WO2010109826A1 - Actuator, drive device, lens unit, image-capturing device, and operation method for actuator - Google Patents
Actuator, drive device, lens unit, image-capturing device, and operation method for actuator Download PDFInfo
- Publication number
- WO2010109826A1 WO2010109826A1 PCT/JP2010/001944 JP2010001944W WO2010109826A1 WO 2010109826 A1 WO2010109826 A1 WO 2010109826A1 JP 2010001944 W JP2010001944 W JP 2010001944W WO 2010109826 A1 WO2010109826 A1 WO 2010109826A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- moving
- actuator
- moving element
- mover
- protrusion
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02N—ELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
- H02N2/00—Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
- H02N2/0005—Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing non-specific motion; Details common to machines covered by H02N2/02 - H02N2/16
- H02N2/001—Driving devices, e.g. vibrators
- H02N2/002—Driving devices, e.g. vibrators using only longitudinal or radial modes
- H02N2/0025—Driving devices, e.g. vibrators using only longitudinal or radial modes using combined longitudinal modes
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02N—ELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
- H02N2/00—Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
- H02N2/02—Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing linear motion, e.g. actuators; Linear positioners ; Linear motors
- H02N2/026—Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing linear motion, e.g. actuators; Linear positioners ; Linear motors by pressing one or more vibrators against the driven body
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02N—ELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
- H02N2/00—Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
- H02N2/10—Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing rotary motion, e.g. rotary motors
- H02N2/103—Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing rotary motion, e.g. rotary motors by pressing one or more vibrators against the rotor
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B7/00—Mountings, adjusting means, or light-tight connections, for optical elements
- G02B7/02—Mountings, adjusting means, or light-tight connections, for optical elements for lenses
- G02B7/04—Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification
- G02B7/08—Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification adapted to co-operate with a remote control mechanism
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B7/00—Mountings, adjusting means, or light-tight connections, for optical elements
- G02B7/02—Mountings, adjusting means, or light-tight connections, for optical elements for lenses
- G02B7/04—Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification
- G02B7/10—Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification by relative axial movement of several lenses, e.g. of varifocal objective lens
- G02B7/102—Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification by relative axial movement of several lenses, e.g. of varifocal objective lens controlled by a microcomputer
Definitions
- the present invention relates to an actuator, a drive device, a lens unit, an imaging device, and an operation method of the actuator.
- Patent Document 1 Japanese Unexamined Patent Application Publication No. 2007-185056
- the tip of the protrusion is displaced in the moving direction of the moving element while contacting the moving element while drawing an elliptical arc-shaped locus. For this reason, the front-end
- this speed fluctuation causes a slip between the protrusion and the moving member, and this slip generates frictional heat. Therefore, the efficiency of motion transmission from the protrusion to the mover is reduced.
- an actuator for moving a moving element which is arranged in a moving direction of the moving element, and a driving element arranged to be able to contact the moving element, And a plurality of displacement portions that are displaced at different phases in a direction intersecting with the moving direction of the moving element by being supplied with electric power, and the moving element in the driving element is displaced by the displacement of the plurality of moving parts.
- an electromechanical converter that moves the moving element at a constant speed in the moving direction in a state where the end of the moving element is in contact with the moving element.
- a driving element arranged so as to be able to contact the moving element, and a moving element arranged side by side in the moving direction of the moving element and supplied with electric power
- An operating method of an actuator having a plurality of displacement portions that are displaced at different phases in a crossing direction, and moving the moving element in the movement direction by displacement of the plurality of displacement portions, wherein the plurality of displacement portions are Displacement provides an operating method of an actuator that causes the end of the driver on the side of the moving element to move at a constant speed in the moving direction of the moving element in a state where the end of the moving element is in contact with the moving element.
- FIG. 1 is an exploded perspective view showing a motor 101.
- FIG. 2 is a side sectional view showing a motor 101.
- FIG. FIG. 4 is a sectional view taken along line 4-4 of FIG. 2 is a perspective view showing an actuator 100.
- FIG. 5 is a graph for explaining an operation method of the actuator 100. 5 is a graph for explaining a comparative example of an operation method of the actuator 100.
- 1 is a side cross-sectional view illustrating a schematic configuration of an imaging apparatus 700 including a motor 101.
- FIG. 3 is a perspective view showing the inside of a lens unit 300 including an actuator 100.
- FIG. 1 is a perspective view showing a motor 101 including an actuator 100 according to an embodiment.
- the drive output side in the axial direction of the rotating shaft 110 is referred to as an output side, and the opposite side is referred to as a non-output side.
- the case where the motor 101 is viewed from the axial direction of the rotating shaft 110 (sometimes referred to as the rotating shaft direction) will be described in plan view, and the case where the motor 101 is viewed from the radial direction of the rotating shaft 110 will be described as side view.
- the motor 101 includes a rotating shaft 110, a nut 210, a mounting plate 120, a biasing member 130, a washer 230, a rotor 140, three rotors arranged in order from the output side along the rotating shaft 110.
- An actuator 100, a base 190, and a nut 220 are provided.
- the mounting plate 120 is formed in a disk shape, and the rotating shaft 110 is inserted through the axis. Further, the mounting plate 120 is formed with a pair of U-shaped fastening holes 122 symmetrically with respect to the axis, and the mounting plate 120 is fastened by a fastener such as a screw inserted through the fastening hole 122. And fastened to a device that uses the motor 101 as a drive source.
- the rotor 140 is formed in a disk shape, and the rotating shaft 110 is inserted through the shaft center.
- a gear portion 144 is formed at the output side end of the rotor 140.
- An example of the urging member 130 is a compression coil spring shown in the figure, and the rotating shaft 110 is inserted therethrough.
- the actuator 100 includes a stator 150, an electromechanical converter 160, a pair of flexible printed wiring boards 170 and 172, and a base 180.
- the base 180 is a rectangular plate-like member and is screwed to the base 190.
- the electromechanical conversion unit 160 includes a first electromechanical conversion unit 161 and a second electromechanical conversion unit 162.
- the first electromechanical conversion unit 161 and the second electromechanical conversion unit 162 are stacked piezoelectric elements in which piezoelectric elements are stacked in the rotation axis direction, and expand and contract in the stacking direction when a drive voltage is supplied.
- the first electromechanical conversion unit 161 and the second electromechanical conversion unit 162 are arranged side by side in the longitudinal direction of the base 180.
- the pair of flexible printed wiring boards 170 and 172 are arranged side by side in the longitudinal direction of the base 180, and the flexible printed wiring board 170 is sandwiched between the base 180 and the first electromechanical converter 161, The plate 172 is sandwiched between the base 180 and the second electromechanical converter 162.
- the stator 150 is formed of an elastic material, and includes a rectangular plate-like base portion 152 and a protruding portion 154 that protrudes from a central portion in the longitudinal direction of the base portion 152.
- One end of the base portion 152 in the longitudinal direction is joined to the upper end surface of the first electromechanical converter 161, and the other end of the base portion 152 in the longitudinal direction is joined to the upper end surface of the second electromechanical converter 162.
- the protrusion 154 protrudes from the base portion 152 toward the rotor 140.
- the flexible printed wiring board 170 supplies an alternating drive voltage to the first electromechanical converter 161 to expand and contract the first electromechanical converter 161 in the rotation axis direction.
- the flexible printed wiring board 172 supplies an alternating drive voltage to the second electromechanical converter 162 to expand and contract the second electromechanical converter 162 in the direction of the rotation axis.
- FIG. 2 is an exploded perspective view showing the motor 101.
- screw portions 112 into which nuts 210 and 220 are screwed are formed at both ends in the axial direction of the rotating shaft 110, and a disk-shaped flange portion 114 having an enlarged diameter is formed between them. It is formed.
- the nut 210, the mounting plate 120, the biasing member 130, the washer 230, and the rotor 140 are arranged on the output side with respect to the flange portion 114, while the base 190 and the nut 220 are on the non-output side with respect to the flange portion 114.
- the three actuators 100 are arranged between the rotor 140 and the base 190 so as to surround the rotating shaft 110.
- the rotor 140 is rotatably supported by the rotating shaft 110 via the bearing 142.
- FIG. 3 is a side sectional view showing the motor 101.
- the mounting plate 120, the biasing member 130, the washer 230, the rotor 140, the actuator 100, and the base 190 are fastened in the direction of the rotation axis by nuts 210 and 220.
- the urging member 130 is elastically contracted in the rotation axis direction, and the rotor 140 is pressed against the actuator 100 via the washer 230.
- FIG. 4 is a cross-sectional view taken along line 4-4 of FIG.
- the three actuators 100 are arranged around the rotation axis 110 while being shifted by 2 ⁇ / 3, and the space surrounded by these is a triangle in plan view.
- the three protrusions 154 are arranged around the rotation axis 110 while being shifted by 2 ⁇ / 3.
- FIG. 5 is a perspective view showing the actuator 100. As shown in this figure, in the actuator 100, a gap 163 is provided between the first electromechanical converter 161 and the second electromechanical converter 162, and the first electromechanical converter 161 and the second electric machine The converter 162 is separated from each other in a direction orthogonal to the expansion / contraction direction (that is, the arrangement direction).
- a rectangular groove 153 that bisects the base portion 152 in the longitudinal direction is formed at the longitudinal center of the base portion 152 of the stator 150.
- the groove 153 extends over the entire width direction of the base portion 152 and is formed so as to overlap with the gap 163 between the first electromechanical converter 161 and the second electromechanical converter 162 in the rotation axis direction.
- the whole longitudinal direction one end side (it may be called the base part 1521) of the base part 152 is joined to the whole end surface of the 1st electromechanical conversion part 161, and the longitudinal direction other end side (base) of the base part 152 is obtained.
- the entire portion 1522 may be joined to the entire end surface of the second electromechanical transducer 162.
- the groove 153 extends through the base portion 152 to the base end portion of the protruding portion 154 in the depth direction.
- a pair of leg portions 156 and 157 that are divided into two in the longitudinal direction of the base portion 152 by the groove 153 are formed at the base end portion of the projection portion 154.
- the leg portion 156 extends from the end of the base portion 1521 on the groove 153 side to the opposite side of the first electromechanical transducer 161.
- the leg portion 157 extends from the end portion of the base portion 1522 on the groove 153 side to the opposite side of the second electromechanical conversion portion 162.
- the protruding portion 154 is supported on the base portion 152 by a U-shaped base end portion including a pair of leg portions 156 and 157.
- a wave shaper 175 is connected to the flexible printed wiring boards 170 and 172 via drivers 171 and 173, respectively.
- the driver 171 applies the drive voltage whose waveform has been shaped by the waveform shaper 175 to the first electromechanical converter 161.
- the driver 173 applies the drive voltage whose waveform is shaped by the waveform shaper 175 to the second electromechanical converter 162.
- the upper part (a) of FIG. 6 is a graph showing a drive voltage waveform applied to the first electromechanical conversion unit 161 and a drive voltage waveform applied to the second electromechanical conversion unit 162.
