[go: up one dir, main page]

WO2010114033A1 - 低分子量ポリテトラフルオロエチレン粉末及びその製造方法 - Google Patents

低分子量ポリテトラフルオロエチレン粉末及びその製造方法 Download PDF

Info

Publication number
WO2010114033A1
WO2010114033A1 PCT/JP2010/055891 JP2010055891W WO2010114033A1 WO 2010114033 A1 WO2010114033 A1 WO 2010114033A1 JP 2010055891 W JP2010055891 W JP 2010055891W WO 2010114033 A1 WO2010114033 A1 WO 2010114033A1
Authority
WO
WIPO (PCT)
Prior art keywords
molecular weight
low molecular
polymerization
polytetrafluoroethylene powder
weight polytetrafluoroethylene
Prior art date
Application number
PCT/JP2010/055891
Other languages
English (en)
French (fr)
Inventor
山中拓
辻雅之
笠井俊二
澤田又彦
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Priority to EP10758804.8A priority Critical patent/EP2415788B1/en
Priority to US13/260,911 priority patent/US8754176B2/en
Priority to JP2011507266A priority patent/JP5569519B2/ja
Priority to CN201080014423.9A priority patent/CN102369221B/zh
Publication of WO2010114033A1 publication Critical patent/WO2010114033A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F14/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F14/18Monomers containing fluorine
    • C08F14/26Tetrafluoroethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F114/00Homopolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F114/18Monomers containing fluorine
    • C08F114/26Tetrafluoroethene
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]

Definitions

  • the present invention relates to a low molecular weight polytetrafluoroethylene powder and a method for producing the same.
  • Low molecular weight polytetrafluoroethylene [PTFE] powder also called PTFE micropowder
  • PTFE micropowder Low molecular weight polytetrafluoroethylene [PTFE] powder having a molecular weight of 600,000 or less is excellent in chemical stability, has extremely low surface energy, and is less likely to cause fibrillation.
  • PTFE micropowder As an additive for improving the texture of the coating film surface, it is used in the production of plastics, inks, cosmetics, paints, greases and the like (for example, see Patent Document 1).
  • the method of thermally decomposing high molecular weight PTFE and the method of irradiating high molecular weight PTFE with radiation are not necessarily advantageous from the viewpoint of cost and convenience related to the equipment.
  • Patent Document 4 proposes to perform polymerization using a fluoroalkane having 1 to 3 carbon atoms or a chlorofluoroalkane as a chain transfer agent (telogen).
  • Industrial polymerization methods include those that are unclear as to which method is used, such as the method of Patent Document 4, but are roughly classified into suspension polymerization and emulsion polymerization.
  • a surfactant is not used or a limited amount is used in the presence of a chain transfer agent, a polymerization initiator is dispersed in an aqueous medium, and a monomer that can be copolymerized with TFE or TFE as a monomer
  • a granular powder of low molecular weight PTFE is directly isolated (see, for example, Patent Documents 5 and 6).
  • the initially formed polymer is solidified at an early stage of polymerization by high shear with stirring, and the polymerization is subsequently performed on solid particles in a gas-solid reaction in which water mainly acts as a heat transfer medium. Occurs (see, for example, Patent Document 7).
  • a low molecular weight PTFE powder can be obtained directly without using a surfactant or using a limited amount, but it is difficult to adjust the particle size.
  • a fluorine-containing surfactant as a polymerization initiator and an emulsifier is dispersed in an aqueous medium in the presence of a chain transfer agent, and the monomer TFE or a monomer that can be copolymerized with TFE is polymerized with TFE.
  • TFE monomer TFE or a monomer that can be copolymerized with TFE
  • PTFE low molecular weight PTFE.
  • it can be obtained in the form of an aqueous dispersion composed of emulsified particles of 1 ⁇ m or less (also referred to as micelles or primary particles) due to the presence of a fluorine-containing surfactant (for example, Patent Document 8). reference).
  • the obtained aqueous dispersion can be used for applications such as aqueous coatings as it is or by concentrating it.
  • low molecular weight PTFE obtained by emulsion polymerization When low molecular weight PTFE obtained by emulsion polymerization is used as a powder, powder particles (micro powder) can be obtained by coagulating the aqueous dispersion.
  • the low molecular weight PTFE powder particles obtained by emulsion polymerization are characterized by a specific surface area of 7 to 20 m 2 / g (rarely 5 to 20 m 2 / g) and softer particles than those obtained by suspension polymerization. Therefore, for example, the effect of modifying the surface such as improving the texture of the coating film surface is high. Further, the oil absorption is increased, and a stable dispersion can be obtained in the matrix material.
  • the low molecular weight PTFE powder particles obtained by emulsion polymerization are preferable in that the particle diameter can be adjusted according to the conditions of the coagulation step described above.
  • Patent Document 9 As a method for performing polymerization without adding a fluorine-containing surfactant, a suspension polymerization method of TFE in which TFE and a water-soluble peroxide are reacted in an aqueous medium is known (for example, Non-Patent Document 1). reference). Patent Document 9 also describes that an aqueous dispersion was obtained by performing TFE polymerization using disuccinic acid peroxide as a polymerization initiator in an aqueous medium without adding a surfactant.
  • Patent Document 9 does not describe any data suggesting the addition of a chain transfer agent, the emulsion particle size and molecular weight of the polymer obtained.
  • Patent Documents 8 and 10 the polymerization by emulsion polymerization has room for improvement in terms of dispersibility, viscosity and the like when used as an additive such as a paint. Further, as described in Patent Documents 5 to 7, there is room for improvement in the polymerization by suspension polymerization in terms of the appearance, transparency, and texture of the coating film.
  • the present invention is capable of forming a coating film having excellent texture and slipperiness when used as an additive for paints and the like, and is capable of improving dispersibility and viscosity.
  • Tetrafluoroethylene powder and a method for producing the same are provided.
  • the present invention relates to a method for producing a low molecular weight polytetrafluoroethylene powder, an emulsion polymerization step for producing emulsion particles by polymerizing at least tetrafluoroethylene in the presence of a polymerization initiator and an aqueous medium, and the emulsion particles
  • a low molecular weight comprising: an aggregating step for agglomerating the particles to form an agglomerated powder; and a suspension polymerization step for polymerizing at least tetrafluoroethylene in the presence of the agglomerated powder, a polymerization initiator, and an aqueous medium. It is a manufacturing method of polytetrafluoroethylene powder.
  • the present invention is also a low molecular weight polytetrafluoroethylene powder obtained from the above method for producing a low molecular weight polytetrafluoroethylene powder.
  • the present invention is also an additive containing the low molecular weight polytetrafluoroethylene powder.
  • the present invention is also a composition containing the low molecular weight polytetrafluoroethylene powder.
  • the present invention is described in detail below.
  • the present invention uses emulsion polymerization and suspension polymerization in combination.
  • the powder obtained by emulsion polymerization can be produced stably, and when used as an additive such as paint, it can improve the surface texture and slipperiness of the coating film, and also has a large amount of oil absorption. It is easy to finely disperse to the (partner material).
  • suspension polymerization unlike the emulsion polymerization, a coagulation step is not required, and the obtained powder is excellent in dispersibility and a hard powder is obtained.
  • the low molecular weight polytetrafluoroethylene powder obtained by the production method of the present invention has the advantages of both emulsion polymerization and suspension polymerization, and can improve the texture and slipperiness of the coating surface, as well as dispersibility and viscosity. Can be improved.
  • the production method of the present invention preferably contains a chain transfer agent in at least one of the emulsion polymerization step or the suspension polymerization step, and exists in both steps by adding a chain transfer agent in the emulsion polymerization step. More preferably.
  • the molecular weight of the obtained low molecular weight PTFE can be adjusted, and it can be used as an additive to various counterpart materials, and its dispersibility can be improved.
  • the method for producing a low molecular weight polytetrafluoroethylene powder comprises at least tetrafluoroethylene (TFE), a chain transfer agent, a polymerization initiator and an aqueous medium in a reaction vessel. It is preferable to include the addition process to add.
  • a chain transfer agent and a polymerization initiator that is a water-soluble peroxide are used in combination, and emulsion polymerization is performed by emulsion-polymerizing TFE by self-emulsification or using a surfactant.
  • the polymerization initiator is preferably a water-soluble peroxide, and / or the emulsion polymerization step is a step of performing polymerization in the presence of a surfactant.
  • the TFE, the chain transfer agent, the polymerization initiator, and the aqueous medium that are added to the reaction vessel may be added to the reaction vessel at least before the emulsion polymerization step, and the order of addition is not particularly limited, Usually, an emulsion polymerization process is started by adding a polymerization initiator.
  • the chain transfer agent is preferably at least one compound selected from the group consisting of hydrogen, lower saturated hydrocarbons, lower halogenated hydrocarbons, and lower alcohols.
  • the lower saturated hydrocarbon for example, a linear, branched or cyclic alkane having 1 to 6 carbon atoms such as methane, ethane, propane, butane, hexane and cyclohexane is preferable.
  • halogenated hydrocarbons e.g., CH 3 Cl, CH 2 Cl 2, CH 2 CF 2 are preferred.
  • the lower alcohol is preferably an alcohol having 1 to 3 carbon atoms such as methanol or ethanol.
  • the chain transfer agent is more preferably ethane or propane from the viewpoint of chain transfer ability.
  • the chain transfer agent may be added to the reaction vessel all at once before the start of polymerization, may be added in several portions during the polymerization, or may be added continuously during the polymerization. May be.
  • the addition amount of the chain transfer agent cannot be specified unconditionally because the appropriate range differs depending on the polymerization conditions such as the chain transfer ability, reaction temperature, polymerization pressure, or addition amount of the polymerization initiator.
  • the content is preferably 0.01 to 20 mol%, more preferably 0.2 to 10 mol%, based on TFE present in the water.
  • a high molecular weight component is produced, and the dispersibility when added to the matrix may be inferior.
  • the amount added exceeds 20 mol%, a very low molecular component having a molecular weight of about several thousand may be generated. In such a case, the high-temperature volatile component is large, and, for example, it is unsuitable for applications in which the temperature in the step of dispersing in the matrix exceeds 300 ° C., and the applications may be limited.
  • any of those conventionally used in the polymerization of TFE can be used.
  • a water-soluble peroxide is preferred.
  • examples of the water-soluble peroxide include persulfates, sulfites, and water-soluble organic peroxides.
  • the persulfate is not particularly limited, and examples thereof include ammonium persulfate [APS] and potassium persulfate [KPS].
  • the sulfite is not particularly limited, and examples thereof include ammonium sulfite and potassium sulfite.
  • the water-soluble organic peroxide include benzoyl peroxide, disuccinic acid peroxide [DSP], and diglutaric acid peroxide.
  • the polymer terminal group derived from the initiator has a hydrophilic terminal functional group such as a carboxyl group, a sulfonic acid, or a hydroxyl group. In the case of APS, KPS, and DSP, the terminal group is a carboxyl group.
  • the end derived from the initiator becomes a hydrophilic group. Even in the absence of a fluorine-containing surfactant, emulsified particles can be produced.
  • the polymerization initiator only 1 type may be added and multiple types may be added.
  • the polymerization initiator those having a polymer terminal group as a carboxyl group are preferred.
  • the water-soluble peroxide includes ammonium persulfate, potassium persulfate, ammonium sulfite, potassium sulfite, and disuccinic acid persene. More preferably, it is at least one compound selected from the group consisting of oxides.
  • the addition amount of the water-soluble peroxide greatly depends on the type, the type and addition amount of the chain transfer agent used together, or the polymerization conditions such as the polymerization temperature and the polymerization pressure. Therefore, since the appropriate amount to be added differs depending on the polymerization, it cannot be generally defined, but the water-soluble peroxide is an aqueous medium in that a polymer chain having a hydrophilic end group imparting an emulsifying action is generated.
  • the content is preferably 10 to 3000 ppm. If the added amount is less than 10 ppm with respect to the aqueous medium, the productivity may decrease.
  • a more preferable addition amount is 50 to 2000 ppm with respect to the aqueous medium.
  • the polymerization initiator it is preferable to use persulfate or sulfite in combination with a water-soluble organic peroxide.
  • the polymerization initiator may be selected from at least one selected from the group consisting of persulfate and sulfite and at least one water-soluble organic peroxide, and has a polymerization initiating action.
  • Other reagents may be used.
  • the persulfate and sulfite have a short half-life and act as a polymerization initiator from the beginning of the polymerization, whereas the organic peroxide has a relatively long half-life, and the persulfate and the sulfite are used as a polymerization initiator.
  • the polymerization initiator in this way is particularly preferable when the polymerization is performed at a liquid temperature of 40 ° C. or higher and lower than 100 ° C.
  • the “liquid temperature” is the temperature of the aqueous medium that becomes the polymerization reaction liquid.
  • the polymerization initiator preferably contains a persulfate or sulfite and / or a water-soluble organic peroxide and a redox catalyst.
  • a redox catalyst By including a redox catalyst, the reaction can proceed even at low temperatures.
  • the method of using the redox catalyst in this way is particularly preferable when the polymerization is carried out at a liquid temperature of 5 to 40 ° C.
  • the above-mentioned “persulfate or sulfite and / or organic peroxide and redox catalyst” includes persulfate and redox catalyst, sulfite and redox catalyst, organic peroxide and redox catalyst, persulfate and organic peroxide. Any combination of the following five types may be used: a product, a redox catalyst, a sulfite, an organic peroxide, and a redox catalyst.
  • the persulfates, sulfites, organic peroxides, and redox catalysts may be used.
  • the persulfate, sulfite and organic peroxide those described above can be used.
  • the redox catalyst is not particularly limited, and examples thereof include a metal carbonyl-carbon tetrachloride mixture, a peroxide-iron (II) compound mixture, and the like.
  • at least 1 type should just be water-soluble.
  • the polymerization initiator may be present in the reaction vessel all together at the start of the polymerization, may be added in several portions during the polymerization, or may be added continuously during the polymerization. May be.
  • the said aqueous medium is not specifically limited, For example, it is preferable that it is the deionized high purity pure water.
  • the emulsion polymerization step is a step of producing emulsion particles by polymerizing at least tetrafluoroethylene.
  • the emulsion polymerization is not particularly limited as long as it can generate emulsion particles.
  • the emulsified particles are preferably low molecular weight PTFE particles having an average primary particle size of 1 ⁇ m or less dispersed in an aqueous medium.
  • the emulsion polymerization step is preferably a step in which 90% by mass or more of the low molecular weight PTFE produced during the emulsion polymerization step is present in an aqueous dispersion state with 100% by mass. More preferably, it is 95 mass% or more, More preferably, it is 98 mass% or more.
  • the phrase “present in the state of an aqueous dispersion” means that the low molecular weight PTFE produced during the emulsion polymerization step does not solidify and exists in the form of emulsified particles. That is, it is sufficient if 90% by mass or more of the low molecular weight PTFE is present in the state of emulsified particles.
  • the solid content of the solidified low molecular weight PTFE is preferably less than 10% by weight of the low molecular weight PTFE produced during the emulsion polymerization step, more preferably less than 5% by weight, and even more preferably less than 2% by weight. It is.
  • the emulsified particles (dispersed particles) produced in the emulsion polymerization step preferably have an average primary particle size of 50 to 1000 nm. More preferably, it is 100 to 1000 nm, and still more preferably 100 to 300 nm.
  • the average primary particle size is determined by measuring the transmittance of 550 nm projection light with respect to the unit length of the aqueous dispersion whose polymer concentration is adjusted to 0.22% by mass and the unidirectional diameter in the transmission electron micrograph. A calibration curve with the average primary particle diameter is prepared, the transmittance is measured for the aqueous dispersion to be measured, and the calibration curve can be determined based on the calibration curve.
  • the emulsion polymerization step comprises a pressure resistant reaction vessel equipped with a stirrer, an aqueous medium, tetrafluoroethylene, a modified monomer as necessary, a chain transfer agent as necessary, and a surfactant as necessary.
  • emulsion polymerization can be started by adding a polymerization initiator, and stirring can be performed.
  • the emulsion polymerization step can be performed while continuously supplying the monomer into the aqueous medium.
  • a modified monomer copolymerizable with any tetrafluoroethylene may be added. The modified monomer will be described later.
  • the emulsion polymerization step is preferably performed while stirring the aqueous medium.
  • the stirring is too strong, the emulsified particles aggregate due to mechanical shearing force, and the polymerization reaction proceeds at the gas phase-liquid phase interface.
  • emulsified particles made of low molecular weight PTFE cannot be obtained due to suspension polymerization. Therefore, in the above emulsion polymerization, when the reaction scale, the polymerization temperature and the polymerization pressure are the same as the polymerization conditions, it is preferable to reduce the stirring speed as compared with general fluoropolymer suspension polymerization.
  • the stirring speed in the emulsion polymerization can be appropriately selected according to the polymerization scale and other polymerization conditions by confirming that aggregated particles are not formed at the gas phase-liquid phase interface, and is not particularly limited.
  • the stirring speed was small and emulsion polymerization was performed.
  • polymerization conditions such as polymerization temperature and polymerization pressure are not particularly limited, depending on the amount of TFE to be used, the type and amount of a modifier added as necessary, or productivity, although it can be appropriately selected, the polymerization temperature is preferably 5 to 100 ° C, more preferably 50 to 90 ° C.
  • the polymerization pressure is preferably 0.03 to 3.0 MPa.
  • emulsion particles can be generated by self-emulsion polymerization.
  • self-emulsification is emulsification with a TFE monomer by using a chain transfer agent and a water-soluble peroxide, which can be carried out without adding a surfactant. That is, self-emulsion polymerization is a polymerization in which emulsion polymerization is carried out without adding fluorocarbon-based emulsifiers, fluorine-containing surfactants, etc. used in conventional TFE emulsion polymerization at the start of polymerization or during polymerization. That is.
  • the emulsion polymerization is carried out in the very early polymerization system. Nuclei (emulsified particles) are generated on the surface, and stable emulsified particles are generated.
  • a polymer chain having a hydrophilic end group derived from a water-soluble peroxide is generated in the initial stage of polymerization without adding a surfactant to the reaction vessel, and this has an emulsifying action. It is thought that emulsified particles are formed in the medium.
  • the chain transfer agent, the water-soluble peroxide, and TFE react to produce a polymer chain having a hydrophilic end group derived from the water-soluble peroxide and having an emulsifying action.
  • the chain transfer between the chain transfer agent and the polymer chain deactivates the growing end of the polymer chain, so that a short-chain TFE polymer is generated and the emulsifying action does not decrease with the increase in the degree of polymerization.
  • the above self-emulsion polymerization uses a water-soluble peroxide that imparts a hydrophilic group to the polymer end as a polymerization initiator and uses a compound having a relatively high chain transfer ability as a chain transfer agent.
  • An aqueous dispersion of low molecular weight PTFE having high properties can be obtained without adding a surfactant.
  • the self-emulsion polymerization can reduce the production cost because the emulsion polymerization can be performed without adding a surfactant at the start of polymerization or during the polymerization. Further, the obtained low molecular weight PTFE is preferable in that there are no problems such as coloring caused by the surfactant.
  • the low molecular weight PTFE powder obtained by the production method of the present invention is, for example, perfluorooctanoic acid [PFOA] and its salt or perfluorosulfone.
  • PFOA perfluorooctanoic acid
  • surfactants such as acid [PFOS] and its salts are substantially not included.
  • substantially does not contain means that they are not used as raw materials and are not more than the amount corresponding to 1 ppm of the polymer solid content.
  • the above emulsion polymerization step may be performed in the presence of a surfactant.
  • the polymerization initiator may be a water-soluble peroxide or other polymerization initiator.
  • the emulsion polymerization step is one of preferable embodiments in which emulsion particles are produced by polymerizing at least tetrafluoroethylene in the presence of a surfactant.
  • the addition amount of the surfactant may be set appropriately according to the emulsifying ability of the surfactant to be used, polymerization conditions, etc.
  • the amount is preferably 500 ppm or less with respect to the aqueous medium. If it exceeds 500 ppm, it may be difficult to smoothly switch to suspension polymerization. For example, in order to forcibly agglomerate the emulsified particles, it may be necessary to increase the amount of acid or electrolyte added. .
  • the particle diameter of emulsified particles can also be controlled by using a surfactant. Furthermore, since the amount of the surfactant to be used is small as compared with general emulsion polymerization, the production cost can be reduced, and further, coloring and the like associated with the use of the surfactant are unlikely to occur.
  • the amount of the surfactant used is more preferably 300 ppm or less.
  • the surfactant is not particularly limited, and for example, a fluorine-containing surfactant, a hydrocarbon surfactant, a silicon surfactant, and the like can be used.
  • the surfactant may be a polymerizable surfactant having an unsaturated bond in the molecule.
  • it may be a fluorine-containing surfactant or silicon surfactant having an unsaturated bond in the molecule, or may be a hydrocarbon surfactant having an unsaturated bond in the molecule.
  • the surfactant is a fluorine-containing surfactant.
  • the fluorine-containing surfactant is a fluorine-containing compound containing at least one fluorine atom in the molecular structure, and means a compound exhibiting surface activity.
  • the fluorine-containing surfactant is not particularly limited, but is preferably a fluorine-containing anionic surfactant.
  • fluorine-containing surfactant general formula (I) Rf 1 -Y 1 (I) (Wherein Rf 1 represents a linear or branched fluoroalkyl group having 2 to 12 carbon atoms into which a divalent oxygen atom may be inserted, and Y 1 represents —COOM 1 , —SO 3 M 2 , -SO 2 NM 3 M 4 or -PO 3 M 5 M 6
  • M 1 , M 2 , M 3 , M 4 , M 5 and M 6 are the same or different and represent H or a monovalent cation. .
  • Rf 1 is more preferably a linear or branched fluoroalkyl group having 2 to 6 carbon atoms into which a divalent oxygen atom may be inserted.
  • —COOH, —COONa, —COOK or —COONH 4 is preferable, and —COONH 4 is more preferable.
  • fluorine-containing surfactant As the fluorine-containing surfactant, the general formula (II) CF 3- (CF 2 ) n1 -Y 1 (II) (Wherein n1 represents an integer of 1 to 5, Y 1 is the same as above), a fluorine-containing anionic surfactant represented by the general formula (III) Rf 2 O—Rf 3 O—Rf 4 —Y 1 (III) (Wherein Rf 2 represents a fluoroalkyl group having 1 to 3 carbon atoms, Rf 3 and Rf 4 each independently represents a linear or branched fluoroalkylene group having 1 to 3 carbon atoms, Rf 2 , Rf 3 And Rf 4 has a total of 6 or less carbon atoms, and Y 1 is the same as above.
  • fluorine-containing anionic surfactant represented by the general formula (II) examples include CF 3 (CF 2 ) 4 COONH 4 , CF 3 (CF 2 ) 3 COONH 4 , CF 3 (CF 2 ) 2 COONH 4. , CF 3 (CF 2 ) 3 SO 3 Na, CF 3 (CF 2 ) 3 SO 2 NH 2 and the like.
  • Examples of the fluorine-containing anionic surfactant represented by the general formula (III) include a general formula CF 3 O—CF (CF 3 ) CF 2 O—CX 1 (CF 3 ) —Y 1. (Wherein X 1 represents H or F, and Y 1 is the same as above), a fluorine-containing anionic surfactant represented by the general formula: CF 3 O—CF 2 CF 2 CF 2 O—CFX 1 CF 2 -Y 1 (Wherein X 1 represents H or F, and Y 1 is the same as above), a fluorine-containing anionic surfactant represented by the general formula CF 3 CF 2 O—CF 2 CF 2 O—CFX 1 — Y 1 (Wherein, X 1 represents H or F, and Y 1 is the same as above), and the like. 1 type of the said fluorine-containing surfactant may be used and it may use 2 or more types together.
  • the surfactant is a hydrocarbon surfactant.
  • the hydrocarbon-based surfactant is not particularly limited as long as it does not contain a fluorine atom.
  • alkyl sulfates represented by ammonium lauryl sulfate, polyoxyethylene alkyl ether sulfates, fatty acids, and these Nonionic surfactants such as polyoxyalkylene alkyl ether nonionic surfactants, polyoxyethylene alkylphenyl ether nonionic surfactants, and the like.
  • the nonionic surfactant is represented by the following general formula (IV).
  • R 1 —O—A 1 —H (IV) (In the formula, R 1 is a linear or branched primary or secondary alkyl group having 8 to 18 carbon atoms, and A 1 is composed of a copolymer chain of oxyethylene and oxypropylene. A polyoxyalkylene chain or an oxyalkylene chain), a polyoxyalkylene alkyl ether nonionic surfactant represented by the following general formula (V) R 2 —C 6 H 4 —OA 2 —H (V) In the formula, R 2 is a linear or branched alkyl group having 4 to 12 carbon atoms, and A 2 is a polyoxyalkylene chain.
  • Nonionic surfactants are preferred.
  • the production method of the present invention includes an aggregating step for aggregating emulsified particles to produce an agglomerated powder, and a suspension polymerization step for polymerizing at least tetrafluoroethylene in the presence of the agglomerated powder, a polymerization initiator, and an aqueous medium.
  • the suspension polymerization process can be started after performing the aggregation process or simultaneously with performing the aggregation process.
  • the aggregation process and the suspension polymerization process may be performed in the reaction vessel used in the emulsion polymerization step or in a different reaction vessel.
  • the aggregating step can also be performed using special equipment equipped with a means for aggregating the emulsified particles.
  • the agglomerated powder is an aggregate of emulsified particles produced by agglomeration of emulsified particles.
  • the agglomeration may be performed by using a method capable of forcibly agglomerating the emulsion particles generated in the emulsion polymerization step. For example, at least one of an electrolyte and an acid is added to the reaction vessel, and / or emulsion polymerization is performed. It is preferable to make the stirring speed faster than in the process.
  • the aggregating step is preferably a step of aggregating the emulsified particles by adding an electrolyte to the reaction vessel. By adding the electrolyte, the emulsified particles can be easily aggregated.
  • the electrolyte is preferably at least one compound selected from the group consisting of ammonium carbonate, ammonium hydrogen carbonate, sodium hydroxide, and ammonium sulfate. According to this, aggregation of emulsified particles can be performed more efficiently.
  • the electrolyte is preferably added in an amount of 50 to 10,000 ppm with respect to the aqueous medium.
  • the emulsified particles have high stability, and if the amount is less than 50 ppm, sufficient aggregation may not be achieved. If an amount exceeding 10,000 ppm is added, the polymer may remain. More preferably, it is 100 to 5000 ppm.
  • the electrolyte having substantially no chain transfer property is preferably an inorganic salt, and examples thereof include, but are not limited to, ammonium carbonate, ammonium hydrogen carbonate, sodium hydroxide, ammonium sulfate, and aluminum sulfate.
  • 1 type may be added to the said electrolyte and 2 or more types may be added. Further, it may be added all at once before or at the start of the suspension polymerization process, or may be added in appropriate portions during the suspension polymerization process, or continuously added during the suspension polymerization process. May be.
  • the said aggregation process is what adds an acid in reaction container. By adding an acid, the emulsified particles can be easily aggregated.
  • the acid is preferably at least one compound selected from the group consisting of nitric acid, sulfuric acid, and oxalic acid.
  • the acid is preferably added in an amount of 50 to 10,000 ppm based on the aqueous medium.
  • the emulsified particles have high stability, and if the amount is less than 50 ppm, sufficient aggregation may not be achieved. If an amount exceeding 10,000 ppm is added, the polymer may remain. More preferably, it is 100 to 5000 ppm.
  • 1 type of the said acid may be added and 2 or more types may be added. Further, it may be added all at once before or at the start of the suspension polymerization process, or may be added in appropriate portions during the suspension polymerization process, or continuously added during the suspension polymerization process. May be.
  • the suspension polymerization step can be performed in a pressure-resistant reaction vessel equipped with a stirrer while adjusting the temperature and pressure while stirring the aqueous medium.
  • the suspension polymerization can also be performed while continuously supplying the monomer into the aqueous medium.
  • a modified monomer described later may be added as the monomer in addition to TFE.
  • polymerization conditions such as polymerization temperature and polymerization pressure are not particularly limited, and can be appropriately selected according to the amount of TFE to be used, the type and amount of the modified monomer, productivity, and the like.
  • the polymerization temperature is preferably 5 to 100 ° C., more preferably 50 to 90 ° C.
  • the polymerization pressure is preferably 0.03 to 3.0 MPa.
  • the suspension polymerization step is preferably one that solidifies 90% by mass or more of the low molecular weight PTFE produced during the polymerization step.
  • an aggregation step for forcibly aggregating the emulsion particles generated in the emulsion polymerization step It can be said that at least a suspension polymerization step for polymerizing TFE was performed. More preferably, it is 95 mass% or more, More preferably, it is 98 mass% or more.
  • the solid content of the low molecular weight PTFE remaining in the liquid phase is preferably less than 2.5% by mass and more preferably less than 0.5% by mass with respect to the aqueous medium. Stirring in the suspension polymerization step is preferably sufficiently performed so that 90% by mass or more of the low molecular weight PTFE is solidified.
  • the emulsion polymerization step and the suspension polymerization step can be shortened by continuously performing the monomer polymerization in the emulsion polymerization step. Specifically, while emulsion polymerization is in progress, the electrolyte or acid is added to the aqueous medium and / or the emulsion particles are forcibly aggregated by increasing the stirring speed in comparison with the emulsion polymerization step. Alternatively, suspension polymerization is started after forcibly agglomerating the emulsified particles. By increasing the stirring speed, switching from emulsion polymerization to suspension polymerization can be performed smoothly. As the method of forcibly agglomerating, it is preferable to use a method of increasing the stirring speed and a method of adding an electrolyte or an acid in an aqueous medium in combination. Particularly preferred.
  • the polymer yield at the end of the polymerization is preferably 10% or more, preferably 20% with respect to the aqueous medium from the viewpoint of productivity. That's it.
  • the production method of the present invention may include a recovery step of recovering the low molecular weight polytetrafluoroethylene powder from the reaction vessel after the suspension polymerization step of producing a low molecular weight PTFE powder by suspension polymerization of at least tetrafluoroethylene.
  • the recovery step is not particularly limited as long as the low molecular weight PTFE powder produced by suspension polymerization is recovered from the reaction vessel. For example, it can be recovered by scooping out the low molecular weight PTFE powder floating in the aqueous medium in the reaction vessel.
  • the production method of the present invention comprises an introduction step of introducing an aqueous medium and at least tetrafluoroethylene into a reaction vessel, a polymerization initiation step of introducing a polymerization initiator to start polymerization, and the presence of the polymerization initiator and the aqueous medium.
  • a preferred embodiment is a method comprising a suspension polymerization step of polymerizing at least tetrafluoroethylene in the presence of a powder, a polymerization initiator and an aqueous medium, and a recovery step of recovering low molecular weight polytetrafluoroethylene powder from a reaction vessel.
  • the production method of the present invention comprises an introduction step of introducing an aqueous medium and at least tetrafluoroethylene into a reaction vessel, a polymerization initiation step of introducing a polymerization initiator to start polymerization, and the presence of the polymerization initiator and the aqueous medium.
  • An emulsion polymerization step of polymerizing at least tetrafluoroethylene to produce emulsion particles, a recovery step of recovering the aqueous dispersion containing the emulsion particles from the reaction vessel, and the recovered aqueous dispersion to the reaction vessel or the reaction vessel A step of charging into a reaction vessel different from the above, a charging step of charging an aqueous medium and at least tetrafluoroethylene into the reaction vessel, an aggregating step of aggregating emulsified particles in the aqueous dispersion to produce an agglomerated powder, and agglomeration Suspension polymerization process for polymerizing at least tetrafluoroethylene in the presence of powder, polymerization initiator and aqueous medium, It is one of preferred embodiment is a method comprising recovering step of recovering the molecular weight polytetrafluoroethylene powder.
  • the production method of the present invention comprises an introduction step of introducing an aqueous medium and at least tetrafluoroethylene into a reaction vessel, a polymerization initiation step of introducing a polymerization initiator to start polymerization, and the presence of the polymerization initiator and the aqueous medium.
  • a method including a recovery step of recovering the low molecular weight polytetrafluoroethylene powder from the reaction vessel Which is one of the preferred embodiments.
  • the production method of the present invention comprises an introduction step of introducing an aqueous medium and at least tetrafluoroethylene into a reaction vessel, a polymerization initiation step of introducing a polymerization initiator to start polymerization, and the presence of the polymerization initiator and the aqueous medium.
  • a turbid polymerization step it is also one of the preferred embodiment is a method comprising the recovery step of recovering the low molecular weight polytetrafluoroethylene
  • the polymerization initiator present in the suspension polymerization step may be a polymerization initiator added to start the emulsion polymerization step, or may be a newly added polymerization initiator after completion of the emulsion polymerization step. Further, a polymerization initiator additionally charged during the suspension polymerization step may be used.
  • the low molecular weight polytetrafluoroethylene powder (hereinafter also referred to as “low molecular weight PTFE powder”) obtained by the production method of the present invention comprises low molecular weight polytetrafluoroethylene (hereinafter also referred to as “low molecular weight PTFE”). Is.
  • the present invention is also a low molecular weight PTFE powder obtained by the above production method.
  • the low molecular weight PTFE has a number average molecular weight of 600,000 or less. If it exceeds 600,000, the fibrillation characteristics are manifested and it tends to agglomerate, so it may be inferior in fine dispersibility. If the number average molecular weight of the said low molecular weight PTFE is in the said range, a preferable minimum can be made into 10,000, for example. If it is less than 10,000, it is highly volatile at high temperatures and may not be suitable for heat-resistant paints such as paints that require baking.
  • the number average molecular weight of the low molecular weight PTFE is a value calculated from the melt viscosity obtained by measurement using a flow tester method.
  • the low molecular weight PTFE preferably has a melt viscosity at 380 ° C. of 700,000 Pa ⁇ s or less. By setting the melt viscosity within the above range, a low molecular weight PTFE having a number average molecular weight of 600,000 or less can be obtained.
  • the melt viscosity at 380 ° C. is more preferably 10,000 Pa ⁇ s or less, and still more preferably 5000 Pa ⁇ s or less. If the melt viscosity is too high, the transparency of the coating film may be reduced when used as an additive for coatings.
  • the melt viscosity is in accordance with ASTM D 1238, and a 2 g sample previously heated at 380 ° C. for 5 minutes using a flow tester (manufactured by Shimadzu Corporation) and a 2 ⁇ -8L die under a load of 0.7 MPa. And measured at the above temperature.
  • the number average molecular weight is a value calculated from the melt viscosity measured by the measurement method.
  • the low molecular weight PTFE preferably has a melting point of 324 to 333 ° C.
  • the above melting point was calibrated using indium and lead as a standard sample using a differential scanning calorimeter RDC220 (DSC) manufactured by SII Nanotechnology, Inc., and about 3 mg of low molecular weight PTFE powder was made from aluminum. It is placed in a bread maker (crimp container) and heated in an air stream of 200 ml / min at a temperature range of 250 to 380 ° C. at a rate of 10 ° C./min, and the minimum point of heat of fusion in the above range is defined as the melting point.
  • DSC differential scanning calorimeter
  • the above production method is to produce emulsion particles by polymerizing at least tetrafluoroethylene, and tetrafluoroethylene and a modified monomer copolymerizable with tetrafluoroethylene (hereinafter also referred to as “modifier”), May be polymerized. That is, the low molecular weight PTFE is tetrafluoroethylene homopolymer [TFE homopolymer] and / or modified polytetrafluoroethylene [modified PTFE].
  • TFE homopolymer and / or modified PTFE means a TFE homopolymer that does not contain a modified PTFE, a modified PTFE that does not contain a TFE homopolymer, or a TFE homopolymer and a modified PTFE. It means any one of PTFE.
  • Polytetrafluoroethylene in the term “low molecular weight PTFE” may generally represent the above TFE homopolymer, but in the present specification, the “low molecular weight PTFE” may be a TFE homopolymer and / or a modified PTFE. As is clear from the above, it is not limited to the TFE homopolymer, but only a part of the term “low molecular weight PTFE”.
  • the “low molecular weight PTFE” as a whole refers to a TFE homopolymer and / or modified PTFE as a whole.
  • the TFE homopolymer is obtained by polymerizing only tetrafluoroethylene [TFE] as a monomer.
  • the modified PTFE means a polymer obtained by polymerizing TFE and a modifying agent.
  • the modifying agent in the modified PTFE is not particularly limited as long as it can be copolymerized with TFE.
  • perfluoroolefin such as hexafluoropropene [HFP]; chlorofluoro such as chlorotrifluoroethylene [CTFE]
  • CTFE chlorotrifluoroethylene
  • examples include olefins; hydrogen-containing fluoroolefins such as trifluoroethylene and vinylidene fluoride [VdF]; perfluorovinyl ethers; perfluoroalkylethylenes such as perfluorobutylethylene; ethylene and the like.
  • 1 type may be sufficient as the modifier used, and multiple types may be sufficient as it.
  • the “perfluoro organic group” means an organic group in which all hydrogen atoms bonded to carbon atoms are substituted with fluorine atoms.
  • the perfluoro organic group may have ether oxygen.
  • perfluorovinyl ether examples include perfluoro (alkyl vinyl ether) [PAVE] in which Rf represents a perfluoroalkyl group having 1 to 10 carbon atoms in the general formula (VI).
  • the perfluoroalkyl group preferably has 1 to 5 carbon atoms.
  • Examples of the perfluoroalkyl group in the PAVE include a perfluoromethyl group, a perfluoroethyl group, a perfluoropropyl group, a perfluorobutyl group, a perfluoropentyl group, and a perfluorohexyl group. Groups are preferred.
  • Rf is a perfluoro (alkoxyalkyl) group having 4 to 9 carbon atoms
  • n represents an integer of 1 to 4.
  • perfluoro (alkoxyalkyl vinyl ether) or perfluoro (alkyl polyoxyalkylene vinyl ether) which represents an organic group represented by
  • perfluorovinyl ether and chlorotrifluoroethylene are preferable, and as the perfluorovinyl ether, PAVE is preferable.
  • the proportion of the modifier in the total amount of the modifier and TFE is preferably 1% by mass or less when the perfluorovinyl ether is used as the modifier, for example. 0.001 to 1% by mass is more preferable.
  • modified PTFE 1 type, or 2 or more types of modified PTFE from which a number average molecular weight, a copolymer composition, etc. differ may exist, for example.
  • TFE homopolymer 1 type, or 2 or more types of TFE homopolymers from which a number average molecular weight differs may exist, for example.
  • An unstable terminal group derived from the chemical structure of the polymerization initiator or the chain transfer agent may be generated at the molecular chain terminal of the low molecular weight PTFE.
  • the unstable terminal group is not particularly limited, and examples thereof include —CH 2 OH, —COOH, —COOCH 3 and the like.
  • the low molecular weight PTFE may be one obtained by stabilizing an unstable end group.
  • the method for stabilizing the unstable terminal group is not particularly limited, and examples thereof include a method of changing the terminal to a trifluoromethyl group [—CF 3 ] by exposure to a fluorine-containing gas.
  • the low molecular weight PTFE may also be subjected to terminal amidation.
  • the method for terminal amidation is not particularly limited.
  • a fluorocarbonyl group [—COF obtained by exposure to the above-mentioned fluorine-containing gas, etc.] And the like are brought into contact with ammonia gas.
  • the resulting low molecular weight PTFE powder of the present invention can be applied to paints, greases, cosmetics, plating solutions, toners, plastics.
  • the low molecular weight PTFE powder of the present invention preferably has a specific surface area of 4 to 10 m 2 / g.
  • the specific surface area is relatively small, so that the powder flying and adhesion to the hopper can be reduced. If it is less than 4 m 2 / g, the fine dispersion in the matrix material may be inferior. On the other hand, if it exceeds 10 m 2 , for example, the effect of modifying the surface such as improving the texture of the coating film surface is high, the amount of oil absorption is increased, and a stable dispersion can be obtained in the matrix material.
  • the dispersibility of the paint may be inferior, and the viscosity of the paint may increase.
  • the upper limit of the specific surface area is more preferably 8 m 2 and the lower limit is more preferably 5 m 2 .
  • the specific surface area is measured using a surface analyzer (trade name: MONOSORB, manufactured by QUANTA CHLROME), using a mixed gas of 30% nitrogen and 70% helium as a carrier gas, and using liquid nitrogen for cooling. It is a value measured by the BET method.
  • the low molecular weight PTFE powder of the present invention preferably has an average particle size of 0.5 to 30 ⁇ m.
  • the average particle diameter of the low molecular weight PTFE powder of the present invention is more preferably 20 ⁇ m or less.
  • the average particle size is obtained by measuring the particle size distribution with a laser diffraction particle size distribution measuring device (manufactured by Nippon Laser Co., Ltd.) without using a cascade, with a pressure of 0.1 MPa, and a measurement time of 3 seconds. To a particle size corresponding to 50%.
  • the low molecular weight PTFE powder is a powdery solid composed of low molecular weight PTFE.
  • the low molecular weight PTFE powder of the present invention may be pulverized. That is, the method for producing a low molecular weight PTFE powder of the present invention is one of preferred embodiments that further includes a pulverizing step of pulverizing the low molecular weight polytetrafluoroethylene powder. The pulverization step is preferably performed after the recovery step.
  • the low molecular weight PTFE powder of the present invention has an average particle size of 5 ⁇ m or less.
  • the powder has a smaller particle diameter, for example, when used as an additive for paints, a coating film having better surface smoothness can be formed.
  • a low molecular weight PTFE powder having an average particle diameter within the above range can be easily obtained by pulverization.
  • the pulverization method is not particularly limited, and examples thereof include a pulverization method.
  • a method of pulverizing with a pulverizer after irradiating the low molecular weight PTFE powder obtained by the suspension polymerization step with radiation is also one of the preferable methods.
  • the pulverizer examples include an impact type such as a hammer mill, a pin mill, and a jet mill, and a grinding type such as a cutter mill in which a rotating blade and an outer peripheral stator are pulverized by a shearing force caused by unevenness.
  • the pulverization temperature is preferably ⁇ 200 to 100 ° C. In the freeze pulverization, the temperature is usually -200 to -100 ° C, but may be pulverized at room temperature (10 to 30 ° C). Liquid nitrogen is generally used for freeze pulverization, but the equipment is enormous and the pulverization cost is high. It is appropriate to grind at room temperature (10 ° C.) to 100 ° C., preferably at a temperature close to room temperature (10 ° C. to 30 ° C.) in that the process becomes simple and the grinding cost can be reduced.
  • fine particles and fibrous particles may be removed by airflow classification, and then coarse particles may be further removed by classification.
  • the pulverized particles are sent to a cylindrical classification chamber by reduced-pressure air, dispersed by a swirling airflow in the room, and fine particles are classified by centrifugal force.
  • the fine particles are collected from the center to the cyclone and bag filter.
  • a rotating body such as a conical cone or a rotor is installed so that the pulverized particles and the air can perform a swirl motion uniformly.
  • the classification point is adjusted by adjusting the air volume of the secondary air and the gap between the classification cones.
  • the air volume in the classification chamber according to the number of rotations of the rotor.
  • Examples of the method for removing coarse particles include air classification using a mesh, vibrating sieve, ultrasonic sieve, and the like, and air classification is preferred.
  • the low molecular weight PTFE powder of the present invention is one of the preferable forms that have been irradiated with radiation. That is, it is preferable that the method for producing the low molecular weight PTFE powder further includes an irradiation step of irradiating the low molecular weight PTFE powder with radiation. Moreover, the above-mentioned crushing process may be included after the said irradiation process. The irradiation step is preferably performed after the recovery step.
  • Examples of the radiation include ⁇ -rays, electron beams, and X-rays.
  • electron beams or ⁇ -rays are preferable.
  • the low molecular weight PTFE powder of the present invention may be pyrolyzed. That is, the method for producing a low molecular weight PTFE powder of the present invention is one of preferable embodiments that further includes a thermal decomposition step of thermally decomposing the low molecular weight PTFE recovered by the recovery step. Moreover, after the said thermal decomposition process, the grinding
  • the low molecular weight PTFE powder of the present invention may be gelled. That is, the method for producing a low molecular weight PTFE powder of the present invention may include a step of gelation by heat-treating the low molecular weight PTFE powder produced in the suspension polymerization step.
  • the temperature of the heat treatment is preferably 250 ° C. or higher and lower than 340 ° C.
  • a preferable lower limit is 300 ° C.
  • a preferable upper limit is a melting point of low molecular weight PTFE, for example, 330 ° C.
  • the gelled low molecular weight PTFE powder of the present invention was completely gelated for all the particles of the low molecular weight PTFE powder and gelled for some particles or part of one particle. It may be in any state of “semi-gelation” and “semi-gelation”.
  • the particles of the low molecular weight PTFE powder are fused by point contact, and as a whole, a lump is formed that is bonded together with a weak bonding force.
  • the polymer chains increase in momentum in the individual particles of the low molecular weight PTFE powder and are entangled with each other. As a result, the individual particles tend to shrink in a small size and a dense structure.
  • the apparent density of the individual particles obtained by the above heat treatment is generally higher than that of the powder before the heat treatment, so that the powder does not move so much that the powder flowability is improved and the filling into the hopper is improved. Can be made. You may grind
  • the pulverization treatment is preferably performed so as to be divided into individual particles of the low molecular weight PTFE powder. Further, the pulverization treatment may be performed by the above-described pulverization method.
  • the low molecular weight PTFE of the present invention can be used as an additive such as a paint to form a coating film having excellent texture and slipperiness, and can improve dispersibility and viscosity. it can. That is, the low molecular weight PTFE can be particularly suitably used as an additive to various materials. Specifically, it is particularly preferably used as an additive shown below.
  • This invention is an additive containing the low molecular weight polytetrafluoroethylene powder obtained by the said manufacturing method.
  • the additive is preferably an additive for a coating composition, a grease composition, a cosmetic composition, a plating solution composition, a toner composition, or a plastics composition.
  • the present invention is also a composition containing low molecular weight polytetrafluoroethylene powder.
  • the composition is preferably a paint, grease, cosmetic, plating solution, toner, or plastics.
  • the low molecular weight PTFE powder of the present invention can impart excellent texture and glossiness in various applications as described above, and improves the advantages and dispersibility of the low molecular weight PTFE powder obtained by emulsion polymerization. It is an additive that can improve the viscosity and has the advantages of low molecular weight PTFE powder obtained by suspension polymerization. Additives for the above paints, greases, cosmetics, plating solutions, toners or plastics compositions can be produced by methods generally used for these applications, and may be used in combination with other additives. Good. Moreover, the composition which is the said coating material, grease, cosmetics, plating liquid, toner, or plastics can be manufactured by mixing with the other party material generally used in various uses by a normal method.
  • the low molecular weight PTFE powder of the present invention is an additive for modifying paints, greases, cosmetics, plating solutions, toners, plastics, or the like. Can be suitably used.
  • the low molecular weight PTFE powder obtained by the production method of the present invention can be used as an additive such as a paint to form a coating film having excellent texture and slipperiness, and improve dispersibility and viscosity. Can do.
  • aqueous solution in which 700 mg of disuccinic acid peroxide [DSP] was dissolved in 20 g of deionized water and an aqueous solution in which 700 mg of ammonium persulfate [APS] was dissolved in 20 g of deionized water were pressed into the tank by TFE. . Since the internal pressure of the tank decreased due to the decomposition of the polymerization initiator, TFE was continuously supplied to maintain the internal pressure of the tank at 0.80 ⁇ 0.05 MPa. During the polymerization reaction, the temperature in the tank was always adjusted to 85 ⁇ 1 ° C., and the stirring rotation speed was controlled to 700 rpm.
  • Comparative Example 2 A 6 L stainless steel autoclave equipped with a stainless steel anchor-type stirring blade and temperature control jacket was charged with 2750 g of deionized water, 90 g of paraffin wax, and 14 g of a 20% aqueous solution of ammonium perfluorooctanoate and sealed. did. Thereafter, the polymerization reaction was carried out in the same manner as in Comparative Example 1, except that the stirring rotation speed during the polymerization reaction was controlled to 300 rpm. No polymer powder was present on the liquid surface after polymerization, and an aqueous dispersion of low molecular weight PTFE was obtained. Table 1 shows the solid content concentration in the aqueous phase in this aqueous dispersion.
  • Reference example 1 The polymerization reaction was carried out in the same manner as in Comparative Example 1, except that the stirring rotation speed during the polymerization reaction was controlled at 350 rpm, and stirring was stopped when the TFE consumption was 315 g. A small amount of wet polymer powder floats on the liquid surface after polymerization. Table 1 shows the solid content concentration in the aqueous phase after the suspended powder is washed with deionized water and filtered. The filtered polymer powder was dried with a hot air circulation dryer at 160 ° C. for 18 hours. The amount of powder obtained after drying was 2.5 g. The liquid phase after polymerization was an aqueous dispersion of white low molecular weight PTFE.
  • Example 1 The polymerization reaction was carried out in the same manner as in Reference Example 1, and when the TFE consumption was 175 g, the stirring rotation speed was changed to 700 rpm, and the polymerization reaction was further carried out until 525 g of TFE was consumed. Stirring was stopped when the total consumption of TFE was 700 g, and the inside of the tank was depressurized. The polymer surface after polymerization and the wet polymer powder in the solution are washed with deionized water and filtered. The polymer powder separated by filtration was dried with a hot air circulation dryer at 160 ° C. for 18 hours to obtain a low molecular weight PTFE powder. Moreover, the solid content density
  • Example 2 A polymerization reaction was performed in the same manner as in Reference Example 1, and an aqueous solution in which 3.4 g of oxalic acid dihydrate was dissolved in 20 g of deionized water when TFE consumption was 175 g was injected into the tank with TFE and stirred. While controlling the number of rotations at 350 rpm, the polymerization reaction was carried out until 525 g of TFE was consumed. Stirring was stopped when the total consumption of TFE was 700 g, and the inside of the tank was depressurized. The polymer surface after polymerization and the wet polymer powder in the solution are washed with deionized water and filtered. The polymer powder separated by filtration was dried with a hot air circulation dryer at 160 ° C. for 18 hours to obtain a low molecular weight PTFE powder. Moreover, the solid content density
  • Example 3 The polymerization reaction was carried out in the same manner as in Example 2 except that the stirring rotation speed up to 700 g was controlled to 700 rpm after the time when the amount of TFE consumption reached 175 g.
  • the polymer surface after polymerization and the wet polymer powder in the solution are washed with deionized water and filtered.
  • the polymer powder separated by filtration was dried with a hot air circulation dryer at 160 ° C. for 18 hours to obtain a low molecular weight PTFE powder.
  • concentration in an aqueous phase was measured in the dispersion liquid after filtering polymer powder. The results are shown in Table 1.
  • Example 4 The polymerization reaction was carried out in the same manner as in Example 3 except that the injection of the oxalic acid dihydrate aqueous solution into the tank was changed to the point where the consumption of TFE was 50 g and the polymerization reaction was continued until 650 g of TFE was consumed. Carried out. The polymer surface after polymerization and the wet polymer powder in the solution are washed with deionized water and filtered. The polymer powder separated by filtration was dried with a hot air circulation dryer at 160 ° C. for 18 hours to obtain a low molecular weight PTFE powder. Moreover, the solid content density
  • Example 5 The amount of ethane charged was changed to 0.2 g, the pressure of the oxalic acid dihydrate aqueous solution was changed to the point where the consumption of TFE was 105 g, and the polymerization reaction was continued until 595 g of TFE was consumed. Except for the above, the polymerization reaction was carried out in the same manner as in Example 3. The polymer surface after polymerization and the wet polymer powder in the solution are washed with deionized water and filtered. The polymer powder separated by filtration was dried with a hot air circulation dryer at 160 ° C. for 18 hours to obtain a low molecular weight PTFE powder. Moreover, the solid content density
  • Example 6 The polymerization reaction was carried out in the same manner as in Example 3 except that the injection of the aqueous solution of oxalic acid dihydrate into the tank was changed to the point where the TFE consumption was 315 g and the polymerization reaction was continued until 385 g of TFE was consumed. Carried out. The polymer surface after polymerization and the wet polymer powder in the solution are washed with deionized water and filtered. The polymer powder separated by filtration was dried with a hot air circulation dryer at 160 ° C. for 18 hours to obtain a low molecular weight PTFE powder. Moreover, the solid content density
  • Reference example 2 A polymerization reaction was carried out in the same manner as in Reference Example 1 except that 1.12 g of a 50% aqueous solution of ammonium perfluorohexanoate [APFHx] was charged together with 2760 g of deionized water. A small amount of wet polymer powder floated on the liquid surface after polymerization, and the suspended powder was washed with deionized water and filtered. The filtered polymer powder was dried with a hot air circulation dryer at 160 ° C. for 18 hours. The amount of powder obtained after drying was 1.2 g. Moreover, the solid content density
  • APFHx ammonium perfluorohexanoate
  • Example 7 A polymerization reaction was performed in the same manner as in Reference Example 2, and an aqueous solution in which 430 mg of oxalic acid dihydrate was dissolved in 20 g of deionized water when TFE consumption was 315 g was injected into the tank with TFE, and the number of stirring revolutions was increased. was controlled at 700 rpm, and the polymerization reaction was carried out until 385 g of TFE was consumed. Stirring was stopped when the total consumption of TFE was 700 g, and the inside of the tank was depressurized. The polymer surface after polymerization and the wet polymer powder in the solution are washed with deionized water and filtered. The polymer powder separated by filtration was dried with a hot air circulation dryer at 160 ° C. for 18 hours to obtain a low molecular weight PTFE powder. Moreover, the solid content density
  • Example 8 The polymerization reaction was carried out in the same manner as in Example 7 except that the injection of the oxalic acid dihydrate aqueous solution into the tank was changed to the point where the TFE consumption was 490 g and the polymerization reaction was continued until 210 g of TFE was consumed. Carried out. The polymer surface after polymerization and the wet polymer powder in the solution are washed with deionized water and filtered. The polymer powder separated by filtration was dried with a hot air circulation dryer at 160 ° C. for 18 hours to obtain a low molecular weight PTFE powder. Moreover, the solid content density
  • the average primary particle diameter is determined by measuring the transmittance of 550 nm projection light with respect to the unit length of an aqueous dispersion whose polymer concentration is adjusted to 0.22% by mass, and the unidirectional diameter in a transmission electron micrograph. A calibration curve with the average primary particle diameter was prepared, the transmittance was measured for the aqueous dispersion to be measured, and the determination was made based on the calibration curve.
  • Specific surface area Measurement was performed by a BET method using a surface analyzer (trade name: MONOSORB, manufactured by QUANTA CHLROME).
  • a carrier gas a mixed gas of 30% nitrogen and 70% helium was used, and cooling was performed using liquid nitrogen.
  • Crushing comparison example 1 The low molecular weight PTFE powder obtained in Comparative Example 1 was finely pulverized with a pulverizer.
  • a pulverizer an air jet mill 200AFG manufactured by Hosokawa Micron Corporation equipped with a classifier was used. The classifying rotor of the classifier was rotated at about 9000 rpm.
  • Example 3 The low molecular weight PTFE powder obtained in Example 3 was finely pulverized in the same manner as in Comparative Example 1 for pulverization at a rotational speed of the classification rotor of about 7000 rpm.
  • Example 2 The low molecular weight PTFE powder obtained in Example 8 was finely pulverized in the same manner as in Comparative Example 1 for pulverization at a rotational speed of the classification rotor of about 7000 rpm.
  • Pre-evaluation for coating In advance, 42 g of polyethersulfone was added to a mixed solvent of 130 g of N-methyl-2-pyrrolidone, 24 g of xylene and 72 g of methyl isobutyl ketone, and stirred and mixed with a disperser stirrer until the mixed solution became transparent. 16.8 g of low molecular weight PTFE powder was added, and the mixture was stirred and mixed at a stirring speed of 3000 rpm for 30 minutes.
  • a carbon black paste prepared by stirring 1.2 g of carbon black and 14 g of N-methyl-2-pyrrolidone is added to the low molecular weight PTFE dispersion solution, and stirred and mixed at a stirring speed of 3000 rpm for 10 minutes. Produced.
  • the above-mentioned paint was spray-coated on the degreased aluminum plate, dried at 90 ° C. for 15 minutes, and further baked at 380 ° C. for 15 minutes to prepare a coated plate.
  • Paint viscosity The paint viscosity was measured according to JIS K 6893.
  • Glossiness Glossiness 60 ° was measured according to JIS K 5400.
  • Abrasion resistance According to ASTM D-1044, the friction material CS-17 was used, and the amount of wear after 1000 revolutions was measured at a load of 1.0 kg.
  • the appearance of the coating film was observed by visual inspection of the coating film.
  • the coating film appearance of the paint to which the low molecular weight PTFE powder obtained in Comparative Example 1 was added was rougher than that of the low molecular weight PTFE powder obtained in Comparative Example 2, Examples 3 and 8.
  • the coating film appearances of the paints to which the low molecular weight PTFE powders obtained in pulverization comparative examples 1 and 2 and pulverization examples 1 and 2 were added were all smooth and good, but among them, pulverization comparative example 2 and pulverization example 1
  • the coating film appearance of the paint to which the low molecular weight PTFE powder obtained in 2 was added was particularly smooth and textured.
  • the coating material to which the low molecular weight PTFE powder obtained in Comparative Example 1 was added had a coating viscosity lower than that of Comparative Example 2 and Examples 3 and 8, and caused dripping during coating.
  • the viscosity of the paint to which the low molecular weight PTFE powder obtained in Comparative Example 2 was added was high, and the handleability was poor.
  • the coating material added with the low molecular weight PTFE powder obtained in the pulverization comparative example 1 also has a lower coating viscosity than the coating material added with the low molecular weight PTFE powder obtained in the pulverization examples 1 and 2, and at the time of coating. The liquid was liable to drip, and the viscosity of the coating material to which the low molecular weight PTFE powder obtained in the pulverized comparative example 2 was added was high, and the handleability was poor.
  • the low molecular weight PTFE powder of the present invention has the above-described configuration, it can be suitably used as an additive to paints, greases, cosmetics, plating solutions, toners, plastics and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polymerisation Methods In General (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Abstract

塗料等の添加剤として用いることで、優れた質感や滑り性を有する塗膜を形成することができるとともに、分散性、粘度を改善することができる低分子量ポリテトラフルオロエチレン粉末及びその製造方法を提供する。低分子量ポリテトラフルオロエチレン粉末の製造方法であって、重合開始剤及び水性媒体の存在下に、少なくともテトラフルオロエチレンを重合して乳化粒子を生成する乳化重合工程と、上記乳化粒子を凝集させて凝集粉末を生成させる凝集工程と、上記凝集粉末、重合開始剤及び水性媒体の存在下に、少なくともテトラフルオロエチレンを重合する懸濁重合工程と、を含むことを特徴とする低分子量ポリテトラフルオロエチレン粉末の製造方法である。

Description

低分子量ポリテトラフルオロエチレン粉末及びその製造方法
本発明は、低分子量ポリテトラフルオロエチレン粉末及びその製造方法に関する。
分子量60万以下の低分子量ポリテトラフルオロエチレン〔PTFE〕粉末(PTFEマイクロパウダーとも呼ばれる)は、化学的安定性に優れ、表面エネルギーが極めて低いことに加え、フィブリル化が生じにくいので、滑り性や塗膜表面の質感を向上させる添加剤として、プラスチックス、インク、化粧品、塗料、グリース等の製造に用いられている(例えば、特許文献1参照)。
低分子量PTFEの製造方法として、高分子量PTFEと特定のフッ化物とを高温下で接触反応させて熱分解する方法(例えば、特許文献2参照)や、高分子量PTFEの粉末や成形体に電離性放射線を照射する方法(例えば、特許文献3参照)等が知られている。
高分子量PTFEを熱分解する方法や、高分子量PTFEに放射線を照射する方法については、設備に関わるコスト及び利便性の面から見て必ずしも有利ではない。
低分子量PTFEの製造方法として、連鎖移動剤の存在下、モノマーであるTFEを直接重合する方法も知られている。例えば、特許文献4には、連鎖移動剤(テロゲン)として炭素数1~3のフルオロアルカン又はクロルフルオロアルカンを用いて重合を行うことが提案されている。
工業的な重合方法としては、特許文献4の方法のように何れの方法で行うか不明確なものもあるが、懸濁重合と乳化重合に大別される。
懸濁重合では、連鎖移動剤存在下、界面活性剤を用いないかまたは限られた量を用い、水性媒体中に重合開始剤を分散させ、モノマーであるTFE又はTFEと共重合し得るモノマーとTFEを重合させることによって、低分子量PTFEの顆粒状粉末を直接単離する(例えば、特許文献5及び6参照)。懸濁重合方法では、撹拌の高剪断により、初期に形成されたポリマーを重合の早い段階において凝固させ、水が熱伝達媒体として主に作用する気体-固体反応において固体粒子上に引き続いて重合が起こる(例えば、特許文献7参照)。懸濁重合の場合、界面活性剤を用いないかまたは限られた量を用い、低分子量PTFEの粉末を直接的に得ることができるが、粒子径を調整し難い。
これに対し、乳化重合では、連鎖移動剤存在下、水性媒体中に重合開始剤及び乳化剤として含フッ素界面活性剤を分散させ、モノマーであるTFE又はTFEと共重合し得るモノマーとTFEを重合させることによって、低分子量PTFEを得る。この場合、懸濁重合とは異なり、含フッ素界面活性剤が存在することで、1μm以下の乳化粒子(ミセル、一次粒子とも呼ばれる)からなる水性分散液の状態で得られる(例えば、特許文献8参照)。得られた水性分散液はそのまま、あるいはこれを濃縮することにより、水性塗料等の用途に用いることができる。
乳化重合により得られる低分子量PTFEを粉末として用いる場合、上記水性分散液を凝析させることで粉末粒子(マイクロパウダー)とすることができる。
乳化重合により得られる低分子量PTFE粉末粒子の特徴としては、懸濁重合により得られるものより、比表面積が7~20m/g(稀に、5~20m/g)と大きく、粒子が柔らかいため、例えば、塗膜表面の質感を向上させる等、表面を改質する効果が高い。また、吸油量も多くなり、マトリックス材料に安定した分散体が得られる。さらに、乳化重合により得られる低分子量PTFE粉末粒子は、上述した凝析工程の条件により、粒子径の調整が可能であるという点で好ましい。
しかしながら、上述の乳化重合では、含フッ素界面活性剤等の高価な物質を乳化剤として用いる必要があるのでコストが高い。また、PTFE粒子に界面活性剤が残存した場合、着色等の原因となることがある。
このことより、これらの含フッ素界面活性剤を添加せずに重合を行うPTFEの製造方法が求められていた。
含フッ素界面活性剤を添加せずに重合を行う方法として、水性媒体中でTFEと水溶性過酸化物を用いて反応させるTFEの懸濁重合法が知られている(例えば、非特許文献1参照)。特許文献9にも、界面活性剤を添加せず、水性媒体中でジコハク酸パーオキサイドを重合開始剤としてTFE重合を行い、水性分散液を得られたことが記載されている。
しかしながら、特許文献9の実施例に記載されている水性分散液は、ポリマー固形分濃度もわずか6.5重量%と希薄であり、生産性を鑑みると実用性は非常に乏しい。また、特許文献9には、連鎖移動剤の添加、得られた重合体の乳化粒子径及び分子量を示唆するデータは何ら記載されていない。
含フッ素界面活性剤を添加せずに重合を行う方法としては、また、水性媒体中でTFE又はTFEと共重合し得るモノマーとTFEとの乳化重合を、連鎖移動剤及び水溶性過酸化物を用いて反応させる方法が開示されている(例えば、特許文献10参照)。
特開平10-147617号公報 特開昭61-162503号公報 特開昭48-78252号公報 特開昭51-41085号公報 国際公開第2004/050727号パンフレット 特開2005-2322号公報 特表2006-509072号公報 特開平7-165828号公報 米国特許第2534058号明細書 特開2009-1745号公報
ふっ素樹脂ハンドブック 編者:里川孝臣 日刊工業新聞社(1990年)、27頁
しかしながら、特許文献8、10のように乳化重合による重合では、塗料等の添加剤として用いた場合に、分散性、粘度等の点で改善の余地があった。また、特許文献5~7のように懸濁重合による重合では、塗膜の外観、透明性、質感等の点で改善の余地があった。
本発明は、上記現状に鑑み、塗料等の添加剤として用いることで、優れた質感や滑り性を有する塗膜を形成することができるとともに、分散性、粘度を改善することができる低分子量ポリテトラフルオロエチレン粉末及びその製造方法を提供する。
本発明は、低分子量ポリテトラフルオロエチレン粉末の製造方法であって、重合開始剤及び水性媒体の存在下に、少なくともテトラフルオロエチレンを重合して乳化粒子を生成する乳化重合工程と、上記乳化粒子を凝集させて凝集粉末を生成させる凝集工程と、上記凝集粉末、重合開始剤及び水性媒体の存在下に、少なくともテトラフルオロエチレンを重合する懸濁重合工程と、を含むことを特徴とする低分子量ポリテトラフルオロエチレン粉末の製造方法である。
本発明はまた上記低分子量ポリテトラフルオロエチレン粉末の製造方法から得られる低分子量ポリテトラフルオロエチレン粉末でもある。
本発明は更に、上記低分子量ポリテトラフルオロエチレン粉末を含有する添加剤でもある。
本発明はそして、上記低分子量ポリテトラフルオロエチレン粉末を含有する組成物でもある。
以下に本発明を詳細に説明する。
本発明は、乳化重合と懸濁重合を併用するものである。乳化重合で得られる粉末は、安定的に生産でき、塗料等の添加剤として用いた場合、塗膜表面の質感、滑り性を向上させることができ、また、吸油量も多いために、マトリックス材料(相手材)への微分散が容易である。懸濁重合では、乳化重合のように凝析工程を必要とせず、得られる粉末は、分散性に優れ、硬い粉末が得られる。
本発明の製造方法により得られる低分子量ポリテトラフルオロエチレン粉末は、乳化重合、懸濁重合のそれぞれの利点を併せ持ち、塗膜表面の質感、滑り性を向上させることができるとともに、分散性、粘度を改善することができる。
本発明の製造方法は、上記乳化重合工程または懸濁重合工程のうち少なくとも一方の工程において、連鎖移動剤を存在させることが好ましく、乳化重合工程で連鎖移動剤を添加することによって両工程において存在させることがより好ましい。
上記連鎖移動剤を添加することにより、得られる低分子量PTFEの分子量を調整することができ、各種相手材への添加剤として用いることができ、その分散性を向上させることができる。
本発明の低分子量ポリテトラフルオロエチレン粉末(以下、「低分子量PTFE粉末」ともいう。)の製造方法は、少なくともテトラフルオロエチレン(TFE)、連鎖移動剤、重合開始剤及び水性媒体を反応容器に添加する添加工程を含むことが好ましい。
本発明の製造方法では、連鎖移動剤と水溶性過酸化物である重合開始剤とを併用し、自己乳化作用によりTFEを乳化重合するか、界面活性剤を使用することで乳化重合を行うことができる。
すなわち、本発明の製造方法は、重合開始剤が水溶性過酸化物である、及び/又は、上記乳化重合工程が界面活性剤の存在下で重合を行う工程である、ことが好ましい。
反応容器内に添加される、TFE、連鎖移動剤、重合開始剤及び水性媒体は、少なくとも乳化重合工程の前に反応容器内に添加されていればよく、その添加する順番は特に限定されないが、通常、重合開始剤を添加することで、乳化重合工程は開始される。
上記連鎖移動剤としては、水素、低級飽和炭化水素、低級ハロゲン化炭化水素、及び、低級アルコールからなる群より選択される少なくとも1種の化合物であることが好ましい。
上記低級飽和炭化水素としては、例えば、メタン、エタン、プロパン、ブタン、ヘキサン、シクロヘキサン等の炭素数1~6の直鎖状、分岐状又は環状アルカンが好ましい。
上記低級ハロゲン化炭化水素としては、例えば、CHCl、CHCl、CHCF、CHCF等のハロゲン化炭化水素が好ましい。
上記低級アルコールとしては、例えば、メタノール、エタノール等の炭素数1~3のアルコールが好ましい。
上記連鎖移動剤は、連鎖移動能の観点から、エタン又はプロパンであることがより好ましい。
上記連鎖移動剤は、重合開始前に一括して反応容器中に添加してもよいし、重合中に複数回に分割して添加してもよいし、また、重合中に連続的に添加してもよい。
連鎖移動剤の添加量は、その連鎖移動能、反応温度、重合圧力、あるいは重合開始剤の添加量等の重合条件により、その適正範囲が異なるので一概に規定することはできないが、反応容器中に存在するTFEに対して0.01~20モル%であることが好ましく、0.2~10モル%であることがより好ましい。上記添加量が、反応容器中に存在するTFEに対して0.01モル%未満であると、高分子量成分が生成し、マトリックスへ添加する際の分散性が劣るおそれがある。上記添加量が20モル%を超えると、分子量数千程度のごく低分子成分が生成するおそれがある。そのような場合、高温揮発分が多く、例えば、マトリックスへの分散工程における温度が300℃を超えるような用途には不向きとなり、用途が限定されることもある。
上記重合開始剤は、TFEの重合において従来から使用されているものがいずれも使用できる。含フッ素界面活性剤の不存在下で乳化重合を行うためには、水溶性過酸化物が好ましい。
本発明の製造方法において、上記水溶性過酸化物としては、例えば、過硫酸塩、亜硫酸塩、水溶性有機過酸化物等が挙げられる。
上記過硫酸塩としては特に限定されず、例えば、過硫酸アンモニウム〔APS〕、過硫酸カリウム〔KPS〕等が挙げられる。
上記亜硫酸塩としては特に限定されず、例えば、亜硫酸アンモニウム、亜硫酸カリウム等が挙げられる。
上記水溶性有機過酸化物としては、例えば、過酸化ベンゾイル、ジコハク酸パーオキサイド〔DSP〕、ジグルタル酸パーオキサイド等が挙げられる。
上記水溶性過酸化物を重合開始剤に用いた場合、開始剤由来のポリマー末端基は、親水性の末端官能基、例えば、カルボキシル基、スルホン酸、あるいは水酸基を有するものとなる。APS、KPS、DSPの場合、末端基はカルボキシル基となる。
本発明の製造方法では、上述したように、過硫酸塩、亜硫酸塩、水溶性有機過酸化物のいずれの系を重合開始剤に用いても開始剤に由来する末端は親水性基となるため、含フッ素界面活性剤の不存在下であっても乳化粒子を生成することができる。
上記重合開始剤としては、1種だけ添加してもよいし、複数種を添加してもよい。重合開始剤としては、なかでも、ポリマー末端基をカルボキシル基とするものが好ましい。上記水溶性過酸化物の適正分解温度、取扱いの簡便性、コスト、ポリマー末端構造を鑑みると、上記水溶性過酸化物としては、過硫酸アンモニウム、過硫酸カリウム、亜硫酸アンモニウム、亜硫酸カリウム及びジコハク酸パーオキサイドからなる群より選択される少なくとも一種の化合物であることがより好ましい。
上記水溶性過酸化物の添加量は、その種類、併用される連鎖移動剤の種類と添加量、あるいは重合温度や重合圧力等の重合条件に大きく依存する。そのため、添加する適正量が重合により異なるので、一概に規定することはできないが、乳化作用を付与する親水性末端基を有するポリマー鎖を生成させる点で、上記水溶性過酸化物は、水性媒体に対し10~3000ppmであることが好ましい。上記添加量が、水性媒体に対し10ppm未満であると、生産性が低下するおそれがある。また、低分子量PTFEの乳化粒子が得られず、高分子量PTFEが生成することがあり、上述したようにマトリックスへの分散不良が生じやすくなる。より好ましい添加量は、水性媒体に対し50~2000ppmである。
上記重合開始剤としては、過硫酸塩又は亜硫酸塩と、水溶性有機過酸化物とを併用することが好ましい。この場合、上記重合開始剤としては、過硫酸塩及び亜硫酸塩からなる群より選択される少なくとも1種と、水溶性有機過酸化物の少なくとも1種とを選択すればよく、重合開始作用を有するその他の試薬を用いてもよい。上記過硫酸塩及び亜硫酸塩は、半減期が短く重合開始時から重合開始剤として作用するのに対し、上記有機過酸化物は、半減期が比較的長く、重合開始剤として上記過硫酸塩及び亜硫酸塩よりも遅く作用し始める。従って両者を組み合わせることにより、分子量分布を小さく、シャープなものにすることができる。このように重合開始剤を併用することは、重合を液温40℃以上、100℃未満において行う場合に特に好ましい。上記「液温」は、重合反応液となる水性媒体の温度である。
上記重合開始剤は、過硫酸塩若しくは亜硫酸塩及び/又は水溶性有機過酸化物と、レドックス触媒とを含むものであることが好ましい。レドックス触媒を含むことにより低温でも反応を進行させることができる。このようにレドックス触媒を併用する方法は、例えば、重合を液温5~40℃において行う場合に特に好ましい。
上記「過硫酸塩若しくは亜硫酸塩及び/又は有機過酸化物と、レドックス触媒」は、過硫酸塩とレドックス触媒、亜硫酸塩とレドックス触媒、有機過酸化物とレドックス触媒、過硫酸塩と有機過酸化物とレドックス触媒、亜硫酸塩と有機過酸化物とレドックス触媒の5通りのうち何れの組み合わせであってもよい。
上記過硫酸塩、亜硫酸塩、有機過酸化物及びレドックス触媒は、それぞれ2種以上用いてもよい。
上記過硫酸塩、亜硫酸塩及び有機過酸化物としては上述したものを用いることができる。
上記レドックス触媒としては特に限定されず、例えば、金属カルボニル-四塩化炭素混合物、過酸化物-鉄(II)化合物の混合物等が挙げられる。
また、上記重合開始剤としては、少なくとも1種が水溶性であればよい。
上記重合開始剤は、重合開始時に一括して反応容器中に存在していてもよいし、重合中に複数回に分割して添加してもよいし、また、重合中に連続的に添加してもよい。
上記水性媒体は、特に限定されるものではないが、例えば、脱イオンされた高純度の純水であることが好ましい。
上記乳化重合工程は、少なくともテトラフルオロエチレンを重合して乳化粒子を生成する工程である。乳化重合は、乳化粒子を生成できるものであれば特に限定されない。上記乳化粒子としては、水性媒体に分散した平均一次粒子径が1μm以下の低分子量PTFEの粒子であることが好ましい。
上記乳化重合工程は、上記乳化重合工程中に生成した低分子量PTFEの全量を100質量%として、90質量%以上が水性分散液の状態で存在する工程であることが好ましい。より好ましくは95質量%以上であり、更に好ましくは98質量%以上である。
上記「水性分散液の状態で存在する」とは、上記乳化重合工程中に生成した低分子量PTFEが凝固せず、乳化粒子の状態で存在することを意味する。すなわち、上記低分子量PTFEの90質量%以上が乳化粒子の状態で存在するものであればよい。より好ましくは95質量%以上であり、更に好ましくは98質量%以上である。
凝固した低分子量PTFEの固形分の量は、乳化重合工程中に生成した低分子量PTFEの10質量%未満であることが好ましく、より好ましくは5質量%未満であり、更に好ましくは2質量%未満である。
上記乳化重合工程で生成される乳化粒子(分散粒子)は、平均一次粒子径が50~1000nmであることが好ましい。より好ましくは100~1000nmであり、更に好ましくは100~300nmである。
上記平均一次粒子径は、ポリマー濃度を0.22質量%に調整した水性分散液の単位長さに対する550nmの投射光の透過率と、透過型電子顕微鏡写真における定方向径を測定して決定された平均一次粒子径との検量線を作成し、測定対象である水性分散液について、上記透過率を測定し、上記検量線をもとに決定できる。
上記乳化重合工程は、撹拌機が備えられた耐圧反応容器に、水性媒体とテトラフルオロエチレンと、必要に応じて変性モノマーと、必要に応じて連鎖移動剤と、必要に応じて界面活性剤とを仕込み、温度及び圧力を調整した後、重合開始剤を添加することにより乳化重合を開始し、攪拌しながら行うことができる。上記乳化重合工程は、上述の水性媒体中にモノマーを連続的に供給しながら行うこともできる。
上記乳化重合工程は、上記モノマーとして、TFEに加え、任意のテトラフルオロエチレンと共重合可能な変性モノマーを添加するものであってもよい。上記変性モノマーについては、後述する。
上記乳化重合工程は、水性媒体を攪拌しながら行うことが好ましいが、攪拌が強過ぎると機械的剪断力によって乳化粒子が凝集し、気相-液相界面で重合反応が進行し、結果として懸濁重合による重合となり、低分子量PTFEからなる乳化粒子が得られなくなるおそれがある。ゆえに、上記乳化重合は、重合条件として反応スケール、重合温度及び重合圧力が同じ場合、一般的なフルオロポリマーの懸濁重合と比べ攪拌速度を小さくすることが好ましい。
上記乳化重合における攪拌速度は、気相-液相界面に凝集粒子が生成しないことを確認することにより重合スケールやその他の重合条件に応じて適宜選択することができ、特に限定されないが、上述のように、低分子量PTFEの90質量%以上が乳化粒子の状態で存在するものであれば、攪拌速度が小さく、乳化重合が行われたということができる。
上記乳化重合工程において、重合温度、重合圧力等の重合条件は、特に限定されず、使用するTFEの量、必要に応じて添加される変性剤の種類や量、あるいは生産性等に応じて、適宜選択することができるが、重合温度としては、5~100℃であることが好ましく、50~90℃であることがさらに好ましい。重合圧力としては、0.03~3.0MPaであることが好ましい。
上記乳化重合工程は、自己乳化重合により乳化粒子を生成することができる。本明細書中で「自己乳化」とは、界面活性剤を添加せずとも行うことができる、連鎖移動剤および水溶性過酸化物を使用することによるTFEモノマーとの乳化である。すなわち、自己乳化重合とは、従来のTFEの乳化重合に使用されていたフルオロカーボン系の乳化剤、含フッ素界面活性剤等を重合開始時や重合中に添加せずとも、乳化重合が行われる重合のことである。
界面活性剤を添加せずに、水性媒体中でTFEと水溶性過酸化物だけを用いて反応させるTFEの乳化重合では、反応のごく初期の重合系中には乳化重合を行った場合と同様に核(乳化粒子)が発生し、安定的な乳化粒子が生成する。
上記乳化重合工程では、界面活性剤を反応容器中に添加せずとも、水溶性過酸化物に由来の親水性末端基を有するポリマー鎖が重合初期に生成し、これが乳化作用を持つため、水性媒体中で乳化粒子が形成されると考えられる。
上記自己乳化重合では、
(1)連鎖移動剤と水溶性過酸化物とTFEとが反応することにより、水溶性過酸化物由来の親水性末端基を有し乳化作用を持つポリマー鎖が生長するが、該ポリマー鎖の生長過程において、連鎖移動剤とポリマー鎖間の連鎖移動により該ポリマー鎖の生長末端が失活するので短鎖のTFE重合体が生成し、重合度の増加に伴う乳化作用の低下が起こらないこと、
(2)上記連鎖移動剤として使用する上述の化合物は連鎖移動能が高いため、上述の短鎖TFE重合体の重合度は低く、より高い乳化効果を示すこと、
(3)重合初期以降も水溶性過酸化物の分解が続くため、上述の親水性末端基を有する短鎖TFE重合体の生成は持続されること、
によりTFE重合体が乳化粒子として安定的に分散している水性分散液が得られることが推測される。
上記自己乳化重合は、親水性基をポリマー末端に付与する水溶性過酸化物を重合開始剤として用い、連鎖移動能が比較的高い化合物を連鎖移動剤として使用して重合を行うので、分散安定性が高い低分子量PTFEの水性分散液を、界面活性剤を添加せずに得ることができる。
上記自己乳化重合は、上述のように、界面活性剤を重合開始時や重合中に配合せずとも乳化重合を行うことができるため、製造コストを低くすることができる。更に、得られる低分子量PTFEについても界面活性剤に起因する着色等の問題点がない点で好ましい。
上記乳化重合工程において、界面活性剤を添加せずに乳化重合を行う場合、本発明の製造方法で得られる低分子量PTFE粉末は、例えば、パーフルオロオクタン酸〔PFOA〕及びその塩やパーフルオロスルホン酸〔PFOS〕及びその塩等の界面活性剤を実質的に含まない。
本明細書において、「実質的に含まない」とは、それらを原料として用いておらず、ポリマー固形分量の1ppmに相当する量以下であることを意味する。
上記乳化重合工程は、界面活性剤の存在下で行ってもよい。界面活性剤の存在下で行う場合、重合開始剤は水溶性過酸化物であってもよいし、他の重合開始剤であってもよい。
上記乳化重合工程は、界面活性剤の存在下で少なくともテトラフルオロエチレンを重合して乳化粒子を生成する工程であることが好ましい形態の一つである。界面活性剤の存在下で乳化重合を行う場合、界面活性剤の添加量は、使用する界面活性剤の乳化能力、重合条件等に応じて、適宜好適な添加量を設定すればよいが、例えば、水性媒体に対して500ppm以下であることが好ましい。500ppmを超えると、懸濁重合への円滑な切り換えが困難になるおそれがあり、例えば、乳化粒子を強制的に凝集させるために、酸や電解質の添加量を増加させなければならなくなる場合がある。また、界面活性剤を用いることで、乳化粒子の粒子径を制御することもできる。更に、使用する界面活性剤の量が一般的な乳化重合と比較して少ないため、製造コストの削減を図ることができ、更に、界面活性剤の使用に伴う、着色等が生じにくい。上記界面活性剤の使用量としてより好ましくは、300ppm以下である。
上記界面活性剤としては、特に限定されず、例えば、含フッ素界面活性剤、炭化水素系界面活性剤、シリコン系界面活性剤等を使用することができる。また、上記界面活性剤は、分子中に不飽和結合を有する重合性界面活性剤であってもよい。例えば、分子中に不飽和結合を有する含フッ素界面活性剤又はシリコン系界面活性剤であってもよいし、分子中に不飽和結合を有する炭化水素系界面活性剤であってもよい。
上記界面活性剤は、含フッ素界面活性剤であることが本発明の好ましい形態の一つである。上記含フッ素界面活性剤とは、分子構造中に少なくとも1個のフッ素原子を含む含フッ素化合物であって、界面活性を示す化合物を意味する。
上記含フッ素界面活性剤としては、特に限定されないが、含フッ素アニオン性界面活性剤であることが好ましく、例えば、少なくとも1個の水素原子がフッ素原子に置換された炭素数7~12の炭化水素と、カルボン酸、カルボン酸塩、スルホン酸、スルホン酸基等の親水基とからなるものが挙げられ、工業的には、パーフルオロオクタン酸アンモニウム、パーフルオロオクタン酸スルホニウム塩;パーフルオロカルボン酸およびその塩;等が挙げられる。
また、上記含フッ素界面活性剤としては、一般式(I)
Rf-Y   (I)
(式中、Rfは2価の酸素原子が挿入されていてもよい炭素数2~12の直鎖又は分岐のフルオロアルキル基を表し、Yは、-COOM、-SO、-SONM又は-POを表す。上記M、M、M、M、M及びMは、同一又は異なって、H又は一価カチオンを表す。)で表される含フッ素アニオン性界面活性剤が好ましい。
上記一価カチオンとしては、例えば、-Na、-K、-NH等が挙げられる。上記Rfは、2価の酸素原子が挿入されていてもよい炭素数2~6の直鎖又は分岐のフルオロアルキル基であることがより好ましい。
一般式(I)におけるYとしては、-COOH、-COONa、-COOK又は-COONHが好ましく、-COONHがより好ましい。
含フッ素界面活性剤としては、一般式(II)
CF-(CFn1-Y   (II)
(式中、n1は1~5の整数を表し、Yは上記と同じ。)で表される含フッ素アニオン性界面活性剤、一般式(III)
RfO-RfO-Rf-Y   (III)
(式中、Rfは炭素数1~3のフルオロアルキル基を表し、Rf及びRfはそれぞれ独立に直鎖又は分岐の炭素数1~3のフルオロアルキレン基を表し、Rf、Rf及びRfは炭素数が合計で6以下である。Yは上記と同じ。)で表される含フッ素アニオン性界面活性剤がより好ましい。
一般式(II)で表される含フッ素アニオン性界面活性剤としては、例えば、CF(CFCOONH、CF(CFCOONH、CF(CFCOONH、CF(CFSONa、CF(CFSONH等が挙げられる。
一般式(III)で表される含フッ素アニオン性界面活性剤としては、例えば、一般式
CFO-CF(CF)CFO-CX(CF)-Y
(式中、XはH又はFを表し、Yは上記と同じ。)で表される含フッ素アニオン性界面活性剤、一般式
CFO-CFCFCFO-CFXCF-Y
(式中、XはH又はFを表し、Yは上記と同じ。)で表される含フッ素アニオン性界面活性剤、一般式
CFCFO-CFCFO-CFX-Y
(式中、XはH又はFを表し、Yは上記と同じ。)で表される含フッ素アニオン性界面活性剤等が挙げられる。
上記含フッ素界面活性剤は、1種使用してもよいし、2種以上を併用してもよい。
上記界面活性剤は、炭化水素系界面活性剤であることも好ましい形態の一つである。
上記炭化水素系界面活性剤としては、フッ素原子を含まない界面活性剤であれば特に限定されないが、例えば、ラウリル硫酸アンモニウムに代表されるアルキル硫酸エステル、ポリオキシエチレンアルキルエーテル硫酸エステル、脂肪酸、およびこれらの塩等の陰イオン性界面活性剤;ポリオキシアルキレンアルキルエーテル系ノニオン界面活性剤、ポリオキシエチレンアルキルフェニルエーテル系ノニオン界面活性剤などの非イオン性界面活性剤;等が挙げられる。
上記非イオン性界面活性剤としてより好ましくは、下記一般式(IV)
-O-A-H  (IV)
(式中、Rは、炭素数8~18の直鎖状若しくは分岐鎖状の1級又は2級アルキル基であり、Aは、オキシエチレンとオキシプロピレンとの共重合鎖から構成されるポリオキシアルキレン鎖、又は、オキシアルキレン鎖である。)により表されるポリオキシアルキレンアルキルエーテル系ノニオン界面活性剤、下記一般式(V)
-C-O-A-H  (V)
(式中、Rは、炭素数4~12の直鎖状若しくは分岐鎖状のアルキル基であり、Aは、ポリオキシアルキレン鎖である。)により表されるポリオキシエチレンアルキルフェニルエーテル系ノニオン界面活性剤が好ましい。
本発明の製造方法は、乳化粒子を凝集させて凝集粉末を生成させる凝集工程と、凝集粉末、重合開始剤及び水性媒体の存在下に、少なくともテトラフルオロエチレンを重合する懸濁重合工程を含む。懸濁重合工程は、凝集工程を行った後に、または凝集工程を行うと同時に開始させることができる。凝集工程及び懸濁重合工程は、乳化重合工程で使用した反応容器内で実施してもよいし、それと異なる反応容器内で実施してもよい。凝集工程は、乳化粒子を凝集させる手段を備えた特別の設備を使用して行うこともできる。上記凝集粉末とは、乳化粒子が凝集することにより生成する乳化粒子の凝集体である。
上記凝集は、乳化重合工程において生成した乳化粒子を強制的に凝集させることができる方法を用いればよく、例えば、電解質及び酸の少なくともいずれかを反応容器中に添加する、及び/若しくは、乳化重合工程よりも攪拌速度を速くすることが好ましい。
上記凝集工程は、反応容器中に電解質を添加して乳化粒子を凝集させる工程であることが好ましい。電解質を添加することによって、乳化粒子を容易に凝集させることができる。
上記凝集をより効果的に行う観点から、上記電解質は、炭酸アンモニウム、炭酸水素アンモニウム、水酸化ナトリウム及び硫酸アンモニウムからなる群より選択される少なくとも1種の化合物であることが好ましい。これによれば、乳化粒子の凝集をより効率よく行うことができる。
上記電解質は、水性媒体に対して50~10000ppm添加することが好ましい。特に界面活性剤を添加している場合には、乳化粒子の安定性が高いために、50ppm未満では十分に凝集できない場合がある。10000ppmを超える量を添加すると、ポリマーに残留するおそれがある。より好ましくは、100~5000ppmである。上記範囲内の電解質を添加することによって、乳化粒子の凝集をより効率よく行うことができる。
上記電解質は、連鎖移動性が実質的にないものであることが好ましい。連鎖移動性が実質的にない電解質としては、無機塩が好ましく、例えば、炭酸アンモニウム、炭酸水素アンモニウム、水酸化ナトリウム、硫酸アンモニウム、硫酸アルミニウム等が挙げられるが、これらに限定されるものではない。
上記電解質は、1種を添加してもよいし、2種以上を添加してもよい。また、懸濁重合工程の開始前又は開始時に一括して添加してもよいし、懸濁重合工程中に適宜分割して添加してもよいし、懸濁重合工程の間に連続的に添加してもよい。
上記凝集工程は、反応容器中に酸を添加するものであることが好ましい。酸を添加することによって、乳化粒子を容易に凝集させることができる。
上記凝集をより効果的に行う観点から、上記酸は、硝酸、硫酸及びシュウ酸からなる群より選択される少なくとも1種の化合物であることが好ましい。
上記酸は、水性媒体に対して50~10000ppm添加することが好ましい。特に界面活性剤を添加している場合には、乳化粒子の安定性が高いために、50ppm未満では十分に凝集できない場合がある。10000ppmを超える量を添加すると、ポリマーに残留するおそれがある。より好ましくは、100~5000ppmである。上記範囲内の酸を添加することによって、乳化粒子の凝集をより効率よく行うことができる。
上記酸は、1種を添加してもよいし、2種以上を添加してもよい。また、懸濁重合工程の開始前又は開始時に一括して添加してもよいし、懸濁重合工程中に適宜分割して添加してもよいし、懸濁重合工程中に連続的に添加してもよい。
上記懸濁重合工程は、撹拌機が備えられた耐圧反応容器で、温度及び圧力を調整して水性媒体を攪拌しながら行うことができる。上記懸濁重合は、上述の水性媒体中にモノマーを連続的に供給しながら行うこともできる。上記懸濁重合は、上記モノマーとして、TFEに加え、後述する変性モノマーを添加するものであってもよい。
上記懸濁重合工程において、重合温度、重合圧力等の重合条件は、特に限定されず、使用するTFEの量、変性モノマーの種類や量、あるいは生産性等に応じて、適宜選択することができるが、重合温度としては、5~100℃であることが好ましく、50~90℃であることがさらに好ましい。重合圧力としては、0.03~3.0MPaであることが好ましい。
上記懸濁重合工程は、重合工程中に生成した低分子量PTFEの90質量%以上を凝固させるものであることが好ましい。懸濁重合工程後の水性分散液において、低分子量PTFEの90質量%以上を凝固したものであれば、上述のように、乳化重合工程で生成した乳化粒子を強制的に凝集させる凝集工程と、少なくともTFEを重合する懸濁重合工程とを行ったものということができる。より好ましくは95質量%以上、更に好ましくは、98質量%以上である。液相中に残っている低分子量PTFEの固形分の量は水性媒体に対して、2.5質量%未満であることが好ましく、0.5質量%未満であることがより好ましい。上記懸濁重合工程における攪拌は、低分子量PTFEの90質量%以上が凝固されるように、十分に行うものであることが好ましい。
上記乳化重合工程及び懸濁重合工程は、乳化重合工程でモノマーの重合が開始されているため、連続して行うことにより工程を短縮できる。具体的には、乳化重合の進行中に、上記電解質又は酸を水性媒体中に添加する、及び/若しくは、乳化重合工程よりも攪拌速度を速くすることにより、乳化粒子を強制的に凝集させるとともに又は乳化粒子を強制的に凝集させた後、懸濁重合を開始する。攪拌速度を速くすることによって、乳化重合から懸濁重合への切り換えを円滑に行うことができる。
上記強制的に凝集させる方法としては、攪拌速度を速くする方法と、電解質又は酸を水性媒体中に添加する方法を併用することが好ましく、該併用する方法は、界面活性剤を添加する場合に特に好適である。
上記乳化重合工程と懸濁重合工程とにおいて、重合モノマーの消費量は、重合モノマーの全消費量に対する質量比で、乳化重合工程:懸濁重合工程=(3~80):(20~97)であることが好ましい。乳化重合工程と懸濁重合工程による重合モノマーの消費量を上記範囲内にすることによって、本発明の効果はより発揮され、例えば、塗料等の添加剤として用いた場合、形成される塗膜の質感や光沢性を優れたものとするとともに、分散性や粘度を改善することができる。乳化重合工程:懸濁重合工程=(5~60):(40~95)であることがより好ましく、乳化重合工程:懸濁重合工程=(10~50):(50~90)であることが更に好ましい。
上記乳化重合工程と懸濁重合工程とを含む本発明の重合方法において、重合終了時点でのポリマー得量は、水性媒体に対して、生産性の観点から10%以上が好ましく、好ましくは20%以上である。
本発明の製造方法は、少なくともテトラフルオロエチレンを懸濁重合して低分子量PTFE粉末を生成させる懸濁重合工程の後、反応容器から低分子量ポリテトラフルオロエチレン粉末を回収する回収工程を含むことが好ましい。上記回収工程は、懸濁重合により生成される低分子量PTFE粉末を反応容器から回収する工程であればよく、回収方法は特に限定されない。例えば、反応容器内の水性媒体に浮かんでいる低分子量PTFE粉末をすくい出すこと等によって回収することができる。
本発明の製造方法は、水性媒体及び少なくともテトラフルオロエチレンを反応容器に投入する投入工程と、重合開始剤を投入して重合を開始させる重合開始工程と、重合開始剤及び水性媒体の存在下に、少なくともテトラフルオロエチレンを重合して乳化粒子を生成する乳化重合工程と、重合を継続させながら乳化粒子を凝集させて凝集粉末を生成させる凝集工程と、凝集工程の後または凝集工程と同時に、凝集粉末、重合開始剤及び水性媒体の存在下に、少なくともテトラフルオロエチレンを重合する懸濁重合工程と、反応容器から低分子量ポリテトラフルオロエチレン粉末を回収する回収工程を含む方法であることも好ましい態様の一つである。
本発明の製造方法は、水性媒体及び少なくともテトラフルオロエチレンを反応容器に投入する投入工程と、重合開始剤を投入して重合を開始させる重合開始工程と、重合開始剤及び水性媒体の存在下に、少なくともテトラフルオロエチレンを重合して乳化粒子を生成する乳化重合工程と、乳化粒子を含む水性分散液を前記反応容器から回収する回収工程と、回収した水性分散液を前記反応容器又は前記反応容器とは異なる反応容器に投入する工程と、水性媒体及び少なくともテトラフルオロエチレンを当該反応容器に投入する投入工程と、水性分散液中の乳化粒子を凝集させて凝集粉末を生成させる凝集工程と、凝集粉末、重合開始剤及び水性媒体の存在下に、少なくともテトラフルオロエチレンを重合する懸濁重合工程と、反応容器から低分子量ポリテトラフルオロエチレン粉末を回収する回収工程を含む方法であることも好ましい態様の一つである。
本発明の製造方法は、水性媒体及び少なくともテトラフルオロエチレンを反応容器に投入する投入工程と、重合開始剤を投入して重合を開始させる重合開始工程と、重合開始剤及び水性媒体の存在下に、少なくともテトラフルオロエチレンを重合して乳化粒子を生成する乳化重合工程と、乳化粒子を凝集させて凝集粉末を生成させる凝集工程と、凝集粉末を反応容器から回収する回収工程と、凝集粉末、水性媒体及び少なくともテトラフルオロエチレンを前記反応容器又は前記反応容器とは異なる反応容器に投入する投入工程と、凝集粉末、重合開始剤及び水性媒体の存在下に、少なくともテトラフルオロエチレンを重合する懸濁重合工程と、反応容器から低分子量ポリテトラフルオロエチレン粉末を回収する回収工程を含む方法であることも好ましい態様の一つである。
本発明の製造方法は、水性媒体及び少なくともテトラフルオロエチレンを反応容器に投入する投入工程と、重合開始剤を投入して重合を開始させる重合開始工程と、重合開始剤及び水性媒体の存在下に、少なくともテトラフルオロエチレンを重合して乳化粒子を生成する乳化重合工程と、乳化粒子を含む水性分散液を前記反応容器から回収する回収工程と、回収した水性分散液を凝集設備に投入する工程と、凝集設備内で乳化粒子を凝集させて凝集粉末を生成させる凝集工程と、凝集粉末を回収する工程と、凝集粉末、水性媒体及び少なくともテトラフルオロエチレンを前記反応容器又は前記反応容器とは異なる反応容器に投入する投入工程と、凝集粉末、重合開始剤及び水性媒体の存在下に、少なくともテトラフルオロエチレンを重合する懸濁重合工程と、反応容器から低分子量ポリテトラフルオロエチレン粉末を回収する回収工程を含む方法であることも好ましい態様の一つである。
懸濁重合工程において存在する重合開始剤は、乳化重合工程を開始させるために投入した重合開始剤であってもよいし、乳化重合工程完了後に新たに追加投入した重合開始剤であってもよいし、懸濁重合工程中に追加投入した重合開始剤であってもよい。
本発明の製造方法により得られる低分子量ポリテトラフルオロエチレン粉末(以下、「低分子量PTFE粉末」ともいう。)は、低分子量ポリテトラフルオロエチレン(以下、「低分子量PTFE」ともいう。)からなるものである。
本発明は、上記製造方法により得られる低分子量PTFE粉末でもある。
上記低分子量PTFEは、数平均分子量が60万以下である。60万を超えると、フィブリル化特性が発現し、凝集しやすいので、微分散性に劣る場合がある。上記低分子量PTFEの数平均分子量は、上記範囲内であれば好ましい下限を例えば1万とすることができる。1万未満であると、高温での揮発性が高く、焼き付けを必要とする塗料等の耐熱塗料には適さない場合がある。
上記低分子量PTFEの数平均分子量は、フローテスター法を用いて測定し得られた溶融粘度から算出した値である。
上記低分子量PTFEは、380℃における溶融粘度が70万Pa・s以下であることが好ましい。上記範囲内の溶融粘度とすることによって、数平均分子量が60万以下である低分子量PTFEとすることができる。
上記溶融粘度は、380℃における溶融粘度が10000Pa・s以下であることがより好ましく、5000Pa・s以下であることが更に好ましい。溶融粘度が高すぎると、塗料用の添加剤として用いた場合に、塗膜の透明性が低下するおそれがある。
上記溶融粘度は、ASTM D 1238に準拠し、フローテスター(島津製作所社製)及び2φ-8Lのダイを用い、予め380℃で5分間加熱しておいた2gの試料を0.7MPaの荷重にて上記温度に保って測定した値である。上記数平均分子量は、上記測定方法により測定した溶融粘度から算出した値である。
上記低分子量PTFEは、融点が324~333℃であることが好ましい。
上記融点は、エスアイアイ・ナノテクノロジー社製の示差走査熱量測定機RDC220(DSC)を用い、事前に標準サンプルとして、インジウム、鉛を用いて温度校正した上で、低分子量PTFE粉末約3mgをアルミ製パン(クリンプ容器)に入れ、200ml/分のエアー気流下で、250~380℃の温度領域を10℃/分で昇温させて行い、上記領域における融解熱量の極小点を融点とする。
上記製造方法は、少なくともテトラフルオロエチレンを重合して乳化粒子を生成するものであり、テトラフルオロエチレンと、テトラフルオロエチレンと共重合可能な変性モノマー(以下、「変性剤」ともいう。)と、を重合させるものであってもよい。
すなわち、上記低分子量PTFEは、テトラフルオロエチレンホモポリマー〔TFEホモポリマー〕及び/又は変性ポリテトラフルオロエチレン〔変性PTFE〕である。
本明細書において、上記「TFEホモポリマー及び/又は変性PTFE」とは、TFEホモポリマーからなり変性PTFEを含まないもの、変性PTFEからなりTFEホモポリマーを含まないもの、又は、TFEホモポリマーと変性PTFEとからなるものの何れかを意味する。
上記「低分子量PTFE」なる用語における「ポリテトラフルオロエチレン」は、一般には上記TFEホモポリマーを表すことがあるが、本明細書において、上記「低分子量PTFE」がTFEホモポリマー及び/又は変性PTFEであることから明らかであるように、TFEホモポリマーに限る趣旨ではなく、上記「低分子量PTFE」という1つの用語の一部分であるにすぎない。上記「低分子量PTFE」は、1つの用語として全体で、TFEホモポリマー及び/又は変性PTFEを表す。
上記TFEホモポリマーは、モノマーとしてテトラフルオロエチレン〔TFE〕のみを重合することにより得られるものである。
上記変性PTFEは、TFEと、変性剤とを重合して得られる重合体を意味する。
上記変性PTFEにおける変性剤としてはTFEとの共重合が可能なものであれば特に限定されず、例えば、ヘキサフルオロプロペン〔HFP〕等のパーフルオロオレフィン;クロロトリフルオロエチレン〔CTFE〕等のクロロフルオロオレフィン;トリフルオロエチレン、フッ化ビニリデン〔VdF〕等の水素含有フルオロオレフィン;パーフルオロビニルエーテル;パーフルオロブチルエチレン等のパーフルオロアルキルエチレン;エチレン等が挙げられる。また、用いる変性剤は1種であってもよいし、複数種であってもよい。
上記パーフルオロビニルエーテルとしては特に限定されず、例えば、下記一般式(VI)
CF=CF-ORf (VI)
(式中、Rfは、パーフルオロ有機基を表す。)で表されるパーフルオロ不飽和化合物等が挙げられる。本明細書において、上記「パーフルオロ有機基」とは、炭素原子に結合する水素原子が全てフッ素原子に置換されてなる有機基を意味する。上記パーフルオロ有機基は、エーテル酸素を有していてもよい。
上記パーフルオロビニルエーテルとしては、例えば、上記一般式(VI)において、Rfが炭素数1~10のパーフルオロアルキル基を表すものであるパーフルオロ(アルキルビニルエーテル)〔PAVE〕が挙げられる。上記パーフルオロアルキル基の炭素数は、好ましくは1~5である。
上記PAVEにおけるパーフルオロアルキル基としては、例えば、パーフルオロメチル基、パーフルオロエチル基、パーフルオロプロピル基、パーフルオロブチル基、パーフルオロペンチル基、パーフルオロヘキシル基等が挙げられるが、パーフルオロプロピル基が好ましい。
上記パーフルオロビニルエーテルとしては、また、上記一般式(VI)において、Rfが炭素数4~9のパーフルオロ(アルコキシアルキル)基、下記式
Figure JPOXMLDOC01-appb-C000001
(式中、mは、0又は1~4の整数を表す。)で表される有機基、下記式
Figure JPOXMLDOC01-appb-C000002
(式中、nは、1~4の整数を表す。)で表される有機基を表すものであるパーフルオロ(アルコキシアルキルビニルエーテル)若しくはパーフルオロ(アルキルポリオキシアルキレンビニルエーテル)等が挙げられる。
上記変性PTFEにおける変性剤としては、パーフルオロビニルエーテル、クロロトリフルオロエチレンが好ましく、パーフルオロビニルエーテルとしてはPAVEが好ましい。
上記変性PTFEにおいて上記変性剤が上記変性剤とTFEとの全体量に占める割合(質量%)としては、例えば、上記変性剤として上記パーフルオロビニルエーテルを用いる場合、通常、1質量%以下が好ましく、0.001~1質量%がより好ましい。
上記変性PTFEとしては、例えば、数平均分子量、共重合組成等が異なる変性PTFEが1種又は2種以上存在していてもよい。上記TFEホモポリマーとしては、例えば、数平均分子量が異なるTFEホモポリマーが1種又は2種以上存在していてもよい。
上記低分子量PTFEの分子鎖末端には、上記重合開始剤又は上記連鎖移動剤の化学構造に由来する不安定末端基が生じていてもよい。上記不安定末端基としては特に限定されず、例えば、-CHOH、-COOH、-COOCH等が挙げられる。
上記低分子量PTFEは、不安定末端基の安定化を行ったものであってもよい。上記不安定末端基の安定化の方法としては特に限定されず、例えば、フッ素含有ガスに曝露することにより末端をトリフルオロメチル基〔-CF〕に変化させる方法等が挙げられる。
上記低分子量PTFEはまた、末端アミド化を行ったものであってもよい。上記末端アミド化の方法としては特に限定されず、例えば、特開平4-20507号公報に開示されているように、上述のフッ素含有ガスに曝露する等して得られたフルオロカルボニル基〔-COF〕をアンモニアガスと接触させる方法等が挙げられる。
上記低分子量PTFEが上述の不安定末端基の安定化又は末端アミド化を行ったものであると、得られる本発明の低分子量PTFE粉末は、塗料、グリース、化粧品、メッキ液、トナー、プラスチックス等の相手材への添加剤として用いる場合に、相手材となじみやすく、分散性を向上させることができる。
本発明の低分子量PTFE粉末は、比表面積が4~10m/gであることが好ましい。比表面積が上記範囲内であると、比表面積が比較的小さいため、粉末の舞い立ちやホッパーへの付着を低減することができる。4m/g未満であると、マトリックス材料への微分散に劣るおそれがある。また、10mを超えると、例えば、塗膜表面の質感を向上させる等、表面を改質する効果が高く、吸油量も多くなり、マトリックス材料に安定した分散体が得られるが、塗料等への分散性に劣るおそれがあり、また、塗料等の粘度が上昇するおそれもある。比表面積の上限としてより好ましくは8mであり、下限としてより好ましくは5mである。
本明細書において、比表面積は、表面分析計(商品名:MONOSORB、QUANTA CHLROME社製)を用い、キャリアガスとして窒素30%、ヘリウム70%の混合ガスを用い、冷却に液体窒素を用いて、BET法により測定した値である。
本発明の低分子量PTFE粉末は、平均粒子径が0.5~30μmであることが好ましい。このように、平均粒子径が比較的小さい粉末であることで、例えば、塗料の添加剤として用いた場合等に、より優れた表面平滑性を有する塗膜を形成することができる。本発明の低分子量PTFE粉末の平均粒子径としては、20μm以下がより好ましい。
上記平均粒子径は、レーザー回折式粒度分布測定装置(日本レーザー社製)を用い、カスケードは使用せず、圧力0.1MPa、測定時間3秒で粒度分布を測定し、得られた粒度分布積算の50%に対応する粒子径に等しいとした。
上記低分子量PTFE粉末は、低分子量PTFEからなる粉末状固体である。
本発明の低分子量PTFE粉末は、粉砕されたものであってもよい。すなわち、本発明の低分子量PTFE粉末の製造方法は、低分子量ポリテトラフルオロエチレン粉末を粉砕する粉砕工程をさらに含むことも好ましい形態の一つである。上記粉砕工程は、回収工程の後に行われることが好ましい。
本発明の低分子量PTFE粉末の平均粒子径が5μm以下であることも好ましい形態の一つである。粒子径がより小さい粉末であることで、例えば、塗料の添加剤として用いた場合等に、より優れた表面平滑性を有する塗膜を形成することができる。平均粒子径が上記範囲内となる低分子量PTFE粉末は、粉砕によって容易に得ることができる。
上記粉砕の方法としては特に限定されないが、粉砕機で粉砕する方法が挙げられる。また、必要に応じて、懸濁重合工程により得られた低分子量PTFE粉末に放射線を照射した後、粉砕機により粉砕する方法も好ましい方法の一つである。
粉砕機には、ハンマーミル、ピンミル、ジェットミルなどの衝撃式や、回転刃と外周ステーターが凹凸による剪断力で粉砕するカッターミル等の摩砕式などがある。粉砕温度は-200~100℃であることが好ましい。冷凍粉砕では通常-200~-100℃であるが、室温(10~30℃)で粉砕してもよい。冷凍粉砕では一般に液体窒素を使用するが、設備が膨大で粉砕コストも高くなる。工程が簡素となる点、粉砕コストを抑えることができる点で、室温(10℃)~100℃、好ましくは、室温付近の温度(10℃~30℃)で粉砕することが適当である。
上記粉砕の後、微粒子や繊維状粒子を気流分級により除去した後に、さらに分級により粗粒子を除去してもよい。
気流分級においては、粉砕された粒子が減圧空気により円柱状の分級室に送られ、室内の旋回気流により分散され、遠心力によって微粒子が分級される。微粒子は中央部からサイクロンおよびバグフィルターへ回収される。分級室内には、粉砕粒子と空気が均一に旋回運動を行うために円錐状のコーンまたはローターなどの回転体が設置されている。
分級コーンを使用する場合には、分級点の調節は二次エアーの風量と分級コーン間の隙間を調節することにより行う。ローターを使用する場合には、ローターの回転数により分級室内の風量を調節する。
粗粒子の除去方法としては、メッシュによる気流分級、振動篩または超音波篩などが挙げられるが、気流分級が好ましい。
本発明の低分子量PTFE粉末は、放射線を照射されたものであることも好ましい形態の一つである。すなわち、低分子量PTFE粉末の製造方法は、低分子量PTFE粉末に放射線を照射する照射工程を更に含むことが好ましい。また、上記照射工程の後に、上述した粉砕工程を含むものであってもよい。上記照射工程は、回収工程の後に行われることが好ましい。
上記放射線としては、γ線、電子線、X線等が挙げられるが、例えば、電子線又はγ線が好ましい。
本発明の低分子量PTFE粉末は、熱分解されたものであってもよい。すなわち、本発明の低分子量PTFE粉末の製造方法は、回収工程により回収された低分子量PTFEを熱分解する熱分解工程を更に含むことも好ましい形態の一つである。また、上記熱分解工程の後に、上述した粉砕工程を含むものであってもよい。
本発明の低分子量PTFE粉末は、ゲル化されたものであってもよい。すなわち、本発明の低分子量PTFE粉末の製造方法は、懸濁重合工程で生成される低分子量PTFE粉末を加熱処理することでゲル化する工程を含むものであってもよい。
上記加熱処理の温度としては、250℃以上、340℃未満であることが好ましい。上記加熱処理の温度において、好ましい下限は300℃であり、好ましい上限は、低分子量PTFEの融点、例えば330℃である。
本発明のゲル化された低分子量PTFE粉末は、低分子量PTFE粉末の全ての粒子について完全にゲル化された「完全ゲル化」と、一部の粒子若しくは一粒子の一部についてゲル化された「半ゲル化」「セミゲル化」との何れの状態にあるものであってもよい。
上記加熱処理により、低分子量PTFE粉末の粒子同士が点接触によって融着し、全体としては弱い結合力で一体に結合した塊状体を形成する。
また、上記加熱処理により、低分子量PTFE粉末の個々の粒子内でポリマー鎖が運動量を増して相互に絡み合う結果、個々の粒子はサイズが小さくかつ密な構造となって収縮する傾向にある。上記加熱処理によって得られた個々の粒子の見掛け密度は、加熱処理前の粉末に比べて一般に高くなるので、粉末の舞い立ちが少なく、粉末流動性が向上することによりホッパーへの充填性を向上させることができる。
上記加熱処理によって得られた塊状体に対しては、所望の大きさに粉砕処理を行ってもよい。上記粉砕処理は、上記低分子量PTFE粉末の個々の粒子に分かれるように行うことが好ましい。また、粉砕処理は、上述した粉砕の方法によって行ってもよい。
本発明の低分子量PTFEは、上述のように、塗料等の添加剤として用いることで、優れた質感や滑り性を有する塗膜を形成することができるとともに、分散性、粘度を改善することができる。すなわち、上記低分子量PTFEは、各種材料への添加剤として特に好適に使用することができる。具体的には、以下に示す添加剤として特に好ましく用いられる。
本発明は、上記製造方法で得られる低分子量ポリテトラフルオロエチレン粉末を含有する添加剤である。上記添加剤は、塗料組成物用、グリース組成物用、化粧品組成物用、メッキ液組成物用、トナー組成物用、又は、プラスチックス組成物用の添加剤であることが好ましい。
本発明はまた、低分子量ポリテトラフルオロエチレン粉末を含有する組成物である。上記組成物は、塗料、グリース、化粧品、メッキ液、トナー、又は、プラスチックスであることが好ましい。
本発明の低分子量PTFE粉末は、上述したような各種用途において、優れた質感や光沢性等を付与することができる、乳化重合により得られる低分子量PTFE粉末の利点と、分散性を改善し、粘度を改善することができる、懸濁重合により得られる低分子量PTFE粉末の利点を併せ持つ添加剤となる。
上記塗料、グリース、化粧品、メッキ液、トナー又はプラスチックス組成物用の添加剤は、これらの用途に、一般的に行われる方法により製造することができ、他の添加剤等と併用してもよい。また、上記塗料、グリース、化粧品、メッキ液、トナー又はプラスチックスである組成物は、各種用途において一般的に用いられる相手材に対して、通常の方法により混合して製造することができる。
本発明の低分子量PTFE水性分散液の製造方法は、上述の構成よりなるので、本発明の低分子量PTFE粉末は、塗料、グリース、化粧品、メッキ液、トナー又はプラスチックス等を改質する添加剤として好適に使用することができる。本発明の製造方法により得られる低分子量PTFE粉末は、塗料等の添加剤として用いることで、優れた質感や滑り性を有する塗膜を形成することができるとともに、分散性、粘度を改善することができる。
以下に実施例を挙げて本発明を更に詳しく説明するが、本発明はこの実施例のみに限定されるものではない。なお、各実施例及び比較例中の「部」及び「%」は、特に断りの無い限り「質量部」及び「質量%」をそれぞれ意味する。
〔低分子量PTFE粉末の重合〕
比較例1
2枚のステンレス製平板型撹拌翼と温度調節用ジャケットとを備えた内容積6Lのステンレス製オートクレーブに、脱イオン水2760gを仕込み、密閉した。窒素ガスの圧入、脱気を複数回繰り返すことにより、系内の酸素を除去した後、連鎖移動剤として1.8gのエタンをテトラフルオロエチレン〔TFE〕で圧入し、槽内圧力を0.10MPaとした。700rpmでの撹拌下において槽内を昇温し、槽内温度が85℃に達したら、再度TFEを圧入し、槽内圧力を0.80MPaに調整した。
重合開始剤として、脱イオン水20gにジコハク酸パーオキサイド〔DSP〕700mgを溶解させた水溶液と、脱イオン水20gに過硫酸アンモニウム〔APS〕700mgを溶解させた水溶液を、TFEで槽内へ圧入した。重合開始剤の分解により槽内圧力が低下するので、TFEを連続的に供給し、槽内圧力を0.80±0.05MPaに維持した。重合反応中は常時、槽内温度を85±1℃に調節し、撹拌回転数を700rpmに制御した。
TFEの消費量が700gの時点で撹拌を停止し、槽内を脱圧した。重合後の液面及び液中の湿潤状態のポリマー粉末を脱イオン水で洗浄した上でろ別した。ろ別したポリマー粉末を、160℃の熱風循環式乾燥機にて18時間乾燥させることにより、低分子量PTFEの粉末を得た。また、ポリマー粉末をろ別した後の分散液において、水相中の固形分濃度を測定した。その結果を表1に示す。
比較例2
ステンレス製アンカー型撹拌翼と温度調節用ジャケットとを備えた内容積6Lのステンレス製オートクレーブに、脱イオン水2750g、パラフィンワックス90g、および、パーフルオロオクタン酸アンモニウム塩の20%水溶液14gを仕込み、密閉した。その後は、重合反応中の撹拌回転数を300rpmに制御する以外は、比較例1と同様に重合反応を実施した。
重合後の液面には、ポリマー粉末は存在せず、低分子量PTFEの水性分散液が得られた。この水性分散液における水相中の固形分濃度を表1に示す。上記低分子量PTFE水性分散液2000gに硝酸2gを加え、激しい機械的せん断力を加えることでポリマーを凝析させ、ついで得られた湿潤状態の粉末を水洗した上でろ別し、160℃の熱風循環式乾燥機にて18時間乾燥させることにより、低分子量PTFEの粉末を得た。また、ポリマー粉末をろ別した後の分散液において、水相中の固形分濃度を測定した。その結果を表1に示す。
参考例1
重合反応中の撹拌回転数を350rpmに制御し、TFEの消費量が315gの時点で撹拌を停止する以外は、比較例1と同様に重合反応を実施した。
重合後の液面には、微量の湿潤状態のポリマー粉末が浮遊しており、浮遊粉末を脱イオン水で洗浄した上でろ別した後の水相中の固形分濃度を表1に示す。ろ別したポリマー粉末を、160℃の熱風循環式乾燥機にて18時間乾燥させた。乾燥後の得られた粉末得量は、2.5gであった。
重合後の液相は、白色の低分子量PTFEの水性分散液であった。
実施例1
参考例1と同様に重合反応を行い、TFEの消費量が175gの時点で撹拌回転数を700rpmに変更し、さらに525gのTFEが消費するまで重合反応を実施した。
TFEの総消費量が700gの時点で撹拌を停止し、槽内を脱圧した。重合後の液面及び液中の湿潤状態のポリマー粉末を脱イオン水で洗浄した上でろ別する。ろ別したポリマー粉末を、160℃の熱風循環式乾燥機にて18時間乾燥させることにより、低分子量PTFEの粉末を得た。また、ポリマー粉末をろ別した後の分散液において、水相中の固形分濃度を測定した。その結果を表1に示す。
実施例2
参考例1と同様に重合反応を行い、TFEの消費量が175gの時点で脱イオン水20gにシュウ酸2水和物3.4gを溶解させた水溶液を、TFEで槽内へ圧入し、撹拌回転数を350rpmに制御したまま、さらに525gのTFEが消費するまで重合反応を実施した。
TFEの総消費量が700gの時点で撹拌を停止し、槽内を脱圧した。重合後の液面及び液中の湿潤状態のポリマー粉末を脱イオン水で洗浄した上でろ別する。ろ別したポリマー粉末を、160℃の熱風循環式乾燥機にて18時間乾燥させることにより、低分子量PTFEの粉末を得た。また、ポリマー粉末をろ別した後の分散液において、水相中の固形分濃度を測定した。その結果を表1に示す。
実施例3
TFEの消費量が175gになった時点以降、700gまでの撹拌回転数を700rpmに制御する以外は、実施例2と同様に重合反応を実施した。
重合後の液面及び液中の湿潤状態のポリマー粉末を脱イオン水で洗浄した上でろ別する。ろ別したポリマー粉末を、160℃の熱風循環式乾燥機にて18時間乾燥させることにより、低分子量PTFEの粉末を得た。また、ポリマー粉末をろ別した後の分散液において、水相中の固形分濃度を測定した。その結果を表1に示す。
実施例4
シュウ酸2水和物の水溶液の槽内へ圧入が、TFEの消費量50gの時点に変更し、さらに650gのTFEを消費するまで重合反応を行う以外は、実施例3と同様に重合反応を実施した。
重合後の液面及び液中の湿潤状態のポリマー粉末を脱イオン水で洗浄した上でろ別する。ろ別したポリマー粉末を、160℃の熱風循環式乾燥機にて18時間乾燥させることにより、低分子量PTFEの粉末を得た。また、ポリマー粉末をろ別した後の分散液において、水相中の固形分濃度を測定した。その結果を表2に示す。
実施例5
エタンの仕込量を0.2gに変更し、シュウ酸2水和物の水溶液の槽内へ圧入が、TFEの消費量105gの時点に変更し、さらに595gのTFEを消費するまで重合反応を行う以外は、実施例3と同様に重合反応を実施した。
重合後の液面及び液中の湿潤状態のポリマー粉末を脱イオン水で洗浄した上でろ別する。ろ別したポリマー粉末を、160℃の熱風循環式乾燥機にて18時間乾燥させることにより、低分子量PTFEの粉末を得た。また、ポリマー粉末をろ別した後の分散液において、水相中の固形分濃度を測定した。その結果を表2に示す。
実施例6
シュウ酸2水和物の水溶液の槽内へ圧入が、TFEの消費量315gの時点に変更し、さらに385gのTFEを消費するまで重合反応を行う以外は、実施例3と同様に重合反応を実施した。
重合後の液面及び液中の湿潤状態のポリマー粉末を脱イオン水で洗浄した上でろ別する。ろ別したポリマー粉末を、160℃の熱風循環式乾燥機にて18時間乾燥させることにより、低分子量PTFEの粉末を得た。また、ポリマー粉末をろ別した後の分散液において、水相中の固形分濃度を測定した。その結果を表2に示す。
参考例2
脱イオン水2760gとともに、パーフルオロヘキサン酸アンモニウム塩〔APFHx〕の50%水溶液1.12gを仕込む以外は、参考例1と同様に重合反応を実施した。
重合後の液面には、微量の湿潤状態のポリマー粉末が浮遊しており、浮遊粉末を脱イオン水で洗浄した上で、ろ別した。ろ別したポリマー粉末を、160℃の熱風循環式乾燥機にて18時間乾燥させた。乾燥後の得られた粉末得量は、1.2gであった。また、ポリマー粉末をろ別した後の分散液において、水相中の固形分濃度を測定した。その結果を表2に示す。
重合後の液相は、白色の低分子量PTFEの水性分散液であった。
実施例7
参考例2と同様に重合反応を行い、TFEの消費量が315gの時点で脱イオン水20gにシュウ酸2水和物430mgを溶解させた水溶液を、TFEで槽内へ圧入し、撹拌回転数を700rpmに制御し、さらに385gのTFEが消費するまで重合反応を実施した。
TFEの総消費量が700gの時点で撹拌を停止し、槽内を脱圧した。重合後の液面及び液中の湿潤状態のポリマー粉末を脱イオン水で洗浄した上でろ別する。ろ別したポリマー粉末を、160℃の熱風循環式乾燥機にて18時間乾燥させることにより、低分子量PTFEの粉末を得た。また、ポリマー粉末をろ別した後の分散液において、水相中の固形分濃度を測定した。その結果を表2に示す。
実施例8
シュウ酸2水和物の水溶液の槽内へ圧入が、TFEの消費量490gの時点に変更し、さらに210gのTFEを消費するまで重合反応を行う以外は、実施例7と同様に重合反応を実施した。
重合後の液面及び液中の湿潤状態のポリマー粉末を脱イオン水で洗浄した上でろ別する。ろ別したポリマー粉末を、160℃の熱風循環式乾燥機にて18時間乾燥させることにより、低分子量PTFEの粉末を得た。また、ポリマー粉末をろ別した後の分散液において、水相中の固形分濃度を測定した。その結果を表2に示す。
各比較例及び実施例若しくは参考例で得られた重合後の液相、又は低分子量PTFE水性分散液について下記(1)~(2)の物性評価を行い、各比較例及び実施例で得られた低分子量PTFE粉末について下記(3)~(6)の物性評価を行った。
(1)水性分散液中の固形分濃度(P%)
水性分散液(Xg)を150℃にて3時間加熱した加熱残分(Zg)に基づき、式:P=Z/X×100(%)にて決定した。 
(2)平均一次粒子径
ポリマー濃度を0.22質量%に調整した水性分散液の単位長さに対する550nmの投射光の透過率と、透過型電子顕微鏡写真における定方向径を測定して決定された平均一次粒子径との検量線を作成し、測定対象である水性分散液について、上記透過率を測定し、上記検量線をもとに決定した。
(3)平均粒子径 
レーザー回折式粒度分布測定装置(日本電子社製)を用い、カスケードは使用せず、圧力0.1MPa、測定時間3秒で粒度分布を測定し、得られた粒度分布における累積体積%の50%に対応する値に等しいとした。
また、D90は粒度分布における累積体積%が90%のときの粒子径とし、D10は粒度分布における累積体積%が10%のときの粒子径とした。1μm以下の粒子の割合は、粒度分布における1μm以下の累積体積%とした。
(4)溶融粘度 
ASTM D 1238に準拠し、フローテスター(島津製作所社製)及び2φ-8Lのダイを用い、予め測定温度(340℃又は380℃)で5分間加熱しておいた2gの試料を0.7MPaの荷重にて上記温度に保って測定を行った。
(5)融点 
エスアイアイ・ナノテクノロジー社製の示差走査熱量測定機RDC220(DSC)を用い、事前に標準サンプルとして、インジウム、鉛を用いて温度校正した上で、低分子量PTFE粉末約3mgをアルミ製パン(クリンプ容器)に入れ、200ml/分のエアー気流下で、250~380℃の温度領域を10℃/分で昇温させて行い、上記領域における融解熱量の極小点を融点とした。
(6)比表面積 
BET法により、表面分析計(商品名:MONOSORB、QUANTA CHLROME社製)を用いて測定した。尚、キャリアガスとして、窒素30%、ヘリウム70%の混合ガスを用い、冷却は液体窒素を用いて行った。
以上の結果を表1又は2に示す。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
粉砕比較例1
比較例1で得られた低分子量PTFE粉末を粉砕機にて微粉砕した。粉砕機は、分級機を備えたホソカワミクロン社製エアージェットミル200AFGを用いた。分級機の分級ローターは約9000rpmで回転させた。
粉砕比較例2
比較例2で得られた低分子量PTFE粉末を、分級ローターの回転数約7000rpmで粉砕比較例1と同様に微粉砕した。
粉砕実施例1
実施例3で得られた低分子量PTFE粉末を、分級ローターの回転数約7000rpmで粉砕比較例1と同様に微粉砕した。
粉砕実施例2
実施例8で得られた低分子量PTFE粉末を、分級ローターの回転数約7000rpmで粉砕比較例1と同様に微粉砕した。
粉砕粉末の結果を表3に示す。
Figure JPOXMLDOC01-appb-T000005
比較例1、2、実施例3、実施例8、粉砕比較例1、2、粉砕実施例1、2で得られた低分子量PTFE粉末の分散性評価を行った。
分散性評価
予め、ポリエーテルサルフォン55gをN-メチル-2-ピロリドン336gに添加し、混合溶液が透明になるまでディスパー式撹拌機にて撹拌混合し、低分子量PTFE粉末70gを添加し、撹拌速度3000rpmで撹拌混合した。
撹拌15分毎にブレードに溶液を塗装し、ブレード粗さを測定した。ブレード粗さが15μm以下であれば分散性が合格と判断し、総撹拌時間を記録した。総撹拌時間が120分に達してもブレード粗さが15μm以下にならない場合は、総撹拌時間が120分時点でのブレード粗さを記載した。
分散性評価の結果を表4、5に示す。
比較例1で得られた低分子量PTFE粉末を添加した塗料と比較して、比較例2、実施例3、8で得られた低分子量PTFE粉末を添加した塗料のブレード粗さは、低い。
粉砕実施例1、2で得られた低分子量PTFE粉末を添加した塗料のブレード粗さは、粉砕比較例1、2で得られた低分子量PTFE粉末のものと差が無く、いずれも分散性が良好であったが、粉砕比較例2で得られた低分子量PTFE粉末を添加した塗料のブレード粗さが15μm以下に到達する所要時間は、粉砕比較例1、粉砕実施例1、2よりも長く、分散性に劣っていた。
比較例1、2、実施例3、実施例8、粉砕比較例1、2、粉砕実施例1、2で得られた低分子量PTFE粉末の塗料化評価を行った。
塗料化評価
予め、ポリエーテルサルフォン42gをN-メチル-2-ピロリドン130g、キシレン24g、メチルイソブチルケトン72gの混合溶剤に添加し、混合溶液が透明になるまでディスパー式撹拌機にて撹拌混合し、低分子量PTFE粉末16.8gを添加し、撹拌速度3000rpmで30分間撹拌混合した。さらに、カーボンブラック1.2gとN-メチル-2-ピロリドン14gを撹拌することにより作製したカーボンブラックペーストを、上記低分子量PTFE分散溶液に添加し、撹拌速度3000rpmで10分間撹拌混合し、塗料を作製した。
脱脂したアルミニウム板に上記塗料をスプレー塗装し、90℃にて15分間乾燥し、さらに380℃にて15分間焼成させ、塗装板を作製した。
この塗料および塗装板について、以下の評価を実施した。
(1)塗料粘度
JIS K 6893に準拠し、塗料粘度を測定した。
(2)光沢度
JIS K 5400に準拠し、光沢度(60°)を測定した。
(3)耐摩耗性
ASTM D-1044に準拠し、摩擦材料CS-17を用い、荷重1.0Kgで1000回転後の磨耗量を測定した。
(4)塗膜外観
目視試験にて、塗膜外観を観察した。
塗料化評価の結果を表4、5に示す。
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
比較例1で得られた低分子量PTFE粉末を添加した塗料の塗膜外観は、比較例2、実施例3、8で得られた低分子量PTFE粉末のものと比較して粗かった。
粉砕比較例1、2、粉砕実施例1、2で得られた低分子量PTFE粉末を添加した塗料の塗膜外観はいずれも滑らかで良好であったが、中でも粉砕比較例2、粉砕実施例1、2で得られた低分子量PTFE粉末を添加した塗料の塗膜外観は特に滑らかで質感が良好であった。
比較例1で得られた低分子量PTFE粉末を添加した塗料は、比較例2、実施例3、8、と比較して、塗料粘度が低く、塗装時に液ダレを引き起こした。一方、比較例2で得られた低分子量PTFE粉末を添加した塗料の粘度は高く、取扱い性が悪かった。
また、粉砕比較例1で得られた低分子量PTFE粉末を添加した塗料も、粉砕実施例1、2で得られた低分子量PTFE粉末を添加した塗料と比較して、塗料粘度が低く、塗装時に液がたれやすく、粉砕比較例2で得られた低分子量PTFE粉末を添加した塗料の粘度は高く、取扱い性が悪かった。
本発明の低分子量PTFE粉末は、上述の構成よりなるので、塗料、グリース、化粧品、メッキ液、トナー、プラスチックス等への添加剤として好適に用いることができる。

Claims (21)

  1. 低分子量ポリテトラフルオロエチレン粉末の製造方法であって、
    重合開始剤及び水性媒体の存在下に、少なくともテトラフルオロエチレンを重合して乳化粒子を生成する乳化重合工程と、
    前記乳化粒子を凝集させて凝集粉末を生成させる凝集工程と、
    前記凝集粉末、重合開始剤及び水性媒体の存在下に、少なくともテトラフルオロエチレンを重合する懸濁重合工程と、
    を含むことを特徴とする低分子量ポリテトラフルオロエチレン粉末の製造方法。
  2. 前記乳化重合工程または懸濁重合工程のうち少なくとも一方の工程において、連鎖移動剤を存在させる請求項1記載の低分子量ポリテトラフルオロエチレン粉末の製造方法。
  3. 前記重合開始剤は、水溶性過酸化物である請求項1又は2記載の低分子量ポリテトラフルオロエチレン粉末の製造方法。
  4. 前記乳化重合工程は、界面活性剤の存在下で重合を行う工程である請求項1、2又は3記載の低分子量ポリテトラフルオロエチレン粉末の製造方法。
  5. 前記界面活性剤は、含フッ素界面活性剤である請求項4記載の低分子量ポリテトラフルオロエチレン粉末の製造方法。
  6. 前記界面活性剤は、炭化水素系界面活性剤である請求項4記載の低分子量ポリテトラフルオロエチレン粉末の製造方法。
  7. 前記凝集工程は、電解質を添加して乳化粒子を凝集させる工程である請求項1、2、3、4、5又は6記載の低分子量ポリテトラフルオロエチレン粉末の製造方法。
  8. 前記電解質は、炭酸アンモニウム、炭酸水素アンモニウム、水酸化ナトリウム及び硫酸アンモニウムからなる群より選択される少なくとも1種の化合物である請求項7記載の低分子量ポリテトラフルオロエチレン粉末の製造方法。
  9. 前記凝集工程は、酸を添加して乳化粒子を凝集させる工程である請求項1、2、3、4、5、6、7又は8記載の低分子量ポリテトラフルオロエチレン粉末の製造方法。
  10. 前記酸は、硝酸、硫酸及びシュウ酸からなる群より選択される少なくとも1種の化合物である請求項9記載の低分子量ポリテトラフルオロエチレン粉末の製造方法。
  11. 前記連鎖移動剤は、エタン又はプロパンである請求項2、3、4、5、6、7、8、9又は10記載の低分子量ポリテトラフルオロエチレン粉末の製造方法。
  12. 前記水溶性過酸化物は、過硫酸アンモニウム、過硫酸カリウム及びジコハク酸パーオキサイドからなる群より選択される少なくとも1種の化合物である請求項3、4、5、6、7、8、9、10又は11記載の低分子量ポリテトラフルオロエチレン粉末の製造方法。
  13. 低分子量ポリテトラフルオロエチレン粉末を粉砕する粉砕工程をさらに含む請求項1、2、3、4、5、6、7、8、9、10、11又は12記載の低分子量ポリテトラフルオロエチレン粉末の製造方法。
  14. 請求項1、2、3、4、5、6、7、8、9、10、11、12又は13記載の製造方法から得られる低分子量ポリテトラフルオロエチレン粉末。
  15. 溶融粘度が70万Pa・s以下である請求項14記載の低分子量ポリテトラフルオロエチレン粉末。
  16. 比表面積が4~8m/gである請求項14又は15記載の低分子量ポリテトラフルオロエチレン粉末。
  17. 平均粒子径が0.5~30μmである請求項14、15又は16記載の低分子量ポリテトラフルオロエチレン粉末。
  18. 請求項14、15、16又は17記載の低分子量ポリテトラフルオロエチレン粉末を含有することを特徴とする添加剤。
  19. 塗料組成物用、グリース組成物用、化粧品組成物用、メッキ液組成物用、トナー組成物用、又は、プラスチックス組成物用である請求項18記載の添加剤。
  20. 請求項14、15、16又は17記載の低分子量ポリテトラフルオロエチレン粉末を含有することを特徴とする組成物。
  21. 塗料、グリース、化粧品、メッキ液、トナー、又は、プラスチックスである請求項20記載の組成物。
PCT/JP2010/055891 2009-03-31 2010-03-31 低分子量ポリテトラフルオロエチレン粉末及びその製造方法 WO2010114033A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP10758804.8A EP2415788B1 (en) 2009-03-31 2010-03-31 Low molecular weight polytetrafluoroethylene powder and preparation method therefor
US13/260,911 US8754176B2 (en) 2009-03-31 2010-03-31 Low molecular weight polytetrafluoroethylene powder and preparation method therefor
JP2011507266A JP5569519B2 (ja) 2009-03-31 2010-03-31 低分子量ポリテトラフルオロエチレン粉末及びその製造方法
CN201080014423.9A CN102369221B (zh) 2009-03-31 2010-03-31 低分子量聚四氟乙烯粉末及其制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-088270 2009-03-31
JP2009088270 2009-03-31

Publications (1)

Publication Number Publication Date
WO2010114033A1 true WO2010114033A1 (ja) 2010-10-07

Family

ID=42828322

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/055891 WO2010114033A1 (ja) 2009-03-31 2010-03-31 低分子量ポリテトラフルオロエチレン粉末及びその製造方法

Country Status (5)

Country Link
US (1) US8754176B2 (ja)
EP (1) EP2415788B1 (ja)
JP (1) JP5569519B2 (ja)
CN (1) CN102369221B (ja)
WO (1) WO2010114033A1 (ja)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013157647A1 (ja) 2012-04-20 2013-10-24 ダイキン工業株式会社 Ptfeを主成分とする組成物、混合粉末、成形用材料、及びフィルタ用濾材、エアフィルタユニット、並びに多孔膜の製造方法
US20140220488A1 (en) * 2013-02-06 2014-08-07 Konica Minolta, Inc. Image forming method
WO2015060364A1 (ja) 2013-10-23 2015-04-30 ダイキン工業株式会社 エンボス加工されたエアフィルタ用濾材、フィルタパック、エアフィルタユニット、およびエンボス加工されたエアフィルタ用濾材の製造方法
WO2018131573A1 (ja) 2017-01-12 2018-07-19 ダイキン工業株式会社 エアフィルタ濾材
WO2019112017A1 (ja) * 2017-12-07 2019-06-13 Agc株式会社 粉体、粉体塗料および積層体の製造方法
WO2019142747A1 (ja) * 2018-01-19 2019-07-25 Agc株式会社 樹脂付金属箔の製造方法
WO2020017472A1 (ja) 2018-07-20 2020-01-23 ダイキン工業株式会社 エアフィルタ濾材、フィルタパック、およびエアフィルタユニット
WO2020067182A1 (ja) 2018-09-28 2020-04-02 ダイキン工業株式会社 エアフィルタ濾材、フィルタパック、エアフィルタユニット、およびこれらの製造方法
WO2021131096A1 (ja) * 2019-12-25 2021-07-01 ダイキン工業株式会社 冷凍サイクル装置、冷凍機油および冷媒漏洩防止剤
WO2021246306A1 (ja) * 2020-06-01 2021-12-09 Agc株式会社 パウダーの製造方法、パウダー及びパウダー分散液
WO2022168877A1 (ja) 2021-02-04 2022-08-11 ダイキン工業株式会社 エアフィルタ濾材、エアフィルタ濾材の製造方法、マスク用濾材、および、プリーツ状マスク用濾材
WO2022255453A1 (ja) 2021-06-04 2022-12-08 ダイキン工業株式会社 エアフィルタ濾材、プリーツ状濾材、エアフィルタユニット、マスク用濾材、および、エアフィルタ濾材の再生方法
WO2023277137A1 (ja) * 2021-06-30 2023-01-05 ダイキン工業株式会社 ポリテトラフルオロエチレンパウダーの製造方法およびポリテトラフルオロエチレンパウダー
WO2023145924A1 (ja) * 2022-01-31 2023-08-03 三井化学株式会社 エチレン系重合体粒子、エチレン系重合体粒子の製造方法、延伸成形体、延伸成形体の製造方法、およびその用途
WO2023176801A1 (ja) 2022-03-15 2023-09-21 ダイキン工業株式会社 エアフィルタ濾材、エアフィルタパック、および、エアフィルタユニット

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102369221B (zh) * 2009-03-31 2014-03-12 大金工业株式会社 低分子量聚四氟乙烯粉末及其制造方法
EP2955197B1 (en) * 2013-02-05 2019-04-17 AGC Inc. Process for producing polytetrafluoroethylene molding powder and process for producing polytetrafluoroethylene agglomerated product
CN106029749B (zh) * 2014-02-27 2019-10-01 大金工业株式会社 包含聚四氟乙烯的糊料及其制造方法
CN104371045A (zh) * 2014-12-11 2015-02-25 福建三农化学农药有限责任公司 一种提高ptfe分散乳液粘度的方法
CN105367692B (zh) * 2015-12-07 2017-11-24 上海三爱富新材料股份有限公司 低分子量聚四氟乙烯树脂的制备方法
US10870735B2 (en) * 2016-08-04 2020-12-22 Daikin Industries, Ltd. Method for producing low molecular weight polytetrafluoroethylene, low molecular weight polytetrafluoroethylene, and powder
CN107236063B (zh) * 2017-06-14 2018-01-23 广州华大生物科技有限公司 一种低分子量聚四氟乙烯的制备方法
WO2019156071A1 (ja) * 2018-02-07 2019-08-15 ダイキン工業株式会社 低分子量ポリテトラフルオロエチレンを含む組成物の製造方法
EP3828208A4 (en) * 2018-07-23 2022-07-13 Daikin Industries, Ltd. POLYTETRAFLUOROETHYLENE AND STRETCHED BODY
EP4031589A4 (en) * 2019-09-17 2023-10-04 Gujarat Fluorochemicals Limited Low molecular weight polytetrafluoroethylene micropowder and process for preparing the same
CN111269342B (zh) * 2020-01-22 2021-09-21 上海华谊三爱富新材料有限公司 高纯聚四氟乙烯的制备方法
CN112538125B (zh) * 2020-12-14 2022-11-08 江西理文化工有限公司 一种低分子量聚四氟乙烯树脂的制备方法

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2534058A (en) 1946-11-30 1950-12-12 Du Pont Polymerization of tetrafluoroethylene with dibasic acid peroxide catalysts
JPS4878252A (ja) 1972-01-20 1973-10-20 Japan Atomic Energy Res Inst
JPS5141085A (ja) 1974-10-05 1976-04-06 Daikin Ind Ltd Tetorafuruoruechirenwatsukusuno seizoho
JPS61162503A (ja) 1985-01-10 1986-07-23 Central Glass Co Ltd 含フツ素樹脂の低分子量物の製造方法
JPH0420507A (ja) 1990-05-14 1992-01-24 Daikin Ind Ltd テトラフルオロエチレン共重合体およびその製法
JPH07165828A (ja) 1993-09-21 1995-06-27 Hoechst Ag ポリテトラフルオルエチレンミクロパウダー及びそれらの製造方法と使用法
JPH10147617A (ja) 1996-09-18 1998-06-02 Daikin Ind Ltd ポリテトラフルオロエチレン粉末及びその製造方法
JP2001049068A (ja) * 1999-08-16 2001-02-20 E I Du Pont De Nemours & Co 溶融加工性ポリテトラフルオロエチレン組成物
JP2004514769A (ja) * 2000-11-30 2004-05-20 スリーエム イノベイティブ プロパティズ カンパニー ポリテトラフルオロエチレン製造のための非爆発性乳化重合プロセス
WO2004050727A1 (en) 2002-11-22 2004-06-17 E.I. Du Pont De Nemours And Company Directly polymerized low molecular weight granular polytetrafluoroethylene
JP2005002322A (ja) 2003-02-28 2005-01-06 Daikin Ind Ltd 低分子量ポリテトラフルオロエチレン造粒粉末、低分子量ポリテトラフルオロエチレン粉末及びこれらの製造方法
JP2007510028A (ja) * 2003-10-30 2007-04-19 ライプニッツ−インスティチュート フュア ポリマーフォルシュング ドレスデン エーファウ ラジカル結合ptfeポリマー粉末及びその製造法
JP2009001745A (ja) 2007-06-25 2009-01-08 Daikin Ind Ltd 低分子量ポリテトラフルオロエチレン水性分散液及びその製造方法

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3838030A (en) 1971-11-30 1974-09-24 Japan Atomic Energy Res Inst Process for preparing of polytetrafluoroethylene resin wax
DE3135598A1 (de) * 1981-09-09 1983-03-17 Hoechst Ag, 6000 Frankfurt "kontinuierliches verfahren zur agglomerierung von ptee-pulvern im fluessigen medium und damit gewonnenes modifiziertes ptee-pulver"
US4576869A (en) * 1984-06-18 1986-03-18 E. I. Du Pont De Nemours And Company Tetrafluoroethylene fine powder and preparation thereof
IT1191635B (it) 1984-11-14 1988-03-23 Central Glass Co Ltd Procedimento di conversione di un polimero elevato contenente fluoro in un polimeto a peso molecolare inferiore
JPS62260849A (ja) * 1986-04-11 1987-11-13 Daikin Ind Ltd 熱溶融性フツ素樹脂の顆粒状粉末およびその製造法
CN1283717C (zh) 1999-08-16 2006-11-08 纳幕尔杜邦公司 可熔体成型的聚四氟乙烯
US7253240B2 (en) 2000-11-30 2007-08-07 3M Innovative Properties Company Explosion-free process for the production of polytetrafluoroethylene
ATE400592T1 (de) 2001-05-02 2008-07-15 3M Innovative Properties Co Emulgatorfreies wässriges emulsionspolymerisationsverfahren zur herstellung von fluorpolymeren
JP4840280B2 (ja) * 2001-10-24 2011-12-21 ダイキン工業株式会社 Ptfe粉末及びptfe成形用粉末製造方法
WO2004076539A1 (ja) 2003-02-28 2004-09-10 Daikin Industries, Ltd. 低分子量ポリテトラフルオロエチレン造粒粉末、低分子量ポリテトラフルオロエチレン粉末及びこれらの製造方法
JP4099163B2 (ja) * 2004-06-15 2008-06-11 株式会社リコー 画像形成粒子製造方法、画像形成粒子からなるトナー、現像剤、画像形成方法、トナー入り容器、画像形成装置及びプロセスカートリッジ
JP4797347B2 (ja) * 2004-08-25 2011-10-19 旭硝子株式会社 低分子量ポリテトラフルオロエチレン水性分散液の製造方法
US7494758B2 (en) * 2005-01-24 2009-02-24 Canon Kabushiki Kaisha Process for producing toner particles
WO2007069493A1 (ja) 2005-12-12 2007-06-21 Kaneka Corporation 重合体粒子、及びその製造方法、並びに、その重合体粒子を含む樹脂組成物、及び成形体
JP4878252B2 (ja) 2006-09-25 2012-02-15 巴工業株式会社 ベルト型濃縮機
JP5581569B2 (ja) * 2007-02-16 2014-09-03 ダイキン工業株式会社 ポリテトラフルオロエチレンファインパウダー、ポリテトラフルオロエチレン製造方法
JP5338667B2 (ja) 2007-08-07 2013-11-13 ダイキン工業株式会社 低分子量ポリテトラフルオロエチレン水性分散液、低分子量ポリテトラフルオロエチレン粉末及び低分子量ポリテトラフルオロエチレンの製造方法
CN102369221B (zh) * 2009-03-31 2014-03-12 大金工业株式会社 低分子量聚四氟乙烯粉末及其制造方法

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2534058A (en) 1946-11-30 1950-12-12 Du Pont Polymerization of tetrafluoroethylene with dibasic acid peroxide catalysts
JPS4878252A (ja) 1972-01-20 1973-10-20 Japan Atomic Energy Res Inst
JPS5141085A (ja) 1974-10-05 1976-04-06 Daikin Ind Ltd Tetorafuruoruechirenwatsukusuno seizoho
JPS61162503A (ja) 1985-01-10 1986-07-23 Central Glass Co Ltd 含フツ素樹脂の低分子量物の製造方法
JPH0420507A (ja) 1990-05-14 1992-01-24 Daikin Ind Ltd テトラフルオロエチレン共重合体およびその製法
JPH07165828A (ja) 1993-09-21 1995-06-27 Hoechst Ag ポリテトラフルオルエチレンミクロパウダー及びそれらの製造方法と使用法
JPH10147617A (ja) 1996-09-18 1998-06-02 Daikin Ind Ltd ポリテトラフルオロエチレン粉末及びその製造方法
JP2001049068A (ja) * 1999-08-16 2001-02-20 E I Du Pont De Nemours & Co 溶融加工性ポリテトラフルオロエチレン組成物
JP2004514769A (ja) * 2000-11-30 2004-05-20 スリーエム イノベイティブ プロパティズ カンパニー ポリテトラフルオロエチレン製造のための非爆発性乳化重合プロセス
WO2004050727A1 (en) 2002-11-22 2004-06-17 E.I. Du Pont De Nemours And Company Directly polymerized low molecular weight granular polytetrafluoroethylene
JP2006509072A (ja) 2002-11-22 2006-03-16 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー 直接重合された低分子量の粒状ポリテトラフルオロエチレン
JP2005002322A (ja) 2003-02-28 2005-01-06 Daikin Ind Ltd 低分子量ポリテトラフルオロエチレン造粒粉末、低分子量ポリテトラフルオロエチレン粉末及びこれらの製造方法
JP2007510028A (ja) * 2003-10-30 2007-04-19 ライプニッツ−インスティチュート フュア ポリマーフォルシュング ドレスデン エーファウ ラジカル結合ptfeポリマー粉末及びその製造法
JP2009001745A (ja) 2007-06-25 2009-01-08 Daikin Ind Ltd 低分子量ポリテトラフルオロエチレン水性分散液及びその製造方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP2415788A4
TAKAOMI SATOGAWA: "Handbook of Fluoropolymers", 1990, THE NIKKAN KOGYO SHIMBUN, LTD., pages: 27

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013157647A1 (ja) 2012-04-20 2013-10-24 ダイキン工業株式会社 Ptfeを主成分とする組成物、混合粉末、成形用材料、及びフィルタ用濾材、エアフィルタユニット、並びに多孔膜の製造方法
EP3118256A1 (en) 2012-04-20 2017-01-18 Daikin Industries, Limited Composition having ptfe as main component, mixed powder and material for molding
US20140220488A1 (en) * 2013-02-06 2014-08-07 Konica Minolta, Inc. Image forming method
WO2015060364A1 (ja) 2013-10-23 2015-04-30 ダイキン工業株式会社 エンボス加工されたエアフィルタ用濾材、フィルタパック、エアフィルタユニット、およびエンボス加工されたエアフィルタ用濾材の製造方法
WO2018131573A1 (ja) 2017-01-12 2018-07-19 ダイキン工業株式会社 エアフィルタ濾材
WO2019112017A1 (ja) * 2017-12-07 2019-06-13 Agc株式会社 粉体、粉体塗料および積層体の製造方法
WO2019142747A1 (ja) * 2018-01-19 2019-07-25 Agc株式会社 樹脂付金属箔の製造方法
CN111601666A (zh) * 2018-01-19 2020-08-28 Agc株式会社 带树脂的金属箔的制造方法
JPWO2019142747A1 (ja) * 2018-01-19 2021-01-28 Agc株式会社 樹脂付金属箔の製造方法
JP7176533B2 (ja) 2018-01-19 2022-11-22 Agc株式会社 樹脂付金属箔の製造方法
WO2020017472A1 (ja) 2018-07-20 2020-01-23 ダイキン工業株式会社 エアフィルタ濾材、フィルタパック、およびエアフィルタユニット
WO2020067182A1 (ja) 2018-09-28 2020-04-02 ダイキン工業株式会社 エアフィルタ濾材、フィルタパック、エアフィルタユニット、およびこれらの製造方法
JP2021103072A (ja) * 2019-12-25 2021-07-15 ダイキン工業株式会社 冷凍サイクル装置、冷凍機油および冷媒漏洩防止剤
AU2020412907B2 (en) * 2019-12-25 2024-03-21 Daikin Industries, Ltd. Refrigeration cycle device, refrigeration machine oil and refrigerant leakage prevention agent
CN114867828A (zh) * 2019-12-25 2022-08-05 大金工业株式会社 冷冻循环装置、冷冻机油和制冷剂防泄漏剂
WO2021131096A1 (ja) * 2019-12-25 2021-07-01 ダイキン工業株式会社 冷凍サイクル装置、冷凍機油および冷媒漏洩防止剤
JP2021102745A (ja) * 2019-12-25 2021-07-15 ダイキン工業株式会社 冷凍サイクル装置、冷凍機油および冷媒漏洩防止剤
JP7227501B2 (ja) 2019-12-25 2023-02-22 ダイキン工業株式会社 冷凍サイクル装置、冷凍機油および冷媒漏洩防止剤
CN114867828B (zh) * 2019-12-25 2023-07-14 大金工业株式会社 冷冻循环装置、冷冻机油和制冷剂防泄漏剂
CN116731775B (zh) * 2019-12-25 2025-02-18 大金工业株式会社 冷冻循环装置、冷冻机油和制冷剂防泄漏剂
CN116731775A (zh) * 2019-12-25 2023-09-12 大金工业株式会社 冷冻循环装置、冷冻机油和制冷剂防泄漏剂
WO2021246306A1 (ja) * 2020-06-01 2021-12-09 Agc株式会社 パウダーの製造方法、パウダー及びパウダー分散液
WO2022168877A1 (ja) 2021-02-04 2022-08-11 ダイキン工業株式会社 エアフィルタ濾材、エアフィルタ濾材の製造方法、マスク用濾材、および、プリーツ状マスク用濾材
WO2022255453A1 (ja) 2021-06-04 2022-12-08 ダイキン工業株式会社 エアフィルタ濾材、プリーツ状濾材、エアフィルタユニット、マスク用濾材、および、エアフィルタ濾材の再生方法
WO2023277137A1 (ja) * 2021-06-30 2023-01-05 ダイキン工業株式会社 ポリテトラフルオロエチレンパウダーの製造方法およびポリテトラフルオロエチレンパウダー
WO2023145924A1 (ja) * 2022-01-31 2023-08-03 三井化学株式会社 エチレン系重合体粒子、エチレン系重合体粒子の製造方法、延伸成形体、延伸成形体の製造方法、およびその用途
WO2023176801A1 (ja) 2022-03-15 2023-09-21 ダイキン工業株式会社 エアフィルタ濾材、エアフィルタパック、および、エアフィルタユニット

Also Published As

Publication number Publication date
EP2415788A4 (en) 2012-10-10
EP2415788A1 (en) 2012-02-08
CN102369221B (zh) 2014-03-12
US20120101214A1 (en) 2012-04-26
JP5569519B2 (ja) 2014-08-13
US8754176B2 (en) 2014-06-17
JPWO2010114033A1 (ja) 2012-10-11
CN102369221A (zh) 2012-03-07
EP2415788B1 (en) 2014-04-30

Similar Documents

Publication Publication Date Title
JP5569519B2 (ja) 低分子量ポリテトラフルオロエチレン粉末及びその製造方法
JP5532532B2 (ja) 低分子量ポリテトラフルオロエチレン水性分散液及びその製造方法
JP5338667B2 (ja) 低分子量ポリテトラフルオロエチレン水性分散液、低分子量ポリテトラフルオロエチレン粉末及び低分子量ポリテトラフルオロエチレンの製造方法
JP5839074B2 (ja) ポリテトラフルオロエチレンファインパウダーの製造方法
JP5177271B2 (ja) ポリテトラフルオロエチレンファインパウダーの製造方法
JP6098643B2 (ja) 含フッ素共重合体の製造方法
JP2010180364A (ja) 低分子量ポリテトラフルオロエチレン水性分散液、低分子量ポリテトラフルオロエチレン粉末及び低分子量ポリテトラフルオロエチレンの製造方法
WO2014084399A1 (ja) ポリテトラフルオロエチレン水性分散液及びポリテトラフルオロエチレンファインパウダー
JP5697308B2 (ja) 低分子量ポリテトラフルオロエチレン粉末及びその製造方法、低分子量ポリテトラフルオロエチレンゲル化粉末、並びに定着部材用塗料
JP6508307B2 (ja) ポリテトラフルオロエチレンモールディングパウダーの製造方法およびポリテトラフルオロエチレン造粒物の製造方法
WO2024024891A1 (ja) フルオロポリマー水性分散液の製造方法、フルオロポリマー水性分散液および塗料組成物
JPH0420534A (ja) ポリテトラフルオロエチレン粉末の製法
EP1605011B1 (en) Granulated powder of low-molecular polytetrafluoro- ethylene and powder of low-molecular polytetrafluoro- ethylene and processes for producing both
JP2023504273A (ja) ペルフルオロスルホン酸アイオノマーの分散性粒子
JP3775420B2 (ja) 低分子量ポリテトラフルオロエチレン造粒粉末、低分子量ポリテトラフルオロエチレン粉末及びこれらの製造方法
CN1331920C (zh) 低分子量聚四氟乙烯造粒粉末、低分子量聚四氟乙烯粉末以及它们的制造方法
WO2025070825A1 (ja) フルオロポリマーの製造方法
WO2023182229A1 (ja) フルオロポリマーの製造方法および組成物

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080014423.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10758804

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2011507266

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13260911

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010758804

Country of ref document: EP