[go: up one dir, main page]

WO2010103154A2 - Method for the culture of microorganisms and photobioreactor used in same - Google Patents

Method for the culture of microorganisms and photobioreactor used in same Download PDF

Info

Publication number
WO2010103154A2
WO2010103154A2 PCT/ES2010/070132 ES2010070132W WO2010103154A2 WO 2010103154 A2 WO2010103154 A2 WO 2010103154A2 ES 2010070132 W ES2010070132 W ES 2010070132W WO 2010103154 A2 WO2010103154 A2 WO 2010103154A2
Authority
WO
WIPO (PCT)
Prior art keywords
duct
microorganisms
photobioreactor
culture
reactor
Prior art date
Application number
PCT/ES2010/070132
Other languages
Spanish (es)
French (fr)
Other versions
WO2010103154A3 (en
Inventor
Carlos DÍAZ GARCÍA
Eduardo Romero Palazón
Guillermo GARCÍA-BLAIRSY REINA
Original Assignee
Repsol Ypf, S. A.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Repsol Ypf, S. A. filed Critical Repsol Ypf, S. A.
Publication of WO2010103154A2 publication Critical patent/WO2010103154A2/en
Publication of WO2010103154A3 publication Critical patent/WO2010103154A3/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M33/00Means for introduction, transport, positioning, extraction, harvesting, peeling or sampling of biological material in or from the apparatus
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • C12M1/002Photo bio reactors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M21/00Bioreactors or fermenters specially adapted for specific uses
    • C12M21/02Photobioreactors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M29/00Means for introduction, extraction or recirculation of materials, e.g. pumps
    • C12M29/14Pressurized fluid
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M29/00Means for introduction, extraction or recirculation of materials, e.g. pumps
    • C12M29/18External loop; Means for reintroduction of fermented biomass or liquid percolate

Definitions

  • the present invention can be included within the field of cultivation of microorganisms in reactors, in particular it describes a method for obtaining biomass from algae and a high performance vertical reactor employed in said method.
  • Microalgae are unicellular beings very varied in size and shape that exist in almost all known habitats. Most of them are aquatic habitats, both marine and freshwater, although some live on land.
  • the seas and oceans contain huge amounts of planktonic algae, with an estimated 90% of the Earth's total photosynthesis being performed by these aquatic plants.
  • microalgal biomass can be used for applications as biofertilizers, in the purification of wastewater, as soil conditioners and as food.
  • microalgae for the production of a wide variety of substances, such as fatty acids, pigments, vitamins, antibiotics, pharmaceuticals and other chemical products of interest, as well as hydrogen, hydrocarbons and other biological fuels has been revealed.
  • the so-called photobioreactors can be used. It is essential, for said production, to properly select the design of the reactor to be used, as well as a series of parameters depending on the microorganism to be used, such as optimal growth conditions and resistance to environmental variations. In this way, the design of reactors that allow to achieve high productivity at minimum costs is one of the most important lines of work. important in the field of biotechnology, and without whose progress a worldwide expansion of this industry will be impossible.
  • the present invention provides a method for the cultivation of oil-generating microalgae for use as fuels, as well as a reactor employed in said method.
  • an aqueous solution is available with microalgae that grow by photosynthesis due to the combined effect of sunlight and injection of both air and eventually CO2.
  • the cultivation of algae requires, therefore, these two basic conditions; The entry of light that allows the simultaneous existence of illuminated and shaded areas to provide the cycle of photosynthesis and agitation of the culture liquid that promotes the exchange of algae between both areas.
  • the present invention provides a high efficiency advanced vertical photobioreactor (hereinafter FBR) for algae culture, in a cylindrical shape, with a bottom that can be conical or flat, of transparent material and with an external recirculation duct, in which a vortex effect is generated in the upper part of the aqueous medium that allows a greater entry of light energy into the system and a more efficient agitation of the medium, which allows to increase the production of biomass cultivated by unit of volume and surface.
  • Said vortex or swirl is generated by the effect of the tangential entry into the system of the culture medium itself, which is driven from the lower part of the reactor to the upper part by a gas injection system located in the recirculation duct.
  • a first aspect of the present invention refers to a reactor for the cultivation of microorganisms, or FBR photobioreactor, which comprises a transparent cylindrical body, a bottom located next to the cylindrical body and an outlet conduit connected to an outlet located at the bottom, characterized in that it additionally comprises: a recirculation duct whose inlet is located next to the outlet duct and which flows into the upper part of the cylindrical body, and injection means, located in the vicinity of the inlet of the duct inlet. recirculation, which introduce gases.
  • the reactor of the invention is a cylindrical reactor, made of a transparent material, which may be included, but not limited to, the group comprising glass fiber, low density polyethylene (LDPE), polycarbonate (PC), polymethylmethacrylate (PMMA) or any other material that meets the optimal light transmission conditions PAR (photosynthetically active radiation, from English Photosynthetically Active Radiation).
  • LDPE low density polyethylene
  • PC polycarbonate
  • PMMA polymethylmethacrylate
  • PAR photosynthetically active radiation, from English Photosynthetically Active Radiation
  • the bottom of the reactor can be conical or flat, preferably flat.
  • the height of the reactor can be between 1 and 5 meters and the diameter can vary between 15 and 100 cm.
  • the reactor of the invention contains an aqueous solution that in turn contains microalgae that grow by photosynthesis by combined effect of sunlight and air, more preferably CO2, injected.
  • a second aspect of the present invention relates to a process for producing biomass from a culture of microorganisms using the reactor of the invention.
  • the conditions that this algae culture procedure requires, in addition to the use of a reactor like the one described above, are: light input with illuminated areas and in shaded areas to allow photosynthesis; and a stirring of the culture liquid that promotes the exchange of algae between the lighted areas and the shaded areas.
  • Said reactor is subjected to adequate lighting to provide illuminated areas and shaded areas, and to agitation of the culture liquid by means of a biphasic current self-propelled by the injection of gases.
  • the agitation in the reactor of the invention is achieved by means of a biphasic liquid-gas stream self-propelled by means of gas injection and its subsequent rise in buoyancy bubbles.
  • Said current is ejected tangentially in the plane formed by the free surface of the culture liquid with the aim of obtaining a swirl sufficiently intense to generate a conical free surface whose vertex is located in the vicinity of the outlet duct.