- the middle stage (b) of this figure shows the displacement in the rotation axis direction (sometimes referred to as longitudinal displacement) of the tip portion of the projection 154 and the displacement in the rotation direction of the rotor 140 at the tip portion of the projection 154 (referred to as lateral displacement). It is a graph which shows the relationship with a case.
- the lower part (c) of the figure is a graph showing the relationship between the longitudinal displacement of the tip of the protrusion 154, the moving speed of the rotor 140 in the rotational direction, and time.
- the waveform of the AC voltage (sometimes referred to as A-phase voltage) applied to the first electromechanical converter 161 indicated by a solid line in the upper graph (a) is represented by sin ( ⁇ t) + Asin (n ⁇ t).
- the waveform of the AC voltage (sometimes referred to as B-phase voltage) applied to the second electromechanical conversion unit 162 indicated by a broken line in the graph is expressed as sin ( ⁇ t ⁇ / 2) + Asin (n ⁇ t + ⁇ ).
- f represents a frequency.
- T time
- A is a constant of 0 ⁇ A ⁇ 1
- n is a positive integer
- ⁇ is a phase.
- A is 0.05
- n 3
- ⁇ ⁇ / 2.
- the waveform of the A-phase voltage is a waveform obtained by adding triple frequency modulation to sin ( ⁇ t).
- the waveform of the B phase voltage is a waveform obtained by adding triple frequency modulation to sin ( ⁇ t ⁇ / 2).
- FIG. 7 is a graph for explaining a comparative example of the operation method of the actuator 100.
- the A-phase voltage is sin ( ⁇ t)
- the B-phase voltage is sin ( ⁇ t ⁇ / 2).
- the first electromechanical conversion unit 161 and the second electromechanical conversion unit 162 contract to the maximum when the driving voltage is 0V, and the driving voltage is the maximum value (for example, 50V). Extends to the maximum.
- the protrusion 154 is displaced toward the rotor 140, while the first electromechanical conversion unit 161 and the second electromechanical conversion unit 162 are contracted. As a result, the protrusion 154 is displaced toward the electromechanical conversion unit 160.
- the A-phase voltage is a median value (for example, 25 V) between 0 V and the maximum value
- the B-phase voltage is 0 V.
- the expansion amount of the first electromechanical conversion unit 161 is a median value between 0 and the maximum value
- the expansion amount of the second electromechanical conversion unit 162 is 0.
- the projection part 154 takes the attitude
- the A phase voltage becomes the maximum value
- the B phase voltage becomes the median value.
- the extension amount of the first electromechanical conversion unit 161 is maximized, while the extension amount of the second electromechanical conversion unit 162 is a median value between 0 and the maximum value.
- the projection part 154 takes the attitude
- the A-phase voltage and the B-phase voltage have the same intermediate value between the median value and the maximum value.
- the first electromechanical converter 161 and the second electromechanical converter 162 are extended by the same amount.
- the projection part 154 takes a posture without inclination.
- the A-phase voltage and the B-phase voltage have the same intermediate value between the median value and the maximum value, and the protruding portion 154 takes a posture without inclination.
- the B-phase voltage becomes the maximum value
- the A-phase voltage becomes the median value.
- the extension amount of the second electromechanical conversion unit 162 is maximized, while the extension amount of the first electromechanical conversion unit 161 is a median value between 0 and the maximum value.
- the protrusion part 154 takes the attitude
- the protrusion 154 is inclined to the first electromechanical conversion unit 161 side.
- the drive voltage applied to the first electromechanical conversion unit 161 and the second electromechanical conversion unit 162 is obtained by adding the triple frequency modulation to the drive voltage in the comparative example.
- the tip of the protrusion 154 moves toward the rotor 140 with respect to the rotation direction of the rotor 140. After displacing an inclined linear trajectory, it is displaced by drawing a linear trajectory inclined to the opposite side. For this reason, the absolute value of the inclination angle between the velocity vector of the tip portion of the protrusion 154 and the velocity vector of the rotor 140 changes constantly. Therefore, as indicated by the solid line in the lower graph (c), the tip of the protrusion 154 moves at a constant speed in the rotational direction of the rotor 140.
- the tip of the protrusion 154 is in pressure contact with the rotor 140 and moves in the rotational direction of the rotor 140 in an elastically deformed state to apply thrust to the rotor 140.
- the protrusion part 154 takes the attitude
- the protrusion 154 has an attitude that is inclined toward the first electromechanical conversion unit 161 in an attitude that the first electromechanical conversion unit 161 and the second electromechanical conversion unit 162 contract by the same amount. Displace to 160 side.
- the protrusion 154 is displaced toward the electromechanical conversion unit 160 in a posture inclined toward the first electromechanical conversion unit 161.
- the A-phase voltage and the B-phase voltage have the same intermediate value between 0 V and the median value.
- the first electromechanical converter 161 and the second electromechanical converter 162 are extended by the same amount.
- the projection part 154 takes a posture without inclination.
- the protruding portion 154 takes a posture without inclination.
- the tip of the protrusion 154 moves around while drawing an elliptical locus.
- tip part of the projection part 154 carries out a circular motion, drawing a rhombus-shaped locus
- the drive voltage applied to the first electromechanical conversion unit 161 and the second electromechanical conversion unit 162 is obtained by adding the triple frequency modulation to the drive voltage in the comparative example.
- the tip of the protrusion 154 causes the electric machine to move in the direction opposite to the rotational direction of the rotor 140.
- the linear trajectory inclined to the opposite side is drawn and displaced. Accordingly, as indicated by a solid line in the lower graph (c), the tip of the protrusion 154 moves at a constant speed in the direction opposite to the rotational direction of the rotor 140.
- the tip of the protrusion 154 moves at a constant speed in the rotation direction of the rotor 140 while the thrust is applied to the rotor 140.
- tip part of the projection part 154 and the rotor 140 can be suppressed, and generation
- the actuator 100 can be driven at a frequency different from the resonance frequency of the entire motor 101 system.
- the tip of the protrusion 154 moves in the rotational direction of the rotor 140 while the tip of the protrusion 154 moves at the same speed. There is no change in the moving speed, and there are those that still remain even if the above-mentioned frequency modulation is applied to the drive voltage waveforms of the first electromechanical converter 161 and the second electromechanical converter 162. That is, the constant velocity motion includes a motion in which the speed fluctuation still remains even if the frequency modulation is applied to the drive voltage waveforms of the first electromechanical converter 161 and the second electromechanical converter 162. To do.
- FIG. 8 is a side sectional view showing a schematic configuration of an imaging apparatus 700 including the motor 101.
- the imaging apparatus 700 includes an optical member 420, a lens barrel 430, a motor 101, an imaging unit 500, and a control unit 550.
- the lens barrel 430 accommodates the optical member 420.
- the motor 101 moves the optical member 420.
- the imaging unit 500 captures an image formed by the optical member 420.
- the control unit 550 controls the motor 101 and the imaging unit 500.
- the imaging apparatus 700 includes an optical member 420, a lens barrel 430, a lens unit 410 including the motor 101, and a body 460.
- the lens unit 410 is detachably attached to the body 460 via the mount 450.
- the optical member 420 includes a front lens 422, a compensator lens 424, a focusing lens 426, and a main lens 428, which are sequentially arranged from the incident end corresponding to the left side in the drawing.
- An iris unit 440 is disposed between the focusing lens 426 and the main lens 428.
- the motor 101 is arranged in the middle of the lens barrel 430 in the optical axis direction and below the focusing lens 426 having a relatively small diameter. Accordingly, the motor 101 is accommodated in the lens barrel 430 without increasing the diameter of the lens barrel 430.
- the motor 101 moves the focusing lens 426 forward or backward in the optical axis direction through, for example, a gear train.
- the body 460 accommodates optical members including a main mirror 540, a pentaprism 470, and an eyepiece system 490.
- the main mirror 540 is located between a standby position inclined on the optical path of incident light incident through the lens unit 410 and an imaging position (indicated by a dotted line in the figure) that rises while avoiding incident light. Moving.
- the main mirror 540 at the standby position guides most of the incident light to the pentaprism 470 disposed above. Since the pentaprism 470 emits a reflection of incident light toward the eyepiece system 490, the image on the focusing screen can be viewed as a normal image from the eyepiece system 490. The remainder of the incident light is guided to the photometric unit 480 by the pentaprism 470.
- the photometric unit 480 measures the intensity and distribution of incident light.
- a half mirror 492 is arranged between the pentaprism 470 and the eyepiece system 490 to superimpose the display image formed on the finder liquid crystal 494 on the image of the focusing screen.
- the display image is displayed so as to overlap the image projected from the pentaprism 470.
- the main mirror 540 has a sub mirror 542 on the back surface with respect to the incident light incident surface.
- the sub mirror 542 guides part of the incident light transmitted through the main mirror 540 to the distance measuring unit 530 disposed below. Thereby, when the main mirror 540 is in the standby position, the distance measuring unit 530 measures the distance to the subject.
- the sub mirror 542 is also retracted from the optical path of the incident light.
- a shutter 520, an optical filter 510, and an imaging unit 500 are sequentially arranged behind the main mirror 540 with respect to incident light.
- the main mirror 540 moves to the photographing position immediately before the shutter 520 is opened, so that incident light travels straight and enters the imaging unit 500.
- an image formed by incident light is converted into an electric signal.
- the imaging unit 500 captures an image formed by the lens unit 410.
- the lens unit 410 and the body 460 are also electrically coupled. Therefore, for example, the autofocus mechanism can be formed by controlling the rotation of the motor 101 in accordance with the distance information to the subject detected by the distance measuring unit 530 on the body 460 side. In addition, a focus aid mechanism can be formed by the distance measuring unit 530 referring to the operation amount of the motor 101.
- the motor 101 and the imaging unit 500 are controlled by the control unit 550 as described above.
- the output torque of the motor 101 can be increased efficiently. Therefore, since the driving force of the autofocus mechanism can be increased efficiently, it is possible to save power and drive the autofocus mechanism with a high driving force.
- the motor 101 contributes to automating exposure, execution of the scene mode, execution of bracket photography, and the like.
- the motor 101 can be suitably used for driving a focusing mechanism, a zoom mechanism, a camera shake correction mechanism, and the like in an optical system such as a photographing machine and binoculars. Furthermore, it can be used for power sources such as precision stages, more specifically electron beam lithography equipment, various stages for inspection equipment, moving mechanisms for cell injectors for biotechnology, moving beds for nuclear magnetic resonance equipment, etc. Needless to say, it is not limited to.
- FIG. 9 is a perspective view showing the inside of the lens unit 300 including the actuator 100.
- the lens unit 300 can be attached to the body 460.
- the lens unit 300 includes a focusing lens 426, a lens holding frame 302 that holds the focusing lens 426, and a pair of guide bars 304 that guide the movement of the lens holding frame 302 in the optical axis direction.
- 306 is arranged.
- a bearing portion 308 is provided on the left side of the lens holding frame 302, and a pair of front and rear bearing portions 310 and 312 are provided on the upper right portion of the lens holding frame 302.
- the guide bar 304 is slidably inserted into the bearing portion 308, and the guide bar 306 is slidably inserted into the bearing portions 310 and 312.
- the bearing portion 310 and the bearing portion 312 are connected by a stay 314 extending in the optical axis direction.
- a rectangular plate-like moving body 316 whose longitudinal direction is the optical axis direction is suspended below the stay 314 so as to be displaceable in the vertical direction.
- a leaf spring 318 is disposed between the lower portion of the stay 314 and the moving body 316. The leaf spring 318 biases the moving body 316 downward.
- the actuator 100 is disposed below the moving body 316, and the moving body 316 is pressed against the protrusion 154 of the actuator 100 by a leaf spring 318.
- the actuator 100 is arranged such that the first electromechanical conversion unit 161 and the second electromechanical conversion unit 162 are arranged in the optical axis direction. Therefore, when the actuator 100 is operated by the above-described method, a thrust force in the optical axis direction is applied from the protrusion 154 to the moving body 316, and the lens holding frame 302 and the focusing lens 426 are moved in the optical axis direction. Moved.
- the electromechanical conversion unit 160 is configured by the first electromechanical conversion unit 161 and the second electromechanical conversion unit 162 arranged in the rotation direction of the rotor 140.
- a third electromechanical converter that supports the first electromechanical converter 161 and the second electromechanical converter 162 may be further added. In this case, the longitudinal displacement amount of the entire electromechanical conversion unit 160 can be increased.
- a piezoelectric element is used as the displacement part of the electromechanical conversion part.
- a lead screw or the like that is linearly moved by a voice coil motor or a DC motor can also be applied.
- actuator 101 motor, 110 rotating shaft, 112 screw part, 114 flange part, 120 mounting plate, 122 fastening hole, 130 urging member, 140 rotor, 142 bearing, 144 gear part, 150 stator, 152 base part, 153 Groove, 154 protrusion, 156, 157 leg, 160 electromechanical converter, 161 first electromechanical converter, 162 second electromechanical converter, 163 gap, 170, 172 flexible printed wiring board, 171, 173 driver, 175 Wave shaper, 180, 190 base, 210, 220 nut, 230 washer, 300 lens unit, 302 lens holding frame, 304, 306 guide bar, 308, 310, 312 bearing part, 314 stay, 316 moving body, 3 8 leaf spring, 410 lens unit, 420 optical member, 426 focusing lens, 428 main lens, 430 lens barrel, 440 iris unit, 450 mount, 460 body, 470 pentaprism, 480 photometric unit, 490 eyepiece system, 492 half mirror 494 finder liquid crystal, 500
Landscapes
- General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)
Abstract
An actuator having an increased output. An actuator configured to move a mover is provided with a driver disposed so as to be able to make contact with the mover, and also with an electromechanical conversion section which has displacement sections arranged side by side in the movement direction of the mover and displaced at different phases in the direction crossing the movement direction of the mover when supplied with electric power and which, when the displacement sections are displaced, causes an end of the driver, said end being located on the mover side, to perform a uniform motion in the movement direction of the mover with the end in contact with the mover.
Description
本発明は、アクチュエータ、駆動装置、レンズユニット、撮像装置、及びアクチュエータの動作方法に関する。
The present invention relates to an actuator, a drive device, a lens unit, an imaging device, and an operation method of the actuator.
突起部が設けられた弾性振動体と、電気-機械エネルギー変換素子からなり、弾性振動体を支持する一対の柱状の支持体とを備えるアクチュエータが知られている(例えば、特許文献1参照)。当該アクチュエータでは、一対の柱状の支持体を、互いに異なる位相で軸方向へ伸縮させることにより、突起部を楕円運動させる。
特許文献1 特開2007-185056号公報 There has been known an actuator including an elastic vibration body provided with a protrusion and a pair of columnar supports that include an electro-mechanical energy conversion element and support the elastic vibration body (see, for example, Patent Document 1). In the actuator, the protrusions are elliptically moved by expanding and contracting the pair of columnar supports in the axial direction with mutually different phases.
Patent Document 1 Japanese Unexamined Patent Application Publication No. 2007-185056
特許文献1 特開2007-185056号公報 There has been known an actuator including an elastic vibration body provided with a protrusion and a pair of columnar supports that include an electro-mechanical energy conversion element and support the elastic vibration body (see, for example, Patent Document 1). In the actuator, the protrusions are elliptically moved by expanding and contracting the pair of columnar supports in the axial direction with mutually different phases.
上記アクチュエータでは、突起部の先端部が、楕円弧状の軌跡を描きながら移動子に当接しつつ移動子の移動方向へ変位する。このため、突起部の先端部は、該移動方向へ徐々に増速しながら移動する。即ち、突起部の先端部の該移動方向への速度は、変動する。ここで、この速度変動は、突起部と移動子との間に滑りを生じさせ、この滑りは摩擦熱を発生させる。従って、突起部から移動子への運動伝達効率が低下する。
In the actuator described above, the tip of the protrusion is displaced in the moving direction of the moving element while contacting the moving element while drawing an elliptical arc-shaped locus. For this reason, the front-end | tip part of a projection part moves, increasing gradually in this moving direction. That is, the speed of the tip of the protrusion in the moving direction varies. Here, this speed fluctuation causes a slip between the protrusion and the moving member, and this slip generates frictional heat. Therefore, the efficiency of motion transmission from the protrusion to the mover is reduced.
上記課題を解決するために、本発明の第1の形態として、移動子を移動させるアクチュエータであって、前記移動子に当接可能に配された駆動子と、前記移動子の移動方向に並べて配され、電力を供給されることにより前記移動子の移動方向と交差する方向に異なる位相で変位する複数の変位部を有し、前記複数の変位部の変位により、前記駆動子における前記移動子の側の端部を、前記移動子に当接させた状態で、前記移動子の移動方向へ等速運動させる電気機械変換部と、を備えるアクチュエータを提供する。
In order to solve the above problems, as a first embodiment of the present invention, an actuator for moving a moving element, which is arranged in a moving direction of the moving element, and a driving element arranged to be able to contact the moving element, And a plurality of displacement portions that are displaced at different phases in a direction intersecting with the moving direction of the moving element by being supplied with electric power, and the moving element in the driving element is displaced by the displacement of the plurality of moving parts. And an electromechanical converter that moves the moving element at a constant speed in the moving direction in a state where the end of the moving element is in contact with the moving element.
また、本発明の第2の形態として、移動子に当接可能に配された駆動子と、前記移動子の移動方向に並べて配され、電力を供給されることにより前記移動子の移動方向と交差する方向に異なる位相で変位する複数の変位部を有し、前記複数の変位部の変位により、前記移動子を前記移動方向へ移動させるアクチュエータの動作方法であって、前記複数の変位部を変位させることにより、前記駆動子における前記移動子の側の端部を、前記移動子に当接させた状態で、前記移動子の移動方向へ等速運動させるアクチュエータの動作方法を提供する。
Further, as a second embodiment of the present invention, a driving element arranged so as to be able to contact the moving element, and a moving element arranged side by side in the moving direction of the moving element and supplied with electric power, An operating method of an actuator having a plurality of displacement portions that are displaced at different phases in a crossing direction, and moving the moving element in the movement direction by displacement of the plurality of displacement portions, wherein the plurality of displacement portions are Displacement provides an operating method of an actuator that causes the end of the driver on the side of the moving element to move at a constant speed in the moving direction of the moving element in a state where the end of the moving element is in contact with the moving element.
なお、上記の発明の概要は、必要な特徴の全てを列挙したものではなく、これらの特徴群のサブコンビネーションもまた、発明となりうる。
Note that the summary of the invention described above does not enumerate all necessary features, and sub-combinations of these feature groups can also be inventions.
以下、発明の実施の形態を通じて本発明を説明するが、以下の実施形態は請求の範囲にかかる発明を限定するものではなく、また実施形態の中で説明されている特徴の組み合わせの全てが発明の解決手段に必須であるとは限らない。
Hereinafter, the present invention will be described through embodiments of the invention. However, the following embodiments do not limit the claimed invention, and all combinations of features described in the embodiments are invented. It is not always essential to the solution.
図1は、一実施例に係るアクチュエータ100を備えるモータ101を示す斜視図である。なお、説明の便宜上、回転軸110の軸方向における駆動出力側を出力側、その反対側を非出力側と記載する。また、回転軸110の軸方向(回転軸方向という場合がある)からモータ101を見た場合を平面視、回転軸110の径方向からモータ101を見た場合を側面視として説明する。
FIG. 1 is a perspective view showing a motor 101 including an actuator 100 according to an embodiment. For convenience of explanation, the drive output side in the axial direction of the rotating shaft 110 is referred to as an output side, and the opposite side is referred to as a non-output side. Further, the case where the motor 101 is viewed from the axial direction of the rotating shaft 110 (sometimes referred to as the rotating shaft direction) will be described in plan view, and the case where the motor 101 is viewed from the radial direction of the rotating shaft 110 will be described as side view.
これらの図に示すように、モータ101は、回転軸110、回転軸110に沿って出力側から順に配されたナット210、取付板120、付勢部材130、ワッシャ230、ロータ140、3個のアクチュエータ100、ベース190及びナット220を備える。取付板120は、円盤状に形成されており、軸心に回転軸110が挿通される。また、取付板120には、軸心に対して対称に一対のU字状の締結用穴122が形成されており、取付板120は、締結用穴122に挿通されるネジ等の締結具により、モータ101を駆動源として使用する装置に締結される。
As shown in these drawings, the motor 101 includes a rotating shaft 110, a nut 210, a mounting plate 120, a biasing member 130, a washer 230, a rotor 140, three rotors arranged in order from the output side along the rotating shaft 110. An actuator 100, a base 190, and a nut 220 are provided. The mounting plate 120 is formed in a disk shape, and the rotating shaft 110 is inserted through the axis. Further, the mounting plate 120 is formed with a pair of U-shaped fastening holes 122 symmetrically with respect to the axis, and the mounting plate 120 is fastened by a fastener such as a screw inserted through the fastening hole 122. And fastened to a device that uses the motor 101 as a drive source.
ロータ140は、円盤状に形成されており、軸心に回転軸110が挿通される。また、ロータ140の出力側の端部には、ギア部144が形成されている。また、付勢部材130の一例は、図示する圧縮コイルバネであって、回転軸110が挿通される。アクチュエータ100は、ステータ150と電気機械変換部160と一対のフレキシブルプリント配線板170、172と、ベース180とを備えている。
The rotor 140 is formed in a disk shape, and the rotating shaft 110 is inserted through the shaft center. A gear portion 144 is formed at the output side end of the rotor 140. An example of the urging member 130 is a compression coil spring shown in the figure, and the rotating shaft 110 is inserted therethrough. The actuator 100 includes a stator 150, an electromechanical converter 160, a pair of flexible printed wiring boards 170 and 172, and a base 180.
ベース180は、矩形板状の部材であり、ベース190にネジ止めされる。電気機械変換部160は、第1電気機械変換部161と第2電気機械変換部162とを備えている。第1電気機械変換部161、第2電気機械変換部162は、圧電素子が回転軸方向に積層された積層型圧電素子であり、駆動電圧を供給されると積層方向に伸縮する。また、第1電気機械変換部161、第2電気機械変換部162は、ベース180の長手方向に並べて配されている。また、一対のフレキシブルプリント配線板170、172は、ベース180の長手方向に並べて配されており、フレキシブルプリント配線板170は、ベース180と第1電気機械変換部161とにより挟まれ、フレキシブルプリント配線板172は、ベース180と第2電気機械変換部162とにより挟まれている。
The base 180 is a rectangular plate-like member and is screwed to the base 190. The electromechanical conversion unit 160 includes a first electromechanical conversion unit 161 and a second electromechanical conversion unit 162. The first electromechanical conversion unit 161 and the second electromechanical conversion unit 162 are stacked piezoelectric elements in which piezoelectric elements are stacked in the rotation axis direction, and expand and contract in the stacking direction when a drive voltage is supplied. The first electromechanical conversion unit 161 and the second electromechanical conversion unit 162 are arranged side by side in the longitudinal direction of the base 180. The pair of flexible printed wiring boards 170 and 172 are arranged side by side in the longitudinal direction of the base 180, and the flexible printed wiring board 170 is sandwiched between the base 180 and the first electromechanical converter 161, The plate 172 is sandwiched between the base 180 and the second electromechanical converter 162.
ステータ150は、弾性材料で形成され、矩形板状のベース部152と、該ベース部152の長手方向中央部に突設された突起部154とを備えている。ベース部152の長手方向一端側は、第1電気機械変換部161の上端面と接合され、ベース部152の長手方向他端側は、第2電気機械変換部162の上端面と接合されている。また、突起部154は、ベース部152からロータ140の側へ突出している。
The stator 150 is formed of an elastic material, and includes a rectangular plate-like base portion 152 and a protruding portion 154 that protrudes from a central portion in the longitudinal direction of the base portion 152. One end of the base portion 152 in the longitudinal direction is joined to the upper end surface of the first electromechanical converter 161, and the other end of the base portion 152 in the longitudinal direction is joined to the upper end surface of the second electromechanical converter 162. . Further, the protrusion 154 protrudes from the base portion 152 toward the rotor 140.
フレキシブルプリント配線板170は、第1電気機械変換部161に交流の駆動電圧を供給して第1電気機械変換部161を回転軸方向に伸縮させる。また、フレキシブルプリント配線板172は、第2電気機械変換部162に交流の駆動電圧を供給して第2電気機械変換部162を回転軸方向に伸縮させる。
The flexible printed wiring board 170 supplies an alternating drive voltage to the first electromechanical converter 161 to expand and contract the first electromechanical converter 161 in the rotation axis direction. In addition, the flexible printed wiring board 172 supplies an alternating drive voltage to the second electromechanical converter 162 to expand and contract the second electromechanical converter 162 in the direction of the rotation axis.
図2は、モータ101を示す分解斜視図である。この図に示すように、回転軸110の軸方向両端部には、それぞれナット210、220が螺合するネジ部112が形成され、これらの間には、拡径した円盤状のフランジ部114が形成される。ナット210、取付板120、付勢部材130、ワッシャ230、及びロータ140は、フランジ部114よりも出力側に配される一方、ベース190、及びナット220は、フランジ部114よりも非出力側に配される。また、3個のアクチュエータ100は、回転軸110を包囲するように、ロータ140とベース190との間に配される。また、ロータ140は、軸受142を介して回転軸110に回転自在に支持される。
FIG. 2 is an exploded perspective view showing the motor 101. As shown in this figure, screw portions 112 into which nuts 210 and 220 are screwed are formed at both ends in the axial direction of the rotating shaft 110, and a disk-shaped flange portion 114 having an enlarged diameter is formed between them. It is formed. The nut 210, the mounting plate 120, the biasing member 130, the washer 230, and the rotor 140 are arranged on the output side with respect to the flange portion 114, while the base 190 and the nut 220 are on the non-output side with respect to the flange portion 114. Arranged. Further, the three actuators 100 are arranged between the rotor 140 and the base 190 so as to surround the rotating shaft 110. Further, the rotor 140 is rotatably supported by the rotating shaft 110 via the bearing 142.
図3は、モータ101を示す側断面図である。この図に示すように、取付板120、付勢部材130、ワッシャ230、ロータ140、アクチュエータ100、及びベース190は、ナット210、220により回転軸方向に締め付けられている。ここで、付勢部材130は、弾性的に回転軸方向に収縮しており、ワッシャ230を介してロータ140をアクチュエータ100に圧接させている。
FIG. 3 is a side sectional view showing the motor 101. As shown in this figure, the mounting plate 120, the biasing member 130, the washer 230, the rotor 140, the actuator 100, and the base 190 are fastened in the direction of the rotation axis by nuts 210 and 220. Here, the urging member 130 is elastically contracted in the rotation axis direction, and the rotor 140 is pressed against the actuator 100 via the washer 230.
図4は、図3の4-4断面図である。この図に示すように、3個のアクチュエータ100は、回転軸110の周りに2π/3ずつずらして配されており、これらにより包囲された空間は、平面視にて三角形となっている。また、3個の突起部154は、回転軸110の周りに2π/3ずつずらして配されている。
4 is a cross-sectional view taken along line 4-4 of FIG. As shown in this figure, the three actuators 100 are arranged around the rotation axis 110 while being shifted by 2π / 3, and the space surrounded by these is a triangle in plan view. The three protrusions 154 are arranged around the rotation axis 110 while being shifted by 2π / 3.
図5は、アクチュエータ100を示す斜視図である。この図に示すように、アクチュエータ100では、第1電気機械変換部161と第2電気機械変換部162との間に隙間163が空けられており、第1電気機械変換部161と第2電気機械変換部162とは、互いに伸縮方向と直交する方向(即ち、配列方向)へ離間している。
FIG. 5 is a perspective view showing the actuator 100. As shown in this figure, in the actuator 100, a gap 163 is provided between the first electromechanical converter 161 and the second electromechanical converter 162, and the first electromechanical converter 161 and the second electric machine The converter 162 is separated from each other in a direction orthogonal to the expansion / contraction direction (that is, the arrangement direction).
また、ステータ150のベース部152の長手方向中央部には、ベース部152を長手方向に二分する矩形状の溝153が形成されている。該溝153は、ベース部152の幅方向の全域に渡って延びており、第1電気機械変換部161と第2電気機械変換部162との間の隙間163と回転軸方向に重なり合うように形成されている。このため、ベース部152の長手方向一端側(ベース部1521という場合がある)の全体が、第1電気機械変換部161の端面の全体に接合され、ベース部152の長手方向他端側(ベース部1522という場合がある)の全体が、第2電気機械変換部162の端面の全体に接合されている。
Also, a rectangular groove 153 that bisects the base portion 152 in the longitudinal direction is formed at the longitudinal center of the base portion 152 of the stator 150. The groove 153 extends over the entire width direction of the base portion 152 and is formed so as to overlap with the gap 163 between the first electromechanical converter 161 and the second electromechanical converter 162 in the rotation axis direction. Has been. For this reason, the whole longitudinal direction one end side (it may be called the base part 1521) of the base part 152 is joined to the whole end surface of the 1st electromechanical conversion part 161, and the longitudinal direction other end side (base) of the base part 152 is obtained. The entire portion 1522 may be joined to the entire end surface of the second electromechanical transducer 162.
また、溝153は、深さ方向については、ベース部152を貫通して突起部154の基端部まで延びている。これにより、突起部154の基端部には、溝153によりベース部152の長手方向に二分された一対の脚部156、157が形成されている。脚部156は、ベース部1521における溝153側の端部から第1電気機械変換部161の反対側へ延びている。また、脚部157は、ベース部1522における溝153側の端部から第2電気機械変換部162の反対側へ延びている。即ち、突起部154は、一対の脚部156、157を備えるコ字状の基端部によりベース部152に支持されている。
Also, the groove 153 extends through the base portion 152 to the base end portion of the protruding portion 154 in the depth direction. Thus, a pair of leg portions 156 and 157 that are divided into two in the longitudinal direction of the base portion 152 by the groove 153 are formed at the base end portion of the projection portion 154. The leg portion 156 extends from the end of the base portion 1521 on the groove 153 side to the opposite side of the first electromechanical transducer 161. Further, the leg portion 157 extends from the end portion of the base portion 1522 on the groove 153 side to the opposite side of the second electromechanical conversion portion 162. In other words, the protruding portion 154 is supported on the base portion 152 by a U-shaped base end portion including a pair of leg portions 156 and 157.
また、フレキシブルプリント配線板170、172には、それぞれ、ドライバ171、173を介して波形成形器175が接続されている。ドライバ171は、波形成形器175で波形が成形された駆動電圧を第1電気機械変換部161に印加する。また、ドライバ173は、波形成形器175で波形が成形された駆動電圧を第2電気機械変換部162に印加する。
Further, a wave shaper 175 is connected to the flexible printed wiring boards 170 and 172 via drivers 171 and 173, respectively. The driver 171 applies the drive voltage whose waveform has been shaped by the waveform shaper 175 to the first electromechanical converter 161. In addition, the driver 173 applies the drive voltage whose waveform is shaped by the waveform shaper 175 to the second electromechanical converter 162.
次に、本実施形態における作用について説明する。図6の上段(a)は、第1電気機械変換部161に印加される駆動電圧波形と第2電気機械変換部162に印加される駆動電圧波形とを示すグラフである。また、この図の中段(b)は、突起部154の先端部の回転軸方向の変位(縦変位という場合がある)と突起部154の先端部のロータ140の回転方向の変位(横変位という場合がある)との関係を示すグラフである。また、図中下段(c)は、突起部154の先端部の縦変位と、ロータ140の回転方向への移動速度と、時間との関係を示すグラフである。
Next, the operation in this embodiment will be described. The upper part (a) of FIG. 6 is a graph showing a drive voltage waveform applied to the first electromechanical conversion unit 161 and a drive voltage waveform applied to the second electromechanical conversion unit 162. Further, the middle stage (b) of this figure shows the displacement in the rotation axis direction (sometimes referred to as longitudinal displacement) of the tip portion of the projection 154 and the displacement in the rotation direction of the rotor 140 at the tip portion of the projection 154 (referred to as lateral displacement). It is a graph which shows the relationship with a case. The lower part (c) of the figure is a graph showing the relationship between the longitudinal displacement of the tip of the protrusion 154, the moving speed of the rotor 140 in the rotational direction, and time.
上段(a)のグラフに実線で示す第1電気機械変換部161に印加される交流電圧(A相電圧という場合がある)の波形は、sin(ωt)+Asin(nωt)で表される。また、同グラフに破線で示す第2電気機械変換部162に印加される交流電圧(B相電圧という場合がある)の波形は、sin(ωt-π/2)+Asin(nωt+δθ)で表される。ここで、ωはω=2πfであり、fは周波数を表す。また、tは時間、Aは0<A<1の定数、nは正の整数、δθは位相を表す。本実施形態では、Aは0.05、nは3、δθは-π/2である。
The waveform of the AC voltage (sometimes referred to as A-phase voltage) applied to the first electromechanical converter 161 indicated by a solid line in the upper graph (a) is represented by sin (ωt) + Asin (nωt). In addition, the waveform of the AC voltage (sometimes referred to as B-phase voltage) applied to the second electromechanical conversion unit 162 indicated by a broken line in the graph is expressed as sin (ωt−π / 2) + Asin (nωt + δθ). . Here, ω is ω = 2πf, and f represents a frequency. T is time, A is a constant of 0 <A <1, n is a positive integer, and δθ is a phase. In this embodiment, A is 0.05, n is 3, and δθ is −π / 2.
即ち、A相電圧の波形は、sin(ωt)に3倍周波数変調を加えた波形となっている。また、B相電圧の波形は、sin(ωt-π/2)に3倍周波数変調を加えた波形となっている。
That is, the waveform of the A-phase voltage is a waveform obtained by adding triple frequency modulation to sin (ωt). Further, the waveform of the B phase voltage is a waveform obtained by adding triple frequency modulation to sin (ωt−π / 2).
図7は、アクチュエータ100の動作方法の比較例を説明するためのグラフである。当該比較例では、上段(a)のグラフに実線で示すように、A相電圧は、sin(ωt)であり、同グラフに破線で示すように、B相電圧は、sin(ωt-π/2)である。
FIG. 7 is a graph for explaining a comparative example of the operation method of the actuator 100. In the comparative example, as indicated by a solid line in the upper graph (a), the A-phase voltage is sin (ωt), and as indicated by a broken line in the graph, the B-phase voltage is sin (ωt−π / 2).
本実施形態及び比較例において、第1電気機械変換部161、第2電気機械変換部162は、駆動電圧が0Vの場合に最大に収縮して、駆動電圧が最大値(例えば、50V)の場合に最大に伸長する。第1電気機械変換部161、第2電気機械変換部162が伸長することにより、突起部154がロータ140側に変位する一方、第1電気機械変換部161、第2電気機械変換部162が収縮することにより、突起部154が電気機械変換部160側に変位する。
In the present embodiment and the comparative example, the first electromechanical conversion unit 161 and the second electromechanical conversion unit 162 contract to the maximum when the driving voltage is 0V, and the driving voltage is the maximum value (for example, 50V). Extends to the maximum. When the first electromechanical conversion unit 161 and the second electromechanical conversion unit 162 are extended, the protrusion 154 is displaced toward the rotor 140, while the first electromechanical conversion unit 161 and the second electromechanical conversion unit 162 are contracted. As a result, the protrusion 154 is displaced toward the electromechanical conversion unit 160.
t=0(θ=0)では、A相電圧が0Vと最大値との中央値(例えば、25V)となり、B相電圧が0Vとなる。この状態で、第1電気機械変換部161の伸長量は0と最大値との中央値となると共に、第2電気機械変換部162の伸長量は0となる。このため、突起部154は、第2電気機械変換部162側に傾く姿勢をとる。
At t = 0 (θ = 0), the A-phase voltage is a median value (for example, 25 V) between 0 V and the maximum value, and the B-phase voltage is 0 V. In this state, the expansion amount of the first electromechanical conversion unit 161 is a median value between 0 and the maximum value, and the expansion amount of the second electromechanical conversion unit 162 is 0. For this reason, the projection part 154 takes the attitude | position which inclines to the 2nd electromechanical conversion part 162 side.
t=10(θ=π/2)では、A相電圧が最大値となり、B相電圧が中央値となる。この状態で、第1電気機械変換部161の伸長量は最大となる一方、第2電気機械変換部162の伸長量は、0と最大値との中央値となる。このため、突起部154は、第2電気機械変換部162の側に傾く姿勢をとる。
At t = 10 (θ = π / 2), the A phase voltage becomes the maximum value, and the B phase voltage becomes the median value. In this state, the extension amount of the first electromechanical conversion unit 161 is maximized, while the extension amount of the second electromechanical conversion unit 162 is a median value between 0 and the maximum value. For this reason, the projection part 154 takes the attitude | position which inclines to the 2nd electromechanical conversion part 162 side.
本実施形態では、t=0からt=10に遷移するに際して、突起部154は、第1電気機械変換部161、第2電気機械変換部162の作用により、第2電気機械変換部162の側に傾いた姿勢に維持される。また、突起部154は、第1電気機械変換部161、第2電気機械変換部162が共に伸長量を増加させることにより、ロータ140の側へ変位する。一方、比較例においても、t=0からt=10に遷移するに際して、突起部154は、同様に、第2電気機械変換部162の側に傾いた姿勢でロータ140の側へ変位する。
In the present embodiment, when transitioning from t = 0 to t = 10, the protrusion 154 is provided on the side of the second electromechanical conversion unit 162 by the action of the first electromechanical conversion unit 161 and the second electromechanical conversion unit 162. Maintained in a tilted position. The protrusion 154 is displaced toward the rotor 140 when the first electromechanical converter 161 and the second electromechanical converter 162 both increase the extension amount. On the other hand, also in the comparative example, when transitioning from t = 0 to t = 10, the protrusion 154 is similarly displaced toward the rotor 140 in a posture inclined toward the second electromechanical conversion unit 162.
t=15(θ=3π/4)では、A相電圧とB相電圧とが、中央値と最大値との中間の同値となる。この状態で、第1電気機械変換部161と第2電気機械変換部162とは同量伸長している。このため、突起部154は、傾きのない姿勢をとる。一方、比較例においても、t=15では、A相電圧とB相電圧とが、中央値と最大値との中間の同値となり、突起部154は、傾きのない姿勢をとる。
At t = 15 (θ = 3π / 4), the A-phase voltage and the B-phase voltage have the same intermediate value between the median value and the maximum value. In this state, the first electromechanical converter 161 and the second electromechanical converter 162 are extended by the same amount. For this reason, the projection part 154 takes a posture without inclination. On the other hand, also in the comparative example, at t = 15, the A-phase voltage and the B-phase voltage have the same intermediate value between the median value and the maximum value, and the protruding portion 154 takes a posture without inclination.
次に、t=20(θ=5π/4)では、B相電圧が最大値となり、A相電圧が中央値となる。この状態で、第2電気機械変換部162の伸長量は最大となる一方、第1電気機械変換部161の伸長量は、0と最大値との中央値となる。このため、突起部154は、第1電気機械変換部161の側に傾く姿勢をとる。一方、比較例においても、t=20では、突起部154は、第1電気機械変換部161の側に傾く姿勢をとる。
Next, at t = 20 (θ = 5π / 4), the B-phase voltage becomes the maximum value, and the A-phase voltage becomes the median value. In this state, the extension amount of the second electromechanical conversion unit 162 is maximized, while the extension amount of the first electromechanical conversion unit 161 is a median value between 0 and the maximum value. For this reason, the protrusion part 154 takes the attitude | position which inclines to the 1st electromechanical conversion part 161 side. On the other hand, also in the comparative example, at t = 20, the protrusion 154 is inclined to the first electromechanical conversion unit 161 side.
即ち、t=10からt=20に遷移するに際して、突起部154の先端部は、ロータ140の回転方向へ変位する。ここで、比較例では、図7の中段(b)のグラフに示すように、t=0からt=20に遷移するに際して、突起部154の先端部は、楕円弧の軌跡を描いてロータ140側に変位しながら、ロータ140の回転方向へ移動する。このため、時間が経過するにつれて、突起部154の先端部の速度ベクトルとロータ140の速度ベクトルとの傾斜角度は、減少した後、増加する。これにより、下段(c)のグラフに実線で示すように、突起部154の先端部のロータ140の回転方向への移動速度が、時間が経過するにつれて増速して、その後、減速する。
That is, when transitioning from t = 10 to t = 20, the tip of the protrusion 154 is displaced in the rotational direction of the rotor 140. Here, in the comparative example, as shown in the middle graph (b) of FIG. 7, when the transition from t = 0 to t = 20, the tip of the protrusion 154 draws a locus of an elliptical arc, and the rotor 140 side It moves in the rotation direction of the rotor 140 while being displaced. For this reason, as time elapses, the inclination angle between the velocity vector of the tip of the protrusion 154 and the velocity vector of the rotor 140 decreases and then increases. As a result, as indicated by a solid line in the lower graph (c), the moving speed of the tip of the protrusion 154 in the rotational direction of the rotor 140 increases with time, and then decelerates.
これに対して、本実施形態では、第1電気機械変換部161、第2電気機械変換部162に印加される駆動電圧を、比較例における駆動電圧に3倍周波数変調を加えたものとしている。これにより、図6の中段(b)のグラフに示すように、t=10からt=20に遷移するに際して、突起部154の先端部は、ロータ140の回転方向に対してロータ140の側へ傾斜した直線状の軌跡を描いて変位した後、その反対側へ傾斜した直線状の軌跡を描いて変位する。このため、突起部154の先端部の速度ベクトルとロータ140の速度ベクトルとの傾斜角度の絶対値は、一定で推移する。従って、下段(c)のグラフに実線で示すように、突起部154の先端部は、ロータ140の回転方向へ等速運動する。
On the other hand, in this embodiment, the drive voltage applied to the first electromechanical conversion unit 161 and the second electromechanical conversion unit 162 is obtained by adding the triple frequency modulation to the drive voltage in the comparative example. As a result, as shown in the middle graph (b) of FIG. 6, when transitioning from t = 10 to t = 20, the tip of the protrusion 154 moves toward the rotor 140 with respect to the rotation direction of the rotor 140. After displacing an inclined linear trajectory, it is displaced by drawing a linear trajectory inclined to the opposite side. For this reason, the absolute value of the inclination angle between the velocity vector of the tip portion of the protrusion 154 and the velocity vector of the rotor 140 changes constantly. Therefore, as indicated by the solid line in the lower graph (c), the tip of the protrusion 154 moves at a constant speed in the rotational direction of the rotor 140.
ところで、突起部154の先端部は、ロータ140に圧接されており、弾性変形した状態で、ロータ140の回転方向へ移動してロータ140に対して推力を付与する。ここで、突起部154の先端部とロータ140との接触圧が、ロータ140の回転方向への移動を開始した時点では低下していることから、突起部154の先端部からロータ140に推力が付与されるのは、おおよそt=10からt=20の間である。このため、突起部154の先端部は、ロータ140に対して推力を付与する間、ロータ140の回転方向へ等速運動する。
By the way, the tip of the protrusion 154 is in pressure contact with the rotor 140 and moves in the rotational direction of the rotor 140 in an elastically deformed state to apply thrust to the rotor 140. Here, since the contact pressure between the tip of the protrusion 154 and the rotor 140 decreases when the rotor 140 starts to move in the rotational direction, thrust is applied to the rotor 140 from the tip of the protrusion 154. It is approximately between t = 10 and t = 20. For this reason, the tip of the protrusion 154 moves at a constant speed in the rotational direction of the rotor 140 while thrust is applied to the rotor 140.
次に、t=30(θ=3π/2)では、A相電圧が0Vとなり、B相電圧が中央値となる。この状態で、第1電気機械変換部161の伸長量は0となり、第2電気機械変換部162の伸長量は中央値となる。このため、突起部154は、第1電気機械変換部161の側に傾く姿勢をとる。
Next, at t = 30 (θ = 3π / 2), the A-phase voltage becomes 0V, and the B-phase voltage becomes the median value. In this state, the extension amount of the first electromechanical converter 161 is 0, and the extension amount of the second electromechanical converter 162 is the median value. For this reason, the protrusion part 154 takes the attitude | position which inclines to the 1st electromechanical conversion part 161 side.
ここで、t=20からt=30に遷移するに際して、突起部154は、第1電気機械変換部161、第2電気機械変換部162の作用により、第1電気機械変換部161の側に傾いた姿勢に維持される。一方で、突起部154は、第1電気機械変換部161と第2電気機械変換部162とが同量収縮することにより、第1電気機械変換部161の側に傾いた姿勢で電気機械変換部160の側へ変位する。一方、比較例においても同様に、突起部154は、第1電気機械変換部161の側に傾いた姿勢で電気機械変換部160の側へ変位する。
Here, when transitioning from t = 20 to t = 30, the protrusion 154 is inclined toward the first electromechanical conversion unit 161 by the action of the first electromechanical conversion unit 161 and the second electromechanical conversion unit 162. Maintained in the correct posture. On the other hand, the protrusion 154 has an attitude that is inclined toward the first electromechanical conversion unit 161 in an attitude that the first electromechanical conversion unit 161 and the second electromechanical conversion unit 162 contract by the same amount. Displace to 160 side. On the other hand, similarly in the comparative example, the protrusion 154 is displaced toward the electromechanical conversion unit 160 in a posture inclined toward the first electromechanical conversion unit 161.
次に、t=35(θ=7π/4)では、A相電圧とB相電圧とが、0Vと中央値との中間の同値となる。この状態で、第1電気機械変換部161と第2電気機械変換部162とは同量伸長している。このため、突起部154は、傾きのない姿勢をとる。そして、t=35からt=40に遷移すると、突起部154は、上述のt=0の状態に復帰する。一方、比較例においても、t=35では、A相電圧とB相電圧とが、0Vと中央値との中間の同値となり、突起部154は、傾きのない姿勢をとる。そして、t=35からt=40に遷移すると、突起部154は、上述のt=0の状態に復帰する。
Next, at t = 35 (θ = 7π / 4), the A-phase voltage and the B-phase voltage have the same intermediate value between 0 V and the median value. In this state, the first electromechanical converter 161 and the second electromechanical converter 162 are extended by the same amount. For this reason, the projection part 154 takes a posture without inclination. Then, when the transition is made from t = 35 to t = 40, the protrusion 154 returns to the state of t = 0 described above. On the other hand, also in the comparative example, at t = 35, the A-phase voltage and the B-phase voltage have the same intermediate value between 0 V and the median value, and the protruding portion 154 takes a posture without inclination. Then, when the transition is made from t = 35 to t = 40, the protrusion 154 returns to the state of t = 0 described above.
即ち、比較例では、突起部154の先端部が、楕円状の軌跡を描きながら周回運動する。これに対して、本実施形態では、突起部154の先端部が、菱形状の軌跡を描きながら周回運動する。
That is, in the comparative example, the tip of the protrusion 154 moves around while drawing an elliptical locus. On the other hand, in this embodiment, the front-end | tip part of the projection part 154 carries out a circular motion, drawing a rhombus-shaped locus | trajectory.
ここで、本実施形態では、第1電気機械変換部161、第2電気機械変換部162に印加される駆動電圧を、比較例における駆動電圧に3倍周波数変調を加えたものとしている。これにより、図6の中段(b)のグラフに示すように、t=30からt=40に遷移するに際して、突起部154の先端部は、ロータ140の回転方向の反対方向に対して電気機械変換部160側へ傾斜した直線状の軌跡を描いて変位した後、その反対側へ傾斜した直線状の軌跡を描いて変位する。従って、下段(c)のグラフに実線で示すように、突起部154の先端部は、ロータ140の回転方向の反対方向へ等速運動する。
Here, in this embodiment, the drive voltage applied to the first electromechanical conversion unit 161 and the second electromechanical conversion unit 162 is obtained by adding the triple frequency modulation to the drive voltage in the comparative example. As a result, as shown in the middle graph (b) of FIG. 6, when the transition from t = 30 to t = 40, the tip of the protrusion 154 causes the electric machine to move in the direction opposite to the rotational direction of the rotor 140. After displacing a linear trajectory inclined to the conversion unit 160 side, the linear trajectory inclined to the opposite side is drawn and displaced. Accordingly, as indicated by a solid line in the lower graph (c), the tip of the protrusion 154 moves at a constant speed in the direction opposite to the rotational direction of the rotor 140.
以上、本実施形態では、突起部154の先端部が、ロータ140に対して推力を付与している間、ロータ140の回転方向へ等速運動する。これにより、突起部154の先端部とロータ140との間に生じる滑りを抑制でき、摩擦熱の発生を抑制できる。従って、突起部154からロータ140への運動伝達効率を向上でき、アクチュエータ100の出力を効率良く向上できる。また、突起部154の先端部の磨耗劣化を抑制できる。
As described above, in the present embodiment, the tip of the protrusion 154 moves at a constant speed in the rotation direction of the rotor 140 while the thrust is applied to the rotor 140. Thereby, the slip produced between the front-end | tip part of the projection part 154 and the rotor 140 can be suppressed, and generation | occurrence | production of frictional heat can be suppressed. Therefore, the efficiency of motion transmission from the protrusion 154 to the rotor 140 can be improved, and the output of the actuator 100 can be improved efficiently. In addition, it is possible to suppress wear deterioration of the tip portion of the protrusion 154.
また、突起部154からロータ140への運動伝達効率を向上できることにより、モータ101の系全体の共振を利用することを要しない。従って、アクチュエータ100を、モータ101の系全体の共振周波数とは異なる周波数で駆動することができる。
Also, since the motion transmission efficiency from the protrusion 154 to the rotor 140 can be improved, it is not necessary to use the resonance of the entire system of the motor 101. Therefore, the actuator 100 can be driven at a frequency different from the resonance frequency of the entire motor 101 system.
なお、図6の下段(c)のグラフに実線で示すように、突起部154の先端部が、上記等速運動をしている間、突起部154の先端部のロータ140の回転方向への移動速度の変動は、皆無というわけではなく、第1電気機械変換部161及び第2電気機械変換部162の駆動電圧波形に上記の周波数変調を加えてもなお残存する程度のものは存在する。即ち、上記等速運動とは、第1電気機械変換部161及び第2電気機械変換部162の駆動電圧波形に上記の周波数変調を加えてもなお残存する程度の速度変動をする運動をも包含する。
Note that, as indicated by a solid line in the lower graph (c) of FIG. 6, the tip of the protrusion 154 moves in the rotational direction of the rotor 140 while the tip of the protrusion 154 moves at the same speed. There is no change in the moving speed, and there are those that still remain even if the above-mentioned frequency modulation is applied to the drive voltage waveforms of the first electromechanical converter 161 and the second electromechanical converter 162. That is, the constant velocity motion includes a motion in which the speed fluctuation still remains even if the frequency modulation is applied to the drive voltage waveforms of the first electromechanical converter 161 and the second electromechanical converter 162. To do.
図8は、モータ101を備える撮像装置700の概略構成を示す側断面図である。この図に示すように、撮像装置700は、光学部材420と、レンズ鏡筒430と、モータ101と、撮像部500と、制御部550と、を備える。レンズ鏡筒430は光学部材420を収容する。
FIG. 8 is a side sectional view showing a schematic configuration of an imaging apparatus 700 including the motor 101. As shown in this figure, the imaging apparatus 700 includes an optical member 420, a lens barrel 430, a motor 101, an imaging unit 500, and a control unit 550. The lens barrel 430 accommodates the optical member 420.
モータ101は、光学部材420を移動させる。撮像部500は、光学部材420によって結像された画像を撮像する。制御部550は、モータ101および撮像部500を制御する。
The motor 101 moves the optical member 420. The imaging unit 500 captures an image formed by the optical member 420. The control unit 550 controls the motor 101 and the imaging unit 500.
また、撮像装置700は、光学部材420、レンズ鏡筒430、及びモータ101を備えるレンズユニット410と、ボディ460を含む。レンズユニット410は、マウント450を介して、ボディ460に対して着脱自在に装着される。
The imaging apparatus 700 includes an optical member 420, a lens barrel 430, a lens unit 410 including the motor 101, and a body 460. The lens unit 410 is detachably attached to the body 460 via the mount 450.
光学部材420は、図中で左側にあたる入射端から順次配列された、フロントレンズ422、コンペンセータレンズ424、フォーカシングレンズ426およびメインレンズ428を含む。フォーカシングレンズ426およびメインレンズ428の間には、アイリスユニット440が配置される。
The optical member 420 includes a front lens 422, a compensator lens 424, a focusing lens 426, and a main lens 428, which are sequentially arranged from the incident end corresponding to the left side in the drawing. An iris unit 440 is disposed between the focusing lens 426 and the main lens 428.
モータ101は、光軸方向についてレンズ鏡筒430の中程にあって相対的に小径なフォーカシングレンズ426の下方に配置される。これにより、レンズ鏡筒430の径を拡大することなく、モータ101はレンズ鏡筒430内に収容される。モータ101は、例えばギア列を介してフォーカシングレンズ426を光軸方向に前進または後退させる。
The motor 101 is arranged in the middle of the lens barrel 430 in the optical axis direction and below the focusing lens 426 having a relatively small diameter. Accordingly, the motor 101 is accommodated in the lens barrel 430 without increasing the diameter of the lens barrel 430. The motor 101 moves the focusing lens 426 forward or backward in the optical axis direction through, for example, a gear train.
ボディ460は、メインミラー540、ペンタプリズム470、接眼系490を含む光学部材を収容する。メインミラー540は、レンズユニット410を介して入射した入射光の光路上に傾斜して配置される待機位置と、入射光を避けて上昇する撮影位置(図中に点線で示す)との間を移動する。
The body 460 accommodates optical members including a main mirror 540, a pentaprism 470, and an eyepiece system 490. The main mirror 540 is located between a standby position inclined on the optical path of incident light incident through the lens unit 410 and an imaging position (indicated by a dotted line in the figure) that rises while avoiding incident light. Moving.
待機位置にあるメインミラー540は、入射光の大半を、上方に配置されたペンタプリズム470に導く。ペンタプリズム470は、入射光の鏡映を接眼系490に向かって出射するので、フォーカシングスクリーンの映像を接眼系490から正像として見ることができる。入射光の残りは、ペンタプリズム470により測光ユニット480に導かれる。測光ユニット480は、入射光の強度およびその分布等を測定する。
The main mirror 540 at the standby position guides most of the incident light to the pentaprism 470 disposed above. Since the pentaprism 470 emits a reflection of incident light toward the eyepiece system 490, the image on the focusing screen can be viewed as a normal image from the eyepiece system 490. The remainder of the incident light is guided to the photometric unit 480 by the pentaprism 470. The photometric unit 480 measures the intensity and distribution of incident light.
なお、ペンタプリズム470および接眼系490の間には、ファインダ液晶494に形成された表示画像を、フォーカシングスクリーンの映像に重ねるハーフミラー492が配置される。表示画像は、ペンタプリズム470から投影された画像に重ねて表示される。
A half mirror 492 is arranged between the pentaprism 470 and the eyepiece system 490 to superimpose the display image formed on the finder liquid crystal 494 on the image of the focusing screen. The display image is displayed so as to overlap the image projected from the pentaprism 470.
また、メインミラー540は、入射光の入射面に対する裏面にサブミラー542を有する。サブミラー542は、メインミラー540を透過した入射光の一部を、下方に配置された測距ユニット530に導く。これにより、メインミラー540が待機位置にある場合は、測距ユニット530が被写体までの距離を測定する。なお、メインミラー540が撮影位置に移動した場合は、サブミラー542も入射光の光路から退避する。
The main mirror 540 has a sub mirror 542 on the back surface with respect to the incident light incident surface. The sub mirror 542 guides part of the incident light transmitted through the main mirror 540 to the distance measuring unit 530 disposed below. Thereby, when the main mirror 540 is in the standby position, the distance measuring unit 530 measures the distance to the subject. When the main mirror 540 is moved to the photographing position, the sub mirror 542 is also retracted from the optical path of the incident light.
更に、入射光に対してメインミラー540の後方には、シャッタ520、光学フィルタ510および撮像部500が順次配置される。シャッタ520が開放される場合、その直前にメインミラー540が撮影位置に移動するので、入射光は直進して撮像部500に入射される。これにより、入射光の形成する画像が電気信号に変換される。これにより、撮像部500は、レンズユニット410によって結像された画像を撮像する。
Furthermore, a shutter 520, an optical filter 510, and an imaging unit 500 are sequentially arranged behind the main mirror 540 with respect to incident light. When the shutter 520 is opened, the main mirror 540 moves to the photographing position immediately before the shutter 520 is opened, so that incident light travels straight and enters the imaging unit 500. Thereby, an image formed by incident light is converted into an electric signal. Thereby, the imaging unit 500 captures an image formed by the lens unit 410.
撮像装置700において、レンズユニット410とボディ460とは電気的にも結合されている。従って、例えば、ボディ460側の測距ユニット530が検出した被写体までの距離の情報に応じてモータ101の回転を制御することにより、オートフォーカス機構を形成できる。また、測距ユニット530がモータ101の動作量を参照することにより、フォーカスエイド機構を形成することもできる。モータ101および撮像部500は、制御部550により上記の通り制御される。
In the imaging device 700, the lens unit 410 and the body 460 are also electrically coupled. Therefore, for example, the autofocus mechanism can be formed by controlling the rotation of the motor 101 in accordance with the distance information to the subject detected by the distance measuring unit 530 on the body 460 side. In addition, a focus aid mechanism can be formed by the distance measuring unit 530 referring to the operation amount of the motor 101. The motor 101 and the imaging unit 500 are controlled by the control unit 550 as described above.
ここで、上述したように、モータ101の出力トルクを効率よく増加させることができる。よって、オートフォーカス機構の駆動力を効率よく高めることができるので、省電力化すると共に、高駆動力でオートフォーカス機構を駆動することが可能となる。
Here, as described above, the output torque of the motor 101 can be increased efficiently. Therefore, since the driving force of the autofocus mechanism can be increased efficiently, it is possible to save power and drive the autofocus mechanism with a high driving force.
なお、モータ101によりフォーカシングレンズ426を移動させる場合について例示したが、アイリスユニット440の開閉、ズームレンズのバリエータレンズの移動等をモータ101で駆動できることはいうまでもない。この場合も、電気信号を介して測光ユニット480、ファインダ液晶494等と情報を参照し合うことにより、モータ101は、露出の自動化、シーンモードの実行、ブラケット撮影の実行等に寄与する。
Although the case where the focusing lens 426 is moved by the motor 101 has been illustrated, it goes without saying that the opening and closing of the iris unit 440 and the movement of the variator lens of the zoom lens can be driven by the motor 101. Also in this case, by referring to information with the photometric unit 480, the finder liquid crystal 494, etc. via the electrical signal, the motor 101 contributes to automating exposure, execution of the scene mode, execution of bracket photography, and the like.
以上のように、モータ101は、撮影機、双眼鏡等の光学系において、合焦機構、ズーム機構、手振れ補正機構等の駆動に好適に使用できる。さらに、精密ステージ、より具体的には電子ビーム描画装置、検査装置用各種ステージ、バイオテクノロジ用セルインジェクタの移動機構、核磁気共鳴装置の移動ベッド等の動力源に使用されうるが、用途がこれらに限られないことはいうまでもない。
As described above, the motor 101 can be suitably used for driving a focusing mechanism, a zoom mechanism, a camera shake correction mechanism, and the like in an optical system such as a photographing machine and binoculars. Furthermore, it can be used for power sources such as precision stages, more specifically electron beam lithography equipment, various stages for inspection equipment, moving mechanisms for cell injectors for biotechnology, moving beds for nuclear magnetic resonance equipment, etc. Needless to say, it is not limited to.
図9は、アクチュエータ100を備えるレンズユニット300の内部を示す斜視図である。当該レンズユニット300は、ボディ460に装着できる。この図に示すように、レンズユニット300には、フォーカシングレンズ426と、フォーカシングレンズ426を保持するレンズ保持枠302と、レンズ保持枠302の光軸方向への移動を案内する一対のガイドバー304、306とが配されている。レンズ保持枠302の左側には、軸受部308が設けられ、レンズ保持枠302の右上部には、前後一対の軸受部310、312が設けられている。ガイドバー304は、軸受部308に摺動自在に挿通され、ガイドバー306は、軸受部310、312に摺動自在に挿通されている。
FIG. 9 is a perspective view showing the inside of the lens unit 300 including the actuator 100. The lens unit 300 can be attached to the body 460. As shown in this figure, the lens unit 300 includes a focusing lens 426, a lens holding frame 302 that holds the focusing lens 426, and a pair of guide bars 304 that guide the movement of the lens holding frame 302 in the optical axis direction. 306 is arranged. A bearing portion 308 is provided on the left side of the lens holding frame 302, and a pair of front and rear bearing portions 310 and 312 are provided on the upper right portion of the lens holding frame 302. The guide bar 304 is slidably inserted into the bearing portion 308, and the guide bar 306 is slidably inserted into the bearing portions 310 and 312.
軸受部310と軸受部312とは、光軸方向に延びるステー314により連結されている。このステー314の下部には、光軸方向を長手方向とする矩形板状の移動体316が、上下方向に変位可能に懸架されている。また、ステー314の下部と移動体316との間には、板バネ318が配されている。この板バネ318は、移動体316を下方に付勢している。
The bearing portion 310 and the bearing portion 312 are connected by a stay 314 extending in the optical axis direction. A rectangular plate-like moving body 316 whose longitudinal direction is the optical axis direction is suspended below the stay 314 so as to be displaceable in the vertical direction. Further, a leaf spring 318 is disposed between the lower portion of the stay 314 and the moving body 316. The leaf spring 318 biases the moving body 316 downward.
ここで、移動体316の下方には、アクチュエータ100が配されており、移動体316が板バネ318によりアクチュエータ100の突起部154に圧接されている。また、アクチュエータ100は、第1電気機械変換部161と第2電気機械変換部162とが、光軸方向に並ぶように配されている。このため、アクチュエータ100が上述の方法により動作されることにより、突起部154から移動体316に対して光軸方向への推力が作用されて、レンズ保持枠302及びフォーカシングレンズ426が光軸方向に移動される。
Here, the actuator 100 is disposed below the moving body 316, and the moving body 316 is pressed against the protrusion 154 of the actuator 100 by a leaf spring 318. The actuator 100 is arranged such that the first electromechanical conversion unit 161 and the second electromechanical conversion unit 162 are arranged in the optical axis direction. Therefore, when the actuator 100 is operated by the above-described method, a thrust force in the optical axis direction is applied from the protrusion 154 to the moving body 316, and the lens holding frame 302 and the focusing lens 426 are moved in the optical axis direction. Moved.
以上、本発明を実施の形態を用いて説明したが、本発明の技術的範囲は上記実施形態に記載の範囲には限定されない。上記実施の形態に、多様な変更または改良を加えることが可能であることが当業者に明らかである。その様な変更または改良を加えた形態も本発明の技術的範囲に含まれ得ることが、請求の範囲の記載から明らかである。
As mentioned above, although this invention was demonstrated using embodiment, the technical scope of this invention is not limited to the range as described in the said embodiment. It will be apparent to those skilled in the art that various modifications or improvements can be added to the above-described embodiment. It is apparent from the scope of the claims that the embodiments added with such changes or improvements can be included in the technical scope of the present invention.
例えば、上記実施形態では、ロータ140の回転方向に配列された第1電気機械変換部161及び第2電気機械変換部162により電気機械変換部160を構成した。しかし、第1電気機械変換部161及び第2電気機械変換部162を支持する第3電気機械変換部をさらに付加してもよい。この場合には、電気機械変換部160全体の縦変位量を拡大できる。
For example, in the above embodiment, the electromechanical conversion unit 160 is configured by the first electromechanical conversion unit 161 and the second electromechanical conversion unit 162 arranged in the rotation direction of the rotor 140. However, a third electromechanical converter that supports the first electromechanical converter 161 and the second electromechanical converter 162 may be further added. In this case, the longitudinal displacement amount of the entire electromechanical conversion unit 160 can be increased.
また、上記実施形態では、電気機械変換部の変位部として圧電素子を用いた。しかし、ボイスコイルモータ、DCモータにより直線運動されるリードスクリュー等も適用できる。
In the above embodiment, a piezoelectric element is used as the displacement part of the electromechanical conversion part. However, a lead screw or the like that is linearly moved by a voice coil motor or a DC motor can also be applied.
請求の範囲、明細書、および図面中において示した装置、システム、プログラム、および方法における動作、手順、ステップ、および段階等の各処理の実行順序は、特段「より前に」、「先立って」等と明示しておらず、また、前の処理の出力を後の処理で用いるのでない限り、任意の順序で実現しうることに留意すべきである。請求の範囲、明細書、および図面中の動作フローに関して、便宜上「まず、」、「次に、」等を用いて説明したとしても、この順で実施することが必須であることを意味するものではない。
The execution order of each process such as operations, procedures, steps, and stages in the apparatus, system, program, and method shown in the claims, the description, and the drawings is particularly “before” or “prior”. It should be noted that they can be implemented in any order unless the output of the previous process is used in the subsequent process. Regarding the operation flow in the claims, the description, and the drawings, even if it is described using “first”, “next”, etc. for the sake of convenience, it means that it is essential to carry out in this order. is not.
100 アクチュエータ、101 モータ、110 回転軸、112 ネジ部、114 フランジ部、120 取付板、122 締結用穴、130 付勢部材、140 ロータ、142 軸受、144 ギア部、150 ステータ、152 ベース部、153 溝、154 突起部、156、157 脚部、160 電気機械変換部、161 第1電気機械変換部、162 第2電気機械変換部、163 隙間、170、172 フレキシブルプリント配線板、171、173 ドライバ、175 波形成形器、180、190 ベース、210、220 ナット、230 ワッシャ、300 レンズユニット、302 レンズ保持枠、304、306 ガイドバー、308、310、312 軸受部、314 ステー、316 移動体、318 板バネ、410 レンズユニット、420 光学部材、426 フォーカシングレンズ、428 メインレンズ、430 レンズ鏡筒、440 アイリスユニット、450 マウント、460 ボディ、470 ペンタプリズム、480 測光ユニット、490 接眼系、492 ハーフミラー、494 ファインダ液晶、500 撮像部、510 光学フィルタ、520 シャッタ、530 測距ユニット、540 メインミラー、542 サブミラー、550 制御部、700 撮像装置、1521 ベース部、1522 ベース部
100 actuator, 101 motor, 110 rotating shaft, 112 screw part, 114 flange part, 120 mounting plate, 122 fastening hole, 130 urging member, 140 rotor, 142 bearing, 144 gear part, 150 stator, 152 base part, 153 Groove, 154 protrusion, 156, 157 leg, 160 electromechanical converter, 161 first electromechanical converter, 162 second electromechanical converter, 163 gap, 170, 172 flexible printed wiring board, 171, 173 driver, 175 Wave shaper, 180, 190 base, 210, 220 nut, 230 washer, 300 lens unit, 302 lens holding frame, 304, 306 guide bar, 308, 310, 312 bearing part, 314 stay, 316 moving body, 3 8 leaf spring, 410 lens unit, 420 optical member, 426 focusing lens, 428 main lens, 430 lens barrel, 440 iris unit, 450 mount, 460 body, 470 pentaprism, 480 photometric unit, 490 eyepiece system, 492 half mirror 494 finder liquid crystal, 500 imaging unit, 510 optical filter, 520 shutter, 530 ranging unit, 540 main mirror, 542 sub mirror, 550 control unit, 700 imaging device, 1521 base unit, 1522 base unit
Claims (9)
- 移動子を移動させるアクチュエータであって、
前記移動子に当接可能に配された駆動子と、
前記移動子の移動方向に並べて配され、電力を供給されることにより前記移動子の移動方向と交差する方向に異なる位相で変位する複数の変位部を有し、前記複数の変位部の変位により、前記駆動子における前記移動子の側の端部を、前記移動子に当接させた状態で、前記移動子の移動方向へ等速運動させる電気機械変換部と、
を備えるアクチュエータ。 An actuator for moving the slider,
A driving element arranged so as to be able to contact the moving element;
A plurality of displacement portions that are arranged side by side in the moving direction of the moving element and are displaced at different phases in a direction that intersects the moving direction of the moving element when electric power is supplied. An electromechanical converter that moves the moving element at a constant speed in a moving direction of the moving element in a state where the moving element side end of the driving element is in contact with the moving element;
An actuator comprising: - 前記複数の変位部は、前記移動子の移動方向に並んで配された一対の伸縮部を含み、
前記一対の伸縮部の一方は、下記(1)式で示される波形の駆動電圧V1が印加されることにより、前記一対の伸縮部の他方は、下記(2)式で示される波形の駆動電圧V2が印加されることにより、伸縮運動する請求項1に記載のアクチュエータ。
V1=sin(ωt)+Asin(n×ωt)…(1)
V2=sin(ωt+δθ)+Asin(n×(ωt+δθ))…(2)
ただし、ω=2πfでありfは周波数、tは時間、Aは0<A<1の定数、nは正の整数、δθは位相を表す。 The plurality of displacement parts include a pair of expansion and contraction parts arranged side by side in the moving direction of the mover,
One of the pair of stretchable parts is applied with a drive voltage V1 having a waveform represented by the following formula (1), and the other of the pair of stretchable parts has a drive voltage having a waveform represented by the following formula (2). The actuator according to claim 1, which expands and contracts when V2 is applied.
V1 = sin (ωt) + Asin (n × ωt) (1)
V2 = sin (ωt + δθ) + Asin (n × (ωt + δθ)) (2)
However, ω = 2πf, f is frequency, t is time, A is a constant of 0 <A <1, n is a positive integer, and δθ is a phase. - n=3である請求項2に記載のアクチュエータ。 The actuator according to claim 2, wherein n = 3.
- 前記駆動子は、前記移動子の移動方向と交差する方向について前記電気機械変換部の側から前記移動子へ向けて延びる突起部である請求項1に記載のアクチュエータ。 2. The actuator according to claim 1, wherein the driving element is a protrusion that extends from the electromechanical conversion unit side toward the moving element in a direction intersecting a moving direction of the moving element.
- 請求項1から請求項4までの何れか1項に記載の前記アクチュエータと、
前記アクチュエータにより回転運動される前記移動子としてのロータと、
を備える駆動装置。 The actuator according to any one of claims 1 to 4, and
A rotor as the mover that is rotated by the actuator;
A drive device comprising: - 請求項1から請求項4までの何れか1項に記載の前記アクチュエータと、
前記アクチュエータにより直線運動される移動子としてのスライダと、
を備える駆動装置。 The actuator according to any one of claims 1 to 4, and
A slider as a mover that is linearly moved by the actuator;
A drive device comprising: - 請求項5又は請求項6に記載の前記駆動装置と、
前記駆動装置により光軸方向へ移動される光学部材と、
を備えるレンズユニット。 The driving device according to claim 5 or 6,
An optical member that is moved in the optical axis direction by the driving device;
A lens unit comprising: - 請求項5又は請求項6に記載の前記駆動装置と、
前記駆動装置により光軸方向へ移動される光学部材と、
前記光学部材によって結像された画像を撮像する撮像部と、
を備える撮像装置。 The driving device according to claim 5 or 6,
An optical member that is moved in the optical axis direction by the driving device;
An imaging unit that captures an image formed by the optical member;
An imaging apparatus comprising: - 移動子に当接可能に配された駆動子と、
前記移動子の移動方向に並べて配され、電力を供給されることにより前記移動子の移動方向と交差する方向に異なる位相で変位する複数の変位部を有し、前記複数の変位部の変位により、前記移動子を前記移動方向へ移動させるアクチュエータの動作方法であって、
前記複数の変位部を変位させることにより、前記駆動子における前記移動子の側の端部を、前記移動子に当接させた状態で、前記移動子の移動方向へ等速運動させるアクチュエータの動作方法。 A driving element arranged to come into contact with the moving element;
A plurality of displacement portions that are arranged side by side in the moving direction of the moving element and are displaced at different phases in a direction that intersects the moving direction of the moving element when electric power is supplied. An operation method of an actuator for moving the moving element in the moving direction,
Actuation of an actuator that moves the plurality of displacement portions at a constant speed in the moving direction of the moving element while the end of the moving element side of the driving element is in contact with the moving element Method.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009072797 | 2009-03-24 | ||
JP2009-072797 | 2009-03-24 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010109826A1 true WO2010109826A1 (en) | 2010-09-30 |
Family
ID=42780525
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/001944 WO2010109826A1 (en) | 2009-03-24 | 2010-03-18 | Actuator, drive device, lens unit, image-capturing device, and operation method for actuator |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2010109826A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3691110A1 (en) * | 2019-02-04 | 2020-08-05 | Cedrat Technologies | Mechanism for nanometric movement with screw |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6438350A (en) * | 1987-07-31 | 1989-02-08 | Shimadzu Corp | Conveyer |
JP2007185056A (en) * | 2006-01-10 | 2007-07-19 | Sony Corp | Method for exciting elastic vibrator and vibratory drive device |
-
2010
- 2010-03-18 WO PCT/JP2010/001944 patent/WO2010109826A1/en active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6438350A (en) * | 1987-07-31 | 1989-02-08 | Shimadzu Corp | Conveyer |
JP2007185056A (en) * | 2006-01-10 | 2007-07-19 | Sony Corp | Method for exciting elastic vibrator and vibratory drive device |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3691110A1 (en) * | 2019-02-04 | 2020-08-05 | Cedrat Technologies | Mechanism for nanometric movement with screw |
FR3092454A1 (en) * | 2019-02-04 | 2020-08-07 | Cedrat Technologies | NANOMETRIC SCREW DISPLACEMENT MECHANISM |
CN111525834A (en) * | 2019-02-04 | 2020-08-11 | 锡德雷特技术公司 | Nano linear motion control mechanism based on screw |
US11009110B2 (en) | 2019-02-04 | 2021-05-18 | Cedrat Technologies | Screw-based nanometric motion control mechanism |
CN111525834B (en) * | 2019-02-04 | 2024-10-01 | 锡德雷特技术公司 | Nanometer linear motion control mechanism based on screw rod |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2017022943A (en) | Controller of vibration type actuator, control method of the same, drive unit, imaging apparatus, and automatic stage | |
US8445837B2 (en) | Vibration actuator for rotating a rotating axle and image capturing apparatus | |
WO2010109825A1 (en) | Actuator, drive device, lens unit, image-capturing device | |
US11967914B2 (en) | Vibration actuator control apparatus | |
WO2010109826A1 (en) | Actuator, drive device, lens unit, image-capturing device, and operation method for actuator | |
WO2010109834A1 (en) | Actuator, drive device, lens unit, image-capturing device, and operation method for actuator | |
CN113940054B (en) | Imaging equipment and information terminals | |
JP2010226895A (en) | Actuator, driver, lens unit and imaging device | |
EP1784875B1 (en) | Mechanism comprised of ultrasonic lead screw motor | |
JPWO2009066467A1 (en) | Vibration actuator and imaging device | |
JP2007181261A (en) | Drive unit and camera module | |
JP5447375B2 (en) | Vibration actuator, lens unit, and imaging device | |
WO2013005442A1 (en) | Drive device, optical device, and image capture device | |
JP2020120577A (en) | Vibration type actuator control device and control method, drive device, imaging device, and automatic stage | |
JP2010028955A (en) | Vibration actuator, lens unit, imaging device, and method for manufacturing vibration actuator | |
JP2009124804A (en) | Vibration actuator, lens unit, and image pickup apparatus | |
JP5292954B2 (en) | Vibration actuator and lens barrel | |
US20240306510A1 (en) | Control device for reducing a delay of the relative movement of the vibrating body and the contacting body | |
JP2009128418A (en) | Light controlling apparatus | |
JP2021027621A (en) | Vibration type motor control device and imaging device using the same | |
JP5407154B2 (en) | Vibration actuator, lens unit, and imaging device | |
JP5407155B2 (en) | Vibration actuator, lens unit, and imaging device | |
JP2009207254A (en) | Vibrating actuator, lens unit and imaging apparatus | |
JP2006098587A (en) | Camera module and portable terminal using the camera module | |
JP2010017037A (en) | Vibration actuator, lens unit, and image pickup apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10755629 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 10755629 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |