[go: up one dir, main page]

WO2010122749A1 - Communication system, communication apparatus and communication method - Google Patents

Communication system, communication apparatus and communication method Download PDF

Info

Publication number
WO2010122749A1
WO2010122749A1 PCT/JP2010/002748 JP2010002748W WO2010122749A1 WO 2010122749 A1 WO2010122749 A1 WO 2010122749A1 JP 2010002748 W JP2010002748 W JP 2010002748W WO 2010122749 A1 WO2010122749 A1 WO 2010122749A1
Authority
WO
WIPO (PCT)
Prior art keywords
reference symbol
feedback information
transmission
base station
symbol sequence
Prior art date
Application number
PCT/JP2010/002748
Other languages
French (fr)
Japanese (ja)
Inventor
示沢寿之
野上智造
山田昇平
平川功
加藤恭之
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2010122749A1 publication Critical patent/WO2010122749A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J13/00Code division multiplex systems
    • H04J13/0007Code type
    • H04J13/0022PN, e.g. Kronecker
    • H04J13/0025M-sequences
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J11/0023Interference mitigation or co-ordination
    • H04J11/005Interference mitigation or co-ordination of intercell interference
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • H04L27/2613Structure of the reference signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0032Distributed allocation, i.e. involving a plurality of allocating devices, each making partial allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0032Distributed allocation, i.e. involving a plurality of allocating devices, each making partial allocation
    • H04L5/0035Resource allocation in a cooperative multipoint environment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0204Channel estimation of multiple channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/022Channel estimation of frequency response
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0224Channel estimation using sounding signals
    • H04L25/0226Channel estimation using sounding signals sounding signals per se
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/006Quality of the received signal, e.g. BER, SNR, water filling

