[go: up one dir, main page]

WO2010116812A1 - 溶解ポンプにおける分離装置 - Google Patents

溶解ポンプにおける分離装置 Download PDF

Info

Publication number
WO2010116812A1
WO2010116812A1 PCT/JP2010/053102 JP2010053102W WO2010116812A1 WO 2010116812 A1 WO2010116812 A1 WO 2010116812A1 JP 2010053102 W JP2010053102 W JP 2010053102W WO 2010116812 A1 WO2010116812 A1 WO 2010116812A1
Authority
WO
WIPO (PCT)
Prior art keywords
solution
dissolution
pump
dissolution pump
cylindrical container
Prior art date
Application number
PCT/JP2010/053102
Other languages
English (en)
French (fr)
Inventor
俊二 別惣
Original Assignee
株式会社イズミフードマシナリ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社イズミフードマシナリ filed Critical 株式会社イズミフードマシナリ
Priority to KR1020117022856A priority Critical patent/KR101291779B1/ko
Priority to CN2010800120361A priority patent/CN102355954B/zh
Publication of WO2010116812A1 publication Critical patent/WO2010116812A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04CAPPARATUS USING FREE VORTEX FLOW, e.g. CYCLONES
    • B04C3/00Apparatus in which the axial direction of the vortex flow following a screw-thread type line remains unchanged ; Devices in which one of the two discharge ducts returns centrally through the vortex chamber, a reverse-flow vortex being prevented by bulkheads in the central discharge duct
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04CAPPARATUS USING FREE VORTEX FLOW, e.g. CYCLONES
    • B04C3/00Apparatus in which the axial direction of the vortex flow following a screw-thread type line remains unchanged ; Devices in which one of the two discharge ducts returns centrally through the vortex chamber, a reverse-flow vortex being prevented by bulkheads in the central discharge duct
    • B04C3/06Construction of inlets or outlets to the vortex chamber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/50Mixing liquids with solids
    • B01F23/53Mixing liquids with solids using driven stirrers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/50Mixing liquids with solids
    • B01F23/59Mixing systems, i.e. flow charts or diagrams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/50Circulation mixers, e.g. wherein at least part of the mixture is discharged from and reintroduced into a receptacle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/50Circulation mixers, e.g. wherein at least part of the mixture is discharged from and reintroduced into a receptacle
    • B01F25/53Circulation mixers, e.g. wherein at least part of the mixture is discharged from and reintroduced into a receptacle in which the mixture is discharged from and reintroduced into a receptacle through a recirculation tube, into which an additional component is introduced
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/60Pump mixers, i.e. mixing within a pump
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F27/00Mixers with rotary stirring devices in fixed receptacles; Kneaders
    • B01F27/80Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a substantially vertical axis
    • B01F27/81Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a substantially vertical axis the stirrers having central axial inflow and substantially radial outflow
    • B01F27/811Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a substantially vertical axis the stirrers having central axial inflow and substantially radial outflow with the inflow from one side only, e.g. stirrers placed on the bottom of the receptacle, or used as a bottom discharge pump
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F33/00Other mixers; Mixing plants; Combinations of mixers
    • B01F33/80Mixing plants; Combinations of mixers
    • B01F33/82Combinations of dissimilar mixers
    • B01F33/821Combinations of dissimilar mixers with consecutive receptacles
    • B01F33/8212Combinations of dissimilar mixers with consecutive receptacles with moving and non-moving stirring devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/71Feed mechanisms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04CAPPARATUS USING FREE VORTEX FLOW, e.g. CYCLONES
    • B04C9/00Combinations with other devices, e.g. fans, expansion chambers, diffusors, water locks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04CAPPARATUS USING FREE VORTEX FLOW, e.g. CYCLONES
    • B04C9/00Combinations with other devices, e.g. fans, expansion chambers, diffusors, water locks
    • B04C2009/007Combinations with other devices, e.g. fans, expansion chambers, diffusors, water locks with internal rotors, e.g. impeller, ventilator, fan, blower, pump

Definitions

  • the present invention relates to a separation apparatus in a dissolution pump, and in particular, the efficiency is high even in the case where a dissolution operation is performed by circulating a solution having a high concentration or a solution which is difficult to dissolve, for example, lumps or lumps are easily generated.
  • the present invention relates to a separation apparatus in a dissolution pump that can be operated without lowering the
  • the powder suction type dissolution pump performs quantitative adjustment of powder and liquid introduced into the dissolution pump by a stator made of a cylindrical body having a slit and is introduced into the dissolution pump by a stirring blade. The powder and the liquid are mixed and dissolved, and the suspended solution is sent out from the solution discharge port.
  • the solution sent out from the solution discharge port is sent out together with the air bubbles in a state not containing undissolved matter by filtering by a separating device comprising a separation filter, and the undissolved matter is circulated along with the partial solution.
  • the solution is introduced into the dissolution pump and mixed and dissolved with the newly introduced powder and liquid so that mixing and dissolution of the powder and liquid can be promoted while circulating the solution. .
  • the separation device including the separation filter in the above conventional dissolution pump is a solution which is high in concentration and difficult to dissolve, and in the case of a solution which is easily formed, for example, lumps or clumps of aggregates, the separation filter is clogged.
  • the operation must be stopped for maintenance, or air bubbles are introduced into the dissolution pump through the circulation channel without being separated, and the suction power of the dissolution pump is reduced, resulting in a reduction in operation efficiency.
  • the present invention circulates a solution having a high concentration or a solution which is hard to dissolve, for example, lumps or clumps are easily generated. It is an object of the present invention to provide a separation apparatus in a dissolution pump which can perform continuous operation without lowering the operation efficiency even in the case of
  • the separation apparatus in the dissolution pump according to the first aspect of the present invention has the introduction pipe connected to the discharge side of the dissolution pump projecting from the bottom of the cylindrical container to the inside and discharged at the top of the cylindrical container.
  • An outlet is provided, and a circulation port communicating with the dissolution pump is provided at a lower portion, and a twist plate for swirling the flow of the solution discharged from the introduction pipe is disposed at the discharge end of the introduction pipe.
  • a plurality of torsion plates can be disposed such that the center lines in the longitudinal direction are in a positional relationship of torsion.
  • the separation device in the dissolution pump of the second aspect of the present invention the introduction pipe connected to the discharge side of the dissolution pump is disposed protruding inside the bottom of the cylindrical container, And a circulation port communicating with the dissolution pump at the lower part, and an agitation blade for agitating the solution discharged from the introduction pipe is disposed above the discharge end of the introduction pipe.
  • the volume of the cylindrical container can be set to 1 to 10 times the discharge amount per minute of the solution discharged from the discharge port.
  • the introduction pipe connected to the discharge side of the dissolution pump is disposed to protrude inside from the bottom of the cylindrical container, and the discharge port is provided at the top of the cylindrical container
  • Dissolving solution discharged from the introducing pipe is provided with a circulation port communicating with the dissolving pump at the lower part, and a twisting plate for swirling the flow of dissolving solution discharged from the introducing pipe is provided at the discharge end of the introducing pipe
  • the solution component having a large specific gravity can be inverted, flowed down, and returned from the lower circulation port to the dissolution pump through the circulation channel.
  • the solution component having a large specific gravity including the undissolved material introduced into the dissolution pump through the circulation flow path has a small content of air bubbles, and therefore powder and liquid to be newly introduced into the dissolution pump.
  • the introduction pipe connected to the discharge side of the dissolution pump is disposed so as to project inward from the bottom of the cylindrical container, and the discharge port is provided at the top of the cylindrical container.
  • a circulation port communicating with the dissolution pump is provided at the lower part, and a stirring blade for stirring the solution discharged from the introduction pipe is disposed at the upper part of the discharge end of the introduction pipe.
  • the solution solution is discharged from the upper outlet by discharging the solution solution containing a large amount of bubbles due to the centrifugal action of the stirring blade and the specific gravity difference, and reversing the solution solution solution containing the undissolved material.
  • the solution component having a large specific gravity including the undissolved material introduced into the dissolution pump through the circulation flow path has a small content of air bubbles, and therefore powder and liquid to be newly introduced into the dissolution pump.
  • the discharge force of the dissolution pump can be assisted, and the viscosity of the solution can be increased by stirring and fluidizing the solution by the stirring blade. It is possible to reduce the flow resistance, to improve the flowability of the solution, and to improve the operation efficiency.
  • the solution can be stirred by fluidizing the solution by the stirring blade. It is possible to secure the residence time (about 1 to 10 minutes) of the solution while preventing separation and without lowering the operation efficiency, whereby, for example, starchy substances such as rice flour as powder are obtained.
  • the powder is used for dissolution operation by adding a starch degrading enzyme, and uniform dissolution is promoted by stirring and fluidizing the solution while securing time for the starchy powder to be decomposed, It is possible to prevent the solution from being separated or the viscosity of the solution from being increased to inhibit the fluidization.
  • FIG. 2 is an overall view of a powder dissolving apparatus including a dissolving pump to which the separating apparatus is applied. It is front sectional drawing which shows one Example of the isolation
  • FIG. 2 is an overall view of a powder dissolving apparatus including a dissolving pump to which the separating apparatus is applied.
  • FIGS. 1 to 3 show an embodiment of a powder dissolving apparatus including a dissolving pump to which the separating apparatus in the dissolving pump according to the first invention is applied.
  • the separation device 1 is disposed on the discharge side of the dissolution pump 6 that mixes the powder supplied from the powder supply device 3 and the solvent (water) supplied from the solvent supply device 4 and the specific gravity of the solution is Perform a vacuum dissolution operation that promotes mixing by circulating a solution containing a large undissolved material (such as lumpy or tufted aggregates, hereinafter referred to as "undissolved material F")
  • a solution containing bubbles B and having a low specific gravity and not containing undissolved matter F is sent out from the discharge port 13, and the introduction pipe 12 connected to the discharge side 6 a of the dissolution pump 6 is
  • the cylindrical container 11 is provided with a discharge port 13 at the top and a circulation port 14 communicating with the dissolution pump 6 at the bottom, and is provided at the discharge end 12 a of the introduction pipe 12 at the introduction pipe 12.
  • the torsion plate 20 disposed at the discharge end 12 a of the introduction pipe 12 is not particularly limited as long as it can turn the flow of the solution discharged from the introduction pipe 12, but the present embodiment is not limited thereto.
  • a plurality of (four in the present embodiment) torsion plates 20 are attached at an angle ⁇ with respect to the plane including the central axis C of the introduction pipe 12 and
  • the center lines 20a in the longitudinal direction of the frame are arranged in a twisted positional relationship with each other.
  • the inclination angle ⁇ of the torsion plate 20 with respect to the plane including the central axis C of the introduction pipe 12 is 40 to 50 °, preferably 45 °, so that the torsion plate 20 abuts on the inner circumferential surface of the introduction pipe 12
  • the contact side 20b of the plate 20 with the introduction pipe 12 is formed in an arc shape that follows an oval shape when the introduction pipe 12 is cut at an angle ⁇ .
  • the tip of the twisting plate 20 is arranged so as to protrude from the discharge end 12 a of the introducing pipe 12 by a length L. Set up.
  • the length L is preferably about 10 to 15% of the inner diameter of the discharge end 12a.
  • the dissolution operation of the powder using the separation device 1 of the present embodiment will be described.
