、好ましくは10.0%、より好ましくは8.0%、最も好ましくは4.0%を上限とする。Ta成分は、原料として例えばTa等を用いてガラス内に含有できる。 Ta 2 O 5 component is a component that raises the refractive index of the glass, an optional component of the optical glass of the present invention. In particular, by making the content of the Ta 2 O 5 component 10.0% or less, the glass can be made hard to devitrify. Therefore, the content of the Ta 2 O 5 component with respect to the total glass mass of the oxide conversion composition is preferably 10.0%, more preferably 8.0%, and most preferably 4.0%. The Ta 2 O 5 component can be contained in the glass using, for example, Ta 2 O 5 as a raw material.
 Sb成分は、短波長の可視光に対するガラスの透過率を高める成分であるとともに、ガラスを溶融する際に脱泡効果を有する成分である。特に、Sb成分の含有量を1.0%以下にすることで、Sb成分が溶解設備(特にPt等の貴金属)と合金化し難くなり、金型に付着する不純物が低減されるため、ガラス成形体の表面への凹凸や曇りの形成を低減できる。従って、酸化物基準の全質量に対するSb成分の含有量は、好ましくは1.0%、より好ましくは0.8%、最も好ましくは0.5%を上限とする。Sb成分は、原料として例えばSb、Sb、NaSb・5HO等を用いてガラス内に含有することができる。 The Sb 2 O 3 component is a component that increases the transmittance of the glass with respect to visible light having a short wavelength and has a defoaming effect when the glass is melted. In particular, by making the content of the Sb 2 O 3 component 1.0% or less, it becomes difficult for the Sb 2 O 3 component to be alloyed with the melting equipment (especially noble metals such as Pt), and the impurities attached to the mold are reduced. Therefore, the formation of irregularities and cloudiness on the surface of the glass molded body can be reduced. Therefore, the upper limit of the content of the Sb 2 O 3 component with respect to the total mass of the oxide is preferably 1.0%, more preferably 0.8%, and most preferably 0.5%. The Sb 2 O 3 component can be contained in the glass using, for example, Sb 2 O 3 , Sb 2 O 5 , Na 2 H 2 Sb 2 O 7 · 5H 2 O, or the like as a raw material.
 なお、ガラスを清澄し脱泡する成分は、上記のSb成分に限定されるものではなく、ガラス製造の分野における公知の清澄剤、脱泡剤或いはそれらの組み合わせを用いることができる。 Incidentally, components defoamed fining glass is not limited to the above Sb 2 O 3 component, a known refining agents in the field of glass production, it is possible to use a defoamer or a combination thereof.
<含有すべきでない成分について>
 次に、本発明の光学ガラスに含有すべきでない成分、及び含有することが好ましくない成分について説明する。
<About ingredients that should not be included>
Next, components that should not be contained in the optical glass of the present invention and components that are not preferably contained will be described.
 本発明の光学ガラスには、他の成分を本願発明のガラスの特性を損なわない範囲で必要に応じ、添加できる。 Other components can be added to the optical glass of the present invention as necessary within a range not impairing the properties of the glass of the present invention.
 また、Ti、Zr、Nb、W、La、Gd、Y、Yb、Luを除く、V、Cr、Mn、Fe、Co、Ni、Cu、Ag及びMo等の各遷移金属成分は、それぞれを単独又は複合して少量含有した場合でもガラスが着色し、可視域の特定の波長に吸収を生じる性質があるため、特に可視領域の波長を使用する光学ガラスにおいては、実質的に含まないことが好ましい。 In addition, each transition metal component such as V, Cr, Mn, Fe, Co, Ni, Cu, Ag, and Mo, except Ti, Zr, Nb, W, La, Gd, Y, Yb, and Lu, is independent of each other. Or, even when it is contained in a small amount in combination, the glass is colored and has the property of causing absorption at a specific wavelength in the visible range. .
 さらに、PbO等の鉛化合物、及び、Th、Cd、Tl、Os、Be、Seの各成分は、近年有害な化学物資として使用を控える傾向にあり、ガラスの製造工程のみならず、加工工程、及び製品化後の処分に至るまで環境対策上の措置が必要とされる。従って、環境上の影響を重視する場合には、不可避な混入を除き、これらを実質的に含有しないことが好ましい。これにより、光学ガラスに環境を汚染する物質が実質的に含まれなくなる。そのため、特別な環境対策上の措置を講じなくとも、この光学ガラスを製造し、加工し、及び廃棄できる。 Furthermore, lead compounds such as PbO and components of Th, Cd, Tl, Os, Be, and Se tend to refrain from being used as harmful chemical substances in recent years. In addition, measures for environmental measures are required until disposal after commercialization. Therefore, when importance is placed on the environmental impact, it is preferable not to substantially contain them except for inevitable mixing. As a result, the optical glass is substantially free of substances that pollute the environment. Therefore, the optical glass can be manufactured, processed, and discarded without taking special environmental measures.
 本発明のガラス組成物は、その組成が酸化物換算組成のガラス全質量に対する質量%で表されているため直接的にモル%の記載に表せるものではないが、本発明において要求される諸特性を満たすガラス組成物中に存在する各成分のモル%表示による組成は、酸化物換算組成で概ね以下の値をとる。
成分 5.0~40.0mol%及び
Nb成分 5.0~30.0mol%、
並びに
TiO成分 0~40.0mol%及び/又は
BaO成分 0~30.0mol%及び/又は
LiO成分 0~50.0mol%及び/又は
NaO成分 0~50.0mol%及び/又は
O成分 0~30.0mol%及び/又は
WO成分 0~15.0mol%及び/又は
MgO成分 0~20.0mol%及び/又は
CaO成分 0~25.0mol%及び/又は
SrO成分 0~15.0mol%及び/又は
成分 0~4.0mol%及び/又は
La成分 0~3.0mol%及び/又は
Gd成分 0~3.0mol%及び/又は
成分 0~20.0mol%及び/又は
SiO成分 0~20.0mol%及び/又は
GeO成分 0~15.0mol%及び/又は
Bi成分 0~4.0mol%及び/又は
ZrO成分 0~13.0mol%及び/又は
ZnO成分 0~20.0mol%及び/又は
Al成分 0~15.0mol%及び/又は
Ta成分 0~3.0mol%及び/又は
Sb成分 0~0.3mol%
The glass composition of the present invention cannot be expressed directly in the description of mol% because the composition is expressed by mass% with respect to the total mass of the glass of oxide conversion composition, but various properties required in the present invention. The composition expressed by mol% of each component present in the glass composition satisfying the above conditions generally takes the following values in terms of oxide conversion.
P 2 O 5 component 5.0-40.0 mol% and Nb 2 O 5 component 5.0-30.0 mol%,
And TiO 2 component 0 to 40.0 mol% and / or BaO component 0 to 30.0 mol% and / or Li 2 O component 0 to 50.0 mol% and / or Na 2 O component 0 to 50.0 mol% and / or K 2 O component 0-30.0 mol% and / or WO 3 component 0-15.0 mol% and / or MgO component 0-20.0 mol% and / or CaO component 0-25.0 mol% and / or SrO component 0 ˜15.0 mol% and / or Y 2 O 3 component 0 to 4.0 mol% and / or La 2 O 3 component 0 to 3.0 mol% and / or Gd 2 O 3 component 0 to 3.0 mol% and / or B 2 O 3 component 0 ~ 20.0 mol% and / or SiO 2 component 0 ~ 20.0 mol% and / or GeO 2 component 0 ~ 15.0 mol% and / or Bi 2 O 3 component 0 4.0 mol% and / or ZrO 2 component 0 ~ 13.0 mol% and / or ZnO component 0 ~ 20.0 mol% and / or Al 2 O 3 component 0 ~ 15.0 mol% and / or Ta 2 O 5 component 0 To 3.0 mol% and / or Sb 2 O 3 component 0 to 0.3 mol%
 このうち、第1及び第2の光学ガラスでは、各成分のモル%表示による組成は、酸化物換算組成で概ね以下の値をとる。
成分 5.0~40.0mol%及び
Nb成分 5.0~30.0mol%、
並びに
TiO成分 0~40.0mol%及び/又は
BaO成分 0~20.0mol%及び/又は
SiO成分 0~20.0mol%及び/又は
LiO成分 0~30.0mol%及び/又は
NaO成分 0~30.0mol%及び/又は
O成分 0~15.0mol%及び/又は
MgO成分 0~20.0mol%及び/又は
CaO成分 0~25.0mol%及び/又は
SrO成分 0~15.0mol%及び/又は
成分 0~4.0mol%及び/又は
La成分 0~3.0mol%及び/又は
Gd成分 0~3.0mol%及び/又は
成分 0~20.0mol%及び/又は
GeO成分 0~15.0mol%及び/又は
Bi成分 0~4.0mol%及び/又は
ZrO成分 0~13.0mol%及び/又は
ZnO成分 0~20.0mol%及び/又は
Al成分 0~15.0mol%及び/又は
Ta成分 0~3.0mol%及び/又は
WO成分 0~15.0mol%及び/又は
Sb成分 0~0.3mol%
Among these, in the 1st and 2nd optical glass, the composition by mol% display of each component takes the following values in an oxide conversion composition in general.
P 2 O 5 component 5.0-40.0 mol% and Nb 2 O 5 component 5.0-30.0 mol%,
And TiO 2 component 0-40.0 mol% and / or BaO component 0-20.0 mol% and / or SiO 2 component 0-20.0 mol% and / or Li 2 O component 0-30.0 mol% and / or Na 2 O component 0 to 30.0 mol% and / or K 2 O component 0 to 15.0 mol% and / or MgO component 0 to 20.0 mol% and / or CaO component 0 to 25.0 mol% and / or SrO component 0 ˜15.0 mol% and / or Y 2 O 3 component 0 to 4.0 mol% and / or La 2 O 3 component 0 to 3.0 mol% and / or Gd 2 O 3 component 0 to 3.0 mol% and / or B 2 O 3 component 0 ~ 20.0 mol% and / or GeO 2 component 0 ~ 15.0 mol% and / or Bi 2 O 3 component 0 ~ 4.0 mol% and / or ZrO 2 component 0 13.0 mol% and / or ZnO component 0 ~ 20.0 mol% and / or Al 2 O 3 component 0 ~ 15.0 mol% and / or Ta 2 O 5 component 0 ~ 3.0 mol% and / or WO 3 ingredient 0 To 15.0 mol% and / or Sb 2 O 3 component 0 to 0.3 mol%
 また、第3の光学ガラスでは、各成分のモル%表示による組成は、酸化物換算組成で概ね以下の値をとる。
成分 5.0~40.0mol%及び
Nb成分 5.0~30.0mol%、
並びに
TiO成分 0~15.0mol%及び/又は
BaO成分 0~30.0mol%及び/又は
LiO成分 0~50.0mol%及び/又は
NaO成分 0~50.0mol%及び/又は
O成分 0~30.0mol%及び/又は
WO成分 0~15.0mol%及び/又は
MgO成分 0~20.0mol%及び/又は
CaO成分 0~25.0mol%及び/又は
SrO成分 0~15.0mol%及び/又は
成分 0~4.0mol%及び/又は
La成分 0~3.0mol%及び/又は
Gd成分 0~3.0mol%及び/又は
成分 0~20.0mol%及び/又は
SiO成分 0~20.0mol%及び/又は
GeO成分 0~15.0mol%及び/又は
Bi成分 0~4.0mol%及び/又は
ZrO成分 0~13.0mol%及び/又は
ZnO成分 0~20.0mol%及び/又は
Al成分 0~15.0mol%及び/又は
Ta成分 0~3.0mol%及び/又は
Sb成分 0~0.3mol%
In the third optical glass, the composition expressed by mol% of each component generally takes the following values in terms of oxide composition.
P 2 O 5 component 5.0-40.0 mol% and Nb 2 O 5 component 5.0-30.0 mol%,
And TiO 2 component 0 to 15.0 mol% and / or BaO component 0 to 30.0 mol% and / or Li 2 O component 0 to 50.0 mol% and / or Na 2 O component 0 to 50.0 mol% and / or K 2 O component 0-30.0 mol% and / or WO 3 component 0-15.0 mol% and / or MgO component 0-20.0 mol% and / or CaO component 0-25.0 mol% and / or SrO component 0 ˜15.0 mol% and / or Y 2 O 3 component 0 to 4.0 mol% and / or La 2 O 3 component 0 to 3.0 mol% and / or Gd 2 O 3 component 0 to 3.0 mol% and / or B 2 O 3 component 0 ~ 20.0 mol% and / or SiO 2 component 0 ~ 20.0 mol% and / or GeO 2 component 0 ~ 15.0 mol% and / or Bi 2 O 3 component 0 4.0 mol% and / or ZrO 2 component 0 ~ 13.0 mol% and / or ZnO component 0 ~ 20.0 mol% and / or Al 2 O 3 component 0 ~ 15.0 mol% and / or Ta 2 O 5 component 0 To 3.0 mol% and / or Sb 2 O 3 component 0 to 0.3 mol%
 また、第4の光学ガラスでは、各成分のモル%表示による組成は、酸化物換算組成で概ね以下の値をとる。
成分 5.0~40.0mol%、
Nb成分 5.0~30.0mol%、及び
BaO成分 7.0~30.0mol%/又は
並びに
LiO成分 0~50.0mol%及び/又は
NaO成分 0~50.0mol%及び/又は
O成分 0~30.0mol%及び/又は
MgO成分 0~20.0mol%及び/又は
CaO成分 0~25.0mol%及び/又は
SrO成分 0~15.0mol%及び/又は
成分 0~4.0mol%及び/又は
La成分 0~3.0mol%及び/又は
Gd成分 0~3.0mol%及び/又は
成分 0~20.0mol%及び/又は
SiO成分 0~20.0mol%及び/又は
GeO成分 0~15.0mol%及び/又は
Bi成分 0~4.0mol%及び/又は
ZrO成分 0~13.0mol%及び/又は
ZnO成分 0~20.0mol%及び/又は
Al成分 0~15.0mol%及び/又は
TiO成分 0~40.0mol%及び/又は
Ta成分 0~3.0mol%及び/又は
WO成分 0~15.0mol%及び/又は
Sb成分 0~0.3mol%
Moreover, in the 4th optical glass, the composition by mol% display of each component takes the following values in an oxide conversion composition in general.
P 2 O 5 component 5.0-40.0 mol%,
Nb 2 O 5 component 5.0 to 30.0 mol%, and BaO component 7.0 to 30.0 mol% / or Li 2 O component 0 to 50.0 mol% and / or Na 2 O component 0 to 50.0 mol % And / or K 2 O component 0-30.0 mol% and / or MgO component 0-20.0 mol% and / or CaO component 0-25.0 mol% and / or SrO component 0-15.0 mol% and / or Y 2 O 3 component 0 to 4.0 mol% and / or La 2 O 3 component 0 to 3.0 mol% and / or Gd 2 O 3 component 0 to 3.0 mol% and / or B 2 O 3 component 0 to 20 0.0 mol% and / or SiO 2 component 0 to 20.0 mol% and / or GeO 2 component 0 to 15.0 mol% and / or Bi 2 O 3 component 0 to 4.0 mol% and / or ZrO 2 component 0 to 13.0 mol% and / or ZnO component 0 to 20.0 mol% and / or Al 2 O 3 component 0 to 15.0 mol% and / or TiO 2 component 0 to 40.0 mol% and / or Ta 2 O 5 Component 0 to 3.0 mol% and / or WO 3 component 0 to 15.0 mol% and / or Sb 2 O 3 component 0 to 0.3 mol%
 また、第5の光学ガラスでは、各成分のモル%表示による組成は、酸化物換算組成で概ね以下の値をとる。
成分 5.0~40.0mol%、
Nb成分 5.0~30.0mol%、及び
TiO成分 13.0~40.0mol%
並びに
WO成分 0~15.0mol%及び/又は
BaO成分 0~30.0mol%及び/又は
LiO成分 0~50.0mol%及び/又は
NaO成分 0~50.0mol%及び/又は
O成分 0~30.0mol%及び/又は
MgO成分 0~20.0mol%及び/又は
CaO成分 0~25.0mol%及び/又は
SrO成分 0~15.0mol%及び/又は
成分 0~4.0mol%及び/又は
La成分 0~3.0mol%及び/又は
Gd成分 0~3.0mol%及び/又は
成分 0~20.0mol%及び/又は
SiO成分 0~20.0mol%及び/又は
GeO成分 0~15.0mol%及び/又は
Bi成分 0~4.0mol%及び/又は
ZrO成分 0~13.0mol%及び/又は
ZnO成分 0~20.0mol%及び/又は
Al成分 0~15.0mol%及び/又は
Ta成分 0~3.0mol%及び/又は
Sb成分 0~0.3mol%
In the fifth optical glass, the composition expressed by mol% of each component generally takes the following values in terms of oxide equivalent composition.
P 2 O 5 component 5.0-40.0 mol%,
Nb 2 O 5 component 5.0 to 30.0 mol%, and TiO 2 component 13.0 to 40.0 mol%
And WO 3 component 0 to 15.0 mol% and / or BaO component 0 to 30.0 mol% and / or Li 2 O component 0 to 50.0 mol% and / or Na 2 O component 0 to 50.0 mol% and / or K 2 O component 0-30.0 mol% and / or MgO component 0-20.0 mol% and / or CaO component 0-25.0 mol% and / or SrO component 0-15.0 mol% and / or Y 2 O 3 Component 0 to 4.0 mol% and / or La 2 O 3 component 0 to 3.0 mol% and / or Gd 2 O 3 component 0 to 3.0 mol% and / or B 2 O 3 component 0 to 20.0 mol% and / or SiO 2 component 0 to 20.0 mol% and / or GeO 2 component 0 to 15.0 mol% and / or Bi 2 O 3 component 0 to 4.0 mol% and / or ZrO 2 component 0 ~ 3.0 mol% and / or ZnO component 0 ~ 20.0 mol% and / or Al 2 O 3 component 0 ~ 15.0 mol% and / or Ta 2 O 5 component 0 ~ 3.0 mol% and / or Sb 2 O 3 Ingredient 0 ~ 0.3mol%
 また、第6の光学ガラスでは、各成分のモル%表示による組成は、酸化物換算組成で概ね以下の値をとる。
成分 5.0~40.0mol%及び
Nb成分 5.0~30.0mol%、
並びに
LiO成分 0~50.0mol%及び/又は
NaO成分 0~50.0mol%及び/又は
O成分 0~30.0mol%及び/又は
BaO成分 0~20.0mol%及び/又は
WO成分 0~15.0mol%及び/又は
MgO成分 0~20.0mol%及び/又は
CaO成分 0~25.0mol%及び/又は
SrO成分 0~15.0mol%及び/又は
成分 0~4.0mol%及び/又は
La成分 0~3.0mol%及び/又は
Gd成分 0~3.0mol%及び/又は
成分 0~20.0mol%及び/又は
SiO成分 0~20.0mol%及び/又は
GeO成分 0~15.0mol%及び/又は
TiO成分 0~40.0mol%及び/又は
Bi成分 0~4.0mol%及び/又は
ZrO成分 0~13.0mol%及び/又は
ZnO成分 0~20.0mol%及び/又は
Al成分 0~15.0mol%及び/又は
Ta成分 0~3.0mol%及び/又は
Sb成分 0~0.3mol%
In the sixth optical glass, the composition expressed by mol% of each component generally takes the following values in terms of oxide.
P 2 O 5 component 5.0-40.0 mol% and Nb 2 O 5 component 5.0-30.0 mol%,
And Li 2 O component 0 to 50.0 mol% and / or Na 2 O component 0 to 50.0 mol% and / or K 2 O component 0 to 30.0 mol% and / or BaO component 0 to 20.0 mol% and / or Or WO 3 component 0 to 15.0 mol% and / or MgO component 0 to 20.0 mol% and / or CaO component 0 to 25.0 mol% and / or SrO component 0 to 15.0 mol% and / or Y 2 O 3 Component 0 to 4.0 mol% and / or La 2 O 3 component 0 to 3.0 mol% and / or Gd 2 O 3 component 0 to 3.0 mol% and / or B 2 O 3 component 0 to 20.0 mol% and / or SiO 2 component 0 ~ 20.0 mol% and / or GeO 2 component 0 ~ 15.0 mol% and / or TiO 2 component 0 ~ 40.0mol% and / or Bi 2 O 3 component 0 4.0 mol% and / or ZrO 2 component 0 ~ 13.0 mol% and / or ZnO component 0 ~ 20.0 mol% and / or Al 2 O 3 component 0 ~ 15.0 mol% and / or Ta 2 O 5 component 0 To 3.0 mol% and / or Sb 2 O 3 component 0 to 0.3 mol%
[製造方法]
 本発明の光学ガラスは、例えば以下のように作製される。すなわち、上記原料を各成分が所定の含有率の範囲内になるように均一に混合し、作製した混合物を石英坩堝又はアルミナ坩堝に投入して粗溶融した後、白金坩堝、白金合金坩堝又はイリジウム坩堝に入れて1000~1300℃の温度範囲で2~10時間溶融し、攪拌均質化して泡切れ等を行った後、1250℃以下の温度に下げてから仕上げ攪拌を行って脈理を除去し、金型に鋳込んで徐冷することにより作製される。
[Production method]
The optical glass of the present invention is produced, for example, as follows. That is, the above raw materials are uniformly mixed so that each component is within a predetermined content range, and the prepared mixture is put into a quartz crucible or an alumina crucible and roughly melted, and then a platinum crucible, a platinum alloy crucible or iridium Put in a crucible and melt in the temperature range of 1000 to 1300 ° C for 2 to 10 hours, stir and homogenize to eliminate bubbles, etc., then lower the temperature to 1250 ° C or less and then stir to finish to remove striae It is produced by casting into a mold and slow cooling.
[物性]
 本発明の光学ガラスは、高い屈折率(n)を有するとともに、高い分散を有する必要がある。特に、本発明の光学ガラスの屈折率(n)は、好ましくは1.70、より好ましくは1.75、さらに好ましくは1.80、最も好ましくは1.90を下限とし、好ましくは2.20、より好ましくは2.15、最も好ましくは2.10を上限とする。また、本発明の光学ガラスのアッベ数(ν)は、好ましくは25、より好ましくは22、さらに好ましくは20、最も好ましくは19を上限とする。これらにより、光学設計の自由度が広がり、更に素子の薄型化を図っても大きな光の屈折量を得ることができる。なお、本発明の光学ガラスのアッベ数(ν)の下限は特に限定しないが、本発明によって得られるガラスのアッベ数(ν)は、概ね10以上、具体的には12以上、さらに具体的には15以上であることが多い。
[Physical properties]
The optical glass of the present invention needs to have a high refractive index (n d ) and a high dispersion. In particular, the refractive index (n d ) of the optical glass of the present invention is preferably 1.70, more preferably 1.75, still more preferably 1.80, most preferably 1.90, and preferably 2.90. 20, more preferably 2.15, and most preferably 2.10. In addition, the upper limit of the Abbe number (ν d ) of the optical glass of the present invention is preferably 25, more preferably 22, more preferably 20, and most preferably 19. As a result, the degree of freedom in optical design is increased, and a large amount of light refraction can be obtained even if the device is made thinner. The lower limit of the Abbe number (ν d ) of the optical glass of the present invention is not particularly limited, but the Abbe number (ν d ) of the glass obtained by the present invention is generally 10 or more, specifically 12 or more, more specifically. In many cases, it is 15 or more.
 また、本発明の光学ガラスは、着色が少ないことが好ましい。特に、本発明の光学ガラスは、ガラスの透過率で表すと、厚み10mmのサンプルで分光透過率70%を示す波長(λ70)が500nm以下であり、より好ましくは480nm以下であり、さらに好ましくは460nm以下、最も好ましくは450nm以下である。これにより、ガラスの吸収端が紫外領域の近傍に位置するようになり、可視域におけるガラスの透明性が高められるため、この光学ガラスをレンズ等の光学素子の材料として用いることができる。 Moreover, it is preferable that the optical glass of this invention has little coloring. In particular, when the optical glass of the present invention is represented by the transmittance of the glass, the wavelength (λ 70 ) showing a spectral transmittance of 70% in a sample having a thickness of 10 mm is 500 nm or less, more preferably 480 nm or less, and still more preferably. Is 460 nm or less, most preferably 450 nm or less. Thereby, the absorption edge of the glass is positioned in the vicinity of the ultraviolet region, and the transparency of the glass in the visible region is enhanced. Therefore, this optical glass can be used as a material for an optical element such as a lens.
 特に、本発明の第1の光学ガラスは、耐失透性が高いことが好ましい。特に、本発明の光学ガラスは、1200℃以下の低い液相温度を有することが好ましい。より具体的には、本発明の光学ガラスの液相温度は、好ましくは1200℃、より好ましくは1150℃、最も好ましくは1100℃を上限とする。これにより、より低い温度で溶融ガラスを流出しても、作製されたガラスの結晶化が低減されるため、溶融状態からガラスを形成したときの耐失透性を高めることができ、ガラスを用いた光学素子の光学特性への影響を低減することができる。一方、本発明の光学ガラスの液相温度の下限は特に限定しないが、本発明によって得られるガラスの液相温度は、概ね500℃以上、具体的には550℃以上、さらに具体的には600℃以上であることが多い。なお、本明細書中における「液相温度」とは、直径2mm程度の粒状に粉砕したガラス試料を白金板上に載せ、800℃から1220℃の温度傾斜のついた炉内で30分間保持した後取り出し、冷却後にガラス中の結晶の有無を倍率80倍の顕微鏡にて観察することで測定される、ガラス中に結晶が認められず失透が生じない最も低い温度である。 In particular, the first optical glass of the present invention preferably has high devitrification resistance. In particular, the optical glass of the present invention preferably has a low liquidus temperature of 1200 ° C. or lower. More specifically, the upper limit of the liquidus temperature of the optical glass of the present invention is preferably 1200 ° C, more preferably 1150 ° C, and most preferably 1100 ° C. As a result, even if the molten glass flows out at a lower temperature, crystallization of the produced glass is reduced, so that the devitrification resistance when the glass is formed from the molten state can be increased. The influence on the optical characteristics of the optical element can be reduced. On the other hand, the lower limit of the liquidus temperature of the optical glass of the present invention is not particularly limited, but the liquidus temperature of the glass obtained by the present invention is approximately 500 ° C. or higher, specifically 550 ° C. or higher, more specifically 600. Often above ℃. As used herein, “liquid phase temperature” refers to a glass sample pulverized to a particle size of about 2 mm on a platinum plate and held in a furnace with a temperature gradient from 800 ° C. to 1220 ° C. for 30 minutes. It is the lowest temperature at which no crystal is observed in the glass and devitrification does not occur, which is measured by observing the presence or absence of crystals in the glass with a microscope with a magnification of 80 after cooling.
 また、本発明の第1の光学ガラスは、高い耐酸性を有することが好ましい。特に、JOGIS06-1999に準じたガラスの粉末法による化学的耐久性(耐酸性)は、好ましくはクラス1~5、より好ましくはクラス1~4、最も好ましくはクラス1~3である。これにより、光学ガラスを研磨加工する際に、酸性の研磨液や洗浄液によるガラスの曇りが低減されるため、研磨加工をより行い易くすることができる。ここで「耐酸性」とは、酸によるガラスの侵食に対する耐久性であり、この耐酸性は、日本光学硝子工業会規格「光学ガラスの化学的耐久性の測定方法」JOGIS06-1999により測定することができる。また、「粉末法による化学的耐久性(耐酸性)がクラス1~5である」とは、JOGIS06-1999に準じて行った化学的耐久性(耐酸性)が、測定前後の試料の質量の減量率で、2.20質量%未満であることを意味する。なお、化学的耐久性(耐酸性)の「クラス1」は、測定前後の試料の質量の減量率が0.20質量%未満であり、「クラス2」は、測定前後の試料の質量の減量率が0.20質量%以上0.35質量%未満であり、「クラス3」は、測定前後の試料の質量の減量率が0.35質量%以上0.65質量%未満であり、「クラス4」は、測定前後の試料の質量の減量率が0.65質量%以上1.20質量%未満であり、「クラス5」は、測定前後の試料の質量の減量率が1.20質量%以上2.20質量%未満であり、「クラス6」は、測定前後の試料の質量の減量率が2.20質量%以上である。 The first optical glass of the present invention preferably has high acid resistance. In particular, the chemical durability (acid resistance) of the glass powder method according to JOGIS06-1999 is preferably class 1 to 5, more preferably class 1 to 4, and most preferably class 1 to 3. Thereby, when the optical glass is polished, the fogging of the glass due to the acidic polishing liquid or the cleaning liquid is reduced, so that the polishing process can be more easily performed. Here, “acid resistance” refers to durability against erosion of glass by acid, and this acid resistance is measured according to the Japan Optical Glass Industry Association Standard “Measurement Method of Chemical Durability of Optical Glass” JOGIS06-1999. Can do. “The chemical durability (acid resistance) by the powder method is class 1 to 5” means that the chemical durability (acid resistance) performed according to JOGIS06-1999 is the mass of the sample before and after the measurement. It means a weight loss rate of less than 2.20% by mass. In addition, “Class 1” of chemical durability (acid resistance) has a weight loss rate of the sample before and after the measurement of less than 0.20% by mass, and “Class 2” indicates the weight loss of the sample before and after the measurement. The rate is 0.20% by mass or more and less than 0.35% by mass, and “Class 3” indicates that the weight reduction rate of the sample before and after the measurement is 0.35% by mass or more and less than 0.65% by mass. “4” indicates that the weight loss rate of the sample before and after the measurement is 0.65 mass% or more and less than 1.20 mass%, and “Class 5” indicates that the weight loss rate of the sample before and after the measurement is 1.20 mass%. The amount is less than 2.20% by mass, and “Class 6” has a mass reduction rate of the sample before and after the measurement of 2.20% by mass or more.
 一方、本発明の第2の光学ガラスは、所定の磨耗度を有する。特に、光学ガラスの「JOGIS10-1994光学ガラスの磨耗度の測定方法」に準じた測定方法における磨耗度は、好ましくは100、より好ましくは150、最も好ましくは200を下限とし、好ましくは400、より好ましくは350、最も好ましくは300を上限とする。磨耗度を100以上にすることで、研磨加工を行ったときにガラスが研磨され易くなるため、研磨加工の加工効率を高め、研磨加工を行い易くすることができる。一方で、磨耗度を400以下にすることで、光学ガラスの必要以上の磨耗や傷が低減されるため、光学ガラスに対する研磨加工における取扱いを容易にして、研磨加工を行い易くすることができる。 On the other hand, the second optical glass of the present invention has a predetermined degree of wear. In particular, the abrasion degree in the measuring method according to “JOGIS10-1994 Optical Glass Abrasion Measuring Method” of optical glass is preferably 100, more preferably 150, most preferably 200 as the lower limit, preferably 400, more The upper limit is preferably 350, and most preferably 300. By setting the degree of wear to 100 or more, the glass is easily polished when the polishing process is performed, so that the processing efficiency of the polishing process can be increased and the polishing process can be easily performed. On the other hand, by setting the degree of wear to 400 or less, unnecessary wear and scratches of the optical glass are reduced, so that the optical glass can be easily handled in the polishing process, and the polishing process can be easily performed.
 また、本発明の第2の光学ガラスは、平均線膨張係数(α)が小さいことが好ましい。特に、本発明の光学ガラスは、好ましくは150×10-7-1以下、より好ましくは120×10-7-1以下、最も好ましくは100×10-7-1以下の低い液相温度を有することが好ましい。これにより、金型を用いて光学ガラスをプレス成形する際に、成形後のレンズやプリフォームの温度変化による膨張や収縮が低減される。そのため、特に成形後に冷却を行う際に、レンズの内部から外部に温度勾配が生じたときに発生していた、レンズへの窪み(ヒケ)や割れを低減できる。 Moreover, it is preferable that the 2nd optical glass of this invention has a small average coefficient of linear expansion ((alpha)). In particular, the optical glass of the present invention preferably has a low liquid phase of 150 × 10 −7 K −1 or less, more preferably 120 × 10 −7 K −1 or less, and most preferably 100 × 10 −7 K −1 or less. It is preferable to have a temperature. Thereby, when press molding optical glass using a metal mold | die, the expansion | swelling and shrinkage | contraction by the temperature change of the lens or preform after shaping | molding are reduced. Therefore, in particular, when cooling is performed after molding, it is possible to reduce depressions (sinks) and cracks that occur when a temperature gradient is generated from the inside of the lens to the outside.
 一方、本発明の第3、第5及び第6の光学ガラスは、700℃以下のガラス転移点(Tg)を有する。これにより、ガラスがより低い温度で軟化するため、より低い温度でガラスをプレス成形できる。また、精密プレス成形に用いる金型の酸化を低減して金型の長寿命化を図ることもできる。従って、本発明の光学ガラスのガラス転移点(Tg)は、好ましくは700℃、より好ましくは680℃、より好ましくは670℃、最も好ましくは650℃を上限とする。なお、本発明の光学ガラスのガラス転移点(Tg)の下限は特に限定されないが、本発明によって得られるガラスのガラス転移点(Tg)は、概ね100℃以上、具体的には150℃以上、さらに具体的には200℃以上であることが多い。 On the other hand, the third, fifth and sixth optical glasses of the present invention have a glass transition point (Tg) of 700 ° C. or lower. Thereby, since glass softens at lower temperature, glass can be press-molded at lower temperature. In addition, it is possible to extend the life of the mold by reducing oxidation of the mold used for precision press molding. Therefore, the upper limit of the glass transition point (Tg) of the optical glass of the present invention is preferably 700 ° C., more preferably 680 ° C., more preferably 670 ° C., and most preferably 650 ° C. The lower limit of the glass transition point (Tg) of the optical glass of the present invention is not particularly limited, but the glass transition point (Tg) of the glass obtained by the present invention is generally 100 ° C. or higher, specifically 150 ° C. or higher. More specifically, it is often 200 ° C. or higher.
 一方、本発明の第4の光学ガラスは、高い耐洗剤性を有することが好ましい。特に、ISO試験法耐洗剤性(ISO9689:1990(E))に従って行われる耐洗剤性(PR)は、好ましくは級1~3、より好ましくは級1~2、最も好ましくは級1である。これにより、光学ガラスを研磨加工後に洗浄する際に、水性の洗浄液によるガラスの曇りが低減されるため、光学ガラスに対する洗浄をより行い易くすることができる。ここで「耐洗剤性」とは、レンズプリフォーム材を成形前に洗浄する場合、また成形を行ったレンズを洗浄する場合等における、洗浄に使用する薬品類等に一定期間曝された時のヤケの状態の優劣のことを示す。この耐洗剤性は、ISO試験法耐洗剤性(ISO9689:1990(E))により測定することができる。また、「耐洗剤性(PR)が級1~3である」とは、ISO試験法耐洗剤性(ISO9689:1990(E))に準じて求められた耐洗剤性(PR)が、0.1μmのガラス層を侵食するのに要した時間が15分より長いことを意味する。 On the other hand, the fourth optical glass of the present invention preferably has high detergent resistance. In particular, the detergent resistance (PR) carried out in accordance with the ISO test method detergent resistance (ISO 9689: 1990 (E)) is preferably class 1 to 3, more preferably class 1 to 2, most preferably class 1. Thereby, when the optical glass is cleaned after polishing, the fogging of the glass due to the aqueous cleaning liquid is reduced, so that the optical glass can be more easily cleaned. Here, “detergent resistance” means that when a lens preform material is washed before molding, or when a molded lens is washed, it is exposed to chemicals used for washing for a certain period of time. Indicates the superiority or inferiority of the discoloration. This detergent resistance can be measured by the ISO test method detergent resistance (ISO 9689: 1990 (E)). Further, “detergent resistance (PR) is grade 1 to 3” means that the detergent resistance (PR) determined according to the ISO test method detergent resistance (ISO9689: 1990 (E)) is 0.00. It means that the time required to erode the 1 μm glass layer is longer than 15 minutes.
[プリフォーム及び光学素子]
 本発明の光学ガラスは、様々な光学素子及び光学設計に有用であるが、その中でも特に、本発明の光学ガラスからプレス成形(精密プレス成形等)の手段を用いて、レンズやプリズム、ミラー等の光学素子を作製することが好ましい。これにより、カメラやプロジェクタ等のような光学素子に可視光を透過させる光学機器に用いたときに、高精細で高精度な結像特性を実現しつつ、これら光学機器における光学系の小型化を図ることができる。ここで、本発明の光学ガラスからなる光学素子を作製するには、切削及び研磨加工を省略することが可能であるため、溶融状態のガラスを白金等の流出パイプの流出口から滴下して球状等の精密プレス成形用プリフォームを作製し、この精密プレス成形用プリフォームに対して精密プレス成形を行うことが好ましい。
[Preforms and optical elements]
The optical glass of the present invention is useful for various optical elements and optical designs. Among them, in particular, a lens, a prism, a mirror, and the like using a means for press molding (such as precision press molding) from the optical glass of the present invention. It is preferable to prepare the optical element. As a result, when used in optical devices that transmit visible light to optical elements such as cameras and projectors, the optical system in these optical devices can be miniaturized while realizing high-definition and high-precision imaging characteristics. Can be planned. Here, in order to produce an optical element made of the optical glass of the present invention, it is possible to omit cutting and polishing, so that glass in a molten state is dropped from an outlet of an outflow pipe of platinum or the like to form a spherical shape. It is preferable to prepare a precision press-molding preform such as, and perform precision press-molding on the precision press-molding preform.
 本発明の実施例(No.A1~No.A7)及び比較例(No.A1)のガラスの組成、屈折率(n)、アッベ数(ν)、分光透過率が70%を示す波長(λ70)、液相温度、並びに粉末法による化学的耐久性(耐酸性)を表1に示す。また、本発明の実施例(No.B1~No.B5)及び比較例(No.B1)のガラスの組成、屈折率(n)、アッベ数(ν)、分光透過率が70%を示す波長(λ70)、磨耗度、並びに平均線膨張係数を表2に示す。また、本発明の実施例(No.C1~No.C5)及び比較例(No.C1)のガラスの組成、屈折率(n)、アッベ数(ν)、分光透過率が70%を示す波長(λ70)、並びにガラス転移点(Tg)を表3に示す。また、本発明の実施例(No.D1~No.D5)及び比較例(No.D1)のガラスの組成、屈折率(n)、アッベ数(ν)、分光透過率が70%を示す波長(λ70)、並びにISO試験法による耐洗剤性(PR)を表4に示す。本発明の実施例(No.E1~No.E14)及び比較例(No.E1)のガラスの組成、屈折率(n)、アッベ数(ν)、分光透過率が70%を示す波長(λ70)、並びにガラス転移点(Tg)を表5~表7に示す。また、本発明の実施例(No.F1~No.F5)及び比較例(No.F1)のガラスの組成、屈折率(n)、アッベ数(ν)、分光透過率が70%を示す波長(λ70)、並びにガラス転移点(Tg)を表8に示す。なお、以下の実施例はあくまで例示の目的であり、これらの実施例のみ限定されるものではない。 Wavelength at which the composition, refractive index (n d ), Abbe number (ν d ), and spectral transmittance of the glass of Examples (No. A1 to No. A7) and Comparative Example (No. A1) of the present invention are 70%. Table 1 shows (λ 70 ), liquid phase temperature, and chemical durability (acid resistance) by the powder method. In addition, the composition, refractive index (n d ), Abbe number (ν d ), and spectral transmittance of the glass of Examples (No. B1 to No. B5) and Comparative Example (No. B1) of the present invention are 70%. Table 2 shows the wavelength (λ 70 ), the degree of wear, and the average linear expansion coefficient. Further, the composition, refractive index (n d ), Abbe number (ν d ), and spectral transmittance of the glass of Examples (No. C1 to No. C5) and Comparative Example (No. C1) of the present invention are 70%. Table 3 shows the wavelength (λ 70 ) and the glass transition point (Tg). Further, the composition, refractive index (n d ), Abbe number (ν d ), and spectral transmittance of the glass of Examples (No. D1 to No. D5) and Comparative Example (No. D1) of the present invention are 70%. Table 4 shows the wavelength (λ 70 ) shown and the detergent resistance (PR) by the ISO test method. Wavelength at which the composition, refractive index (n d ), Abbe number (ν d ), and spectral transmittance of the glass of Examples (No. E1 to No. E14) and Comparative Example (No. E1) of the present invention are 70%. Tables 5 to 7 show (λ 70 ) and glass transition point (Tg). Further, the composition, refractive index (n d ), Abbe number (ν d ), and spectral transmittance of the glass of Examples (No. F1 to No. F5) and Comparative Example (No. F1) of the present invention are 70%. Table 8 shows the wavelength (λ 70 ) and the glass transition point (Tg). The following examples are merely for illustrative purposes, and are not limited to these examples.
 本発明の実施例(No.A1~No.A7、No.B1~No.B5、No.C1~No.C5、No.D1~No.D5、No.E1~No.E14、No.F1~No.F5)の光学ガラス及び比較例(No.A1、No.B1、No.C1、No.D1、No.E1、No.F1)のガラスは、いずれも各成分の原料として各々相当する酸化物、水酸化物、炭酸塩、硝酸塩、弗化物、水酸化物、メタ燐酸化合物等の通常の光学ガラスに使用される高純度原料を選定し、表1~表8に示した各実施例及び比較例の組成の割合になるように秤量して均一に混合した後、白金坩堝に投入し、ガラス組成の熔融難易度に応じて電気炉で1000~1300℃の温度範囲で2~10時間溶解し、攪拌均質化して泡切れ等を行った後、1250℃以下に温度を下げて攪拌均質化してから金型に鋳込み、徐冷してガラスを作製した。 Examples of the present invention (No. A1 to No. A7, No. B1 to No. B5, No. C1 to No. C5, No. D1 to No. D5, No. E1 to No. E14, No. F1 to No. F5) optical glass and comparative examples (No. A1, No. B1, No. C1, No. D1, No. E1, No. F1) are all oxidized corresponding to the raw materials of the respective components. Selected from high-purity raw materials used in ordinary optical glass such as oxides, hydroxides, carbonates, nitrates, fluorides, hydroxides, metaphosphate compounds, etc. After weighing and mixing uniformly so as to have the composition ratio of the comparative example, it is put into a platinum crucible and melted in an electric furnace at a temperature range of 1000 to 1300 ° C. for 2 to 10 hours depending on the difficulty of melting the glass composition. 1250 ° C after stirring and homogenizing to remove bubbles Cast into a mold and stirring homogenized by lowering the temperature down to prepare a glass was gradually cooled.
 ここで、実施例の光学ガラス及び比較例のガラスの屈折率(n)及びアッベ数(ν)は、日本光学硝子工業会規格JOGIS01―2003に基づいて測定した。なお、本測定に用いたガラスとして、アニール条件は徐冷降下速度を-25℃/hrとして、徐冷炉にて処理を行ったものを用いた。 Here, the refractive index (n d ) and the Abbe number (ν d ) of the optical glass of the example and the glass of the comparative example were measured based on Japan Optical Glass Industry Association Standard JOGIS01-2003. The glass used in this measurement was annealed under a slow cooling furnace at a slow cooling rate of −25 ° C./hr.
 また、実施例の光学ガラス及び比較例のガラスの透過率は、日本光学硝子工業会規格JOGIS02に準じて測定した。なお、本発明においては、ガラスの透過率を測定することで、ガラスの着色の有無と程度を求めた。具体的には、厚さ10±0.1mmの対面平行研磨品をJISZ8722に準じ、200~800nmの分光透過率を測定し、λ70(透過率70%時の波長)を求めた。 Moreover, the transmittance | permeability of the optical glass of an Example and the glass of a comparative example was measured according to Japan Optical Glass Industry Association standard JOGIS02. In the present invention, the presence / absence and degree of coloration of the glass were determined by measuring the transmittance of the glass. Specifically, a face parallel polished product having a thickness of 10 ± 0.1 mm was measured for a spectral transmittance of 200 to 800 nm in accordance with JISZ8722, and λ 70 (wavelength when the transmittance was 70%) was obtained.
 このうち、第1の光学ガラスに相当する、実施例(No.A1~No.A7)の光学ガラス及び比較例(No.A1)のガラスの液相温度は、粉砕したガラス試料を10mm間隔で白金板上に載せ、これを800℃から1200℃の温度傾斜のついた炉内で30分間保持した後で取り出し、冷却後にガラス試料中の結晶の有無を倍率80倍の顕微鏡にて観察することで測定した。この際、サンプルとして光学ガラスを直径2mm程度の粒状に粉砕した。 Among these, the liquid phase temperature of the optical glass of Example (No. A1 to No. A7) and the glass of Comparative Example (No. A1), which corresponds to the first optical glass, was measured at intervals of 10 mm. Place it on a platinum plate, hold it in a furnace with a temperature gradient of 800 ° C to 1200 ° C for 30 minutes, take it out, and after cooling, observe the presence or absence of crystals in the glass sample with a microscope with a magnification of 80 times. Measured with At this time, the optical glass as a sample was pulverized into particles having a diameter of about 2 mm.
 また、実施例(No.A1~No.A7)の光学ガラス及び比較例(No.A1)のガラスの耐酸性は、日本光学硝子工業会規格「光学ガラスの化学的耐久性の測定方法」JOGIS06-1999に準じて測定した。すなわち、粒度425~600μmに破砕したガラス試料を比重ビンにとり、白金かごの中に入れた。白金かごを0.01N硝酸水溶液の入った石英ガラス製丸底フラスコに入れて、沸騰水浴中で60分間処理した。処理後のガラス試料の減量率(質量%)を算出して、この減量率(質量%)が0.20未満の場合をクラス1、減量率が0.20~0.35未満の場合をクラス2、減量率が0.35~0.65未満の場合をクラス3、減量率が0.65~1.20未満の場合をクラス4、減量率が1.20~2.20未満の場合をクラス5、減量率が2.20以上の場合をクラス6とした。このとき、クラスの数が小さいほど、ガラスの耐酸性が優れていることを意味する。 In addition, the acid resistance of the optical glass of the examples (No. A1 to No. A7) and the glass of the comparative example (No. A1) was determined by the Japan Optical Glass Industry Standard “Method for Measuring Chemical Durability of Optical Glass” JOGIS06. -Measured according to 1999. That is, a glass sample crushed to a particle size of 425 to 600 μm was placed in a specific gravity bottle and placed in a platinum basket. The platinum basket was placed in a quartz glass round bottom flask containing a 0.01N nitric acid aqueous solution and treated in a boiling water bath for 60 minutes. Calculate the weight loss rate (mass%) of the treated glass sample, class 1 if this weight loss rate (mass%) is less than 0.20, class if the weight loss rate is less than 0.20 to 0.35 2. When the weight loss rate is 0.35 to less than 0.65, class 3, when the weight loss rate is less than 0.65 to 1.20, class 4, and when the weight loss rate is less than 1.20 to 2.20 Class 5 and the weight loss rate of 2.20 or higher were classified as Class 6. At this time, it means that the acid resistance of glass is excellent, so that the number of classes is small.
 一方、第2の光学ガラスに相当する、実施例(No.B1~No.B5)の光学ガラス及び比較例(No.B1)のガラスの磨耗度は、「JOGIS10-1994光学ガラスの磨耗度の測定方法」に準じて測定した。すなわち、30×30×10mmの大きさのガラス角板の試料を水平に毎分60回転する鋳鉄製平面皿(250mmφ)の中心から80mmの定位置に乗せ、9.8N(1kgf)の荷重を垂直にかけながら、水20mLに#800(平均粒径20μm)のラップ材(アルミナ質A砥粒)を10g添加した研磨液を5分間一様に供給して摩擦させ、ラップ前後の試料質量を測定して、磨耗質量を求めた。同様にして、日本光学硝子工業会で指定された標準試料の磨耗質量を求め、
  磨耗度={(試料の磨耗質量/比重)/(標準試料の磨耗質量/比重)}×100
により計算した。
On the other hand, the degree of wear of the optical glass of the examples (No. B1 to No. B5) and the glass of the comparative example (No. B1), which corresponds to the second optical glass, is “the degree of wear of the JOGIS 10-1994 optical glass”. Measured according to “Measurement method”. That is, a sample of a glass square plate having a size of 30 × 30 × 10 mm is placed on a fixed position of 80 mm from the center of a flat plate made of cast iron (250 mmφ) horizontally rotating 60 times per minute, and a load of 9.8 N (1 kgf) is applied. While applying vertically, a polishing solution obtained by adding 10 g of lapping material (alumina A abrasive grains) of # 800 (average particle size 20 μm) to 20 mL of water is uniformly fed for 5 minutes to cause friction, and the sample mass before and after the lapping is measured. Then, the wear mass was obtained. Similarly, the wear mass of the standard sample specified by the Japan Optical Glass Industry Association is obtained,
Abrasion degree = {(wear mass / specific gravity of sample) / (wear mass / specific gravity of standard sample)} × 100
Calculated by
 また、実施例(No.B1~No.B5)の光学ガラス及び比較例(No.B1)のガラスの平均線膨張係数(α)は、日本光学硝子工業会規格JOGIS08-2003「光学ガラスの熱膨張の測定方法」に従い、-30~+70℃における平均線膨張係数を求めた。 In addition, the average linear expansion coefficient (α) of the optical glass of the examples (No. B1 to No. B5) and the glass of the comparative example (No. B1) was determined by the Japan Optical Glass Industry Association Standard JOGIS08-2003 “Heat of optical glass”. According to “Method of measuring expansion”, an average linear expansion coefficient at −30 to + 70 ° C. was determined.
 一方、第3、第5及び第6の光学ガラスに相当する、実施例(No.C1~No.C5、No.E1~No.E14、No.F1~No.F5)の光学ガラス及び比較例(No.C1、No.E1、No.F1)のガラスのガラス転移点(Tg)は、横型膨張測定器を用いた測定を行うことで求めた。ここで、測定を行う際のサンプルはφ4.5mm、長さ5mmのものを使用し、昇温速度4℃/minとした。 On the other hand, optical glasses of Examples (No. C1 to No. C5, No. E1 to No. E14, No. F1 to No. F5) corresponding to the third, fifth and sixth optical glasses and comparative examples The glass transition point (Tg) of the glass of (No. C1, No. E1, No. F1) was obtained by performing measurement using a horizontal expansion measuring instrument. Here, the sample used for the measurement was φ4.5 mm and a length of 5 mm, and the heating rate was 4 ° C./min.
 一方、第4の光学ガラスに相当する、実施例(No.D1~No.D5)の光学ガラス及び比較例(No.D1)のガラスの耐洗剤性(PR)は、ISO試験法耐洗剤性(ISO9689:1990(E))に従って測定した。すなわち、試験片として6面を研磨した30mm×30mm×2mmのガラス試料を、50℃に加熱した0.01mol/Lの濃度の精製トリポリリン酸ナトリウム水溶液中に白金線を用いて吊し入れ、定められた時間(15分、1時間、4時間、16時間)浸漬処理した。浸漬処理後、試料の質量減少を秤量し、次式によって厚さ0.1μmのガラス層を侵食するのに要した時間を計算した。ただし、この計算は1試料当たりの質量減少が1mg以上となる最低の試験時間によって得られたときの値を用いた。そして、0.1μmのガラス層を侵食するのに要した時間が240分より長い場合を級1、60分より長く且つ240分以下の場合を級2、15分以上60分以下の場合を級3、15分未満の場合を級4とした。このとき、級の数が小さいほど、ガラスの耐洗剤性が優れていることを意味する。
 t0.1=te・d・S/((m1-m2)・100)
 t0.1:0.1μmのガラス層を侵食するのに要した時間(分)
 te:処理時間(分)
 d:比重
 S:試料の表面積(cm2)
 m1-m2:試料の質量減少量(mg)
On the other hand, the detergent resistance (PR) of the optical glasses of the examples (No. D1 to No. D5) and the glasses of the comparative examples (No. D1) corresponding to the fourth optical glass is the ISO test method detergent resistance. (ISO 9689: 1990 (E)). That is, a 30 mm × 30 mm × 2 mm glass sample having 6 surfaces polished as a test piece was suspended using a platinum wire in a purified sodium tripolyphosphate aqueous solution having a concentration of 0.01 mol / L heated to 50 ° C. Immersion treatment was performed for a given time (15 minutes, 1 hour, 4 hours, 16 hours). After the immersion treatment, the weight loss of the sample was weighed, and the time required to erode a 0.1 μm thick glass layer was calculated by the following formula. However, this calculation used the value obtained by the minimum test time in which the mass reduction per sample was 1 mg or more. And when the time required to erode the 0.1 μm glass layer is longer than 240 minutes, it is class 1, when it is longer than 60 minutes and 240 minutes or less, it is class 2, and when it is 15 minutes or more and 60 minutes or less The case of less than 3 and 15 minutes was set to grade 4. At this time, the smaller the class number, the better the detergent resistance of the glass.
t0.1 = te · d · S / ((m1-m2) · 100)
t0.1: Time (minutes) required to erode the 0.1 μm glass layer
te: Processing time (minutes)
d: Specific gravity S: Surface area of the sample (cm2)
m1-m2: Sample mass loss (mg)
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 表1に表されるように、本発明の実施例の光学ガラスは、いずれも液相温度が1200℃以下、より詳細には1120℃未満であるとともに、この液相温度は500℃以上であった。一方で、比較例(No.A1)のガラスは、液相温度が1120℃であった。このため、本発明の実施例(No.A1~No.A7)の光学ガラスは、比較例(No.A1)のガラスに比べて液相温度が低く失透し難いことが明らかになった。 As shown in Table 1, the optical glasses of the examples of the present invention all have a liquidus temperature of 1200 ° C. or lower, more specifically less than 1120 ° C., and the liquidus temperature is 500 ° C. or higher. It was. On the other hand, the glass of the comparative example (No. A1) had a liquidus temperature of 1120 ° C. For this reason, it became clear that the optical glass of Examples (No. A1 to No. A7) of the present invention has a lower liquidus temperature and is less devitrified than the glass of Comparative Example (No. A1).
 また、表2に表されるように、本発明の実施例(No.B1~No.B5)の光学ガラスは、いずれも磨耗度が400以下、より詳細には300未満であるとともに、この磨耗度は100以上、より詳細には200以上であった。一方で、比較例(No.B1)のガラスは、磨耗度が300であった。このため、本発明の実施例(No.B1~No.B5)の光学ガラスは、比較例(No.B1)のガラスに比べて磨耗度が低いことが明らかになった。 Further, as shown in Table 2, the optical glasses of Examples (No. B1 to No. B5) of the present invention all have a wear degree of 400 or less, more specifically less than 300. The degree was 100 or more, more specifically 200 or more. On the other hand, the glass of the comparative example (No. B1) had an abrasion degree of 300. For this reason, it has been clarified that the optical glass of the examples (No. B1 to No. B5) of the present invention has a lower degree of wear than the glass of the comparative example (No. B1).
 また、表3及び表5~表8に表されるように、本発明の実施例(No.C1~No.C5、No.E1~No.E14、No.F1~No.F5)の光学ガラスは、いずれもガラス転移点(Tg)が700℃以下、より詳細には670℃以下であった。 Further, as shown in Table 3 and Tables 5 to 8, optical glass of Examples (No. C1 to No. C5, No. E1 to No. E14, No. F1 to No. F5) of the present invention. Each had a glass transition point (Tg) of 700 ° C. or lower, more specifically 670 ° C. or lower.
 特に、本発明の実施例(No.C1~No.C5、No.F1~No.F5)の光学ガラスは、いずれもガラス転移点(Tg)が650℃以下であった。一方で、比較例(No.C1、No.F1)のガラスは、ガラス転移点(Tg)が650℃より高かった。このため、本発明の実施例(No.C1~No.C5、No.F1~No.F5)の光学ガラスは、比較例(No.C1、No.F1)のガラスに比べて低いガラス転移点(Tg)を有しており、低い加熱温度で軟化し易いことが明らかになった。 In particular, all of the optical glasses of Examples (No. C1 to No. C5, No. F1 to No. F5) of the present invention had a glass transition point (Tg) of 650 ° C. or lower. On the other hand, the glass of the comparative example (No. C1, No. F1) had a glass transition point (Tg) higher than 650 ° C. For this reason, the optical glass of the examples (No. C1 to No. C5, No. F1 to No. F5) of the present invention has a lower glass transition point than the glass of the comparative examples (No. C1, No. F1). It has become clear that it has a (Tg) and is easily softened at a low heating temperature.
 また、表4に表されるように、本発明の実施例(No.D1~No.D5)の光学ガラスは、いずれもISO試験法による耐洗剤性(PR)が級1~3、より詳細には級1であった。一方で、比較例(No.D1)のガラスは、ISO試験法による耐洗剤性(PR)が級3であった。このため、本発明の実施例(No.D1~No.D5)の光学ガラスは、比較例(No.D1)のガラスに比べて耐洗剤性に優れていることが明らかになった。 Further, as shown in Table 4, the optical glasses of the examples (No. D1 to No. D5) of the present invention all have a detergent resistance (PR) according to the ISO test method of grades 1 to 3, more details. Was grade 1. On the other hand, the glass of the comparative example (No. D1) had a class 3 detergent resistance (PR) according to the ISO test method. For this reason, it was clarified that the optical glass of Examples (No. D1 to No. D5) of the present invention is superior in detergent resistance as compared with the glass of Comparative Example (No. D1).
 また、本発明の実施例の光学ガラスは、いずれもλ70(透過率70%時の波長)が500nm以下、より詳細には492nm以下であり、所望の範囲内であった。 In addition, in each of the optical glasses of the examples of the present invention, λ 70 (wavelength at 70% transmittance) was 500 nm or less, more specifically, 492 nm or less, and was in a desired range.
 特に、本発明の実施例(No.A1~No.A7)の光学ガラスは、いずれもλ70が450nm以下であった。一方で、比較例(No.A1)のガラスは、λ70が450nmより大きかった。このため、本発明の実施例(No.A1~No.A7)の光学ガラスは、比較例(No.A1)のガラスに比べて着色し難いことが明らかになった。 In particular, the optical glasses of Examples (No. A1 to No. A7) of the present invention all had λ 70 of 450 nm or less. On the other hand, in the glass of the comparative example (No. A1), λ 70 was larger than 450 nm. For this reason, it became clear that the optical glass of the examples (No. A1 to No. A7) of the present invention is less colored than the glass of the comparative example (No. A1).
 また、本発明の実施例(No.B1~No.B5)の光学ガラスは、いずれもλ70(透過率70%時の波長)が480nm以下であった。一方で、比較例(No.B1)のガラスは、λ70が480nmより大きかった。このため、本発明の実施例(No.B1~No.B5)の光学ガラスは、比較例(No.B1)のガラスに比べて着色し難いことが明らかになった。 The optical glasses of Examples (No. B1 to No. B5) of the present invention all had a λ 70 (wavelength at 70% transmittance) of 480 nm or less. On the other hand, in the glass of the comparative example (No. B1), λ 70 was larger than 480 nm. For this reason, it became clear that the optical glass of the examples (No. B1 to No. B5) of the present invention is less likely to be colored than the glass of the comparative example (No. B1).
 また、本発明の実施例(No.C1~No.C5、No.D1~No.D5)の光学ガラスは、いずれもλ70(透過率70%時の波長)が450nm以下であった。一方で、比較例(No.D1)のガラスは、λ70が500nmであった。このため、本発明の実施例(No.D1~No.D5)の光学ガラスは、比較例(No.D1)のガラスに比べて着色し難いことが明らかになった。 Further, the optical glasses of the examples of the present invention (No. C1 to No. C5, No. D1 to No. D5) all had a λ 70 (wavelength at a transmittance of 70%) of 450 nm or less. On the other hand, the glass of the comparative example (No. D1) had a λ 70 of 500 nm. For this reason, it became clear that the optical glass of the examples (No. D1 to No. D5) of the present invention is less colored than the glass of the comparative example (No. D1).
 また、実施例(No.F1~No.F5)の光学ガラスは、いずれもλ70(透過率70%時の波長)が470nm以下であった。一方で、比較例(No.F1)のガラスは、λ70が470nmより大きかった。このため、本発明の実施例(No.F1~No.F5)の光学ガラスは、比較例(No.F1)のガラスに比べて着色し難いことが明らかになった。 The optical glasses of Examples (No. F1 to No. F5) all had a λ 70 (wavelength at 70% transmittance) of 470 nm or less. On the other hand, in the glass of the comparative example (No. F1), λ 70 was larger than 470 nm. For this reason, it became clear that the optical glass of Examples (No. F1 to No. F5) of the present invention is less likely to be colored than the glass of Comparative Example (No. F1).
 また、本発明の実施例の光学ガラスは、いずれも屈折率(n)が1.70以上、より詳細には1.80以上であるとともに、この屈折率(n)は2.20以下、より詳細には2.10以下であり、所望の範囲内であった。特に、実施例(No.C1~No.C5)の光学ガラスは、屈折率(n)が1.86以上であった。また、実施例(No.D1~No.D5)の光学ガラスは、屈折率(n)が1.84以上であった。また、実施例(No.E1~No.E14)の光学ガラスは、屈折率(n)が1.90以上であった。また、実施例(No.F1~No.F5)の光学ガラスは、屈折率(n)が1.92以上であった。一方、本発明の実施例(No.B1~No.B5、No.C1~No.C5、No.D1~No.D5、No.E1~No.E14、No.F1~No.F5)の光学ガラスは、いずれも屈折率(n)が2.00以下であった。
 
The optical glasses of the examples of the present invention all have a refractive index (n d ) of 1.70 or more, more specifically 1.80 or more, and this refractive index (n d ) of 2.20 or less. More specifically, it was 2.10 or less, and was within the desired range. In particular, the optical glass of Examples (No. C1 to No. C5) had a refractive index (n d ) of 1.86 or more. Further, the optical glasses of the examples (No. D1 to No. D5) had a refractive index (n d ) of 1.84 or more. In addition, the optical glasses of the examples (No. E1 to No. E14) had a refractive index (n d ) of 1.90 or more. In addition, the optical glasses of the examples (No. F1 to No. F5) had a refractive index (n d ) of 1.92 or more. On the other hand, the optical of Examples (No. B1 to No. B5, No. C1 to No. C5, No. D1 to No. D5, No. E1 to No. E14, No. F1 to No. F5) of the present invention. All the glasses had a refractive index (n d ) of 2.00 or less.
 また、本発明の実施例の光学ガラスは、いずれもアッベ数(ν)が10以上、より詳細には15以上であるとともに、このアッベ数(ν)は25以下であり、所望の範囲内であった。特に、本発明の実施例(No.B1~No.B5)の光学ガラスは、いずれもアッベ数(ν)が17以上であった。一方、本発明の実施例(No.B1~No.B5、No.D1~No.D5)の光学ガラスは、いずれもアッベ数(ν)は23以下であった。また、実施例(No.C1~No.C5)の光学ガラスは、アッベ数(ν)が24以下であった。 The optical glasses of the examples of the present invention all have an Abbe number (ν d ) of 10 or more, more specifically 15 or more, and this Abbe number (ν d ) is 25 or less, and a desired range. It was in. In particular, the optical glasses of Examples (No. B1 to No. B5) of the present invention all had an Abbe number (ν d ) of 17 or more. On the other hand, all of the optical glasses of Examples (No. B1 to No. B5, No. D1 to No. D5) of the present invention had an Abbe number (ν d ) of 23 or less. Further, the optical glass of Examples (No. C1 to No. C5) had an Abbe number (ν d ) of 24 or less.
 特に、実施例(No.E1~No.E14、No.F1~No.F5)の光学ガラスは、アッベ数(ν)が20以下であった。一方で、比較例(No.E1、No.F1)のガラスは、アッベ数(ν)が20よりも大きかった。このため、本発明の実施例(No.E1~No.E14、No.F1~No.F5)の光学ガラスは、比較例(No.E1、No.F1)のガラスに比べて高分散であり、アッベ数(ν)が低いことが明らかになった。 In particular, the optical glass of Examples (No. E1 to No. E14, No. F1 to No. F5) had an Abbe number (ν d ) of 20 or less. On the other hand, the glass of the comparative examples (No. E1, No. F1) had an Abbe number (ν d ) greater than 20. For this reason, the optical glasses of the examples (No. E1 to No. E14, No. F1 to No. F5) of the present invention are highly dispersed compared to the glasses of the comparative examples (No. E1, No. F1). The Abbe number (ν d ) was found to be low.
 また、本発明の実施例(No.A1~No.A7)の光学ガラスは、いずれも粉末法による化学的耐久性(耐酸性)がクラス1~5、より詳細にはクラス1~2であった。一方で、比較例(No.A1)のガラスは、粉末法による化学的耐久性(耐酸性)がクラス4であった。このため、本発明の実施例(No.A1~No.A7)の光学ガラスは、比較例(No.A1)のガラスに比べて耐酸性に優れていることが明らかになった。 In addition, the optical glasses of Examples (No. A1 to No. A7) of the present invention all have chemical durability (acid resistance) by the powder method of class 1 to 5, more specifically, class 1 to 2. It was. On the other hand, the glass of the comparative example (No. A1) had class 4 chemical durability (acid resistance) by the powder method. For this reason, it was revealed that the optical glasses of the examples (No. A1 to No. A7) of the present invention are superior in acid resistance compared to the glass of the comparative example (No. A1).
 また、本発明の実施例(No.B1~No.B5)の光学ガラスは、いずれも平均線膨張係数(α)が150×10-7-1以下、より詳細には100×10-7-1以下であった。一方で、比較例(No.B1)のガラスは、平均線膨張係数(α)が100×10-7-1以下より大きかった。このため、本発明の実施例(No.B1~No.B5)の光学ガラスは、比較例(No.B1)のガラスに比べて平均線膨張係数(α)が小さいことが明らかになった。 Further, the optical glasses of Examples (No. B1 to No. B5) of the present invention all have an average linear expansion coefficient (α) of 150 × 10 −7 K −1 or less, more specifically 100 × 10 −7. K- 1 or less. On the other hand, the glass of the comparative example (No. B1) had an average linear expansion coefficient (α) larger than 100 × 10 −7 K −1 or less. For this reason, it has been clarified that the optical glass of Examples (No. B1 to No. B5) of the present invention has a smaller average linear expansion coefficient (α) than the glass of Comparative Example (No. B1).
 さらに、本発明の実施例(No.A1~No.A7)の光学ガラスを切削及び研磨してプリフォームを形成し、このプリフォームを金型に入れて加熱し軟化しながらプレス成形を行い、得られた成形体に対して研磨加工を行ったところ、安定に様々なレンズの形状に光学ガラスを加工することができた。 Further, the optical glass of Examples (No. A1 to No. A7) of the present invention is cut and polished to form a preform, and this preform is put into a mold and heated and softened to perform press molding, When the obtained molded body was polished, the optical glass could be stably processed into various lens shapes.
 また、本発明の実施例(No.B1~No.B5)の光学ガラスを金型に入れ、光学ガラスを加熱して軟化しながらプレス成形を行い、得られた成形体に対して研磨加工を行ったところ、安定に様々なレンズの形状に光学ガラスを加工することができた。 Also, the optical glass of Examples (No. B1 to No. B5) of the present invention is put into a mold, press molding is performed while the optical glass is heated and softened, and the obtained molded body is polished. As a result, it was possible to stably process the optical glass into various lens shapes.
 また、本発明の実施例(No.C1~No.C5、No.E1~No.E14、No.F1~No.F5)の光学ガラスを用いて精密プレス成形用プリフォームを形成し、精密プレス成形用プリフォームを精密プレス成形加工したところ、安定に様々なレンズ形状に加工することができた。 In addition, a precision press molding preform was formed using the optical glass of the examples of the present invention (No. C1 to No. C5, No. E1 to No. E14, No. F1 to No. F5). When the preform for molding was precision press-molded, it could be stably processed into various lens shapes.
 また、本発明の実施例(No.D1~No.D5)の光学ガラスを切削及び研磨してプリフォームを形成し、このプリフォームを金型に入れて加熱し軟化しながらプレス成形を行い、得られた成形体に対して研磨加工を行い、研磨加工後のガラスを洗浄したところ、安定に様々なレンズの形状に光学ガラスを加工することができた。 Further, the optical glass of Examples (No. D1 to No. D5) of the present invention was cut and polished to form a preform, and this preform was put into a mold and heated and softened to perform press molding, When the obtained molded product was polished and the glass after polishing was washed, the optical glass could be stably processed into various lens shapes.
 従って、本発明の実施例の光学ガラスは、屈折率(n)が所望の範囲内にありながら、高い分散(低いアッベ数ν)を有し、且つ、可視領域の波長の光に対する透明性が高いことが明らかになった。 Therefore, the optical glass of the embodiment of the present invention has high dispersion (low Abbe number ν d ) while its refractive index (n d ) is within a desired range, and is transparent to light having a wavelength in the visible region. It became clear that the nature was high.
 特に、本発明の実施例(No.A1~No.A7)の光学ガラスは、ガラス形成時における耐失透性が高く、且つ、ガラスから研磨ボールを作製した際にガラスに曇りが生じ難いことが明らかになった。 In particular, the optical glass of Examples (No. A1 to No. A7) of the present invention has high devitrification resistance when forming glass, and it is difficult for the glass to be fogged when an abrasive ball is produced from the glass. Became clear.
 また、本発明の実施例(No.B1~No.B5)の光学ガラスは、研磨加工を行い易く、且つガラスが温度変化しても膨張や収縮が起こり難いことが明らかになった。 Also, it has been clarified that the optical glass of Examples (No. B1 to No. B5) of the present invention is easily polished and hardly expands or contracts even when the glass changes in temperature.
 また、本発明の実施例(No.C1~No.C5、No.E1~No.E14、No.F1~No.F5)の光学ガラスは、低い温度で軟化し易いことが明らかになった。 Also, it was revealed that the optical glasses of the examples of the present invention (No. C1 to No. C5, No. E1 to No. E14, No. F1 to No. F5) are easily softened at a low temperature.
 また、本発明の実施例(No.D1~No.D5)の光学ガラスは、プリフォーム材や光学素子の作製における洗浄を行い易いことが明らかになった。 In addition, it has been clarified that the optical glass of Examples (No. D1 to No. D5) of the present invention can be easily cleaned in the production of preform materials and optical elements.
 以上、本発明を例示の目的で詳細に説明したが、本実施例はあくまで例示の目的のみであって、本発明の思想及び範囲を逸脱することなく多くの改変を当業者により成し得ることが理解されよう。 Although the present invention has been described in detail for the purpose of illustration, this embodiment is only for the purpose of illustration, and many modifications can be made by those skilled in the art without departing from the spirit and scope of the present invention. Will be understood.

Claims (21)

  1.  酸化物換算組成のガラス全質量に対して、質量%でP成分を5.0%以上40.0%以下、Nb成分を10.0%以上60.0%以下含有する光学ガラス。 The entire mass of the glass in terms of oxide composition, P 2 O 5 ingredient 40.0% 5.0% or more of the following in weight%, containing Nb 2 O 5 ingredient 10.0% or more 60.0% or less Optical glass.
  2.  分光透過率が70%を示す波長(λ70)が500nm以下であり、500℃以上1200℃以下の液相温度を有する請求項1記載の光学ガラス。 The optical glass according to claim 1, wherein the wavelength (λ 70 ) at which the spectral transmittance is 70% is 500 nm or less and has a liquidus temperature of 500 ° C. or more and 1200 ° C. or less.
  3.  100以上400以下の磨耗度を有する請求項1記載の光学ガラス。 The optical glass according to claim 1, which has a degree of wear of 100 to 400.
  4.  ISO試験法による耐洗剤性(PR)が級1~3である請求項1記載の光学ガラス。 The optical glass according to claim 1, which has a detergent resistance (PR) of 1 to 3 according to ISO test method.
  5.  LiO成分、NaO成分、KO成分の少なくともいずれかを必須成分として含有し、700℃以下のガラス転移点(Tg)を有する請求項1記載の光学ガラス。 Li 2 O component, Na 2 O component contains as essential components at least one of K 2 O component, the optical glass of claim 1 having a 700 ° C. or less of the glass transition point (Tg).
  6.  酸化物換算組成のガラス全質量に対して、質量%でTiO成分の含有量が30.0%以下である請求項1から5のいずれか記載の光学ガラス。 The optical glass according to any one of claims 1 to 5, wherein the content of the TiO 2 component is 30.0% or less in terms of% by mass relative to the total mass of the glass having an oxide equivalent composition.
  7.  酸化物換算組成のガラス全質量に対して、質量%でTiO成分の含有量が10.0%未満であり、700℃以下のガラス転移点(Tg)を有する請求項1記載の光学ガラス。 2. The optical glass according to claim 1, wherein the content of the TiO 2 component is less than 10.0% by mass% and has a glass transition point (Tg) of 700 ° C. or less with respect to the total mass of the glass having an oxide equivalent composition.
  8.  酸化物換算組成のガラス全質量に対して、質量%でTiO成分を10.0%以上30.0%以下含有し、700℃以下のガラス転移点(Tg)を有する請求項1記載の光学ガラス。 The optical component according to claim 1, wherein the TiO 2 component is contained at 10.0% to 30.0% by mass% and has a glass transition point (Tg) of 700 ° C. or less with respect to the total glass mass of the oxide equivalent composition. Glass.
  9.  酸化物換算組成のガラス全質量に対して、質量%で
    WO成分 0~20.0%及び/又は
    BaO成分 0~30.0%及び/又は
    SiO成分 0~10.0%
    の各成分をさらに含有する請求項1から8のいずれか記載の光学ガラス。
    WO 3 component 0 to 20.0% and / or BaO component 0 to 30.0% and / or SiO 2 component 0 to 10.0% by mass% with respect to the total mass of the glass of oxide conversion composition
    The optical glass according to claim 1, further comprising:
  10.  酸化物換算組成のガラス全質量に対して、質量%で
    LiO成分 0~20.0%及び/又は
    NaO成分 0~35.0%及び/又は
    O成分 0~20.0%
    の各成分をさらに含有する請求項1から9のいずれか記載の光学ガラス。
    Li 2 O component 0 to 20.0% and / or Na 2 O component 0 to 35.0% and / or K 2 O component 0 to 20.0% by mass with respect to the total glass mass of oxide conversion composition %
    The optical glass according to claim 1, further comprising:
  11.  酸化物換算組成のガラス全質量に対する質量和LiO+NaO+KOが35.0%以下である請求項10記載の光学ガラス。 11. The optical glass according to claim 10, wherein the total mass of Li 2 O + Na 2 O + K 2 O with respect to the total mass of the glass in terms of oxide is 35.0% or less.
  12.  LiO成分、NaO成分、及びKO成分のうち2種以上の成分を含んでいる請求項10又は11記載の光学ガラス。 The optical glass according to claim 10 or 11, comprising two or more components of Li 2 O component, Na 2 O component, and K 2 O component.
  13.  酸化物換算組成のガラス全質量に対して、質量%で
    MgO成分 0~5.0%及び/又は
    CaO成分 0~10.0%及び/又は
    SrO成分 0~10.0%
    の各成分をさらに含有する請求項1から12のいずれか記載の光学ガラス。
    MgO component 0 to 5.0% and / or CaO component 0 to 10.0% and / or SrO component 0 to 10.0% by mass% with respect to the total mass of the glass in oxide conversion composition
    The optical glass according to claim 1, further comprising:
  14.  酸化物換算組成のガラス全質量に対する質量和MgO+CaO+SrO+BaOが30.0%以下である請求項13記載の光学ガラス。 The optical glass according to claim 13, wherein the mass sum MgO + CaO + SrO + BaO is 30.0% or less with respect to the total glass mass of the oxide equivalent composition.
  15.  酸化物換算組成のガラス全質量に対して、質量%で
    成分 0~10.0%及び/又は
    La成分 0~10.0%及び/又は
    Gd成分 0~10.0%
    の各成分をさらに含有する請求項1から14のいずれか記載の光学ガラス。
    Y 2 O 3 component 0 to 10.0% and / or La 2 O 3 component 0 to 10.0% and / or Gd 2 O 3 component 0 to 0% by mass with respect to the total glass mass of oxide conversion composition 10.0%
    The optical glass according to claim 1, further comprising:
  16.  酸化物換算組成のガラス全質量に対する質量和Y+La+Gdが20.0%以下である請求項15記載の光学ガラス。 The optical glass according to claim 15, wherein the mass sum Y 2 O 3 + La 2 O 3 + Gd 2 O 3 with respect to the total glass mass of the oxide equivalent composition is 20.0% or less.
  17.  酸化物換算組成のガラス全質量に対して、質量%で
    成分 0~10.0%及び/又は
    GeO成分 0~10.0%及び/又は
    Bi成分 0~20.0%及び/又は
    ZrO成分 0~10.0%及び/又は
    ZnO成分 0~10.0%及び/又は
    Al成分 0~10.0%及び/又は
    Ta成分 0~10.0%及び/又は
    Sb成分 0~1.0%
    の各成分をさらに含有する請求項1から16のいずれか記載の光学ガラス。
    B 2 O 3 component 0 to 10.0% and / or GeO 2 component 0 to 10.0% and / or Bi 2 O 3 component 0 to 20% by mass with respect to the total mass of the glass having an oxide equivalent composition. 0% and / or ZrO 2 component 0 to 10.0% and / or ZnO component 0 to 10.0% and / or Al 2 O 3 component 0 to 10.0% and / or Ta 2 O 5 component 0 to 10 0.0% and / or Sb 2 O 3 component 0-1.0%
    The optical glass according to claim 1, further comprising:
  18.  1.70以上2.20以下の屈折率(nd)を有し、10以上25以下のアッベ数(νd)を有する請求項1から17のいずれか記載の光学ガラス。 The optical glass according to claim 1, having a refractive index (nd) of 1.70 or more and 2.20 or less and an Abbe number (νd) of 10 or more and 25 or less.
  19.  分光透過率が70%を示す波長(λ70)が500nm以下である請求項1から18のいずれか記載の光学ガラス。 The optical glass according to any one of claims 1 to 18, wherein the wavelength (λ 70 ) at which the spectral transmittance shows 70% is 500 nm or less.
  20.  請求項1から19のいずれか記載の光学ガラスからなる光学素子。 An optical element made of the optical glass according to any one of claims 1 to 19.
  21.  請求項1から19のいずれか記載の光学ガラスからなる精密プレス成形用プリフォーム。 A precision press-molding preform made of the optical glass according to any one of claims 1 to 19.
PCT/JP2010/057705 2009-04-30 2010-04-30 Optical glass, optical element, and preform for precision press molding WO2010126141A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2010800026088A CN102159512A (en) 2009-04-30 2010-04-30 Optical glass, optical element, and preform for precision press molding

Applications Claiming Priority (12)

Application Number Priority Date Filing Date Title
JP2009-111384 2009-04-30
JP2009111308A JP2010260740A (en) 2009-04-30 2009-04-30 Optical glass, and optical element
JP2009111405A JP5698442B2 (en) 2009-04-30 2009-04-30 Optical glass and optical element
JP2009-111313 2009-04-30
JP2009-111308 2009-04-30
JP2009-111301 2009-04-30
JP2009-111386 2009-04-30
JP2009111301A JP2010260739A (en) 2009-04-30 2009-04-30 Optical glass, and optical element
JP2009111313A JP2010260742A (en) 2009-04-30 2009-04-30 Optical glass, optical element, and preform for precision press molding
JP2009111386A JP5630968B2 (en) 2009-04-30 2009-04-30 Optical glass, optical element and precision press molding preform
JP2009-111405 2009-04-30
JP2009111384A JP5694647B2 (en) 2009-04-30 2009-04-30 Optical glass, optical element and precision press molding preform

Publications (1)

Publication Number Publication Date
WO2010126141A1 true WO2010126141A1 (en) 2010-11-04

Family

ID=43032283

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/057705 WO2010126141A1 (en) 2009-04-30 2010-04-30 Optical glass, optical element, and preform for precision press molding

Country Status (3)

Country Link
KR (1) KR101657245B1 (en)
CN (2) CN107082562B (en)
WO (1) WO2010126141A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018070414A (en) * 2016-10-28 2018-05-10 株式会社住田光学ガラス Optical glass, preform for precision mold press and optical element
EP3747841A4 (en) * 2018-01-31 2021-10-27 Agc Inc. GLASS SUBSTRATE WITH AN ANTIREFLEX LAYER AND OPTICAL COMPONENT
WO2022159275A1 (en) * 2021-01-22 2022-07-28 Corning Incorporated Phosphate glasses with high refractive index and reduced dispersion
WO2022159277A1 (en) * 2021-01-22 2022-07-28 Corning Incorporated Calcium-containing high-index phosphate glasses
CN114853334A (en) * 2018-12-03 2022-08-05 成都光明光电股份有限公司 Optical glass, optical preform, optical element and optical instrument
TWI867322B (en) * 2017-06-16 2024-12-21 日商小原股份有限公司 Optical glass, preform, optical element and optical machine

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108178509A (en) * 2013-02-19 2018-06-19 Hoya株式会社 Optical glass, optical glass blank, glass material for press molding, optical element, and method for producing the same
CN104860531A (en) * 2014-02-26 2015-08-26 株式会社小原 Optical Glass, Lens Pre-forming Body And Optical Element
TWI685475B (en) * 2014-03-20 2020-02-21 日商小原股份有限公司 Optical glass, lens preform and optical element
CN105347668A (en) * 2015-10-28 2016-02-24 湖北新华光信息材料有限公司 Dense flint optical glass and preparation method thereof
CN106698924B (en) * 2016-12-15 2019-09-17 成都光明光电股份有限公司 Optical glass, gas preform and optical element
CN112424135A (en) * 2018-07-18 2021-02-26 株式会社小原 Optical glass, preform, and optical element
CN111253066B (en) * 2018-12-03 2022-03-08 成都光明光电股份有限公司 Optical glass, optical preform, optical element and optical instrument
CN111253063B (en) * 2018-12-03 2022-03-11 成都光明光电股份有限公司 Optical glass, optical preform, optical element and optical instrument
CN111253064B (en) * 2018-12-03 2022-03-08 成都光明光电股份有限公司 Optical glass, optical preform, optical element and optical instrument
CN109399916B (en) * 2018-12-03 2022-06-17 成都光明光电股份有限公司 Optical glass, optical preform, optical element and optical instrument
CN116806210A (en) * 2021-01-22 2023-09-26 康宁股份有限公司 Phosphate glass with high refractive index and low density

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05270853A (en) * 1992-03-19 1993-10-19 Ohara Inc Highly dispersive optical glass
JPH06345481A (en) * 1993-06-07 1994-12-20 Ohara Inc Production of optical glass
JPH08104537A (en) * 1994-09-30 1996-04-23 Hoya Corp Optical glass
JPH09188540A (en) * 1995-12-29 1997-07-22 Ohara Inc Optical glass free from solarization
JP2003300751A (en) * 2002-04-02 2003-10-21 Ohara Inc Optical glass
JP2005206433A (en) * 2004-01-23 2005-08-04 Hoya Corp Optical glass, glass body to be formed by press forming, optical device and method of manufacturing the same
JP2008133189A (en) * 2008-02-19 2008-06-12 Ohara Inc Method of manufacturing optical glass

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3995641B2 (en) * 2003-08-29 2007-10-24 Hoya株式会社 Optical glass, glass body to be molded for press molding, optical element and method for producing the same
JP6345481B2 (en) * 2014-05-15 2018-06-20 日立Geニュークリア・エナジー株式会社 Fuel assembly, core, and method for producing fuel assembly

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05270853A (en) * 1992-03-19 1993-10-19 Ohara Inc Highly dispersive optical glass
JPH06345481A (en) * 1993-06-07 1994-12-20 Ohara Inc Production of optical glass
JPH08104537A (en) * 1994-09-30 1996-04-23 Hoya Corp Optical glass
JPH09188540A (en) * 1995-12-29 1997-07-22 Ohara Inc Optical glass free from solarization
JP2003300751A (en) * 2002-04-02 2003-10-21 Ohara Inc Optical glass
JP2005206433A (en) * 2004-01-23 2005-08-04 Hoya Corp Optical glass, glass body to be formed by press forming, optical device and method of manufacturing the same
JP2008133189A (en) * 2008-02-19 2008-06-12 Ohara Inc Method of manufacturing optical glass

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018070414A (en) * 2016-10-28 2018-05-10 株式会社住田光学ガラス Optical glass, preform for precision mold press and optical element
TWI867322B (en) * 2017-06-16 2024-12-21 日商小原股份有限公司 Optical glass, preform, optical element and optical machine
EP3747841A4 (en) * 2018-01-31 2021-10-27 Agc Inc. GLASS SUBSTRATE WITH AN ANTIREFLEX LAYER AND OPTICAL COMPONENT
US11964904B2 (en) 2018-01-31 2024-04-23 AGC Inc. Glass substrate with antireflection film, and optical member
CN114853334A (en) * 2018-12-03 2022-08-05 成都光明光电股份有限公司 Optical glass, optical preform, optical element and optical instrument
WO2022159275A1 (en) * 2021-01-22 2022-07-28 Corning Incorporated Phosphate glasses with high refractive index and reduced dispersion
WO2022159277A1 (en) * 2021-01-22 2022-07-28 Corning Incorporated Calcium-containing high-index phosphate glasses
US11472731B2 (en) 2021-01-22 2022-10-18 Corning Incorporated Phosphate glasses with high refractive index and reduced dispersion
US11479499B2 (en) 2021-01-22 2022-10-25 Corning Incorporated Calcium-containing high-index phosphate glasses

Also Published As

Publication number Publication date
CN107082562B (en) 2021-02-09
KR20120004538A (en) 2012-01-12
CN102159512A (en) 2011-08-17
KR101657245B1 (en) 2016-09-13
CN107082562A (en) 2017-08-22

Similar Documents

Publication Publication Date Title
WO2010126141A1 (en) Optical glass, optical element, and preform for precision press molding
JP5558755B2 (en) Optical glass, optical element and preform
JP6076594B2 (en) Optical glass, preform and optical element
JP2010260740A (en) Optical glass, and optical element
JP5698642B2 (en) Optical glass and optical element
JP5823859B2 (en) Optical glass, optical element and precision press molding preform
JP7075895B2 (en) Optical glass, preforms and optics
JPWO2017175552A1 (en) Optical glass, preform material and optical element
JP6174317B2 (en) Optical glass, optical element and preform
JP2013151410A (en) Optical glass, optical element and preform
JP5698442B2 (en) Optical glass and optical element
JP2024003105A (en) Optical glass, preform, and optical element
JP2016088835A (en) Optical glass, preform and optical element
JP2010024101A (en) Optical glass, glass molded product and optical device
JP2010260739A (en) Optical glass, and optical element
JP2010260742A (en) Optical glass, optical element, and preform for precision press molding
JP5721780B2 (en) Optical glass, optical element and preform
JP2017019696A (en) Optical glass, preform and optical element
JP5721781B2 (en) Optical glass, optical element and preform
JP2016074566A (en) Optical glass, lens preform and optical element
JP5694647B2 (en) Optical glass, optical element and precision press molding preform
JP2012091983A (en) Optical glass and optical element
JP5630968B2 (en) Optical glass, optical element and precision press molding preform
JP2010047425A (en) Optical glass and method for reducing cloudiness of glass molded body
JP6689057B2 (en) Optical glass, preforms and optical elements

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080002608.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10769839

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20117028374

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 10769839

Country of ref document: EP

Kind code of ref document: A1