Definitions

  • the present invention relates to a communication system, a communication apparatus, and a communication method.
  • This application claims priority based on Japanese Patent Application No. 2009-106250 filed in Japan on April 24, 2009, the contents of which are incorporated herein by reference.
  • a cellular (cell) in which a plurality of areas covered by a base station (transmitting station, transmitting device, eNodeB) are arranged in a cell (Cell)
  • a base station transmitting station, transmitting device, eNodeB
  • the communication area can be expanded.
  • mobile terminals receiving station, mobile station, receiving device, UE; User Equipment
  • communication can be performed without receiving interference of transmission signals from a plurality of base station apparatuses, there has been a problem that frequency utilization efficiency is low.
  • Non-Patent Document 1 discloses a CoMP (Cooperative Multipoint) transmission system as such a system.
  • joint processing Joint Processing
  • joint transmission Joint transmission
  • Scheduling Coordinated Scheduling
  • Beamforming beamforming
  • Non-Patent Document 2 shows a method of performing these controls.
  • FIG. 22 is a diagram illustrating an example in which the mobile terminal 1050 transmits the feedback information IFB to the base station 1001 using the reference signal RS transmitted from the base station 1001.
  • a reference signal RS is transmitted from the base station 1001 to the mobile terminal 1050, and the mobile terminal 1050 transmits feedback information IFB generated based on the reference signal RS to the base station 1001.
  • a reference signal (RS; Based on Reference Signal, pilot signal, known signal) RS
  • the mobile terminal 1050 estimates the transmission path condition of the downlink, and the uplink (uplink) that performs data transmission from the mobile terminal 1050 to the base station 1001 It is conceivable to transmit (feedback) the estimated transmission path condition or the like to the base station 1001.
  • FIG. 23 is a diagram illustrating an example of a reference signal (reference symbol) RS transmitted by the base station 1001.
  • the horizontal axis indicates the time direction
  • the vertical axis indicates the frequency direction
  • each square indicates a resource element
  • the shaded square indicates a resource element to which the reference signal RS is mapped.
  • the reference signal RS is: As shown in the figure, a reference signal scattered (scattered) in resource elements in the frequency direction and the time direction can be used.
  • feedback information IFB As information (feedback information IFB) generated based on this reference signal RS and fed back to the base station 1001, recommended transmission format information (CQI (Channel Quality Indicator), RI (Rank Indicator), PMI (Precoding Matrix Index) )) Etc. can be used.
  • CQI Channel Quality Indicator
  • RI Rank Indicator
  • PMI Precoding Matrix Index
  • the present invention has been made in view of the above problems, and an object thereof is a communication system, a communication apparatus, and a communication method capable of efficiently obtaining appropriate feedback information in a communication system capable of performing cooperative communication. Is to provide.
  • the present invention has been made to solve the above-described problem, and a communication system according to an aspect of the present invention generates a reference signal sequence for generating a transmission side reference symbol sequence that is a sequence of reference symbols based on a pseudo-noise sequence.
  • a generation unit a resource element mapping unit that maps transmission data and the transmission-side reference symbol sequence to one or a plurality of resource elements for each one or a plurality of symbols, and shows the transmission data and the transmission-side reference symbol sequence
  • a first wireless transmission unit that generates and transmits a transmission signal of a wireless signal according to the mapping, a first wireless reception unit that receives feedback information based on a signal reception state of the reference symbol, and a mode of transmission of the transmission data
  • a first communication device including a feedback information processing unit that controls based on the feedback information;
  • a second radio reception unit that receives the radio signal; and a signal reception state from the first communication device is measured based on a reference symbol sequence extracted from the received radio signal, and the signal reception state is measured according to the measured signal reception state
  • a second communication device including a feedback information generation unit that generates feedback information and a second wireless transmission unit that transmits the feedback information;
  • the transmission mode refers to a coding rate for encoding transmission data, a modulation scheme, a
  • a communication system is the communication system described above, and is included in a third radio reception unit that receives the transmission signal, and a despread reference symbol sequence extracted from the transmission signal.
  • a feedback information generating unit that measures a signal reception state from the first communication device based on a reference symbol to be generated, generates feedback information according to the measured signal reception state, and a third wireless transmission unit that transmits the feedback information;
  • a third communication device including: In this communication system, the second communication device that despreads the reference symbol sequence before despreading and generates feedback information is the same as the third communication device that generates feedback information based on each reference symbol without despreading. Since the reference symbol is referred to, both communication apparatuses can be mixed without increasing the resource overhead due to the reference symbol.
  • a communication system is the communication system described above, and includes a plurality of the first communication devices, and resource element mapping units of the plurality of first communication devices are the same resource elements.
  • the transmission side reference symbol sequence is mapped for each symbol.
  • the second communication device since reference symbols are mapped to the same resource elements between adjacent first communication devices, the second communication device despreads the reference symbol sequence before despreading, so that the other first communication devices Interference due to the reference signal can be suppressed or reduced.
  • a communication system is the communication system described above, wherein the transmission-side reference symbol sequence generated by the reference signal generation unit is a transmission-side reference symbol sequence of another first communication device.
  • Orthogonal to Here, a code sequence orthogonal to each other from an orthogonal code sequence such as a Walsh code, an OVSF code, and a Hadamard code can be used as a transmission-side reference symbol sequence orthogonal to the transmission-side reference symbol sequence of another first communication apparatus.
  • the orthogonal reference symbol sequence is used in the first communication device, the cross-correlation is excellent, and the second communication device despreads the reference symbol sequence before despreading from other first communication devices. The effect of suppressing or reducing interference is great.
  • a communication system is the communication system described above, and includes a plurality of the first communication devices, and the transmission side generated by a reference signal generation unit of the plurality of first communication devices.
  • the reference symbol series are cyclically shifted from each other.
  • the transmission side reference symbol sequence shifted cyclically between the first communication devices is used, when the second communication device despreads the reference symbol sequence before despreading, due to the autocorrelation of the sequence The effect of suppressing or reducing interference from other first communication devices can be obtained.
  • a communication system is the communication system described above, and includes a plurality of the first communication devices, and resource element mapping units of the plurality of first communication devices have different resource elements. Map the reference symbols.
  • reference symbols are mapped to resource elements that are different from each other between adjacent first communication devices. Therefore, when the second communication device despreads the reference symbol sequence before despreading, Interference due to transmission data can be suppressed or reduced.
  • a communication apparatus includes a reference signal generation unit that generates a transmission-side reference symbol sequence that is a sequence of reference symbols based on a pseudo-noise sequence, transmission data, and the transmission-side reference symbol sequence, A resource element mapping unit that maps one to a plurality of resource elements for each one or a plurality of symbols, and a radio transmission unit that generates and transmits a radio signal indicating the transmission data and the transmission side reference symbol sequence according to the mapping And a first wireless reception unit that receives feedback information based on a signal reception state of the reference symbol, and a feedback information processing unit that controls a transmission method of the transmission data based on the feedback information. Since this communication device transmits a radio signal indicating a reference symbol sequence based on a pseudo-noise sequence, feedback information obtained by despreading this reference symbol sequence and suppressing or reducing interference from other communication devices is used. Therefore, appropriate control can be performed.
  • a communication apparatus includes a radio reception unit that receives a radio signal indicating a transmission-side reference symbol sequence via a propagation path, and a reference symbol sequence extracted from the received radio signal.
  • a feedback information generation unit that measures a signal reception state based on the signal reception state and generates the feedback information according to the measured signal reception state, and a wireless transmission unit that transmits the feedback information.
  • the communication apparatus can suppress or reduce interference from a communication apparatus other than the desired communication apparatus using the reference symbol sequence, and generate more appropriate feedback information.
  • the first communication device in the communication system in which the first communication device and the second communication device perform wireless communication, is a reference symbol sequence based on a pseudo-noise sequence.
  • a reference signal generation process for generating a certain reference symbol sequence on the transmission side, and a resource element in which the first communication device maps transmission data and the reference symbol sequence on the transmission side to one or more resource elements for each one or more symbols A mapping process; a first radio transmission process in which the first communication apparatus generates and transmits a radio signal indicating the transmission data and the transmission-side reference symbol sequence according to the mapping; and the first communication apparatus transmits the reference symbol.
  • the third communication device communicates with the first communication device.
  • a reference signal generation process in which the first communication device generates a transmission-side reference symbol sequence that is a sequence of reference symbols based on a pseudo-noise sequence, and the first communication device sets transmission data and the transmission-side reference symbol sequence to 1 to 1
  • a resource element mapping process for mapping to one or a plurality of resource elements for each of a plurality of symbols, and the first communication apparatus generates and transmits a radio signal indicating the transmission data and the transmission side reference symbol sequence according to the mapping
  • a first wireless transmission process and the first communication device receives feedback information based on a signal reception state of the reference symbol.
  • Measuring a signal reception state from the first communication device based on a process and a reference symbol sequence extracted from the radio signal received by the second communication device, and generating the feedback information according to the measured signal reception state A feedback information generation process, a second radio transmission process in which the second communication apparatus transmits the feedback information, a third radio reception process in which the third communication apparatus receives the transmission signal, and the third communication apparatus
  • the signal received from the first communication device is measured based on a reference symbol extracted from the transmission signal, and the measured signal
  • the second communication device and the third communication device can refer to the same reference symbol, and both communication devices can be mixed without increasing the resource overhead due
  • a communication method includes a reference signal generation process in which a communication apparatus generates a transmission-side reference symbol sequence that is a sequence of reference symbols based on a pseudo-noise sequence, transmission data, and the transmission-side reference.
  • a resource element mapping process for mapping a symbol sequence to one or a plurality of resource elements for each one or a plurality of symbols, and generating and transmitting a radio signal indicating the transmission data and the transmission side reference symbol sequence according to the mapping
  • a wireless transmission process ; a wireless reception process for receiving feedback information based on a signal reception state of the reference symbol; and a feedback information processing process for controlling a transmission method of the transmission data based on the feedback information.
  • a communication method includes a wireless reception process in which a communication device receives a wireless signal indicating a transmission-side reference symbol sequence via a propagation path, and the wireless signal received by the communication device.
  • this communication method it is possible to suppress or reduce interference from a communication apparatus other than a desired communication apparatus using a reference symbol sequence, and generate more appropriate feedback information.
  • FIG. 1 It is a schematic block diagram which shows the structure of the communication system in the 1st Embodiment of this invention. It is a schematic block diagram which shows the structural example of the communication system which does not include the mobile terminal device which performs the cooperative communication in the embodiment. It is a schematic block diagram which shows the structural example of the communication system which does not include the mobile terminal device which does not perform cooperative communication in the embodiment. It is a schematic block diagram which shows the structure of the base station apparatus 100 in the embodiment. 4 is a conceptual diagram showing an example in which resource element mapping units 301 to 30T map reference symbol sequences for four antenna ports in the same embodiment. FIG. It is a schematic block diagram which shows the structure of the mobile terminal device 150 in the embodiment.
  • FIG. 4 is a conceptual diagram illustrating an example of a reference symbol sequence used by the base station apparatus 100 for an antenna port 1 in the embodiment.
  • FIG. 10B is a conceptual diagram showing an example in which the base station apparatus 100 maps the reference symbol sequence of FIG. 10A in the same embodiment.
  • FIG. 10B is a conceptual diagram showing an example in which the base station device 101 maps the reference symbol sequence obtained by cyclically shifting the reference symbol sequence of FIG. 10A to the same resource element as the base station device 100 in the embodiment.
  • FIG. 10 is a conceptual diagram illustrating an example in which the base station apparatus 100 maps reference symbol sequences in the same embodiment as in FIG. 10B.
  • the base station apparatus 101 is a conceptual diagram showing an example in which a reference symbol sequence is mapped to resource elements shifted by one subcarrier in the frequency direction from the position shown in FIG. 10C.
  • the base station apparatus 100 is a conceptual diagram which shows the example which mapped the reference symbol series of the added antenna port.
  • the base station apparatus 100 is a conceptual diagram showing another example in which a reference symbol sequence of an added antenna port is mapped.
  • FIG. 3 is a conceptual diagram illustrating an example of a 4-chip reference symbol sequence assigned to the antenna port 5 by the base station apparatus 100 in the embodiment.
  • FIG. 13B is a conceptual diagram showing an example in which the base station apparatus 100 maps the reference symbol sequence of FIG. 13A in the same embodiment.
  • FIG. 13B is a conceptual diagram illustrating an example in which the base station device 101 maps the reference symbol sequence obtained by cyclically shifting the reference symbol sequence of FIG. 13A to the same resource element as the base station device 100 in the embodiment.
  • FIG. 14 is a conceptual diagram illustrating an example in which the base station apparatus 100 maps reference symbol sequences in the same embodiment as in FIG.
  • the base station apparatus 101 is a conceptual diagram showing an example in which a reference symbol sequence is mapped to a resource element shifted by one subcarrier in the frequency direction from the position shown in FIG. 13C.
  • it is a conceptual diagram which shows the example of the reference symbol series of 4 chips
  • FIG. it is a conceptual diagram which shows the example which the base station apparatus 100 mapped the reference symbol series.
  • the base station apparatus 101 maps the reference symbols of the antenna ports 1 to 4 by shifting in the frequency direction with respect to the mapping of the base station apparatus 100, and the reference symbol sequence of the antenna port 5 is the base station apparatus 100.
  • FIG. 4 is a conceptual diagram illustrating an example in which a base station apparatus 100 maps a reference symbol sequence of an antenna port 6 in the embodiment.
  • FIG. 4 is a conceptual diagram illustrating an example in which the base station apparatus 100 maps a reference symbol sequence of an antenna port 7 in the embodiment.
  • FIG. 4 is a conceptual diagram illustrating an example in which a base station apparatus 100 maps a reference symbol sequence of an antenna port 8 in the embodiment.
  • FIG. 4 is a conceptual diagram illustrating an example in which a base station apparatus 100 maps a reference symbol sequence of an antenna port 6 in the embodiment.
  • FIG. 4 is a conceptual diagram illustrating an example in which the base station apparatus 100 maps a reference symbol sequence of an antenna port 7 in the embodiment.
  • FIG. 4 is a conceptual diagram illustrating an example in which a base station apparatus 100 maps a reference symbol sequence of an antenna port 8 in the embodiment.
  • FIG. 1 It is a conceptual diagram which shows the example which the base station apparatus 100 mapped the reference symbol series for 1 series to the some resource block in the frequency direction in the 6th Embodiment of this invention. It is a conceptual diagram which shows the example which the base station apparatus 100 mapped the reference symbol sequence for 1 sequence to the some resource block in the time direction in the 7th Embodiment of this invention. It is a conceptual diagram which shows the example which the base station apparatus 100 mapped the reference symbol sequence for 1 series to the some antenna port in the 8th Embodiment of this invention. In the 9th Embodiment of this invention, it is a conceptual diagram which shows the example of the reference symbol series based on the orthogonal code series which the base station apparatuses 100 and 101 use with respect to the antenna port 1.
  • FIG. 1 It is a conceptual diagram which shows the example which the base station apparatus 100 mapped the reference symbol series for 1 series to the some resource block in the frequency direction in the 6th Embodiment of this invention. It is a conceptual diagram which shows the example which the
  • FIG. 4 is a conceptual diagram illustrating an example of a reference symbol sequence based on an orthogonal code sequence used by the base station apparatuses 100 and 101 for the antenna port 2 in the embodiment.
  • FIG. In the embodiment it is a conceptual diagram which shows the example which the base station apparatus 100 mapped the reference symbol series. In the embodiment, it is a conceptual diagram which shows the example which the base station apparatus 101 mapped the reference symbol series. It is a figure which shows the example which a mobile terminal transmits feedback information to a base station apparatus using the reference signal reference-transmitted from a base station. It is a figure which shows the example of the reference signal which a base station transmits.
  • FIG. 1 is a schematic configuration diagram showing a configuration of a communication system 900 according to the first embodiment of the present invention.
  • the communication system 900 in FIG. 1 includes base station devices (communication device, first communication device, transmission device, cell, transmission point, transmission antenna group) 100 and 101 and mobile terminal devices (reception device, reception terminal) 150 and 151. Consists of including.
  • Base station apparatus 100 and base station apparatus 101 are base stations adjacent to each other, and some of the cells overlap.
  • the mobile terminal device 150 (communication device, second communication device) is located at the cell edge between the base station device 100 and the base station device 101, and performs cooperative communication with both base station devices 100 and 101.
  • the mobile terminal apparatus 151 (third communication apparatus) is located near the cell center of the base station apparatus 100 and communicates with the base station apparatus 100 without performing cooperative communication.
  • this invention includes the case where only either one of the mobile terminal apparatus 150 which performs cooperative communication, and the mobile terminal apparatus 151 which does not perform cooperative communication is included.
  • FIG. 2 is a schematic configuration diagram illustrating a configuration example of a communication system 900 when a mobile terminal device that performs cooperative communication is not included.
  • one mobile terminal apparatus 151 is located near the cell center of the base station apparatus 100 and communicates with the base station apparatus 100 without performing cooperative communication.
  • the other mobile terminal apparatus 151 is located near the cell center of the base station apparatus 101, and communicates with the base station apparatus 101 without performing cooperative communication.
  • FIG. 3 is a schematic configuration diagram illustrating a configuration example of the communication system 900 when a mobile terminal device that does not perform cooperative communication is not included.
  • two mobile terminal apparatuses 150 are both located at the cell edges of the base station apparatus 100 and the base station apparatus 101, and perform cooperative communication with both base station apparatuses 100 and 101.
  • the communication devices (base station device and mobile terminal device) of the communication system 900 of the present embodiment can communicate. The same applies to the second and subsequent embodiments.
  • FIG. 4 is a schematic block diagram showing the configuration of the base station apparatus 100 according to the first embodiment of the present invention.
  • base station apparatus 100 includes encoding sections 241 to 24L, scrambling sections 251 to 25L, modulation sections 261 to 26L, layer mapping section 27, precoding section 28, resource element mapping sections 301 to 30T, and OFDM signal generation section 311.
  • wireless transmission units 321 to 32T wireless transmission units 321 to 32T, a reference signal generation unit 29, a wireless reception unit 21, a reception signal processing unit 22, and a feedback information processing unit 23.
  • L represents the number of codewords input to the encoding units 241 to 24L
  • T represents the number of radio transmission units 321 to 32T (the number of antenna ports and the number of transmission antennas).
  • the radio reception unit 21 receives signals transmitted from the mobile terminal devices 150 and 151 through the uplink.
  • the signals from the mobile terminal devices 150 and 151 received by the wireless reception unit 21 include feedback information and data signals.
  • the feedback information is information based on the signal reception state (signal amplitude or the like) of the reference symbol (reference signal). That is, the wireless reception unit 21 (first wireless reception unit) receives feedback information based on the signal reception state of the reference symbol.
  • the reception signal processing unit 22 performs reception processing for transmission processing performed for transmission by the mobile terminal devices 150 and 151 such as OFDM demodulation processing, demodulation processing, and decoding processing on the signal received by the wireless reception unit 21.
  • the feedback information is extracted from the received data signal and output to the feedback information processing unit 23.
  • the base station apparatus 100 receives a plurality of mobile terminal apparatuses that have been subjected to user multiplexing using SC-FDMA (Single Carrier-frequency Division Multiple Access) as an uplink (that is, signal transmission from the mobile terminal apparatus to the base station apparatus). Are distinguished from each other. Note that the base station apparatus 100 may perform user multiplexing using other multiple access schemes such as OFDMA, time division multiple access, and code division multiple access.
  • SC-FDMA Single Carrier-frequency Division Multiple Access
  • the base station apparatus 100 specifies resources (elements for signal transmission divided by time, frequency, code, spatial domain, etc.) for each mobile terminal apparatus to transmit feedback information, and the mobile terminal apparatus is specified. Send feedback information on the resource Thereby, the base station apparatus 100 distinguishes feedback information from each mobile terminal apparatus. Note that the base station apparatus 100 may distinguish the feedback information from each mobile terminal apparatus by another method, such as the mobile terminal apparatus adding a unique identification number for each mobile terminal apparatus to the feedback information. .
  • the feedback information processing unit 23 generates control signals for performing various adaptive controls on the data signals transmitted to the mobile terminal devices 150 and 151 based on the feedback information such as CQI, PMI, and RI.
  • the feedback information processing unit 23 outputs the generated control signals to the encoding units 241 to 24L, the modulation units 261 to 26L, the layer mapping unit 27, the precoding unit 28, and the resource element mapping units 301 to 30T.
  • the adaptive control performed by the feedback information processing unit 23 will be described.
  • the mobile terminal apparatuses 150 and 151 transmit recommended transmission format information (CQI, RI, and PMI) to the base station apparatus 100 as feedback information.
  • the feedback information is obtained by indexing a transmission format known to both the base station apparatus 100 and the mobile terminal apparatuses 150 and 151, and indicates a transmission scheme (transmission format) recommended by the mobile terminal apparatuses 150 and 151 by an index.
  • Recommended transmission format information The base station apparatus 100 performs transmission using the transmission method indicated by the recommended transmission format information.
  • the index indicating the coding rate and the modulation scheme is called CQI
  • the index showing the precoding matrix is called PMI
  • the index showing the number of layers (the number of spatial multiplexing, the number of ranks) Y is called RI.
  • the feedback information processing unit 23 controls the encoding units 241 to 24L and the modulation units 261 to 26L according to CQI, controls the precoding unit 28 according to PMI, and controls the layer mapping unit 27 according to RI. That is, the feedback information processing unit 23 controls the transmission method of transmission data based on the feedback information.
  • the feedback information processing unit 23 stores therein a lookup table in which CQI is associated with a coding rate and a modulation scheme, and the coding rate and modulation scheme corresponding to the input CQI are Is obtained from the lookup table.
  • the feedback information processing unit 23 controls the encoding units 241 to 24L to perform encoding at the acquired encoding rate, and controls the modulation units 261 to 26L to perform modulation using the acquired modulation scheme.
  • the feedback information processing unit 23 stores therein a lookup table in which the PMI and the precoding matrix are associated with each other, and acquires the precoding matrix corresponding to the input PMI from the lookup table.
  • the feedback information processing unit 23 controls the precoding unit 28 to perform precoding according to the acquired precoding matrix. Further, the feedback information processing unit 23 stores therein a lookup table in which RI and the number of layers Y are associated with each other, and acquires the number of layers Y corresponding to the input RI from the lookup table. The feedback information processing unit 23 controls the layer mapping unit 27 to perform mapping according to the acquired layer number Y. The feedback information processing unit 23 may control an upper layer (not shown) that generates a code word in accordance with RI.
  • the mobile terminal apparatus 150 may transmit feedback information regarding mapping to resources.
  • the feedback information processing unit 23 controls the resource element mapping units 301 to 30T to perform mapping corresponding to the transmitted feedback information.
  • SINR may be received as feedback information.
  • the feedback information processing unit 23 stores therein a lookup table in which SINR and code rate are associated with each other.
  • information indicating the channel condition (CSI; Channel State Information) is received as feedback information, and the precoding matrix, coding rate, modulation scheme, and number of layers Y that maximize the power received by the mobile terminal apparatus 150 are fed back.
  • the information processing unit 23 may determine the information.
  • a known method can be used as the determination method.
  • the feedback information processing unit 23 controls the precoding unit 28 to perform precoding based on the determined precoding matrix, and controls the code units 241 to 24L to perform encoding at the determined coding rate, thereby determining the determined modulation.
  • the modulation units 261 to 26L are controlled so as to perform modulation according to the method, and the layer mapping unit 27 is controlled to perform layer mapping with the determined number of layers Y.
  • the encoding units 241 to 24L are turbo codes or convolutional codes for a codeword (transmission data, information data signal) of a desired signal to be transmitted input from an upper layer processing unit (not shown) of the base station apparatus 100. Encoding is performed using an error correction code such as an LDPC (Low Density Parity Check) code, and the result is output to scramblers 251 to 25L.
  • the code units 241 to 24L receive codeword input. It should be noted that the number of code words received by the encoding units 241 to 24L may be one or more.
  • the encoding units 241 to 24L may receive an input as a codeword, which is a processing unit that performs retransmission control such as HARQ (Hybrid Automatic Repeat reQuest) or a processing unit that performs error correction coding.
  • the scramblers 251 to 25L generate different scramble codes for each base station, and perform scramble processing based on the scramble codes on the encoded signals from the encoders 241 to 24L.
  • Modulators 261 to 26L perform BPSK (Binary Phase Shift Keying) or QPSK (Quadrature Phase Shift Keying) or QAM (Quadrature Amplitude Modulation, orthogonal) on the scrambled signal. Modulation processing is performed using a modulation method such as amplitude modulation.
  • the layer mapping unit 27 maps the signals output from the modulation units 261 to 26L to a layer (rank) that performs spatial multiplexing such as MIMO (Multi-Input Multi-Output). When the number of codewords is 2 and the number of layers Y is 4, the layer mapping unit 27 converts the codewords into two parallel signals, thereby setting the number of layers Y to 4. Note that the layer mapping unit 27 may perform mapping using another conversion method.
  • the number of code words input to the layer mapping unit 27 may be the same as the number of code words L input to the encoding units 241 to 24L, and is not limited to two. Further, the number Y of layers to which the layer mapping unit 27 performs mapping changes according to a control signal from the feedback information processing unit 23.
  • the precoding unit 28 performs precoding processing on the signal output from the layer mapping unit 27 (controls the phase and amplitude of the signal), and converts it into a parallel signal having the number T of antenna ports (transmitting antennas).
  • the precoding unit 28 performs precoding processing according to a predetermined precoding matrix input from the feedback information processing unit 23.
  • the precoding unit 28 performs CDD (Cyclic Delay Delay Diversity), transmission diversity (SFBC (Spatial Frequency Block) Code), STBC (Spatial Time Block Block Code), TSTD (Time Switched Transmission Transmission Diversity) or FSTD (Frequency Switched Transmission).
  • the precoding process may be performed using another method such as a process using the. In this case, the feedback information processing unit 23 outputs control information corresponding to the precoding process.
  • the reference signal generation unit 29 generates a sequence of reference symbols known to each other (transmission side reference symbol sequence) between the base station and the mobile terminal, and outputs it to the resource element mapping units 301 to 30T.
  • the reference symbol sequence generated by the reference signal generation unit 29 is referred to as a reference symbol sequence when attention is paid to the sequence, and is referred to as a reference symbol when attention is paid to individual reference symbols. This is referred to as a reference signal.
  • the reference signal generation unit 29 generates a reference symbol from a random number based on the cell ID.
  • the reference signal generation unit 29 generates a reference symbol sequence based on an M (Maximum-length) sequence that is a pseudo noise sequence (pseudo random sequence, spreading code, PN (Pseudo Noise) sequence). Note that the sequence used by the reference signal generation unit 29 may be an arbitrary sequence (signal) as long as both the base station apparatus and the mobile terminal apparatus are known.
  • the reference signal generator 29 is a pseudo noise sequence other than M (Maximum-length) sequence such as Gold code, orthogonal Gold code, Barker code, orthogonal code sequence (Walsh code, OVSF (Orthogonal Variable Spreading Factor) code, Hadamard code, etc.)
  • the reference symbol sequence may be generated based on the above, or a sequence obtained by cyclically shifting these sequences or a sequence expanded cyclically may be used. Based on the orthogonal code sequence, the reference signal generation unit 29 generates a reference symbol sequence that is orthogonal to a reference symbol sequence of another base station apparatus.
  • the reference signal generation unit 29 may use a computer or the like to generate a sequence having excellent autocorrelation characteristics and cross-correlation characteristics, and use a reference symbol sequence based on this sequence. Details of the reference symbol sequence generated by the reference signal generation unit 29 will be described later.
  • the resource element mapping units 301 to 30T map the transmission data signal output from the precoding unit 28 and the reference symbol sequence output from the reference signal generation unit 29 to the resource element of each antenna port for each symbol.
  • mapping a reference symbol sequence to a resource element for each symbol is also simply referred to as mapping (assigning) a reference symbol sequence (to a resource element).
  • FIG. 5 is a conceptual diagram illustrating an example in which the resource element mapping units 301 to 30T map reference symbol sequences for four antenna ports.
  • one resource block (subframe) is composed of 12 subcarriers in the frequency direction and 14 OFDM symbols in the time direction.
  • Each subcarrier in one OFDM symbol is also called a resource element RE.
  • the front and rear OFDM symbols obtained by dividing the subframe into two in the time direction are also called slots.
  • the length of the OFDM symbol in the time direction is called OFDM symbol length LOFDS
  • the length of the slot in the time direction is called slot length LSL
  • the length of the subframe in the time direction is called subframe length LSF.
  • the length (bandwidth) of the subcarrier in the frequency direction is called a subcarrier interval WSC
  • the length of the resource block in the frequency direction is called a resource block width WRB.
  • Numerals attached to resource elements RE in the figure represent reference symbols transmitted from antenna ports 1 to 4, respectively.
  • no signal is assigned to the resource elements RE in the other antenna ports and zero is set so that the resource element mapping units 301 to 30T have the antennas.
  • Signals between ports are orthogonalized.
  • the number of OFDM symbols of the resource block to which the resource element mapping units 301 to 30T perform mapping may be variable. For example, when adding a long guard interval, the resource element mapping sections 301 to 30T perform mapping by setting the number of OFDM symbols in one slot to six.
  • the resource element mapping units 301 to 30T may change the number of resource blocks in the frequency direction according to the frequency bandwidth (system bandwidth) used by the communication system.
  • the resource element mapping units 301 to 30T can use 6 to 110 resource blocks, and can further increase the total system bandwidth to 110 or more by frequency aggregation.
  • one component carrier is composed of 100 physical resource blocks, and by setting five component carriers with a guard band between component carriers, the total system bandwidth is composed of 500 physical resource blocks, and resource
  • the element mapping units 301 to 30T may perform mapping for each resource block.
  • one component carrier has a bandwidth of 20 MHz, and the total system bandwidth can be 100 MHz with five component carriers with a guard band between the component carriers.
  • the resource element mapping units 301 to 30T may perform mapping for all resource blocks in the entire system bandwidth, or may perform mapping for some resource blocks. Further, mapping may be performed on some resource elements RE in the resource block.
  • Resource element mapping sections 301 to 30T assign reference symbols based on pseudo-noise sequences as reference symbols in at least one antenna port, and assign reference symbols generated from random numbers based on cell IDs as reference symbols in the remaining antenna ports. . Details will be described later. Further, different types of transmission data are mapped to resource elements other than the resource element to which the reference symbol is assigned.
  • the OFDM signal generators 311 to 31T perform frequency-time transform processing on the frequency domain signals output from the resource element mapping units 301 to 30T by inverse fast Fourier transform (IFFT), and thereby the time domain signals. Convert to Furthermore, the OFDM signal generators 311 to 31T add a guard interval (GI; Guard Interval; also referred to as CP) by cyclically expanding a part of each OFDM symbol converted into a time domain signal. .
  • GI Guard Interval
  • CP guard interval
  • Each of the wireless transmission units 321 to 32T includes one transmission antenna.
  • the radio transmission units 321 to 32T perform frequency conversion from the baseband to the radio frequency on the signal output from the OFDM signal generation unit, and transmit the signal from the transmission antenna.
  • the signals input from the OFDM signal generators 311 to 31T are signals indicating the transmission data mapped by the resource element mapping units 301 to 30T and the reference symbol sequence. That is, radio transmission sections 321 to 32T (first radio transmission sections) generate and transmit radio signals indicating transmission data and reference symbol sequences according to the mapping performed by mapping sections 301 to 30T.
  • the configuration and the function of each unit are the same as those of the base station apparatus 100. However, as described later, the reference symbol sequence generated by the reference signal generation unit 29 of the base station apparatus 101 or the position where the resource element mapping units 301 to 30T map the reference symbols is different from the base station apparatus 100.
  • FIG. 6 is a schematic block diagram illustrating a configuration of the mobile terminal device 150 in the present embodiment.
  • a mobile terminal apparatus 150 includes radio reception units 511 to 51R, OFDM signal demodulation units 521 to 52R, resource element demapping units 531 to 53R, a filter unit 55, a layer demapping unit 57, a deprecoding unit 56, and a demodulation.
  • the mobile terminal apparatus 150 includes R reception antennas, and one radio reception unit corresponds to one antenna.
  • the radio reception units 511 to 51R (second radio reception units) receive radio signals transmitted from the base station apparatus and passed through the transmission path (propagation path, channel), conversion processing from radio frequency to baseband signal, etc. I do.
  • the OFDM signal demodulation units 521 to 52R remove guard intervals, perform time frequency conversion processing by Fast Fourier Transform (FFT), etc., and convert the signals into frequency domain signals.
  • FFT Fast Fourier Transform
  • N T is the number of transmit antennas
  • N R is the number of receive antennas
  • the transmission signal S (k) is corresponding to each transmitting antenna
  • N (k) is the Noise corresponding to the receiving antenna
  • H (k) represents a frequency response corresponding to each receiving antenna and each transmitting antenna
  • T represents a transposed matrix.
  • Resource element demapping sections 531 to 53R demap (separate and extract) the data signal mapped by base station apparatuses 100 and 101 and the reference symbol sequence, feed the data signal to filter section 55, and feed back the reference symbol sequence to feedback information. It outputs to the production
  • the resource element demapping units 531 to 53R store therein mapping information performed by the base station apparatuses 100 and 101, and perform demapping based on this information.
  • the propagation path estimation unit 54 performs propagation path estimation by estimating amplitude and phase fluctuations (frequency response, transfer function) in each resource element based on the input reference symbols. For resource elements to which reference symbols are not mapped, propagation path estimation is performed by interpolating propagation path estimation values in the frequency direction and time direction based on the resource elements to which reference symbols are mapped. As an interpolation method, the propagation path estimation unit 54 uses linear interpolation. Note that other interpolation methods such as parabolic interpolation, polynomial interpolation, Lagrangian interpolation, spline interpolation, FFT interpolation, and minimum mean square error (Minimum Mean Square Error; MMSE) interpolation may be used. The propagation path estimation unit 54 performs propagation path estimation for each reception antenna with respect to each transmission antenna.
  • MMSE Minimum Mean Square Error
  • the filter unit 55 performs channel compensation on the data signal for each reception antenna output from the resource element demapping units 531 to 53R, using the channel estimation value output from the channel estimation unit 54, and transmits the transmission signal.
  • Estimate S (k) The filter unit 55 estimates the transmission signal S (k) based on the ZF (Zero Forcing) criterion using the weighting coefficient M ZF of Expression (2).
  • H ′ (k) represents an estimated frequency response in cooperative communication
  • H ′ H (k) represents a complex conjugate transpose matrix of H ′ (k)
  • ⁇ 1 represents an inverse matrix.
  • the filter unit 55 may estimate the transmission signal S (k) based on the MMSE criterion using the weighting factor M MMSE of Equation (3), or may use another criterion.
  • a reference signal for signal demodulation UE -A method of further mapping the reference signal for each layer as specific RS, user-specific reference signal, Demodulation RS
  • the feedback information is preferably generated based on the reference signal mapped for each transmission antenna port as described above.
  • H ′ (k), H ′ H (k) and ⁇ 1 are as described above. Furthermore, sigma '2 is noise power, the I NR represents a unit matrix of N R ⁇ N R.
  • the filter unit 55 calculates an estimated value S ′ (k) of the transmission signal S (k) using Expression (4).
  • M (k) represents a weighting coefficient (such as MZF or MMMSE ).
  • the deprecoding unit 56 performs processing for returning the precoding processing performed by the base station apparatuses 100 and 101 to the data signal detected by the filter unit 55. Note that precoding processing using CDD or transmission diversity does not require deprecoding processing on the receiving side. Therefore, when precoding processing using CDD or transmission diversity is performed in the base station apparatus, the deprecoding unit 56 does not perform processing for CDD or transmission diversity.
  • the layer demapping unit 57 demaps the signal for each layer to each codeword. Demodulating sections 581 to 58L demodulate the signal from layer demapping section 57 based on the modulation scheme used by base station apparatuses 100 and 101.
  • the descrambling units 591 to 59L perform descrambling processing on the signals from the demodulation units 581 to 58L based on the scramble code used by the base station apparatuses 100 and 101.
  • Decoding sections 601 to 60L perform error correction decoding processing on the signals from demodulation sections 581 to 58L based on the encoding method used by base station apparatuses 100 and 101, and perform upper layer processing of mobile terminal apparatus 150. Part (not shown).
  • the feedback information generation unit 61 generates feedback information based on the reference symbol sequence output from the resource element demapping units 531 to 53R.
  • the feedback information generation unit 61 measures the received signal power to interference plus noise power ratio (SINR) using the input reference symbol sequence to generate feedback information. Details will be described later. Note that the feedback information generation unit 61 measures the received signal power to interference power ratio (SIR), the received signal power to noise power ratio (SNR), the path loss, or the like to provide feedback information. May be generated.
  • the unit for generating the feedback information includes the frequency direction (for example, for each subcarrier, for each resource element, for each resource block, for each subband composed of a plurality of resource blocks), for example, for the time direction (for example, for each OFDM symbol, For each frame, each slot, each radio frame, etc.), spatial direction (for example, each antenna port, each transmission antenna, each reception antenna, etc.), and the like can be used.
  • the frequency direction for example, for each subcarrier, for each resource element, for each resource block, for each subband composed of a plurality of resource blocks
  • the time direction for example, for each OFDM symbol, For each frame, each slot, each radio frame, etc.
  • spatial direction for example, each antenna port, each transmission antenna, each reception antenna, etc.
  • the feedback information generation unit 61 of the mobile terminal apparatus 150 that performs cooperative communication performs despreading processing on the reference symbol sequence extracted from the transmission signal.
  • the feedback information generation unit 61 of the mobile terminal device 150 is also referred to as a second feedback information generation unit (second transmission path condition measurement unit).
  • the feedback information generation unit 61 of the mobile terminal device 151 that does not perform cooperative communication uses each reference symbol independently without despreading the reference symbol sequence. That is, feedback information generating section 61 of mobile terminal apparatus 151 measures the signal reception state (SINR) from the base station apparatus based on the reference symbols included in the reference symbol sequence, and generates feedback information according to the measured signal reception state. To do.
  • the feedback information generation unit 61 of the mobile terminal device 151 is also referred to as a first feedback information generation unit (first transmission path condition measurement unit). Details will be described later.
  • the despreading process is an autocorrelation between a reference symbol sequence extracted by the resource element demapping units 531 to 53R from a radio signal received by the mobile terminal device and a known reference symbol sequence used in transmission by the base station device. It means taking. By taking autocorrelation, it is possible to extract reference symbols from the desired base station apparatus while suppressing or reducing interference from other base station apparatuses. That is, the feedback information generation unit 61 despreads the reference symbol sequence extracted from the received radio signal based on the reference symbol sequence transmitted by the base station apparatus (takes autocorrelation between them), and the reference symbol after despreading Further, feedback information is generated based on the despread reference symbols extracted as described above.
  • the mobile terminal apparatus 150 can perform despreading processing by obtaining an autocorrelation value for an arbitrary reference symbol sequence (for example, a reference symbol sequence generated by a random number or the like).
  • an arbitrary reference symbol sequence for example, a reference symbol sequence generated by a random number or the like.
  • the unit for generating feedback information and the unit for performing despreading processing may be different.
  • the mobile terminal device 150 uses, as feedback information, precoding matrix information (PMI) used by the precoding units 28 of the base station devices 100 and 101, and coding processing and modulation performed by the coding units and modulation units of the base station devices 100 and 101.
  • PMI precoding matrix information
  • MCS Modulation and Code Scheme
  • RI Layer mapping unit of the base station apparatus
  • CSI CSI or the like
  • the transmission signal generation unit 62 performs encoding processing, modulation processing, OFDM signal generation processing, and the like to transmit (feedback) the feedback information output from the feedback information generation unit 61 to the base station apparatuses 100 and 101. Is generated.
  • the radio transmission unit 63 (second radio transmission unit) up-converts a transmission signal including feedback information generated by the transmission signal generation unit 62 to a radio frequency, and then transmits the radio signal to the base station apparatuses 100 and 101 through the uplink.
  • the configuration and functions of each unit are the same as those of the mobile terminal device 150. However, mobile terminal apparatus 151 is different from mobile terminal apparatus 150 in that it communicates only with base station apparatus 100 and feedback information generating section 61 does not despread the reference symbol sequence.
  • FIG. 7 is a flowchart illustrating a procedure in which the base station apparatus 100 generates and maps a reference symbol sequence.
  • the reference signal generation unit 29 generates a reference symbol sequence for each antenna port based on the sequence stored therein, and outputs the reference symbol sequence to the resource element mapping units 301 to 30T.
  • the resource element mapping units 301 to 30T map the reference symbol sequence input from the reference signal generation unit 29 and the transmission data signal input from the precoding unit 28 for each symbol according to the mapping information stored therein. And output to the OFDM signal generators 311 to 31T.
  • the base station apparatus 100 ends the reference symbol sequence generation and mapping process. Thereafter, the mapped signal is wirelessly transmitted via the OFDM signal generators 311 to 31T and the wireless transmitters 321 to 32T.
  • the procedure for generating and mapping the reference symbol sequence by the base station apparatus 101 is the same.
  • FIG. 8 is a flowchart showing a procedure in which the feedback information generation unit 61 of the mobile terminal device 150 generates feedback information.
  • Feedback information generation unit 61 receives reference symbol sequences from resource element demapping units 531 to 53R and starts generating feedback information.
  • the feedback information generation unit 61 performs despreading on the input reference symbol sequence, and based on the obtained reference symbol, information on the signal reception state from the base station apparatus 100 and the signal from the base station apparatus 101 And reception status information.
  • step S ⁇ b> 22 the feedback information generation unit 61 generates a PMI to be notified to each base station apparatus based on the signal reception state information from the base station apparatus 100 and the signal reception state information from the base station apparatus 101.
  • step S ⁇ b> 23 feedback information generation section 61 generates CQIs to be notified to each base station apparatus based on the signal reception state information from base station apparatus 100 and the signal reception state information from base station apparatus 101.
  • step S ⁇ b> 24 the feedback information generation unit 61 generates RI to be notified to each base station apparatus based on the signal reception state information from the base station apparatus 100 and the signal reception state information from the base station apparatus 101.
  • the feedback information generation unit 61 ends the feedback information generation process. Thereafter, the generated CQI, PMI, and RI are wirelessly transmitted as feedback information via the transmission signal generation unit 62 and the wireless transmission unit 63.
  • the procedure for the feedback information generating unit 61 of the mobile terminal device 151 to generate feedback information is the same.
  • the feedback information generation unit 61 does not perform despreading in step S21, but generates information on the signal reception state from the base station apparatus 100 using each of the input reference symbols as it is. In the following steps, the feedback information generation unit 61 generates only feedback information to be notified to the base station apparatus 100.
  • a signal reception state information a frequency response or a transfer function in a propagation path between the base station device and the mobile terminal device can be used. The order of generating feedback information is not limited to the above.
  • FIG. 9 is a flowchart illustrating a procedure in which the feedback information processing unit 23 of the base station apparatus 100 determines the coding rate of the data signal based on the feedback information.
  • the feedback information processing unit 23 receives the feedback information from the received signal processing unit and starts processing.
  • the feedback information processing unit 23 extracts feedback information (CQI, PMI, and RI) from the mobile terminal device 150 and feedback information from the mobile terminal device 151 from the signal input from the received signal processing unit 22.
  • the feedback information processing unit 23 refers to the lookup table stored therein, determines the coding rate based on the CQI from the mobile terminal devices 150 and 151, and notifies the coding units 241 to 24L.
  • the encoding units 241 to 24L perform encoding by changing the encoding rate to the notified encoding rate.
  • the feedback information processing unit 23 determines a modulation scheme change based on the CQI from the mobile terminal apparatuses 150 and 151 with reference to a lookup table stored therein, and notifies the modulation units 261 to 26L.
  • the modulation units 261 to 26L perform modulation according to the notified modulation method.
  • step S ⁇ b> 34 the feedback information processing unit 23 determines a change in the number of layers based on the CQI from the mobile terminal devices 150 and 151 with reference to a lookup table stored therein, and notifies the layer mapping unit 27 of the change.
  • the layer mapping unit 27 performs mapping according to the notified number of layers.
  • the feedback information processing unit 23 determines a precoding matrix change based on the PMI from the mobile terminal devices 150 and 151 with reference to a lookup table stored therein, and notifies the precoding unit 28 of the change.
  • the precoding unit 28 performs precoding according to the notified precoding matrix.
  • the feedback information processing unit 23 ends the determination process such as the coding rate.
  • the procedure in which the feedback information processing unit 23 of the base station apparatus 101 determines the coding rate and the like is the same. However, in the case of the base station apparatus 101, the feedback information processing unit 23 extracts only feedback information from the mobile terminal apparatus 150 in step S31, and encodes based on the feedback information from the mobile terminal apparatus 150 in the following steps as well. Determine rates, etc.
  • FIG. 10A is a conceptual diagram illustrating an example of a reference symbol sequence used by base station apparatus 100 for antenna port 1.
  • the reference symbol sequences a to h in the figure are generated based on an M sequence that is a pseudo-noise sequence of 8 chips (bits).
  • the series in the figure is a series based on the M series.
  • the M-sequence has excellent autocorrelation characteristics (that is, when despreading is performed, a sharp (high) correlation value (peak value) is obtained when the sequence is synchronized, and low when the sequence is out of synchronization.
  • the 8-chip sequence a to h provides a sharp correlation value at the position a, that is, a sharp correlation value is obtained when the correlation is obtained without shifting the sequence.
  • the reference symbol sequence generated by the reference signal generation unit 29 is not limited to the M sequence, and reference symbols of other sequences may be generated.
  • FIG. 10B is a conceptual diagram illustrating an example in which the base station apparatus 100 maps the reference symbol sequence in FIG. 10A.
  • FIG. 10C is a conceptual diagram illustrating an example in which the base station device 101 maps the reference symbol sequence obtained by cyclically shifting the reference symbol sequence in FIG. 10A to the same resource element as the base station device 100.
  • 10B and 10C among the reference symbol sequences shown in FIG. 5, the reference symbol sequences for antenna port 1 are indicated by a to h, and the reference symbol sequences for antenna ports 2 to 4 are indicated by shading.
  • the reference symbol sequence used by base station apparatus 101 is a cyclic shift of the series used by base station apparatus 100 in FIG. 10B. By shifting cyclically, the position where a sharp correlation value is obtained can be varied.
  • Base station apparatus 100 and base station apparatus 101 map reference symbol sequences to the same resource elements for each symbol.
  • the reference signal generation unit 29 of the base station apparatus 100 generates a signal based on a 0-chip shifted pseudo noise sequence, that is, a sequence that is not shifted, as a reference symbol sequence for the antenna port 1.
  • Resource element mapping sections 301 to 30T of base station apparatus 100 map the generated reference symbol sequence as shown in FIG. 10B.
  • the reference signal generation unit 29 of the base station 101 generates a signal based on a one-chip shifted pseudo noise sequence as a reference symbol sequence for the antenna port 1. That is, the reference symbol sequence generated by the reference signal generation unit 29 is a cyclic shift of the reference symbol sequence of another base station apparatus.
  • Resource element mapping sections 301 to 30T of base station 101 map generated reference symbol sequences as shown in FIG. 10C.
  • mobile terminal apparatus 150 that performs cooperative communication between base station 100 and base station 101 estimates feedback information for each base station apparatus.
  • estimation is performed using reference symbols independently from each of base station apparatuses 100 and 101 (that is, without performing despreading), transmission signals between adjacent cells interfere with each other, and mobile terminal apparatus 150 in particular
  • the mobile terminal apparatus 150 estimates feedback information in a situation where inter-cell interference is large.
  • the inter-cell interference is suppressed or reduced.
  • the feedback information generation unit 61 of the mobile terminal apparatus 150 that simultaneously receives transmission signals from the base station apparatus 100 and the base station apparatus 101 and performs cooperative communication suppresses interference from neighboring cells by performing despreading or The optimum feedback information for performing cooperative communication can be estimated.
  • the base station apparatus 100 and the base station apparatus 101 transmit the same data signal in synchronization (for example, the base station apparatus 100 and the base station apparatus 101 exchange synchronization information with priority or wirelessly,
  • the base station apparatuses 100 and 101 transmit different reference symbols using the same resource element, so that the reference symbols are transmitted.
  • the mobile terminal apparatus 150 can generate and transmit feedback information for each base station apparatus without an increase in overhead due to the above.
  • the mobile terminal apparatus 150 determines, for each base station apparatus, a precoding matrix (specifically, a PMI) corresponding to a signal reception state from each base station apparatus (each of the base station apparatuses 100 and 101), or individually.
  • the base station apparatus (each of the base station apparatuses 100 and 101) can determine and transmit a common precoding matrix (specifically, PMI) between the base station apparatuses in accordance with the signal reception state.
  • the mobile terminal apparatus 150 can generate feedback information by extracting reference symbols for each base station apparatus by correlating the reference symbol sequences of the base station apparatuses 100 and 101 with the received reference symbol series. it can.
  • a pseudo-noise sequence having excellent autocorrelation characteristics as a sequence that is a basis for generating a reference symbol sequence
  • the effect of suppressing or reducing interference can be obtained more greatly.
  • the effect of suppressing or reducing interference can be further increased by using an M sequence having excellent autocorrelation characteristics.
  • the mobile terminal apparatus 151 that does not perform the cooperative communication independently uses the reference symbol sequence without performing despreading in the feedback information generation unit 61 even if the reference symbol sequence is based on the pseudo-noise sequence.
  • the base station apparatus 101 does not need to newly notify the mobile terminal apparatus of control information or the like.
  • a communication system in which mobile terminal apparatuses 150 that perform cooperative communication and mobile terminal apparatuses that do not perform cooperative communication can be realized without increasing the ratio (overhead) of reference symbols to the entire resource.
  • the effect of suppressing or reducing interference is increased by orthogonalizing reference symbol sequences based on pseudo noise sequences between adjacent cells. Therefore, the sequences used by the base station device 100 and the base station device 101 are assigned by a control station located above these base station devices so that their reference symbol sequences are orthogonal to each other. It should be noted that a method of cooperating with each other through a line such as X2 or radio where the base stations communicate control signals or a method generated by each base station device using a parameter such as a cell ID is used. It may be. Base station apparatuses 100 and 101 notify mobile terminal apparatus 150 of the used pseudo-noise sequence, the used reference symbol, the number of shifts, the index (number) of a predefined reference symbol sequence, and the like.
  • the mobile terminal apparatus 150 may specify the pseudo noise sequence and the number of shifts using parameters such as the cell ID notified from the base station apparatuses 100 and 101. Even when the mobile terminal device 150 performs cooperative communication, the base station device that transmits the control information signal to the mobile terminal device 150 and the base station device that the mobile terminal device 150 transmits feedback information
  • the base station apparatus is not limited to one of the base station apparatuses, and may be any one of base station apparatuses performing cooperative communication such as an anchor cell. Even when the mobile terminal device 150 performs cooperative communication, the base station device that transmits the control information signal to the mobile terminal device 150 and the base station device that transmits the feedback information to the mobile terminal device 150 perform cooperative communication. All the base station apparatuses currently performing may be sufficient.
  • FIG. 11A is a conceptual diagram illustrating an example in which the base station apparatus 100 maps reference symbol sequences in the same manner as in FIG. 10B.
  • FIG. 11B is a conceptual diagram illustrating an example in which the base station apparatus 101 maps the reference symbol sequence to a resource element shifted by one subcarrier in the frequency direction from the position illustrated in FIG. 10C.
  • 11A and 11B, as in FIGS. 10B and 10C the reference symbol sequences of antenna port 1 are indicated by a to h, and the reference symbol sequences of antenna ports 2 to 4 are indicated by shading.
  • the base station apparatus 100 and the base station apparatus 101 perform mapping in the same manner as described with reference to FIGS. 10B and 10C. However, in FIG.
  • the mapping performed by base station apparatus 101 is shifted in the frequency direction by one subcarrier higher in the frequency direction (upward) than in the case of FIG. 10C. That is, resource element mapping sections 301 to 30T of base station apparatuses 100 and 101 map reference symbols to resource elements different from each other between adjacent base station apparatuses.
  • reference symbol sequence of the base station apparatus 100 received by the mobile terminal apparatus and the arrangement of the data signals of the base station apparatus 101 are mapped to the same resource element.
  • reference symbol sequence from base station apparatus 100 and the symbol series (data signal sequence) from base station apparatus 101 are not orthogonal to each other, reference signal generation unit 29 uses an M sequence having sharp autocorrelation characteristics. By generating a reference symbol sequence and performing despreading by the mobile terminal apparatus 150, interference from other cells can be greatly reduced, and optimal feedback information for performing cooperative communication can be estimated.
  • the sequence used by the reference signal generation unit 29 may be a sequence having excellent autocorrelation characteristics, and is not limited to the M sequence.
  • the reference symbol sequence based on the pseudo noise sequence is used for all reference symbols of all antenna ports.
  • the resource element mapping units 301 to 30T use the pseudo noise sequence only for a part of them.
  • the reference symbol sequence that has been stored may be mapped.
  • a reference symbol sequence based on a pseudo noise sequence may be assigned to a reference symbol in one antenna port, and a reference symbol generated from a random number based on a cell ID may be assigned to reference symbols in the remaining antenna ports. .
  • the number of antenna ports of the base station apparatuses 100 and 101 is four has been described above, the number of antenna ports is not limited to four and may be one or more antenna ports.
  • 11A and 11B a case has been described in which a resource element that maps a reference symbol sequence is shifted between adjacent cells based on a parameter such as a cell ID.
  • cooperative communication such as between all cells or Active CoMP set is performed.
  • the resource elements to which reference symbols are mapped in advance may be determined among the plurality of cells that perform the above, and the resource elements determined by the resource element mapping units 301 to 30T may be stored.
  • a base station such as RRE (Remote Radio Equipment), RRH (Remote Radio Head), or an independent antenna is controlled through a wire such as an optical fiber as a unit for orthogonalizing reference symbol sequences based on a pseudo noise sequence between cells.
  • a unit, a unit controlled by a base station such as a relay, or a unit configured by a plurality of base stations performing cooperative communication such as Active CoMP set, or a unit of a resource element that maps a reference symbol is used. It may be.
  • the base station apparatus 100 determines the type of pseudo-noise sequence, the position where the peak of the autocorrelation characteristic is obtained, etc. based on the identification information and control information notified to the mobile terminal apparatus 150, and the base station apparatus 100 determines the mobile terminal apparatus.
  • 150 may be notified of identification information and control information at the same time by notifying 150 the type of pseudo noise sequence, the position where the peak of the autocorrelation characteristic is obtained, and the like.
  • the sequence length of the pseudo-noise sequence used by the base station apparatus may be different from the sequence length that the mobile terminal apparatus performs despreading processing on.
  • the mobile terminal apparatus 150 performs the despreading process on the reference symbol sequence in order to generate feedback information. However, the mobile terminal apparatus 150 performs the despreading process when estimating the propagation path for demodulating the information data signal. May be.
  • cooperative communication may be performed between a plurality of base station devices and at least one mobile terminal device.
  • Collaborative communication between physically independent base station apparatuses, or cooperative communication between sectors in one base station apparatus having a sector configuration, or a transmission apparatus (RRE) connected to the base station apparatus by wire such as an optical fiber Or RRH), or a cooperative communication between a base station apparatus and a transmission apparatus (such as a relay station or a repeater station) connected wirelessly using relay technology.
  • RRE transmission apparatus
  • a base station apparatus and a transmission apparatus such as a relay station or a repeater station
  • a mobile terminal apparatus that performs cooperative communication with a plurality of base station apparatuses performs despreading processing, and performs communication with one base station apparatus without performing cooperative communication.
  • a mobile terminal that performs cooperative communication may perform despreading processing
  • a mobile terminal that performs MIMO (Multi Input Multi Output) communication may generate feedback information without performing despreading processing.
  • Feedback information generating section 29 of mobile terminal apparatus 150 that receives transmission signals from a plurality of base station apparatuses 100 and 101 simultaneously and performs cooperative communication performs despreading on reference symbol sequences from the respective base station apparatuses.
  • the signal power (signal amplitude) obtained from each base station apparatus is measured while suppressing interference from adjacent cells.
  • the feedback information generation unit 29 estimates SINR from the signal power (signal amplitude) obtained from each base station apparatus, acquires CQI, PMI, and RI corresponding to the SINR estimated from the lookup table, and feeds them back to the feedback information. And That is, the feedback information is information based on the signal reception state (signal amplitude) of the reference symbol.
  • SINR total SINR
  • the mobile terminal apparatus 151 that does not perform cooperative communication may also despread the reference symbol sequence.
  • the mobile terminal device 151 receives the reference symbol sequence transmitted from the communicating base station device (own base station, own cell, serving cell) 100, and correlates the reference symbol sequence transmitted by the base station device.
  • the signal power (signal amplitude) obtained by this base station can be measured while suppressing interference from adjacent cells.
  • each reference symbol sequence chip includes an interference component from an adjacent base station
  • the reference symbol amplitude and received signal from the own base station are referred to by referring to the resource element to which the reference symbol is mapped.
  • average interference signal power can be obtained, and optimum feedback information (CQI, PMI, etc. based on SINR or SINR) can be estimated.
  • Mobile terminal apparatus 150 may perform despreading processing beyond the sequence length used by base station apparatus 100, or may perform despreading processing for a length less than the sequence length.
  • Base station apparatus 100 or 101 notifies mobile terminal apparatus 150 of a set of cells on which despreading processing is to be performed.
  • the cell set information includes the number of cells, each cell ID, and the pseudo noise sequence of each cell. Note that the pseudo-noise sequence of a cell may be determined by a cell ID or the like.
  • the base station apparatus 100 or 101 receives a measurement report (Measurement Report) from the mobile terminal apparatus 150, and determines a set of cells in which cooperative communication is to be performed using the measurement report.
  • the mobile terminal apparatus 150 When the mobile terminal apparatus 150 is notified of the set of cells to be despread, the mobile terminal apparatus 150 performs despread processing on the reference symbol sequence transmitted from each cell. As described above, feedback information generation section 61 performs despreading on the received reference symbol sequence to obtain a reference symbol in which interference from other base stations is suppressed or reduced. The feedback information generation unit 61 measures signal power (signal amplitude) from a reference symbol whose interference is suppressed or reduced. The feedback information generation unit 61 estimates SINR from the measured signal power, acquires CQI, PMI, and RI corresponding to the SINR estimated from the lookup table, and uses these as feedback information.
  • the feedback information generation unit 61 stores therein a lookup table in which SINR and CQI satisfying required quality are associated with each other in advance.
  • the feedback information generation unit 61 uses the SINR estimated as described above to obtain a CQI by referring to a lookup table.
  • the feedback information generation unit 61 stores a lookup table in advance, refers to the lookup table using SINR, and acquires a precoding matrix that maximizes received power.
  • the feedback information generation unit 61 stores a lookup table in advance, and acquires the RI by referring to the lookup table using SINR.
  • the feedback information generation unit 61 may generate CSI as feedback information.
  • CSI in the receiving antenna port for each transmitting antenna port is generated from the result of performing the despreading process.
  • the feedback information generation unit 61 may compress the feedback information based on the CSI to reduce the amount of feedback information. A difference between transmission path conditions continuous in the time direction or the frequency direction may be used as feedback information. Further, the feedback information may be generated for each subband.
  • the following two methods are conceivable as a method of measuring the channel state from which the feedback information generating unit 61 generates feedback information.
  • the first method is a method for obtaining CQI and PMI based on total SINR or total SINR.
  • the feedback information generation unit 61 combines reference symbols of each cell obtained by performing the despreading process, measures a channel state based on one combined reference symbol, and feedback information based on the measured channel state Is generated.
  • the second method is a method of obtaining CQI and PMI based on SINR in each base station and SINR in each base station.
  • the feedback information generation unit 61 measures the channel state for each reference symbol of each cell obtained by performing the despreading process, and generates feedback information for necessary cells based on the measured channel state.
  • the feedback information generation unit 61 generates feedback information by the first method. Note that feedback information may be generated by the second method, or both the first method and the second method may be provided, and feedback may be performed by a method designated by the base station.
  • the resource element mapping units 301 to 30T map one series of reference symbol sequences for each resource block unit.
  • the communication system in the present embodiment includes base station apparatuses 100 and 101 and mobile terminal apparatuses 150 and 151 similar to those in the communication system in the first embodiment, but 100 and 101 are antennas included in the first embodiment. In addition to ports 1 to 4, antenna ports 5 to 8 are further included.
  • the mapping method of the resource element mapping unit is different from that of the first embodiment. Below, it demonstrates centering on a different part from 1st Embodiment.
  • FIG. 12A shows an example where base station apparatus 100 maps reference symbol sequences of antenna ports 5 to 8 to resource elements.
  • FIG. 12B shows another example in which the base station apparatus 100 maps the reference symbol sequences of the antenna ports 5 to 8 to resource elements.
  • Numbers 5 to 8 attached to resource elements in FIGS. 12A and 12B indicate reference symbol sequences of antenna ports 5 to 8, respectively.
  • the antenna ports are orthogonalized by assigning no signal to the resource elements in other antenna ports and setting them to zero (null).
  • antenna ports 1 to 4 are reference symbols generated based on random numbers using cell IDs, and these reference symbols are shown in shades in FIGS. 12A and 12B.
  • Base station apparatus 100 assigns reference symbol sequences of antenna ports 5 to 8 as shown in FIG. 12A. Note that base station apparatus 100 may allocate reference symbol sequences of antenna ports 5 to 8 as shown in FIG. 12B, or may perform other allocations.
  • FIG. 13A is a conceptual diagram illustrating an example of a 4-chip reference symbol sequence allocated to antenna port 5 among four newly added antenna ports illustrated in FIG. 12A by base station apparatus 100.
  • This reference symbol sequence is a reference symbol sequence based on a pseudo noise sequence.
  • FIG. 13B is a conceptual diagram illustrating an example in which the base station apparatus 100 maps the reference symbol sequence in FIG. 13A.
  • FIG. 13C is a conceptual diagram illustrating an example in which the base station device 101 maps the reference symbol sequence obtained by cyclically shifting the reference symbol sequence in FIG. 13A to the same resource element as the base station device 100. In FIG. 13B and FIG. 13C, among the reference symbol sequences shown in FIG.
  • the reference symbol sequences for antenna port 5 are indicated by a to d, and the reference symbols for antenna ports 1 to 4 are indicated by shading.
  • the reference signal generation unit 29 uses a sequence having excellent autocorrelation characteristics such as an M sequence as a pseudo noise sequence.
  • a sharp peak is obtained at the position a.
  • Base station apparatus 100 and base station apparatus 101 map the reference symbol sequence at the same position of the resource element.
  • base station apparatus 101 uses, as a reference symbol series, a series of base station apparatus 100 that is cyclically shifted by one chip.
  • the reference signal generation unit 29 of the base station apparatus 100 generates a reference symbol sequence based on a pseudo noise sequence shifted (ie, not shifted) by 0 chips as a reference symbol sequence for the antenna port 5.
  • the resource element mapping unit of base station apparatus 100 maps the generated reference symbol sequence as shown in FIG. 13B.
  • the reference signal generation unit 29 of the base station apparatus 101 generates a reference symbol sequence based on a pseudo noise sequence shifted by one chip as a reference symbol sequence for the antenna port 5.
  • the resource element mapping unit of the base station 2 maps the generated reference symbol sequence as shown in FIG. 13C.
  • the base station device 100 maps the reference symbol sequence as shown in FIG. 13B, and the base station device 101 maps the reference symbol sequence as shown in FIG.
  • the mobile terminal apparatus 150 that simultaneously receives transmission signals from the base station 100 and the base station 101 and performs cooperative communication can suppress interference from adjacent cells by performing despreading, and perform cooperative communication. It is possible to estimate the optimum feedback information for performing. Also, the mobile terminal device 151 that does not perform cooperative communication increases new processing by using each chip independently without performing despreading processing, even if the reference symbol sequence is based on a pseudo-noise sequence. And optimal feedback information can be estimated.
  • FIG. 14A is a conceptual diagram illustrating an example in which the base station apparatus 100 maps reference symbol sequences in the same manner as in FIG. 13B.
  • FIG. 14B is a conceptual diagram illustrating an example in which the base station apparatus 101 maps the reference symbol sequence to resource elements shifted by one subcarrier in the frequency direction from the position illustrated in FIG. 13C. 14A and 14B, as in FIGS. 13B and 13C, the reference symbol series of antenna port 5 is indicated by a to d, and the reference symbols of antenna ports 1 to 4 are indicated by shading.
  • FIG. 13B and FIG. 13C the case where the resource elements for mapping reference symbols (sequences) in the base station apparatus 100 and the base station apparatus 101 are the same has been described, but as shown in FIG. 14A and FIG.
  • the same effect can be obtained even when resource elements that map reference symbols in 100 and the base station 101 shift according to parameters such as a cell ID. 14A and 14B, the base station apparatus 100 and the base station apparatus 101 perform mapping in the same manner as described with reference to FIGS. 13B and 13C.
  • FIG. 14B the mapping performed by the base station apparatus 101 is shifted in the frequency direction (upward) by one subcarrier in the frequency direction compared to the case of FIG. 13C. 14A and 14B, as described in FIGS.
  • the reference symbol sequence received from the base station device 100 and the symbol sequence received from the base station device 101 received by the mobile terminal device are orthogonal to each other. Although there is no M-sequence with sharp autocorrelation characteristics and the mobile terminal apparatus 150 performs despreading, it is possible to significantly reduce other cell interference with each other and estimate optimum feedback information for cooperative communication can do.
  • the reference symbol sequence based on the pseudo noise sequence is used for all the reference symbols of all the antenna ports has been described above, only a part of them may be used. For example, a reference symbol sequence based on a pseudo noise sequence may be assigned to a reference symbol in one antenna port, and a reference symbol generated from a random number based on a cell ID may be assigned to reference symbols in the remaining antenna ports. .
  • the number of antenna ports to be newly added is not limited to four and may be one or more antenna ports. .
  • four antenna ports are further added to the four antenna ports 1 to 4.
  • the present invention is not limited to this, and one or more antenna ports are provided for one or more antenna ports. Any port may be added. For example, six new antenna ports may be added to the two antenna ports 1 and 2. Alternatively, eight antenna ports may be newly added.
  • the resource element that maps the reference symbol sequence is shifted between adjacent cells based on a parameter such as a cell ID. However, all the cells or a plurality of cooperative communication such as Active CoMP set are performed. Resource elements for mapping reference symbol sequences may be determined in advance between cells.
  • the resource element mapping units 301 to 30T map one sequence of reference symbol sequences in one resource block, and perform this for each resource block.
  • the communication system in the present embodiment includes base station apparatuses 100 and 101 and mobile terminal apparatuses 150 and 151 similar to the communication system in the first embodiment, but the mapping method of the resource element mapping unit is different. Below, it demonstrates centering on a different part from 1st Embodiment.
  • Base station apparatuses 100 and 101 of the present embodiment further include antenna ports 5 to 8 in addition to antenna ports 1 to 4 included in the first embodiment.
  • FIG. 15A shows a 4-symbol reference symbol sequence assigned to antenna port 5 among four newly added antenna ports.
  • This reference symbol sequence is a conceptual diagram showing an example of a reference symbol sequence based on a pseudo noise sequence.
  • FIG. 15B is a conceptual diagram illustrating an example in which the base station apparatus 100 maps a reference symbol sequence.
  • 15C the base station apparatus 101 maps the reference symbols of the antenna ports 1 to 4 while shifting the mapping of the base station apparatus 100 in the frequency direction, and the reference symbol sequence of the antenna port 5 is the base station apparatus.
  • It is a conceptual diagram which shows the example mapped to the resource element of the same position as 100 mapping.
  • the reference symbol series of antenna port 5 is indicated by a to d, and the reference symbols of antenna ports 1 to 4 are indicated by shading.
  • the reference symbol sequence of antenna port 5 is shown, and the reference symbol sequences of antenna ports 6 to 8 are not shown.
  • the reference signal generation unit 29 uses a sequence having excellent autocorrelation characteristics such as an M sequence as a pseudo noise sequence. In the 4-chip series a to d, a sharp peak is obtained at the position a.
  • Base station apparatus 100 and base station apparatus 101 map the reference symbol sequence to the same position of the resource element. Also, base station apparatus 101 uses a series of base station apparatus 100 that is cyclically shifted by one chip as a reference symbol series.
  • the reference signal generation unit 29 of the base station apparatus 100 generates a reference symbol sequence based on a 0-chip shifted pseudo noise sequence as a reference symbol sequence for the antenna port 5.
  • the resource element mapping unit of base station apparatus 100 maps the generated reference symbol sequence as shown in FIG. 15B.
  • the reference signal generation unit 29 of the base station apparatus 101 generates a reference symbol sequence based on a one-chip shifted pseudo noise sequence as a reference symbol sequence for the antenna port 5.
  • the resource element mapping unit of the base station 2 maps the generated reference symbol sequence as shown in FIG. 15C.
  • the reference symbol sequence transmitted by the base station apparatus 100 and the reference symbol sequence transmitted by the base station apparatus 101 are different from each other in the sequence peak position and orthogonal to each other. ing.
  • the mobile terminal apparatus 150 that simultaneously receives transmission signals from the base station 100 and the base station 101 and performs cooperative communication can suppress interference from adjacent cells by performing despreading, and perform cooperative communication. It is possible to estimate the optimum feedback information for performing.
  • the mobile terminal device 151 that does not perform cooperative communication increases new processing by using each chip independently without performing despreading processing, even if the reference symbol sequence is based on a pseudo-noise sequence. And optimal feedback information can be estimated.
  • the reference symbol sequence based on the pseudo noise sequence may be used for all the reference symbols of all the antenna ports, only a part of them may be used.
  • a reference symbol sequence based on a pseudo noise sequence may be assigned to a reference symbol in one antenna port, and a reference symbol generated from a random number based on a cell ID may be assigned to reference symbols in the remaining antenna ports. .
  • the number of antenna ports to be newly added is four in the base station apparatuses 100 and 101 has been described above, the number of antenna ports to be added is not limited to four and may be one or more antenna ports. .
  • the case where there are four antenna ports 1 to 4 reference symbols has been described.
  • the case where the reference symbol series is arranged in all resource blocks has been described above, it may be arranged only in some resource blocks.
  • four antenna ports are further added to the four antenna ports 1 to 4.
  • the present invention is not limited to this, and one or more antenna ports are provided for one or more antenna ports. Any port may be added. For example, six antenna ports may be newly added to the two antenna ports 1 and 2. Note that the method described in this embodiment and the method described in the second embodiment may be used in combination.
  • FIGS. 16A to 16D are conceptual diagrams illustrating an example in which the base station apparatus 100 maps reference symbol sequences of different antenna ports for each subframe. Specifically, in FIG. 16A to FIG. 16D, the base station apparatus 100 performs the nth subframe SF (n), the (n + 1) th subframe SF (n + 1), and the (n + 2) th subframe SF (n + 2), respectively. An example in which the reference symbol sequences of antenna port 5 to antenna port 8 are mapped to the (n + 3) th subframe SF (n + 3) is shown. In FIG. 16A to FIG.
  • the communication system in the present embodiment includes base station apparatuses 100 and 101 and mobile terminal apparatuses 150 and 151 similar to the communication system in the first embodiment, but the mapping method of the resource element mapping unit is different. Below, it demonstrates centering on a different part from 1st Embodiment.
  • Base station apparatuses 100 and 101 of the present embodiment further include antenna ports 5 to 8 in addition to antenna ports 1 to 4 included in the first embodiment.
  • the resource element mapping units 301 to 30T map one sequence of reference symbol sequences in one resource block, and perform this for each resource block.
  • the reference signal generation unit 29 generates a 4-chip reference symbol sequence to be assigned to the newly added antenna ports 5 to 8 based on the pseudo noise sequence, and the resource element mapping units 301 to 30T respectively generate the nth reference symbol sequences.
  • the reference signal generation unit 29 uses a sequence having excellent autocorrelation characteristics such as an M sequence as a pseudo noise sequence.
  • base station apparatus 101 uses a series of base station apparatus 100 that is cyclically shifted by one chip as a reference symbol series. Further, the resource element that maps the reference symbol sequence may be shifted between adjacent cells based on the cell ID or the like.
  • the reference symbol sequence transmitted by the base station apparatus 100 and the reference symbol sequence transmitted by the base station apparatus 101 are different from each other in the sequence peak position and orthogonal to each other. ing.
  • the mobile terminal apparatus 150 that simultaneously receives transmission signals from the base station 100 and the base station 101 and performs cooperative communication can suppress interference from adjacent cells by performing despreading, and perform cooperative communication. It is possible to estimate the optimum feedback information for performing.
  • the mobile terminal device 151 that does not perform cooperative communication increases new processing by using each chip independently without performing despreading processing, even if the reference symbol sequence is based on a pseudo-noise sequence. And optimal feedback information can be estimated.
  • the reference symbol sequence based on the pseudo noise sequence is used for all reference symbols of all newly added antenna ports. However, only a part of them may be used. For example, a reference symbol sequence based on a pseudo noise sequence may be assigned to a reference symbol in one antenna port, and a reference symbol generated from a random number based on a cell ID may be assigned to reference symbols in the remaining antenna ports. .
  • the reference symbol sequence based on the pseudo noise sequence is used for all the resource elements that map the reference symbols of the respective antenna ports has been described above, the reference symbols based on the pseudo noise sequence are only part of them. A series may be used.
  • the number of antenna ports to be newly added is four in the base station apparatuses 100 and 101 has been described above, the number of antenna ports to be added is not limited to four and may be one or more antenna ports. . Although the case where there are reference symbols for the antenna ports 1 to 4 has been described above, these may not be necessary. In addition, although the case where the reference symbol series is arranged in all the resource blocks has been described above, the reference symbol series may be arranged in only some resource blocks. In the above description, four antenna ports are further added to the four antenna ports 1 to 4. However, the present invention is not limited to this, and one or more antenna ports are provided for one or more antenna ports. Any port may be added. For example, six new antenna ports may be added to the two antenna ports 1 and 2. Alternatively, eight antenna ports may be newly added. Note that the method described in this embodiment may be applied in combination with the method described in the second to third embodiments.
  • FIGS. 17A to 17D are conceptual diagrams illustrating examples in which the base station apparatus 100 maps reference symbol sequences of different antenna ports for each resource block.
  • the base station apparatus 100 has the m-th resource block RB (m), the (m + 1) -th resource block RB (m + 1), the (m + 2) -th resource block RB (m + 2), An example in which the reference symbol sequences of antenna port 5 to antenna port 8 are mapped to the (m + 3) th resource block RB (m + 3) is shown.
  • reference symbol sequences of antenna ports 5 to 8 are indicated by 5 to 8, respectively, and reference symbols of antenna ports 1 to 4 are indicated by shading.
  • the communication system in the present embodiment includes base station apparatuses 100 and 101 and mobile terminal apparatuses 150 and 151 similar to the communication system in the first embodiment, but the mapping method of the resource element mapping unit is different. Below, it demonstrates centering on a different part from 1st Embodiment.
  • Base station apparatuses 100 and 101 of the present embodiment further include antenna ports 5 to 8 in addition to antenna ports 1 to 4 included in the first embodiment.
  • the resource element mapping units 301 to 30T map one sequence of reference symbol sequences in one resource block, and perform this for each resource block.
  • one of the reference symbol sequences of antenna ports 5 to 8 is arranged in one subframe, and the antenna ports are periodically arranged in the frequency direction (for each resource block).
  • the reference signal generator 29 generates a 4-chip reference symbol sequence to be assigned to the newly added antenna ports 5 to 8 based on the pseudo noise sequence, and the resource element mapping units 301 to 30T respectively generate the mth reference symbol sequences.
  • the reference signal generation unit 29 uses a sequence having excellent autocorrelation characteristics such as an M sequence as a pseudo noise sequence.
  • base station apparatus 101 uses a series of base station apparatus 100 that is cyclically shifted by one chip as a reference symbol series. Further, the resource element that maps the reference symbol may be shifted between adjacent cells based on the cell ID or the like. By mapping the reference symbol sequence as shown in FIGS.
  • the reference symbol sequence transmitted by the base station apparatus 100 and the reference symbol sequence transmitted by the base station apparatus 101 are different from each other in the sequence peak positions and orthogonal to each other. ing.
  • the mobile terminal apparatus 150 that simultaneously receives transmission signals from the base station 100 and the base station 101 and performs cooperative communication can suppress interference from adjacent cells by performing despreading, and perform cooperative communication. It is possible to estimate the optimum feedback information for performing.
  • the mobile terminal device 151 that does not perform cooperative communication increases new processing by using each chip independently without performing despreading processing, even if the reference symbol sequence is based on a pseudo-noise sequence. And optimal feedback information can be estimated. Furthermore, even when an antenna port is added, resource overhead due to reference symbols can be prevented from increasing.
  • the reference symbol sequence based on the pseudo noise sequence is used for all the reference symbols of all the antenna ports.
  • a reference symbol sequence based on a pseudo noise sequence may be assigned to a reference symbol in one antenna port, and a reference symbol generated from a random number based on a cell ID may be assigned to reference symbols in the remaining antenna ports.
  • the reference symbol sequence based on the pseudo noise sequence is used for all the resource elements that map the reference symbols of the respective antenna ports.
  • the number of antenna ports to be newly added is four in the base station apparatuses 100 and 101 has been described above, the number of antenna ports to be added is not limited to four and may be one or more antenna ports. . Although the case where there are reference symbols for the antenna ports 1 to 4 has been described above, these may not be necessary. In the above description, four antenna ports are further added to the four antenna ports 1 to 4. However, the present invention is not limited to this, and one or more antenna ports are provided for one or more antenna ports. Any port may be added. For example, six antenna ports may be newly added to the two antenna ports 1 and 2. Note that the method described in this embodiment may be applied in combination with the methods described in the second to fourth embodiments.
  • FIG. 18 is a conceptual diagram illustrating an example in which the base station apparatus 100 maps reference symbol sequences for one sequence to a plurality of resource blocks in the frequency direction of the nth subframe.
  • the reference symbol sequences of the antenna ports 5 to 8 are indicated by 5 to 8, respectively, and the reference symbols of the antenna ports 1 to 4 are the network symbols. Shown with a hanger.
  • the communication system in the present embodiment includes base station apparatuses 100 and 101 and mobile terminal apparatuses 150 and 151 similar to the communication system in the first embodiment, but the mapping method of the resource element mapping unit is different. Below, it demonstrates centering on a different part from 1st Embodiment.
  • Base station apparatuses 100 and 101 of the present embodiment further include antenna ports 5 to 8 in addition to antenna ports 1 to 4 included in the first embodiment.
  • FIG. 18 illustrates mapping of reference symbol sequences performed by the base station apparatus 100.
  • the reference signal generation unit 29 generates a reference symbol sequence based on the pseudo noise sequence, and the resource element mapping units 301 to 30T map the reference symbol sequence generated for each subband unit composed of a plurality of resource blocks in the frequency direction.
  • the subband is a resource unit for creating feedback information, and is determined in advance based on the system band or the like.
  • FIG. 18 shows the k-th subband SB (k) including m-th to (m + 3) resource blocks RB (m) to RB (m + 3).
  • the reference signal generation unit 29 generates an 8-chip reference symbol sequence to be assigned to the newly added antenna ports 5 to 8 over four resource blocks based on the pseudo noise sequence.
  • the reference signal generation unit 29 generates a reference symbol sequence using a pseudo noise sequence having excellent autocorrelation characteristics such as an M sequence.
  • base station apparatus 101 uses a series of base station apparatus 100 that is cyclically shifted by one chip as a reference symbol series. Further, the resource element that maps the reference symbol sequence may be shifted between adjacent cells based on the cell ID or the like.
  • the reference symbol sequence transmitted from the base station apparatus 100 and the reference symbol sequence transmitted from the base station apparatus 101 are different from each other and orthogonal to each other.
  • the mobile terminal apparatus 150 that simultaneously receives transmission signals from the base station 100 and the base station 101 and performs cooperative communication can suppress interference from adjacent cells by performing despreading, and perform cooperative communication. It is possible to estimate the optimum feedback information for performing.
  • the mobile terminal device 151 that does not perform cooperative communication increases new processing by using each chip independently without performing despreading processing, even if the reference symbol sequence is based on a pseudo-noise sequence. And optimal feedback information can be estimated.
  • the gain due to despreading can be increased without increasing the resource overhead due to the reference symbol. Furthermore, even when a new antenna port is added, the resource overhead due to the reference symbol can be prevented from increasing without reducing the gain due to despreading.
  • the case where the generation and mapping of the reference symbol sequence based on the pseudo noise sequence is performed in subband units composed of a plurality of resource blocks continuous in the frequency direction has been described.
  • the resource block may be included.
  • the case where the generation and mapping of the reference symbol sequence based on the pseudo-noise sequence is performed using four resource blocks in the frequency direction as a unit has been described, but two or more resource blocks may be used as a unit.
  • the mapping may be performed over the carrier element (component carrier) unit or the entire system band.
  • the carrier element has a narrower frequency band (in this embodiment, a bandwidth of 20 MHz) that constitutes a system band (a wideband frequency band having a bandwidth of 100 MHz in this embodiment). Narrow frequency band).
  • a unit in which a specific physical channel (for example, PDCCH (Physical downlink control channel), PUCCH (Physical uplink control channel), etc.) is configured may be used as a carrier element.
  • PDCCH Physical downlink control channel
  • PUCCH Physical uplink control channel
  • the reference symbol sequence based on the pseudo noise sequence is used for all reference symbols of the antenna port to be newly added, but only a part of them may be used.
  • a reference symbol sequence based on a pseudo-noise sequence may be assigned to a reference symbol in one antenna port, and a reference symbol generated from a random number based on a cell ID may be assigned to reference symbols in the remaining antenna ports.
  • the reference symbol sequence based on the pseudo noise sequence is used for all the reference symbols for all antenna ports has been described. However, only the reference symbols based on the pseudo noise sequence are used for some reference symbols. Also good.
  • the number of antenna ports to be newly added is four in the base station apparatuses 100 and 101 has been described above, the number of antenna ports to be added is not limited to four and may be one or more antenna ports. . Although the case where there are reference symbols for the antenna ports 1 to 4 has been described above, these may not be necessary. Although the case where the reference symbol series is arranged in all the resource blocks has been described above, the reference symbol series may be arranged only in some resource blocks. In the above description, four antenna ports are further added to the four antenna ports 1 to 4. However, the present invention is not limited to this, and one or more antenna ports are provided for one or more antenna ports. Any port may be added. For example, six new antenna ports may be added to the two antenna ports 1 and 2. Note that the method described in this embodiment may be applied in combination with the methods described in the second to fifth embodiments.
  • FIG. 19 is a conceptual diagram illustrating an example in which the base station apparatus 100 maps one sequence of reference symbol sequences to a plurality of resource blocks in the time direction.
  • the reference symbol sequences of the antenna ports 5 to 8 are indicated by 5 to 8, respectively, and the reference symbols of the antenna ports 1 to 4 are shaded.
  • the communication system according to the present embodiment includes base station apparatuses 100 and 101 and mobile terminal apparatuses 150 and 151 similar to the communication system according to the first embodiment, but the mapping method of the resource element mapping unit In the following, the description will focus on parts that are different from the first embodiment.
  • Base station apparatuses 100 and 101 of the present embodiment further include antenna ports 5 to 8 in addition to antenna ports 1 to 4 included in the first embodiment.
  • the reference signal generation unit 29 generates an 8-chip reference symbol sequence based on the pseudo noise sequence, and the resource element mapping units 301 to 30T map the reference symbol sequence for each of a plurality of resource block units in the time direction. In FIG.
  • the reference signal generation unit 29 generates an 8-chip reference symbol sequence to be assigned to newly added antenna ports 5 to 8 over four resource blocks based on the pseudo noise sequence.
  • the reference signal generation unit 29 generates a reference symbol sequence using a pseudo noise sequence having excellent autocorrelation characteristics such as an M sequence.
  • base station apparatus 101 uses a series of base station apparatus 100 that is cyclically shifted by one chip as a reference symbol series. Further, the resource element that maps the reference symbol may be shifted between adjacent cells based on the cell ID or the like.
  • the reference symbol sequence transmitted by the base station apparatus 100 and the reference symbol sequence transmitted by the base station apparatus 101 are different from each other and orthogonal to each other.
  • the mobile terminal apparatus 150 that simultaneously receives transmission signals from the base station 100 and the base station 101 and performs cooperative communication can suppress interference from adjacent cells by performing despreading, and perform cooperative communication. It is possible to estimate the optimum feedback information for performing.
  • the mobile terminal device 151 that does not perform cooperative communication increases new processing by using each chip independently without performing despreading processing, even if the reference symbol sequence is based on a pseudo-noise sequence. And optimal feedback information can be estimated.
  • the gain due to despreading can be increased without increasing the resource overhead due to the reference symbol. Furthermore, even when a new antenna port is added, the resource overhead due to the reference symbol can be prevented from increasing without reducing the gain due to despreading.
  • the case where the generation and mapping of the reference symbol sequence based on the pseudo-noise sequence is performed in units composed of a plurality of resource blocks continuous in the time direction has been described. Blocks may be included.
  • the case where the generation and mapping of the reference symbol sequence based on the pseudo-noise sequence is performed in units of four resource blocks in the time direction has been described, but two or more resource blocks may be used as a unit.
  • BCH Broadcast information channel
  • synchronization channel synchronization channel
  • the reference symbol sequence is mapped based on the pseudo-noise sequence to the unit configured by a plurality of resource blocks in the time direction.
  • the unit configured by a plurality of resource blocks in the time direction has been described.
  • one or more OFDM symbols in the time direction have been described. Any unit may be used.
  • the reference symbol sequence based on the pseudo noise sequence is used for all reference symbols of the antenna port to be newly added, but only a part of them may be used.
  • a reference symbol sequence based on a pseudo-noise sequence may be assigned to a reference symbol in one antenna port, and a reference symbol generated from a random number based on a cell ID may be assigned to reference symbols in the remaining antenna ports.
  • the reference symbol sequence based on the pseudo noise sequence is used for all the reference symbols for all antenna ports. However, only the reference symbol sequence based on the pseudo noise sequence is used for some reference symbols. May be.
  • the number of antenna ports to be newly added is four in the base station apparatuses 100 and 101 has been described above, the number of antenna ports to be added is not limited to four and may be one or more antenna ports. . Although the case where there are reference symbols for the antenna ports 1 to 4 has been described above, these may not be necessary. Although the case where the reference symbol series is arranged in all the resource blocks has been described above, the reference symbol series may be arranged only in some resource blocks. In the above description, four antenna ports are further added to the four antenna ports 1 to 4. However, the present invention is not limited to this, and one or more antenna ports are provided for one or more antenna ports. Any port may be added. For example, six new antenna ports may be added to the two antenna ports 1 and 2. Note that the method described in this embodiment may be applied in combination with the methods described in the second to sixth embodiments.
  • FIG. 20 is a conceptual diagram illustrating an example in which the base station apparatus 100 maps one series of reference symbol sequences to a plurality of antenna ports.
  • reference symbol sequences of antenna ports 5 to 8 are indicated by 5 to 8, respectively, and reference symbols of antenna ports 1 to 4 are indicated by shading.
  • the communication system in the present embodiment includes base station apparatuses 100 and 101 and mobile terminal apparatuses 150 and 151 similar to the communication system in the first embodiment, but the mapping method of the resource element mapping unit is different. Below, it demonstrates centering on a different part from 1st Embodiment.
  • Base station apparatuses 100 and 101 of the present embodiment further include antenna ports 5 to 8 in addition to antenna ports 1 to 4 included in the first embodiment.
  • the reference signal generation unit 29 generates an 8-chip reference symbol sequence based on the pseudo noise sequence, and the resource element mapping units 301 to 30T reference within the same resource block over the four antenna ports of the antenna ports 5 to 8. A symbol series is assigned and this is repeated for each resource block.
  • the reference signal generation unit 29 generates an 8-chip reference symbol sequence to be allocated over the four newly added antenna ports 5 to 8 based on the pseudo noise sequence.
  • the reference signal generation unit 29 generates a reference symbol sequence using a pseudo noise sequence having excellent autocorrelation characteristics such as an M sequence.
  • base station apparatus 101 uses a series of base station apparatus 100 that is cyclically shifted by one chip as a reference symbol series. Further, the resource element that maps the reference symbol may be shifted between adjacent cells based on the cell ID or the like.
  • the reference symbol sequence transmitted by the base station device 100 and the reference symbol sequence transmitted by the base station device 101 are different from each other and orthogonal to each other.
  • the mobile terminal apparatus 150 that simultaneously receives transmission signals from the base station 100 and the base station 101 and performs cooperative communication can suppress interference from adjacent cells by performing despreading, and perform cooperative communication. It is possible to estimate the optimum feedback information for performing.
  • the mobile terminal device 151 that does not perform cooperative communication increases new processing by using each chip independently without performing despreading processing, even if the reference symbol sequence is based on a pseudo-noise sequence. And optimal feedback information can be estimated.
  • the gain due to despreading can be increased without increasing the resource overhead due to the reference symbol. Furthermore, even when a new antenna port is added, the resource overhead due to the reference symbol can be prevented from increasing without reducing the gain due to despreading.
  • the reference symbol sequence based on the pseudo noise sequence is used for all the resource elements that map the reference symbols across all antenna ports, but the pseudo noise sequence is applied only to some of the reference symbols.
  • a reference symbol sequence based on the above may be used.
  • the number of antenna ports to be newly added is four in the base station apparatuses 100 and 101 has been described above, the number of antenna ports to be added is not limited to four, and may be two or more antenna ports. .
  • the case where there are reference symbols for the antenna ports 1 to 4 has been described above, these may not be necessary.
  • the reference symbol series is arranged in all the resource blocks has been described above, the reference symbol series may be arranged only in some resource blocks.
  • the present invention is not limited to this.
  • six new antenna ports may be added to the two antenna ports 1 and 2.
  • the method described in this embodiment may be applied in combination with the methods described in the second to seventh embodiments.
  • FIG. 21A is a conceptual diagram illustrating an example of a reference symbol sequence based on an orthogonal code sequence used by the base station apparatuses 100 and 101 for the antenna port 1.
  • the code C1 in the figure is a reference symbol sequence used by the base station apparatus 100 for the antenna port 1
  • the code C2 is a reference symbol series used by the base station apparatus 101 for the antenna port 1.
  • FIG. 21B is a conceptual diagram illustrating an example of a reference symbol sequence based on an orthogonal code sequence used by the base station apparatuses 100 and 101 for the antenna port 2.
  • the reference symbol C1 ′ in the figure is a reference symbol sequence used by the base station device 100 for the antenna port 2
  • the reference symbol C2 ′ is a reference symbol sequence used by the base station device 101 for the antenna port 2.
  • FIG. 21C is a conceptual diagram illustrating an example in which the base station apparatus 100 maps a reference symbol sequence.
  • reference symbol sequences of antenna ports 1 and 2 of base station apparatus 100 are indicated by a to d and i to l, respectively.
  • FIG. 21D is a conceptual diagram illustrating an example in which the base station apparatus 101 maps reference symbol sequences.
  • reference symbol sequences of antenna ports 1 and 2 of the base station apparatus 101 are indicated by e to h and m to p, respectively.
  • the communication system according to the ninth embodiment includes base station apparatuses 100 and 101 and mobile terminal apparatuses 150 and 151 similar to the communication system according to the first embodiment, but performs mapping with the mapping method of the resource element mapping unit. The series is different. Below, it demonstrates centering on a different part from 1st Embodiment. In this embodiment, antenna ports 1 and 2 are used.
  • reference symbol sequences (4 chips) assigned to newly added antenna ports 1 to 2 across four resource blocks are orthogonal code sequences (cross-correlation characteristics) such as OVSF (OrthogonalthoVariable Spreading Factor) codes. This is a case where it is generated on the basis of an excellent series.
  • Base station apparatuses 100 and 101 use abcd (orthogonal code C1) and efgh (orthogonal code C2) orthogonal to each other as orthogonal codes used for antenna port 1, and ijkl (orthogonal to each other) as orthogonal codes used for antenna port 2.
  • Orthogonal code C1 ′) and mnop (orthogonal code C2 ′) are used.
  • the same code set may be used as the set of orthogonal codes C1 and 2 and the set of orthogonal codes C1 'and 2'.
  • a set of orthogonal codes C1 and 2 and a set of orthogonal codes C1 ′ and 2 ′ are set from the 4-chip OVSF sequences 1111, 11-1-1, 1-1-11, and 1-11-1. You may do it.
  • Sequences orthogonal to each other are used between adjacent base station apparatuses (cells). Further, the orthogonal relationship can be maintained by making the resource elements for mapping the reference symbol sequence the same between adjacent cells.
  • the power (or amplitude) of the reference symbol mapped to each resource element is preferably the same as the power (or amplitude) of the data symbol mapped to the resource element of the data part.
  • mobile terminal apparatuses 150 that simultaneously receive transmission signals from base station 100 and base station 101 and perform coordinated communication perform despreading, respectively.
  • Signal power (signal amplitude) from each base station can be measured while eliminating interference from neighboring cells, and optimal feedback for cooperative communication from the signal power (signal amplitude) obtained by each base station Information (CQI and PMI based on total SINR and total SINR, SINR in each base station, CQI and PMI based on SINR in each base station, and the like) can be estimated.
  • CQI and PMI based on total SINR and total SINR, SINR in each base station, CQI and PMI based on SINR in each base station, and the like
  • the mobile terminal device 151 that does not perform cooperative communication refers to the reference symbol sequence transmitted from the base station device (own base station, own cell, serving cell) 100 that performs communication, and receives the received reference symbol sequence.
  • the signal power (signal amplitude) obtained from the base station apparatus 100 can be measured while removing interference from adjacent cells.
  • each reference symbol sequence chip includes an interference component from an adjacent base station, the reference symbol sequence is mapped to the resource element to which the reference symbol sequence is mapped (the amplitude and reception of the reference signal from the own base station).
  • the average interference signal power can be obtained by calculating the square norm of the signal and the difference, and optimum feedback information (such as CNR and PMI based on SINR and SINR) can be estimated.
  • a communication system in which one base station apparatus 100 and at least one mobile terminal apparatus 151 communicate with each other, and a plurality of base station apparatuses 100 and 101 communicate with each other in cooperation with at least one mobile terminal apparatus 150.
  • the base station apparatus 100 generates a reference symbol sequence shared by both the mobile terminal apparatus 150 that performs cooperative communication and the mobile terminal apparatus 151 that does not perform cooperative communication, and maps the reference symbol to one of the resource elements.
  • Base station apparatuses 100 and 101 use sequences orthogonal between base station apparatuses as reference symbol sequences, and map reference symbol sequences to the same resource elements between base station apparatuses.
  • the mobile terminal device 151 that communicates with one base station device 100 uses the reference symbol sequence transmitted by the communication partner base station device 100 to measure the state of the transmission path for notifying the communication partner base station device 100. . Further, mobile terminal apparatus 150 that communicates in cooperation with a plurality of base station apparatuses 100 and 101 notifies each of base station apparatuses 100 and 101 from a reference symbol sequence transmitted by each of a plurality of base station apparatuses 100 and 101. Measure the transmission path conditions for As a result, the mobile terminal device 150 that performs cooperative communication and the mobile terminal device 151 that does not perform cooperative communication use the same reference symbol sequence, and the mobile terminal device 150 that performs cooperative communication transmits signals from the base station devices 100 and 101.
  • the mobile terminal apparatus 151 that can accurately grasp the transmission signal power and does not perform cooperative communication accurately grasps the transmission signal power from the own base station apparatus 100 and also averages the interference signal from the adjacent base station apparatus 101. Electric power can be obtained. Accordingly, the mobile terminal apparatus 100 that performs cooperative communication and the mobile terminal apparatus 101 that does not perform cooperative communication can generate optimal feedback information while sharing the reference symbol sequence and suppressing overhead.
  • a program for realizing the functions of all or part of base station apparatus 100 in FIG. 4 and all or part of mobile station apparatus 150 in FIG. 6 is recorded on a computer-readable recording medium. Processing of each unit may be performed by causing a computer system to read and execute a program recorded on a recording medium.
  • the “computer system” here includes an OS and hardware such as peripheral devices. Further, the “computer system” includes a homepage providing environment (or display environment) if a WWW system is used.
  • the “computer-readable recording medium” refers to a storage device such as a flexible medium, a magneto-optical disk, a portable medium such as a ROM or a CD-ROM, and a hard disk incorporated in a computer system.
  • the “computer-readable recording medium” dynamically holds a program for a short time like a communication line when transmitting a program via a network such as the Internet or a communication line such as a telephone line.
  • a volatile memory in a computer system serving as a server or a client in that case and a program that holds a program for a certain period of time are also included.
  • the program may be a program for realizing a part of the functions described above, and may be a program capable of realizing the functions described above in combination with a program already recorded in a computer system.
  • the present invention is suitable for use in a wireless communication system, a wireless communication apparatus, and a wireless communication method.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