  • the powder introduced into the powder supply device 3 is sucked by the vacuum suction force of the dissolution pump 6 and flows into the dissolution pump 6 together with the solvent (water) flowing down while swirling the mixing nozzle 5.
  • the powder is mixed, sheared and centrifuged in the dissolving pump 6 and dispersed and dissolved in the solvent, and then it becomes a discharge flow from the discharge side 6 a of the dissolving pump 6 through the inlet pipe 12 of the separation device 1. It flows into the upper part.
  • the solution in which the air bubbles B and the undissolved material F are mixed is swirled by the torsion plate 20 disposed at the discharge end 12a of the introduction pipe 12, and an inverted cone is formed above the discharge end 12a. It becomes a swirling flow T of a shape.
  • the solution component having a small specific gravity which contains a large amount of air bubbles B and does not contain the undissolved material F, discharges the undissolved material F from the outlet 13 at the top.
  • the solution component having a small amount of air bubbles B and having a large specific gravity including the unmelted substance F is inverted, flowed down, and returned to the dissolution pump 6 from the lower circulation port 14 via the circulation channel. At this time, the bubbles B contained in the solution discharged from the solution pump 6 are efficiently separated and discharged from the upper outlet 13 together with the solution component having a small specific gravity not containing the undissolved material F.
  • the solution returned to the dissolution pump 6 through the circulation port 14 has a small content of air bubbles, so that it is possible to suppress the decrease in intake capacity due to the mixing of air bubbles, and powder and liquid newly introduced to the dissolution pump 6
  • Mixing and dissolution can be performed with the powder and liquid to be introduced.
  • mixing and dissolution of powder and liquid are promoted while circulating the solution, so it is difficult to dissolve in high concentration or dissolve, for example, in the case of a solution which is likely to produce lumpy or tufted aggregates.
  • continuous operation can be performed without lowering the operation efficiency.
  • the torsion plate 20 is simple in structure, the pressure loss when the solution passes is small, and the undissolved material F can be passed without clogging, so the frequency of maintenance can be reduced and continuous operation is possible.
  • the volume of the cylindrical container 11 is not particularly limited, but, for example, about 0.2 to 1 times the discharge amount per minute of the solution discharged from the discharge port 13 Can be set to As a result, it is possible to prevent the solution from being separated or the viscosity of the solution becoming high and the fluidization being inhibited.
  • FIGS. 4 to 5 show an embodiment of a powder dissolving apparatus including a dissolving pump to which the separation device in the dissolving pump according to the second invention is applied.
  • this separation device 1 is provided on the discharge side of the dissolution pump 6 that mixes the powder supplied from the powder supply device 3 and the solvent (water) supplied from the solvent supply device 4.
  • a vacuum solution operation is provided to promote mixing of the powder and liquid by circulating the solution containing the undissolved material F having a large specific gravity among the solution, and includes the bubble B in the solution.
  • the solution which has a low specific gravity and does not contain the undissolved material F is sent out from the discharge port 13, and the introduction pipe 12 connected to the discharge side 6a of the dissolution pump 6 is projected inside from the bottom of the cylindrical container 11 Further, the discharge port 13 is provided in the upper part of the cylindrical container 11 and the circulation port 14 communicating with the dissolution pump 6 is provided in the lower part.
  • the separation device 1 is provided with a stirring blade 22 for stirring the solution discharged from the introduction pipe 12 above the discharge end 12 a of the introduction pipe 12.
  • the stirring blade 22 is not particularly limited as long as it is configured to stir the solution discharged from the discharge end 12 a of the introduction pipe 12, but in the present embodiment, the stirring blade 22 of the cylindrical container 11 is used. It consists of a plurality (four sheets in the present embodiment) of plate-like members disposed at the tip of the rotary shaft 23 extended inside the cylindrical container 11 from the vicinity of the center of the upper surface.
  • the rotary shaft 23 is disposed in the cylindrical container 11 by sealing with, for example, a mechanical seal 25, and the upper end is connected to a driving device such as a motor M so that the stirring blade 22 is rotated in the cylindrical container 11. ing.
  • the stirring blade 22 is formed flat so that the surface 22a of the stirring blade 22 is located on the surface including the central axis C of the introduction pipe 12, and attached at a predetermined angle, for example, 30 to 45 ° or curved By forming in this way, the solution discharged from the discharge end 12a can be effectively swirled.
  • the discharge port 13 opened at the upper part of the cylindrical container 11 is a cylindrical container 11 as shown in FIG. 4 in order to effectively discharge the solution to which the centrifugal force is applied by the stirring blade 22.
  • the upper side of the container preferably, it is opened in the tangential direction of the cylindrical container 11.
  • the dissolution operation of the powder using the separation device 1 of the present embodiment will be described.
  • the powder introduced into the powder supply device 3 is sucked by the vacuum suction force of the dissolution pump 6 and flows into the dissolution pump 6 together with the solvent (water) flowing down while swirling the mixing nozzle 5.
  • the powder is mixed, sheared and centrifuged in the dissolving pump 6 and dispersed and dissolved in the solvent, and then it becomes a discharge flow from the discharge side 6 a of the dissolving pump 6 through the inlet pipe 12 of the separation device 1. It flows into the upper part.
  • the solution in which the air bubbles B and the undissolved material F are mixed is subjected to a centrifugal action by the stirring blade 22 disposed on the top of the discharge end 12 a of the introduction pipe 12.
  • the solution component having a small specific gravity which contains many air bubbles B and does not contain the undissolved material F, discharges the undissolved material F from the outlet 13 at the top.
  • the solution component having a small amount of air bubbles B and having a large specific gravity including the unmelted substance F is inverted, flowed down, and returned to the dissolution pump 6 from the lower circulation port 14 via the circulation channel.
  • the bubbles B contained in the solution discharged from the solution pump 6 are efficiently separated and discharged from the upper outlet 13 together with the solution component having a small specific gravity not containing the undissolved material F.
  • the solution returned to the dissolution pump 6 through the circulation port 14 has a small content of air bubbles, so that it is possible to suppress the decrease in intake capacity due to the mixing of air bubbles, and powder and liquid newly introduced to the dissolution pump 6
  • Mixing and dissolution can be performed with the powder and liquid to be introduced.
  • mixing and dissolution of powder and liquid are promoted while circulating the solution, so it is difficult to dissolve in high concentration or dissolve, for example, in the case of a solution which is likely to produce lumpy or tufted aggregates.
  • continuous operation can be performed without lowering the operation efficiency.
  • the discharge force of the dissolving pump 6 can be assisted, and the solution is stirred by the stirring blade 22 and the solution is dissolved by fluidization.
  • the viscosity of the solution can be reduced to reduce the flow resistance, the flowability of the solution can be improved, and the operation efficiency can be improved.
  • the volume of the cylindrical container 11 is not particularly limited, but is set to, for example, about 1 to 10 times the discharge amount per minute of the solution discharged from the discharge port 13 (It is also possible to set about 0.2 to 1 times as in the embodiment of the separation apparatus of the first invention).
  • the residence time (about 1 to 10 minutes) of the solution can be increased without lowering the operation efficiency. It can be secured.
  • the separation apparatus in the dissolution pump of the present invention was explained based on a plurality of examples, the present invention is not limited to the composition indicated in the above-mentioned example, but in the range which does not deviate from the meaning, suitably The configuration can be changed.
  • the separation apparatus in the dissolution pump of the present invention has the property of being able to operate continuously without lowering the operation efficiency, it is difficult to dissolve, for example, a high concentration solution, for example, lumps or It can use suitably for the use of the powder dissolving apparatus which circulates the solution which tends to form tufted aggregates, and performs a dissolution operation.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dispersion Chemistry (AREA)
  • Cyclones (AREA)
  • Accessories For Mixers (AREA)

Abstract

 濃度の高い溶解液や溶解しにくく、例えば、ダマ状や房状の凝集物が生じやすい溶解液を循環させて溶解運転をする場合でも、運転効率を低下させることなく連続運転を行うことができる溶解ポンプにおける分離装置を提供するため、溶解ポンプ6の吐出側6aに連なる導入パイプ12を円筒状容器11の底面から内部に突出して配設し、円筒状容器11の上部に排出口13を備えるとともに、下部に前記溶解ポンプ6に連通する循環口14を備え、導入パイプ12の吐出端12aに、導入パイプ12から吐出される溶解液の流れを旋回させる捻り板20を配設する。

Description

溶解ポンプにおける分離装置
 本発明は、溶解ポンプにおける分離装置に関し、特に、濃度の高い溶解液や溶解しにくく、例えば、ダマ状や房状の凝集物が生じやすい溶解液を循環させて溶解運転をする場合でも、効率を低下させることなく運転することができる溶解ポンプにおける分離装置に関するものである。
 粉体を溶媒である液体に溶解する場合に、粉体及び液体の供給と混合を1つのポンプで行うことができるようにした粉体吸引式の溶解ポンプがある(例えば、特許文献1参照)。
 この粉体吸引式の溶解ポンプは、スリットを有する筒状体からなるステータによって、溶解ポンプに導入される粉体及び液体の量的な調整を行うとともに、攪拌翼によって、溶解ポンプに導入される粉体及び液体を混合、溶解を行い、懸濁状態の溶解液を溶解液吐出口から送り出すようにしている。
 溶解液吐出口から送り出される溶解液は、分離フィルタからなる分離装置によって濾過することによって未溶解物を含有しない状態で気泡と共に送り出されるとともに、未溶解物は一部の溶解液と共に、循環流路を介して、溶解ポンプに導入し、新たに導入される粉体及び液体と共に混合、溶解を行うことにより、溶解液を循環させながら粉体と液体の混合、溶解が促進されるようにしている。
特開2007-216172号公報
 ところで、上記従来の溶解ポンプにおける分離フィルタからなる分離装置は、濃度の高い溶解液や溶解しにくく、例えば、ダマ状や房状の凝集物が生じやすい溶解液の場合、分離フィルタが閉塞してメンテナンスのために運転を中止しなければならなかったり、気泡が分離されずに循環流路を介して溶解ポンプに導入され、溶解ポンプの吸引力が低下し、運転効率が低下するという問題があった。
 本発明は、上記従来の溶解ポンプにおける分離装置が有する問題点に鑑み、濃度の高い溶解液や溶解しにくく、例えば、ダマ状や房状の凝集物が生じやすい溶解液を循環させて溶解運転をする場合でも、運転効率を低下させることなく連続運転を行うことができる溶解ポンプにおける分離装置を提供することを目的とする。
 上記目的を達成するため、本第1発明の溶解ポンプにおける分離装置は、溶解ポンプの吐出側に連なる導入パイプを円筒状容器の底面から内部に突出して配設し、円筒状容器の上部に排出口を備えるとともに、下部に前記溶解ポンプに連通する循環口を備え、導入パイプの吐出端に、導入パイプから吐出される溶解液の流れを旋回させる捻り板を配設したことを特徴とする。
 この場合において、捻り板を、長手方向の中心線が互いにねじれの位置関係となるように複数枚配設することができる。
 また、同じ目的を達成するため、本第2発明の溶解ポンプにおける分離装置は、溶解ポンプの吐出側に連なる導入パイプを円筒状容器の底面から内部に突出して配設し、円筒状容器の上部に排出口を備えるとともに、下部に前記溶解ポンプに連通する循環口を備え、導入パイプの吐出端の上部に、導入パイプから吐出される溶解液を攪拌する攪拌羽根を配設したことを特徴とする。
 この場合において、円筒状容器の容積を、排出口から排出される溶解液の1分当たりの排出量の1~10倍に設定することができる。
 本第1発明の溶解ポンプにおける分離装置によれば、溶解ポンプの吐出側に連なる導入パイプを円筒状容器の底面から内部に突出して配設し、円筒状容器の上部に排出口を備えるとともに、下部に前記溶解ポンプに連通する循環口を備え、導入パイプの吐出端に、導入パイプから吐出される溶解液の流れを旋回させる捻り板を配設することにより、導入パイプから吐出される溶解液を捻り板によって旋回流とすることができ、旋回流による遠心作用と比重差によって気泡を多く含んだ比重の小さい溶解液成分を上部の排出口から排出するようにするとともに、未溶解物を含む比重の大きい溶解液成分を反転、流下させ、下部の循環口から循環流路を介して、溶解ポンプに戻すようにすることができる。
 このとき、循環流路を介して、溶解ポンプに導入された未溶解物を含む比重の大きい溶解液成分は、気泡の含有量が少ないため、溶解ポンプに新たに導入される粉体及び液体の吸引の障害とならず、導入される粉体及び液体と共に混合、溶解を行うことにより、溶解液を循環させながら粉体と液体の混合、溶解が促進されるので、濃度の高い溶解液や溶解しにくく、例えば、ダマ状や房状の凝集物が生じやすい溶解液の場合でも、運転効率を低下させることなく連続運転を行うことができる。
 また、捻り板を、長手方向の中心線が互いにねじれの位置関係となるように複数枚配設することにより、偏りのない旋回流を発生させることができ、比重の小さい溶解液成分と比重の大きい溶解液成分の分離を確実に行うことができる。
 また、本第2発明の溶解ポンプにおける分離装置によれば、溶解ポンプの吐出側に連なる導入パイプを円筒状容器の底面から内部に突出して配設し、円筒状容器の上部に排出口を備えるとともに、下部に前記溶解ポンプに連通する循環口とを備え、導入パイプの吐出端の上部に、導入パイプから吐出される溶解液を攪拌する攪拌羽根を配設することにより、導入パイプから吐出される溶解液を攪拌羽根の遠心作用と比重差によって気泡を多く含んだ比重の小さい溶解液成分を上部の排出口から排出するようにするとともに、未溶解物を含む比重の大きい溶解液成分を反転、流下させ、下部の循環口から循環流路を介して、溶解ポンプに戻すようにすることができる。
 このとき、循環流路を介して、溶解ポンプに導入された未溶解物を含む比重の大きい溶解液成分は、気泡の含有量が少ないため、溶解ポンプに新たに導入される粉体及び液体の吸引の障害とならず、導入される粉体及び液体と共に混合、溶解を行うことにより、溶解液を循環させながら粉体と液体の混合、溶解が促進されるので、濃度の高い溶解液や溶解しにくく、例えば、ダマ状や房状の凝集物が生じやすい溶解液の場合でも、運転効率を低下させることなく連続運転を行うことができる。
 また、導入パイプから吐出される溶解液を攪拌羽根により強制排出することによって、溶解ポンプの吐出力を補助することができるとともに、攪拌羽根による溶解液の攪拌、流動化によって、溶解液の粘度を低下させて流動抵抗を低減することができ、溶解液の流動性を改善し、運転効率を向上することができる。
 また、円筒状容器の容積を、排出口から排出される溶解液の1分当たりの排出量の1~10倍に設定することにより、攪拌羽根による溶解液の攪拌、流動化によって、溶解液が分離することを防止しながら、また、運転効率を低下させることなく、溶解液の滞留時間(1~10分程度)を確保することができ、これにより、例えば、粉体として米粉等のデンプン質の粉体を使用し、デンプン分解酵素を加えて溶解運転をする場合に、デンプン質の粉体が分解される時間を確保しながら、溶解液の攪拌、流動化によって、均一な分解を促し、溶解液が分離を起こしたり、溶解液の粘度が高くなって流動化が阻害されることを防止することができる。
本第1発明の溶解ポンプにおける分離装置の一実施例を示し、(a)は正面断面図、(b)は気泡とダマ状や房状の凝集物の拡大図である。 捻り板の一部切り欠きの詳細図で、(a)は平面図、(b)は(a)のX-X断面図、(c)は斜視図である。 同分離装置を適用した溶解ポンプを含む粉体溶解装置の全体図である。 本第2発明の溶解ポンプにおける分離装置の一実施例を示す正面断面図である。 同分離装置を適用した溶解ポンプを含む粉体溶解装置の全体図である。
 以下、本発明の溶解ポンプにおける分離装置の実施の形態を、図面に基づいて説明する。
 図1~図3に、本第1発明の溶解ポンプにおける分離装置を適用した溶解ポンプを含む粉体溶解装置の一実施例を示す。
 この分離装置1は、粉体供給装置3から供給される粉体と溶媒供給装置4から供給される溶媒(水)とを混合する溶解ポンプ6の吐出側に配設され、溶解液のうち比重の大きい未溶解物(ダマ状や房状の凝集物等をいい、以下、「未溶解物F」という。)を含有した溶解液を循環させて混合を促進する真空溶解運転を行うとともに、溶解液のうち、気泡Bを含み比重が軽く未溶解物Fを含有しない溶解液を排出口13から送り出すようにするもので、溶解ポンプ6の吐出側6aに連なる導入パイプ12を円筒状容器11の底面から内部に突出して配設し、円筒状容器11の上部に排出口13を備えるとともに、下部に溶解ポンプ6に連通する循環口14を備え、導入パイプ12の吐出端12aに、導入パイプ12から吐出される溶解液の流れを旋回させる捻り板20を配設するようにしている。
 導入パイプ12の吐出端12aに配設する捻り板20は、導入パイプ12から吐出される溶解液の流れを旋回させることができるものであれば、特に限定されるものではないが、本実施例においては、図2に示すように、複数(本実施例では4枚)の捻り板20を、導入パイプ12の中心軸Cを含む面に対して角度αだけ傾斜させて取り付けるとともに、捻り板20の長手方向の中心線20aが互いにねじれの位置関係となるように配設するようにしている。
 捻り板20の導入パイプ12の中心軸Cを含む面に対する傾斜角度αは、40~50°、好ましくは45°とし、捻り板20と導入パイプ12の内周面とが当接するように、捻り板20の導入パイプ12との当接辺20bは、導入パイプ12を角度αで切断した際の楕円形状に倣った円弧形状に形成するようにする。
 また、導入パイプ12から吐出される溶解液を捻り板20によって効果的に旋回流とするために、捻り板20の先端は、導入パイプ12の吐出端12aから長さLだけ突出するように配設する。この長さLは、吐出端12aの内径の10~15%程度とすることが好ましい。
 次に、本実施例の分離装置1を用いた粉体の溶解運転を説明する。
 図3に示すように、粉体供給装置3に投入された粉体は、溶解ポンプ6の真空吸引力で吸引され、ミキシングノズル5を旋回しながら流下する溶媒(水)とともに溶解ポンプ6に流入する。
 粉体は、溶解ポンプ6内において、混合、剪断、遠心作用を受け、溶媒に分散、溶解した後、吐出流となって溶解ポンプ6の吐出側6aから導入パイプ12を介して分離装置1の上部に流入する。
 このとき、図1に示すように、気泡B及び未溶解物Fの混在する溶解液は、導入パイプ12の吐出端12aに配設した捻り板20によって旋回し、吐出端12aの上部で逆円錐形状の旋回流Tとなる。
 そして、この旋回流Tによる遠心作用及び比重差によって、気泡Bを多く含み、未溶解物Fを含まない比重の小さい溶解液成分は、未溶解物Fを上部の排出口13から排出される。
 一方、気泡Bが少なく、未溶解物Fを含む比重の大きい溶解液成分は、反転、流下し、下部の循環口14から循環流路を介して溶解ポンプ6に戻される。
 このとき、溶解ポンプ6から吐出される溶解液に含まれる気泡Bを、効率よく分離して、未溶解物Fを含まない比重の小さい溶解液成分と共に、上部の排出口13から排出するから、循環口14を経て溶解ポンプ6に戻される溶解液は、気泡の含有量が少ないため、気泡混入による吸気能力の低下を抑制することができ、溶解ポンプ6に新たに導入される粉体及び液体の吸引の障害とならず、導入される粉体及び液体と共に混合、溶解を行うことができる。
 これにより、溶解液を循環させながら粉体と液体の混合、溶解が促進されるので、濃度の高い溶解液や溶解しにくく、例えば、ダマ状や房状の凝集物が生じやすい溶解液の場合でも、運転効率を低下させることなく連続運転を行うことができる。
 また、捻り板20は構造が単純であり、溶解液が通過する際の圧力損失は小さく、未溶解物Fも詰まることなく通過させることができることから、メンテナンスの頻度を少なくして連続運転を可能にすることができる。
 また、本実施例において、円筒状容器11の容積は、特に限定されるものではないが、例えば、排出口13から排出される溶解液の1分当たりの排出量の0.2~1倍程度に設定するようにすることができる。
 これにより、溶解液が分離を起こしたり、溶解液の粘度が高くなって流動化が阻害されることを防止することができる。
 図4~図5に、本第2発明の溶解ポンプにおける分離装置を適用した溶解ポンプを含む粉体溶解装置の一実施例を示す。
 この分離装置1は、第1発明の分離装置と同様、粉体供給装置3から供給される粉体と溶媒供給装置4から供給される溶媒(水)とを混合する溶解ポンプ6の吐出側に配設され、溶解液のうち比重の大きい未溶解物Fを含有した溶解液を循環させて粉体と液体との混合を促進する真空溶解運転を行うとともに、溶解液のうち、気泡Bを含み比重が軽く未溶解物Fを含有しない溶解液を排出口13から送り出すようにするもので、溶解ポンプ6の吐出側6aに連なる導入パイプ12を円筒状容器11の底面から内部に突出して配設し、円筒状容器11の上部に排出口13を備えるとともに、下部に前記溶解ポンプ6に連通する循環口14を備えるようにしている。
 そして、分離装置1は、導入パイプ12の吐出端12aの上部に、導入パイプ12から吐出される溶解液を攪拌する攪拌羽根22を配設するようにしている。
 攪拌羽根22は、導入パイプ12の吐出端12aから吐出される溶解液を攪拌させるように構成するものであれば、特に限定されるものではないが、本実施例においては、円筒状容器11の上面の中心付近から、円筒状容器11の内部に延設した回転軸23の先端に配設した複数(本実施例では4枚)の板状部材からなる。
 回転軸23は、円筒状容器11に、例えば、メカニカルシール25によってシールして配設され、上端をモータM等の駆動装置と連結し、円筒状容器11内で攪拌羽根22を回転させるようにしている。
 攪拌羽根22は、攪拌羽根22の表面22aが導入パイプ12の中心軸Cを含む面に位置するように平坦面に形成するほか、所定角度、例えば、30~45°傾斜して取り付けたり、彎曲して形成することにより、吐出端12aから吐出される溶解液を効果的に旋回させるように構成することもできる。
 円筒状容器11の上部に開口する排出口13は、攪拌羽根22によって遠心力を付与された溶解液が効果的に排出されるようにするために、図4に示すように、円筒状容器11の上部側面に、好ましくは、円筒状容器11の接線方向に、開口するようにしている。
 次に、本実施例の分離装置1を用いた粉体の溶解運転を説明する。
 図5に示すように、粉体供給装置3に投入された粉体は、溶解ポンプ6の真空吸引力で吸引され、ミキシングノズル5を旋回しながら流下する溶媒(水)とともに溶解ポンプ6に流入する。
 粉体は、溶解ポンプ6内において、混合、剪断、遠心作用を受け、溶媒に分散、溶解した後、吐出流となって溶解ポンプ6の吐出側6aから導入パイプ12を介して分離装置1の上部に流入する。
 このとき、図4に示すように、気泡B及び未溶解物Fの混在する溶解液は、導入パイプ12の吐出端12aの上部に配設した攪拌羽根22によって遠心作用を受ける。
 そして、この攪拌羽根22による遠心作用及び比重差によって、気泡Bを多く含み、未溶解物Fを含まない比重の小さい溶解液成分は、未溶解物Fを上部の排出口13から排出される。
 一方、気泡Bが少なく、未溶解物Fを含む比重の大きい溶解液成分は、反転、流下し、下部の循環口14から循環流路を介して溶解ポンプ6に戻される。
 このとき、溶解ポンプ6から吐出される溶解液に含まれる気泡Bを、効率よく分離して、未溶解物Fを含まない比重の小さい溶解液成分と共に、上部の排出口13から排出するから、循環口14を経て溶解ポンプ6に戻される溶解液は、気泡の含有量が少ないため、気泡混入による吸気能力の低下を抑制することができ、溶解ポンプ6に新たに導入される粉体及び液体の吸引の障害とならず、導入される粉体及び液体と共に混合、溶解を行うことができる。
 これにより、溶解液を循環させながら粉体と液体の混合、溶解が促進されるので、濃度の高い溶解液や溶解しにくく、例えば、ダマ状や房状の凝集物が生じやすい溶解液の場合でも、運転効率を低下させることなく連続運転を行うことができる。
 また、導入パイプ12から吐出される溶解液を攪拌羽根22により強制排出することによって、溶解ポンプ6の吐出力を補助することができるとともに、攪拌羽根22による溶解液の攪拌、流動化によって、溶解液の粘度を低下させて流動抵抗を低減することができ、溶解液の流動性を改善し、運転効率を向上することができる。
 また、本実施例において、円筒状容器11の容積は、特に限定されるものではないが、例えば、排出口13から排出される溶解液の1分当たりの排出量の1~10倍程度に設定するようにする(上記第1発明の分離装置の実施例のように、0.2~1倍程度に設定することも可能である。)ことができる。
 これにより、攪拌羽根22による溶解液の攪拌、流動化によって、溶解液が分離することを防止しながら、また、運転効率を低下させることなく、溶解液の滞留時間(1~10分程度)を確保することができる。
 そして、例えば、粉体として米粉等のデンプン質の粉体を使用し、デンプン分解酵素を加えて溶解運転をする場合に、デンプン質の粉体が分解される時間を確保しながら、溶解液の攪拌、流動化によって、均一な分解を促し、溶解液が分離を起こしたり、溶解液の粘度が高くなって流動化が阻害されることを防止することができる。
 以上、本発明の溶解ポンプにおける分離装置について、複数の実施例に基づいて説明したが、本発明は上記実施例に記載した構成に限定されるものではなく、その趣旨を逸脱しない範囲において適宜その構成を変更することができる。
 本発明の溶解ポンプにおける分離装置は、運転効率を低下させることなく連続運転することができるという特性を有していることから、例えば、濃度の高い溶解液や溶解しにくく、例えば、ダマ状や房状の凝集物が生じやすい溶解液を循環させて溶解運転をする粉体溶解装置の用途に好適に用いることができる。
 1  分離装置
 11 円筒状容器
 12 導入パイプ
 12a 吐出端
 13 排出口
 14 循環口
 20 捻り板
 20a 中心線
 22 攪拌羽根
 6  溶解ポンプ
 6a 溶解ポンプの吐出側

Claims (4)

  1.  溶解ポンプの吐出側に連なる導入パイプを円筒状容器の底面から内部に突出して配設し、円筒状容器の上部に排出口を備えるとともに、下部に前記溶解ポンプに連通する循環口を備え、導入パイプの吐出端に、導入パイプから吐出される溶解液の流れを旋回させる捻り板を配設したことを特徴とする溶解ポンプにおける分離装置。
  2.  捻り板を、長手方向の中心線が互いにねじれの位置関係となるように複数枚配設したことを特徴とする請求項1記載の溶解ポンプにおける分離装置。
  3.  溶解ポンプの吐出側に連なる導入パイプを円筒状容器の底面から内部に突出して配設し、円筒状容器の上部に排出口を備えるとともに、下部に前記溶解ポンプに連通する循環口を備え、導入パイプの吐出端の上部に、導入パイプから吐出される溶解液を攪拌する攪拌羽根を配設したことを特徴とする溶解ポンプにおける分離装置。
  4.  円筒状容器の容積を、排出口から排出される溶解液の1分当たりの排出量の1~10倍に設定したことを特徴とする請求項3記載の溶解ポンプにおける分離装置。
     
PCT/JP2010/053102 2009-03-30 2010-02-26 溶解ポンプにおける分離装置 WO2010116812A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020117022856A KR101291779B1 (ko) 2009-03-30 2010-02-26 분리장치를 구비한 용해펌프
CN2010800120361A CN102355954B (zh) 2009-03-30 2010-02-26 具备分离装置的溶解泵

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009082192A JP5224382B2 (ja) 2009-03-30 2009-03-30 分離装置を備えた溶解ポンプ
JP2009-082192 2009-03-30

Publications (1)

Publication Number Publication Date
WO2010116812A1 true WO2010116812A1 (ja) 2010-10-14

Family

ID=42936100

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/053102 WO2010116812A1 (ja) 2009-03-30 2010-02-26 溶解ポンプにおける分離装置

Country Status (4)

Country Link
JP (1) JP5224382B2 (ja)
KR (1) KR101291779B1 (ja)
CN (1) CN102355954B (ja)
WO (1) WO2010116812A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011083739A (ja) * 2009-10-19 2011-04-28 Izumi Food Machinery Co Ltd 溶解装置
CN103785316A (zh) * 2012-10-26 2014-05-14 日本斯频德制造株式会社 分散系统及其运行方法
EP4349490A4 (en) * 2021-05-24 2024-08-28 Panasonic Intellectual Property Management Co., Ltd. SEPARATION DEVICE AND SEPARATION SYSTEM

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117643816B (zh) * 2023-10-19 2024-08-13 深圳市尚水智能股份有限公司 制浆设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57204305A (en) * 1981-06-10 1982-12-15 Toshiba Corp Water flow swirling valve
JPS6137214U (ja) * 1984-08-09 1986-03-07 三菱重工業株式会社 湿分分離器
JPS6195446U (ja) * 1984-11-29 1986-06-19
JPH04227868A (ja) * 1990-06-05 1992-08-17 Inst Fr Petrole 並流サイクロン混合器−分離器およびその適用方法
JP2005004197A (ja) * 2003-05-21 2005-01-06 Asahi Kasei Electronics Co Ltd 現像液の処理装置および方法
JP2007216172A (ja) * 2006-02-17 2007-08-30 Izumi Food Machinery Co Ltd 粉体吸引溶解ポンプ
JP2008142592A (ja) * 2006-12-07 2008-06-26 Yokota Seisakusho:Kk 微細気泡発生装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0434892Y2 (ja) * 1986-03-28 1992-08-19
DE20000841U1 (de) * 2000-01-19 2000-03-30 Tuchenhagen GmbH, 21514 Büchen Düsenvorrichtung in einer Auflöseapparatur zur Auflösung eines Feststoffes in einem Lösungsmittel
JP2001259480A (ja) * 2000-03-21 2001-09-25 F One Sogo Kenkyusho:Kk 螺旋板による軸流サイクロン集塵機
JP3569216B2 (ja) * 2000-10-05 2004-09-22 株式会社イズミフードマシナリ 攪拌装置付きタンク
JP4191972B2 (ja) * 2002-10-04 2008-12-03 株式会社リコー インク液混合装置、インク液製造装置、製造方法、洗浄方法及び該製造方法で製造されたインク、及びそれを収納したインクカートリッジ、インクジェット装置、画像形成方法並びに画像形成物
JP3849986B2 (ja) * 2004-02-03 2006-11-22 松江土建株式会社 気液溶解装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57204305A (en) * 1981-06-10 1982-12-15 Toshiba Corp Water flow swirling valve
JPS6137214U (ja) * 1984-08-09 1986-03-07 三菱重工業株式会社 湿分分離器
JPS6195446U (ja) * 1984-11-29 1986-06-19
JPH04227868A (ja) * 1990-06-05 1992-08-17 Inst Fr Petrole 並流サイクロン混合器−分離器およびその適用方法
JP2005004197A (ja) * 2003-05-21 2005-01-06 Asahi Kasei Electronics Co Ltd 現像液の処理装置および方法
JP2007216172A (ja) * 2006-02-17 2007-08-30 Izumi Food Machinery Co Ltd 粉体吸引溶解ポンプ
JP2008142592A (ja) * 2006-12-07 2008-06-26 Yokota Seisakusho:Kk 微細気泡発生装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011083739A (ja) * 2009-10-19 2011-04-28 Izumi Food Machinery Co Ltd 溶解装置
CN103785316A (zh) * 2012-10-26 2014-05-14 日本斯频德制造株式会社 分散系统及其运行方法
EP4349490A4 (en) * 2021-05-24 2024-08-28 Panasonic Intellectual Property Management Co., Ltd. SEPARATION DEVICE AND SEPARATION SYSTEM

Also Published As

Publication number Publication date
CN102355954A (zh) 2012-02-15
JP5224382B2 (ja) 2013-07-03
JP2010234185A (ja) 2010-10-21
KR101291779B1 (ko) 2013-07-31
KR20110121723A (ko) 2011-11-08
CN102355954B (zh) 2013-10-16

Similar Documents

Publication Publication Date Title
CN102806028B (zh) 分散方法及分散系统
JP5360902B2 (ja) 粒子の研磨方法及び粒子の研磨システム
KR101658410B1 (ko) 고점도 유체 분산유화장치
CN109453712B (zh) 固液混合装置
JP4785355B2 (ja) アニュラー型ビーズミル、該ビーズミルを備える顔料分散システム、及び該顔料分散システムを用いた顔料分散方法
JP4451965B2 (ja) パイプラインビ−ズミル
WO2010116812A1 (ja) 溶解ポンプにおける分離装置
CN108126550B (zh) 一种循环分散式化工料液溶解设备
JP2017035679A (ja) 分散システム
KR20170015027A (ko) 저점도 유체 분산유화장치
JP5636590B2 (ja) 粉体溶解装置
CN213885767U (zh) 一种造纸用浆池搅拌器
WO2018066386A1 (ja) 撹拌機能付き破砕機
CN109772210A (zh) 一种防团聚固液混合装置
TWI460008B (zh) Centrifugal dispersing device
JP2013027849A (ja) 吸引混合ポンプ用の分離装置及び吸引式混合システム
JP2024042647A (ja) 撹拌装置及び撹拌方法
CN107537359B (zh) 滤饼成浆装置
CN209287199U (zh) 一种新型的粉液混合专用高效搅拌罐
JP7578774B1 (ja) 撹拌方法
CN217221155U (zh) 粉液体高效分散混合的防水涂料用搅拌釜
CN219324090U (zh) 一种油田污水处理药剂快速混合装置
CN206391946U (zh) 一种用于粘稠物料的罐式搅拌机
CN214346137U (zh) 一种混合均匀的混和机
CN215901571U (zh) 一种调浆搅拌槽

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080012036.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10761514

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20117022856

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10761514

Country of ref document: EP

Kind code of ref document: A1