  • the additional effect of free surface increase It increases the area of the illuminated area and can increase the capacity of the system to capture light from the environment and transform it into plant matter (biomass).
  • the eddy is obtained by introducing gas into the recirculation duct ("riser"), in the vicinity of the outlet duct.
  • the air rises bubbling through the recirculation duct to the height of the free surface of the culture liquid.
  • the entrainment of liquid due to the continuous injection of gas called the "holdup" effect, must provide the necessary impulse to generate rotation.
  • the microorganisms are microalgae that can be selected from the list comprising, but not limited to, the following genera: Spirulina, Chlorella, Chlorococcum, Neochloris Isochrysis ,, Tetraselmis, Oocytis Ettlia, Porphyridium , Nannochloris Synechocystis, Crucigenia, Muriellopsis, Haematococcus, Clamidomonas, Synechococcus, Phaeodactylum,
  • Platymonas Amphora, Auxenochlorella, Ankistrademus, Nanochloropsis, Nav ⁇ cula, Boekelovia, Scenedesmus or Rhodopseudomonas.
  • the microalgae can be selected from the following species: Phaeodactylum trichornutum, Platymonas sp., Amphora sp., Boekelovia sp., Swedish Tetraselmis, Nav ⁇ cula sp. Synechococcus sp., Scenedesmus quadricuada, Rhodopseudomonas palustres, Muriellopsis sp.
  • Chlorella sorokiniana Spirulina platensis, Chlorella sp., Neochloris oleoabundans, Scenedesmus sp., Auxenochlorella protothecoides, Synechocystis sp., Chlorococcum sp., Isochrysis galbana, Oocytis sp., Ettlia carotinosa, Porphyridnois ouent.
  • Crucigenia tetrapedia Haematococcus pluviales, Clamidomonas sp., Ankistrademus, sp., Nanochloropsis occulata or Nanochloropsis gaditana.
  • the main advantages of the reactor of the present invention over others already known are: a) Compared to conventional vertical systems. It improves the dissolution of nutrients and ensures the light-dark periods of the microalgae in crops with high densities. b) Against open systems (Race-Ways): better agitation of the culture medium and better control of the culture conditions (pH, Temperature, dissolution of nutrients in a homogeneous way) as well as avoiding the entry into the environment of contaminants that may affect to the yield of biomass production. c) Against helical tubular systems with small tubes: ease of operation (control of crop conditions such as pH,
  • Another aspect of the present invention relates to the biomass obtainable by the process of the invention.
  • Another aspect of the present invention relates to the use of the biomass of the invention for the manufacture of fuel, preferably this fuel is biodiesel although it can also be used for other energy uses, such as gasification.
  • Figure 1. Represents a diagram of an FBR reactor of the invention.
  • Figure 2.- Represents an operating scheme of an FBR reactor of the invention with the non-return valve closed.
  • Figure 3. Represents an operating scheme of an FBR reactor of the invention with the non-return valve open.
  • the FBR reactor of the invention is composed of the following elements: a) A vertical body (1) of cylindrical shape, with a height between 1 and 5 meters, and a diameter between 15 and 100 cm, built in a transparent material, which can be both rigid and flexible, such as the group comprising fiberglass, low density polyethylene (LDPE), polycarbonate (PC), polymethylmethacrylate (PMMA) or any other material that meets the optimal conditions of PAR light transmission.
  • the upper part of the body (1) is provided with a cover that is not necessarily airtight that allows the aeration of said reactor and the placement of different crop control systems (thermocouples, pH meters, salinity, O2 concentration, etc.).
  • the lower part of the body rests on a bottom (2) described below in point b).
  • a bottom (2) on which the body (1) rests which can be conical or flat, of material that can be opaque, such as for example steel, aluminum, polyvinyl chloride (PVC), or transparent according to materials similar to those described for the body (1).
  • the body (1) rests by means of a hermetic seal that ensures the tightness of the union between the body (1) and the bottom (2).
  • the outlet duct (3) In the lower part of the bottom (2) there is an outlet, connected to an outlet duct (3), with a diameter between 2 cm and 15 cm, which in turn connects with a recirculation duct (4) described below in the next point.
  • the bottom (2) is provided with a stable, strong and safe system to support the entire weight of the reactor on the ground.
  • An external recirculation conduit (4) which connects the lower part and the upper part of the reactor by means of upper (6) and lower (not shown) sealed connections, respectively.
  • the material of the circulation duct (4) can be opaque, such as steel, aluminum, polyvinyl chloride (PVC), or transparent, according to materials similar to those described for the body (1).
  • the upper connection (6) is located so that the culture medium accesses the reactor tangentially to the surface of said reactor.
  • the recirculation duct (4) incorporates, in the vicinity of the outlet duct (3), a third connection (8) to which an injector (5) is connected, which injects air or air + CO2 mixture into the reactor.
  • the reactor of the invention comprises a non-return valve (12) located in the outlet duct (3).
  • a non-return valve (12) located in the outlet duct (3).
  • the recirculation duct (4) in its lower section is provided with a purge duct (9) to facilitate the emptying of the reactor.
  • the recirculation system is provided with a diverting duct (10) that allows the recirculation of the culture medium to be diverted to any other element such as a second reactor, a harvesting tank or a drain.
  • the reactor must be filled to a pre-established maximum level with an aqueous solution that will act as a culture medium for the microalgae.
  • a sufficient inoculum of individual individuals will be incorporated into this medium to initiate the growth phase.
  • the start-up stage of the recirculation begins. For this, air is injected through the injection means (5), with a flow rate of 20-150 l / min. The "hold up" effect of the bubbles created will propel the culture medium upwards through the recirculation system to the upper entrance (6) of the body (1), generating a circular movement on the surface that will eventually become a vortex (11).
  • the reactor of the invention has been started. After the period of growth set according to the species of microalgae that is cultivated, the harvesting process will be carried out using either the purge duct (9) or the diversion duct (10), located in the recirculation duct ( 4).
  • PSSC max is the maximum dry weight without ashes
  • PSSC Range is the optimum harvest range
  • g is the generation time in days
  • is the growth rate
  • P vol. It is the average volumetric production for the different species tested abroad (E) and in the greenhouse (I) in FFBR.
  • BNA are the codes of microalgae deposited in the National Algae Bank located in Las Palmas de Gran Canaria (Spain).
  • the PSSC values were calculated from the relationship between the optical density of the culture at 680 nm and the dry weight without ashes for each species / strain.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Biotechnology (AREA)
  • Genetics & Genomics (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Sustainable Development (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

The invention comprises a transparent cylindrical vertical body (1) and a base (2) supporting the body (1) and having an outlet in the lower part thereof, which outlet is connected to an outlet pipe (3) that opens into a recirculation pipe (4) connected to an upper inlet (6) in the upper part of the body (1). According to the invention, injection means (5) inject air and optionally CO2 into the recirculation pipe (4), producing a vortex (11) inside the body (1). In addition, the invention relates to a method for obtaining biomass from microalgae using this photobioreactor.

Description

MÉTODO DE CULTIVO DE MICROORGANISMOS Y FOTOBIORREACTOR METHOD OF CROP OF MICROORGANISMS AND PHOTOBIOR REACTOR
EMPLEADO EN DICHO MÉTODOEMPLOYEE IN SUCH METHOD
La presente invención se puede incluir dentro del campo de cultivo de microorganismos en reactores, en concreto describe un método para obtención de biomasa a partir de algas y un reactor vertical de alto rendimiento empleado en dicho método.The present invention can be included within the field of cultivation of microorganisms in reactors, in particular it describes a method for obtaining biomass from algae and a high performance vertical reactor employed in said method.
ANTECEDENTES DE LA INVENCIÓNBACKGROUND OF THE INVENTION
Las microalgas son seres unicelulares muy variados en tamaño y forma que existen en casi todos los habitat conocidos. La mayor parte son de habitat acuáticos, tanto marinos como dulceacuícolas, aunque algunas viven en tierra.Microalgae are unicellular beings very varied in size and shape that exist in almost all known habitats. Most of them are aquatic habitats, both marine and freshwater, although some live on land.
Los mares y océanos contienen enormes cantidades de algas planctónicas, estimándose que el 90% de Ia fotosíntesis total de Ia Tierra es realizada por estos vegetales acuáticos.The seas and oceans contain huge amounts of planktonic algae, with an estimated 90% of the Earth's total photosynthesis being performed by these aquatic plants.
Actualmente, esta biomasa microalgal puede ser utilizada para aplicaciones como biofertilizantes, en Ia purificación de aguas residuales, como acondicionadores de suelo y como alimento. Asimismo, se ha puesto de manifiesto Ia potencialidad de los microalgas para Ia producción de gran variedad de sustancias, como ácidos grasos, pigmentos, vitaminas, antibióticos, productos farmacéuticos y otros productos químicos de interés, así como hidrogeno, hidrocarburos y otros combustibles biológicos.Currently, this microalgal biomass can be used for applications as biofertilizers, in the purification of wastewater, as soil conditioners and as food. Likewise, the potential of microalgae for the production of a wide variety of substances, such as fatty acids, pigments, vitamins, antibiotics, pharmaceuticals and other chemical products of interest, as well as hydrogen, hydrocarbons and other biological fuels has been revealed.
Para llevar a cabo Ia producción de microorganismos fototrópicos pueden utilizarse los denominados fotobiorreactores. Siendo imprescindible, para dicha producción, seleccionar adecuadamente el diseño del reactor que se va a utilizar, así como una serie de parámetros función del microorganismo que se va a emplear, como condiciones óptimas de crecimiento y resistencia a variaciones ambientales. De esta forma, el diseño de reactores que permitan alcanzar altas productividades a unos costes mínimos es una de las líneas de trabajo más importantes en el campo de Ia biotecnología, y sin cuyo avance será imposible una expansión mundial de esta industria.In order to carry out the production of phototropic microorganisms, the so-called photobioreactors can be used. It is essential, for said production, to properly select the design of the reactor to be used, as well as a series of parameters depending on the microorganism to be used, such as optimal growth conditions and resistance to environmental variations. In this way, the design of reactors that allow to achieve high productivity at minimum costs is one of the most important lines of work. important in the field of biotechnology, and without whose progress a worldwide expansion of this industry will be impossible.
Así, en Ia solicitud de patente mejicana MX PA05007801A se describe el diseño de un fotobiorreactor cilindrico transparente (de vidrio), de forma cónica en su parte inferior, con circulación impulsado por aire (airlift). Este fotobiorreactor se usa para Ia producción de astaxantina.Thus, in the Mexican patent application MX PA05007801A the design of a transparent cylindrical photobioreactor (glass), conical in its lower part, with air-driven circulation (airlift) is described. This photobioreactor is used for the production of astaxanthin.
DESCRIPCIÓN DE LA INVENCIÓNDESCRIPTION OF THE INVENTION
La presente invención proporciona un método para el cultivo de microalgas generadoras de aceites para su uso como combustibles, así como un reactor empleado en dicho método.The present invention provides a method for the cultivation of oil-generating microalgae for use as fuels, as well as a reactor employed in said method.
En algunos sistemas cerrados, para cultivos marinos, se dispone de una disolución acuosa con microalgas que crecen mediante fotosíntesis por el efecto combinado de Ia luz solar e inyección tanto de aire como eventualmente de CO2. El cultivo de las algas requiere, por tanto, estas dos condiciones básicas; Ia entrada de luz que permita Ia existencia simultanea de zonas iluminadas y en sombra para proporcionar el ciclo de fotosíntesis y una agitación del líquido del cultivo que promueva el intercambio de algas entre ambas zonas.In some closed systems, for marine cultures, an aqueous solution is available with microalgae that grow by photosynthesis due to the combined effect of sunlight and injection of both air and eventually CO2. The cultivation of algae requires, therefore, these two basic conditions; The entry of light that allows the simultaneous existence of illuminated and shaded areas to provide the cycle of photosynthesis and agitation of the culture liquid that promotes the exchange of algae between both areas.
Para que se den las dos condiciones anteriores, Ia presente invención proporciona un fotobiorreactor (en adelante FBR), vertical avanzado de alta eficiencia para el cultivo de algas, de forma cilindrica, con fondo que puede ser cónico o plano, de material transparente y con un conducto de recirculación externo, en el cual se genera un efecto vórtice en Ia parte superior del medio acuoso que permite una mayor entrada de energía lumínica en el sistema y una agitación más eficiente del medio, Io que permite aumentar Ia producción de biomasa cultivada por unidad de volumen y superficie. Dicho vórtice o remolino se genera por efecto de Ia entrada tangencial al sistema del propio medio de cultivo, el cual es impulsado desde Ia parte inferior del reactor hacia Ia parte superior mediante un sistema de inyección de gases situado en el conducto de recirculación.In order for both of the above conditions to be met, the present invention provides a high efficiency advanced vertical photobioreactor (hereinafter FBR) for algae culture, in a cylindrical shape, with a bottom that can be conical or flat, of transparent material and with an external recirculation duct, in which a vortex effect is generated in the upper part of the aqueous medium that allows a greater entry of light energy into the system and a more efficient agitation of the medium, which allows to increase the production of biomass cultivated by unit of volume and surface. Said vortex or swirl is generated by the effect of the tangential entry into the system of the culture medium itself, which is driven from the lower part of the reactor to the upper part by a gas injection system located in the recirculation duct.
Además, hay que tener en cuenta que el diseño óptimo del sistema, dimensiones y/o materiales para Ia fabricación de un reactor para Ia generación de biomasa, viene determinado por los siguientes parámetros:In addition, it must be taken into account that the optimal design of the system, dimensions and / or materials for the manufacture of a reactor for the generation of biomass is determined by the following parameters:
• Maximizar el volumen conservando una proporción de volumen iluminado- sombra y de forma que se obtenga un remolino o vórtice global que garantice un tiempo de resistencia adecuado al ciclo de fotosíntesis.• Maximize the volume while maintaining a proportion of illuminated volume - shadow and so that a global vortex or vortex is obtained that guarantees adequate resistance time to the photosynthesis cycle.
• Evitar las zonas de escasa agitación.• Avoid areas of low agitation.
Por Io tanto, un primer aspecto de Ia presente invención se refiere a un reactor para el cultivo de microorganismos, o fotobiorreactor FBR, que comprende un cuerpo cilindrico transparente, un fondo situado a continuación del cuerpo cilindrico y un conducto de salida conectado a una salida ubicada en el fondo, caracterizado porque comprende adicionalmente: un conducto de recirculación cuya entrada está situada a continuación del conducto de salida y que desemboca en Ia parte superior del cuerpo cilindrico, y medios de inyección, situados en las proximidades de Ia entrada del conducto de recirculación, que introducen gases.Therefore, a first aspect of the present invention refers to a reactor for the cultivation of microorganisms, or FBR photobioreactor, which comprises a transparent cylindrical body, a bottom located next to the cylindrical body and an outlet conduit connected to an outlet located at the bottom, characterized in that it additionally comprises: a recirculation duct whose inlet is located next to the outlet duct and which flows into the upper part of the cylindrical body, and injection means, located in the vicinity of the inlet of the duct inlet. recirculation, which introduce gases.
El reactor de Ia invención, es un reactor de forma cilindrica, fabricado en un material transparente, que puede estar incluido, pero sin limitarse, al grupo que comprende fibra de vidrio, polietileno de baja densidad (LDPE), policarbonato (PC), polimetilmetacrilato (PMMA) o cualquier otro material que reúna las condiciones óptimas de transmisión de luz PAR (radiación fotosintéticamente activa, del inglés Photosynthetically Active Radiation). Además de las paredes laterales, Ia superficie superior del contenedor es transparente o abierta a Ia atmósfera de forma que también permite el paso de luz. El fondo del reactor puede tener forma cónica o plana, siendo preferiblemente plana.The reactor of the invention is a cylindrical reactor, made of a transparent material, which may be included, but not limited to, the group comprising glass fiber, low density polyethylene (LDPE), polycarbonate (PC), polymethylmethacrylate (PMMA) or any other material that meets the optimal light transmission conditions PAR (photosynthetically active radiation, from English Photosynthetically Active Radiation). In addition to the side walls, the upper surface of the container is transparent or open to the atmosphere so that it also allows the passage of light. The bottom of the reactor can be conical or flat, preferably flat.
La altura del reactor puede estar comprendida entre 1 y 5 metros y el diámetro puede variar entre 15 y 100 cm.The height of the reactor can be between 1 and 5 meters and the diameter can vary between 15 and 100 cm.
El reactor de Ia invención contiene una disolución acuosa que contiene a su vez microalgas que crecen mediante fotosíntesis por efecto combinado de Ia luz solar y del aire, más en su caso CO2, inyectados.The reactor of the invention contains an aqueous solution that in turn contains microalgae that grow by photosynthesis by combined effect of sunlight and air, more preferably CO2, injected.
Un segundo aspecto de Ia presente invención se refiere a un procedimiento para producir biomasa a partir de un cultivo de microorganismos utilizando el reactor de Ia invención.A second aspect of the present invention relates to a process for producing biomass from a culture of microorganisms using the reactor of the invention.
Las condiciones que requiere este procedimiento de cultivo de algas, además del uso de un reactor como el descrito anteriormente, son: entrada de luz con zonas iluminadas y en zonas en sombra para permitir Ia fotosíntesis; y una agitación del líquido de cultivo que promueva el intercambio de algas entre las zonas iluminadas y las zonas en sombras.The conditions that this algae culture procedure requires, in addition to the use of a reactor like the one described above, are: light input with illuminated areas and in shaded areas to allow photosynthesis; and a stirring of the culture liquid that promotes the exchange of algae between the lighted areas and the shaded areas.
Dicho reactor es sometido a una iluminación adecuada para proporcionar zonas iluminadas y zonas en sombras, y a una agitación del líquido de cultivo mediante una corriente bifásica autopropulsada por Ia inyección de gases.Said reactor is subjected to adequate lighting to provide illuminated areas and shaded areas, and to agitation of the culture liquid by means of a biphasic current self-propelled by the injection of gases.
La agitación en el reactor de Ia invención se consigue mediante una corriente bifásica líquido-gas autopropulsada mediante Ia inyección de gas y su posterior ascensión en burbujas por flotabilidad. Dicha corriente es eyectada tangencialmente en el plano formado por Ia superficie libre del líquido de cultivo con Ia pretensión de obtener un remolino suficientemente intenso para generar una superficie libre cónica cuyo vértice se sitúa en las proximidades del conducto de salida. El efecto adicional de aumento de superficie libre incrementa la superficie de zona iluminada pudiendo aumentar Ia capacidad del sistema para capturar luz del medio y transformarlo en materia vegetal (biomasa).The agitation in the reactor of the invention is achieved by means of a biphasic liquid-gas stream self-propelled by means of gas injection and its subsequent rise in buoyancy bubbles. Said current is ejected tangentially in the plane formed by the free surface of the culture liquid with the aim of obtaining a swirl sufficiently intense to generate a conical free surface whose vertex is located in the vicinity of the outlet duct. The additional effect of free surface increase It increases the area of the illuminated area and can increase the capacity of the system to capture light from the environment and transform it into plant matter (biomass).
Como se acaba de indicar, el remolino se obtiene por medio de introducción de gas en el conducto de recirculación ("riser"), en las proximidades del conducto de salida. El aire asciende burbujeando por el conducto de recirculación hasta Ia altura de Ia superficie libre del líquido de cultivo. El arrastre de líquido debido a Ia inyección continuada de gas, denominado efecto "holdup", deberá suministrar el impulso necesario para generar rotación.As just indicated, the eddy is obtained by introducing gas into the recirculation duct ("riser"), in the vicinity of the outlet duct. The air rises bubbling through the recirculation duct to the height of the free surface of the culture liquid. The entrainment of liquid due to the continuous injection of gas, called the "holdup" effect, must provide the necessary impulse to generate rotation.
Dado que Ia luz es absorbida por el medio, existe una longitud de penetración de luz que determina el volumen de líquido iluminado.Since the light is absorbed by the medium, there is a length of light penetration that determines the volume of illuminated liquid.
En una realización preferida del procedimiento de Ia presente invención, los microorganismos son microalgas que se pueden seleccionar de Ia lista que comprende, pero sin limitarse a, los siguientes géneros: Spirulina, Chlorella, Chlorococcum, Neochloris Isochrysis,, Tetraselmis, Oocytis Ettlia, Porphyridium, Nannochloris Synechocystis, Crucigenia, Muriellopsis, Haematococcus, Clamidomonas, Synechococcus, Phaeodactylum,In a preferred embodiment of the process of the present invention, the microorganisms are microalgae that can be selected from the list comprising, but not limited to, the following genera: Spirulina, Chlorella, Chlorococcum, Neochloris Isochrysis ,, Tetraselmis, Oocytis Ettlia, Porphyridium , Nannochloris Synechocystis, Crucigenia, Muriellopsis, Haematococcus, Clamidomonas, Synechococcus, Phaeodactylum,
Platymonas, Amphora, Auxenochlorella, Ankistrademus, Nanochloropsis, Navícula, Boekelovia, Scenedesmus o Rhodopseudomonas.Platymonas, Amphora, Auxenochlorella, Ankistrademus, Nanochloropsis, Navícula, Boekelovia, Scenedesmus or Rhodopseudomonas.
En una realización más preferida, las microalgas pueden seleccionarse de entre las siguientes especies: Phaeodactylum trícornutum, Platymonas sp., Amphora sp., Boekelovia sp., Tetraselmis suecica, Navícula sp. Synechococcus sp., Scenedesmus quadricuada, Rhodopseudomonas palustres, Muriellopsis sp. Chlorella sorokiniana, Spirulina platensis, Chlorella sp., Neochloris oleoabundans, Scenedesmus sp., Auxenochlorella protothecoides, Synechocystis sp., Chlorococcum sp., Isochrysis galbana, Oocytis sp., Ettlia carotinosa, Porphyridium cruentum o Nannochloris oculata. Crucigenia tetrapedia, Haematococcus pluviales, Clamidomonas sp., Ankistrademus, sp., Nanochloropsis occulata o Nanochloropsis gaditana.In a more preferred embodiment, the microalgae can be selected from the following species: Phaeodactylum trichornutum, Platymonas sp., Amphora sp., Boekelovia sp., Swedish Tetraselmis, Navícula sp. Synechococcus sp., Scenedesmus quadricuada, Rhodopseudomonas palustres, Muriellopsis sp. Chlorella sorokiniana, Spirulina platensis, Chlorella sp., Neochloris oleoabundans, Scenedesmus sp., Auxenochlorella protothecoides, Synechocystis sp., Chlorococcum sp., Isochrysis galbana, Oocytis sp., Ettlia carotinosa, Porphyridnois ouent. Crucigenia tetrapedia, Haematococcus pluviales, Clamidomonas sp., Ankistrademus, sp., Nanochloropsis occulata or Nanochloropsis gaditana.
Las principales ventajas que presenta el reactor de Ia presente invención frente a otros ya conocidos son: a) Frente a sistemas verticales convencionales. Mejora Ia disolución de nutrientes y asegura los periodos de luz-oscuridad de las microalgas en cultivos con altas densidades. b) Frente a sistemas abiertos (Race-Ways): mejor agitación del medio de cultivo y mejor control de las condiciones de cultivo (pH, Temperatura, disolución de nutrientes de forma homogénea) así como evitar Ia entrada al medio de contaminantes que puedan afectar al rendimiento de Ia producción de biomasa. c) Frente a sistemas tubulares helicoidales con tubos de pequeño tamaño: facilidad de operación (control de condiciones del cultivo como pH,The main advantages of the reactor of the present invention over others already known are: a) Compared to conventional vertical systems. It improves the dissolution of nutrients and ensures the light-dark periods of the microalgae in crops with high densities. b) Against open systems (Race-Ways): better agitation of the culture medium and better control of the culture conditions (pH, Temperature, dissolution of nutrients in a homogeneous way) as well as avoiding the entry into the environment of contaminants that may affect to the yield of biomass production. c) Against helical tubular systems with small tubes: ease of operation (control of crop conditions such as pH,
Temperatura, disolución de nutrientes de forma homogénea) así como posibilidad de utilizar materiales y sistemas de construcción de costes muy inferiores manteniendo los niveles de producción.Temperature, nutrient dissolution in a homogeneous way) as well as the possibility of using materials and construction systems with much lower costs while maintaining production levels.
Otro aspecto de Ia presente invención se refiere a Ia biomasa obtenible por el procedimiento de Ia invención.Another aspect of the present invention relates to the biomass obtainable by the process of the invention.
Otro aspecto más de Ia presente invención se refiere al uso de Ia biomasa de Ia invención para Ia fabricación de combustible, preferiblemente este combustible es biodiesel aunque también puede ser utilizada para otros usos energéticos, como por ejemplo gasificación.Another aspect of the present invention relates to the use of the biomass of the invention for the manufacture of fuel, preferably this fuel is biodiesel although it can also be used for other energy uses, such as gasification.
A Io largo de Ia descripción y las reivindicaciones Ia palabra "comprende" y sus variantes no pretenden excluir otras características técnicas, elementos, componentes o pasos. Para los expertos en Ia materia, otros objetos, ventajas y características de Ia invención se desprenderán en parte de Ia descripción y en parte de Ia práctica de Ia invención. Los siguientes ejemplos y dibujos se acompañan a Ia presente descripción para comprender mejor las características de Ia invención, como parte integrante de Ia misma y a modo de ilustración, no pretendiendo que sean limitativos de Ia presente invención.Throughout the description and the claims the word "comprises" and its variants are not intended to exclude other technical characteristics, elements, components or steps. For those skilled in the art, other objects, advantages and characteristics of the invention will emerge partly from the description and partly from the practice of the invention. The following examples and drawings are accompany the present description to better understand the characteristics of the invention, as an integral part thereof and by way of illustration, not intended to be limiting of the present invention.
DESCRIPCIÓN DE LOS DIBUJOSDESCRIPTION OF THE DRAWINGS
Para complementar Ia descripción que se está realizando y con objeto de ayudar a una mejor comprensión de las características de Ia invención, de acuerdo con un ejemplo preferente de realización práctica de Ia misma, se acompaña como parte integrante de dicha descripción, un juego de dibujos en donde con carácter ilustrativo y no limitativo, se ha representado Io siguiente:To complement the description that is being made and in order to help a better understanding of the characteristics of the invention, according to a preferred example of practical implementation thereof, a set of drawings is attached as an integral part of said description. where, for the purposes of illustration and not limitation, the following has been represented:
Figura 1.- Representa un esquema de un reactor FBR de Ia invención.Figure 1.- Represents a diagram of an FBR reactor of the invention.
Figura 2.- Representa un esquema de funcionamiento de un reactor FBR de Ia invención con Ia válvula antirretorno cerrada.Figure 2.- Represents an operating scheme of an FBR reactor of the invention with the non-return valve closed.
Figura 3.- Representa un esquema de funcionamiento de un reactor FBR de Ia invención con Ia válvula antirretorno abierta.Figure 3.- Represents an operating scheme of an FBR reactor of the invention with the non-return valve open.
REALIZACIÓN PREFERENTE DE LA INVENCIÓNPREFERRED EMBODIMENT OF THE INVENTION
Para una mejor comprensión del invento, se pasará a hacer Ia descripción detallada de alguna de las modalidades del mismo, mostrada en los dibujos que con fines ilustrativos más no limitativos se anexan a Ia presente descripción.For a better understanding of the invention, the detailed description of some of the modalities thereof will be shown, shown in the drawings which, for illustrative but non-limiting purposes, are attached to this description.
Según se aprecia en Ia figura 1 , el reactor FBR de Ia invención se compone de los siguientes elementos: a) Un cuerpo (1 ) vertical de forma cilindrica, con altura comprendida entre 1 y 5 metros, y un diámetro comprendido entre 15 y 100 cm, construido en un material transparente, que puede ser tanto rígido como flexible, como por ejemplo el grupo que comprende fibra de vidrio, polietilieno de baja densidad (LDPE), policarbonato (PC), polimetilmetacrilato (PMMA) o cualquier otro material que reúna las condiciones óptimas de transmisión de luz PAR. La parte superior del cuerpo (1 ) está provista de una tapa no necesariamente estanca que permite Ia aireación de dicho reactor y Ia colocación de diferentes sistemas de control del cultivo (termopares, medidores de pH, salinidad, concentración de O2, etc.). La parte inferior del cuerpo reposa sobre un fondo (2) descrito a continuación en el punto b). b) Un fondo (2) sobre el que se apoya el cuerpo (1 ), que puede ser cónico o plano, de material que puede ser opaco, como por ejemplo acero, aluminio, cloruro de polivinilo (PVC), o transparente según materiales similares a los descritos para el cuerpo (1 ). Sobre Ia parte superior del fondo (2) reposa el cuerpo (1 ) mediante un cierre hermético que asegura Ia estanqueidad de Ia unión entre el cuerpo (1 ) y el fondo (2). En Ia parte inferior del fondo (2) se encuentra una salida, conectada a un conducto de salida (3), de diámetro entre 2 cm y 15 cm, que conecta a su vez con un conducto de recirculación (4) descrito seguidamente en el punto siguiente. El fondo (2) está provisto de un sistema estable, resistente y seguro para apoyar todo el peso del reactor sobre el suelo. c) Un conducto de recirculación (4) externo, que conecta mediante conexiones estancas superior (6) e inferior (no mostrada) Ia parte inferior y Ia parte superior del reactor, respectivamente. El material del conducto de circulación (4) puede ser opaco, como por ejemplo acero, aluminio, cloruro de polivinilo (PVC), o transparente, según materiales similares a los descritos para el cuerpo (1 ). Adicionalmente Ia conexión superior (6) está ubicada de forma que el medio de cultivo accede al reactor de manera tangencial a Ia superficie de dicho reactor. El conducto de recirculación (4) incorpora, en las proximidades del conducto de salida (3), una tercera conexión (8) a Ia que se conecta un inyector (5), que inyecta aire o mezcla aire + CO2 al reactor.As can be seen in Figure 1, the FBR reactor of the invention is composed of the following elements: a) A vertical body (1) of cylindrical shape, with a height between 1 and 5 meters, and a diameter between 15 and 100 cm, built in a transparent material, which can be both rigid and flexible, such as the group comprising fiberglass, low density polyethylene (LDPE), polycarbonate (PC), polymethylmethacrylate (PMMA) or any other material that meets the optimal conditions of PAR light transmission. The upper part of the body (1) is provided with a cover that is not necessarily airtight that allows the aeration of said reactor and the placement of different crop control systems (thermocouples, pH meters, salinity, O2 concentration, etc.). The lower part of the body rests on a bottom (2) described below in point b). b) A bottom (2) on which the body (1) rests, which can be conical or flat, of material that can be opaque, such as for example steel, aluminum, polyvinyl chloride (PVC), or transparent according to materials similar to those described for the body (1). On the upper part of the bottom (2) the body (1) rests by means of a hermetic seal that ensures the tightness of the union between the body (1) and the bottom (2). In the lower part of the bottom (2) there is an outlet, connected to an outlet duct (3), with a diameter between 2 cm and 15 cm, which in turn connects with a recirculation duct (4) described below in the next point. The bottom (2) is provided with a stable, strong and safe system to support the entire weight of the reactor on the ground. c) An external recirculation conduit (4), which connects the lower part and the upper part of the reactor by means of upper (6) and lower (not shown) sealed connections, respectively. The material of the circulation duct (4) can be opaque, such as steel, aluminum, polyvinyl chloride (PVC), or transparent, according to materials similar to those described for the body (1). Additionally, the upper connection (6) is located so that the culture medium accesses the reactor tangentially to the surface of said reactor. The recirculation duct (4) incorporates, in the vicinity of the outlet duct (3), a third connection (8) to which an injector (5) is connected, which injects air or air + CO2 mixture into the reactor.
El reactor de Ia invención comprende una válvula antirretorno (12) ubicada en el conducto de salida (3). Según se aprecia en las figuras 2 y 3, cuando dicha válvula antirretorno (12) está abierta y el aire asciende burbujeando por el conducto de recirculación (4) hasta Ia altura de Ia superficie libre del líquido de cultivo, gracias al efecto "hold up" de las burbujas de aire generadas, se crea un movimiento recirculante del medio de cultivo el cual genera un efecto vórtice en Ia parte superior del medio acuoso que permite una mayor entrada de energía lumínica en el reactor y una agitación más eficiente del medio. El conducto de recirculación (4), en su tramo inferior está provisto de un conducto de purga (9) para facilitar el vaciado del reactor. Adicionalmente el sistema de recirculación está provisto de un conducto de desvío (10) que permite desviar Ia recirculación del medio de cultivo a cualquier otro elemento como pudiera ser un segundo reactor, un depósito de cosechado o un desagüe.The reactor of the invention comprises a non-return valve (12) located in the outlet duct (3). As can be seen in figures 2 and 3, when said non-return valve (12) is open and the air rises bubbling through the recirculation duct (4) up to the height of the free surface of the culture liquid, thanks to the "hold up" effect of the generated air bubbles, a recirculating movement of the culture medium is created which generates a vortex effect in the part upper of the aqueous medium that allows a greater entry of light energy into the reactor and a more efficient agitation of the medium. The recirculation duct (4), in its lower section is provided with a purge duct (9) to facilitate the emptying of the reactor. Additionally, the recirculation system is provided with a diverting duct (10) that allows the recirculation of the culture medium to be diverted to any other element such as a second reactor, a harvesting tank or a drain.
Una vez ensamblados todos los elementos del reactor según Io descrito anteriormente, dicho reactor deberá llenarse hasta un nivel máximo preestablecido con una solución acuosa que hará de medio de cultivo para las microalgas. Además, se incorporará a este medio un inoculo suficiente de individuos unialgares para iniciar Ia fase de crecimiento. Tras esta primera etapa de llenado, se inicia Ia etapa de puesta en marcha de Ia recirculación. Para ello se inyecta aire a través de los medios de inyección (5), con un caudal de 20 - 150 l/min. El efecto "hold up" de las burbujas creadas, impulsará de manera ascendente el medio de cultivo a través del sistema de recirculación hasta Ia entrada superior (6) del cuerpo (1 ), generando un movimiento circular en Ia superficie que finalmente se transformará en un vórtice (11 ). En este momento podemos considerar que el reactor de Ia invención se ha puesto en marcha. Transcurrido el periodo de crecimiento fijado en función de Ia especie de microalga que se cultive se procederá al proceso de cosechado haciendo uso o bien del conducto de purga (9) o bien del conducto de desvío (10), situados en el conducto de recirculación (4).Once all the elements of the reactor have been assembled as described above, said reactor must be filled to a pre-established maximum level with an aqueous solution that will act as a culture medium for the microalgae. In addition, a sufficient inoculum of individual individuals will be incorporated into this medium to initiate the growth phase. After this first filling stage, the start-up stage of the recirculation begins. For this, air is injected through the injection means (5), with a flow rate of 20-150 l / min. The "hold up" effect of the bubbles created will propel the culture medium upwards through the recirculation system to the upper entrance (6) of the body (1), generating a circular movement on the surface that will eventually become a vortex (11). At this time we can consider that the reactor of the invention has been started. After the period of growth set according to the species of microalgae that is cultivated, the harvesting process will be carried out using either the purge duct (9) or the diversion duct (10), located in the recirculation duct ( 4).
A continuación se detallan, en Ia tabla 1 , los siguientes valores de producción, en cultivos de diferentes microalgas, llevado a acabo mediante el procedimiento descrito. Tabla 1Next, in table 1, the following production values are detailed, in cultures of different microalgae, carried out by means of the procedure described. Table 1
Figure imgf000012_0001
Figure imgf000012_0001
Donde: "PSSC máx." es el peso seco sin cenizas máximo, "Rango PSSC" es el rango óptimo de cosechado, "g" es el tiempo de generación en días, "μ" es Ia tasa de crecimiento, P vol. es la media de Ia producción volumétrica para las diferentes especies ensayadas en el exterior (E) y en el invernadero (I) en FFBR.Where: "PSSC max." is the maximum dry weight without ashes, "PSSC Range" is the optimum harvest range, "g" is the generation time in days, "μ" is the growth rate, P vol. It is the average volumetric production for the different species tested abroad (E) and in the greenhouse (I) in FFBR.
(*) El cultivo de Spirulina plantensis se llevó a cabo durante todo el año, ensayando en el mismo diferentes rangos de cosechado con el fin de determinar el más adecuado para conseguir una mayor producción sostenida en el tiempo. En Ia tabla 2 se muestran los valores medios de producción para los diferentes rangos de cosechado utilizados.( * ) The cultivation of Spirulina plantensis was carried out throughout the year, testing different harvest ranges in order to determine the most suitable for achieving a sustained production over time. Table 2 shows the average production values for the different harvest ranges used.
BNA son los códigos de microalgas depositadas en el Banco Nacional de Algas situado en Las Palmas de Gran Canaria (España).BNA are the codes of microalgae deposited in the National Algae Bank located in Las Palmas de Gran Canaria (Spain).
Los valores de PSSC se calcularon a partir de Ia relación entre Ia densidad óptica del cultivo a 680 nm y el peso seco sin cenizas para cada especie/cepa.The PSSC values were calculated from the relationship between the optical density of the culture at 680 nm and the dry weight without ashes for each species / strain.
Tabla 2Table 2
Figure imgf000013_0001
Figure imgf000013_0001

Claims

R E I V I N D I C A C I O N E S
1. Fotobiorreactor para el cultivo de microorganismos que comprende:1. Photobioreactor for the cultivation of microorganisms comprising:
- un cuerpo (1 ) vertical cilindrico transparente, - un fondo (2) situado a continuación del cuerpo (1 ), sobre el que se apoya dicho cuerpo (1 ), y- a transparent cylindrical vertical body (1), - a bottom (2) located next to the body (1), on which said body (1) rests, and
- un conducto de salida (3) conectado a una salida ubicada en Ia parte inferior del fondo (2), caracterizado porque comprende adicionalmente: - un conducto de recirculación (4) conectado al conducto de salida (3) y a Ia entrada superior (6) del cuerpo (1 ),- an outlet duct (3) connected to an outlet located in the lower part of the bottom (2), characterized in that it additionally comprises: - a recirculation duct (4) connected to the outlet duct (3) and to the upper inlet (6 ) of the body (1),
- medios de inyección (5) situados en el conducto de circulación (4), en las proximidades del conducto de salida (3), que inyectan gases, que producen un vórtice (11 ) que aumenta Ia producción de biomasa, - un conducto de purga (9), ubicado en el tramo inferior del conducto de recirculación (4), para facilitar el vaciado, y- injection means (5) located in the circulation duct (4), in the vicinity of the outlet duct (3), which inject gases, which produce a vortex (11) that increases biomass production, - a duct purge (9), located in the lower section of the recirculation duct (4), to facilitate emptying, and
- un conducto de desvío (10), ubicado en el conducto de recirculación (4), empleado para extraer el cultivo hacia el exterior.- a diverting duct (10), located in the recirculation duct (4), used to extract the culture outwards.
2. Fotobiorreactor según reivindicación 1 , caracterizado porque el fondo (2) presenta forma plana.2. Photobioreactor according to claim 1, characterized in that the bottom (2) has a flat shape.
3. Fotobiorreactor según reivindicación 1 , caracterizado porque el fondo (2) presenta forma cónica.3. Photobioreactor according to claim 1, characterized in that the bottom (2) has a conical shape.
4. Fotobiorreactor según reivindicación 1 , caracterizado porque los medios de inyección (5) están adaptados para Ia circulación de gases que comprenden aire y/o CO2.4. Photobioreactor according to claim 1, characterized in that the injection means (5) are adapted for the circulation of gases comprising air and / or CO 2 .
5. Fotobiorreactor según reivindicación 1 , caracterizado porque el cuerpo está fabricado en un material seleccionado entre:5. Photobioreactor according to claim 1, characterized in that the body is made of a material selected from:
- fibra de vidrio, - polietileno de baja densidad (LDPE),- fiberglass, - low density polyethylene (LDPE),
- policarbonato (PC), y- polycarbonate (PC), and
- polimetilmetracrilato (PMMA).- polymethyl methacrylate (PMMA).
6. Fotobiorreactor según Ia reivindicación 1 , caracterizado porque Ia parte superior del cuerpo (1 ) comprende una tapa transparente.6. Photobioreactor according to claim 1, characterized in that the upper part of the body (1) comprises a transparent cover.
7. Fotobiorreactor según Ia reivindicación 1 , caracterizado porque Ia parte superior del cuerpo está abierta.7. Photobioreactor according to claim 1, characterized in that the upper part of the body is open.
8. Procedimiento para producir biomasa a partir de microorganismos que comprende: someter a iluminación el reactor, según cualquiera de las reivindicaciones 1 a 7, que contiene un cultivo de microorganismos, y agitar el líquido de dicho cultivo de microorganismos mediante Ia inyección de gases.8. Method for producing biomass from microorganisms comprising: lighting the reactor, according to any of claims 1 to 7, which contains a culture of microorganisms, and stirring the liquid of said culture of microorganisms by means of gas injection.
9. Procedimiento según Ia reivindicación 8, donde los microorganismos son microalgas.9. Method according to claim 8, wherein the microorganisms are microalgae.
10. Procedimiento según Ia reivindicación 9, donde las microalgas se seleccionan de Ia lista que comprende Spirulina, Chlorella, Chlorococcum, Neochloris Isochrysis,, Tetraselmis, Oocytis Ettlia, Porphyridium, Nannochloris Synechocystis, Crucigenia, Muriellopsis, Haematococcus, Clamidomonas, Synechococcus, Phaeodactylum, Platymonas, Amphora, Auxenochlorella, Ankistrademus, Nanochloropsis, Navícula, Boekelovia, Scenedesmus o Rhodopseudomonas.10. Method according to claim 9, wherein the microalgae are selected from the list comprising Spirulina, Chlorella, Chlorococcum, Neochloris Isochrysis ,, Tetraselmis, Oocytis Ettlia, Porphyridium, Nannochloris Synechocystis, Crucigenia, Muriellopsis, Haematococcus, Clamidomonasdachoachocdane, Chlamydum Platymonas, Amphora, Auxenochlorella, Ankistrademus, Nanochloropsis, Navícula, Boekelovia, Scenedesmus or Rhodopseudomonas.
11. Procedimiento según Ia reivindicación 10, donde las microalgas se seleccionan de Ia lista que comprende Phaeodactylum trícornutum, Platymonas sp., Amphora sp., Boekelovia sp., Tetraselmis suecica, Navícula sp. Synechococcus sp., Scenedesmus quadricuada, Rhodopseudomonas palustres, Muriellopsis sp. Chlorella sorokiniana, Spirulina platensis, Chlorella sp., Neochloris oleoabundans, Scenedesmus sp., Auxenochlorella protothecoides, Synechocystis sp., Chlorococcum sp., Isochrysis galbana, Oocytis sp., Ettlia carotinosa, Porphyridium cruentum o Nannochlorís oculata. Crucigenia tetrapedia, Haematococcus pluviales, Clamidomonas sp., Ankistrademus, sp., Nanochloropsis occulata o Nanochloropsis gaditana.11. Method according to claim 10, wherein the microalgae are selected from the list comprising Phaeodactylum trichornutum, Platymonas sp., Amphora sp., Boekelovia sp., Swedish Tetraselmis, Navícula sp. Synechococcus sp., Scenedesmus quadricuada, Rhodopseudomonas palustres, Muriellopsis sp. Chlorella sorokiniana, Spirulina platensis, Chlorella sp., Neochloris oleoabundans, Scenedesmus sp., Auxenochlorella protothecoides, Synechocystis sp., Chlorococcum sp., Isochrysis galbana, Oocytis sp., Ettlia carotinosa, Porphyridnois ouentum. Crucigenia tetrapedia, Haematococcus pluviales, Clamidomonas sp., Ankistrademus, sp., Nanochloropsis occulata or Nanochloropsis gaditana.
12. Biomasa obtenible mediante el procedimiento según cualquiera de las reivindicaciones 8 a 11.12. Biomass obtainable by the method according to any of claims 8 to 11.
13. Uso de Ia biomasa según Ia reivindicación 12, para Ia fabricación de biodiesel. 13. Use of the biomass according to claim 12, for the manufacture of biodiesel.
PCT/ES2010/070132 2009-03-09 2010-03-09 Method for the culture of microorganisms and photobioreactor used in same WO2010103154A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES200900652A ES2351566B1 (en) 2009-03-09 2009-03-09 METHOD OF CROP OF MICROORGANISMS AND PHOTOBIOR REACTOR EMPLOYED IN SUCH METHOD.
ESP200900652 2009-03-09

Publications (2)

Publication Number Publication Date
WO2010103154A2 true WO2010103154A2 (en) 2010-09-16
WO2010103154A3 WO2010103154A3 (en) 2010-10-21

Family

ID=42584974

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2010/070132 WO2010103154A2 (en) 2009-03-09 2010-03-09 Method for the culture of microorganisms and photobioreactor used in same

Country Status (2)

Country Link
ES (1) ES2351566B1 (en)
WO (1) WO2010103154A2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102086437A (en) * 2010-12-02 2011-06-08 中国海洋大学 Film hanging bag type unicellular algae photo-bioreactor and manufacturing method thereof
WO2014006232A1 (en) * 2012-07-03 2014-01-09 Acciona Energía, S. A. Co2 fixation system for cultivating microalgae
WO2014044883A1 (en) * 2012-09-19 2014-03-27 Universidad De Alicante Airlift-type combined photobioreactor for producing biomass
CN114752502A (en) * 2022-04-29 2022-07-15 云南绿A生物产业园有限公司 Culture method and system for improving growth rate of spirulina by comprehensively utilizing carbon source
US12264304B2 (en) 2021-04-08 2025-04-01 Premium Oceanic Inc. Systems and methods for deepwater photobioreactor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3073860B1 (en) * 2017-11-23 2024-07-12 Fermentalg ANTI-ADHESION CULTURE MEDIUM

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2071572B1 (en) * 1993-07-13 1996-01-16 Univ Granada DEVICE FOR THE CULTIVATION OF PHOTOSYNTHETIC MICROORGANISMS AND THE PRODUCTION OF BIOMASS RICH IN ACID AND ICOSAPENTAENOIC.
JP3950526B2 (en) * 1997-10-17 2007-08-01 次郎 近藤 Photosynthesis culture apparatus and collective photosynthesis culture apparatus
ITFI20030047A1 (en) * 2003-02-24 2004-08-25 Univ Firenze REACTOR FOR THE INDUSTRIAL CULTURE OF PHOTOSYNTHETIC MICROORGANISMS
KR100490641B1 (en) * 2003-12-16 2005-05-19 인하대학교 산학협력단 Multiple layer photobioreactors and method for culturing photosynthetic microorganisms using them
DE102004019234B3 (en) * 2004-04-16 2005-11-24 Sartorius Ag Bioreactor for the cultivation of microorganisms
MXPA05007801A (en) * 2005-07-22 2006-01-30 Univ Autonoma Metropolitana Haematococcus pluvialis culture and production of astaxanthin in a chemostat-type photobioreactor.
BRPI0615085A2 (en) * 2005-08-25 2011-06-28 Solix Biofuels Inc method, apparatus and system for the production of biodiesel from algae
US9637714B2 (en) * 2006-12-28 2017-05-02 Colorado State University Research Foundation Diffuse light extended surface area water-supported photobioreactor
US7905930B2 (en) * 2006-12-29 2011-03-15 Genifuel Corporation Two-stage process for producing oil from microalgae
BRPI0811967B1 (en) * 2007-06-01 2023-01-17 Terravia Holdings, Inc MICROALGAE CHLORELLA OR PROTOTHECA AND METHOD FOR THE PRODUCTION OF MICROBIAL LIPIDS

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102086437A (en) * 2010-12-02 2011-06-08 中国海洋大学 Film hanging bag type unicellular algae photo-bioreactor and manufacturing method thereof
WO2014006232A1 (en) * 2012-07-03 2014-01-09 Acciona Energía, S. A. Co2 fixation system for cultivating microalgae
WO2014044883A1 (en) * 2012-09-19 2014-03-27 Universidad De Alicante Airlift-type combined photobioreactor for producing biomass
ES2482015A1 (en) * 2012-09-19 2014-07-31 Universidad De Alicante Airlift-type combined photobioreactor for producing biomass
US12264304B2 (en) 2021-04-08 2025-04-01 Premium Oceanic Inc. Systems and methods for deepwater photobioreactor
CN114752502A (en) * 2022-04-29 2022-07-15 云南绿A生物产业园有限公司 Culture method and system for improving growth rate of spirulina by comprehensively utilizing carbon source

Also Published As

Publication number Publication date
ES2351566A1 (en) 2011-02-08
ES2351566B1 (en) 2012-06-14
WO2010103154A3 (en) 2010-10-21

Similar Documents

Publication Publication Date Title
CN101679929B (en) Photo bioreactor, method for producing photosynthetic culture and the photosynthetic culture
CN102712892B (en) Acclimated bioreactor used for biomass production
CN102037117B (en) Photo bioreactor with light distributor and method for the production of a photosynthetic culture
Zittelli et al. Photobioreactors for mass production of microalgae
US9260685B2 (en) System and plant for cultivation of aquatic organisms
CN102933701A (en) Systems and methods for positioning flexible floating photobioreactors
ES2370546A1 (en) APPARATUS AND METHOD FOR GROWING BIOLOGICAL ORGANISMS FOR FUEL AND OTHER PURPOSES.
ES2351566B1 (en) METHOD OF CROP OF MICROORGANISMS AND PHOTOBIOR REACTOR EMPLOYED IN SUCH METHOD.
KR20190094622A (en) Apparatus for cultivating microalgae
KR20160000206A (en) Photo-Bioreactor for Cultivation of Photosynthesis Autotrophic Organisms
ES2356653B2 (en) PHOTOBIOR REACTOR FOR THE CROP OF PHOTOTROPHIC ORGANISMS.
KR101663108B1 (en) Light Tube for Photo-Bioreactor for Cultivation of Photosynthesis Autotrophic Organisms
CN109576129B (en) Photosynthetic bioreactor and method for manufacturing a photosynthetic bioreactor
US20160145552A1 (en) Floating photobioreactor system comprising a floating photobioreactor and an integrated paddle wheel and an airlift and methods of use
ES2395947B1 (en) PHOTOBIOR REACTOR TO GROW MICROORGANISMS PHOTOAUTÓTROFOS
Zohir et al. Algae Cultivation Systems
KR20160102728A (en) Light Tube With Various Shape Light Collector for Photobioreactor
CN205133581U (en) Photobioreactor of little algae is bred in industrialization
WO2014044883A1 (en) Airlift-type combined photobioreactor for producing biomass
AU2010202958B2 (en) Circulatory photobioreactor
ITKR20080004A1 (en) INNOVATIVE PROCEDURE FOR MICRO-ALGAE CULTIVATION.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10712090

Country of ref document: EP

Kind code of ref document: A2

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10712090

Country of ref document: EP

Kind code of ref document: A2