In a wireless communication system, a communication apparatus at a transmission end comprises a reference signal generating unit that generates, as reference symbols to be transmitted together with transmitted data, a sequence of reference symbols based on a pseudo noise sequence. A communication apparatus at a reception end can use the sequence of reference symbols, which were generated by the reference signal generating unit, to determine a signal reception status with the interference with the reference signal suppressed or reduced.

Description

通信システム、通信装置および通信方法COMMUNICATION SYSTEM, COMMUNICATION DEVICE, AND COMMUNICATION METHOD
 本発明は、通信システム、通信装置および通信方法に関する。
 本願は、2009年4月24日に、日本に出願された特願2009-106250号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a communication system, a communication apparatus, and a communication method.
This application claims priority based on Japanese Patent Application No. 2009-106250 filed in Japan on April 24, 2009, the contents of which are incorporated herein by reference.
 WCDMAやLTE (Long Term Evolution)やLTE-AdvancedやWiMAXのような移動無線通信システムでは、基地局(送信局、送信装置、eNodeB)がカバーするエリアをセル(Cell)状に複数配置するセルラー(Cellular)構成とすることにより、通信エリアを拡大することができる。また、隣接するセル間またはセクタ(Sector)間で異なる周波数を用いることでセル端(セルエッジ)領域またはセクタ端領域にいる移動端末(受信局、移動局、受信装置、UE; User Equipment)でも、複数の基地局装置からの送信信号の干渉を受けることなく通信を行うことができるが、周波数利用効率が低いという問題があった。一方、隣接するセルまたはセクタ間で同一周波数を利用することで、周波数利用効率を向上させることができるが、セル端領域にいる移動端末に対する干渉の対策が必要となる。
 この干渉の対策として、隣接セル間で互いに協調するセル間協調通信を行うことにより、セルエッジ領域の移動端末に対する干渉を軽減または抑圧する方法が検討されている。非特許文献1では、そのような方式としてCoMP(Cooperative Multipoint)伝送方式などが示されている。また、セル間協調通信として、セル間で同一または異なるデータを協調送信するジョイント・プロセッシング(Joint Processing)やジョイント・トランスミッション(Joint Transmission)や、セル間で協調してスケジューリングや制御を行うコーディネイティッド・スケジューリング(Coordinated Scheduling)やビームフォーミング(Beamforming)などが示されている。
In mobile radio communication systems such as WCDMA, LTE (Long Term Evolution), LTE-Advanced, and WiMAX, a cellular (cell) in which a plurality of areas covered by a base station (transmitting station, transmitting device, eNodeB) are arranged in a cell (Cell) By adopting a (Cellular) configuration, the communication area can be expanded. In addition, by using different frequencies between adjacent cells or sectors, even mobile terminals (receiving station, mobile station, receiving device, UE; User Equipment) in the cell edge (cell edge) area or sector edge area, Although communication can be performed without receiving interference of transmission signals from a plurality of base station apparatuses, there has been a problem that frequency utilization efficiency is low. On the other hand, the frequency utilization efficiency can be improved by using the same frequency between adjacent cells or sectors, but it is necessary to take measures against interference to the mobile terminal in the cell edge region.
As a countermeasure against this interference, a method of reducing or suppressing interference with a mobile terminal in a cell edge region by performing inter-cell cooperative communication between neighboring cells is studied. Non-Patent Document 1 discloses a CoMP (Cooperative Multipoint) transmission system as such a system. In addition, as coordinated communication between cells, joint processing (Joint Processing) and joint transmission (Joint Transmission) that coordinately transmit the same or different data between cells, coordinated and coordinated scheduling and control between cells Scheduling (Coordinated Scheduling), beamforming (Beamforming), etc. are shown.
 また、基地局と移動端末との間の伝送路状況に応じて、変調方式および符号化率(MCS; Modulation and Coding Scheme)や空間多重数(レイヤー、ランク)やプリコーディング重み(プリコーディング行列)などを適応的に制御することで、より効率的なデータ伝送を実現することができる。非特許文献2ではこれらの制御を行う方法が示されている。 Also, depending on the transmission path status between the base station and the mobile terminal, the modulation scheme and coding rate (MCS; Modulation Coding Scheme), spatial multiplexing number (layer, rank), precoding weight (precoding matrix) By controlling adaptively, etc., more efficient data transmission can be realized. Non-Patent Document 2 shows a method of performing these controls.
 図22は、基地局1001から送信される参照信号RSを用いて移動端末1050がフィードバック情報IFBを基地局1001に送信する例を示す図である。同図において基地局1001から移動端末1050に参照信号RSが送信され、移動端末1050は参照信号RSに基づいて生成されるフィードバック情報IFBを基地局1001に送信する。基地局1001から移動端末1050へのデータ伝送を行う下り回線(ダウンリンク)の場合、上記の適応制御を行うために、同図に示すように、基地局1001から送信された参照信号(RS; Reference Signal、パイロット信号、既知信号)RSに基づいて、移動端末1050において下り回線の伝送路状況等を推定し、移動端末1050から基地局1001へのデータ伝送を行う上り回線(アップリンク)を通して、推定した伝送路状況等を基地局1001に送信(フィードバック)することが考えられる。 FIG. 22 is a diagram illustrating an example in which the mobile terminal 1050 transmits the feedback information IFB to the base station 1001 using the reference signal RS transmitted from the base station 1001. In the figure, a reference signal RS is transmitted from the base station 1001 to the mobile terminal 1050, and the mobile terminal 1050 transmits feedback information IFB generated based on the reference signal RS to the base station 1001. In the case of a downlink (downlink) that performs data transmission from the base station 1001 to the mobile terminal 1050, in order to perform the above-described adaptive control, as shown in the figure, a reference signal (RS; Based on Reference Signal, pilot signal, known signal) RS, the mobile terminal 1050 estimates the transmission path condition of the downlink, and the uplink (uplink) that performs data transmission from the mobile terminal 1050 to the base station 1001 It is conceivable to transmit (feedback) the estimated transmission path condition or the like to the base station 1001.
 図23は基地局1001が送信する参照信号(参照シンボル)RSの例を示す図である。同図において、横軸は時間方向、縦軸は周波数方向を示し、四角の各々はリソースエレメントを示し、網掛けされた四角は参照信号RSがマッピングされたリソースエレメントを示す。伝送方式としてOFDM(Orthogonal Frequency Division Multiplexing、直交周波数分割多重)方式やOFDMA(Orthogonal Frequency Division Multiple Access、直交周波数分割多重多元接続)方式等のマルチキャリア伝送方式を用いた場合、参照信号RSとしては、同図に示すように、周波数方向および時間方向のリソースエレメントに散乱(スキャッタード)させた参照信号を用いることができる。この参照信号RSに基づいて生成し基地局1001にフィードバックする情報(フィードバック情報IFB)として、基地局1001に対する推奨送信フォーマット情報(CQI (Channel Quality Indicator)やRI (Rank Indicator)やPMI (Precoding Matrix Index))などを用いることができる。 FIG. 23 is a diagram illustrating an example of a reference signal (reference symbol) RS transmitted by the base station 1001. In the figure, the horizontal axis indicates the time direction, the vertical axis indicates the frequency direction, each square indicates a resource element, and the shaded square indicates a resource element to which the reference signal RS is mapped. When a multicarrier transmission method such as an OFDM (Orthogonal Frequency Division Multiplexing) method or an OFDMA (Orthogonal Frequency Division Multiple Access) method is used as a transmission method, the reference signal RS is: As shown in the figure, a reference signal scattered (scattered) in resource elements in the frequency direction and the time direction can be used. As information (feedback information IFB) generated based on this reference signal RS and fed back to the base station 1001, recommended transmission format information (CQI (Channel Quality Indicator), RI (Rank Indicator), PMI (Precoding Matrix Index) )) Etc. can be used.
 しかしながら、従来の通信方式では、協調通信を行うことができる通信システムにおいて、効率的に適切なフィードバック情報を獲得することが困難であり、伝送効率の向上を妨げる要因となっていた。 However, in the conventional communication method, it is difficult to efficiently obtain appropriate feedback information in a communication system capable of performing cooperative communication, which is a factor that hinders improvement in transmission efficiency.
 本発明は、上記問題を鑑みてなされたものであり、その目的は、協調通信を行うことができる通信システムにおいて、効率的に適切なフィードバック情報を得ることができる通信システム、通信装置および通信方法を提供することにある。 The present invention has been made in view of the above problems, and an object thereof is a communication system, a communication apparatus, and a communication method capable of efficiently obtaining appropriate feedback information in a communication system capable of performing cooperative communication. Is to provide.
 [1]この発明は上述した課題を解決するためになされたもので、本発明の一態様による通信システムは、擬似雑音系列に基づく参照シンボルの系列である送信側参照シンボル系列を生成する参照信号生成部と、送信データと前記送信側参照シンボル系列とを1ないし複数のシンボル毎に1ないし複数のリソースエレメントにマッピングするリソースエレメントマッピング部と、前記送信データと前記送信側参照シンボル系列とを示す無線信号の送信信号を前記マッピングに従って生成して送信する第1無線送信部と、前記参照シンボルの信号受信状態に基づくフィードバック情報を受信する第1無線受信部と、前記送信データの送信の態様を前記フィードバック情報に基づいて制御するフィードバック情報処理部とを含む第1通信装置と、前記無線信号を受信する第2無線受信部と、受信した前記無線信号から抽出される参照シンボル系列に基づいて前記第1通信装置からの信号受信状態を測定し、測定した前記信号受信状態に従って前記フィードバック情報を生成するフィードバック情報生成部と、前記フィードバック情報を送信する第2無線送信部とを含む第2通信装置とを含む。
 ここで、送信の態様とは、送信データを符号化する符号化率や変調方式や空間多重数(レイヤー数)やプリコーディングを行う際のプリコーディング行列やマッピングを行う際のマッピング情報をいう。
 この通信システムは参照シンボル系列を用いることにより他の第1通信装置からの干渉を抑圧または軽減し、この干渉が抑圧または軽減された参照シンボルに基づいて生成されたフィードバック情報を用いるので、送信データの送信方式を適切に制御することができる。
[1] The present invention has been made to solve the above-described problem, and a communication system according to an aspect of the present invention generates a reference signal sequence for generating a transmission side reference symbol sequence that is a sequence of reference symbols based on a pseudo-noise sequence. A generation unit, a resource element mapping unit that maps transmission data and the transmission-side reference symbol sequence to one or a plurality of resource elements for each one or a plurality of symbols, and shows the transmission data and the transmission-side reference symbol sequence A first wireless transmission unit that generates and transmits a transmission signal of a wireless signal according to the mapping, a first wireless reception unit that receives feedback information based on a signal reception state of the reference symbol, and a mode of transmission of the transmission data A first communication device including a feedback information processing unit that controls based on the feedback information; A second radio reception unit that receives the radio signal; and a signal reception state from the first communication device is measured based on a reference symbol sequence extracted from the received radio signal, and the signal reception state is measured according to the measured signal reception state A second communication device including a feedback information generation unit that generates feedback information and a second wireless transmission unit that transmits the feedback information;
Here, the transmission mode refers to a coding rate for encoding transmission data, a modulation scheme, a spatial multiplexing number (number of layers), a precoding matrix for precoding, and mapping information for mapping.
Since this communication system uses reference symbol sequences to suppress or reduce interference from other first communication devices and uses feedback information generated based on reference symbols in which this interference is suppressed or reduced, transmission data The transmission method can be appropriately controlled.
 [2]また、本発明の一態様による通信システムは上述の通信システムであって、前記送信信号を受信する第3無線受信部と、前記送信信号から抽出される逆拡散前参照シンボル系列に含まれる参照シンボルに基づいて前記第1通信装置からの信号受信状態を測定し、測定した前記信号受信状態に従ってフィードバック情報を生成するフィードバック情報生成部と、前記フィードバック情報を送信する第3無線送信部とを含む第3通信装置をさらに含む。
 この通信システムでは、逆拡散前参照シンボル系列を逆拡散してフィードバック情報を生成する第2通信装置と逆拡散せずに各参照シンボルに基づいてフィードバック情報を生成する第3通信装置とが同一の参照シンボルを参照するので、参照シンボルによるリソースのオーバーヘッドを増やすことなく両通信装置を混在させることができる。
[2] A communication system according to an aspect of the present invention is the communication system described above, and is included in a third radio reception unit that receives the transmission signal, and a despread reference symbol sequence extracted from the transmission signal. A feedback information generating unit that measures a signal reception state from the first communication device based on a reference symbol to be generated, generates feedback information according to the measured signal reception state, and a third wireless transmission unit that transmits the feedback information; A third communication device including:
In this communication system, the second communication device that despreads the reference symbol sequence before despreading and generates feedback information is the same as the third communication device that generates feedback information based on each reference symbol without despreading. Since the reference symbol is referred to, both communication apparatuses can be mixed without increasing the resource overhead due to the reference symbol.
 [3]また、本発明の一態様による通信システムは上述の通信システムであって、前記第1通信装置を複数具備し、前記複数の第1通信装置のリソースエレメントマッピング部は互いに同一のリソースエレメントに送信側参照シンボル系列をシンボル毎にマッピングする。
 この通信システムでは、隣接する第1通信装置間で互いに同一のリソースエレメントに参照シンボルをマッピングするので、第2通信装置が逆拡散前参照シンボル系列を逆拡散することにより、他の第1通信装置の参照信号による干渉を抑圧または低減することができる。
[3] A communication system according to an aspect of the present invention is the communication system described above, and includes a plurality of the first communication devices, and resource element mapping units of the plurality of first communication devices are the same resource elements. The transmission side reference symbol sequence is mapped for each symbol.
In this communication system, since reference symbols are mapped to the same resource elements between adjacent first communication devices, the second communication device despreads the reference symbol sequence before despreading, so that the other first communication devices Interference due to the reference signal can be suppressed or reduced.
 [4]また、本発明の一態様による通信システムは上述の通信システムであって、前記参照信号生成部が生成する前記送信側参照シンボル系列は、他の第1通信装置の送信側参照シンボル系列と直交する。
 ここで、他の第1通信装置の送信側参照シンボル系列と直交する送信側参照シンボル系列としては、Walsh符号やOVSF符号やHadamard符号などの直交符号系列から互いに直交する符号系列を用いることができるが、これに限られない。
 この通信システムでは、第1通信装置で直交する送信側参照シンボル系列を用いるので相互相関性に優れ、第2通信装置が逆拡散前参照シンボル系列を逆拡散することによる他の第1通信装置からの干渉の抑圧または軽減の効果が大きい。
[4] A communication system according to an aspect of the present invention is the communication system described above, wherein the transmission-side reference symbol sequence generated by the reference signal generation unit is a transmission-side reference symbol sequence of another first communication device. Orthogonal to
Here, a code sequence orthogonal to each other from an orthogonal code sequence such as a Walsh code, an OVSF code, and a Hadamard code can be used as a transmission-side reference symbol sequence orthogonal to the transmission-side reference symbol sequence of another first communication apparatus. However, it is not limited to this.
In this communication system, since the orthogonal reference symbol sequence is used in the first communication device, the cross-correlation is excellent, and the second communication device despreads the reference symbol sequence before despreading from other first communication devices. The effect of suppressing or reducing interference is great.
 [5]また、本発明の一態様による通信システムは上述の通信システムであって、前記第1通信装置を複数具備し、前記複数の第1通信装置の参照信号生成部が生成する前記送信側参照シンボル系列は、互いに巡回的にシフトさせたものである。
 この通信システムでは、第1通信装置間で巡回的にシフトさせた送信側参照シンボル系列を用いるので、第2通信装置が逆拡散前参照シンボル系列を逆拡散した際に、系列の自己相関性によって、他の第1通信装置からの干渉の抑圧または軽減の効果が得られる。
[5] A communication system according to an aspect of the present invention is the communication system described above, and includes a plurality of the first communication devices, and the transmission side generated by a reference signal generation unit of the plurality of first communication devices. The reference symbol series are cyclically shifted from each other.
In this communication system, since the transmission side reference symbol sequence shifted cyclically between the first communication devices is used, when the second communication device despreads the reference symbol sequence before despreading, due to the autocorrelation of the sequence The effect of suppressing or reducing interference from other first communication devices can be obtained.
 [6]また、本発明の一態様による通信システムは上述の通信システムであって、前記第1通信装置を複数具備し、前記複数の第1通信装置のリソースエレメントマッピング部は互いに異なるリソースエレメントに前記参照シンボルをマッピングする。
 この通信システムでは、隣接する第1通信装置間で互いに異なるリソースエレメントに参照シンボルをマッピングするので、第2通信装置が逆拡散前参照シンボル系列を逆拡散することにより、他の第1通信装置の送信データによる干渉を抑圧または低減することができる。
[6] A communication system according to an aspect of the present invention is the communication system described above, and includes a plurality of the first communication devices, and resource element mapping units of the plurality of first communication devices have different resource elements. Map the reference symbols.
In this communication system, reference symbols are mapped to resource elements that are different from each other between adjacent first communication devices. Therefore, when the second communication device despreads the reference symbol sequence before despreading, Interference due to transmission data can be suppressed or reduced.
 [7]また、本発明の一態様による通信装置は、擬似雑音系列に基づく参照シンボルの系列である送信側参照シンボル系列を生成する参照信号生成部と、送信データと前記送信側参照シンボル系列とを1ないし複数のシンボル毎に1ないし複数のリソースエレメントにマッピングするリソースエレメントマッピング部と、前記送信データと前記送信側参照シンボル系列とを示す無線信号を前記マッピングに従って生成して送信する無線送信部と、前記参照シンボルの信号受信状態に基づくフィードバック情報を受信する第1無線受信部と、前記送信データの送信方式を前記フィードバック情報に基づいて制御するフィードバック情報処理部とを含む。
 この通信装置は擬似雑音系列に基づく参照シンボル系列を示す無線信号を送信するので、この参照シンボル系列を逆拡散して得られる、他の通信装置からの干渉が抑圧または低減されたフィードバック情報を用いて制御することによって、適切な制御を行うことができる。
[7] A communication apparatus according to an aspect of the present invention includes a reference signal generation unit that generates a transmission-side reference symbol sequence that is a sequence of reference symbols based on a pseudo-noise sequence, transmission data, and the transmission-side reference symbol sequence, A resource element mapping unit that maps one to a plurality of resource elements for each one or a plurality of symbols, and a radio transmission unit that generates and transmits a radio signal indicating the transmission data and the transmission side reference symbol sequence according to the mapping And a first wireless reception unit that receives feedback information based on a signal reception state of the reference symbol, and a feedback information processing unit that controls a transmission method of the transmission data based on the feedback information.
Since this communication device transmits a radio signal indicating a reference symbol sequence based on a pseudo-noise sequence, feedback information obtained by despreading this reference symbol sequence and suppressing or reducing interference from other communication devices is used. Therefore, appropriate control can be performed.
 [8]また、本発明の一態様による通信装置は、送信側参照シンボル系列を示す無線信号を伝搬路を経由して受信する無線受信部と、受信した前記無線信号から抽出される参照シンボル系列に基づいて信号受信状態を測定し、測定した前記信号受信状態に従って前記フィードバック情報を生成するフィードバック情報生成部と、前記フィードバック情報を送信する無線送信部とを含む。
 この通信装置は参照シンボル系列を用いて、所望の通信装置以外の通信装置からの干渉を抑圧または低減し、より適切なフィードバック情報を生成することができる。
[8] A communication apparatus according to an aspect of the present invention includes a radio reception unit that receives a radio signal indicating a transmission-side reference symbol sequence via a propagation path, and a reference symbol sequence extracted from the received radio signal. A feedback information generation unit that measures a signal reception state based on the signal reception state and generates the feedback information according to the measured signal reception state, and a wireless transmission unit that transmits the feedback information.
The communication apparatus can suppress or reduce interference from a communication apparatus other than the desired communication apparatus using the reference symbol sequence, and generate more appropriate feedback information.
 [9]また、本発明の一態様による通信方法は、第1通信装置と第2通信装置とが無線通信を行う通信システムにおいて、前記第1通信装置が擬似雑音系列に基づく参照シンボルの系列である送信側参照シンボル系列を生成する参照信号生成過程と、前記第1通信装置が送信データと前記送信側参照シンボル系列とを1ないし複数のシンボル毎に1ないし複数のリソースエレメントにマッピングするリソースエレメントマッピング過程と、前記第1通信装置が前記送信データと前記送信側参照シンボル系列とを示す無線信号を前記マッピングに従って生成して送信する第1無線送信過程と、前記第1通信装置が前記参照シンボルの信号受信状態に基づくフィードバック情報を受信する第1無線受信過程と、前記第1通信装置が前記送信データの送信方式を前記フィードバック情報に基づいて制御するフィードバック情報処理過程と前記第2通信装置が前記無線信号を受信する第2無線受信過程と、前記第2通信装置が受信した前記無線信号から抽出される参照シンボル系列に基づいて前記第1通信装置からの信号受信状態を測定し、測定した前記信号受信状態に従って前記フィードバック情報を生成するフィードバック情報生成過程と、前記第2通信装置が前記フィードバック情報を送信する第2無線送信過程とを含む。
 この通信方法は、参照シンボル系列に基づいて測定される、他の第1通信装置からの干渉が抑圧または軽減された状態に従ったフィードバック情報を用いるので、送信データの送信方式を適切に制御することができる。
[9] Further, in the communication method according to one aspect of the present invention, in the communication system in which the first communication device and the second communication device perform wireless communication, the first communication device is a reference symbol sequence based on a pseudo-noise sequence. A reference signal generation process for generating a certain reference symbol sequence on the transmission side, and a resource element in which the first communication device maps transmission data and the reference symbol sequence on the transmission side to one or more resource elements for each one or more symbols A mapping process; a first radio transmission process in which the first communication apparatus generates and transmits a radio signal indicating the transmission data and the transmission-side reference symbol sequence according to the mapping; and the first communication apparatus transmits the reference symbol. A first wireless reception process of receiving feedback information based on a signal reception state of the first communication device, and the first communication device transmitting the transmission data Extracted from the feedback information processing process for controlling the transmission method based on the feedback information, the second radio reception process for the second communication apparatus to receive the radio signal, and the radio signal received by the second communication apparatus. A feedback information generation process of measuring a signal reception state from the first communication device based on a reference symbol sequence and generating the feedback information according to the measured signal reception state; and the second communication device transmits the feedback information A second wireless transmission process.
Since this communication method uses feedback information measured based on a reference symbol sequence and in accordance with a state in which interference from another first communication apparatus is suppressed or reduced, the transmission method of transmission data is appropriately controlled. be able to.
 [10]また、本発明の一態様による通信方法は、第2通信装置と第1通信装置とが通信をおこなうとともに、第3通信装置と前記第1通信装置とが通信を行う通信システムにおいて、前記第1通信装置が擬似雑音系列に基づく参照シンボルの系列である送信側参照シンボル系列を生成する参照信号生成過程と、前記第1通信装置が送信データと前記送信側参照シンボル系列とを1ないし複数のシンボル毎に1ないし複数のリソースエレメントにマッピングするリソースエレメントマッピング過程と、前記第1通信装置が前記送信データと前記送信側参照シンボル系列とを示す無線信号を前記マッピングに従って生成して送信する第1無線送信過程と、前記第1通信装置が前記参照シンボルの信号受信状態に基づくフィードバック情報を受信する第1無線受信過程と、前記第1通信装置が前記送信データの送信方式を前記フィードバック情報に基づいて制御するフィードバック情報処理過程と前記第2通信装置が前記無線信号を受信する第2無線受信過程と、前記第2通信装置が受信した前記無線信号から抽出される参照シンボル系列に基づいて前記第1通信装置からの信号受信状態を測定し、測定した前記信号受信状態に従って前記フィードバック情報を生成するフィードバック情報生成過程と、前記第2通信装置が前記フィードバック情報を送信する第2無線送信過程と前記第3通信装置が前記送信信号を受信する第3無線受信過程と、前記第3通信装置が前記送信信号から抽出される参照シンボルに基づいて前記第1通信装置からの信号受信状態を測定し、測定した前記信号受信状態に従ってフィードバック情報を生成するフィードバック情報生成過程と、前記第3通信装置が前記フィードバック情報を送信する第3無線送信過程とを含む。
 この通信方法では、参照シンボル系列を用いることにより、第2通信装置と第3通信装置とが同一の参照シンボルを参照でき、参照シンボルによるリソースのオーバーヘッドを増やすことなく両通信装置を混在させることができる。
[10] In the communication method according to one aspect of the present invention, in the communication system in which the second communication device communicates with the first communication device, and the third communication device communicates with the first communication device. A reference signal generation process in which the first communication device generates a transmission-side reference symbol sequence that is a sequence of reference symbols based on a pseudo-noise sequence, and the first communication device sets transmission data and the transmission-side reference symbol sequence to 1 to 1 A resource element mapping process for mapping to one or a plurality of resource elements for each of a plurality of symbols, and the first communication apparatus generates and transmits a radio signal indicating the transmission data and the transmission side reference symbol sequence according to the mapping A first wireless transmission process, and the first communication device receives feedback information based on a signal reception state of the reference symbol. A first wireless reception process, a feedback information processing process in which the first communication device controls a transmission method of the transmission data based on the feedback information, and a second wireless reception in which the second communication device receives the wireless signal. Measuring a signal reception state from the first communication device based on a process and a reference symbol sequence extracted from the radio signal received by the second communication device, and generating the feedback information according to the measured signal reception state A feedback information generation process, a second radio transmission process in which the second communication apparatus transmits the feedback information, a third radio reception process in which the third communication apparatus receives the transmission signal, and the third communication apparatus The signal received from the first communication device is measured based on a reference symbol extracted from the transmission signal, and the measured signal A feedback information generating step of generating feedback information in accordance with signal state, the third communication device and a third wireless transmission step of transmitting the feedback information.
In this communication method, by using the reference symbol sequence, the second communication device and the third communication device can refer to the same reference symbol, and both communication devices can be mixed without increasing the resource overhead due to the reference symbol. it can.
 [11]また、本発明の一態様による通信方法は、通信装置が擬似雑音系列に基づく参照シンボルの系列である送信側参照シンボル系列を生成する参照信号生成過程と、送信データと前記送信側参照シンボル系列とを1ないし複数のシンボル毎に1ないし複数のリソースエレメントにマッピングするリソースエレメントマッピング過程と、前記送信データと前記送信側参照シンボル系列とを示す無線信号を前記マッピングに従って生成して送信する無線送信過程と、前記参照シンボルの信号受信状態に基づくフィードバック情報を受信する無線受信過程と、前記送信データの送信方式を前記フィードバック情報に基づいて制御するフィードバック情報処理過程とを含む。
 この通信方法では、擬似雑音系列に基づく参照シンボル系列を示す無線信号を送信するので、この参照シンボル系列を逆拡散して得られる、他の通信装置からの干渉が抑圧または低減されたフィードバック情報を用いて制御することによって、適切な制御を行うことができる。
[11] A communication method according to an aspect of the present invention includes a reference signal generation process in which a communication apparatus generates a transmission-side reference symbol sequence that is a sequence of reference symbols based on a pseudo-noise sequence, transmission data, and the transmission-side reference. A resource element mapping process for mapping a symbol sequence to one or a plurality of resource elements for each one or a plurality of symbols, and generating and transmitting a radio signal indicating the transmission data and the transmission side reference symbol sequence according to the mapping A wireless transmission process; a wireless reception process for receiving feedback information based on a signal reception state of the reference symbol; and a feedback information processing process for controlling a transmission method of the transmission data based on the feedback information.
In this communication method, since a radio signal indicating a reference symbol sequence based on a pseudo-noise sequence is transmitted, feedback information obtained by despreading the reference symbol sequence, in which interference from other communication devices is suppressed or reduced, is transmitted. Appropriate control can be performed by using and controlling.
 [12]また、本発明の一態様による通信方法は、通信装置が送信側参照シンボル系列を示す無線信号を伝搬路を経由して受信する無線受信過程と、前記通信装置が受信した前記無線信号から抽出される参照シンボル系列に基づいて信号受信状態を測定し、測定した前記信号受信状態に従って前記フィードバック情報を生成するフィードバック情報生成過程と、前記通信装置が前記フィードバック情報を送信する無線送信過程とを含む。
 この通信方法では、参照シンボル系列を用いて、所望の通信装置以外の通信装置からの干渉を抑圧または低減し、より適切なフィードバック情報を生成することができる。
[12] A communication method according to an aspect of the present invention includes a wireless reception process in which a communication device receives a wireless signal indicating a transmission-side reference symbol sequence via a propagation path, and the wireless signal received by the communication device. A feedback information generating step of measuring a signal reception state based on a reference symbol sequence extracted from the signal and generating the feedback information according to the measured signal reception state; and a wireless transmission step of transmitting the feedback information by the communication device; including.
In this communication method, it is possible to suppress or reduce interference from a communication apparatus other than a desired communication apparatus using a reference symbol sequence, and generate more appropriate feedback information.
 この発明によれば、協調通信を行うことができる通信システムにおいて、効率的に適切なフィードバック情報を得ることができる。 According to the present invention, appropriate feedback information can be obtained efficiently in a communication system capable of performing cooperative communication.
本発明の第1の実施形態における通信システムの構成を示す概略構成図である。It is a schematic block diagram which shows the structure of the communication system in the 1st Embodiment of this invention. 同実施形態における協調通信を行う移動端末装置を含まない通信システムの構成例を示す概略構成図である。It is a schematic block diagram which shows the structural example of the communication system which does not include the mobile terminal device which performs the cooperative communication in the embodiment. 同実施形態における協調通信を行わない移動端末装置を含まない通信システムの構成例を示す概略構成図である。It is a schematic block diagram which shows the structural example of the communication system which does not include the mobile terminal device which does not perform cooperative communication in the embodiment. 同実施形態における基地局装置100の構成を示す概略ブロック図である。It is a schematic block diagram which shows the structure of the base station apparatus 100 in the embodiment. 同実施形態においてリソースエレメントマッピング部301~30Tが4個のアンテナポートについて参照シンボル系列をマッピングした例を示す概念図である。4 is a conceptual diagram showing an example in which resource element mapping units 301 to 30T map reference symbol sequences for four antenna ports in the same embodiment. FIG. 同実施形態における移動端末装置150の構成を示す概略ブロック図である。It is a schematic block diagram which shows the structure of the mobile terminal device 150 in the embodiment. 同実施形態において基地局装置100が参照シンボル系列の生成及びマッピングを行う手順を示すフロー図である。It is a flowchart which shows the procedure in which the base station apparatus 100 produces | generates and maps a reference symbol series in the same embodiment. 同実施形態において移動端末装置150のフィードバック情報生成部61がフィードバック情報を生成する手順を示すフロー図である。It is a flowchart which shows the procedure in which the feedback information generation part 61 of the mobile terminal device 150 produces | generates feedback information in the same embodiment. 同実施形態において基地局装置100のフィードバック情報処理部23がフィードバック情報に基づいて送信データの符号化率等を決定する手順を示すフロー図である。It is a flowchart which shows the procedure in which the feedback information processing part 23 of the base station apparatus 100 determines the encoding rate etc. of transmission data based on feedback information in the embodiment. 同実施形態において基地局装置100がアンテナポート1に対して用いる参照シンボル系列の例を表す概念図である。4 is a conceptual diagram illustrating an example of a reference symbol sequence used by the base station apparatus 100 for an antenna port 1 in the embodiment. FIG. 同実施形態において、基地局装置100が、図10Aの参照シンボル系列をマッピングした例を示す概念図である。FIG. 10B is a conceptual diagram showing an example in which the base station apparatus 100 maps the reference symbol sequence of FIG. 10A in the same embodiment. 同実施形態において、図10Aの参照シンボル系列を巡回的にシフトさせた参照シンボル系列を、基地局装置101が、基地局装置100と同じリソースエレメントにマッピングした例を示す概念図である。FIG. 10B is a conceptual diagram showing an example in which the base station device 101 maps the reference symbol sequence obtained by cyclically shifting the reference symbol sequence of FIG. 10A to the same resource element as the base station device 100 in the embodiment. 同実施形態において、基地局装置100が、図10Bの場合と同様に参照シンボル系列をマッピングした例を示す概念図である。FIG. 10 is a conceptual diagram illustrating an example in which the base station apparatus 100 maps reference symbol sequences in the same embodiment as in FIG. 10B. 同実施形態において、基地局装置101が、参照シンボル系列を、図10Cで示した位置よりも周波数方向に1サブキャリア分シフトしたリソースエレメントにマッピングした例を示す概念図である。In the embodiment, the base station apparatus 101 is a conceptual diagram showing an example in which a reference symbol sequence is mapped to resource elements shifted by one subcarrier in the frequency direction from the position shown in FIG. 10C. 本発明の第2の実施形態において、基地局装置100が、追加されたアンテナポートの参照シンボル系列をマッピングした例を示す概念図である。In the 2nd Embodiment of this invention, the base station apparatus 100 is a conceptual diagram which shows the example which mapped the reference symbol series of the added antenna port. 同実施形態において、基地局装置100が、追加されたアンテナポートの参照シンボル系列をマッピングしたもう1つの例を示す概念図である。In the embodiment, the base station apparatus 100 is a conceptual diagram showing another example in which a reference symbol sequence of an added antenna port is mapped. 同実施形態において、基地局装置100が、アンテナポート5に割り当てる4チップの参照シンボル系列の例を示す概念図である。FIG. 3 is a conceptual diagram illustrating an example of a 4-chip reference symbol sequence assigned to the antenna port 5 by the base station apparatus 100 in the embodiment. 同実施形態において、基地局装置100が図13Aの参照シンボル系列をマッピングした例を示す概念図である。FIG. 13B is a conceptual diagram showing an example in which the base station apparatus 100 maps the reference symbol sequence of FIG. 13A in the same embodiment. 同実施形態において、図13Aの参照シンボル系列を巡回的にシフトさせた参照シンボル系列を、基地局装置101が基地局装置100と同じリソースエレメントにマッピングした例を示す概念図である。FIG. 13B is a conceptual diagram illustrating an example in which the base station device 101 maps the reference symbol sequence obtained by cyclically shifting the reference symbol sequence of FIG. 13A to the same resource element as the base station device 100 in the embodiment. 同実施形態において、基地局装置100が、図13Bの場合と同様に参照シンボル系列をマッピングした例を示す概念図である。FIG. 14 is a conceptual diagram illustrating an example in which the base station apparatus 100 maps reference symbol sequences in the same embodiment as in FIG. 13B. 同実施形態において、基地局装置101が、参照シンボル系列を、図13Cで示した位置よりも周波数方向に1サブキャリア分シフトしたリソースエレメントにマッピングした例を示す概念図である。In the embodiment, the base station apparatus 101 is a conceptual diagram showing an example in which a reference symbol sequence is mapped to a resource element shifted by one subcarrier in the frequency direction from the position shown in FIG. 13C. 本発明の第3の実施形態において、基地局装置100がアンテナポート5に割り当てる4チップの参照シンボル系列の例を示す概念図である。In the 3rd Embodiment of this invention, it is a conceptual diagram which shows the example of the reference symbol series of 4 chips | tips which the base station apparatus 100 allocates to the antenna port 5. FIG. 同実施形態において、基地局装置100が参照シンボル系列をマッピングした例を示す概念図である。In the embodiment, it is a conceptual diagram which shows the example which the base station apparatus 100 mapped the reference symbol series. 同実施形態において、基地局装置101が、アンテナポート1~4の参照シンボルは基地局装置100のマッピングに対して周波数方向にシフトさせてマッピングし、アンテナポート5の参照シンボル系列は基地局装置100のマッピングと同じ位置のリソースエレメントにマッピングした例を示す概念図である。In the embodiment, the base station apparatus 101 maps the reference symbols of the antenna ports 1 to 4 by shifting in the frequency direction with respect to the mapping of the base station apparatus 100, and the reference symbol sequence of the antenna port 5 is the base station apparatus 100. It is a conceptual diagram which shows the example mapped to the resource element of the same position as this mapping. 本発明の第4の実施形態において、基地局装置100がサブフレーム毎に異なるアンテナポートの参照シンボル系列をマッピングした例のうち、アンテナポート5の参照シンボル系列をマッピングした例を示す概念図である。In the 4th Embodiment of this invention, it is a conceptual diagram which shows the example which mapped the reference symbol series of the antenna port 5 among the examples in which the base station apparatus 100 mapped the reference symbol series of a different antenna port for every sub-frame. . 同実施形態において、基地局装置100がアンテナポート6の参照シンボル系列をマッピングした例を示す概念図である。4 is a conceptual diagram illustrating an example in which a base station apparatus 100 maps a reference symbol sequence of an antenna port 6 in the embodiment. FIG. 同実施形態において、基地局装置100がアンテナポート7の参照シンボル系列をマッピングした例を示す概念図である。4 is a conceptual diagram illustrating an example in which the base station apparatus 100 maps a reference symbol sequence of an antenna port 7 in the embodiment. FIG. 同実施形態において、基地局装置100がアンテナポート8の参照シンボル系列をマッピングした例を示す概念図である。4 is a conceptual diagram illustrating an example in which a base station apparatus 100 maps a reference symbol sequence of an antenna port 8 in the embodiment. FIG. 本発明の第5の実施形態において、基地局装置100がリソースブロック毎に異なるアンテナポートの参照シンボル系列をマッピングした例のうち、アンテナポート5の参照シンボル系列をマッピングした例を示す概念図である。In the 5th Embodiment of this invention, it is a conceptual diagram which shows the example which mapped the reference symbol series of the antenna port 5 among the examples in which the base station apparatus 100 mapped the reference symbol series of a different antenna port for every resource block. . 同実施形態において、基地局装置100がアンテナポート6の参照シンボル系列をマッピングした例を示す概念図である。4 is a conceptual diagram illustrating an example in which a base station apparatus 100 maps a reference symbol sequence of an antenna port 6 in the embodiment. FIG. 同実施形態において、基地局装置100がアンテナポート7の参照シンボル系列をマッピングした例を示す概念図である。4 is a conceptual diagram illustrating an example in which the base station apparatus 100 maps a reference symbol sequence of an antenna port 7 in the embodiment. FIG. 同実施形態において、基地局装置100がアンテナポート8の参照シンボル系列をマッピングした例を示す概念図である。4 is a conceptual diagram illustrating an example in which a base station apparatus 100 maps a reference symbol sequence of an antenna port 8 in the embodiment. FIG. 本発明の第6の実施形態において基地局装置100が周波数方向に複数のリソースブロックに1系列分の参照シンボル系列をマッピングした例を示す概念図である。It is a conceptual diagram which shows the example which the base station apparatus 100 mapped the reference symbol series for 1 series to the some resource block in the frequency direction in the 6th Embodiment of this invention. 本発明の第7の実施形態において基地局装置100が時間方向に複数のリソースブロックに1系列分の参照シンボル系列をマッピングした例を示す概念図である。It is a conceptual diagram which shows the example which the base station apparatus 100 mapped the reference symbol sequence for 1 sequence to the some resource block in the time direction in the 7th Embodiment of this invention. 本発明の第8の実施形態において基地局装置100が複数のアンテナポートに1系列分の参照シンボル系列をマッピングした例を示す概念図である。It is a conceptual diagram which shows the example which the base station apparatus 100 mapped the reference symbol sequence for 1 series to the some antenna port in the 8th Embodiment of this invention. 本発明の第9の実施形態において、基地局装置100及び101がアンテナポート1に対して用いる、直交符号系列に基づく参照シンボル系列の例を示す概念図である。In the 9th Embodiment of this invention, it is a conceptual diagram which shows the example of the reference symbol series based on the orthogonal code series which the base station apparatuses 100 and 101 use with respect to the antenna port 1. FIG. 同実施形態において、基地局装置100及び101がアンテナポート2に対して用いる、直交符号系列に基づく参照シンボル系列の例を示す概念図である。4 is a conceptual diagram illustrating an example of a reference symbol sequence based on an orthogonal code sequence used by the base station apparatuses 100 and 101 for the antenna port 2 in the embodiment. FIG. 同実施形態において、基地局装置100が参照シンボル系列をマッピングした例を示す概念図である。In the embodiment, it is a conceptual diagram which shows the example which the base station apparatus 100 mapped the reference symbol series. 同実施形態において、基地局装置101が参照シンボル系列をマッピングした例を示す概念図である。In the embodiment, it is a conceptual diagram which shows the example which the base station apparatus 101 mapped the reference symbol series. 基地局から参照送信される参照信号を用いて移動端末がフィードバック情報を基地局装置に送信する例を示す図である。It is a figure which shows the example which a mobile terminal transmits feedback information to a base station apparatus using the reference signal reference-transmitted from a base station. 基地局が送信する参照信号の例を示す図である。It is a figure which shows the example of the reference signal which a base station transmits.
<第1の実施形態>
 以下、図面を参照して、本発明の第1の実施形態について説明する。
 図1は本発明の第1の実施形態における通信システム900の構成を示す概略構成図である。同図の通信システム900は基地局装置(通信装置、第1通信装置、送信装置、セル、送信点、送信アンテナ群)100及び101と移動端末装置(受信装置、受信端末)150及び151とを含んで構成される。基地局装置100と基地局装置101とは互いに隣接する基地局であり、セルの一部が重なっている。移動端末装置150(通信装置、第2通信装置)は基地局装置100と基地局装置101とのセル端に位置し、両基地局装置100及び101と協調通信を行う。移動端末装置151(第3通信装置)は基地局装置100のセル中心付近に位置し、協調通信を行わずに基地局装置100と通信を行う。なお、本発明は、協調通信を行う移動端末装置150と協調通信を行わない移動端末装置151とのどちらか片方のみを含む場合を包含する。
<First Embodiment>
Hereinafter, a first embodiment of the present invention will be described with reference to the drawings.
FIG. 1 is a schematic configuration diagram showing a configuration of a communication system 900 according to the first embodiment of the present invention. The communication system 900 in FIG. 1 includes base station devices (communication device, first communication device, transmission device, cell, transmission point, transmission antenna group) 100 and 101 and mobile terminal devices (reception device, reception terminal) 150 and 151. Consists of including. Base station apparatus 100 and base station apparatus 101 are base stations adjacent to each other, and some of the cells overlap. The mobile terminal device 150 (communication device, second communication device) is located at the cell edge between the base station device 100 and the base station device 101, and performs cooperative communication with both base station devices 100 and 101. The mobile terminal apparatus 151 (third communication apparatus) is located near the cell center of the base station apparatus 100 and communicates with the base station apparatus 100 without performing cooperative communication. In addition, this invention includes the case where only either one of the mobile terminal apparatus 150 which performs cooperative communication, and the mobile terminal apparatus 151 which does not perform cooperative communication is included.
 図2は、協調通信を行う移動端末装置を含まない場合の通信システム900の構成例を示す概略構成図である。同図において、1台の移動端末装置151は基地局装置100のセル中心付近に位置し、協調通信を行わずに基地局装置100と通信を行う。他の1台の移動端末装置151は基地局装置101のセル中心付近に位置し、協調通信を行わずに基地局装置101と通信を行う。 FIG. 2 is a schematic configuration diagram illustrating a configuration example of a communication system 900 when a mobile terminal device that performs cooperative communication is not included. In the figure, one mobile terminal apparatus 151 is located near the cell center of the base station apparatus 100 and communicates with the base station apparatus 100 without performing cooperative communication. The other mobile terminal apparatus 151 is located near the cell center of the base station apparatus 101, and communicates with the base station apparatus 101 without performing cooperative communication.
 図3は、協調通信を行わない移動端末装置を含まない場合の通信システム900の構成例を示す概略構成図である。同図において、2台の移動端末装置150は共に基地局装置100と基地局装置101とのセル端に位置し、両基地局装置100及び101と協調通信を行う。このように協調通信を行う移動端末装置と協調通信を行わない移動端末装置が混在する場合と全ての移動端末装置が協調通信を行わない場合と全ての移動端末装置が協調通信を行う場合とのいずれにおいても、本実施形態の通信システム900の通信装置(基地局装置及び移動端末装置)は通信を行える。第2の実施形態以降においても同様である。 FIG. 3 is a schematic configuration diagram illustrating a configuration example of the communication system 900 when a mobile terminal device that does not perform cooperative communication is not included. In the figure, two mobile terminal apparatuses 150 are both located at the cell edges of the base station apparatus 100 and the base station apparatus 101, and perform cooperative communication with both base station apparatuses 100 and 101. In this way, there are a case where mobile terminal devices that perform cooperative communication and mobile terminal devices that do not perform cooperative communication coexist, a case where all mobile terminal devices do not perform cooperative communication, and a case where all mobile terminal devices perform cooperative communication. In any case, the communication devices (base station device and mobile terminal device) of the communication system 900 of the present embodiment can communicate. The same applies to the second and subsequent embodiments.
 図4は、本発明の第1の実施形態における基地局装置100の構成を示す概略ブロック図である。同図において、基地局装置100は符号部241~24Lとスクランブル部251~25Lと変調部261~26Lとレイヤーマッピング部27とプリコーディング部28とリソースエレメントマッピング部301~30TとOFDM信号生成部311~31Tと無線送信部321~32Tと参照信号生成部29と無線受信部21と受信信号処理部22とフィードバック情報処理部23とを含んで構成される。ここで、符号部241~24Lに入力されるコードワード数をLで示し、無線送信部321~32Tの個数(アンテナポート数、送信アンテナ数)をTで示す。 FIG. 4 is a schematic block diagram showing the configuration of the base station apparatus 100 according to the first embodiment of the present invention. In the figure, base station apparatus 100 includes encoding sections 241 to 24L, scrambling sections 251 to 25L, modulation sections 261 to 26L, layer mapping section 27, precoding section 28, resource element mapping sections 301 to 30T, and OFDM signal generation section 311. To 31T, wireless transmission units 321 to 32T, a reference signal generation unit 29, a wireless reception unit 21, a reception signal processing unit 22, and a feedback information processing unit 23. Here, L represents the number of codewords input to the encoding units 241 to 24L, and T represents the number of radio transmission units 321 to 32T (the number of antenna ports and the number of transmission antennas).
 無線受信部21は、移動端末装置150及び151から上り回線を通して送信される信号を受信する。無線受信部21が受信する移動端末装置150及び151からの信号にはフィードバック情報とデータ信号とが含まれる。後述するようにフィードバック情報は参照シンボル(参照信号)の信号受信状態(信号振幅など)に基づく情報である。つまり、無線受信部21(第1無線受信部)は参照シンボルの信号受信状態に基づくフィードバック情報を受信する。
 受信信号処理部22は、無線受信部21が受信した信号に対して、OFDM復調処理や復調処理や復号処理など、移動端末装置150及び151が送信のために行った送信処理に対する受信処理を行い、受信したデータ信号の中からフィードバック情報を抽出し、フィードバック情報処理部23に出力する。基地局装置100は、上り回線(すなわち移動端末装置から基地局装置への信号伝送)としてSC-FDMA(Single carrier-frequency division multiple access)を用いてユーザ多重が行われた複数の移動端末装置からの信号を、区別する。なお、基地局装置100は、OFDMAや時間分割多元接続や符号分割多元接続など他の多元接続方式を用いてユーザ多重を行ってもよい。
The radio reception unit 21 receives signals transmitted from the mobile terminal devices 150 and 151 through the uplink. The signals from the mobile terminal devices 150 and 151 received by the wireless reception unit 21 include feedback information and data signals. As will be described later, the feedback information is information based on the signal reception state (signal amplitude or the like) of the reference symbol (reference signal). That is, the wireless reception unit 21 (first wireless reception unit) receives feedback information based on the signal reception state of the reference symbol.
The reception signal processing unit 22 performs reception processing for transmission processing performed for transmission by the mobile terminal devices 150 and 151 such as OFDM demodulation processing, demodulation processing, and decoding processing on the signal received by the wireless reception unit 21. The feedback information is extracted from the received data signal and output to the feedback information processing unit 23. The base station apparatus 100 receives a plurality of mobile terminal apparatuses that have been subjected to user multiplexing using SC-FDMA (Single Carrier-frequency Division Multiple Access) as an uplink (that is, signal transmission from the mobile terminal apparatus to the base station apparatus). Are distinguished from each other. Note that the base station apparatus 100 may perform user multiplexing using other multiple access schemes such as OFDMA, time division multiple access, and code division multiple access.
 また、基地局装置100は、各移動端末装置がフィードバック情報を送信するリソース(時間、周波数、符号、空間領域などで分割された信号伝送するための要素)を指定し、移動端末装置は指定されたリソースでフィードバック情報を送信する。これにより、基地局装置100は各移動端末装置からのフィードバック情報を区別する。なお、移動端末装置が、移動端末装置ごとに固有の識別番号をフィードバック情報に付加するなど、他の方法によって、基地局装置100が各移動端末装置からのフィードバック情報を区別するようにしてもよい。 Also, the base station apparatus 100 specifies resources (elements for signal transmission divided by time, frequency, code, spatial domain, etc.) for each mobile terminal apparatus to transmit feedback information, and the mobile terminal apparatus is specified. Send feedback information on the resource Thereby, the base station apparatus 100 distinguishes feedback information from each mobile terminal apparatus. Note that the base station apparatus 100 may distinguish the feedback information from each mobile terminal apparatus by another method, such as the mobile terminal apparatus adding a unique identification number for each mobile terminal apparatus to the feedback information. .
 フィードバック情報処理部23は、移動端末装置150及び151へ送信するデータ信号に様々な適応制御を行うための制御信号を前述のCQIやPMIやRIなどのフィードバック情報に基づいて生成する。フィードバック情報処理部23は、符号部241~24Lと変調部261~26Lとレイヤーマッピング部27とプリコーディング部28とリソースエレメントマッピング部301~30Tとに生成した制御信号を出力する。
 ここで、フィードバック情報処理部23が行う適応制御について説明する。移動端末装置150及び151はフィードバック情報として、基地局装置100に対する推奨送信フォーマット情報(CQIやRIやPMI)を送信する。
 フィードバック情報は、基地局装置100と移動端末装置150及び151とが共に既知の送信フォーマットがインデックス化されたものであり、移動端末装置150及び151が推奨する送信方式(送信フォーマット)をインデックスによって示す推奨送信フォーマット情報である。基地局装置100は推奨送信フォーマット情報が示す送信方式を用いて送信を行う。ここでは、符号化率および変調方式を示すインデックスをCQIといい、プリコーディング行列を示すインデックスをPMIといい、レイヤー数(空間多重数、ランク数)Yを示すインデックスをRIという。フィードバック情報処理部23はCQIに従って符号部241~24Lと変調部261~26Lとを制御し、PMIに従ってプリコーディング部28を制御し、RIに従ってレイヤーマッピング部27を制御する。つまり、フィードバック情報処理部23は送信データの送信方式をフィードバック情報に基づいて制御する。
The feedback information processing unit 23 generates control signals for performing various adaptive controls on the data signals transmitted to the mobile terminal devices 150 and 151 based on the feedback information such as CQI, PMI, and RI. The feedback information processing unit 23 outputs the generated control signals to the encoding units 241 to 24L, the modulation units 261 to 26L, the layer mapping unit 27, the precoding unit 28, and the resource element mapping units 301 to 30T.
Here, the adaptive control performed by the feedback information processing unit 23 will be described. The mobile terminal apparatuses 150 and 151 transmit recommended transmission format information (CQI, RI, and PMI) to the base station apparatus 100 as feedback information.
The feedback information is obtained by indexing a transmission format known to both the base station apparatus 100 and the mobile terminal apparatuses 150 and 151, and indicates a transmission scheme (transmission format) recommended by the mobile terminal apparatuses 150 and 151 by an index. Recommended transmission format information. The base station apparatus 100 performs transmission using the transmission method indicated by the recommended transmission format information. Here, the index indicating the coding rate and the modulation scheme is called CQI, the index showing the precoding matrix is called PMI, and the index showing the number of layers (the number of spatial multiplexing, the number of ranks) Y is called RI. The feedback information processing unit 23 controls the encoding units 241 to 24L and the modulation units 261 to 26L according to CQI, controls the precoding unit 28 according to PMI, and controls the layer mapping unit 27 according to RI. That is, the feedback information processing unit 23 controls the transmission method of transmission data based on the feedback information.
 具体的には、フィードバック情報処理部23はCQIと符号化率及び変調方式とが対応付けられたルックアップテーブルを内部に記憶しており、入力されたCQIに対応する符号化率と変調方式とをルックアップテーブルから取得する。フィードバック情報処理部23は、取得した符号化率で符号化を行うよう符号部241~24Lを制御し、取得した変調方式で変調を行うよう変調部261~26Lを制御する。同様に、フィードバック情報処理部23はPMIとプリコーディング行列とが対応付けられたルックアップテーブルを内部に記憶しており、入力されたPMIに対応するプリコーディング行列をルックアップテーブルから取得する。フィードバック情報処理部23は取得したプリコーディング行列に従ってプリコーディングを行うようプリコーディング部28を制御する。さらに、フィードバック情報処理部23はRIとレイヤー数Yとが対応付けられたルックアップテーブルを内部に記憶しており、入力されたRIに対応するレイヤー数Yをルックアップテーブルから取得する。フィードバック情報処理部23は取得したレイヤー数Yに従ってマッピングを行うようレイヤーマッピング部27を制御する。
 なお、フィードバック情報処理部23がRIに従ってコードワードを生成する上位層(不図示)を制御するようにしてもよい。
Specifically, the feedback information processing unit 23 stores therein a lookup table in which CQI is associated with a coding rate and a modulation scheme, and the coding rate and modulation scheme corresponding to the input CQI are Is obtained from the lookup table. The feedback information processing unit 23 controls the encoding units 241 to 24L to perform encoding at the acquired encoding rate, and controls the modulation units 261 to 26L to perform modulation using the acquired modulation scheme. Similarly, the feedback information processing unit 23 stores therein a lookup table in which the PMI and the precoding matrix are associated with each other, and acquires the precoding matrix corresponding to the input PMI from the lookup table. The feedback information processing unit 23 controls the precoding unit 28 to perform precoding according to the acquired precoding matrix. Further, the feedback information processing unit 23 stores therein a lookup table in which RI and the number of layers Y are associated with each other, and acquires the number of layers Y corresponding to the input RI from the lookup table. The feedback information processing unit 23 controls the layer mapping unit 27 to perform mapping according to the acquired layer number Y.
The feedback information processing unit 23 may control an upper layer (not shown) that generates a code word in accordance with RI.
 なお、移動端末装置150がリソースへのマッピングに関するフィードバック情報を送信するようにしてもよい。フィードバック情報処理部23は、リソースエレメントマッピング部301~30Tが送信されたフィードバック情報に対応するマッピングを行うよう制御する。
 なお、フィードバック情報としてSINRを受信するようにしてもよい。この場合、フィードバック情報処理部23はSINRと符号率等とが対応付けられたルックアップテーブルを内部に記憶しておく。
 なお、フィードバック情報として伝送路状況を示す情報(CSI; Channel State Information)を受信し、移動端末装置150が受信する電力が最大となるプリコーディング行列と符号化率と変調方式とレイヤー数Yをフィードバック情報処理部23が決定するようにしてもよい。決定する方法としては公知の方法を用いることができる。フィードバック情報処理部23は決定したプリコーディング行列に基づいてプリコーディングを行うようプリコーディング部28を制御し、決定した符号化率で符号化を行うよう符号部241~24Lを制御し、決定した変調方式で変調を行うよう変調部261~26Lを制御し、決定したレイヤー数Yでレイヤーマッピングを行うようレイヤーマッピング部27を制御する。
Note that the mobile terminal apparatus 150 may transmit feedback information regarding mapping to resources. The feedback information processing unit 23 controls the resource element mapping units 301 to 30T to perform mapping corresponding to the transmitted feedback information.
Note that SINR may be received as feedback information. In this case, the feedback information processing unit 23 stores therein a lookup table in which SINR and code rate are associated with each other.
Note that information indicating the channel condition (CSI; Channel State Information) is received as feedback information, and the precoding matrix, coding rate, modulation scheme, and number of layers Y that maximize the power received by the mobile terminal apparatus 150 are fed back. The information processing unit 23 may determine the information. A known method can be used as the determination method. The feedback information processing unit 23 controls the precoding unit 28 to perform precoding based on the determined precoding matrix, and controls the code units 241 to 24L to perform encoding at the determined coding rate, thereby determining the determined modulation. The modulation units 261 to 26L are controlled so as to perform modulation according to the method, and the layer mapping unit 27 is controlled to perform layer mapping with the determined number of layers Y.
 符号部241~24Lは、基地局装置100の上位層の処理部(不図示)から入力される送信すべき所望信号のコードワード(送信データ、情報データ信号)に対してターボ符号又は畳み込み符号又はLDPC (Low Density Parity Check)符号などの誤り訂正符号による符号化を行い、スクランブル部251~25Lに出力する。符号部241~24Lはコードワードの入力を受ける。なお、符号部241~24Lが入力を受けるコードワード数は1またはそれ以上であればよい。なお、符号部241~24LがHARQ (Hybrid Automatic Repeat reQuest)などの再送制御を行う処理単位又は誤り訂正符号化を行う処理単位をコードワードとして入力を受けるようにしてもよい。
 スクランブル部251~25Lは、基地局毎に異なるスクランブル符号を生成し、符号部241~24Lからの符号化された信号に対してスクランブル符号に基づくスクランブル処理を行う。
The encoding units 241 to 24L are turbo codes or convolutional codes for a codeword (transmission data, information data signal) of a desired signal to be transmitted input from an upper layer processing unit (not shown) of the base station apparatus 100. Encoding is performed using an error correction code such as an LDPC (Low Density Parity Check) code, and the result is output to scramblers 251 to 25L. The code units 241 to 24L receive codeword input. It should be noted that the number of code words received by the encoding units 241 to 24L may be one or more. Note that the encoding units 241 to 24L may receive an input as a codeword, which is a processing unit that performs retransmission control such as HARQ (Hybrid Automatic Repeat reQuest) or a processing unit that performs error correction coding.
The scramblers 251 to 25L generate different scramble codes for each base station, and perform scramble processing based on the scramble codes on the encoded signals from the encoders 241 to 24L.
 変調部261~26Lは、スクランブル処理された信号に対してBPSK(Binary Phase Shift Keying、二位相偏移変調)又はQPSK(Quadrature Phase Shift Keying、四位相偏移変調)又はQAM(Quadrature Amplitude Modulation、直交振幅変調)などの変調方式を用いて変調処理を行う。
 レイヤーマッピング部27は、変調部261~26Lが出力した信号をMIMO(Multi-Input Multi-Output、多入力多出力)などの空間多重を行うレイヤー(ランク)にマッピングする。コードワード数が2でレイヤー数Yが4の場合、レイヤーマッピング部27はそれぞれのコードワードを2つの並列信号に変換することでレイヤー数Yを4にする。なお、レイヤーマッピング部27が他の変換方法を用いてマッピングを行うようにしてもよい。なお、レイヤーマッピング部27に入力されるコードワード数は符号部241~24Lに入力されるコードワード数Lと同数であればよく、2に限られない。また、レイヤーマッピング部27がマッピングを行うレイヤー数Yは、フィードバック情報処理部23からの制御信号に応じて変化する。
Modulators 261 to 26L perform BPSK (Binary Phase Shift Keying) or QPSK (Quadrature Phase Shift Keying) or QAM (Quadrature Amplitude Modulation, orthogonal) on the scrambled signal. Modulation processing is performed using a modulation method such as amplitude modulation.
The layer mapping unit 27 maps the signals output from the modulation units 261 to 26L to a layer (rank) that performs spatial multiplexing such as MIMO (Multi-Input Multi-Output). When the number of codewords is 2 and the number of layers Y is 4, the layer mapping unit 27 converts the codewords into two parallel signals, thereby setting the number of layers Y to 4. Note that the layer mapping unit 27 may perform mapping using another conversion method. The number of code words input to the layer mapping unit 27 may be the same as the number of code words L input to the encoding units 241 to 24L, and is not limited to two. Further, the number Y of layers to which the layer mapping unit 27 performs mapping changes according to a control signal from the feedback information processing unit 23.
 プリコーディング部28は、レイヤーマッピング部27が出力した信号に対してプリコーディング処理を行い(信号に対する位相や振幅の制御を行い)、アンテナポート(送信アンテナ)数Tの並列信号に変換する。プリコーディング部28は、フィードバック情報処理部23から入力される予め決められたプリコーディング行列に従ってプリコーディング処理を行う。なお、プリコーディング部28がCDD(Cyclic Delay Diversity)又は送信ダイバーシチ(SFBC (Spatial Frequency Block Code)又はSTBC (Spatial Time Block Code)又はTSTD (Time Switched Transmission Diversity)又はFSTD(Frequency Switched Transmission Diversity)など)を用いた処理など他の方法を用いてプリコーディング処理を行うようにしてもよい。この場合、フィードバック情報処理部23はプリコーディング処理に応じた制御情報を出力する。 The precoding unit 28 performs precoding processing on the signal output from the layer mapping unit 27 (controls the phase and amplitude of the signal), and converts it into a parallel signal having the number T of antenna ports (transmitting antennas). The precoding unit 28 performs precoding processing according to a predetermined precoding matrix input from the feedback information processing unit 23. Note that the precoding unit 28 performs CDD (Cyclic Delay Delay Diversity), transmission diversity (SFBC (Spatial Frequency Block) Code), STBC (Spatial Time Block Block Code), TSTD (Time Switched Transmission Transmission Diversity) or FSTD (Frequency Switched Transmission). The precoding process may be performed using another method such as a process using the. In this case, the feedback information processing unit 23 outputs control information corresponding to the precoding process.
 参照信号生成部29は、基地局および移動端末で互いに既知の参照シンボルの系列(送信側参照シンボル系列)を生成し、リソースエレメントマッピング部301~30Tに出力する。なお、以下では参照信号生成部29が生成する参照シンボルの系列を、系列に注目する場合は参照シンボル系列といい、個々の参照シンボルに注目する場合は参照シンボルといい、信号としての性質に注目する場合は参照信号という。また、参照信号生成部29は、セルIDに基づいた乱数から参照シンボルを生成する。また、参照信号生成部29は、疑似雑音系列(疑似ランダム系列、拡散符号、PN(Pseudo Noise)系列)であるM(Maximum-length)系列に基づいて参照シンボル系列を生成する。
 なお、参照信号生成部29が用いる系列は、基地局装置および移動端末装置が共に既知の系列であれば、任意の系列(信号)であってよい。参照信号生成部29がGold符号又は直交Gold符号又はBarker符号又は直交符号系列(Walsh符号又はOVSF(Orthogonal Variable Spreading Factor)符号又はHadamard符号など)など、M(Maximum-length)系列以外の疑似雑音系列に基づいて参照シンボル系列を生成するようにしてもよいし、さらにそれらの系列を巡回的にシフトした系列や巡回的に拡張した系列を用いてもよい。直交符号系列に基づいて、参照信号生成部29は他の基地局装置の参照シンボル系列と直交する参照シンボル系列を生成する。あるいは、参照信号生成部29が計算機などを用いて自己相関特性や相互相関特性に優れた系列を生成し、この系列に基づく参照シンボル系列を用いるようにしてもよい。参照信号生成部29が生成する参照シンボル系列の詳細については後述する。
The reference signal generation unit 29 generates a sequence of reference symbols known to each other (transmission side reference symbol sequence) between the base station and the mobile terminal, and outputs it to the resource element mapping units 301 to 30T. Hereinafter, the reference symbol sequence generated by the reference signal generation unit 29 is referred to as a reference symbol sequence when attention is paid to the sequence, and is referred to as a reference symbol when attention is paid to individual reference symbols. This is referred to as a reference signal. Further, the reference signal generation unit 29 generates a reference symbol from a random number based on the cell ID. The reference signal generation unit 29 generates a reference symbol sequence based on an M (Maximum-length) sequence that is a pseudo noise sequence (pseudo random sequence, spreading code, PN (Pseudo Noise) sequence).
Note that the sequence used by the reference signal generation unit 29 may be an arbitrary sequence (signal) as long as both the base station apparatus and the mobile terminal apparatus are known. The reference signal generator 29 is a pseudo noise sequence other than M (Maximum-length) sequence such as Gold code, orthogonal Gold code, Barker code, orthogonal code sequence (Walsh code, OVSF (Orthogonal Variable Spreading Factor) code, Hadamard code, etc.) The reference symbol sequence may be generated based on the above, or a sequence obtained by cyclically shifting these sequences or a sequence expanded cyclically may be used. Based on the orthogonal code sequence, the reference signal generation unit 29 generates a reference symbol sequence that is orthogonal to a reference symbol sequence of another base station apparatus. Alternatively, the reference signal generation unit 29 may use a computer or the like to generate a sequence having excellent autocorrelation characteristics and cross-correlation characteristics, and use a reference symbol sequence based on this sequence. Details of the reference symbol sequence generated by the reference signal generation unit 29 will be described later.
 リソースエレメントマッピング部301~30Tは、プリコーディング部28が出力した送信データ信号と参照信号生成部29が出力した参照シンボル系列とを、それぞれのアンテナポートのリソースエレメントにシンボル毎にマッピングする。なお、以下では参照シンボル系列をシンボル毎にリソースエレメントにマッピングすることを、単に参照シンボル系列を(リソースエレメントに)マッピングする(割り当てる)ともいう。図5は、リソースエレメントマッピング部301~30Tが4個のアンテナポートについて参照シンボル系列をマッピングした例を示す概念図である。同図において、1つのリソースブロック(サブフレーム)が周波数方向に12のサブキャリアと時間方向に14のOFDMシンボルとで構成されている。1つのOFDMシンボルのうち、それぞれのサブキャリアをリソースエレメントREとも呼ぶ。サブフレームを時間方向に2つに分割して得られる前後の7つのOFDMシンボルをそれぞれスロットとも呼ぶ。OFDMシンボルの時間方向の長さをOFDMシンボル長LOFDMS、スロットの時間方向の長さをスロット長LSL、サブフレームの時間方向の長さをサブフレーム長LSFという。サブキャリアの周波数方向の長さ(帯域幅)をサブキャリア間隔WSCといい、リソースブロックの周波数方向の長さをリソースブロック幅WRBという。 The resource element mapping units 301 to 30T map the transmission data signal output from the precoding unit 28 and the reference symbol sequence output from the reference signal generation unit 29 to the resource element of each antenna port for each symbol. Hereinafter, mapping a reference symbol sequence to a resource element for each symbol is also simply referred to as mapping (assigning) a reference symbol sequence (to a resource element). FIG. 5 is a conceptual diagram illustrating an example in which the resource element mapping units 301 to 30T map reference symbol sequences for four antenna ports. In the figure, one resource block (subframe) is composed of 12 subcarriers in the frequency direction and 14 OFDM symbols in the time direction. Each subcarrier in one OFDM symbol is also called a resource element RE. The front and rear OFDM symbols obtained by dividing the subframe into two in the time direction are also called slots. The length of the OFDM symbol in the time direction is called OFDM symbol length LOFDS, the length of the slot in the time direction is called slot length LSL, and the length of the subframe in the time direction is called subframe length LSF. The length (bandwidth) of the subcarrier in the frequency direction is called a subcarrier interval WSC, and the length of the resource block in the frequency direction is called a resource block width WRB.
 図中のリソースエレメントREに付された数字は、アンテナポート1~4のそれぞれから送信される参照シンボルを表わしている。それぞれのアンテナポートに参照シンボルをマッピングしたリソースエレメントREでは、それ以外のアンテナポートにおけるリソースエレメントREには何も信号を割り当てずゼロ(ヌル)とすることで、リソースエレメントマッピング部301~30Tはアンテナポート間の信号を直交させている。なお、リソースエレメントマッピング部301~30Tがマッピングを行うリソースブロックのOFDMシンボル数を可変としてもよい。例えば、長いガードインターバルを付加する場合には、リソースエレメントマッピング部301~30Tは1つのスロットのOFDMシンボル数を6としてマッピングを行う。 Numerals attached to resource elements RE in the figure represent reference symbols transmitted from antenna ports 1 to 4, respectively. In the resource elements RE in which the reference symbols are mapped to the respective antenna ports, no signal is assigned to the resource elements RE in the other antenna ports and zero is set so that the resource element mapping units 301 to 30T have the antennas. Signals between ports are orthogonalized. Note that the number of OFDM symbols of the resource block to which the resource element mapping units 301 to 30T perform mapping may be variable. For example, when adding a long guard interval, the resource element mapping sections 301 to 30T perform mapping by setting the number of OFDM symbols in one slot to six.
 ここで、リソースエレメントマッピング部301~30Tが、通信システムが用いる周波数帯域幅(システム帯域幅)に応じて、周波数方向のリソースブロック数を変えるようにしてもよい。例えば、リソースエレメントマッピング部301~30Tは6~110個のリソースブロックを用いることができ、さらに、周波数アグリゲーションにより、全システム帯域幅を110個またはそれ以上にすることも可能である。例えば、1個のコンポーネントキャリアは100物理リソースブロックで構成され、コンポーネントキャリア間にガードバンドをはさんだ5個のコンポーネントキャリアを設定することにより、全システム帯域幅を500物理リソースブロックで構成し、リソースエレメントマッピング部301~30Tが各リソースブロックに対してマッピングを行うようにしてもよい。例えば、1個のコンポーネントキャリアは20MHzの帯域幅を持ち、コンポーネントキャリア間にガードバンドをはさんで、5個のコンポーネントキャリアで、全システム帯域幅を100MHzにすることができる。リソースエレメントマッピング部301~30Tが、全システム帯域幅中の全てのリソースブロックに対してマッピングを行うようにしてもよいし、一部のリソースブロックに対してマッピングを行うようにしてもよい。さらには、リソースブロック中の一部のリソースエレメントREに対してマッピングを行うようにしてもよい。 Here, the resource element mapping units 301 to 30T may change the number of resource blocks in the frequency direction according to the frequency bandwidth (system bandwidth) used by the communication system. For example, the resource element mapping units 301 to 30T can use 6 to 110 resource blocks, and can further increase the total system bandwidth to 110 or more by frequency aggregation. For example, one component carrier is composed of 100 physical resource blocks, and by setting five component carriers with a guard band between component carriers, the total system bandwidth is composed of 500 physical resource blocks, and resource The element mapping units 301 to 30T may perform mapping for each resource block. For example, one component carrier has a bandwidth of 20 MHz, and the total system bandwidth can be 100 MHz with five component carriers with a guard band between the component carriers. The resource element mapping units 301 to 30T may perform mapping for all resource blocks in the entire system bandwidth, or may perform mapping for some resource blocks. Further, mapping may be performed on some resource elements RE in the resource block.
 リソースエレメントマッピング部301~30Tは、少なくとも一つのアンテナポートにおける参照シンボルとして疑似雑音系列に基づいた参照シンボルを割り当て、残りのアンテナポートにおける参照シンボルとしてセルIDに基づいた乱数から生成した参照シンボルを割り当てる。詳細は後述する。また、参照シンボルを割り当てるリソースエレメント以外のリソースエレメントには別の種類の送信データをマッピングする。
 OFDM信号生成部311~31Tは、リソースエレメントマッピング部301~30Tが出力した周波数領域の信号に対して逆高速フーリエ変換(IFFT; Inverse Fast Fourier Transform)により周波数時間変換処理を行い、時間領域の信号に変換する。さらにOFDM信号生成部311~31Tは、時間領域の信号に変換された各OFDMシンボルの一部を巡回的に拡張することでガードインターバル(GI; Guard Interval。Cyclic Prefix; CPとも呼ぶ)を付加する。
Resource element mapping sections 301 to 30T assign reference symbols based on pseudo-noise sequences as reference symbols in at least one antenna port, and assign reference symbols generated from random numbers based on cell IDs as reference symbols in the remaining antenna ports. . Details will be described later. Further, different types of transmission data are mapped to resource elements other than the resource element to which the reference symbol is assigned.
The OFDM signal generators 311 to 31T perform frequency-time transform processing on the frequency domain signals output from the resource element mapping units 301 to 30T by inverse fast Fourier transform (IFFT), and thereby the time domain signals. Convert to Furthermore, the OFDM signal generators 311 to 31T add a guard interval (GI; Guard Interval; also referred to as CP) by cyclically expanding a part of each OFDM symbol converted into a time domain signal. .
 無線送信部321~32Tは各1個の送信アンテナを含んで構成される。無線送信部321~32Tは、OFDM信号生成部が出力した信号に対してベースバンドから無線周波数への周波数変換等を行い、送信アンテナより送信する。上述のように、OFDM信号生成部311~31Tから入力される信号は、リソースエレメントマッピング部301~30Tによってマッピングされた送信データと参照シンボル系列とを示す信号である。つまり、無線送信部321~32T(第1無線送信部)は送信データと参照シンボル系列とを示す無線信号をマッピング部301~30Tが行ったマッピングに従って生成して送信する。
 基地局装置101においても構成および各部の機能は基地局装置100と同様である。ただし、後述するように基地局装置101の参照信号生成部29が生成する参照シンボル系列又はリソースエレメントマッピング部301~30Tが参照シンボルをマッピングする位置が基地局装置100と異なる。
Each of the wireless transmission units 321 to 32T includes one transmission antenna. The radio transmission units 321 to 32T perform frequency conversion from the baseband to the radio frequency on the signal output from the OFDM signal generation unit, and transmit the signal from the transmission antenna. As described above, the signals input from the OFDM signal generators 311 to 31T are signals indicating the transmission data mapped by the resource element mapping units 301 to 30T and the reference symbol sequence. That is, radio transmission sections 321 to 32T (first radio transmission sections) generate and transmit radio signals indicating transmission data and reference symbol sequences according to the mapping performed by mapping sections 301 to 30T.
Also in the base station apparatus 101, the configuration and the function of each unit are the same as those of the base station apparatus 100. However, as described later, the reference symbol sequence generated by the reference signal generation unit 29 of the base station apparatus 101 or the position where the resource element mapping units 301 to 30T map the reference symbols is different from the base station apparatus 100.
 図6は、本実施形態における移動端末装置150の構成を示す概略ブロック図である。図6において、移動端末装置150は、無線受信部511~51R、OFDM信号復調部521~52R、リソースエレメントデマッピング部531~53R、フィルタ部55、レイヤーデマッピング部57、デプリコーディング部56、復調部581~58L、デスクランブル部591~59L、復号部601~60L、伝搬路推定部54、フィードバック情報生成部(伝送路状況測定部)61、送信信号生成部62、無線送信部63を含んで構成される。ここで、無線受信部511~51Rの個数(受信アンテナの本数)をRで示す。
 移動端末装置150はR本の受信アンテナを備えており、1本のアンテナに1個の無線受信部が対応する。無線受信部511~51R(第2無線受信部)は、基地局装置から送信されて伝送路(伝搬路、チャネル)を通った無線信号を受信し、無線周波数からベースバンド信号への変換処理などを行う。
 OFDM信号復調部521~52Rは、ガードインターバルを除去し、高速フーリエ変換(FFT; Fast Fourier Transform)などにより時間周波数変換処理を行い、周波数領域の信号に変換する。ここで、k番目のサブキャリアにおける受信信号R(k)は式(1)のように表わされる。
FIG. 6 is a schematic block diagram illustrating a configuration of the mobile terminal device 150 in the present embodiment. In FIG. 6, a mobile terminal apparatus 150 includes radio reception units 511 to 51R, OFDM signal demodulation units 521 to 52R, resource element demapping units 531 to 53R, a filter unit 55, a layer demapping unit 57, a deprecoding unit 56, and a demodulation. Units 581 to 58L, descrambling units 591 to 59L, decoding units 601 to 60L, a propagation path estimation unit 54, a feedback information generation unit (transmission path state measurement unit) 61, a transmission signal generation unit 62, and a wireless transmission unit 63. Composed. Here, the number of radio receiving units 511 to 51R (the number of receiving antennas) is denoted by R.
The mobile terminal apparatus 150 includes R reception antennas, and one radio reception unit corresponds to one antenna. The radio reception units 511 to 51R (second radio reception units) receive radio signals transmitted from the base station apparatus and passed through the transmission path (propagation path, channel), conversion processing from radio frequency to baseband signal, etc. I do.
The OFDM signal demodulation units 521 to 52R remove guard intervals, perform time frequency conversion processing by Fast Fourier Transform (FFT), etc., and convert the signals into frequency domain signals. Here, the received signal R (k) in the kth subcarrier is expressed as shown in Equation (1).
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 ただし、Nは送信アンテナ数、Nは受信アンテナ数、R(k)は各受信アンテナに対応する受信信号、S(k)は各送信アンテナに対応する送信信号、N(k)は各受信アンテナに対応する雑音、H(k)は各受信アンテナおよび各送信アンテナに対応する周波数応答、Tは転置行列を表わしている。
 リソースエレメントデマッピング部531~53Rは、基地局装置100及び101がマッピングしたデータ信号と参照シンボル系列とをデマッピング(分離、抽出)し、データ信号をフィルタ部55に、参照シンボル系列をフィードバック情報生成部61および伝搬路推定部54に出力する。リソースエレメントデマッピング部531~53Rは基地局装置100及び101が行うマッピングの情報を内部に記憶しており、この情報に基づいてデマッピングを行う。
However, N T is the number of transmit antennas, N R is the number of receive antennas, R (k) received signal corresponding to each receive antenna, the transmission signal S (k) is corresponding to each transmitting antenna, N (k) is the Noise corresponding to the receiving antenna, H (k) represents a frequency response corresponding to each receiving antenna and each transmitting antenna, and T represents a transposed matrix.
Resource element demapping sections 531 to 53R demap (separate and extract) the data signal mapped by base station apparatuses 100 and 101 and the reference symbol sequence, feed the data signal to filter section 55, and feed back the reference symbol sequence to feedback information. It outputs to the production | generation part 61 and the propagation path estimation part 54. FIG. The resource element demapping units 531 to 53R store therein mapping information performed by the base station apparatuses 100 and 101, and perform demapping based on this information.
 伝搬路推定部54は、入力された参照シンボルに基づいて、それぞれのリソースエレメントにおける振幅と位相の変動(周波数応答、伝達関数)を推定することにより、伝搬路推定を行う。なお、参照シンボルがマッピングされていないリソースエレメントに対しては、参照シンボルがマッピングされたリソースエレメントに基づいて周波数方向および時間方向に伝搬路推定値を補間することにより伝搬路推定を行う。その補間方法として、伝搬路推定部54は線形補間を用いる。なお、放物線補間、多項式補間、ラグランジュ補間、スプライン補間、FFT補間、最小平均二乗誤差(Minimum Mean Square Error; MMSE)補間など、他の補間方法を用いるようにしてもよい。伝搬路推定部54は、それぞれの送信アンテナに対する受信アンテナ毎の伝搬路推定を行う。 The propagation path estimation unit 54 performs propagation path estimation by estimating amplitude and phase fluctuations (frequency response, transfer function) in each resource element based on the input reference symbols. For resource elements to which reference symbols are not mapped, propagation path estimation is performed by interpolating propagation path estimation values in the frequency direction and time direction based on the resource elements to which reference symbols are mapped. As an interpolation method, the propagation path estimation unit 54 uses linear interpolation. Note that other interpolation methods such as parabolic interpolation, polynomial interpolation, Lagrangian interpolation, spline interpolation, FFT interpolation, and minimum mean square error (Minimum Mean Square Error; MMSE) interpolation may be used. The propagation path estimation unit 54 performs propagation path estimation for each reception antenna with respect to each transmission antenna.
 フィルタ部55は、リソースエレメントデマッピング部531~53Rが出力した受信アンテナ毎のデータ信号に対して、伝搬路推定部54が出力した伝搬路推定値を用いて、伝搬路補償を行い、送信信号S(k)の推定を行う。フィルタ部55は、式(2)の重み係数MZFを用いてZF(Zero Forcing)基準により送信信号S(k)の推定を行う。 The filter unit 55 performs channel compensation on the data signal for each reception antenna output from the resource element demapping units 531 to 53R, using the channel estimation value output from the channel estimation unit 54, and transmits the transmission signal. Estimate S (k). The filter unit 55 estimates the transmission signal S (k) based on the ZF (Zero Forcing) criterion using the weighting coefficient M ZF of Expression (2).
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 ただし、H’(k)は協調通信における推定された周波数応答、H’(k)はH’(k)の複素共役転置行列、-1は逆行列を表している。
 なお、フィルタ部55が式(3)の重み係数MMMSEを用いてMMSE基準により送信信号S(k)の推定を行うようにしてもよいし、他の基準を用いるようにしてもよい。
 なお、フィルタ部55で用いる、協調通信における推定された周波数応答を推定する方法として、既に説明したような送信アンテナポート毎にマッピングした参照信号を用いる方法以外にも、信号復調用参照信号(UE-specific RS、ユーザ固有参照信号、Demodulation RS)としてレイヤー毎に参照信号をさらにマッピングする方法を用いることができる。その方法を用いる場合でも、フィードバック情報は、既に説明したように、送信アンテナポート毎にマッピングした参照信号に基づいて生成することが好ましい。
Here, H ′ (k) represents an estimated frequency response in cooperative communication, H ′ H (k) represents a complex conjugate transpose matrix of H ′ (k), and −1 represents an inverse matrix.
Note that the filter unit 55 may estimate the transmission signal S (k) based on the MMSE criterion using the weighting factor M MMSE of Equation (3), or may use another criterion.
In addition to the method of using the reference signal mapped for each transmission antenna port as already described as a method of estimating the estimated frequency response in the cooperative communication used in the filter unit 55, a reference signal for signal demodulation (UE -A method of further mapping the reference signal for each layer as specific RS, user-specific reference signal, Demodulation RS) can be used. Even when this method is used, the feedback information is preferably generated based on the reference signal mapped for each transmission antenna port as described above.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 ただし、H’(k)とH’(k)と-1とは上記のとおりである。また、σ’は雑音電力、INRはN×Nの単位行列を表している。
 フィルタ部55は、式(4)により送信信号S(k)の推定値S’(k)を算出する。
However, H ′ (k), H ′ H (k) and −1 are as described above. Furthermore, sigma '2 is noise power, the I NR represents a unit matrix of N R × N R.
The filter unit 55 calculates an estimated value S ′ (k) of the transmission signal S (k) using Expression (4).
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 ただし、M(k)は重み係数(MZF又はMMMSEなど)を表している。 However, M (k) represents a weighting coefficient (such as MZF or MMMSE ).
 デプリコーディング部56は、フィルタ部55が検出したデータ信号に対して、基地局装置100及び101が行ったプリコーディング処理を元に戻す処理を行う。なお、CDDや送信ダイバーシチを用いたプリコーディング処理は、受信側でのデプリコーディング処理を必要としない。したがって、基地局装置でCDD又は送信ダイバーシチを用いたプリコーディング処理を行った場合、デプリコーディング部56はCDD又は送信ダイバーシチに対する処理は行なわない。
 レイヤーデマッピング部57は、レイヤー毎の信号をそれぞれのコードワードにデマッピングする。復調部581~58Lは、基地局装置100及び101が用いた変調方式に基づいて、レイヤーデマッピング部57からの信号に対して復調を行う。デスクランブル部591~59Lは、基地局装置100及び101が用いたスクランブル符号に基づいて、復調部581~58Lからの信号に対してデスクランブル処理を行う。復号部601~60Lは、基地局装置100及び101が用いた符号化方法に基づいて、復調部581~58Lからの信号に対して誤り訂正復号処理を行い、移動端末装置150の上位層の処理部(不図示)へ出力する。
The deprecoding unit 56 performs processing for returning the precoding processing performed by the base station apparatuses 100 and 101 to the data signal detected by the filter unit 55. Note that precoding processing using CDD or transmission diversity does not require deprecoding processing on the receiving side. Therefore, when precoding processing using CDD or transmission diversity is performed in the base station apparatus, the deprecoding unit 56 does not perform processing for CDD or transmission diversity.
The layer demapping unit 57 demaps the signal for each layer to each codeword. Demodulating sections 581 to 58L demodulate the signal from layer demapping section 57 based on the modulation scheme used by base station apparatuses 100 and 101. The descrambling units 591 to 59L perform descrambling processing on the signals from the demodulation units 581 to 58L based on the scramble code used by the base station apparatuses 100 and 101. Decoding sections 601 to 60L perform error correction decoding processing on the signals from demodulation sections 581 to 58L based on the encoding method used by base station apparatuses 100 and 101, and perform upper layer processing of mobile terminal apparatus 150. Part (not shown).
 フィードバック情報生成部61は、リソースエレメントデマッピング部531~53Rが出力した参照シンボル系列に基づいて、フィードバック情報を生成する。フィードバック情報生成部61は、入力された参照シンボル系列を用いて、受信信号電力対干渉・雑音電力比(SINR; Signal to Interference plus Noise power Ratio)を測定してフィードバック情報を生成する。詳細は後述する。なお、フィードバック情報生成部61が受信信号電力対干渉電力比(SIR; Signal to Interference power Ratio)又は受信信号電力対雑音電力比(SNR; Signal to Noise power Ratio)又はパスロスなどを測定してフィードバック情報を生成するようにしてもよい。
 フィードバック情報を生成する単位としては、周波数方向(例えば、サブキャリア毎、リソースエレメント毎、リソースブロック毎、複数のリソースブロックで構成されるサブバンド毎など)、時間方向(例えば、OFDMシンボル毎、サブフレーム毎、スロット毎、無線フレーム毎など)、空間方向(例えば、アンテナポート毎、送信アンテナ毎、受信アンテナ毎など)などを用いることができ、さらにそれらを組み合わせることもできる。
The feedback information generation unit 61 generates feedback information based on the reference symbol sequence output from the resource element demapping units 531 to 53R. The feedback information generation unit 61 measures the received signal power to interference plus noise power ratio (SINR) using the input reference symbol sequence to generate feedback information. Details will be described later. Note that the feedback information generation unit 61 measures the received signal power to interference power ratio (SIR), the received signal power to noise power ratio (SNR), the path loss, or the like to provide feedback information. May be generated.
The unit for generating the feedback information includes the frequency direction (for example, for each subcarrier, for each resource element, for each resource block, for each subband composed of a plurality of resource blocks), for example, for the time direction (for example, for each OFDM symbol, For each frame, each slot, each radio frame, etc.), spatial direction (for example, each antenna port, each transmission antenna, each reception antenna, etc.), and the like can be used.
 協調通信を行う移動端末装置150のフィードバック情報生成部61は送信信号から抽出される参照シンボル系列に対して逆拡散処理を行う。以下では、移動端末装置150のフィードバック情報生成部61を第2のフィードバック情報生成部(第2の伝送路状況測定部)ともいう。一方、協調通信を行わない移動端末装置151のフィードバック情報生成部61は、参照シンボル系列を逆拡散処理せずにそれぞれの参照シンボルを独立に用いる。つまり、移動端末装置151のフィードバック情報生成部61は、参照シンボル系列に含まれる参照シンボルに基づいて基地局装置からの信号受信状態(SINR)を測定し、測定した信号受信状態に従ってフィードバック情報を生成する。以下では、移動端末装置151のフィードバック情報生成部61を第1のフィードバック情報生成部(第1の伝送路状況測定部)ともいう。詳細は後述する。 The feedback information generation unit 61 of the mobile terminal apparatus 150 that performs cooperative communication performs despreading processing on the reference symbol sequence extracted from the transmission signal. Hereinafter, the feedback information generation unit 61 of the mobile terminal device 150 is also referred to as a second feedback information generation unit (second transmission path condition measurement unit). On the other hand, the feedback information generation unit 61 of the mobile terminal device 151 that does not perform cooperative communication uses each reference symbol independently without despreading the reference symbol sequence. That is, feedback information generating section 61 of mobile terminal apparatus 151 measures the signal reception state (SINR) from the base station apparatus based on the reference symbols included in the reference symbol sequence, and generates feedback information according to the measured signal reception state. To do. Hereinafter, the feedback information generation unit 61 of the mobile terminal device 151 is also referred to as a first feedback information generation unit (first transmission path condition measurement unit). Details will be described later.
 ここで逆拡散処理とは、移動端末装置が受信した無線信号からリソースエレメントデマッピング部531~53Rによって抽出される参照シンボル系列と基地局装置が送信に際して用いた既知の参照シンボル系列との自己相関をとることをいう。自己相関をとることにより、他基地局装置からの干渉を抑圧または減少させて所望基地局装置からの参照シンボルを抽出することができる。つまり、フィードバック情報生成部61は受信した無線信号から抽出される参照シンボル系列を基地局装置が送信した参照シンボル系列に基づいて逆拡散して(両者の自己相関をとって)逆拡散後参照シンボルを抽出し、さらに上記のとおり抽出した逆拡散後参照シンボルに基づいてフィードバック情報を生成する。移動端末装置150は任意の参照シンボル系列(例えば乱数などにより生成された参照シンボル系列)に対して自己相関値を得ることにより逆拡散処理を行うことができる。ここで、相関をとる参照シンボル系列が疑似雑音系列に基づいて生成された参照シンボル系列であれば、その自己相関値はさらに良くなる。なお、フィードバック情報を生成する単位と、逆拡散処理を行う単位は異なってもよい。
 移動端末装置150はフィードバック情報として、基地局装置100及び101のプリコーディング部28が用いるプリコーディング行列の情報(PMI)や基地局装置100及び101の符号部および変調部が行う符号化処理および変調処理で用いるMCS(Modulation and Code Scheme)の情報(CQI)や基地局装置のレイヤーマッピング部がマッピングするレイヤー数Yの情報(RI)などを送信する。なお、移動端末装置150で測定された伝送路状況の情報(CSIなど)などを送信するようにしてもよい。
Here, the despreading process is an autocorrelation between a reference symbol sequence extracted by the resource element demapping units 531 to 53R from a radio signal received by the mobile terminal device and a known reference symbol sequence used in transmission by the base station device. It means taking. By taking autocorrelation, it is possible to extract reference symbols from the desired base station apparatus while suppressing or reducing interference from other base station apparatuses. That is, the feedback information generation unit 61 despreads the reference symbol sequence extracted from the received radio signal based on the reference symbol sequence transmitted by the base station apparatus (takes autocorrelation between them), and the reference symbol after despreading Further, feedback information is generated based on the despread reference symbols extracted as described above. The mobile terminal apparatus 150 can perform despreading processing by obtaining an autocorrelation value for an arbitrary reference symbol sequence (for example, a reference symbol sequence generated by a random number or the like). Here, if the reference symbol sequence to be correlated is a reference symbol sequence generated based on the pseudo noise sequence, the autocorrelation value is further improved. The unit for generating feedback information and the unit for performing despreading processing may be different.
The mobile terminal device 150 uses, as feedback information, precoding matrix information (PMI) used by the precoding units 28 of the base station devices 100 and 101, and coding processing and modulation performed by the coding units and modulation units of the base station devices 100 and 101. MCS (Modulation and Code Scheme) information (CQI) used in processing, information on the number of layers Y mapped by the layer mapping unit of the base station apparatus (RI), and the like are transmitted. In addition, information (CSI or the like) of transmission path conditions measured by the mobile terminal device 150 may be transmitted.
 送信信号生成部62は、フィードバック情報生成部61が出力したフィードバック情報を基地局装置100及び101に送信(フィードバック)するために、符号化処理、変調処理、OFDM信号生成処理などを行い、送信信号を生成する。
 無線送信部63(第2無線送信部)は、送信信号生成部62が生成したフィードバック情報を含む送信信号を無線周波数にアップコンバートしてから、上り回線を通じて基地局装置100及び101に送信する。
 移動端末装置151においても構成および各部の機能は移動端末装置150と同様である。ただし、移動端末装置151は基地局装置100とのみ通信を行い、フィードバック情報生成部61が参照シンボル系列に対して逆拡散を行わない点で移動端末装置150と異なる。
The transmission signal generation unit 62 performs encoding processing, modulation processing, OFDM signal generation processing, and the like to transmit (feedback) the feedback information output from the feedback information generation unit 61 to the base station apparatuses 100 and 101. Is generated.
The radio transmission unit 63 (second radio transmission unit) up-converts a transmission signal including feedback information generated by the transmission signal generation unit 62 to a radio frequency, and then transmits the radio signal to the base station apparatuses 100 and 101 through the uplink.
Also in the mobile terminal device 151, the configuration and functions of each unit are the same as those of the mobile terminal device 150. However, mobile terminal apparatus 151 is different from mobile terminal apparatus 150 in that it communicates only with base station apparatus 100 and feedback information generating section 61 does not despread the reference symbol sequence.
 図7は基地局装置100が参照シンボル系列の生成及びマッピングを行う手順を示すフロー図である。
 ステップS1において参照信号生成部29は内部に記憶する系列に基づいてアンテナポートごとの参照シンボル系列を生成し、リソースエレメントマッピング部301~30Tに出力する。ステップS2においてリソースエレメントマッピング部301~30Tは参照信号生成部29から入力された参照シンボル系列とプリコーディング部28から入力される送信データ信号とを、内部に記憶するマッピング情報に従ってシンボル毎にマッピングし、OFDM信号生成部311~31Tに出力する。以上で基地局装置100は参照シンボル系列の生成及びマッピング処理を終了する。その後、マッピングされた信号はOFDM信号生成部311~31T及び無線送信部321~32Tを経由して無線送信される。
 なお、基地局装置101が参照シンボル系列の生成及びマッピングを行う手順も同様である。
FIG. 7 is a flowchart illustrating a procedure in which the base station apparatus 100 generates and maps a reference symbol sequence.
In step S1, the reference signal generation unit 29 generates a reference symbol sequence for each antenna port based on the sequence stored therein, and outputs the reference symbol sequence to the resource element mapping units 301 to 30T. In step S2, the resource element mapping units 301 to 30T map the reference symbol sequence input from the reference signal generation unit 29 and the transmission data signal input from the precoding unit 28 for each symbol according to the mapping information stored therein. And output to the OFDM signal generators 311 to 31T. Thus, the base station apparatus 100 ends the reference symbol sequence generation and mapping process. Thereafter, the mapped signal is wirelessly transmitted via the OFDM signal generators 311 to 31T and the wireless transmitters 321 to 32T.
The procedure for generating and mapping the reference symbol sequence by the base station apparatus 101 is the same.
 図8は移動端末装置150のフィードバック情報生成部61がフィードバック情報を生成する手順を示すフロー図である。フィードバック情報生成部61はリソースエレメントデマッピング部531~53Rから参照シンボル系列の入力を受けてフィードバック情報の生成を開始する。
 ステップS21においてフィードバック情報生成部61は入力された参照シンボル系列に対して逆拡散を行い、得られる参照シンボルに基づいて、基地局装置100からの信号受信状態の情報と基地局装置101からの信号受信状態の情報とを生成する。ステップS22においてフィードバック情報生成部61は基地局装置100からの信号受信状態の情報と基地局装置101からの信号受信状態の情報とに基づいて、各基地局装置に通知するPMIを生成する。ステップS23においてフィードバック情報生成部61は基地局装置100からの信号受信状態の情報と基地局装置101からの信号受信状態の情報とに基づいて、各基地局装置に通知するCQIを生成する。ステップS24においてフィードバック情報生成部61は基地局装置100からの信号受信状態の情報と基地局装置101からの信号受信状態の情報とに基づいて、各基地局装置に通知するRIを生成する。以上でフィードバック情報生成部61はフィードバック情報の生成処理を終了する。その後、生成されたCQIとPMIとRIとは、フィードバック情報として送信信号生成部62及び無線送信部63を経由して無線送信される。
 なお、移動端末装置151のフィードバック情報生成部61がフィードバック情報を生成する手順も同様である。ただし移動端末装置151の場合は、フィードバック情報生成部61はステップS21で逆拡散を行わず、入力された参照シンボルの各々をそのまま用いて基地局装置100からの信号受信状態の情報を生成する。以下のステップではフィードバック情報生成部61は基地局装置100に通知するフィードバック情報のみを生成する。
 なお、信号受信状態の情報として、基地局装置と移動端末装置との間の伝搬路における周波数応答や伝達関数などを用いることができる。
 なお、フィードバック情報生成の順序は上記のものに限らない。
FIG. 8 is a flowchart showing a procedure in which the feedback information generation unit 61 of the mobile terminal device 150 generates feedback information. Feedback information generation unit 61 receives reference symbol sequences from resource element demapping units 531 to 53R and starts generating feedback information.
In step S21, the feedback information generation unit 61 performs despreading on the input reference symbol sequence, and based on the obtained reference symbol, information on the signal reception state from the base station apparatus 100 and the signal from the base station apparatus 101 And reception status information. In step S <b> 22, the feedback information generation unit 61 generates a PMI to be notified to each base station apparatus based on the signal reception state information from the base station apparatus 100 and the signal reception state information from the base station apparatus 101. In step S <b> 23, feedback information generation section 61 generates CQIs to be notified to each base station apparatus based on the signal reception state information from base station apparatus 100 and the signal reception state information from base station apparatus 101. In step S <b> 24, the feedback information generation unit 61 generates RI to be notified to each base station apparatus based on the signal reception state information from the base station apparatus 100 and the signal reception state information from the base station apparatus 101. The feedback information generation unit 61 ends the feedback information generation process. Thereafter, the generated CQI, PMI, and RI are wirelessly transmitted as feedback information via the transmission signal generation unit 62 and the wireless transmission unit 63.
The procedure for the feedback information generating unit 61 of the mobile terminal device 151 to generate feedback information is the same. However, in the case of the mobile terminal apparatus 151, the feedback information generation unit 61 does not perform despreading in step S21, but generates information on the signal reception state from the base station apparatus 100 using each of the input reference symbols as it is. In the following steps, the feedback information generation unit 61 generates only feedback information to be notified to the base station apparatus 100.
In addition, as a signal reception state information, a frequency response or a transfer function in a propagation path between the base station device and the mobile terminal device can be used.
The order of generating feedback information is not limited to the above.
 図9は基地局装置100のフィードバック情報処理部23がフィードバック情報に基づいてデータ信号の符号化率等を決定する手順を示すフロー図である。フィードバック情報処理部23は受信信号処理部からフィードバック情報の入力を受けて処理を開始する。
 ステップS31においてフィードバック情報処理部23は受信信号処理部22から入力される信号から、移動端末装置150からのフィードバック情報(CQIとPMIとRI)と移動端末装置151からのフィードバック情報とを抽出する。ステップS32においてフィードバック情報処理部23は、内部に記憶するルックアップテーブルを参照して移動端末装置150及び151からのCQIに基づいて符号化率を決定し、符号部241~24Lに通知する。符号部241~24Lは符号化率を通知された符号化率に変更して符号化を行う。ステップS33においてフィードバック情報処理部23は、内部に記憶するルックアップテーブルを参照して移動端末装置150及び151からのCQIに基づいて変調方式変更を決定し、変調部261~26Lに通知する。変調部261~26Lは通知された変調方式に従って変調を行う。ステップS34においてフィードバック情報処理部23は、内部に記憶するルックアップテーブルを参照して移動端末装置150及び151からのCQIに基づいてレイヤー数変更を決定し、レイヤーマッピング部27に通知する。レイヤーマッピング部27は通知されたレイヤー数に従ってマッピングを行う。ステップ35においてフィードバック情報処理部23は、内部に記憶するルックアップテーブルを参照して移動端末装置150及び151からのPMIに基づいてプリコーディング行列変更を決定し、プリコーディング部28に通知する。プリコーディング部28は通知されたプリコーディング行列に従ってプリコーディングを行う。以上でフィードバック情報処理部23は符号化率等の決定処理を終了する。
 なお、基地局装置101のフィードバック情報処理部23が符号化率等の決定を行う手順も同様である。ただし、基地局装置101の場合は、フィードバック情報処理部23はステップS31において移動端末装置150からのフィードバック情報のみを抽出し、以下のステップにおいても移動端末装置150からのフィードバック情報に基づいて符号化率等を決定する。
FIG. 9 is a flowchart illustrating a procedure in which the feedback information processing unit 23 of the base station apparatus 100 determines the coding rate of the data signal based on the feedback information. The feedback information processing unit 23 receives the feedback information from the received signal processing unit and starts processing.
In step S 31, the feedback information processing unit 23 extracts feedback information (CQI, PMI, and RI) from the mobile terminal device 150 and feedback information from the mobile terminal device 151 from the signal input from the received signal processing unit 22. In step S32, the feedback information processing unit 23 refers to the lookup table stored therein, determines the coding rate based on the CQI from the mobile terminal devices 150 and 151, and notifies the coding units 241 to 24L. The encoding units 241 to 24L perform encoding by changing the encoding rate to the notified encoding rate. In step S33, the feedback information processing unit 23 determines a modulation scheme change based on the CQI from the mobile terminal apparatuses 150 and 151 with reference to a lookup table stored therein, and notifies the modulation units 261 to 26L. The modulation units 261 to 26L perform modulation according to the notified modulation method. In step S <b> 34, the feedback information processing unit 23 determines a change in the number of layers based on the CQI from the mobile terminal devices 150 and 151 with reference to a lookup table stored therein, and notifies the layer mapping unit 27 of the change. The layer mapping unit 27 performs mapping according to the notified number of layers. In step 35, the feedback information processing unit 23 determines a precoding matrix change based on the PMI from the mobile terminal devices 150 and 151 with reference to a lookup table stored therein, and notifies the precoding unit 28 of the change. The precoding unit 28 performs precoding according to the notified precoding matrix. Thus, the feedback information processing unit 23 ends the determination process such as the coding rate.
The procedure in which the feedback information processing unit 23 of the base station apparatus 101 determines the coding rate and the like is the same. However, in the case of the base station apparatus 101, the feedback information processing unit 23 extracts only feedback information from the mobile terminal apparatus 150 in step S31, and encodes based on the feedback information from the mobile terminal apparatus 150 in the following steps as well. Determine rates, etc.
 つぎに、本実施形態で用いる、基地局装置100及び101の参照信号生成部29が疑似雑音系列に基づいて生成する参照シンボル系列、およびリソースエレメントマッピング部301~30Tが行う参照シンボル系列のマッピングについて説明する。
 まず、巡回的にシフトさせた系列から生成される参照シンボル系列を、基地局装置100及び101が同じリソースエレメントにマッピングする場合について説明する。
 図10Aは、基地局装置100がアンテナポート1に対して用いる参照シンボル系列の例を表す概念図である。同図の参照シンボル系列a~hは8チップ(ビット)の擬似雑音系列であるM系列に基づいて生成されている。
 同図の系列はM系列に基づいた系列である。M系列は、自己相関特性が優れた(すなわち、逆拡散処理をした時に、系列の同期が合う場合は鋭い(高い)相関値(ピーク値)が得られ、系列の同期が外れた場合は低い相関値が得られる)疑似雑音系列である。8チップの系列a~hは、aの位置で鋭い相関値が得られる、すなわち系列をシフトさせずに相関をとった場合に鋭い相関値が得られる。なお、参照信号生成部29が生成する参照シンボル系列はM系列に限られず、他の系列の参照シンボルを生成するようにしてもよい。
Next, the mapping of the reference symbol sequence generated by the reference signal generation unit 29 of the base station apparatuses 100 and 101 based on the pseudo noise sequence and the reference symbol sequence performed by the resource element mapping units 301 to 30T used in the present embodiment. explain.
First, a case where base station apparatuses 100 and 101 map a reference symbol sequence generated from a cyclically shifted sequence to the same resource element will be described.
FIG. 10A is a conceptual diagram illustrating an example of a reference symbol sequence used by base station apparatus 100 for antenna port 1. The reference symbol sequences a to h in the figure are generated based on an M sequence that is a pseudo-noise sequence of 8 chips (bits).
The series in the figure is a series based on the M series. The M-sequence has excellent autocorrelation characteristics (that is, when despreading is performed, a sharp (high) correlation value (peak value) is obtained when the sequence is synchronized, and low when the sequence is out of synchronization. A pseudo-noise sequence from which a correlation value is obtained. The 8-chip sequence a to h provides a sharp correlation value at the position a, that is, a sharp correlation value is obtained when the correlation is obtained without shifting the sequence. Note that the reference symbol sequence generated by the reference signal generation unit 29 is not limited to the M sequence, and reference symbols of other sequences may be generated.
 図10Bは、基地局装置100が、図10Aの参照シンボル系列をマッピングした例を示す概念図である。また、図10Cは、図10Aの参照シンボル系列を巡回的にシフトさせた参照シンボル系列を、基地局装置101が、基地局装置100と同じリソースエレメントにマッピングした例を示す概念図である。図10Bおよび図10Cでは図5で示した参照シンボル系列のうち、アンテナポート1の参照シンボル系列がa~hで示され、アンテナポート2~4の参照シンボル系列は網掛けで示されている。 FIG. 10B is a conceptual diagram illustrating an example in which the base station apparatus 100 maps the reference symbol sequence in FIG. 10A. FIG. 10C is a conceptual diagram illustrating an example in which the base station device 101 maps the reference symbol sequence obtained by cyclically shifting the reference symbol sequence in FIG. 10A to the same resource element as the base station device 100. 10B and 10C, among the reference symbol sequences shown in FIG. 5, the reference symbol sequences for antenna port 1 are indicated by a to h, and the reference symbol sequences for antenna ports 2 to 4 are indicated by shading.
 図10Cにおいて、基地局装置101が用いている参照シンボル系列は、図10Bにおいて基地局装置100が用いる系列を巡回的にシフトさせたものである。巡回的にシフトさせたことにより、鋭い相関値が得られる位置を異ならせることができる。また、基地局装置100と基地局装置101とは互いに同一のリソースエレメントに参照シンボル系列をシンボル毎にマッピングする。基地局装置100の参照信号生成部29は、アンテナポート1のための参照シンボル系列として、0チップシフトの疑似雑音系列、すなわちシフトを行わない系列に基づいた信号を生成する。基地局装置100のリソースエレメントマッピング部301~30Tは、生成した参照シンボル系列を図10Bのようにマッピングする。また、基地局101の参照信号生成部29は、アンテナポート1のための参照シンボル系列として、1チップシフトの疑似雑音系列に基づいた信号を生成する。つまり、参照信号生成部29が生成する参照シンボル系列は、他の基地局装置の参照シンボル系列を巡回的にシフトさせたものである。基地局101のリソースエレメントマッピング部301~30Tは、生成した参照シンボル系列を図10Cのようにマッピングする。 10C, the reference symbol sequence used by base station apparatus 101 is a cyclic shift of the series used by base station apparatus 100 in FIG. 10B. By shifting cyclically, the position where a sharp correlation value is obtained can be varied. Base station apparatus 100 and base station apparatus 101 map reference symbol sequences to the same resource elements for each symbol. The reference signal generation unit 29 of the base station apparatus 100 generates a signal based on a 0-chip shifted pseudo noise sequence, that is, a sequence that is not shifted, as a reference symbol sequence for the antenna port 1. Resource element mapping sections 301 to 30T of base station apparatus 100 map the generated reference symbol sequence as shown in FIG. 10B. Further, the reference signal generation unit 29 of the base station 101 generates a signal based on a one-chip shifted pseudo noise sequence as a reference symbol sequence for the antenna port 1. That is, the reference symbol sequence generated by the reference signal generation unit 29 is a cyclic shift of the reference symbol sequence of another base station apparatus. Resource element mapping sections 301 to 30T of base station 101 map generated reference symbol sequences as shown in FIG. 10C.
 次に、図10Bおよび図10Cのように参照シンボル系列をマッピングすることで得られる効果について説明する。まず、基地局100と基地局101との協調通信を行う移動端末装置150がそれぞれの基地局装置に対するフィードバック情報を推定する場合について説明する。基地局装置100及び101それぞれからの参照シンボルを独立に用いて(すなわち逆拡散を行わずに)推定を行った場合、隣接セル間の送信信号が互いに干渉となり、特に移動端末装置150がセル端領域にいる場合、移動端末装置150はセル間干渉が大きい状況でフィードバック情報を推定する。これに対して、協調通信を行っている移動端末装置150に対するデータ伝送では、そのセル間干渉は抑圧または低減されている。そのため、フィードバック情報を推定するセル間干渉の大きい状況と、実際に協調通信を行っている状況とは大きく異なることになる。そこで、協調通信を行うための最適なフィードバック情報(セル間干渉が抑圧または低減された状態でのフィードバック情報)を推定する必要がある。さらにセル端領域にいる移動端末装置150が行う協調通信の方法によっては、協調通信を行おうとしているそれぞれの基地局装置100及び101に対するフィードバック情報を送信する必要がある。 Next, the effect obtained by mapping the reference symbol sequence as shown in FIGS. 10B and 10C will be described. First, a case will be described where mobile terminal apparatus 150 that performs cooperative communication between base station 100 and base station 101 estimates feedback information for each base station apparatus. When estimation is performed using reference symbols independently from each of base station apparatuses 100 and 101 (that is, without performing despreading), transmission signals between adjacent cells interfere with each other, and mobile terminal apparatus 150 in particular When in the area, the mobile terminal apparatus 150 estimates feedback information in a situation where inter-cell interference is large. On the other hand, in the data transmission with respect to the mobile terminal apparatus 150 performing the cooperative communication, the inter-cell interference is suppressed or reduced. For this reason, the situation in which inter-cell interference with which feedback information is estimated is large and the situation in which cooperative communication is actually performed are significantly different. Therefore, it is necessary to estimate optimal feedback information (feedback information in a state where inter-cell interference is suppressed or reduced) for performing cooperative communication. Furthermore, depending on the method of cooperative communication performed by the mobile terminal apparatus 150 in the cell edge region, it is necessary to transmit feedback information to each of the base station apparatuses 100 and 101 that are going to perform the cooperative communication.
 図10Bおよび図10Cのように参照シンボル系列をマッピングすることにより、移動端末装置150が逆拡散を行った際に基地局装置100及び101のそれぞれに対する自己相関のピーク値の位置は互いに異なっている。このため、基地局装置100と基地局装置101との送信信号を同時に受信して協調通信する移動端末装置150のフィードバック情報生成部61は、逆拡散を行うことにより隣接セルからの干渉を抑圧または低減させることができ、協調通信を行うための最適なフィードバック情報を推定することができる。例えば、基地局装置100と基地局装置101とが同期して同じデータ信号を送信する場合(例えば、基地局装置100と基地局装置101とは相互に優先又は無線により同期情報を交換して、隣接セル間の移動端末に対して送信信号の受信が同期するようにする)、参照シンボルについては基地局装置100と101とが同じリソースエレメントを用いて異なる参照シンボルを送信することで、参照シンボルによるオーバーヘッドの増加なしに移動端末装置150は各基地局装置に対するフィードバック情報を生成して送信できる。特に、プリコーディング行列は移動端末装置における個々の基地局装置からの信号受信状態に応じて決定することが望ましい。移動端末装置150は、個々の基地局装置(基地局装置100、101の各々)からの信号受信状態に応じたプリコーディング行列(具体的にはPMI)を基地局装置毎に決定、または、個々の基地局装置(基地局装置100、101の各々)からの信号受信状態に応じて基地局装置間で共通のプリコーディング行列(具体的にはPMI)を決定して送信することができる。 By mapping the reference symbol sequence as shown in FIG. 10B and FIG. 10C, when the mobile terminal apparatus 150 performs despreading, the positions of the autocorrelation peak values for the base station apparatuses 100 and 101 are different from each other. . For this reason, the feedback information generation unit 61 of the mobile terminal apparatus 150 that simultaneously receives transmission signals from the base station apparatus 100 and the base station apparatus 101 and performs cooperative communication suppresses interference from neighboring cells by performing despreading or The optimum feedback information for performing cooperative communication can be estimated. For example, when the base station apparatus 100 and the base station apparatus 101 transmit the same data signal in synchronization (for example, the base station apparatus 100 and the base station apparatus 101 exchange synchronization information with priority or wirelessly, For the reference symbols, the base station apparatuses 100 and 101 transmit different reference symbols using the same resource element, so that the reference symbols are transmitted. The mobile terminal apparatus 150 can generate and transmit feedback information for each base station apparatus without an increase in overhead due to the above. In particular, it is desirable to determine the precoding matrix according to the signal reception state from each base station apparatus in the mobile terminal apparatus. The mobile terminal apparatus 150 determines, for each base station apparatus, a precoding matrix (specifically, a PMI) corresponding to a signal reception state from each base station apparatus (each of the base station apparatuses 100 and 101), or individually. The base station apparatus (each of the base station apparatuses 100 and 101) can determine and transmit a common precoding matrix (specifically, PMI) between the base station apparatuses in accordance with the signal reception state.
 また、移動端末装置150は基地局装置100及び101それぞれの参照シンボル系列と受信した参照シンボル系列との相関をとることにより、基地局装置毎の参照シンボルを抽出してフィードバック情報を生成することができる。参照シンボル系列を生成する基となる系列として、自己相関特性が優れた擬似雑音系列を用いることにより干渉の抑圧または低減の効果がより大きく得られる。さらに自己相関特性が優れたM系列を用いることにより干渉の抑圧または低減の効果がよりさらに大きく得られる。
 一方、協調通信を行わない移動端末装置151は、疑似雑音系列に基づいた参照シンボル系列であっても従来と同様に、フィードバック情報生成部61において、逆拡散を行わずにそれぞれの参照シンボルを独立に用いることで、逆拡散を行う処理を増やすことなく、隣接セルからの干渉電力を考慮した最適なフィードバック情報を推定することができる。また、協調通信を行わない移動端末装置151に対しては、基地局装置101は制御情報などを新たに移動端末装置に通知する必要がない。
 また、協調通信を行う移動端末装置150と協調通信を行わない移動端末装置とが混在する通信システムを、リソース全体に対する参照シンボルの割合(オーバーヘッド)を増やすことなく実現できる。
In addition, the mobile terminal apparatus 150 can generate feedback information by extracting reference symbols for each base station apparatus by correlating the reference symbol sequences of the base station apparatuses 100 and 101 with the received reference symbol series. it can. By using a pseudo-noise sequence having excellent autocorrelation characteristics as a sequence that is a basis for generating a reference symbol sequence, the effect of suppressing or reducing interference can be obtained more greatly. Furthermore, the effect of suppressing or reducing interference can be further increased by using an M sequence having excellent autocorrelation characteristics.
On the other hand, the mobile terminal apparatus 151 that does not perform the cooperative communication independently uses the reference symbol sequence without performing despreading in the feedback information generation unit 61 even if the reference symbol sequence is based on the pseudo-noise sequence. By using this, it is possible to estimate optimal feedback information in consideration of interference power from neighboring cells without increasing the number of processes for despreading. Further, for the mobile terminal apparatus 151 that does not perform cooperative communication, the base station apparatus 101 does not need to newly notify the mobile terminal apparatus of control information or the like.
In addition, a communication system in which mobile terminal apparatuses 150 that perform cooperative communication and mobile terminal apparatuses that do not perform cooperative communication can be realized without increasing the ratio (overhead) of reference symbols to the entire resource.
 ここで、隣接セル間で疑似雑音系列に基づいた参照シンボル系列を直交させることにより干渉の抑圧や低減の効果が大きくなる。そこで、基地局装置100と基地局装置101とが用いる系列は、これらの基地局装置の上位に位置する制御局が割り当てることにより互いの参照シンボル系列を直交させる。なお、基地局同士が制御信号を通信するX2などの回線または無線を通して互いに協調する方法又はセルIDなどのパラメータを用いて予め決められた方法でそれぞれの基地局装置が生成する方法などを用いるようにしてもよい。
 基地局装置100及び101は、移動端末装置150に対して、用いた擬似雑音系列や用いた参照シンボルやシフト数や予め規定した参照シンボル系列のインデックス(番号)などを通知する。なお、移動端末装置150が、基地局装置100及び101から通知されるセルIDなどのパラメータを用いて擬似雑音系列やシフト数を特定するようにしてもよい。
 なお、移動端末装置150が協調通信を行っている場合でも、移動端末装置150に制御情報信号を送信する基地局装置、および移動端末装置150がフィードバック情報を送信する基地局装置は協調通信相手の基地局装置の1つに限らず、アンカーセルのような協調通信を行っている基地局装置の内のいずれかであってもよい。なお、移動端末装置150が協調通信を行っている場合でも、移動端末装置150に制御情報信号を送信する基地局装置、および移動端末装置150がフィードバック情報を送信する基地局装置は、協調通信を行っている全ての基地局装置であってもよい。
Here, the effect of suppressing or reducing interference is increased by orthogonalizing reference symbol sequences based on pseudo noise sequences between adjacent cells. Therefore, the sequences used by the base station device 100 and the base station device 101 are assigned by a control station located above these base station devices so that their reference symbol sequences are orthogonal to each other. It should be noted that a method of cooperating with each other through a line such as X2 or radio where the base stations communicate control signals or a method generated by each base station device using a parameter such as a cell ID is used. It may be.
Base station apparatuses 100 and 101 notify mobile terminal apparatus 150 of the used pseudo-noise sequence, the used reference symbol, the number of shifts, the index (number) of a predefined reference symbol sequence, and the like. Note that the mobile terminal apparatus 150 may specify the pseudo noise sequence and the number of shifts using parameters such as the cell ID notified from the base station apparatuses 100 and 101.
Even when the mobile terminal device 150 performs cooperative communication, the base station device that transmits the control information signal to the mobile terminal device 150 and the base station device that the mobile terminal device 150 transmits feedback information The base station apparatus is not limited to one of the base station apparatuses, and may be any one of base station apparatuses performing cooperative communication such as an anchor cell. Even when the mobile terminal device 150 performs cooperative communication, the base station device that transmits the control information signal to the mobile terminal device 150 and the base station device that transmits the feedback information to the mobile terminal device 150 perform cooperative communication. All the base station apparatuses currently performing may be sufficient.
 次に、基地局装置100が参照シンボルをマッピングするリソースエレメントの位置と基地局装置101が参照シンボルをマッピングするリソースエレメントの位置とが互いに異なる場合について説明する。図10Bおよび図10Cでは、基地局装置100と基地局装置101における参照シンボル(系列)をマッピングするリソースエレメントが同じである場合について説明したが、基地局装置100と基地局装置101における参照シンボルをマッピングするリソースエレメントが、セルIDなどのパラメータによってシフトする場合でも同様に効果を得ることができる。 Next, a case where the position of the resource element to which the base station apparatus 100 maps the reference symbol and the position of the resource element to which the base station apparatus 101 maps the reference symbol will be described. In FIG. 10B and FIG. 10C, the case where the resource elements for mapping the reference symbols (sequences) in the base station apparatus 100 and the base station apparatus 101 are the same has been described, but the reference symbols in the base station apparatus 100 and the base station apparatus 101 are the same. The same effect can be obtained even when the resource element to be mapped is shifted by a parameter such as a cell ID.
 図11Aは、基地局装置100が、図10Bの場合と同様に参照シンボル系列をマッピングした例を示す概念図である。また、図11Bは、基地局装置101が、参照シンボル系列を、図10Cで示した位置よりも周波数方向に1サブキャリア分シフトしたリソースエレメントにマッピングした例を示す概念図である。図11Aおよび図11Bにおいても、図10Bおよび図10Cと同様、アンテナポート1の参照シンボル系列がa~hで示され、アンテナポート2~4の参照シンボル系列は網掛けで示されている。
 図11Aおよび図11Bにおいても、基地局装置100及び基地局装置101は、図10Bおよび図10Cで説明したのと同様にマッピングする。ただし、図11Bでは、基地局装置101が行うマッピングは図10Cの場合よりも周波数方向に1サブキャリア分だけ周波数が高い方向(上)にシフトしている。つまり、基地局装置100及び101の各々のリソースエレメントマッピング部301~30Tは隣接する基地局装置間で互いに異なるリソースエレメントに参照シンボルをマッピングする。
FIG. 11A is a conceptual diagram illustrating an example in which the base station apparatus 100 maps reference symbol sequences in the same manner as in FIG. 10B. FIG. 11B is a conceptual diagram illustrating an example in which the base station apparatus 101 maps the reference symbol sequence to a resource element shifted by one subcarrier in the frequency direction from the position illustrated in FIG. 10C. 11A and 11B, as in FIGS. 10B and 10C, the reference symbol sequences of antenna port 1 are indicated by a to h, and the reference symbol sequences of antenna ports 2 to 4 are indicated by shading.
11A and 11B, the base station apparatus 100 and the base station apparatus 101 perform mapping in the same manner as described with reference to FIGS. 10B and 10C. However, in FIG. 11B, the mapping performed by base station apparatus 101 is shifted in the frequency direction by one subcarrier higher in the frequency direction (upward) than in the case of FIG. 10C. That is, resource element mapping sections 301 to 30T of base station apparatuses 100 and 101 map reference symbols to resource elements different from each other between adjacent base station apparatuses.
 図11Aおよび図11Bに示す例の場合、移動端末装置が受信する基地局装置100の参照シンボル系列と基地局装置101のデータ信号の並びとが同じリソースエレメントにマッピングされている。この基地局装置100からの参照シンボル系列と基地局装置101からのシンボル系列(データ信号の並び)とは互いに直交していないが、参照信号生成部29が自己相関特性の鋭いM系列を用いて参照シンボル系列を生成し、移動端末装置150が逆拡散を行うことで、他セルからの干渉を互いに大幅に低減させることができ、協調通信を行うための最適なフィードバック情報を推定することができる。なお、参照信号生成部29が用いる系列は自己相関特性に優れた系列であればよく、M系列に限らない。
 なお、以上では全てのアンテナポートの全ての参照シンボルについて疑似雑音系列に基づいた参照シンボル系列を用いる場合について説明したが、リソースエレメントマッピング部301~30Tがそのうちの一部だけに擬似雑音系列を用いた参照シンボル系列をマッピングするようにしてもよい。例えば、一つのアンテナポートにおける参照シンボルには疑似雑音系列に基づいた参照シンボル系列を割り当て、残りのアンテナポートにおける参照シンボルにはセルIDに基づいた乱数から生成した参照シンボルを割り当てるようにしてもよい。
In the example illustrated in FIGS. 11A and 11B, the reference symbol sequence of the base station apparatus 100 received by the mobile terminal apparatus and the arrangement of the data signals of the base station apparatus 101 are mapped to the same resource element. Although the reference symbol sequence from base station apparatus 100 and the symbol series (data signal sequence) from base station apparatus 101 are not orthogonal to each other, reference signal generation unit 29 uses an M sequence having sharp autocorrelation characteristics. By generating a reference symbol sequence and performing despreading by the mobile terminal apparatus 150, interference from other cells can be greatly reduced, and optimal feedback information for performing cooperative communication can be estimated. . Note that the sequence used by the reference signal generation unit 29 may be a sequence having excellent autocorrelation characteristics, and is not limited to the M sequence.
In the above description, the reference symbol sequence based on the pseudo noise sequence is used for all reference symbols of all antenna ports. However, the resource element mapping units 301 to 30T use the pseudo noise sequence only for a part of them. The reference symbol sequence that has been stored may be mapped. For example, a reference symbol sequence based on a pseudo noise sequence may be assigned to a reference symbol in one antenna port, and a reference symbol generated from a random number based on a cell ID may be assigned to reference symbols in the remaining antenna ports. .
 なお、以上では基地局装置100及び101のアンテナポート数が4の場合について説明したが、アンテナポート数は4に限られず1またはそれ以上のアンテナポート数であればよい。なお、図11Aおよび図11Bでは、参照シンボル系列をマッピングするリソースエレメントをセルIDなどのパラメータ基づいて隣接セル間でシフトさせる場合について説明したが、全てのセル間またはActive CoMP setのような協調通信を行う複数のセルの間で、予め参照シンボルをマッピングするリソースエレメントを決定し、リソースエレメントマッピング部301~30Tが決定されたリソースエレメントを記憶するようにしてもよい。
 なお、以上では全てのリソースブロックに参照シンボル系列を配置する場合について説明したが、ソースエレメントマッピング部301~30Tが一部のリソースブロックのみに配置するようにしてもよい。なお、疑似雑音系列に基づいた参照シンボル系列をセル間で直交させる単位として、RRE(Remote Radio Equipment)やRRH(Remote Radio Head)、又は独立アンテナなどの基地局が光ファイバなどの有線を通して制御する単位、又はリレーなどの基地局が無線を通して制御する単位、又はActive CoMP setのような協調通信を行う複数の基地局により構成される単位、又は参照シンボルをマッピングするリソースエレメントの単位などを用いるようにしてもよい。
In addition, although the case where the number of antenna ports of the base station apparatuses 100 and 101 is four has been described above, the number of antenna ports is not limited to four and may be one or more antenna ports. 11A and 11B, a case has been described in which a resource element that maps a reference symbol sequence is shifted between adjacent cells based on a parameter such as a cell ID. However, cooperative communication such as between all cells or Active CoMP set is performed. The resource elements to which reference symbols are mapped in advance may be determined among the plurality of cells that perform the above, and the resource elements determined by the resource element mapping units 301 to 30T may be stored.
Although the case where reference symbol sequences are arranged in all resource blocks has been described above, the source element mapping units 301 to 30T may be arranged in only some resource blocks. A base station such as RRE (Remote Radio Equipment), RRH (Remote Radio Head), or an independent antenna is controlled through a wire such as an optical fiber as a unit for orthogonalizing reference symbol sequences based on a pseudo noise sequence between cells. A unit, a unit controlled by a base station such as a relay, or a unit configured by a plurality of base stations performing cooperative communication such as Active CoMP set, or a unit of a resource element that maps a reference symbol is used. It may be.
 なお、基地局装置100が移動端末装置150に通知する識別情報や制御情報に基づいて疑似雑音系列の種類や自己相関特性のピークが得られる位置などを決定し、基地局装置100が移動端末装置150に疑似雑音系列の種類や、自己相関特性のピークが得られる位置などを通知することにより、同時に識別情報や制御情報を通知できるようにしてもよい。
 なお、基地局装置が用いる疑似雑音系列の系列長と、移動端末装置が逆拡散処理を行う系列長は異なってもよい。なお、以上では、移動端末装置150はフィードバック情報を生成するために参照シンボル系列に逆拡散処理を行ったが、情報データ信号を復調するための伝搬路推定の際に逆拡散処理を行うようにしてもよい。
The base station apparatus 100 determines the type of pseudo-noise sequence, the position where the peak of the autocorrelation characteristic is obtained, etc. based on the identification information and control information notified to the mobile terminal apparatus 150, and the base station apparatus 100 determines the mobile terminal apparatus. 150 may be notified of identification information and control information at the same time by notifying 150 the type of pseudo noise sequence, the position where the peak of the autocorrelation characteristic is obtained, and the like.
Note that the sequence length of the pseudo-noise sequence used by the base station apparatus may be different from the sequence length that the mobile terminal apparatus performs despreading processing on. In the above description, the mobile terminal apparatus 150 performs the despreading process on the reference symbol sequence in order to generate feedback information. However, the mobile terminal apparatus 150 performs the despreading process when estimating the propagation path for demodulating the information data signal. May be.
 なお、以上では、複数の基地局装置間と少なくとも1つの移動端末装置との間で協調通信を行う場合について説明したが、他の態様による協調通信であってもよい。物理的に独立した基地局装置間での協調通信、又はセクタ構成をとる一つの基地局装置におけるセクタ間での協調通信、又は基地局装置と光ファイバなどの有線で接続された送信装置(RREやRRHなど)との間での協調通信、又は基地局装置とリレー技術を用いて無線で接続された送信装置(リレー局やリピータ局など)との間での協調通信を行う場合であってもよい。さらにそれらを組み合わせて協調通信を行う場合であってもよい。また、これらの送信装置が複数の送信アンテナ(アンテナポート)で持つ場合、そのうちの一部の送信アンテナを用いて協調通信を行ってもよい。また、これらの送信装置のうち、複数のアンテナポート間で協調して少なくとも1つの移動端末装置と通信を行ってもよい。
 なお、以上では、複数の基地局装置との間で協調通信を行う移動端末装置は逆拡散処理を行い、協調通信を行わずに1個の基地局装置との間で通信を行う移動端末装置は逆拡散処理を行わない場合について説明したが、これに限るものではない。例えば、協調通信を行う移動端末は逆拡散処理を行い、MIMO(Multi Input Multi Output)通信を行う移動端末は逆拡散処理を行わずにフィードバック情報を生成するようにしてもよい。
In addition, although the case where cooperative communication is performed between a plurality of base station devices and at least one mobile terminal device has been described above, cooperative communication according to another aspect may be used. Collaborative communication between physically independent base station apparatuses, or cooperative communication between sectors in one base station apparatus having a sector configuration, or a transmission apparatus (RRE) connected to the base station apparatus by wire such as an optical fiber Or RRH), or a cooperative communication between a base station apparatus and a transmission apparatus (such as a relay station or a repeater station) connected wirelessly using relay technology. Also good. Furthermore, it may be a case where cooperative communication is performed by combining them. Moreover, when these transmission apparatuses have a plurality of transmission antennas (antenna ports), cooperative communication may be performed using some of the transmission antennas. Moreover, you may communicate with at least 1 mobile terminal device in cooperation between several antenna ports among these transmitters.
In the above, a mobile terminal apparatus that performs cooperative communication with a plurality of base station apparatuses performs despreading processing, and performs communication with one base station apparatus without performing cooperative communication. Although the case where no despreading processing is performed has been described, the present invention is not limited to this. For example, a mobile terminal that performs cooperative communication may perform despreading processing, and a mobile terminal that performs MIMO (Multi Input Multi Output) communication may generate feedback information without performing despreading processing.
 複数の基地局装置100及び101からの送信信号を同時に受信して協調通信する移動端末装置150のフィードバック情報生成部29は、それぞれの基地局装置からの参照シンボル系列に対して逆拡散を行うことにより、それぞれの基地局装置から得られる信号電力(信号振幅)を隣接セルからの干渉を抑圧しながら測定する。フィードバック情報生成部29は、それぞれの基地局装置から得られる信号電力(信号振幅)からSINRを推定し、ルックアップテーブルから推定したSINRに対応するCQIやPMIやRIを取得し、これらをフィードバック情報とする。つまり、フィードバック情報は参照シンボルの信号受信状態(信号振幅)に基づく情報である。
 後述するように、SINRとして協調通信する基地局装置におけるSINRを合成したもの(総合的なSINR)を推定してもよいし、それぞれの基地局におけるSINRを推定してもよい。
 なお、協調通信を行わない移動端末装置151も参照シンボル系列を逆拡散するようにしてもよい。移動端末装置151は、通信を行っている基地局装置(自基地局、自セル、サービングセル)100から送信された参照シンボル系列を受信し、この基地局装置が送信する参照シンボル系列との相関をとることにより、この基地局が得られる信号電力(信号振幅)を隣接セルからの干渉を抑圧しながら測定することができる。また、参照シンボル系列のチップの各々には隣接基地局からの干渉成分が含まれているため、参照シンボルがマッピングされたリソースエレメントを参照して(自基地局からの参照信号振幅と受信信号と差分の2乗ノルムを算出して)、平均干渉信号電力を得ることができ、最適なフィードバック情報(SINRやSINRに基づいたCQIやPMIなど)を推定することができる。
Feedback information generating section 29 of mobile terminal apparatus 150 that receives transmission signals from a plurality of base station apparatuses 100 and 101 simultaneously and performs cooperative communication performs despreading on reference symbol sequences from the respective base station apparatuses. Thus, the signal power (signal amplitude) obtained from each base station apparatus is measured while suppressing interference from adjacent cells. The feedback information generation unit 29 estimates SINR from the signal power (signal amplitude) obtained from each base station apparatus, acquires CQI, PMI, and RI corresponding to the SINR estimated from the lookup table, and feeds them back to the feedback information. And That is, the feedback information is information based on the signal reception state (signal amplitude) of the reference symbol.
As will be described later, a combination of SINRs in a base station apparatus that performs cooperative communication as SINR (total SINR) may be estimated, or SINRs in respective base stations may be estimated.
Note that the mobile terminal apparatus 151 that does not perform cooperative communication may also despread the reference symbol sequence. The mobile terminal device 151 receives the reference symbol sequence transmitted from the communicating base station device (own base station, own cell, serving cell) 100, and correlates the reference symbol sequence transmitted by the base station device. Thus, the signal power (signal amplitude) obtained by this base station can be measured while suppressing interference from adjacent cells. In addition, since each reference symbol sequence chip includes an interference component from an adjacent base station, the reference symbol amplitude and received signal from the own base station are referred to by referring to the resource element to which the reference symbol is mapped. By calculating the square norm of the difference, average interference signal power can be obtained, and optimum feedback information (CQI, PMI, etc. based on SINR or SINR) can be estimated.
 なお、以上では、1つの基地局装置と少なくとも1つの移動端末装置が通信を行うとともに複数の基地局装置が互いに協調して少なくとも1つの移動端末装置と通信を行う場合について説明したが、それらの通信を同時に行う必要はない。すなわち、ある時間帯では、1つの基地局装置と少なくとも1つの移動端末装置のみが通信を行い、また別のある時間帯では、複数の基地局装置が互いに協調して少なくとも1つの移動端末装置と通信を行うようにしてもよい。
 なお、移動端末装置150は基地局装置100が用いた系列長を超えて逆拡散処理をしてもよいし、その系列長未満の長さについて逆拡散処理してもよい。
In the above, a case where one base station apparatus and at least one mobile terminal apparatus communicate with each other and a plurality of base station apparatuses cooperate with each other to communicate with at least one mobile terminal apparatus has been described. There is no need to communicate at the same time. That is, only one base station apparatus and at least one mobile terminal apparatus communicate in a certain time zone, and in another certain time zone, a plurality of base station apparatuses cooperate with each other to at least one mobile terminal apparatus. Communication may be performed.
Mobile terminal apparatus 150 may perform despreading processing beyond the sequence length used by base station apparatus 100, or may perform despreading processing for a length less than the sequence length.
 つぎに、逆拡散処理を行う移動端末装置150のフィードバック情報生成部61がフィードバック情報を生成する詳細手順について説明する。
 基地局装置100または101は、移動端末装置150に対して、逆拡散処理を行うべきセルのセットを通知する。セルのセットの情報には、セル数、それぞれのセルID、それぞれのセルの擬似雑音系列が含まれている。なお、セルの擬似雑音系列はセルID等によって定まるようにしてもよい。基地局装置100または101は、移動端末装置150から測定レポート(Measurement Report)を受信し、この測定レポートを用いて協調通信を行うべきセルのセットを決定する。移動端末装置150は、逆拡散処理を行うべきセルのセットが通知されると、それぞれのセルから送信される参照シンボル系列に対して逆拡散処理を行う。
 上述のように、フィードバック情報生成部61は受信した参照シンボル系列に対して逆拡散を行うことにより、他の基地局からの干渉を抑圧または軽減された参照シンボルを得る。フィードバック情報生成部61は干渉が抑圧または軽減された参照シンボルから信号電力(信号振幅)を測定する。フィードバック情報生成部61は測定した信号電力からSINRを推定し、ルックアップテーブルから推定したSINRに対応するCQIやPMIやRIを取得し、これらをフィードバック情報とする。
Next, a detailed procedure for generating feedback information by the feedback information generation unit 61 of the mobile terminal apparatus 150 that performs despreading processing will be described.
Base station apparatus 100 or 101 notifies mobile terminal apparatus 150 of a set of cells on which despreading processing is to be performed. The cell set information includes the number of cells, each cell ID, and the pseudo noise sequence of each cell. Note that the pseudo-noise sequence of a cell may be determined by a cell ID or the like. The base station apparatus 100 or 101 receives a measurement report (Measurement Report) from the mobile terminal apparatus 150, and determines a set of cells in which cooperative communication is to be performed using the measurement report. When the mobile terminal apparatus 150 is notified of the set of cells to be despread, the mobile terminal apparatus 150 performs despread processing on the reference symbol sequence transmitted from each cell.
As described above, feedback information generation section 61 performs despreading on the received reference symbol sequence to obtain a reference symbol in which interference from other base stations is suppressed or reduced. The feedback information generation unit 61 measures signal power (signal amplitude) from a reference symbol whose interference is suppressed or reduced. The feedback information generation unit 61 estimates SINR from the measured signal power, acquires CQI, PMI, and RI corresponding to the SINR estimated from the lookup table, and uses these as feedback information.
 CQIとPMIとRIとはそれぞれ複数種類のパターンとして(インデックス化して)予め設定しておき、そのパターンに最も近いものを選択する。フィードバック情報生成部61はSINRと所要品質を満たすCQIとが対応付けられたルックアップテーブルを予め内部に記憶している。フィードバック情報生成部61は、上述のようにして推定したSINRを用いて、ルックアップテーブルを参照してCQIを取得する。PMIについてもフィードバック情報生成部61はルックアップテーブルを予め内部に記憶し、SINRを用いてルックアップテーブルを参照し、受信電力が最大になるようなプリコーディング行列を取得する。RIについてもフィードバック情報生成部61はルックアップテーブルを予め内部に記憶し、SINRを用いてルックアップテーブルを参照してRIを取得する。
 なお、フィードバック情報生成部61がフィードバック情報としてCSIを生成するようにしてもよい。この場合、逆拡散処理を行った結果から、それぞれの送信アンテナポートに対する受信アンテナポートにおけるCSIを生成する。なお、フィードバック情報生成部61がCSIに基づくフィードバック情報に対して圧縮処理を行い、フィードバック情報量を削減するようにしてもよい。時間方向または周波数方向に連続する伝送路状況の差分をフィードバック情報としてもよい。また、そのフィードバック情報をサブバンド毎に生成するようにしてもよい。
CQI, PMI, and RI are preset as a plurality of types of patterns (indexed), and the pattern closest to the pattern is selected. The feedback information generation unit 61 stores therein a lookup table in which SINR and CQI satisfying required quality are associated with each other in advance. The feedback information generation unit 61 uses the SINR estimated as described above to obtain a CQI by referring to a lookup table. Also for PMI, the feedback information generation unit 61 stores a lookup table in advance, refers to the lookup table using SINR, and acquires a precoding matrix that maximizes received power. Also for the RI, the feedback information generation unit 61 stores a lookup table in advance, and acquires the RI by referring to the lookup table using SINR.
Note that the feedback information generation unit 61 may generate CSI as feedback information. In this case, CSI in the receiving antenna port for each transmitting antenna port is generated from the result of performing the despreading process. Note that the feedback information generation unit 61 may compress the feedback information based on the CSI to reduce the amount of feedback information. A difference between transmission path conditions continuous in the time direction or the frequency direction may be used as feedback information. Further, the feedback information may be generated for each subband.
 フィードバック情報生成部61がフィードバック情報を生成する元となるチャネル状態を測定する方法には以下の2つの方法が考えられる。第1の方法は、総合的なSINRや総合的なSINRに基づいたCQIやPMIを求める方法である。フィードバック情報生成部61は逆拡散処理を行って得られた各セルの参照シンボルを合成し、一つの合成された参照シンボルを元にチャネル状態を測定し、測定されたチャネル状態に基づいてフィードバック情報を生成する。一方、第2の方法は、それぞれの基地局におけるSINRやそれぞれの基地局におけるSINRに基づいたCQIやPMIを求める方法である。フィードバック情報生成部61は逆拡散処理を行って得られた各セルの参照シンボルごとのチャネル状態の測定を行い、測定したチャネル状態に基づいて必要なセル分のフィードバック情報を生成する。フィードバック情報生成部61は、第1の方法によりフィードバック情報を生成する。なお、第2の方法によりフィードバック情報を生成するようにしてもよいし、第1の方法と第2の方法の両方を具備し、基地局から指定された方法でフィードバックを行うようにしてもよい。 The following two methods are conceivable as a method of measuring the channel state from which the feedback information generating unit 61 generates feedback information. The first method is a method for obtaining CQI and PMI based on total SINR or total SINR. The feedback information generation unit 61 combines reference symbols of each cell obtained by performing the despreading process, measures a channel state based on one combined reference symbol, and feedback information based on the measured channel state Is generated. On the other hand, the second method is a method of obtaining CQI and PMI based on SINR in each base station and SINR in each base station. The feedback information generation unit 61 measures the channel state for each reference symbol of each cell obtained by performing the despreading process, and generates feedback information for necessary cells based on the measured channel state. The feedback information generation unit 61 generates feedback information by the first method. Note that feedback information may be generated by the second method, or both the first method and the second method may be provided, and feedback may be performed by a method designated by the base station. .
<第2の実施形態>
 つぎに、本発明の第2の実施形態について説明する。本実施形態では、リソースエレメントマッピング部301~30Tは、1つのリソースブロック単位毎に1系列分の参照シンボル系列をマッピングする。
 本実施形態における通信システムは、第1の実施形態における通信システムと同様の基地局装置100及び101と移動端末装置150及び151とを備えるが、100および101は第1の実施形態にて含むアンテナポート1~4に加えてさらにアンテナポート5~8を含む。そして、本実施形態では、リソースエレメントマッピング部のマッピング方法が、第1の実施形態と異なる。以下では、第1の実施形態と異なる部分を中心に説明する。
<Second Embodiment>
Next, a second embodiment of the present invention will be described. In the present embodiment, the resource element mapping units 301 to 30T map one series of reference symbol sequences for each resource block unit.
The communication system in the present embodiment includes base station apparatuses 100 and 101 and mobile terminal apparatuses 150 and 151 similar to those in the communication system in the first embodiment, but 100 and 101 are antennas included in the first embodiment. In addition to ports 1 to 4, antenna ports 5 to 8 are further included. In this embodiment, the mapping method of the resource element mapping unit is different from that of the first embodiment. Below, it demonstrates centering on a different part from 1st Embodiment.
 まず、基地局装置100及び101が同じリソースエレメントに参照シンボル系列をマッピングする場合について説明する。
 図12Aは、基地局装置100がアンテナポート5~8の参照シンボル系列をリソースエレメントにマッピングした例を示す。また、図12Bは、基地局装置100がアンテナポート5~8の参照シンボル系列をリソースエレメントにマッピングしたもう1つの例を示す。図12Aおよび図12B中のリソースエレメントに付した数字5~8は、アンテナポート5~8のそれぞれの参照シンボル系列を示す。
 それぞれのアンテナポートにマッピングした参照シンボルのリソースエレメントでは、それ以外のアンテナポートにおけるリソースエレメントに何も信号を割り当てずゼロ(ヌル)とすることでアンテナポート間を直交させている。なお、本実施形態では、アンテナポート1~4はセルIDを用いた乱数に基づいて生成した参照シンボルであり、図12Aおよび図12Bではそれらの参照シンボルは網掛けで示されている。基地局装置100は図12Aのようにアンテナポート5~8の参照シンボル系列を割り当てる。なお、基地局装置100は図12Bのようにアンテナポート5~8の参照シンボル系列を割り当ててもよいし、他の割り当てを行ってもよい。
First, a case will be described in which base station apparatuses 100 and 101 map reference symbol sequences to the same resource element.
FIG. 12A shows an example where base station apparatus 100 maps reference symbol sequences of antenna ports 5 to 8 to resource elements. FIG. 12B shows another example in which the base station apparatus 100 maps the reference symbol sequences of the antenna ports 5 to 8 to resource elements. Numbers 5 to 8 attached to resource elements in FIGS. 12A and 12B indicate reference symbol sequences of antenna ports 5 to 8, respectively.
In the resource elements of the reference symbols mapped to the respective antenna ports, the antenna ports are orthogonalized by assigning no signal to the resource elements in other antenna ports and setting them to zero (null). In the present embodiment, antenna ports 1 to 4 are reference symbols generated based on random numbers using cell IDs, and these reference symbols are shown in shades in FIGS. 12A and 12B. Base station apparatus 100 assigns reference symbol sequences of antenna ports 5 to 8 as shown in FIG. 12A. Note that base station apparatus 100 may allocate reference symbol sequences of antenna ports 5 to 8 as shown in FIG. 12B, or may perform other allocations.
 図13Aは、基地局装置100が、図12Aで示した新たに追加する4つのアンテナポートのうち、アンテナポート5に割り当てる4チップの参照シンボル系列の例を示す概念図である。この参照シンボル系列は擬似雑音系列に基づく参照シンボル系列である。図13Bは、基地局装置100が図13Aの参照シンボル系列をマッピングした例を示す概念図である。また、図13Cは、図13Aの参照シンボル系列を巡回的にシフトさせた参照シンボル系列を、基地局装置101が基地局装置100と同じリソースエレメントにマッピングした例を示す概念図である。図13Bおよび図13Cでは、図12Aで示した参照シンボル系列のうち、アンテナポート5の参照シンボル系列がa~dで示され、アンテナポート1~4の参照シンボルは網掛けで示されている。なお、ここでは、アンテナポート5の参照シンボル系列のみを示し、図12Aで示したアンテナポート6~8の参照シンボル系列は図示していない。参照信号生成部29は、疑似雑音系列として、M系列のような自己相関特性が優れた系列を用いる。4チップの系列a~dは、aの位置で鋭いピークが得られる。基地局装置100と基地局装置101とはリソースエレメントの同じ位置に参照シンボル系列をマッピングする。また、基地局装置101は基地局装置100の系列を巡回的に1チップシフトさせたものを参照シンボル系列とする。 FIG. 13A is a conceptual diagram illustrating an example of a 4-chip reference symbol sequence allocated to antenna port 5 among four newly added antenna ports illustrated in FIG. 12A by base station apparatus 100. This reference symbol sequence is a reference symbol sequence based on a pseudo noise sequence. FIG. 13B is a conceptual diagram illustrating an example in which the base station apparatus 100 maps the reference symbol sequence in FIG. 13A. FIG. 13C is a conceptual diagram illustrating an example in which the base station device 101 maps the reference symbol sequence obtained by cyclically shifting the reference symbol sequence in FIG. 13A to the same resource element as the base station device 100. In FIG. 13B and FIG. 13C, among the reference symbol sequences shown in FIG. 12A, the reference symbol sequences for antenna port 5 are indicated by a to d, and the reference symbols for antenna ports 1 to 4 are indicated by shading. Here, only the reference symbol sequence of antenna port 5 is shown, and the reference symbol sequences of antenna ports 6 to 8 shown in FIG. 12A are not shown. The reference signal generation unit 29 uses a sequence having excellent autocorrelation characteristics such as an M sequence as a pseudo noise sequence. In the 4-chip series a to d, a sharp peak is obtained at the position a. Base station apparatus 100 and base station apparatus 101 map the reference symbol sequence at the same position of the resource element. In addition, base station apparatus 101 uses, as a reference symbol series, a series of base station apparatus 100 that is cyclically shifted by one chip.
 基地局装置100の参照信号生成部29は、アンテナポート5のための参照シンボル系列として0チップシフトさせた(すなわちシフトさせない)疑似雑音系列に基づいた参照シンボル系列を生成する。基地局装置100のリソースエレメントマッピング部は、生成した参照シンボル系列を図13Bのようにマッピングする。また、基地局装置101の参照信号生成部29は、アンテナポート5のための参照シンボル系列として、1チップシフトさせた疑似雑音系列に基づいた参照シンボル系列を生成する。基地局2のリソースエレメントマッピング部は、生成した参照シンボル系列を図13Cのようにマッピングする。
 基地局装置100が図13Bのように参照シンボル系列をマッピングし、基地局装置101が図13Cのように参照シンボル系列をマッピングすることにより、基地局装置100が送信する参照シンボル系列と基地局装置101が送信する参照シンボル系列とは系列のピークの位置が互いに異なり直交している。これにより、基地局100と基地局101とから送信信号を同時に受信して協調通信する移動端末装置150は、逆拡散を行うことにより、隣接セルからの干渉を抑圧させることができ、協調通信を行うための最適なフィードバック情報を推定することができる。また、協調通信を行わない移動端末装置151は、疑似雑音系列に基づいた参照シンボル系列であっても、逆拡散処理を行わずにそれぞれのチップを独立に用いることで、新たな処理などを増やすことなく、最適なフィードバック情報を推定することができる。
The reference signal generation unit 29 of the base station apparatus 100 generates a reference symbol sequence based on a pseudo noise sequence shifted (ie, not shifted) by 0 chips as a reference symbol sequence for the antenna port 5. The resource element mapping unit of base station apparatus 100 maps the generated reference symbol sequence as shown in FIG. 13B. In addition, the reference signal generation unit 29 of the base station apparatus 101 generates a reference symbol sequence based on a pseudo noise sequence shifted by one chip as a reference symbol sequence for the antenna port 5. The resource element mapping unit of the base station 2 maps the generated reference symbol sequence as shown in FIG. 13C.
The base station device 100 maps the reference symbol sequence as shown in FIG. 13B, and the base station device 101 maps the reference symbol sequence as shown in FIG. 13C, so that the reference symbol sequence and the base station device transmitted by the base station device 100 are mapped. The reference symbol sequence transmitted by 101 is orthogonal to each other at different peak positions. Thereby, the mobile terminal apparatus 150 that simultaneously receives transmission signals from the base station 100 and the base station 101 and performs cooperative communication can suppress interference from adjacent cells by performing despreading, and perform cooperative communication. It is possible to estimate the optimum feedback information for performing. Also, the mobile terminal device 151 that does not perform cooperative communication increases new processing by using each chip independently without performing despreading processing, even if the reference symbol sequence is based on a pseudo-noise sequence. And optimal feedback information can be estimated.
 次に、基地局装置100が参照シンボルをマッピングするリソースエレメントの位置と基地局装置101が参照シンボルをマッピングするリソースエレメントの位置とが互いに異なる場合について説明する。
 図14Aは、基地局装置100が、図13Bの場合と同様に参照シンボル系列をマッピングした例を示す概念図である。また、図14Bは、基地局装置101が、参照シンボル系列を、図13Cで示した位置よりも周波数方向に1サブキャリア分シフトしたリソースエレメントにマッピングした例を示す概念図である。図14Aおよび図14Bにおいても、図13Bおよび図13Cと同様、アンテナポート5の参照シンボル系列がa~dで示され、アンテナポート1~4の参照シンボルは網掛けで示されている。
Next, a case will be described where the position of the resource element to which the base station apparatus 100 maps the reference symbol and the position of the resource element to which the base station apparatus 101 maps the reference symbol are different from each other.
FIG. 14A is a conceptual diagram illustrating an example in which the base station apparatus 100 maps reference symbol sequences in the same manner as in FIG. 13B. FIG. 14B is a conceptual diagram illustrating an example in which the base station apparatus 101 maps the reference symbol sequence to resource elements shifted by one subcarrier in the frequency direction from the position illustrated in FIG. 13C. 14A and 14B, as in FIGS. 13B and 13C, the reference symbol series of antenna port 5 is indicated by a to d, and the reference symbols of antenna ports 1 to 4 are indicated by shading.
 図13Bおよび図13Cでは、基地局装置100と基地局装置101とにおける参照シンボル(系列)をマッピングするリソースエレメントが同じである場合を説明したが、図14Aおよび図14Bに示すように、基地局100と基地局101における参照シンボルをマッピングするリソースエレメントが、セルIDなどのパラメータによってシフトする場合でも同様に効果を得ることができる。図14Aおよび図14Bにおいても、基地局装置100及び基地局装置101は、図13Bおよび図13Cで説明したのと同様にマッピングする。ただし、図14Bでは、基地局装置101が行うマッピングは図13Cの場合よりも周波数方向に1サブキャリア分だけ周波数が高い方向(上)にシフトしている。図14Aおよび図14Bにおいては、図11Aおよび図11Bにおいて説明したのと同様、移動端末装置が受信する基地局装置100からの参照シンボル系列と基地局装置101からのシンボル系列とは互いに直交していないが、自己相関特性の鋭いM系列を用い、移動端末装置150が逆拡散を行うことで、他セル干渉を互いに大幅に低減させることができ、協調通信を行うための最適なフィードバック情報を推定することができる。
 なお、以上では全てのアンテナポートの全ての参照シンボルについて疑似雑音系列に基づいた参照シンボル系列を用いる場合について説明したが、そのうちの一部だけでもよい。例えば、一つのアンテナポートにおける参照シンボルには疑似雑音系列に基づいた参照シンボル系列を割り当て、残りのアンテナポートにおける参照シンボルにはセルIDに基づいた乱数から生成した参照シンボルを割り当てるようにしてもよい。
In FIG. 13B and FIG. 13C, the case where the resource elements for mapping reference symbols (sequences) in the base station apparatus 100 and the base station apparatus 101 are the same has been described, but as shown in FIG. 14A and FIG. The same effect can be obtained even when resource elements that map reference symbols in 100 and the base station 101 shift according to parameters such as a cell ID. 14A and 14B, the base station apparatus 100 and the base station apparatus 101 perform mapping in the same manner as described with reference to FIGS. 13B and 13C. However, in FIG. 14B, the mapping performed by the base station apparatus 101 is shifted in the frequency direction (upward) by one subcarrier in the frequency direction compared to the case of FIG. 13C. 14A and 14B, as described in FIGS. 11A and 11B, the reference symbol sequence received from the base station device 100 and the symbol sequence received from the base station device 101 received by the mobile terminal device are orthogonal to each other. Although there is no M-sequence with sharp autocorrelation characteristics and the mobile terminal apparatus 150 performs despreading, it is possible to significantly reduce other cell interference with each other and estimate optimum feedback information for cooperative communication can do.
In addition, although the case where the reference symbol sequence based on the pseudo noise sequence is used for all the reference symbols of all the antenna ports has been described above, only a part of them may be used. For example, a reference symbol sequence based on a pseudo noise sequence may be assigned to a reference symbol in one antenna port, and a reference symbol generated from a random number based on a cell ID may be assigned to reference symbols in the remaining antenna ports. .
 なお、以上では基地局装置100及び101において、新たに追加するアンテナポート数が4の場合について説明したが、追加するアンテナポート数は4に限られず1またはそれ以上のアンテナポート数であればよい。
 なお、以上では4つのアンテナポート1~4に対して、さらに4つのアンテナポートを追加する場合について説明したが、これに限らず、1つまたはそれ以上のアンテナポートに1つまたはそれ以上のアンテナポートを追加する場合であればよい。例えば、2つのアンテナポート1~2に対して新たに6つのアンテナポートを追加してもよい。または、新たに8つのアンテナポートを追加してもよい。
 なお、以上では参照シンボル系列をマッピングするリソースエレメントをセルIDなどのパラメータに基づいて隣接セル間でシフトさせる場合について説明したが、全てのセル間またはActive CoMP setのような協調通信を行う複数のセルの間で、予め参照シンボル系列をマッピングするリソースエレメントを決定しておいてもよい。
In addition, although the case where the number of antenna ports to be newly added is four in the base station apparatuses 100 and 101 has been described above, the number of antenna ports to be added is not limited to four and may be one or more antenna ports. .
In the above description, four antenna ports are further added to the four antenna ports 1 to 4. However, the present invention is not limited to this, and one or more antenna ports are provided for one or more antenna ports. Any port may be added. For example, six new antenna ports may be added to the two antenna ports 1 and 2. Alternatively, eight antenna ports may be newly added.
In the above description, the resource element that maps the reference symbol sequence is shifted between adjacent cells based on a parameter such as a cell ID. However, all the cells or a plurality of cooperative communication such as Active CoMP set are performed. Resource elements for mapping reference symbol sequences may be determined in advance between cells.
<第3の実施形態>
 つぎに、本発明の第3の実施形態について説明する。本実施形態では、リソースエレメントマッピング部301~30Tは、1系列分の参照シンボル系列を1つのリソースブロック内にマッピングし、これを各リソースブロックに対して行う。
 本実施形態における通信システムは、第1の実施形態における通信システムと同様の基地局装置100及び101と移動端末装置150及び151とを備えるが、リソースエレメントマッピング部のマッピング方法が異なる。以下では、第1の実施形態と異なる部分を中心に説明する。
 本実施形態の基地局装置100及び101は第1の実施形態にて含むアンテナポート1~4に加えてさらにアンテナポート5~8を含む。
<Third Embodiment>
Next, a third embodiment of the present invention will be described. In the present embodiment, the resource element mapping units 301 to 30T map one sequence of reference symbol sequences in one resource block, and perform this for each resource block.
The communication system in the present embodiment includes base station apparatuses 100 and 101 and mobile terminal apparatuses 150 and 151 similar to the communication system in the first embodiment, but the mapping method of the resource element mapping unit is different. Below, it demonstrates centering on a different part from 1st Embodiment.
Base station apparatuses 100 and 101 of the present embodiment further include antenna ports 5 to 8 in addition to antenna ports 1 to 4 included in the first embodiment.
 図15Aは、新たに追加する4つのアンテナポートのうち、アンテナポート5に割り当てる4チップの参照シンボル系列を示している。この参照シンボル系列は擬似雑音系列に基づく参照シンボル系列の例を示す概念図である。図15Bは、基地局装置100が参照シンボル系列をマッピングした例を示す概念図である。また、図15Cは、基地局装置101が、アンテナポート1~4の参照シンボルは基地局装置100のマッピングに対して周波数方向にシフトさせてマッピングし、アンテナポート5の参照シンボル系列は基地局装置100のマッピングと同じ位置のリソースエレメントにマッピングした例を示す概念図である。図15Bおよび図15Cでは、アンテナポート5の参照シンボル系列がa~dで示され、アンテナポート1~4の参照シンボルは網掛けで示されている。なお、ここでは、アンテナポート5の参照シンボル系列のみを示し、アンテナポート6~8の参照シンボル系列は図示していない。 FIG. 15A shows a 4-symbol reference symbol sequence assigned to antenna port 5 among four newly added antenna ports. This reference symbol sequence is a conceptual diagram showing an example of a reference symbol sequence based on a pseudo noise sequence. FIG. 15B is a conceptual diagram illustrating an example in which the base station apparatus 100 maps a reference symbol sequence. 15C, the base station apparatus 101 maps the reference symbols of the antenna ports 1 to 4 while shifting the mapping of the base station apparatus 100 in the frequency direction, and the reference symbol sequence of the antenna port 5 is the base station apparatus. It is a conceptual diagram which shows the example mapped to the resource element of the same position as 100 mapping. In FIG. 15B and FIG. 15C, the reference symbol series of antenna port 5 is indicated by a to d, and the reference symbols of antenna ports 1 to 4 are indicated by shading. Here, only the reference symbol sequence of antenna port 5 is shown, and the reference symbol sequences of antenna ports 6 to 8 are not shown.
 参照信号生成部29は、疑似雑音系列として、M系列のような自己相関特性が優れた系列を用いる。4チップの系列a~dは、aの位置で鋭いピークが得られる。基地局装置100と基地局装置101とはリソースエレメントの同じ位置に参照シンボル系列をマッピングする。また、基地局装置101は基地局装置100の系列を巡回的に1チップシフトさせたものを参照シンボル系列とする。
 基地局装置100の参照信号生成部29は、アンテナポート5のための参照シンボル系列として0チップシフトの疑似雑音系列に基づいた参照シンボル系列を生成する。基地局装置100のリソースエレメントマッピング部は、生成した参照シンボル系列を図15Bのようにマッピングする。また、基地局装置101の参照信号生成部29は、アンテナポート5のための参照シンボル系列として、1チップシフトの疑似雑音系列に基づいた参照シンボル系列を生成する。基地局2のリソースエレメントマッピング部は、生成した参照シンボル系列を図15Cのようにマッピングする。
The reference signal generation unit 29 uses a sequence having excellent autocorrelation characteristics such as an M sequence as a pseudo noise sequence. In the 4-chip series a to d, a sharp peak is obtained at the position a. Base station apparatus 100 and base station apparatus 101 map the reference symbol sequence to the same position of the resource element. Also, base station apparatus 101 uses a series of base station apparatus 100 that is cyclically shifted by one chip as a reference symbol series.
The reference signal generation unit 29 of the base station apparatus 100 generates a reference symbol sequence based on a 0-chip shifted pseudo noise sequence as a reference symbol sequence for the antenna port 5. The resource element mapping unit of base station apparatus 100 maps the generated reference symbol sequence as shown in FIG. 15B. In addition, the reference signal generation unit 29 of the base station apparatus 101 generates a reference symbol sequence based on a one-chip shifted pseudo noise sequence as a reference symbol sequence for the antenna port 5. The resource element mapping unit of the base station 2 maps the generated reference symbol sequence as shown in FIG. 15C.
 図15Bおよび図15Cのように参照シンボル系列をマッピングすることにより、基地局装置100が送信する参照シンボル系列と基地局装置101が送信する参照シンボル系列とは系列のピークの位置が互いに異なり直交している。これにより、基地局100と基地局101とから送信信号を同時に受信して協調通信する移動端末装置150は、逆拡散を行うことにより、隣接セルからの干渉を抑圧させることができ、協調通信を行うための最適なフィードバック情報を推定することができる。また、協調通信を行わない移動端末装置151は、疑似雑音系列に基づいた参照シンボル系列であっても、逆拡散処理を行わずにそれぞれのチップを独立に用いることで、新たな処理などを増やすことなく、最適なフィードバック情報を推定することができる。
 なお、以上では全てのアンテナポートの全ての参照シンボルについて疑似雑音系列に基づいた参照シンボル系列を用いる場合について説明したが、そのうちの一部だけでもよい。例えば、一つのアンテナポートにおける参照シンボルには疑似雑音系列に基づいた参照シンボル系列を割り当て、残りのアンテナポートにおける参照シンボルにはセルIDに基づいた乱数から生成した参照シンボルを割り当てるようにしてもよい。
By mapping the reference symbol sequence as shown in FIG. 15B and FIG. 15C, the reference symbol sequence transmitted by the base station apparatus 100 and the reference symbol sequence transmitted by the base station apparatus 101 are different from each other in the sequence peak position and orthogonal to each other. ing. Thereby, the mobile terminal apparatus 150 that simultaneously receives transmission signals from the base station 100 and the base station 101 and performs cooperative communication can suppress interference from adjacent cells by performing despreading, and perform cooperative communication. It is possible to estimate the optimum feedback information for performing. Also, the mobile terminal device 151 that does not perform cooperative communication increases new processing by using each chip independently without performing despreading processing, even if the reference symbol sequence is based on a pseudo-noise sequence. And optimal feedback information can be estimated.
In addition, although the case where the reference symbol sequence based on the pseudo noise sequence is used for all the reference symbols of all the antenna ports has been described above, only a part of them may be used. For example, a reference symbol sequence based on a pseudo noise sequence may be assigned to a reference symbol in one antenna port, and a reference symbol generated from a random number based on a cell ID may be assigned to reference symbols in the remaining antenna ports. .
 なお、以上では基地局装置100及び101において、新たに追加するアンテナポート数が4の場合について説明したが、追加するアンテナポート数は4に限られず1またはそれ以上のアンテナポート数であればよい。なお、以上では、4つのアンテナポート1~4の参照シンボルがある場合について説明したが、無くてもよい。なお、以上では全てのリソースブロックに参照シンボル系列を配置する場合について説明したが、一部のリソースブロックにのみ配置してもよい。
 なお、以上では4つのアンテナポート1~4に対して、さらに4つのアンテナポートを追加する場合について説明したが、これに限らず、1つまたはそれ以上のアンテナポートに1つまたはそれ以上のアンテナポートを追加する場合であればよい。例えば2つのアンテナポート1~2に対して新たに6つのアンテナポートを追加してもよい。
 なお、本実施形態で説明した方法と第2の実施形態で説明した方法とを組み合わせて用いてもよい。
In addition, although the case where the number of antenna ports to be newly added is four in the base station apparatuses 100 and 101 has been described above, the number of antenna ports to be added is not limited to four and may be one or more antenna ports. . In the above description, the case where there are four antenna ports 1 to 4 reference symbols has been described. In addition, although the case where the reference symbol series is arranged in all resource blocks has been described above, it may be arranged only in some resource blocks.
In the above description, four antenna ports are further added to the four antenna ports 1 to 4. However, the present invention is not limited to this, and one or more antenna ports are provided for one or more antenna ports. Any port may be added. For example, six antenna ports may be newly added to the two antenna ports 1 and 2.
Note that the method described in this embodiment and the method described in the second embodiment may be used in combination.
<第4の実施形態>
 つぎに、本発明の第4の実施形態について説明する。
 図16A~図16Dは、基地局装置100がサブフレーム毎に異なるアンテナポートの参照シンボル系列をマッピングした例を示す概念図である。具体的には、図16A~図16Dは、それぞれ、基地局装置100が、第nサブフレームSF(n)、第(n+1)サブフレームSF(n+1)、第(n+2)サブフレームSF(n+2)、第(n+3)サブフレームSF(n+3)に、アンテナポート5~アンテナポート8の参照シンボル系列をマッピングした例を示す。図16A~図16Dでは、アンテナポート5~8の参照シンボル系列がそれぞれ5~8で示され、アンテナポート1~4の参照シンボルは網掛けで示されている。本実施形態における通信システムは、第1の実施形態における通信システムと同様の基地局装置100及び101と移動端末装置150及び151とを備えるが、リソースエレメントマッピング部のマッピング方法が異なる。以下では、第1の実施形態と異なる部分を中心に説明する。
<Fourth Embodiment>
Next, a fourth embodiment of the present invention will be described.
FIGS. 16A to 16D are conceptual diagrams illustrating an example in which the base station apparatus 100 maps reference symbol sequences of different antenna ports for each subframe. Specifically, in FIG. 16A to FIG. 16D, the base station apparatus 100 performs the nth subframe SF (n), the (n + 1) th subframe SF (n + 1), and the (n + 2) th subframe SF (n + 2), respectively. An example in which the reference symbol sequences of antenna port 5 to antenna port 8 are mapped to the (n + 3) th subframe SF (n + 3) is shown. In FIG. 16A to FIG. 16D, reference symbol sequences of antenna ports 5 to 8 are indicated by 5 to 8, respectively, and reference symbols of antenna ports 1 to 4 are indicated by shading. The communication system in the present embodiment includes base station apparatuses 100 and 101 and mobile terminal apparatuses 150 and 151 similar to the communication system in the first embodiment, but the mapping method of the resource element mapping unit is different. Below, it demonstrates centering on a different part from 1st Embodiment.
 本実施形態の基地局装置100及び101は第1の実施形態にて含むアンテナポート1~4に加えてさらにアンテナポート5~8を含む。本実施形態では、リソースエレメントマッピング部301~30Tは、1系列分の参照シンボル系列を1つのリソースブロック内にマッピングし、これを各リソースブロックに対して行う。
 参照信号生成部29は新たに追加するアンテナポート5~8に割り当てる4チップの参照シンボル系列を疑似雑音系列に基づいて生成し、リソースエレメントマッピング部301~30Tはそれらの参照シンボル系列をそれぞれ第n~(n+3)サブフレームSF(n)~SF(n+3)に配置する。参照信号生成部29は疑似雑音系列として、M系列のような自己相関特性が優れた系列を用いる。また、基地局装置101は基地局装置100の系列を巡回的に1チップシフトさせたものを参照シンボル系列とする。また、セルIDなどに基づいて、参照シンボル系列をマッピングするリソースエレメントを隣接セル間でシフトさせてもよい。
Base station apparatuses 100 and 101 of the present embodiment further include antenna ports 5 to 8 in addition to antenna ports 1 to 4 included in the first embodiment. In the present embodiment, the resource element mapping units 301 to 30T map one sequence of reference symbol sequences in one resource block, and perform this for each resource block.
The reference signal generation unit 29 generates a 4-chip reference symbol sequence to be assigned to the newly added antenna ports 5 to 8 based on the pseudo noise sequence, and the resource element mapping units 301 to 30T respectively generate the nth reference symbol sequences. To (n + 3) subframes SF (n) to SF (n + 3). The reference signal generation unit 29 uses a sequence having excellent autocorrelation characteristics such as an M sequence as a pseudo noise sequence. Also, base station apparatus 101 uses a series of base station apparatus 100 that is cyclically shifted by one chip as a reference symbol series. Further, the resource element that maps the reference symbol sequence may be shifted between adjacent cells based on the cell ID or the like.
 図16A~図16Dのように参照シンボル系列をマッピングすることにより、基地局装置100が送信する参照シンボル系列と基地局装置101が送信する参照シンボル系列とは系列のピークの位置が互いに異なり直交している。これにより、基地局100と基地局101とから送信信号を同時に受信して協調通信する移動端末装置150は、逆拡散を行うことにより、隣接セルからの干渉を抑圧させることができ、協調通信を行うための最適なフィードバック情報を推定することができる。また、協調通信を行わない移動端末装置151は、疑似雑音系列に基づいた参照シンボル系列であっても、逆拡散処理を行わずにそれぞれのチップを独立に用いることで、新たな処理などを増やすことなく、最適なフィードバック情報を推定することができる。さらにアンテナポートを新たに追加した場合でも、参照シンボルによるリソースのオーバーヘッドを削減することができる。
 なお、以上では新たに追加する全てのアンテナポートの全ての参照シンボルについて疑似雑音系列に基づいた参照シンボル系列を用いる場合について説明したが、そのうちの一部だけでもよい。例えば、一つのアンテナポートにおける参照シンボルには疑似雑音系列に基づいた参照シンボル系列を割り当て、残りのアンテナポートにおける参照シンボルにはセルIDに基づいた乱数から生成した参照シンボルを割り当てるようにしてもよい。なお、以上ではそれぞれのアンテナポートの参照シンボルをマッピングするリソースエレメントの全てを疑似雑音系列に基づいた参照シンボル系列を用いる場合を示したが、そのうちの一部だけに擬似雑音系列に基づいた参照シンボル系列を用いるようにしてもよい。
By mapping the reference symbol sequence as shown in FIGS. 16A to 16D, the reference symbol sequence transmitted by the base station apparatus 100 and the reference symbol sequence transmitted by the base station apparatus 101 are different from each other in the sequence peak position and orthogonal to each other. ing. Thereby, the mobile terminal apparatus 150 that simultaneously receives transmission signals from the base station 100 and the base station 101 and performs cooperative communication can suppress interference from adjacent cells by performing despreading, and perform cooperative communication. It is possible to estimate the optimum feedback information for performing. Also, the mobile terminal device 151 that does not perform cooperative communication increases new processing by using each chip independently without performing despreading processing, even if the reference symbol sequence is based on a pseudo-noise sequence. And optimal feedback information can be estimated. Furthermore, even when an antenna port is newly added, the resource overhead due to the reference symbol can be reduced.
In the above description, the reference symbol sequence based on the pseudo noise sequence is used for all reference symbols of all newly added antenna ports. However, only a part of them may be used. For example, a reference symbol sequence based on a pseudo noise sequence may be assigned to a reference symbol in one antenna port, and a reference symbol generated from a random number based on a cell ID may be assigned to reference symbols in the remaining antenna ports. . In addition, although the case where the reference symbol sequence based on the pseudo noise sequence is used for all the resource elements that map the reference symbols of the respective antenna ports has been described above, the reference symbols based on the pseudo noise sequence are only part of them. A series may be used.
 なお、以上では基地局装置100及び101において、新たに追加するアンテナポート数が4の場合について説明したが、追加するアンテナポート数は4に限られず1またはそれ以上のアンテナポート数であればよい。なお、以上ではアンテナポート1~4の参照シンボルがある場合について説明したが、これらがなくてもよい。なお、以上では全てのリソースブロックに参照シンボル系列を配置する場合を示したが、一部のリソースブロックのみに配置するようにしてもよい。なお、以上では4つのアンテナポート1~4に対して、さらに4つのアンテナポートを追加する場合について説明したが、これに限らず、1つまたはそれ以上のアンテナポートに1つまたはそれ以上のアンテナポートを追加する場合であればよい。例えば、2つのアンテナポート1~2に対して新たに6つのアンテナポートを追加してもよい。または、新たに8つのアンテナポートを追加してもよい。なお、本実施形態で説明した方法は、第2~3の実施形態で説明した方法と組み合わせて適用してもよい。 In addition, although the case where the number of antenna ports to be newly added is four in the base station apparatuses 100 and 101 has been described above, the number of antenna ports to be added is not limited to four and may be one or more antenna ports. . Although the case where there are reference symbols for the antenna ports 1 to 4 has been described above, these may not be necessary. In addition, although the case where the reference symbol series is arranged in all the resource blocks has been described above, the reference symbol series may be arranged in only some resource blocks. In the above description, four antenna ports are further added to the four antenna ports 1 to 4. However, the present invention is not limited to this, and one or more antenna ports are provided for one or more antenna ports. Any port may be added. For example, six new antenna ports may be added to the two antenna ports 1 and 2. Alternatively, eight antenna ports may be newly added. Note that the method described in this embodiment may be applied in combination with the method described in the second to third embodiments.
<第5の実施形態>
 つぎに、本発明の第5の実施形態について説明する。
 図17A~図17Dは、基地局装置100がリソースブロック毎に異なるアンテナポートの参照シンボル系列をマッピングした例を示す概念図である。具体的には、図17A~図17Dは、それぞれ、基地局装置100が第mリソースブロックRB(m)、第(m+1)リソースブロックRB(m+1)、第(m+2)リソースブロックRB(m+2)、第(m+3)リソースブロックRB(m+3)に、アンテナポート5~アンテナポート8の参照シンボル系列をマッピングした例を示す。図17A~図17Dでは、アンテナポート5~8の参照シンボル系列がそれぞれ5~8で示され、アンテナポート1~4の参照シンボルは網掛けで示されている。本実施形態における通信システムは、第1の実施形態における通信システムと同様の基地局装置100及び101と移動端末装置150及び151とを備えるが、リソースエレメントマッピング部のマッピング方法が異なる。以下では、第1の実施形態と異なる部分を中心に説明する。
 本実施形態の基地局装置100及び101は第1の実施形態にて含むアンテナポート1~4に加えてさらにアンテナポート5~8を含む。
 本実施形態では、リソースエレメントマッピング部301~30Tは、1系列分の参照シンボル系列を1つのリソースブロック内にマッピングし、これを各リソースブロックに対して行う。特に本実施形態では、1つのサブフレームにアンテナポート5~8の参照シンボル系列のいずれかを配置し、さらに周波数方向(リソースブロック毎)にアンテナポートについて周期的に配置する。
<Fifth Embodiment>
Next, a fifth embodiment of the present invention will be described.
FIGS. 17A to 17D are conceptual diagrams illustrating examples in which the base station apparatus 100 maps reference symbol sequences of different antenna ports for each resource block. Specifically, in FIG. 17A to FIG. 17D, the base station apparatus 100 has the m-th resource block RB (m), the (m + 1) -th resource block RB (m + 1), the (m + 2) -th resource block RB (m + 2), An example in which the reference symbol sequences of antenna port 5 to antenna port 8 are mapped to the (m + 3) th resource block RB (m + 3) is shown. In FIGS. 17A to 17D, reference symbol sequences of antenna ports 5 to 8 are indicated by 5 to 8, respectively, and reference symbols of antenna ports 1 to 4 are indicated by shading. The communication system in the present embodiment includes base station apparatuses 100 and 101 and mobile terminal apparatuses 150 and 151 similar to the communication system in the first embodiment, but the mapping method of the resource element mapping unit is different. Below, it demonstrates centering on a different part from 1st Embodiment.
Base station apparatuses 100 and 101 of the present embodiment further include antenna ports 5 to 8 in addition to antenna ports 1 to 4 included in the first embodiment.
In the present embodiment, the resource element mapping units 301 to 30T map one sequence of reference symbol sequences in one resource block, and perform this for each resource block. In particular, in the present embodiment, one of the reference symbol sequences of antenna ports 5 to 8 is arranged in one subframe, and the antenna ports are periodically arranged in the frequency direction (for each resource block).
 参照信号生成部29は新たに追加するアンテナポート5~8に割り当てる4チップの参照シンボル系列を疑似雑音系列に基づいて生成し、リソースエレメントマッピング部301~30Tはそれらの参照シンボル系列をそれぞれ第m~(m+3)リソースブロックRB(m)~RB(m+3)に配置する。参照信号生成部29は疑似雑音系列として、M系列のような自己相関特性が優れた系列を用いる。また、基地局装置101は基地局装置100の系列を巡回的に1チップシフトさせたものを参照シンボル系列とする。また、セルIDなどに基づいて、参照シンボルをマッピングするリソースエレメントを隣接セル間でシフトさせてもよい。
 図17A~図17Dのように参照シンボル系列をマッピングすることにより、基地局装置100が送信する参照シンボル系列と基地局装置101が送信する参照シンボル系列とは系列のピークの位置が互いに異なり直交している。これにより、基地局100と基地局101とから送信信号を同時に受信して協調通信する移動端末装置150は、逆拡散を行うことにより、隣接セルからの干渉を抑圧させることができ、協調通信を行うための最適なフィードバック情報を推定することができる。また、協調通信を行わない移動端末装置151は、疑似雑音系列に基づいた参照シンボル系列であっても、逆拡散処理を行わずにそれぞれのチップを独立に用いることで、新たな処理などを増やすことなく、最適なフィードバック情報を推定することができる。さらに、アンテナポートを追加した場合でも、参照シンボルによるリソースのオーバーヘッドを増加させないことができる。
The reference signal generator 29 generates a 4-chip reference symbol sequence to be assigned to the newly added antenna ports 5 to 8 based on the pseudo noise sequence, and the resource element mapping units 301 to 30T respectively generate the mth reference symbol sequences. To (m + 3) resource blocks RB (m) to RB (m + 3). The reference signal generation unit 29 uses a sequence having excellent autocorrelation characteristics such as an M sequence as a pseudo noise sequence. Also, base station apparatus 101 uses a series of base station apparatus 100 that is cyclically shifted by one chip as a reference symbol series. Further, the resource element that maps the reference symbol may be shifted between adjacent cells based on the cell ID or the like.
By mapping the reference symbol sequence as shown in FIGS. 17A to 17D, the reference symbol sequence transmitted by the base station apparatus 100 and the reference symbol sequence transmitted by the base station apparatus 101 are different from each other in the sequence peak positions and orthogonal to each other. ing. Thereby, the mobile terminal apparatus 150 that simultaneously receives transmission signals from the base station 100 and the base station 101 and performs cooperative communication can suppress interference from adjacent cells by performing despreading, and perform cooperative communication. It is possible to estimate the optimum feedback information for performing. Also, the mobile terminal device 151 that does not perform cooperative communication increases new processing by using each chip independently without performing despreading processing, even if the reference symbol sequence is based on a pseudo-noise sequence. And optimal feedback information can be estimated. Furthermore, even when an antenna port is added, resource overhead due to reference symbols can be prevented from increasing.
 なお、以上では全てのアンテナポートの全ての参照シンボルについて疑似雑音系列に基づいた参照シンボル系列を用いる場合について説明したが、そのうちの一部だけでもよい。例えば、一つのアンテナポートにおける参照シンボルには疑似雑音系列に基づいた参照シンボル系列を割り当て、残りのアンテナポートにおける参照シンボルにはセルIDに基づいた乱数から生成した参照シンボルを割り当てるようにしてもよい。なお、以上ではそれぞれのアンテナポートの参照シンボルをマッピングするリソースエレメントの全てに、擬似雑音系列に基づいた参照シンボル系列を用いる場合について説明したが、一部のリソースエレメントにのみ用いてもよい。
 なお、以上では基地局装置100及び101において、新たに追加するアンテナポート数が4の場合について説明したが、追加するアンテナポート数は4に限られず1またはそれ以上のアンテナポート数であればよい。なお、以上ではアンテナポート1~4の参照シンボルがある場合について説明したが、これらがなくてもよい。なお、以上では4つのアンテナポート1~4に対して、さらに4つのアンテナポートを追加する場合について説明したが、これに限らず、1つまたはそれ以上のアンテナポートに1つまたはそれ以上のアンテナポートを追加する場合であればよい。例えば2つのアンテナポート1~2に対して新たに6つのアンテナポートを追加してもよい。なお、本実施形態で説明した方法は、第2~4の実施形態で説明した方法と組み合わせて適用してもよい。
In addition, although the case where the reference symbol sequence based on the pseudo noise sequence is used for all the reference symbols of all the antenna ports has been described above, only a part of them may be used. For example, a reference symbol sequence based on a pseudo noise sequence may be assigned to a reference symbol in one antenna port, and a reference symbol generated from a random number based on a cell ID may be assigned to reference symbols in the remaining antenna ports. . In addition, although the case where the reference symbol sequence based on the pseudo noise sequence is used for all the resource elements that map the reference symbols of the respective antenna ports has been described above, it may be used only for some resource elements.
In addition, although the case where the number of antenna ports to be newly added is four in the base station apparatuses 100 and 101 has been described above, the number of antenna ports to be added is not limited to four and may be one or more antenna ports. . Although the case where there are reference symbols for the antenna ports 1 to 4 has been described above, these may not be necessary. In the above description, four antenna ports are further added to the four antenna ports 1 to 4. However, the present invention is not limited to this, and one or more antenna ports are provided for one or more antenna ports. Any port may be added. For example, six antenna ports may be newly added to the two antenna ports 1 and 2. Note that the method described in this embodiment may be applied in combination with the methods described in the second to fourth embodiments.
<第6の実施形態>
 つぎに、本発明の第6の実施形態について説明する。図18は、基地局装置100が、第nサブフレームの、周波数方向に複数のリソースブロックに1系列分の参照シンボル系列をマッピングした例を示す概念図である。同図の第m~(m+3)リソースブロックRB(m)~RB(m+3)において、アンテナポート5~8の参照シンボル系列がそれぞれ5~8で示され、アンテナポート1~4の参照シンボルは網掛けで示されている。本実施形態における通信システムは、第1の実施形態における通信システムと同様の基地局装置100及び101と移動端末装置150及び151とを備えるが、リソースエレメントマッピング部のマッピング方法が異なる。以下では、第1の実施形態と異なる部分を中心に説明する。
 本実施形態の基地局装置100及び101は第1の実施形態にて含むアンテナポート1~4に加えてさらにアンテナポート5~8を含む。
<Sixth Embodiment>
Next, a sixth embodiment of the present invention will be described. FIG. 18 is a conceptual diagram illustrating an example in which the base station apparatus 100 maps reference symbol sequences for one sequence to a plurality of resource blocks in the frequency direction of the nth subframe. In the mth to (m + 3) resource blocks RB (m) to RB (m + 3) in the figure, the reference symbol sequences of the antenna ports 5 to 8 are indicated by 5 to 8, respectively, and the reference symbols of the antenna ports 1 to 4 are the network symbols. Shown with a hanger. The communication system in the present embodiment includes base station apparatuses 100 and 101 and mobile terminal apparatuses 150 and 151 similar to the communication system in the first embodiment, but the mapping method of the resource element mapping unit is different. Below, it demonstrates centering on a different part from 1st Embodiment.
Base station apparatuses 100 and 101 of the present embodiment further include antenna ports 5 to 8 in addition to antenna ports 1 to 4 included in the first embodiment.
 図18は、基地局装置100が行う参照シンボル系列のマッピングを示している。参照信号生成部29は疑似雑音系列に基づいた参照シンボル系列を生成し、リソースエレメントマッピング部301~30Tは周波数方向に複数のリソースブロックで構成されるサブバンド単位毎に生成した参照シンボル系列をマッピングする。ここで、サブバンドとは、フィードバック情報を作成するリソースの単位であり、システム帯域等に基づいて予め決定される。図18では、第m~第(m+3)リソースブロックRB(m)~RB(m+3)で構成される第kサブバンドSB(k)が示されている。
 図18において、参照信号生成部29は4つのリソースブロックに渡って新たに追加するアンテナポート5~8に割り当てる8チップの参照シンボル系列を疑似雑音系列に基づいて生成する。参照信号生成部29は、M系列のような自己相関特性が優れた擬似雑音系列を用いて参照シンボル系列を生成する。また、基地局装置101は基地局装置100の系列を巡回的に1チップシフトさせたものを参照シンボル系列とする。また、セルIDなどに基づいて、参照シンボル系列をマッピングするリソースエレメントを隣接セル間でシフトさせてもよい。
FIG. 18 illustrates mapping of reference symbol sequences performed by the base station apparatus 100. The reference signal generation unit 29 generates a reference symbol sequence based on the pseudo noise sequence, and the resource element mapping units 301 to 30T map the reference symbol sequence generated for each subband unit composed of a plurality of resource blocks in the frequency direction. To do. Here, the subband is a resource unit for creating feedback information, and is determined in advance based on the system band or the like. FIG. 18 shows the k-th subband SB (k) including m-th to (m + 3) resource blocks RB (m) to RB (m + 3).
In FIG. 18, the reference signal generation unit 29 generates an 8-chip reference symbol sequence to be assigned to the newly added antenna ports 5 to 8 over four resource blocks based on the pseudo noise sequence. The reference signal generation unit 29 generates a reference symbol sequence using a pseudo noise sequence having excellent autocorrelation characteristics such as an M sequence. Also, base station apparatus 101 uses a series of base station apparatus 100 that is cyclically shifted by one chip as a reference symbol series. Further, the resource element that maps the reference symbol sequence may be shifted between adjacent cells based on the cell ID or the like.
 図18のように参照シンボル系列をマッピングすることにより、基地局装置100が送信する参照シンボル系列と基地局装置101が送信する参照シンボル系列とは系列のピークの位置が互いに異なり直交している。これにより、基地局100と基地局101とから送信信号を同時に受信して協調通信する移動端末装置150は、逆拡散を行うことにより、隣接セルからの干渉を抑圧させることができ、協調通信を行うための最適なフィードバック情報を推定することができる。また、協調通信を行わない移動端末装置151は、疑似雑音系列に基づいた参照シンボル系列であっても、逆拡散処理を行わずにそれぞれのチップを独立に用いることで、新たな処理などを増やすことなく、最適なフィードバック情報を推定することができる。さらに、アンテナポートを新たに追加した場合でも、参照シンボルによるリソースのオーバーヘッドを増やすことなく、逆拡散による利得を大きくすることができる。さらに、アンテナポートを新たに追加した場合でも、逆拡散による利得を減らすことなく、参照シンボルによるリソースのオーバーヘッドを増加させないことができる。 As shown in FIG. 18, by mapping the reference symbol sequence, the reference symbol sequence transmitted from the base station apparatus 100 and the reference symbol sequence transmitted from the base station apparatus 101 are different from each other and orthogonal to each other. Thereby, the mobile terminal apparatus 150 that simultaneously receives transmission signals from the base station 100 and the base station 101 and performs cooperative communication can suppress interference from adjacent cells by performing despreading, and perform cooperative communication. It is possible to estimate the optimum feedback information for performing. Also, the mobile terminal device 151 that does not perform cooperative communication increases new processing by using each chip independently without performing despreading processing, even if the reference symbol sequence is based on a pseudo-noise sequence. And optimal feedback information can be estimated. Furthermore, even when an antenna port is newly added, the gain due to despreading can be increased without increasing the resource overhead due to the reference symbol. Furthermore, even when a new antenna port is added, the resource overhead due to the reference symbol can be prevented from increasing without reducing the gain due to despreading.
 なお、以上では、周波数方向に連続する複数のリソースブロックで構成されるサブバンド単位で、擬似雑音系列に基づく参照シンボル系列の生成およびマッピングを行う場合について説明したが、周波数方向に非連続な複数のリソースブロックを含んでもよい。
 なお、以上では、周波数方向に4つのリソースブロックを単位として、擬似雑音系列に基づく参照シンボル系列の生成およびマッピングを行う場合について説明したが、2つまたはそれ以上のリソースブロックを単位とすればよく、キャリア要素(コンポーネントキャリア)単位やシステム帯域全てに渡ってマッピングを行ってもよい。ここで、キャリア要素とは、システム帯域(本実施形態においては100MHzの帯域幅を持った広帯域な周波数帯域)を構成するより狭帯域な周波数帯域(本実施形態においては20MHzの帯域幅を持った狭帯域な周波数帯域)のそれぞれをいう。あるいは、ある特定の物理チャネル(例えば、PDCCH(Physical downlink control channel)、PUCCH(Physical uplink control channel)など)が構成される単位をキャリア要素としてもよい。
 なお、以上では、周波数方向に複数のリソースブロックで構成される単位に対して疑似雑音系列に基づいた参照シンボル系列のマッピングを行う場合について説明したが、周波数方向に1つまたはそれ以上のサブキャリアで構成される単位であればよい。
In the above description, the case where the generation and mapping of the reference symbol sequence based on the pseudo noise sequence is performed in subband units composed of a plurality of resource blocks continuous in the frequency direction has been described. The resource block may be included.
In the above description, the case where the generation and mapping of the reference symbol sequence based on the pseudo-noise sequence is performed using four resource blocks in the frequency direction as a unit has been described, but two or more resource blocks may be used as a unit. The mapping may be performed over the carrier element (component carrier) unit or the entire system band. Here, the carrier element has a narrower frequency band (in this embodiment, a bandwidth of 20 MHz) that constitutes a system band (a wideband frequency band having a bandwidth of 100 MHz in this embodiment). Narrow frequency band). Alternatively, a unit in which a specific physical channel (for example, PDCCH (Physical downlink control channel), PUCCH (Physical uplink control channel), etc.) is configured may be used as a carrier element.
In the above description, a case has been described in which a reference symbol sequence is mapped based on a pseudo-noise sequence for a unit composed of a plurality of resource blocks in the frequency direction. Any unit may be used.
 なお、以上では新たに追加するアンテナポートの全ての参照シンボルについて疑似雑音系列に基づいた参照シンボル系列を用いる場合について説明したが、そのうちの一部だけでもよい。一つのアンテナポートにおける参照シンボルには疑似雑音系列に基づいた参照シンボル系列を割り当て、残りのアンテナポートにおける参照シンボルにはセルIDに基づいた乱数から生成した参照シンボルを割り当てるようにしてもよい。
 なお、以上では全てのアンテナポートについての全ての参照シンボルに擬似雑音系列に基づいた参照シンボル系列を用いる場合について示したが、一部の参照シンボルにのみ擬似雑音系列に基づいた参照シンボルを用いてもよい。なお、以上では基地局装置100及び101において、新たに追加するアンテナポート数が4の場合について説明したが、追加するアンテナポート数は4に限られず1またはそれ以上のアンテナポート数であればよい。なお、以上ではアンテナポート1~4の参照シンボルがある場合について説明したが、これらがなくてもよい。なお、以上では全てのリソースブロックに参照シンボル系列を配置する場合について説明したが、一部のリソースブロックにのみ参照シンボル系列を配置するようにしてもよい。
 なお、以上では4つのアンテナポート1~4に対して、さらに4つのアンテナポートを追加する場合について説明したが、これに限らず、1つまたはそれ以上のアンテナポートに1つまたはそれ以上のアンテナポートを追加する場合であればよい。例えば、2つのアンテナポート1~2に対して新たに6つのアンテナポートを追加してもよい。なお、本実施形態で説明した方法は、第2~5の実施形態で説明した方法と組み合わせて適用してもよい。
In the above description, the reference symbol sequence based on the pseudo noise sequence is used for all reference symbols of the antenna port to be newly added, but only a part of them may be used. A reference symbol sequence based on a pseudo-noise sequence may be assigned to a reference symbol in one antenna port, and a reference symbol generated from a random number based on a cell ID may be assigned to reference symbols in the remaining antenna ports.
In the above, the case where the reference symbol sequence based on the pseudo noise sequence is used for all the reference symbols for all antenna ports has been described. However, only the reference symbols based on the pseudo noise sequence are used for some reference symbols. Also good. In addition, although the case where the number of antenna ports to be newly added is four in the base station apparatuses 100 and 101 has been described above, the number of antenna ports to be added is not limited to four and may be one or more antenna ports. . Although the case where there are reference symbols for the antenna ports 1 to 4 has been described above, these may not be necessary. Although the case where the reference symbol series is arranged in all the resource blocks has been described above, the reference symbol series may be arranged only in some resource blocks.
In the above description, four antenna ports are further added to the four antenna ports 1 to 4. However, the present invention is not limited to this, and one or more antenna ports are provided for one or more antenna ports. Any port may be added. For example, six new antenna ports may be added to the two antenna ports 1 and 2. Note that the method described in this embodiment may be applied in combination with the methods described in the second to fifth embodiments.
<第7の実施形態>
 つぎに、本発明の第7の実施形態について説明する。図19は、基地局装置100が時間方向に複数のリソースブロックに1系列分の参照シンボル系列をマッピングした例を示す概念図である。同図の第n~(n+3)サブフレームSF(n~SF(n+3)において、アンテナポート5~8の参照シンボル系列がそれぞれ5~8で示され、アンテナポート1~4の参照シンボルは網掛けで示されている。本実施形態における通信システムは、第1の実施形態における通信システムと同様の基地局装置100及び101と移動端末装置150及び151とを備えるが、リソースエレメントマッピング部のマッピング方法が異なる。以下では、第1の実施形態と異なる部分を中心に説明する。
 本実施形態の基地局装置100及び101は第1の実施形態にて含むアンテナポート1~4に加えてさらにアンテナポート5~8を含む。
 参照信号生成部29は疑似雑音系列に基づいた8チップの参照シンボル系列を生成し、リソースエレメントマッピング部301~30Tは時間方向に複数のリソースブロック単位毎に参照シンボル系列をマッピングする。
 図19において、参照信号生成部29は4つのリソースブロックに渡って新たに追加するアンテナポート5~8に割り当てる8チップの参照シンボル系列を疑似雑音系列に基づいて生成する。参照信号生成部29は、M系列のような自己相関特性が優れた擬似雑音系列を用いて参照シンボル系列を生成する。また、基地局装置101は基地局装置100の系列を巡回的に1チップシフトさせたものを参照シンボル系列とする。また、セルIDなどに基づいて、参照シンボルをマッピングするリソースエレメントを隣接セル間でシフトさせてもよい。
<Seventh Embodiment>
Next, a seventh embodiment of the present invention will be described. FIG. 19 is a conceptual diagram illustrating an example in which the base station apparatus 100 maps one sequence of reference symbol sequences to a plurality of resource blocks in the time direction. In the nth to (n + 3) subframes SF (n to SF (n + 3) in the figure, the reference symbol sequences of the antenna ports 5 to 8 are indicated by 5 to 8, respectively, and the reference symbols of the antenna ports 1 to 4 are shaded. The communication system according to the present embodiment includes base station apparatuses 100 and 101 and mobile terminal apparatuses 150 and 151 similar to the communication system according to the first embodiment, but the mapping method of the resource element mapping unit In the following, the description will focus on parts that are different from the first embodiment.
Base station apparatuses 100 and 101 of the present embodiment further include antenna ports 5 to 8 in addition to antenna ports 1 to 4 included in the first embodiment.
The reference signal generation unit 29 generates an 8-chip reference symbol sequence based on the pseudo noise sequence, and the resource element mapping units 301 to 30T map the reference symbol sequence for each of a plurality of resource block units in the time direction.
In FIG. 19, the reference signal generation unit 29 generates an 8-chip reference symbol sequence to be assigned to newly added antenna ports 5 to 8 over four resource blocks based on the pseudo noise sequence. The reference signal generation unit 29 generates a reference symbol sequence using a pseudo noise sequence having excellent autocorrelation characteristics such as an M sequence. Also, base station apparatus 101 uses a series of base station apparatus 100 that is cyclically shifted by one chip as a reference symbol series. Further, the resource element that maps the reference symbol may be shifted between adjacent cells based on the cell ID or the like.
 図19のように参照シンボル系列をマッピングすることにより、基地局装置100が送信する参照シンボル系列と基地局装置101が送信する参照シンボル系列とは系列のピークの位置が互いに異なり直交している。これにより、基地局100と基地局101とから送信信号を同時に受信して協調通信する移動端末装置150は、逆拡散を行うことにより、隣接セルからの干渉を抑圧させることができ、協調通信を行うための最適なフィードバック情報を推定することができる。また、協調通信を行わない移動端末装置151は、疑似雑音系列に基づいた参照シンボル系列であっても、逆拡散処理を行わずにそれぞれのチップを独立に用いることで、新たな処理などを増やすことなく、最適なフィードバック情報を推定することができる。さらに、アンテナポートを新たに追加した場合でも、参照シンボルによるリソースのオーバーヘッドを増やすことなく、逆拡散による利得を大きくすることができる。さらに、アンテナポートを新たに追加した場合でも、逆拡散による利得を減らすことなく、参照シンボルによるリソースのオーバーヘッドを増加させないことができる。 As shown in FIG. 19, by mapping the reference symbol sequence, the reference symbol sequence transmitted by the base station apparatus 100 and the reference symbol sequence transmitted by the base station apparatus 101 are different from each other and orthogonal to each other. Thereby, the mobile terminal apparatus 150 that simultaneously receives transmission signals from the base station 100 and the base station 101 and performs cooperative communication can suppress interference from adjacent cells by performing despreading, and perform cooperative communication. It is possible to estimate the optimum feedback information for performing. Also, the mobile terminal device 151 that does not perform cooperative communication increases new processing by using each chip independently without performing despreading processing, even if the reference symbol sequence is based on a pseudo-noise sequence. And optimal feedback information can be estimated. Furthermore, even when an antenna port is newly added, the gain due to despreading can be increased without increasing the resource overhead due to the reference symbol. Furthermore, even when a new antenna port is added, the resource overhead due to the reference symbol can be prevented from increasing without reducing the gain due to despreading.
 なお、以上では、時間方向に連続する複数のリソースブロックで構成される単位で、擬似雑音系列に基づく参照シンボル系列の生成およびマッピングを行う場合について説明したが、時間方向に非連続な複数のリソースブロックを含んでもよい。
 なお、以上では、時間方向に4つのリソースブロックを単位として、擬似雑音系列に基づく参照シンボル系列の生成およびマッピングを行う場合について説明したが、2つまたはそれ以上のリソースブロックを単位とすればよく、例えば、10ミリ秒で構成される無線フレーム(10サブフレーム)単位、又はある特定の物理チャネル(報知情報チャネル(BCH; Broadcast channel)、同期信号(同期チャネル)など)を構成または割り当てられる単位を用いてもよい。
 なお、以上では、時間方向に複数のリソースブロックで構成される単位に対して疑似雑音系列に基づいた参照シンボル系列のマッピングを行う場合について説明したが、時間方向に1つまたはそれ以上のOFDMシンボルで構成される単位であればよい。
In the above description, the case where the generation and mapping of the reference symbol sequence based on the pseudo-noise sequence is performed in units composed of a plurality of resource blocks continuous in the time direction has been described. Blocks may be included.
In the above description, the case where the generation and mapping of the reference symbol sequence based on the pseudo-noise sequence is performed in units of four resource blocks in the time direction has been described, but two or more resource blocks may be used as a unit. For example, a radio frame (10 subframes) unit composed of 10 milliseconds, or a unit in which a specific physical channel (broadcast information channel (BCH; Broadcast channel), synchronization signal (synchronization channel), etc.) is configured or assigned May be used.
In the above description, the case where the reference symbol sequence is mapped based on the pseudo-noise sequence to the unit configured by a plurality of resource blocks in the time direction has been described. However, one or more OFDM symbols in the time direction have been described. Any unit may be used.
 なお、以上では新たに追加するアンテナポートの全ての参照シンボルについて疑似雑音系列に基づいた参照シンボル系列を用いる場合について説明したが、そのうちの一部だけでもよい。一つのアンテナポートにおける参照シンボルには疑似雑音系列に基づいた参照シンボル系列を割り当て、残りのアンテナポートにおける参照シンボルにはセルIDに基づいた乱数から生成した参照シンボルを割り当てるようにしてもよい。
 なお、以上では全てのアンテナポートについての全ての参照シンボルに擬似雑音系列に基づいた参照シンボル系列を用いる場合について示したが、一部の参照シンボルにのみ擬似雑音系列に基づいた参照シンボル系列を用いてもよい。
 なお、以上では基地局装置100及び101において、新たに追加するアンテナポート数が4の場合について説明したが、追加するアンテナポート数は4に限られず1またはそれ以上のアンテナポート数であればよい。なお、以上ではアンテナポート1~4の参照シンボルがある場合について説明したが、これらがなくてもよい。なお、以上では全てのリソースブロックに参照シンボル系列を配置する場合について説明したが、一部のリソースブロックにのみ参照シンボル系列を配置するようにしてもよい。なお、以上では4つのアンテナポート1~4に対して、さらに4つのアンテナポートを追加する場合について説明したが、これに限らず、1つまたはそれ以上のアンテナポートに1つまたはそれ以上のアンテナポートを追加する場合であればよい。例えば、2つのアンテナポート1~2に対して新たに6つのアンテナポートを追加してもよい。なお、本実施形態で説明した方法は、第2~6の実施形態で説明した方法と組み合わせて適用してもよい。
In the above description, the reference symbol sequence based on the pseudo noise sequence is used for all reference symbols of the antenna port to be newly added, but only a part of them may be used. A reference symbol sequence based on a pseudo-noise sequence may be assigned to a reference symbol in one antenna port, and a reference symbol generated from a random number based on a cell ID may be assigned to reference symbols in the remaining antenna ports.
In the above description, the reference symbol sequence based on the pseudo noise sequence is used for all the reference symbols for all antenna ports. However, only the reference symbol sequence based on the pseudo noise sequence is used for some reference symbols. May be.
In addition, although the case where the number of antenna ports to be newly added is four in the base station apparatuses 100 and 101 has been described above, the number of antenna ports to be added is not limited to four and may be one or more antenna ports. . Although the case where there are reference symbols for the antenna ports 1 to 4 has been described above, these may not be necessary. Although the case where the reference symbol series is arranged in all the resource blocks has been described above, the reference symbol series may be arranged only in some resource blocks. In the above description, four antenna ports are further added to the four antenna ports 1 to 4. However, the present invention is not limited to this, and one or more antenna ports are provided for one or more antenna ports. Any port may be added. For example, six new antenna ports may be added to the two antenna ports 1 and 2. Note that the method described in this embodiment may be applied in combination with the methods described in the second to sixth embodiments.
<第8の実施形態>
 つぎに、本発明の第8の実施形態について説明する。図20は、基地局装置100が複数のアンテナポートに1系列の参照シンボル系列をマッピングした例を示す概念図である。同図において、アンテナポート5~8の参照シンボル系列がそれぞれ5~8で示され、アンテナポート1~4の参照シンボルは網掛けで示されている。本実施形態における通信システムは、第1の実施形態における通信システムと同様の基地局装置100及び101と移動端末装置150及び151とを備えるが、リソースエレメントマッピング部のマッピング方法が異なる。以下では、第1の実施形態と異なる部分を中心に説明する。
 本実施形態の基地局装置100及び101は第1の実施形態にて含むアンテナポート1~4に加えてさらにアンテナポート5~8を含む。
 参照信号生成部29は疑似雑音系列に基づいた8チップの参照シンボル系列を生成し、リソースエレメントマッピング部301~30Tはアンテナポート5~8の4つのアンテナポートに渡って同一のリソースブロック内で参照シンボル系列を割り当て、これをリソースブロック単位で繰り返す。
 図20において、参照信号生成部29は新たに追加したアンテナポート5~8の4つのアンテナポートに渡って割り当てる8チップの参照シンボル系列を疑似雑音系列に基づいて生成する。参照信号生成部29は、M系列のような自己相関特性が優れた擬似雑音系列を用いて参照シンボル系列を生成する。また、基地局装置101は基地局装置100の系列を巡回的に1チップシフトさせたものを参照シンボル系列とする。また、セルIDなどに基づいて、参照シンボルをマッピングするリソースエレメントを隣接セル間でシフトさせてもよい。
<Eighth Embodiment>
Next, an eighth embodiment of the present invention will be described. FIG. 20 is a conceptual diagram illustrating an example in which the base station apparatus 100 maps one series of reference symbol sequences to a plurality of antenna ports. In the figure, reference symbol sequences of antenna ports 5 to 8 are indicated by 5 to 8, respectively, and reference symbols of antenna ports 1 to 4 are indicated by shading. The communication system in the present embodiment includes base station apparatuses 100 and 101 and mobile terminal apparatuses 150 and 151 similar to the communication system in the first embodiment, but the mapping method of the resource element mapping unit is different. Below, it demonstrates centering on a different part from 1st Embodiment.
Base station apparatuses 100 and 101 of the present embodiment further include antenna ports 5 to 8 in addition to antenna ports 1 to 4 included in the first embodiment.
The reference signal generation unit 29 generates an 8-chip reference symbol sequence based on the pseudo noise sequence, and the resource element mapping units 301 to 30T reference within the same resource block over the four antenna ports of the antenna ports 5 to 8. A symbol series is assigned and this is repeated for each resource block.
In FIG. 20, the reference signal generation unit 29 generates an 8-chip reference symbol sequence to be allocated over the four newly added antenna ports 5 to 8 based on the pseudo noise sequence. The reference signal generation unit 29 generates a reference symbol sequence using a pseudo noise sequence having excellent autocorrelation characteristics such as an M sequence. Also, base station apparatus 101 uses a series of base station apparatus 100 that is cyclically shifted by one chip as a reference symbol series. Further, the resource element that maps the reference symbol may be shifted between adjacent cells based on the cell ID or the like.
 図20のように参照シンボル系列をマッピングすることにより、基地局装置100が送信する参照シンボル系列と基地局装置101が送信する参照シンボル系列とは系列のピークの位置が互いに異なり直交している。これにより、基地局100と基地局101とから送信信号を同時に受信して協調通信する移動端末装置150は、逆拡散を行うことにより、隣接セルからの干渉を抑圧させることができ、協調通信を行うための最適なフィードバック情報を推定することができる。また、協調通信を行わない移動端末装置151は、疑似雑音系列に基づいた参照シンボル系列であっても、逆拡散処理を行わずにそれぞれのチップを独立に用いることで、新たな処理などを増やすことなく、最適なフィードバック情報を推定することができる。さらに、アンテナポートを新たに追加した場合でも、参照シンボルによるリソースのオーバーヘッドを増やすことなく、逆拡散による利得を大きくすることができる。さらに、アンテナポートを新たに追加した場合でも、逆拡散による利得を減らすことなく、参照シンボルによるリソースのオーバーヘッドを増加させないことができる。 As shown in FIG. 20, by mapping the reference symbol sequence, the reference symbol sequence transmitted by the base station device 100 and the reference symbol sequence transmitted by the base station device 101 are different from each other and orthogonal to each other. Thereby, the mobile terminal apparatus 150 that simultaneously receives transmission signals from the base station 100 and the base station 101 and performs cooperative communication can suppress interference from adjacent cells by performing despreading, and perform cooperative communication. It is possible to estimate the optimum feedback information for performing. Also, the mobile terminal device 151 that does not perform cooperative communication increases new processing by using each chip independently without performing despreading processing, even if the reference symbol sequence is based on a pseudo-noise sequence. And optimal feedback information can be estimated. Furthermore, even when an antenna port is newly added, the gain due to despreading can be increased without increasing the resource overhead due to the reference symbol. Furthermore, even when a new antenna port is added, the resource overhead due to the reference symbol can be prevented from increasing without reducing the gain due to despreading.
 なお、以上では全てのアンテナポートに渡って参照シンボルをマッピングするリソースエレメントの全てを疑似雑音系列に基づいた参照シンボル系列を用いる場合を示したが、そのうちの一部の参照シンボルにのみ擬似雑音系列に基づいた参照シンボル系列を用いてもよい。
 なお、以上では基地局装置100及び101において、新たに追加するアンテナポート数が4の場合について説明したが、追加するアンテナポート数は4に限られず2またはそれ以上のアンテナポート数であればよい。なお、以上ではアンテナポート1~4の参照シンボルがある場合について説明したが、これらがなくてもよい。なお、以上では全てのリソースブロックに参照シンボル系列を配置する場合について説明したが、一部のリソースブロックにのみ参照シンボル系列を配置するようにしてもよい。なお、以上では4つのアンテナポート1~4に対して、さらに4つのアンテナポートを追加する場合について説明したが、これに限らない。例えば、2つのアンテナポート1~2に対して新たに6つのアンテナポートを追加してもよい。なお、本実施形態で説明した方法は、第2~7の実施形態で説明した方法と組み合わせて適用してもよい。
In the above, the case where the reference symbol sequence based on the pseudo noise sequence is used for all the resource elements that map the reference symbols across all antenna ports has been shown, but the pseudo noise sequence is applied only to some of the reference symbols. A reference symbol sequence based on the above may be used.
In addition, although the case where the number of antenna ports to be newly added is four in the base station apparatuses 100 and 101 has been described above, the number of antenna ports to be added is not limited to four, and may be two or more antenna ports. . Although the case where there are reference symbols for the antenna ports 1 to 4 has been described above, these may not be necessary. Although the case where the reference symbol series is arranged in all the resource blocks has been described above, the reference symbol series may be arranged only in some resource blocks. Although the case where four antenna ports are added to the four antenna ports 1 to 4 has been described above, the present invention is not limited to this. For example, six new antenna ports may be added to the two antenna ports 1 and 2. Note that the method described in this embodiment may be applied in combination with the methods described in the second to seventh embodiments.
<第9の実施形態>
 つぎに、本発明の第9の実施形態について説明する。本実施形態では、基地局装置100及び101は、直交符号系列に基づく参照シンボル系列をマッピングする。
 図21Aは、基地局装置100及び101がアンテナポート1に対して用いる、直交符号系列に基づく参照シンボル系列の例を示す概念図である。同図の符号C1は、基地局装置100がアンテナポート1に対して用いる参照シンボル系列であり、符号C2は、基地局装置101がアンテナポート1に対して用いる参照シンボル系列である。
 また、図21Bは、基地局装置100及び101がアンテナポート2に対して用いる、直交符号系列に基づく参照シンボル系列の例を示す概念図である。同図の符号C1’は、基地局装置100がアンテナポート2に対して用いる参照シンボル系列であり、符号C2’は、基地局装置101がアンテナポート2に対して用いる参照シンボル系列である。
<Ninth Embodiment>
Next, a ninth embodiment of the present invention will be described. In the present embodiment, base station apparatuses 100 and 101 map reference symbol sequences based on orthogonal code sequences.
FIG. 21A is a conceptual diagram illustrating an example of a reference symbol sequence based on an orthogonal code sequence used by the base station apparatuses 100 and 101 for the antenna port 1. The code C1 in the figure is a reference symbol sequence used by the base station apparatus 100 for the antenna port 1, and the code C2 is a reference symbol series used by the base station apparatus 101 for the antenna port 1.
FIG. 21B is a conceptual diagram illustrating an example of a reference symbol sequence based on an orthogonal code sequence used by the base station apparatuses 100 and 101 for the antenna port 2. The reference symbol C1 ′ in the figure is a reference symbol sequence used by the base station device 100 for the antenna port 2, and the reference symbol C2 ′ is a reference symbol sequence used by the base station device 101 for the antenna port 2.
 図21Cは、基地局装置100が参照シンボル系列をマッピングした例を示す概念図である。同図では基地局装置100のアンテナポート1と2との参照シンボル系列がそれぞれa~dとi~lとで示されている。また、図21Dは、基地局装置101が参照シンボル系列をマッピングした例を示す概念図である。同図では基地局装置101のアンテナポート1と2との参照シンボル系列がそれぞれe~hとm~pとで示されている。
 本第9の実施形態における通信システムは、第1の実施形態における通信システムと同様の基地局装置100及び101と移動端末装置150及び151とを備えるが、リソースエレメントマッピング部のマッピング方法とマッピングする系列とが異なる。以下では、第1の実施形態と異なる部分を中心に説明する。本実施形態では、アンテナポート1~2を用いる。
FIG. 21C is a conceptual diagram illustrating an example in which the base station apparatus 100 maps a reference symbol sequence. In the figure, reference symbol sequences of antenna ports 1 and 2 of base station apparatus 100 are indicated by a to d and i to l, respectively. FIG. 21D is a conceptual diagram illustrating an example in which the base station apparatus 101 maps reference symbol sequences. In the figure, reference symbol sequences of antenna ports 1 and 2 of the base station apparatus 101 are indicated by e to h and m to p, respectively.
The communication system according to the ninth embodiment includes base station apparatuses 100 and 101 and mobile terminal apparatuses 150 and 151 similar to the communication system according to the first embodiment, but performs mapping with the mapping method of the resource element mapping unit. The series is different. Below, it demonstrates centering on a different part from 1st Embodiment. In this embodiment, antenna ports 1 and 2 are used.
 図21Cおよび図21Dでは、4つのリソースブロックに渡って新たに追加するアンテナポート1~2に割り当てる参照シンボル系列(4チップ)をOVSF(Orthogonal Variable Spreading Factor)符号などの直交符号系列(相互相関特性の優れた系列)に基づいて生成した場合を表わしている。基地局装置100及び101は、アンテナポート1に用いる直交符号として、互いに直交するabcd(直交符号C1)およびefgh(直交符号C2)を用い、アンテナポート2に用いる直交符号として、互いに直交するijkl(直交符号C1’)およびmnop(直交符号C2’)を用いている。なお、直交符号C1と2の組および直交符号C1’と2’の組として同じ符号の組を用いるようにしてもよい。具体的には、4チップのOVSF系列1111,11-1-1,1-1-11,1-11-1から直交符号C1と2の組および直交符号C1’と2’の組を設定するようにしてもよい。隣接基地局装置(セル)間では、互いに直交する系列を用いる。また、参照シンボル系列をマッピングするリソースエレメントを隣接セル間で同一とすることにより、直交関係を保持することができる。このとき、それぞれのリソースエレメントにマッピングされた参照シンボルの電力(あるいは振幅)は、データ部のリソースエレメントにマッピングされたデータシンボルの電力(あるいは振幅)と同じであることが好ましい。 In FIG. 21C and FIG. 21D, reference symbol sequences (4 chips) assigned to newly added antenna ports 1 to 2 across four resource blocks are orthogonal code sequences (cross-correlation characteristics) such as OVSF (OrthogonalthoVariable Spreading Factor) codes. This is a case where it is generated on the basis of an excellent series. Base station apparatuses 100 and 101 use abcd (orthogonal code C1) and efgh (orthogonal code C2) orthogonal to each other as orthogonal codes used for antenna port 1, and ijkl (orthogonal to each other) as orthogonal codes used for antenna port 2. Orthogonal code C1 ′) and mnop (orthogonal code C2 ′) are used. The same code set may be used as the set of orthogonal codes C1 and 2 and the set of orthogonal codes C1 'and 2'. Specifically, a set of orthogonal codes C1 and 2 and a set of orthogonal codes C1 ′ and 2 ′ are set from the 4-chip OVSF sequences 1111, 11-1-1, 1-1-11, and 1-11-1. You may do it. Sequences orthogonal to each other are used between adjacent base station apparatuses (cells). Further, the orthogonal relationship can be maintained by making the resource elements for mapping the reference symbol sequence the same between adjacent cells. At this time, the power (or amplitude) of the reference symbol mapped to each resource element is preferably the same as the power (or amplitude) of the data symbol mapped to the resource element of the data part.
 図21Cおよび図21Dのように参照シンボル系列をマッピングすることにより、基地局100と基地局101とから送信信号を同時に受信して協調通信する移動端末装置150は、逆拡散を行うことにより、それぞれの基地局からの信号電力(信号振幅)を隣接セルからの干渉を除去しながら測定することができ、それぞれの基地局が得られる信号電力(信号振幅)から協調通信を行うための最適なフィードバック情報(総合的なSINRや総合的なSINRに基づいたCQIやPMIやそれぞれの基地局におけるSINRやそれぞれの基地局におけるSINRに基づいたCQIやPMIなど)を推定することができる。
 また、協調通信を行わない移動端末装置151は、通信を行っている基地局装置(自基地局、自セル、サービングセル)100から送信された参照シンボル系列を参照し、受信した参照シンボル系列に対して逆拡散を行うことにより、基地局装置100から得られる信号電力(信号振幅)を隣接セルからの干渉を除去しながら測定することができる。また、参照シンボル系列のチップの各々には隣接基地局からの干渉成分が含まれているため、参照シンボル系列がマッピングされたリソースエレメントを参照して(自基地局からの参照信号の振幅と受信信号と差分の2乗ノルムを算出して)平均干渉信号電力を得ることができ、最適なフィードバック情報(SINRやSINRに基づいたCQIやPMIなど)を推定することができる。
By mapping reference symbol sequences as shown in FIG. 21C and FIG. 21D, mobile terminal apparatuses 150 that simultaneously receive transmission signals from base station 100 and base station 101 and perform coordinated communication perform despreading, respectively. Signal power (signal amplitude) from each base station can be measured while eliminating interference from neighboring cells, and optimal feedback for cooperative communication from the signal power (signal amplitude) obtained by each base station Information (CQI and PMI based on total SINR and total SINR, SINR in each base station, CQI and PMI based on SINR in each base station, and the like) can be estimated.
In addition, the mobile terminal device 151 that does not perform cooperative communication refers to the reference symbol sequence transmitted from the base station device (own base station, own cell, serving cell) 100 that performs communication, and receives the received reference symbol sequence. By performing despreading, the signal power (signal amplitude) obtained from the base station apparatus 100 can be measured while removing interference from adjacent cells. Further, since each reference symbol sequence chip includes an interference component from an adjacent base station, the reference symbol sequence is mapped to the resource element to which the reference symbol sequence is mapped (the amplitude and reception of the reference signal from the own base station). The average interference signal power can be obtained by calculating the square norm of the signal and the difference, and optimum feedback information (such as CNR and PMI based on SINR and SINR) can be estimated.
 このように,1つの基地局装置100と少なくとも1つの移動端末装置151とが通信を行うとともに複数の基地局装置100及び101が互いに協調して少なくとも1つの移動端末装置150と通信を行う通信システムにおいて、基地局装置100は、協調通信を行う移動端末装置150と協調通信を行わない移動端末装置151の両方で共用する参照シンボル系列を生成し、リソースエレメントのいずれかに参照シンボルをマッピングする。基地局装置100及び101は、参照シンボル系列として基地局装置間で直交する系列を用い、基地局装置間で同一のリソースエレメントに参照シンボル系列をマッピングする。1つの基地局装置100と通信する移動端末装置151は、通信相手の基地局装置100が送信した参照シンボル系列を用いて、通信相手の基地局装置100に通知するための伝送路状況を測定する。また、複数の基地局装置100及び101で協調して通信する移動端末装置150は、複数の基地局装置100及び101のそれぞれが送信した参照シンボル系列から、基地局装置100及び101のそれぞれに通知するための伝送路状況を測定する。これにより、協調通信を行う移動端末装置150と協調通信を行わない移動端末装置151とが同じ参照シンボル系列を用いて、協調通信を行う移動端末装置150はそれぞれの基地局装置100及び101からの送信信号電力を正確に把握することができ、協調通信を行わない移動端末装置151は、自基地局装置100からの送信信号電力を正確に把握するとともに、隣接基地局装置101からの平均干渉信号電力を得ることができる。従って、参照シンボル系列を共用してオーバーヘッドを抑制しながら、協調通信を行う移動端末装置100と協調通信を行わない移動端末装置101とが共に最適なフィードバック情報を生成することができる。 Thus, a communication system in which one base station apparatus 100 and at least one mobile terminal apparatus 151 communicate with each other, and a plurality of base station apparatuses 100 and 101 communicate with each other in cooperation with at least one mobile terminal apparatus 150. The base station apparatus 100 generates a reference symbol sequence shared by both the mobile terminal apparatus 150 that performs cooperative communication and the mobile terminal apparatus 151 that does not perform cooperative communication, and maps the reference symbol to one of the resource elements. Base station apparatuses 100 and 101 use sequences orthogonal between base station apparatuses as reference symbol sequences, and map reference symbol sequences to the same resource elements between base station apparatuses. The mobile terminal device 151 that communicates with one base station device 100 uses the reference symbol sequence transmitted by the communication partner base station device 100 to measure the state of the transmission path for notifying the communication partner base station device 100. . Further, mobile terminal apparatus 150 that communicates in cooperation with a plurality of base station apparatuses 100 and 101 notifies each of base station apparatuses 100 and 101 from a reference symbol sequence transmitted by each of a plurality of base station apparatuses 100 and 101. Measure the transmission path conditions for As a result, the mobile terminal device 150 that performs cooperative communication and the mobile terminal device 151 that does not perform cooperative communication use the same reference symbol sequence, and the mobile terminal device 150 that performs cooperative communication transmits signals from the base station devices 100 and 101. The mobile terminal apparatus 151 that can accurately grasp the transmission signal power and does not perform cooperative communication accurately grasps the transmission signal power from the own base station apparatus 100 and also averages the interference signal from the adjacent base station apparatus 101. Electric power can be obtained. Accordingly, the mobile terminal apparatus 100 that performs cooperative communication and the mobile terminal apparatus 101 that does not perform cooperative communication can generate optimal feedback information while sharing the reference symbol sequence and suppressing overhead.
 なお、図4における基地局装置100の全部または一部と、図6における移動局装置150の全部または一部との機能を実現するためのプログラムをコンピュータ読み取り可能な記録媒体に記録して、この記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、実行することにより各部の処理を行ってもよい。なお、ここでいう「コンピュータシステム」とは、OSや周辺機器等のハードウェアを含むものとする。
 また、「コンピュータシステム」は、WWWシステムを利用している場合であれば、ホームページ提供環境(あるいは表示環境)も含むものとする。
 また、「コンピュータ読み取り可能な記録媒体」とは、フレキシブルディスク、光磁気ディスク、ROM、CD-ROM等の可搬媒体、コンピュータシステムに内蔵されるハードディスク等の記憶装置のことをいう。さらに「コンピュータ読み取り可能な記録媒体」とは、インターネット等のネットワークや電話回線等の通信回線を介してプログラムを送信する場合の通信線のように、短時間の間、動的にプログラムを保持するもの、その場合のサーバやクライアントとなるコンピュータシステム内部の揮発性メモリのように、一定時間プログラムを保持しているものも含むものとする。また上記プログラムは、前述した機能の一部を実現するためのものであっても良く、さらに前述した機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせで実現できるものであっても良い。
A program for realizing the functions of all or part of base station apparatus 100 in FIG. 4 and all or part of mobile station apparatus 150 in FIG. 6 is recorded on a computer-readable recording medium. Processing of each unit may be performed by causing a computer system to read and execute a program recorded on a recording medium. The “computer system” here includes an OS and hardware such as peripheral devices.
Further, the “computer system” includes a homepage providing environment (or display environment) if a WWW system is used.
The “computer-readable recording medium” refers to a storage device such as a flexible medium, a magneto-optical disk, a portable medium such as a ROM or a CD-ROM, and a hard disk incorporated in a computer system. Furthermore, the “computer-readable recording medium” dynamically holds a program for a short time like a communication line when transmitting a program via a network such as the Internet or a communication line such as a telephone line. In this case, a volatile memory in a computer system serving as a server or a client in that case, and a program that holds a program for a certain period of time are also included. The program may be a program for realizing a part of the functions described above, and may be a program capable of realizing the functions described above in combination with a program already recorded in a computer system.
 以上、この発明の実施形態を図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計変更等も含まれる。 As described above, the embodiment of the present invention has been described in detail with reference to the drawings. However, the specific configuration is not limited to this embodiment, and includes design changes and the like without departing from the gist of the present invention.
 本発明は、無線通信システムや無線通信装置や無線通信方法に用いて好適である。 The present invention is suitable for use in a wireless communication system, a wireless communication apparatus, and a wireless communication method.
21、511~51R…無線受信部
22…受信信号処理部
23…フィードバック情報処理部
241~24L…符号部
251~25L…スクランブル部
261~26L…変調部
27…レイヤーマッピング部
28…プリコーディング部
29…参照信号生成部
301~30T…リソースエレメントマッピング部
311~31T…OFDM信号生成部
321~32T、63…無線送信部
521~52R…OFDM信号復調部
531~53R…リソースエレメントデマッピング部
54…伝搬路推定部
55…フィルタ部
56…デプリコーディング部
57…レイヤーデマッピング部
581~58L…復調部
591~59L…デスクランブル部
601~60L…復号部
61…フィードバック情報生成部
62…送信信号生成部
63…無線送信部
100、101…基地局装置
150、151…移動端末装置
900…通信システム
21, 511 to 51 R ... wireless receiver 22 ... received signal processor 23 ... feedback information processor 241 to 24L ... encoder 251 to 25L ... scrambler 261 to 26L ... modulator 27 ... layer mapping part 28 ... precoding part 29 ... reference signal generators 301 to 30T ... resource element mapping units 311 to 31T ... OFDM signal generators 321 to 32T, 63 ... radio transmitters 521 to 52R ... OFDM signal demodulators 531 to 53R ... resource element demapping unit 54 ... propagation Path estimation unit 55 ... filter unit 56 ... deprecoding unit 57 ... layer demapping units 581 to 58L ... demodulation units 591 to 59L ... descrambling units 601 to 60L ... decoding unit 61 ... feedback information generation unit 62 ... transmission signal generation unit 63 ... wireless transmitters 100, 101 ... Chikyoku device 150 and 151 ... mobile terminal device 900 ... communication system

Claims (12)

  1.  擬似雑音系列に基づく参照シンボルの系列である送信側参照シンボル系列を生成する参照信号生成部と、
     送信データと前記送信側参照シンボル系列とを1ないし複数のシンボル毎に1ないし複数のリソースエレメントにマッピングするリソースエレメントマッピング部と、
     前記送信データと前記送信側参照シンボル系列とを示す無線信号の送信信号を前記マッピングに従って生成して送信する第1無線送信部と、
     前記参照シンボルの信号受信状態に基づくフィードバック情報を受信する第1無線受信部と、
     前記送信データの送信の態様を前記フィードバック情報に基づいて制御するフィードバック情報処理部と
     を含む第1通信装置と、
     前記無線信号を受信する第2無線受信部と、
     受信した前記無線信号から抽出される参照シンボル系列に基づいて前記第1通信装置からの信号受信状態を測定し、測定した前記信号受信状態に従って前記フィードバック情報を生成するフィードバック情報生成部と、
     前記フィードバック情報を送信する第2無線送信部と
     を含む第2通信装置と
     を含む通信システム。
    A reference signal generation unit that generates a reference symbol sequence on the transmission side that is a sequence of reference symbols based on a pseudo-noise sequence;
    A resource element mapping unit that maps transmission data and the transmission side reference symbol sequence to one or more resource elements for each of one or more symbols;
    A first radio transmission unit that generates and transmits a transmission signal of a radio signal indicating the transmission data and the transmission-side reference symbol sequence according to the mapping;
    A first radio reception unit that receives feedback information based on a signal reception state of the reference symbol;
    A first communication device comprising: a feedback information processing unit that controls a transmission mode of the transmission data based on the feedback information;
    A second wireless receiver for receiving the wireless signal;
    A feedback information generator for measuring a signal reception state from the first communication device based on a reference symbol sequence extracted from the received radio signal, and generating the feedback information according to the measured signal reception state;
    A second communication device including: a second wireless transmission unit that transmits the feedback information.
  2.  前記送信信号を受信する第3無線受信部と、
     前記送信信号から抽出される逆拡散前参照シンボル系列に含まれる参照シンボルに基づいて前記第1通信装置からの信号受信状態を測定し、測定した前記信号受信状態に従ってフィードバック情報を生成するフィードバック情報生成部と、
     前記フィードバック情報を送信する第3無線送信部と
     を含む第3通信装置をさらに含む請求項1に記載の通信システム。
    A third wireless receiver for receiving the transmission signal;
    Feedback information generation for measuring a signal reception state from the first communication device based on a reference symbol included in a de-spread reference symbol sequence extracted from the transmission signal, and generating feedback information according to the measured signal reception state And
    The communication system according to claim 1, further comprising: a third communication device including a third wireless transmission unit that transmits the feedback information.
  3.  前記第1通信装置を複数具備し、
     前記複数の第1通信装置のリソースエレメントマッピング部は互いに同一のリソースエレメントに送信側参照シンボル系列をシンボル毎にマッピングする
     請求項1に記載の通信システム。
    A plurality of the first communication devices;
    2. The communication system according to claim 1, wherein resource element mapping units of the plurality of first communication devices map a transmission-side reference symbol sequence to the same resource element for each symbol.
  4.  前記参照信号生成部が生成する前記送信側参照シンボル系列は、他の第1通信装置の送信側参照シンボル系列と直交する請求項3に記載の通信システム。 The communication system according to claim 3, wherein the transmission side reference symbol sequence generated by the reference signal generation unit is orthogonal to a transmission side reference symbol sequence of another first communication apparatus.
  5.  前記第1通信装置を複数具備し、
     前記複数の第1通信装置の参照信号生成部が生成する前記送信側参照シンボル系列は、互いに巡回的にシフトさせたものである
     請求項1に記載の通信システム。
    A plurality of the first communication devices;
    The communication system according to claim 1, wherein the transmission side reference symbol sequences generated by the reference signal generation units of the plurality of first communication devices are cyclically shifted from each other.
  6.  前記第1通信装置を複数具備し、
     前記複数の第1通信装置のリソースエレメントマッピング部は互いに異なるリソースエレメントに前記参照シンボルをマッピングする
     請求項1に記載の通信システム。
    A plurality of the first communication devices;
    The communication system according to claim 1, wherein resource element mapping units of the plurality of first communication devices map the reference symbols to different resource elements.
  7.  擬似雑音系列に基づく参照シンボルの系列である送信側参照シンボル系列を生成する参照信号生成部と、
     送信データと前記送信側参照シンボル系列とを1ないし複数のシンボル毎に1ないし複数のリソースエレメントにマッピングするリソースエレメントマッピング部と、
     前記送信データと前記送信側参照シンボル系列とを示す無線信号を前記マッピングに従って生成して送信する無線送信部と、
     前記参照シンボルの信号受信状態に基づくフィードバック情報を受信する第1無線受信部と、
     前記送信データの送信方式を前記フィードバック情報に基づいて制御するフィードバック情報処理部と
     を含む通信装置。
    A reference signal generation unit that generates a reference symbol sequence on the transmission side that is a sequence of reference symbols based on a pseudo-noise sequence;
    A resource element mapping unit that maps transmission data and the transmission side reference symbol sequence to one or more resource elements for each of one or more symbols;
    A radio transmission unit that generates and transmits a radio signal indicating the transmission data and the transmission-side reference symbol sequence according to the mapping;
    A first radio reception unit that receives feedback information based on a signal reception state of the reference symbol;
    A feedback information processing unit that controls a transmission method of the transmission data based on the feedback information.
  8.  送信側参照シンボル系列を示す無線信号を伝搬路を経由して受信する無線受信部と、
     受信した前記無線信号から抽出される参照シンボル系列に基づいて信号受信状態を測定し、測定した前記信号受信状態に従って前記フィードバック情報を生成するフィードバック情報生成部と、
     前記フィードバック情報を送信する無線送信部と
     を含む通信装置。
    A radio reception unit that receives a radio signal indicating a transmission-side reference symbol sequence via a propagation path;
    A feedback information generation unit that measures a signal reception state based on a reference symbol sequence extracted from the received radio signal, and generates the feedback information according to the measured signal reception state;
    And a wireless transmission unit that transmits the feedback information.
  9.  第1通信装置と第2通信装置とが無線通信を行う通信システムにおいて、
     前記第1通信装置が、擬似雑音系列に基づく参照シンボルの系列である送信側参照シンボル系列を生成する参照信号生成過程と、
     前記第1通信装置が送信データと前記送信側参照シンボル系列とを1ないし複数のシンボル毎に1ないし複数のリソースエレメントにマッピングするリソースエレメントマッピング過程と、
     前記第1通信装置が前記送信データと前記送信側参照シンボル系列とを示す無線信号を前記マッピングに従って生成して送信する第1無線送信過程と、
     前記第1通信装置が前記参照シンボルの信号受信状態に基づくフィードバック情報を受信する第1無線受信過程と、
     前記第1通信装置が前記送信データの送信方式を前記フィードバック情報に基づいて制御するフィードバック情報処理過程と
     前記第2通信装置が前記無線信号を受信する第2無線受信過程と、
     前記第2通信装置が受信した前記無線信号から抽出される参照シンボル系列に基づいて前記第1通信装置からの信号受信状態を測定し、測定した前記信号受信状態に従って前記フィードバック情報を生成するフィードバック情報生成過程と、
     前記第2通信装置が前記フィードバック情報を送信する第2無線送信過程と
     を含む通信方法。
    In the communication system in which the first communication device and the second communication device perform wireless communication,
    A reference signal generating step in which the first communication device generates a transmitting-side reference symbol sequence that is a sequence of reference symbols based on a pseudo-noise sequence;
    A resource element mapping process in which the first communication device maps transmission data and the transmission side reference symbol sequence to one or more resource elements for each of one or more symbols;
    A first radio transmission process in which the first communication device generates and transmits a radio signal indicating the transmission data and the reference symbol sequence on the transmission side according to the mapping;
    A first wireless reception process in which the first communication device receives feedback information based on a signal reception state of the reference symbol;
    A feedback information processing process in which the first communication apparatus controls a transmission method of the transmission data based on the feedback information; a second radio reception process in which the second communication apparatus receives the radio signal;
    Feedback information for measuring a signal reception state from the first communication device based on a reference symbol sequence extracted from the radio signal received by the second communication device, and generating the feedback information according to the measured signal reception state Generation process,
    A second wireless transmission process in which the second communication device transmits the feedback information.
  10.  第2通信装置と第1通信装置とが通信をおこなうとともに、第3通信装置と前記第1通信装置とが通信を行う通信システムにおいて、
     前記第1通信装置が擬似雑音系列に基づく参照シンボルの系列である送信側参照シンボル系列を生成する参照信号生成過程と、
     前記第1通信装置が送信データと前記送信側参照シンボル系列とを1ないし複数のシンボル毎に1ないし複数のリソースエレメントにマッピングするリソースエレメントマッピング過程と、
     前記第1通信装置が前記送信データと前記送信側参照シンボル系列とを示す無線信号を前記マッピングに従って生成して送信する第1無線送信過程と、
     前記第1通信装置が前記参照シンボルの信号受信状態に基づくフィードバック情報を受信する第1無線受信過程と、
     前記第1通信装置が前記送信データの送信方式を前記フィードバック情報に基づいて制御するフィードバック情報処理過程と
     前記第2通信装置が前記無線信号を受信する第2無線受信過程と、
     前記第2通信装置が受信した前記無線信号から抽出される参照シンボル系列に基づいて前記第1通信装置からの信号受信状態を測定し、測定した前記信号受信状態に従って前記フィードバック情報を生成するフィードバック情報生成過程と、
     前記第2通信装置が前記フィードバック情報を送信する第2無線送信過程と
     前記第3通信装置が前記送信信号を受信する第3無線受信過程と、
     前記第3通信装置が前記送信信号から抽出される参照シンボルに基づいて前記第1通信装置からの信号受信状態を測定し、測定した前記信号受信状態に従ってフィードバック情報を生成するフィードバック情報生成過程と、
     前記第3通信装置が前記フィードバック情報を送信する第3無線送信過程と
     を含む通信方法。
    In the communication system in which the second communication device communicates with the first communication device, and the third communication device communicates with the first communication device,
    A reference signal generating step in which the first communication device generates a transmitting-side reference symbol sequence that is a sequence of reference symbols based on a pseudo-noise sequence;
    A resource element mapping process in which the first communication device maps transmission data and the transmission side reference symbol sequence to one or more resource elements for each of one or more symbols;
    A first radio transmission process in which the first communication device generates and transmits a radio signal indicating the transmission data and the reference symbol sequence on the transmission side according to the mapping;
    A first wireless reception process in which the first communication device receives feedback information based on a signal reception state of the reference symbol;
    A feedback information processing process in which the first communication apparatus controls a transmission method of the transmission data based on the feedback information; a second radio reception process in which the second communication apparatus receives the radio signal;
    Feedback information for measuring a signal reception state from the first communication device based on a reference symbol sequence extracted from the radio signal received by the second communication device, and generating the feedback information according to the measured signal reception state Generation process,
    A second wireless transmission process in which the second communication device transmits the feedback information; and a third wireless reception process in which the third communication device receives the transmission signal;
    A feedback information generating step in which the third communication device measures a signal reception state from the first communication device based on a reference symbol extracted from the transmission signal, and generates feedback information according to the measured signal reception state;
    A third wireless transmission process in which the third communication device transmits the feedback information.
  11.  通信装置が擬似雑音系列に基づく参照シンボルの系列である送信側参照シンボル系列を生成する参照信号生成過程と、
     送信データと前記送信側参照シンボル系列とを1ないし複数のシンボル毎に1ないし複数のリソースエレメントにマッピングするリソースエレメントマッピング過程と、
     前記送信データと前記送信側参照シンボル系列とを示す無線信号を前記マッピングに従って生成して送信する無線送信過程と、
     前記参照シンボルの信号受信状態に基づくフィードバック情報を受信する無線受信過程と、
     前記送信データの送信方式を前記フィードバック情報に基づいて制御するフィードバック情報処理過程と
     を含む通信方法。
    A reference signal generation process in which the communication device generates a reference symbol sequence on the transmission side that is a sequence of reference symbols based on a pseudo-noise sequence;
    A resource element mapping process of mapping transmission data and the transmission side reference symbol sequence to one or more resource elements for each of one or more symbols;
    A radio transmission process of generating and transmitting a radio signal indicating the transmission data and the transmission side reference symbol sequence according to the mapping;
    A radio reception process for receiving feedback information based on a signal reception state of the reference symbol;
    A feedback information processing step for controlling a transmission method of the transmission data based on the feedback information.
  12.  通信装置が送信側参照シンボル系列を示す無線信号を伝搬路を経由して受信する無線受信過程と、
     前記通信装置が受信した前記無線信号から抽出される参照シンボル系列に基づいて信号受信状態を測定し、測定した前記信号受信状態に従って前記フィードバック情報を生成するフィードバック情報生成過程と、
     前記通信装置が前記フィードバック情報を送信する無線送信過程と
     を含む通信方法。
    A radio reception process in which a communication device receives a radio signal indicating a transmission-side reference symbol sequence via a propagation path;
    A feedback information generation step of measuring a signal reception state based on a reference symbol sequence extracted from the radio signal received by the communication device, and generating the feedback information according to the measured signal reception state;
    A wireless transmission process in which the communication device transmits the feedback information.
PCT/JP2010/002748 2009-04-24 2010-04-15 Communication system, communication apparatus and communication method WO2010122749A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-106250 2009-04-24
JP2009106250 2009-04-24

Publications (1)

Publication Number Publication Date
WO2010122749A1 true WO2010122749A1 (en) 2010-10-28

Family

ID=43010876

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/002748 WO2010122749A1 (en) 2009-04-24 2010-04-15 Communication system, communication apparatus and communication method

Country Status (1)

Country Link
WO (1) WO2010122749A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012114607A (en) * 2010-11-24 2012-06-14 Sharp Corp Radio communication system, base station device, mobile station device, and communication method in radio communication system
JP2012175191A (en) * 2011-02-17 2012-09-10 Sharp Corp Communication system, base station device, and terminal device
JP2017055449A (en) * 2013-01-03 2017-03-16 インテル コーポレイション Enhanced channel quality information feedback system
US9806793B2 (en) 2011-04-19 2017-10-31 Sun Patent Trust Relay method and relay device
JPWO2016163499A1 (en) * 2015-04-09 2018-02-22 株式会社Nttドコモ Wireless base station, user terminal, and wireless communication method
US9986477B2 (en) 2013-01-03 2018-05-29 Intel Corporation Channel quality information feedback techniques
CN110337824A (en) * 2017-02-28 2019-10-15 华为技术有限公司 A kind of method of scheduling, base station and terminal

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NOKIA: "Nokia Siemens Networks, CSI-RS design for LTE-Advanced downlink", 3GPP TSG RAN WG1 MEETING #56-BIS RL-091351, March 2009 (2009-03-01) *

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012114607A (en) * 2010-11-24 2012-06-14 Sharp Corp Radio communication system, base station device, mobile station device, and communication method in radio communication system
JP2012175191A (en) * 2011-02-17 2012-09-10 Sharp Corp Communication system, base station device, and terminal device
US11070281B2 (en) 2011-04-19 2021-07-20 Sun Patent Trust Terminal apparatus and communication scheme
US9806793B2 (en) 2011-04-19 2017-10-31 Sun Patent Trust Relay method and relay device
US10044432B2 (en) 2011-04-19 2018-08-07 Sun Patent Trust Relay method and relay device
US12015471B2 (en) 2011-04-19 2024-06-18 Sun Patent Trust Integrated circuit for controlling a communication scheme
US10623084B2 (en) 2011-04-19 2020-04-14 Sun Patent Trust Relay method and relay device
US11658733B2 (en) 2011-04-19 2023-05-23 Sun Patent Trust Base station and communication scheme executed by a base station
JP2017055449A (en) * 2013-01-03 2017-03-16 インテル コーポレイション Enhanced channel quality information feedback system
US9986477B2 (en) 2013-01-03 2018-05-29 Intel Corporation Channel quality information feedback techniques
JPWO2016163499A1 (en) * 2015-04-09 2018-02-22 株式会社Nttドコモ Wireless base station, user terminal, and wireless communication method
EP3579603A4 (en) * 2017-02-28 2020-01-08 Huawei Technologies Co., Ltd. Scheduling method, base station and terminal
US11044000B2 (en) 2017-02-28 2021-06-22 Huawei Technologies Co., Ltd. Scheduling method, base station, and terminal
CN112637956A (en) * 2017-02-28 2021-04-09 华为技术有限公司 Scheduling method, base station and terminal
JP2020512727A (en) * 2017-02-28 2020-04-23 華為技術有限公司Huawei Technologies Co.,Ltd. Scheduling method, base station, and terminal
CN110337824A (en) * 2017-02-28 2019-10-15 华为技术有限公司 A kind of method of scheduling, base station and terminal
CN112637956B (en) * 2017-02-28 2024-07-16 华为技术有限公司 Scheduling method, base station and terminal

Similar Documents

Publication Publication Date Title
JP5477872B2 (en) Mobile station apparatus and base station apparatus
US9681322B2 (en) Wireless communication system, communication apparatus, wireless communication method and terminal apparatus
JP5830478B2 (en) Wireless base station, user terminal, and wireless communication method
WO2010146975A1 (en) Communication system, communication apparatus and communication method
US9048914B2 (en) Radio base station device, mobile station device and radio communication method
US8503561B2 (en) Method and apparatus of transmitting reference signal for uplink transmission
JP5039110B2 (en) Base station apparatus, mobile station apparatus, and transmission power control method
WO2014167992A1 (en) Base station apparatus, terminal apparatus, wireless communication system, and integrated circuit
JP5283669B2 (en) Transmitter, receiver, and wireless communication method
JP2016027747A (en) Multiple user multiple input multiple output transmission method in wireless communication system
JP2012531804A (en) Method and apparatus for transmitting reference signal in uplink MIMO transmission
WO2013024742A1 (en) Terminal, base station, communication system, and communication method
WO2011158726A1 (en) Base station apparatus, terminal apparatus, communication system and communication method
WO2010122749A1 (en) Communication system, communication apparatus and communication method
WO2013084693A1 (en) Wireless base station device, wireless communication system, and wireless communication method
WO2011125994A1 (en) Communication control method, mobile station device and base station device
WO2011155360A1 (en) Mobile terminal apparatus, base station apparatus, communication system, and communication method
JP6243386B2 (en) User terminal
JP2018038095A (en) Radio base station, user terminal, and radio communication method
WO2010146924A1 (en) Wireless communication system, base station device, mobile station device, wireless communication method, and wireless communication program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10766811

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10766811

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP