WO2010098159A1 - Stereoscopic display device - Google Patents
Stereoscopic display device Download PDFInfo
- Publication number
- WO2010098159A1 WO2010098159A1 PCT/JP2010/050787 JP2010050787W WO2010098159A1 WO 2010098159 A1 WO2010098159 A1 WO 2010098159A1 JP 2010050787 W JP2010050787 W JP 2010050787W WO 2010098159 A1 WO2010098159 A1 WO 2010098159A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- stereoscopic display
- stereoscopic
- display
- display panel
- display device
- Prior art date
Links
- 230000007246 mechanism Effects 0.000 claims abstract description 16
- 238000001514 detection method Methods 0.000 claims description 3
- 230000035807 sensation Effects 0.000 abstract 1
- 238000000034 method Methods 0.000 description 13
- 230000004888 barrier function Effects 0.000 description 8
- 230000000694 effects Effects 0.000 description 7
- 238000010586 diagram Methods 0.000 description 6
- 230000008447 perception Effects 0.000 description 6
- 239000011521 glass Substances 0.000 description 5
- 101100259947 Homo sapiens TBATA gene Proteins 0.000 description 4
- 230000009471 action Effects 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 230000009191 jumping Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000012788 optical film Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 238000012800 visualization Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03B—APPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
- G03B35/00—Stereoscopic photography
- G03B35/18—Stereoscopic photography by simultaneous viewing
- G03B35/24—Stereoscopic photography by simultaneous viewing using apertured or refractive resolving means on screens or between screen and eye
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N13/00—Stereoscopic video systems; Multi-view video systems; Details thereof
- H04N13/30—Image reproducers
- H04N13/302—Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N13/00—Stereoscopic video systems; Multi-view video systems; Details thereof
- H04N13/30—Image reproducers
- H04N13/302—Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays
- H04N13/31—Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays using parallax barriers
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N13/00—Stereoscopic video systems; Multi-view video systems; Details thereof
- H04N13/30—Image reproducers
- H04N13/398—Synchronisation thereof; Control thereof
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B30/00—Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
- G02B30/20—Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
- G02B30/26—Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type
- G02B30/30—Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving parallax barriers
Definitions
- the present invention relates to a stereoscopic display device for realizing high presence.
- FIG. 9A is a diagram showing the appearance of a conventional stereoscopic display 1000.
- the stereoscopic display 1000 is configured by supporting a stereoscopic display panel 1001 having a display surface on the front side by a support mechanism 1002.
- the stereoscopic display 1000 is installed on a substantially horizontal surface and is designed so that the normal direction of the display surface of the stereoscopic display panel 1001 can be finely adjusted around the horizontal direction.
- the methods used for the stereoscopic display panel 1001 include a method with glasses that requires an observer to wear dedicated glasses, and a method without glasses that does not require dedicated glasses. There is a lenticular lens system.
- FIG. 9B shows a principle diagram of the parallax barrier method.
- the display 1003 has a pixel structure, and the pixels are divided into two groups for each column, and a right-eye video is displayed on one side and a left-eye video is displayed on the other side.
- a parallax barrier 1004 is disposed on the front surface of the display 1003.
- the parallax barrier 1004 is an optical film in which a light transmitting portion 1004a and a non-transmitting portion 1004b are repeated at substantially the same pitch as the vertical column of pixels, and appear as a vertical stripe pattern.
- a glass substrate is usually present between the display surface of the display 1003 and the parallax barrier 1004 and is arranged with a certain distance. Therefore, as shown in FIG. 9B, when the transmissive portion 1004a is disposed between the left and right pixel groups, only the right eye pixel group and the left eye pixel group are visible. An area can be created. Therefore, by adjusting the interval of the area where only one of the pixel groups is visible to the width of the eye, it is possible to independently present the right eye image and the left eye image to the left and right eyes of the observer. A stereoscopic effect can be produced in the observer's vision. Even in a method other than the parallax barrier method, the principle of generating a stereoscopic effect in the viewer's vision by presenting independent images to the left and right eyes of the viewer is the same.
- FIG. 10 A position where a three-dimensional reproduction image is generated when the left and right videos are presented to the observer's eyes as described above will be described.
- a right-eye image 1005 and a left-eye image 1006 are displayed on the stereoscopic display panel 1001, and the right-eye image 1005 is displayed on the left side from the left-eye image 1006 toward the screen. Is shown.
- the image passes through the optical path indicated by the arrow in the drawing, and the image is displayed on each eye of the observer. Will be communicated.
- the present invention focuses on the perceptual psychological elements advocated by James Gibson described above, and an object of the present invention is to provide a stereoscopic display device with a high sense of popping out of a stereoscopic reproduction image and a high presence.
- a first technical means of the present invention is a stereoscopic display device, and each of the two stereoscopic display panels is connected to each other by a hinge mechanism.
- An angle formed by two stereoscopic display panels is variable within a range of a predetermined angle of 90 ° or more and an angle at which the lower stereoscopic display panel is covered with the upper stereoscopic display panel, and the two stereoscopic display panels
- a stereoscopic display is performed so that one stereoscopic video is reproduced on the lower stereoscopic display panel.
- the lower stereoscopic display panel has a flat display portion having a flat display surface at the end opposite to the hinge mechanism. And a display surface having a curved surface display portion formed in a curved shape that is continuous with the display surface of the flat display portion and warps from the display surface of the flat display portion at an end of the hinge mechanism side. It is what.
- an angle sensor for detecting an angle formed by the two three-dimensional display panels, and the three-dimensional display based on a detection result of the angle sensor.
- a stereoscopic video generation unit that generates data to be used.
- the stereoscopic display panel is provided also in the horizontal direction (the ground direction), it is possible to display a stereoscopic image in the ground direction that is essential for enhancing the sense of popping out of the stereoscopic reproduction image, that is, the sense of presence.
- the hinge portion is provided between the two three-dimensional display panels, it can be bent and folded from the hinge portion when not in use, so that storage and transportation are easy.
- FIG. 1 is a diagram illustrating an appearance of an example of a stereoscopic display device of Embodiment 1.
- FIG. It is a figure explaining having made variable the angle which two stereoscopic display panels of the stereoscopic display apparatus of FIG. 1 comprise.
- FIG. 6 is a diagram illustrating a stereoscopic reproduction image displayed in the first embodiment. It is a figure explaining an example of the three-dimensional display apparatus of Embodiment 2.
- FIG. It is a figure explaining the structural example of the three-dimensional display apparatus of Embodiment 3.
- FIG. It is a figure explaining the observer's viewpoint position on the basis of the three-dimensional display apparatus assumed in the three-dimensional video generation part 107 of FIG.
- FIG. 6 is a diagram illustrating another example of a stereoscopic image displayed on the stereoscopic display device 400 of FIG. 5. It is a figure explaining the external appearance and display system of the conventional three-dimensional display. It is a figure explaining the position of the three-dimensional reproduction image displayed with the conventional three-dimensional display. It is a figure explaining the three-dimensional reproduction image displayed with the conventional three-dimensional display.
- FIG. 11 shows a state in which a stereoscopic reproduction image is projected and displayed in front of the display surface in a conventional stereoscopic display device.
- the left and right eye images 1005 and 1006 are displayed, and the shift length (parallax amount) on the screen is determined based on the positions of the eyes 1007 and 1008 of the observer and the left and right eyes. If calculated from the width and set, theoretically, the position of the stereoscopic reproduction image 1009 can be reproduced at an arbitrary position between the stereoscopic display device and the eye from the geometrical relationship.
- the stereoscopic reproduction image looks as shown in FIG. 11 when viewed from the observer, but the stereoscopic reproduction image 1010 is naturally displayed only within the field of view of the stereoscopic display device as viewed from the observer. Only a 3D reconstructed image floating in the air can be displayed.
- the stereoscopic reproduction image created by the conventional stereoscopic display device shown in FIG. 11 since the ground connection from the observer to the stereoscopic reproduction image is broken, the stereoscopic reproduction image should be displayed geometrically optically. It can be understood that the result is that the three-dimensional reproduced image does not feel as if it existed at the place.
- the present invention has been made to solve such problems of the conventional method based on understanding of human spatial perception characteristics, and has, for example, a configuration as shown in FIG.
- FIG. 1 is an external view showing an example of the stereoscopic display device according to the first embodiment.
- a stereoscopic display device 100 includes first and second stereoscopic display panels 101 and 102.
- the display surfaces of both panels 101 and 102 are flat.
- the stereoscopic display device 100 is configured by connecting the end portions of the first and second stereoscopic display panels 101 and 102 with a hinge mechanism 103.
- a hinge mechanism 103 an angle formed by the first and second stereoscopic display panels 101 and 102 (an angle formed by both display surfaces) ⁇ is, for example, 0 ° (the normal directions of both display surfaces are parallel and reverse).
- the angle is variable within a range of from 180 degrees (an angle in which the normal direction is parallel and in the same direction).
- a parallax barrier method is used for the first and second stereoscopic display panels 101 and 102.
- the angle ⁇ formed by the first and second 3D display panels 101 and 102 is a predetermined angle, for example, as shown in FIG.
- an image is also displayed on the second stereoscopic display panel 102 arranged on the lower side in addition to the first stereoscopic display panel 101, and is viewed on the second stereoscopic display panel 102 as viewed from the observer.
- One stereoscopic video is played back.
- the angle ⁇ assumed in the usage state of the stereoscopic display device 100 is not limited to 90 °, and may be larger than 90 ° as shown in FIG.
- the first stereoscopic display panel 101 is overlaid on the second stereoscopic display panel 102 as shown in FIG. Can do. Therefore, storage and transportation are facilitated. This is an essential effect for realizing portable devices for home use and office use.
- the stereoscopic display device 100 Since the stereoscopic display device 100 according to the first embodiment includes the upper and lower stereoscopic display panels 101 and 102, by continuously displaying the left and right eye images on each of them, FIG. ), A stereoscopic reproduction image 201 connected to the ground can be displayed. When viewed from the observer, the stereoscopic display device 100 displays a stereoscopic reproduction image 202 shown in FIG.
- the observer From the observer's position, the observer passes through the desk on which the stereoscopic display device 100 is placed, for example, through the floor surface, and is further connected to the lower stereoscopic display panel 102, and a stereoscopic reproduction image is formed thereon. Since 201 is reproduced, the “continuous surface existing between the observer and the object” pointed out by James Gibson's ground theory is established. As a result, the stereoscopic reproduction images 201 and 202 shown in FIGS. 3A and 3B are sensed with reality as if they existed on the lower stereoscopic display panel 102. As described above, according to the first embodiment, it is possible to solve the reduction in the effect of popping out the three-dimensional reproduced image, which was a conventional problem, and to realize a high sense of reality.
- FIG. 4 is an external view illustrating an example of the stereoscopic display device according to the second embodiment.
- the stereoscopic display device 300 shown in FIG. 4A is different from the stereoscopic display device 100 of FIG. 1 in the configuration of the lower second stereoscopic display panel 102 ′.
- the lower second stereoscopic display panel 102 ′ has a flat stereoscopic display unit 104 having a flat display surface on the side opposite to the hinge mechanism 103, and a curved stereoscopic display on the hinge mechanism 103 side. Part 105.
- the curved three-dimensional display unit 105 is formed in a curved surface whose display surface is continuous with the display surface of the flat three-dimensional display unit 104 and warps from the display surface of the flat three-dimensional display unit 104. Via the first 3D display panel 101.
- Each of the planar stereoscopic display unit 104 and the curved stereoscopic display unit 105 can be configured by, for example, one stereoscopic display panel.
- a portion that is the display surface of the second stereoscopic display panel 102 ′ and is close to the connection portion with the first stereoscopic display panel 101. Has a curved surface, and has the following effects.
- the loss of reality of a stereoscopic reproduction image (stereoscopic virtual image) that can occur when the boundary between the first stereoscopic display panel 101 and the second stereoscopic display panel 102 is perceived by an observer.
- the first stereoscopic display panel 101 when not in use, the first stereoscopic display panel 101 is placed on the second stereoscopic display panel 102 ′ by bending from the hinge mechanism 103 as shown in FIG. 4B. Can be stacked. Therefore, storage and transportation are easy.
- FIG. 5 is a diagram illustrating an example of the stereoscopic display device according to the third embodiment.
- a stereoscopic display device 400 shown in FIG. 5A is obtained by adding the following two elements to the configuration of the stereoscopic display device 100 of FIG.
- a display surface angle sensor 106 that detects an angle formed by the first and second stereoscopic display panels 101 and 102 (display surfaces thereof).
- the output from the display surface angle sensor 106 is read to generate a three-dimensional image suitable for the angle formed by the first and second stereoscopic display panels 101, 102, and the first and second stereoscopic display panels 101, 102
- a stereoscopic video generation unit 107 that outputs a stereoscopic video signal to 102.
- the display surface angle sensor 106 is built in, for example, the hinge mechanism 103 in FIG.
- the stereoscopic video generation unit 107 operates, for example, according to the following procedure well known for generating stereoscopic video.
- a three-dimensional coordinate system is prepared, and a CG model desired to be displayed or a target data string calculated from a live action is prepared.
- the virtual camera position and the position / shape of the virtual screen for projecting the target data string are set.
- the target data is projected onto the virtual screen to obtain a two-dimensional image.
- the virtual camera in the stereoscopic video generation unit 107 is a virtual stereo camera placed apart from the human eye (for example, 65 mm). Become.
- the two-dimensional video obtained by the stereoscopic video generation unit 107 is a set of two videos corresponding to the left and right virtual cameras of the virtual stereo camera.
- the virtual camera position described above is set to correspond to the coordinates of the viewpoint assuming the viewpoint position of the observer.
- the viewpoint position can be determined based on a preset value stored in advance. For example, in the first stereoscopic display panel 101, as shown in FIGS. 6A and 6B, the angle ⁇ between the upper end of the first stereoscopic display 101 and the line of sight is adjusted vertically by the observer. If the distance L (for example, 50 cm determined by usability experiment) between the upper end of the first stereoscopic display panel 101 and the viewer's eyes is determined on the assumption that the first stereoscopic display panel 101 is used, the coordinates of the viewpoint are set with reference to the stereoscopic display panel 101 Is determined. Based on this, the virtual camera position can be set.
- L for example, 50 cm determined by usability experiment
- the above-described virtual screen is defined (set) in a plane, but in this embodiment, the stereoscopic video generation unit 107 is based on the data of the display surface angle sensor 106, the first stereoscopic display panel 101, A virtual screen is set as a bent surface composed of the second stereoscopic display panel 102. Based on the bent virtual screen, a set of two-dimensional images to be displayed on the stereoscopic display device 400 is calculated. According to the above procedure, when the viewer tilts the first stereoscopic display panel 101 and changes the angle ⁇ formed with the second stereoscopic display panel 102 in accordance with the movement of the viewpoint, the viewer is stabilized at a certain position. A stereoscopic reproduction image can be provided.
- the stereoscopic display device 400 causes the first stereoscopic display panel 101 to reproduce the stereoscopic image T1 of FIG. 7A and the second stereoscopic display panel 102 causes the display of FIG.
- the stereoscopic image T2 of B) is reproduced.
- a stereoscopic reproduction video T3 that rises from the floor and has a large pop-out effect from the display surface is displayed.
- the stereoscopic display device 400 causes the first stereoscopic display panel 101 to reproduce the stereoscopic image T4 in FIG. 8A, and the second stereoscopic display panel 102 causes the display of FIG.
- the stereoscopic image T5 of B) is reproduced.
- the distance L is a set distance (50 cm) as a viewpoint position, as shown in FIG.
- the pop-out effect is large, and a stereoscopic reproduction video T6 as viewed from above is displayed as compared with FIG. 7C.
- the observer's viewpoint position that is, the virtual camera position, used for calculation of the data for stereoscopic display is set based on the set value held in advance, but the apparatus for detecting the actual position of the observer ( A sensor system that tracks the distance and direction from the first three-dimensional display panel 101) may be added and set based on the detection result of the device.
- the invention of this embodiment can be applied not only to the stereoscopic display device 100 of FIG. 1 but also to the stereoscopic display device 300 of FIG. In this case, since the shape of the display surface is different from that of FIG. 1, a virtual screen may be set to correspond to this.
- the parallax barrier method is used for the stereoscopic display panel, but other methods described in the background art can be used depending on the application.
- the above-described three types of embodiments can be selected according to required specifications such as performance, cost, and compatibility with other members.
- the stereoscopic display device of the present invention can be used for CG game play, 3D photo / movie appreciation, simulation result 3D visualization, 3D presentation, 3D digital signage, or 3D television broadcast viewing.
Landscapes
- Engineering & Computer Science (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)
- Stereoscopic And Panoramic Photography (AREA)
Abstract
Focusing on perceptual psychological elements advocated by James Gibson, disclosed is a stereoscopic display device for which there is a strong feeling that a stereoscopically reproduced image comes out, and there is a high realistic sensation. A stereoscopic display device (100) is formed with the respective edges of first and second stereoscopic display panels (101, 102) connected by means of a hinge mechanism (103), can vary, when folded back from the hinge mechanism (103), the angle (α) formed by the two stereoscopic display panels (101, 102) in at least the range from a prescribed angle of 90° or more to the angle formed when the lower second stereoscopic display panel (102) is covered by the upper first stereoscopic display panel (101), and stereoscopically displays a single stereoscopic image to be reproduced on the lower second stereoscopic display panel (102) by means of the first and second stereoscopic display panels (101, 102).
Description
本発明は、高い臨場感を実現するための立体表示装置に関する。
The present invention relates to a stereoscopic display device for realizing high presence.
近年、大画面テレビの普及と高精細デジタル放送の開始で、二次元映像では、家庭で大画面高精細映像を楽しめる環境が整ってきた。一方、次世代映像システムとして、立体表示の高臨場感映像システムへの期待が高まってきている。
Recently, with the widespread use of large-screen TVs and the start of high-definition digital broadcasting, the environment for enjoying large-screen high-definition video at home has been established for 2D video. On the other hand, as a next-generation video system, there is an increasing expectation for a highly realistic video system with stereoscopic display.
図9(A)は、従来例の立体ディスプレイ1000の外観を示す図で、図示するように、立体ディスプレイ1000は、前側に表示面を有する立体表示パネル1001を支持機構1002で支持して成る。通常、立体ディスプレイ1000は、略水平な面に設置され、立体表示パネル1001の表示面の法線方向が水平方向を中心に微調整できるように設計されている。
この立体表示パネル1001に用いられる方式には、観察者が専用メガネを掛ける必要のあるメガネ有り方式と、専用メガネが不要のメガネ無し方式があり、さらに、メガネ無し方式には、視差バリア方式と、レンチキュラレンズ方式がある。 FIG. 9A is a diagram showing the appearance of a conventionalstereoscopic display 1000. As shown in the figure, the stereoscopic display 1000 is configured by supporting a stereoscopic display panel 1001 having a display surface on the front side by a support mechanism 1002. Normally, the stereoscopic display 1000 is installed on a substantially horizontal surface and is designed so that the normal direction of the display surface of the stereoscopic display panel 1001 can be finely adjusted around the horizontal direction.
The methods used for thestereoscopic display panel 1001 include a method with glasses that requires an observer to wear dedicated glasses, and a method without glasses that does not require dedicated glasses. There is a lenticular lens system.
この立体表示パネル1001に用いられる方式には、観察者が専用メガネを掛ける必要のあるメガネ有り方式と、専用メガネが不要のメガネ無し方式があり、さらに、メガネ無し方式には、視差バリア方式と、レンチキュラレンズ方式がある。 FIG. 9A is a diagram showing the appearance of a conventional
The methods used for the
図9(B)は、視差バリア方式の原理図を示している。ディスプレイ1003は、画素構造を持っており、画素を縦列毎に、2グループに分け、一方に右眼用の映像を表示し、他方に左眼用の映像を表示する。ディスプレイ1003の前面には、視差バリア1004が配置されている。視差バリア1004は、画素の縦列のピッチと略同じピッチで、光を透過する部分1004aと、不透過な部分1004bが繰り返され、縦縞模様状に見える光学フィルムである。
FIG. 9B shows a principle diagram of the parallax barrier method. The display 1003 has a pixel structure, and the pixels are divided into two groups for each column, and a right-eye video is displayed on one side and a left-eye video is displayed on the other side. A parallax barrier 1004 is disposed on the front surface of the display 1003. The parallax barrier 1004 is an optical film in which a light transmitting portion 1004a and a non-transmitting portion 1004b are repeated at substantially the same pitch as the vertical column of pixels, and appear as a vertical stripe pattern.
ディスプレイ1003の表示面と、視差バリア1004の間には、通常ガラス基板が存在し、一定の間隔を持つ配置となっている。そのため、図9(B)のように、透過部分1004aを左右の各眼用の画素グループの間に配置すると、右眼用の画素グループのみが見える領域と、左眼用の画素グループのみが見える領域を作ることができる。従って、各一方の画素グループのみが見える領域の間隔を眼の幅に合わせることで、観察者の左右の各眼に、右眼用と左眼用の映像を独立して提示することができるので、観察者の視覚に立体感を生じさせることができる。
視差バリア方式以外の方法でも、観察者の左右の眼に独立した映像を提示することで、観察者の視覚に立体感を生じさせる原理は同様である。 A glass substrate is usually present between the display surface of thedisplay 1003 and the parallax barrier 1004 and is arranged with a certain distance. Therefore, as shown in FIG. 9B, when the transmissive portion 1004a is disposed between the left and right pixel groups, only the right eye pixel group and the left eye pixel group are visible. An area can be created. Therefore, by adjusting the interval of the area where only one of the pixel groups is visible to the width of the eye, it is possible to independently present the right eye image and the left eye image to the left and right eyes of the observer. A stereoscopic effect can be produced in the observer's vision.
Even in a method other than the parallax barrier method, the principle of generating a stereoscopic effect in the viewer's vision by presenting independent images to the left and right eyes of the viewer is the same.
視差バリア方式以外の方法でも、観察者の左右の眼に独立した映像を提示することで、観察者の視覚に立体感を生じさせる原理は同様である。 A glass substrate is usually present between the display surface of the
Even in a method other than the parallax barrier method, the principle of generating a stereoscopic effect in the viewer's vision by presenting independent images to the left and right eyes of the viewer is the same.
上記のように左右の各映像を観察者の眼に提示した場合、立体再生像が生じる位置について説明する。
図10において、立体表示パネル1001に右眼用画像1005と、左眼用画像1006が表示されており、右眼用画像1005が左眼用画像1006より画面に向かって左側に表示している状態を示している。この場合、観察者の左右各眼1007,1008が、立体表示パネル1001上の対応する映像のみを見える位置にある条件では、図中、矢印で示す光路を通り、観察者の各眼に映像が伝達されることになる。
すると、観察者の視覚は、類似する左右の映像がある場合、これらを一体の立体物からの光線として認識するので、原理的には、立体ディスプレイ1000の手前に立体再生像1009があるように知覚されることになる。 A position where a three-dimensional reproduction image is generated when the left and right videos are presented to the observer's eyes as described above will be described.
In FIG. 10, a right-eye image 1005 and a left-eye image 1006 are displayed on the stereoscopic display panel 1001, and the right-eye image 1005 is displayed on the left side from the left-eye image 1006 toward the screen. Is shown. In this case, under the condition that the left and right eyes 1007 and 1008 of the observer are in a position where only the corresponding image on the stereoscopic display panel 1001 can be seen, the image passes through the optical path indicated by the arrow in the drawing, and the image is displayed on each eye of the observer. Will be communicated.
Then, when there are similar left and right images in the observer's vision, these are recognized as light rays from an integrated three-dimensional object, so that in principle, there is a three-dimensional reproduction image 1009 in front of the three-dimensional display 1000. It will be perceived.
図10において、立体表示パネル1001に右眼用画像1005と、左眼用画像1006が表示されており、右眼用画像1005が左眼用画像1006より画面に向かって左側に表示している状態を示している。この場合、観察者の左右各眼1007,1008が、立体表示パネル1001上の対応する映像のみを見える位置にある条件では、図中、矢印で示す光路を通り、観察者の各眼に映像が伝達されることになる。
すると、観察者の視覚は、類似する左右の映像がある場合、これらを一体の立体物からの光線として認識するので、原理的には、立体ディスプレイ1000の手前に立体再生像1009があるように知覚されることになる。 A position where a three-dimensional reproduction image is generated when the left and right videos are presented to the observer's eyes as described above will be described.
In FIG. 10, a right-
Then, when there are similar left and right images in the observer's vision, these are recognized as light rays from an integrated three-dimensional object, so that in principle, there is a three-
しかし、実際には、上記従来例のような構成の立体表示装置において、立体の再生像を、手前に形成するように設計し、表示しても、再生像が立体表示装置内部あるいは、表面付近に留まり、必ずしも手前まで飛び出してくる印象を与えられないことがあった。
この問題点を解決する上で、重要な知覚心理学上の知見として、ギブソンの空間知覚における地面説がある(非特許文献1参照)。この説によると「自然空間内にある様々な対象は、それが置かれた地面との間で知覚的に構造化さているとともに、それらは相互に関連し合って存在している」と考え、特に奥行知覚においては、「観察者と対象の間に存在する連続した面が重要な規定要因である」と指摘している。 However, in reality, in the stereoscopic display device configured as in the above-described conventional example, even if the stereoscopic reproduction image is designed to be formed in the foreground and displayed, the reproduction image is in the stereoscopic display device or near the surface. However, it was not always possible to give the impression of jumping out to the front.
As an important perceptual psychological finding in solving this problem, there is a ground theory in Gibson's spatial perception (see Non-Patent Document 1). According to this theory, "the various objects in the natural space are perceptually structured with the ground on which they are placed, and they exist in relation to each other." Especially in depth perception, he points out that "the continuous surface existing between the observer and the object is an important defining factor".
この問題点を解決する上で、重要な知覚心理学上の知見として、ギブソンの空間知覚における地面説がある(非特許文献1参照)。この説によると「自然空間内にある様々な対象は、それが置かれた地面との間で知覚的に構造化さているとともに、それらは相互に関連し合って存在している」と考え、特に奥行知覚においては、「観察者と対象の間に存在する連続した面が重要な規定要因である」と指摘している。 However, in reality, in the stereoscopic display device configured as in the above-described conventional example, even if the stereoscopic reproduction image is designed to be formed in the foreground and displayed, the reproduction image is in the stereoscopic display device or near the surface. However, it was not always possible to give the impression of jumping out to the front.
As an important perceptual psychological finding in solving this problem, there is a ground theory in Gibson's spatial perception (see Non-Patent Document 1). According to this theory, "the various objects in the natural space are perceptually structured with the ground on which they are placed, and they exist in relation to each other." Especially in depth perception, he points out that "the continuous surface existing between the observer and the object is an important defining factor".
本発明は、上述のジェームズ・ギブソンが提唱する知覚心理学的な要素に着目し、立体再生像の飛び出し感が高く高臨場感のある立体表示装置を提供することを目的とする。
The present invention focuses on the perceptual psychological elements advocated by James Gibson described above, and an object of the present invention is to provide a stereoscopic display device with a high sense of popping out of a stereoscopic reproduction image and a high presence.
上記課題を解決するために、本発明の第1の技術手段は、立体表示装置であって、二つの立体表示パネルの各々の端辺部同士がヒンジ機構で接続されて成り、少なくとも、前記二つの立体表示パネルの成す角度が、90°以上の所定の角度から、下側の前記立体表示パネルを上側の前記立体表示パネルで覆う角度、の範囲で可変であるとともに、前記二つの立体表示パネルにより、一つの立体映像が、前記下側の立体表示パネル上に再生されるよう立体表示を行うことを特徴としたものである。
In order to solve the above-described problem, a first technical means of the present invention is a stereoscopic display device, and each of the two stereoscopic display panels is connected to each other by a hinge mechanism. An angle formed by two stereoscopic display panels is variable within a range of a predetermined angle of 90 ° or more and an angle at which the lower stereoscopic display panel is covered with the upper stereoscopic display panel, and the two stereoscopic display panels Thus, a stereoscopic display is performed so that one stereoscopic video is reproduced on the lower stereoscopic display panel.
本発明の第2の技術手段は、第1の技術手段において、前記下側の立体表示パネルが、前記ヒンジ機構と反対側の端部に、表示面が平面で形成された平面表示部を有し、前記ヒンジ機構側の端部に、表示面が、前記平面表示部の表示面と連続すると共に該平面表示部の表示面から反り上がる曲面状に形成された曲面表示部を有することを特徴としたものである。
According to a second technical means of the present invention, in the first technical means, the lower stereoscopic display panel has a flat display portion having a flat display surface at the end opposite to the hinge mechanism. And a display surface having a curved surface display portion formed in a curved shape that is continuous with the display surface of the flat display portion and warps from the display surface of the flat display portion at an end of the hinge mechanism side. It is what.
本発明の第3の技術手段は、第1又は第2の技術手段において、前記二つの立体表示パネルの成す角度を検出する角度センサと、該角度センサでの検出結果に基づき、前記立体表示に用いられるデータを生成する立体映像生成部と、を有することを特徴としたものである。
According to a third technical means of the present invention, in the first or second technical means, an angle sensor for detecting an angle formed by the two three-dimensional display panels, and the three-dimensional display based on a detection result of the angle sensor. And a stereoscopic video generation unit that generates data to be used.
本発明によれば、水平方向(地面方向)にも立体表示パネルを設けたため、立体再生像の飛び出し感すなわち臨場感を増強するのに必須な地面方向の立体映像を表示することができる。また、二つの立体表示パネルの間にヒンジ部を設けているため、不使用時に、当該ヒンジ部から曲げて折り畳むこと可能であるので、収納と運搬が容易である。
According to the present invention, since the stereoscopic display panel is provided also in the horizontal direction (the ground direction), it is possible to display a stereoscopic image in the ground direction that is essential for enhancing the sense of popping out of the stereoscopic reproduction image, that is, the sense of presence. In addition, since the hinge portion is provided between the two three-dimensional display panels, it can be bent and folded from the hinge portion when not in use, so that storage and transportation are easy.
以下、図面を参照して本発明の立体表示装置に係る好適な実施形態について詳細に説明する。
Hereinafter, preferred embodiments according to the stereoscopic display device of the present invention will be described in detail with reference to the drawings.
<実施形態1>
従来の立体表示装置の映像表示部分は、通常、1枚の平面であり、観察者は、表示面に対して略法線方向から観察していた。図11は、従来の立体表示装置において、表示面より手前に立体再生像を飛び出させて表示した状況を示している。図10を用いて説明したように、左右眼用の映像1005,1006を表示し、その画面上でのずれの長さ(視差量)を、観察者の眼1007,1008の位置と左右眼の幅から計算して設定すれば、幾何学的関係から、理論上は、立体再生像1009の位置を立体表示装置と眼の間の任意の位置に再生することが可能である。 <Embodiment 1>
The image display portion of the conventional stereoscopic display device is usually a single plane, and the observer observes from a substantially normal direction with respect to the display surface. FIG. 11 shows a state in which a stereoscopic reproduction image is projected and displayed in front of the display surface in a conventional stereoscopic display device. As described with reference to FIG. 10, the left and right eye images 1005 and 1006 are displayed, and the shift length (parallax amount) on the screen is determined based on the positions of the eyes 1007 and 1008 of the observer and the left and right eyes. If calculated from the width and set, theoretically, the position of the stereoscopic reproduction image 1009 can be reproduced at an arbitrary position between the stereoscopic display device and the eye from the geometrical relationship.
従来の立体表示装置の映像表示部分は、通常、1枚の平面であり、観察者は、表示面に対して略法線方向から観察していた。図11は、従来の立体表示装置において、表示面より手前に立体再生像を飛び出させて表示した状況を示している。図10を用いて説明したように、左右眼用の映像1005,1006を表示し、その画面上でのずれの長さ(視差量)を、観察者の眼1007,1008の位置と左右眼の幅から計算して設定すれば、幾何学的関係から、理論上は、立体再生像1009の位置を立体表示装置と眼の間の任意の位置に再生することが可能である。 <Embodiment 1>
The image display portion of the conventional stereoscopic display device is usually a single plane, and the observer observes from a substantially normal direction with respect to the display surface. FIG. 11 shows a state in which a stereoscopic reproduction image is projected and displayed in front of the display surface in a conventional stereoscopic display device. As described with reference to FIG. 10, the left and
しかし、実際に立体表示装置を製作し、上記のように視差量を計算して左右眼用の映像を表示しても、計算された再生像の位置に飛び出して存在するように知覚されないことがあった。
この原因は、ヒトの空間知覚の特性にあると考えられている。実際、観察者から見て、立体再生像は図11のように見えるが、この立体再生像1010は、当然、観察者から見て立体表示装置の画面を見込む視野内にしか表示できないため、必然的に空中に浮かんでいる立体再生像しか表示できない。 However, even if a stereoscopic display device is actually manufactured and the parallax amount is calculated as described above to display the video for the left and right eyes, it may not be perceived as being present at the calculated position of the reproduced image. there were.
This is thought to be due to the characteristics of human spatial perception. Actually, the stereoscopic reproduction image looks as shown in FIG. 11 when viewed from the observer, but thestereoscopic reproduction image 1010 is naturally displayed only within the field of view of the stereoscopic display device as viewed from the observer. Only a 3D reconstructed image floating in the air can be displayed.
この原因は、ヒトの空間知覚の特性にあると考えられている。実際、観察者から見て、立体再生像は図11のように見えるが、この立体再生像1010は、当然、観察者から見て立体表示装置の画面を見込む視野内にしか表示できないため、必然的に空中に浮かんでいる立体再生像しか表示できない。 However, even if a stereoscopic display device is actually manufactured and the parallax amount is calculated as described above to display the video for the left and right eyes, it may not be perceived as being present at the calculated position of the reproduced image. there were.
This is thought to be due to the characteristics of human spatial perception. Actually, the stereoscopic reproduction image looks as shown in FIG. 11 when viewed from the observer, but the
ここで、ヒトの空間知覚で著名な研究者であるジェームズ・ギブソンが非特許文献1の著書「生態学的視覚論」で展開した地面説によると、ヒトの空間知覚においては、「観察者と対象の間に存在する連続した面が重要な規定要因であり」、「自然空間内にある様々な対象は、それが置かれた地面との間で知覚的に構造化されて理解される。」と指摘している。
Here, according to the ground theory developed by James Gibson, a well-known researcher in human spatial perception, in the book “Ecological Visualism” in Non-Patent Document 1, in human spatial perception, The continuous surface that exists between the objects is an important determinant. "" Various objects in natural space are perceptually structured and understood with the ground on which they are placed. "
従って、図11に示した従来の立体表示装置が作る立体再生像では、観察者から立体再生像までの地面のつながりが断絶されているため、立体再生像が幾何光学的に表示されているはずの場所に、立体再生像が実在するように感じられない結果になるものと理解できる。
Therefore, in the stereoscopic reproduction image created by the conventional stereoscopic display device shown in FIG. 11, since the ground connection from the observer to the stereoscopic reproduction image is broken, the stereoscopic reproduction image should be displayed geometrically optically. It can be understood that the result is that the three-dimensional reproduced image does not feel as if it existed at the place.
本発明は、このような従来方式の課題をヒトの空間知覚特性の理解に基づいて解決するためになされたものであり、例えば、図1に示すような構成を持つものである。
The present invention has been made to solve such problems of the conventional method based on understanding of human spatial perception characteristics, and has, for example, a configuration as shown in FIG.
図1は、実施形態1の立体表示装置の一例を示す外観図である。同図において、立体表示装置100は、第一及び第二の立体表示パネル101,102を備える。本実施形態では、両パネル101,102の表示面は平面となっている。立体表示装置100は、第一及び第二の立体表示パネル101,102の各々の端辺部同士がヒンジ機構103で接続されて成る。このヒンジ機構103により、第一及び第二の立体表示パネル101,102の成す角度(双方の表示面の成す角度)αが、例えば、0°(双方の表示面の法線方向が平行かつ逆方向である角度)~180°(上記法線方向が平行かつ同方向である角度)の範囲で可変となっている。第一及び第二の立体表示パネル101,102には、視差バリア方式を用いるものとする。
FIG. 1 is an external view showing an example of the stereoscopic display device according to the first embodiment. In the figure, a stereoscopic display device 100 includes first and second stereoscopic display panels 101 and 102. In the present embodiment, the display surfaces of both panels 101 and 102 are flat. The stereoscopic display device 100 is configured by connecting the end portions of the first and second stereoscopic display panels 101 and 102 with a hinge mechanism 103. By this hinge mechanism 103, an angle formed by the first and second stereoscopic display panels 101 and 102 (an angle formed by both display surfaces) α is, for example, 0 ° (the normal directions of both display surfaces are parallel and reverse). The angle is variable within a range of from 180 degrees (an angle in which the normal direction is parallel and in the same direction). A parallax barrier method is used for the first and second stereoscopic display panels 101 and 102.
この立体表示装置100は、第一及び第二の立体表示パネル101,102の成す角度αが所定の角度である使用状態において、例えば、図2(A)に示すように、角度αが90°である状態において、第一の立体表示パネル101に加えて下側に配される第二の立体表示パネル102にも画像を表示し、観察者から見て、第二の立体表示パネル102上に一つの立体映像が再生されるようにする。それによって、後述するように、立体再生映像の飛び出し感を高め臨場感を高めることができる。なお、立体表示装置100の使用状態において想定される角度αは、90°に限られず、図2(B)に示すように、90°より大きくてもよい。
In the 3D display device 100, in the use state where the angle α formed by the first and second 3D display panels 101 and 102 is a predetermined angle, for example, as shown in FIG. In this state, an image is also displayed on the second stereoscopic display panel 102 arranged on the lower side in addition to the first stereoscopic display panel 101, and is viewed on the second stereoscopic display panel 102 as viewed from the observer. One stereoscopic video is played back. As a result, as described later, it is possible to enhance the sense of popping out of the stereoscopic reproduction video and enhance the sense of reality. Note that the angle α assumed in the usage state of the stereoscopic display device 100 is not limited to 90 °, and may be larger than 90 ° as shown in FIG.
また、立体表示装置100は、不使用時に、ヒンジ機構103から曲げることにより、図2(C)に示すように、第二の立体表示パネル102の上に第一の立体表示パネル101を重ねることができる。そのため、収納と運搬が容易となる。これは、家庭用及びオフィス用のポータブルな装置を実現する上での必須の効果である。
In addition, when the stereoscopic display device 100 is not in use, the first stereoscopic display panel 101 is overlaid on the second stereoscopic display panel 102 as shown in FIG. Can do. Therefore, storage and transportation are facilitated. This is an essential effect for realizing portable devices for home use and office use.
次に、本実施形態1の立体表示装置100と上述した従来の立体表示パネルの機能の違いについて説明する。
Next, differences in functions between the stereoscopic display device 100 according to the first embodiment and the above-described conventional stereoscopic display panel will be described.
本実施形態1の立体表示装置100では、上下2枚の立体表示パネル101,102を備えているため、その各々に連続的な左右眼用映像を連動して表示することにより、図3(A)に示すように地面まで接続した立体再生像201を表示できる。また、観察者から見ると立体表示装置100には図3(B)の立体再生像202のように表示されている。
Since the stereoscopic display device 100 according to the first embodiment includes the upper and lower stereoscopic display panels 101 and 102, by continuously displaying the left and right eye images on each of them, FIG. ), A stereoscopic reproduction image 201 connected to the ground can be displayed. When viewed from the observer, the stereoscopic display device 100 displays a stereoscopic reproduction image 202 shown in FIG.
観察者からは、観察者の立っている位置から、例えば床面を通って立体表示装置100が置かれている机を通り、さらに下側の立体表示パネル102に繋がり、その上に立体再生像201が再生されるので、ジェームズ・ギブソンの地面説が指摘する「観察者と対象の間に存在する連続した面」が確立される。その結果、図3(A),(B)に示す立体再生像201,202が、あたかも下側の立体表示パネル102上に実在するかのようにリアリティをもって感覚されるようになる。
以上のように、本実施形態1により、従来課題であった、立体再生像の手前への飛び出し効果の低減を、解決することができ、高い臨場感を実現することができる。 From the observer's position, the observer passes through the desk on which thestereoscopic display device 100 is placed, for example, through the floor surface, and is further connected to the lower stereoscopic display panel 102, and a stereoscopic reproduction image is formed thereon. Since 201 is reproduced, the “continuous surface existing between the observer and the object” pointed out by James Gibson's ground theory is established. As a result, the stereoscopic reproduction images 201 and 202 shown in FIGS. 3A and 3B are sensed with reality as if they existed on the lower stereoscopic display panel 102.
As described above, according to the first embodiment, it is possible to solve the reduction in the effect of popping out the three-dimensional reproduced image, which was a conventional problem, and to realize a high sense of reality.
以上のように、本実施形態1により、従来課題であった、立体再生像の手前への飛び出し効果の低減を、解決することができ、高い臨場感を実現することができる。 From the observer's position, the observer passes through the desk on which the
As described above, according to the first embodiment, it is possible to solve the reduction in the effect of popping out the three-dimensional reproduced image, which was a conventional problem, and to realize a high sense of reality.
<実施形態2>
図4は、実施形態2の立体表示装置の一例を示す外観図である。図4(A)に示す立体表示装置300は、図1の立体表示装置100と、下側の第二の立体表示パネル102’の構成が異なるものである。具体的には、下側の第二の立体表示パネル102’が、ヒンジ機構103と反対側に、表示面が平面である平面立体表示部104を有し、ヒンジ機構103側に、曲面立体表示部105を有する。曲面立体表示部105は、その表示面が、平面立体表示部104の表示面と連続すると共にその平面立体表示部104の表示面から反り上がる曲面状に形成されたものであり、ヒンジ機構103を介して、第一の立体表示パネル101と接続される。平面立体表示部104及び曲面立体表示部105はそれぞれ、例えば、一つの立体表示パネルで構成できる。 <Embodiment 2>
FIG. 4 is an external view illustrating an example of the stereoscopic display device according to the second embodiment. Thestereoscopic display device 300 shown in FIG. 4A is different from the stereoscopic display device 100 of FIG. 1 in the configuration of the lower second stereoscopic display panel 102 ′. Specifically, the lower second stereoscopic display panel 102 ′ has a flat stereoscopic display unit 104 having a flat display surface on the side opposite to the hinge mechanism 103, and a curved stereoscopic display on the hinge mechanism 103 side. Part 105. The curved three-dimensional display unit 105 is formed in a curved surface whose display surface is continuous with the display surface of the flat three-dimensional display unit 104 and warps from the display surface of the flat three-dimensional display unit 104. Via the first 3D display panel 101. Each of the planar stereoscopic display unit 104 and the curved stereoscopic display unit 105 can be configured by, for example, one stereoscopic display panel.
図4は、実施形態2の立体表示装置の一例を示す外観図である。図4(A)に示す立体表示装置300は、図1の立体表示装置100と、下側の第二の立体表示パネル102’の構成が異なるものである。具体的には、下側の第二の立体表示パネル102’が、ヒンジ機構103と反対側に、表示面が平面である平面立体表示部104を有し、ヒンジ機構103側に、曲面立体表示部105を有する。曲面立体表示部105は、その表示面が、平面立体表示部104の表示面と連続すると共にその平面立体表示部104の表示面から反り上がる曲面状に形成されたものであり、ヒンジ機構103を介して、第一の立体表示パネル101と接続される。平面立体表示部104及び曲面立体表示部105はそれぞれ、例えば、一つの立体表示パネルで構成できる。 <Embodiment 2>
FIG. 4 is an external view illustrating an example of the stereoscopic display device according to the second embodiment. The
このような第二の立体表示パネル102’を備えることで、立体表示装置300では、第二の立体表示パネル102’ の表示面であって第一の立体表示パネル101との接続部分に近い部分が曲面となっているため、以下の効果がある。すなわち、図1の実施形態の構成において、第一の立体表示パネル101と第二の立体表示パネル102の境界が観察者に知覚されることで起こり得る立体再生像(立体虚像)のリアリティの損失を、上記接続部分の表示面を曲面として穏やかな変化にすることで防止し、立体再生像のリアリティを最大限引き出すことができる。
By providing such a second stereoscopic display panel 102 ′, in the stereoscopic display device 300, a portion that is the display surface of the second stereoscopic display panel 102 ′ and is close to the connection portion with the first stereoscopic display panel 101. Has a curved surface, and has the following effects. In other words, in the configuration of the embodiment in FIG. 1, the loss of reality of a stereoscopic reproduction image (stereoscopic virtual image) that can occur when the boundary between the first stereoscopic display panel 101 and the second stereoscopic display panel 102 is perceived by an observer. Can be prevented by gently changing the display surface of the connection portion as a curved surface, and the reality of the stereoscopic reproduction image can be maximized.
また、本立体表示装置300でも、不使用時に、ヒンジ機構103から曲げることにより、図4(B)に示すように、第二の立体表示パネル102’の上に第一の立体表示パネル101を重ねることができる。そのため、収納と運搬が容易である。
In the stereoscopic display device 300, when not in use, the first stereoscopic display panel 101 is placed on the second stereoscopic display panel 102 ′ by bending from the hinge mechanism 103 as shown in FIG. 4B. Can be stacked. Therefore, storage and transportation are easy.
<実施形態3>
図5は、実施形態3の立体表示装置の一例を説明する図である。図5(A)に示す立体表示装置400は、図1の立体表示装置100の構成に、次の二つの要素を設けたものである。
(a)第一と第二の立体表示パネル101,102(の表示面)の成す角度を検出する表示面角度センサ106。
(b)表示面角度センサ106からの出力を読み込んで、第一と第二の立体表示パネル101,102の成す角度に適合した立体映像を生成し、第一と第二の立体表示パネル101,102に対して立体映像信号を出力する立体映像生成部107。 <Embodiment 3>
FIG. 5 is a diagram illustrating an example of the stereoscopic display device according to the third embodiment. Astereoscopic display device 400 shown in FIG. 5A is obtained by adding the following two elements to the configuration of the stereoscopic display device 100 of FIG.
(A) A displaysurface angle sensor 106 that detects an angle formed by the first and second stereoscopic display panels 101 and 102 (display surfaces thereof).
(B) The output from the displaysurface angle sensor 106 is read to generate a three-dimensional image suitable for the angle formed by the first and second stereoscopic display panels 101, 102, and the first and second stereoscopic display panels 101, 102 A stereoscopic video generation unit 107 that outputs a stereoscopic video signal to 102.
図5は、実施形態3の立体表示装置の一例を説明する図である。図5(A)に示す立体表示装置400は、図1の立体表示装置100の構成に、次の二つの要素を設けたものである。
(a)第一と第二の立体表示パネル101,102(の表示面)の成す角度を検出する表示面角度センサ106。
(b)表示面角度センサ106からの出力を読み込んで、第一と第二の立体表示パネル101,102の成す角度に適合した立体映像を生成し、第一と第二の立体表示パネル101,102に対して立体映像信号を出力する立体映像生成部107。 <Embodiment 3>
FIG. 5 is a diagram illustrating an example of the stereoscopic display device according to the third embodiment. A
(A) A display
(B) The output from the display
表示面角度センサ106は、例えば、図1のヒンジ機構103に内蔵されている。
立体映像生成部107は、例えば、立体映像生成で良く知られた以下の手順に従って動作する。
(1)まず3次元座標系を用意し、その中に表示したいCGモデルあるいは、実写から算出した対象データ列を準備する。
(2)続いて仮想カメラ位置と、対象データ列を投影するための仮想スクリーンの位置・形状を設定する。
(3)そして、仮想カメラ位置を基準点として、対象データを仮想スクリーン上に射影して2次元映像を得る。 The displaysurface angle sensor 106 is built in, for example, the hinge mechanism 103 in FIG.
The stereoscopicvideo generation unit 107 operates, for example, according to the following procedure well known for generating stereoscopic video.
(1) First, a three-dimensional coordinate system is prepared, and a CG model desired to be displayed or a target data string calculated from a live action is prepared.
(2) Subsequently, the virtual camera position and the position / shape of the virtual screen for projecting the target data string are set.
(3) Then, using the virtual camera position as a reference point, the target data is projected onto the virtual screen to obtain a two-dimensional image.
立体映像生成部107は、例えば、立体映像生成で良く知られた以下の手順に従って動作する。
(1)まず3次元座標系を用意し、その中に表示したいCGモデルあるいは、実写から算出した対象データ列を準備する。
(2)続いて仮想カメラ位置と、対象データ列を投影するための仮想スクリーンの位置・形状を設定する。
(3)そして、仮想カメラ位置を基準点として、対象データを仮想スクリーン上に射影して2次元映像を得る。 The display
The stereoscopic
(1) First, a three-dimensional coordinate system is prepared, and a CG model desired to be displayed or a target data string calculated from a live action is prepared.
(2) Subsequently, the virtual camera position and the position / shape of the virtual screen for projecting the target data string are set.
(3) Then, using the virtual camera position as a reference point, the target data is projected onto the virtual screen to obtain a two-dimensional image.
本例では、立体表示方式として、2眼式の視差バリア方式を使用するため、立体映像生成部107における仮想カメラは、人の眼間距離(例えば、65mm)だけ離して置いた仮想ステレオカメラとなる。また、立体映像生成部107により得られる2次元映像は、仮想ステレオカメラの左右の仮想カメラに対応して、1組2枚の映像となる。
In this example, since the binocular parallax barrier method is used as the stereoscopic display method, the virtual camera in the stereoscopic video generation unit 107 is a virtual stereo camera placed apart from the human eye (for example, 65 mm). Become. In addition, the two-dimensional video obtained by the stereoscopic video generation unit 107 is a set of two videos corresponding to the left and right virtual cameras of the virtual stereo camera.
また、上述の仮想カメラ位置は、観察者の視点位置を想定し、その視点の座標に対応するよう設定される。視点位置は、予め保持した設定値に基づき定めることができる。例えば、第一の立体表示パネル101が、図6(A),(B)に示すように、観察者から第一の立体ディスプレイ101の上端と視線との角度βが垂直に調整された上で使用されることを前提とし、第一の立体表示パネル101の上端と観察者の眼の距離L(例えば、ユーザービリティ実験で決まる50cm)を定めると、立体表示パネル101を基準として、視点の座標が定まる。これに基づき、仮想カメラ位置を設定できる。
Also, the virtual camera position described above is set to correspond to the coordinates of the viewpoint assuming the viewpoint position of the observer. The viewpoint position can be determined based on a preset value stored in advance. For example, in the first stereoscopic display panel 101, as shown in FIGS. 6A and 6B, the angle β between the upper end of the first stereoscopic display 101 and the line of sight is adjusted vertically by the observer. If the distance L (for example, 50 cm determined by usability experiment) between the upper end of the first stereoscopic display panel 101 and the viewer's eyes is determined on the assumption that the first stereoscopic display panel 101 is used, the coordinates of the viewpoint are set with reference to the stereoscopic display panel 101 Is determined. Based on this, the virtual camera position can be set.
また、通常は、上述の仮想スクリーンを平面で定義(設定)するが、本実施形態では、立体映像生成部107は、表示面角度センサ106のデータに基づき、第一の立体表示パネル101と、第二の立体表示パネル102とから成る折れ曲がった面として仮想スクリーンを設定する。この折れ曲がった仮想スクリーンに基づき、立体表示装置400に表示する為の2次元映像の組が算出される。
以上の手順により、視聴者が、視点の移動に伴い、第一の立体表示パネル101を傾け、第二の立体表示パネル102とのなす角度αを変化させた場合に、一定の位置に安定した立体再生像を提供できる。 Normally, the above-described virtual screen is defined (set) in a plane, but in this embodiment, the stereoscopicvideo generation unit 107 is based on the data of the display surface angle sensor 106, the first stereoscopic display panel 101, A virtual screen is set as a bent surface composed of the second stereoscopic display panel 102. Based on the bent virtual screen, a set of two-dimensional images to be displayed on the stereoscopic display device 400 is calculated.
According to the above procedure, when the viewer tilts the firststereoscopic display panel 101 and changes the angle α formed with the second stereoscopic display panel 102 in accordance with the movement of the viewpoint, the viewer is stabilized at a certain position. A stereoscopic reproduction image can be provided.
以上の手順により、視聴者が、視点の移動に伴い、第一の立体表示パネル101を傾け、第二の立体表示パネル102とのなす角度αを変化させた場合に、一定の位置に安定した立体再生像を提供できる。 Normally, the above-described virtual screen is defined (set) in a plane, but in this embodiment, the stereoscopic
According to the above procedure, when the viewer tilts the first
第一の立体表示パネル101と第二の立体表示パネル102との角度αが90°、110°のときに、両立体表示パネル101,102により再生される立体像の例と、その場合において立体表示装置400全体の観察者に認識される立体像の例を図7及び図8に示す。
Examples of stereoscopic images reproduced by the compatible display panels 101 and 102 when the angle α between the first stereoscopic display panel 101 and the second stereoscopic display panel 102 is 90 ° and 110 °, and in that case, An example of a stereoscopic image recognized by an observer of the entire display device 400 is shown in FIGS.
上記角度αが90°の場合には、立体表示装置400は、第一の立体表示パネル101により図7(A)の立体像T1を再生させ、第二の立体表示パネル102により、図7(B)の立体像T2を再生させる。このとき、第一の立体表示パネル101の上端との角度βが90°であり距離Lが設定距離(50cm)の位置を視点位置とした観察者には、図7(C)のように、床面から立ち上がり、表示面からの飛び出し効果が大きい立体再生映像T3が表示されることになる。
When the angle α is 90 °, the stereoscopic display device 400 causes the first stereoscopic display panel 101 to reproduce the stereoscopic image T1 of FIG. 7A and the second stereoscopic display panel 102 causes the display of FIG. The stereoscopic image T2 of B) is reproduced. At this time, for an observer who has an angle β with respect to the upper end of the first stereoscopic display panel 101 of 90 ° and a distance L of the set distance (50 cm) as the viewpoint position, as shown in FIG. A stereoscopic reproduction video T3 that rises from the floor and has a large pop-out effect from the display surface is displayed.
上記角度αが110°の場合には、立体表示装置400は、第一の立体表示パネル101により図8(A)の立体像T4を再生させ、第二の立体表示パネル102により、図8(B)の立体像T5を再生させる。このとき、第一の立体表示パネル101の上端との角度βが110°であり距離Lが設定距離(50cm)の位置を視点位置とした観察者には、図8(C)のように、飛び出し効果が大きく、図7(C)のときより上方から見たような立体再生映像T6が表示されることになる。
When the angle α is 110 °, the stereoscopic display device 400 causes the first stereoscopic display panel 101 to reproduce the stereoscopic image T4 in FIG. 8A, and the second stereoscopic display panel 102 causes the display of FIG. The stereoscopic image T5 of B) is reproduced. At this time, for an observer whose angle β with respect to the upper end of the first stereoscopic display panel 101 is 110 ° and the distance L is a set distance (50 cm) as a viewpoint position, as shown in FIG. The pop-out effect is large, and a stereoscopic reproduction video T6 as viewed from above is displayed as compared with FIG. 7C.
上述の例では、立体表示用のデータの計算に用いる観察者の視点位置すなわち仮想カメラ位置は予め保持していた設定値に基づき設定していたが、観察者の実際の位置を検出する装置(第一の立体表示パネル101からの距離と方向を追尾するセンサーシステム)を追加して、当該装置による検出結果に基づいて設定してもよい。
また、本実施形態の発明は、図1の立体表示装置100だけでなく、図4の立体表示装置300にも適用できる。この場合は、表示面の形状が、図1のものと異なるので、これに対応するよう仮想スクリーンを設定すればよい。 In the above-described example, the observer's viewpoint position, that is, the virtual camera position, used for calculation of the data for stereoscopic display is set based on the set value held in advance, but the apparatus for detecting the actual position of the observer ( A sensor system that tracks the distance and direction from the first three-dimensional display panel 101) may be added and set based on the detection result of the device.
The invention of this embodiment can be applied not only to thestereoscopic display device 100 of FIG. 1 but also to the stereoscopic display device 300 of FIG. In this case, since the shape of the display surface is different from that of FIG. 1, a virtual screen may be set to correspond to this.
また、本実施形態の発明は、図1の立体表示装置100だけでなく、図4の立体表示装置300にも適用できる。この場合は、表示面の形状が、図1のものと異なるので、これに対応するよう仮想スクリーンを設定すればよい。 In the above-described example, the observer's viewpoint position, that is, the virtual camera position, used for calculation of the data for stereoscopic display is set based on the set value held in advance, but the apparatus for detecting the actual position of the observer ( A sensor system that tracks the distance and direction from the first three-dimensional display panel 101) may be added and set based on the detection result of the device.
The invention of this embodiment can be applied not only to the
以上では、立体表示パネルに、視差バリア方式を用いたが、用途に応じて、背景技術で説明した他の方式を用いることもできる。
また、上述の3種の実施形態は、性能、コスト、および、他の部材との整合性などの要求仕様により選択することができる。 In the above description, the parallax barrier method is used for the stereoscopic display panel, but other methods described in the background art can be used depending on the application.
In addition, the above-described three types of embodiments can be selected according to required specifications such as performance, cost, and compatibility with other members.
また、上述の3種の実施形態は、性能、コスト、および、他の部材との整合性などの要求仕様により選択することができる。 In the above description, the parallax barrier method is used for the stereoscopic display panel, but other methods described in the background art can be used depending on the application.
In addition, the above-described three types of embodiments can be selected according to required specifications such as performance, cost, and compatibility with other members.
本発明の立体表示装置は、CGゲームのプレイ、3Dフォト・ムービーの鑑賞、シミュレーション結果の3Dビジュアライゼーション、3Dプレゼンテーション、3Dデジタルサイネージあるいは、立体テレビ放送の視聴に利用可能である。
The stereoscopic display device of the present invention can be used for CG game play, 3D photo / movie appreciation, simulation result 3D visualization, 3D presentation, 3D digital signage, or 3D television broadcast viewing.
100,300,400…立体表示装置、101…第一の立体表示パネル、102,102’…第二の立体表示パネル、103…ヒンジ機構、104…平面立体表示部、105…曲面立体表示部、106…表示面角度センサ、107…立体映像生成部。
DESCRIPTION OF SYMBOLS 100,300,400 ... 3D display apparatus, 101 ... 1st 3D display panel, 102,102 '... 2nd 3D display panel, 103 ... Hinge mechanism, 104 ... Planar 3D display part, 105 ... Curved 3D display part, 106: Display surface angle sensor, 107 ... Stereoscopic image generation unit.
Claims (3)
- 二つの立体表示パネルの各々の端辺部同士がヒンジ機構で接続されて成るものであり、少なくとも、前記二つの立体表示パネルの成す角度が、90°以上の所定の角度から、下側の前記立体表示パネルを上側の前記立体表示パネルで覆う角度、の範囲で可変であるとともに、前記二つの立体表示パネルにより、一つの立体映像が、前記下側の立体表示パネル上に再生されるよう立体表示を行うことを特徴とする立体表示装置。 Ends of each of the two stereoscopic display panels are connected to each other by a hinge mechanism, and at least an angle formed by the two stereoscopic display panels is lower than a predetermined angle of 90 ° or more, the lower side The three-dimensional display panel is variable in the range of the angle at which the upper stereoscopic display panel is covered, and the two stereoscopic display panels allow a stereoscopic image to be reproduced on the lower stereoscopic display panel. A stereoscopic display device characterized by performing display.
- 前記下側の立体表示パネルは、前記ヒンジ機構と反対側の端部に、表示面が平面で形成された平面表示部を有し、前記ヒンジ機構側の端部に、表示面が、前記平面表示部の表示面と連続すると共に該平面表示部の表示面から反り上がる曲面状に形成された曲面表示部を有することを特徴とする請求項1に記載の立体表示装置。 The lower stereoscopic display panel has a flat display portion having a flat display surface at an end opposite to the hinge mechanism, and the display surface is at the flat end at the hinge mechanism side end. The stereoscopic display device according to claim 1, further comprising a curved surface display unit that is continuous with the display surface of the display unit and is formed in a curved shape that warps from the display surface of the flat display unit.
- 前記二つの立体表示パネルの成す角度を検出する角度センサと、
該角度センサでの検出結果に基づき、前記立体表示に用いられるデータを生成する立体映像生成部と、を有することを特徴とする請求項1または2に記載の立体表示装置。 An angle sensor for detecting an angle formed by the two stereoscopic display panels;
The stereoscopic display device according to claim 1, further comprising: a stereoscopic video generation unit configured to generate data used for the stereoscopic display based on a detection result of the angle sensor.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011501532A JPWO2010098159A1 (en) | 2009-02-24 | 2010-01-22 | 3D display device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009040380 | 2009-02-24 | ||
JP2009-040380 | 2009-02-24 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010098159A1 true WO2010098159A1 (en) | 2010-09-02 |
Family
ID=42665369
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/050787 WO2010098159A1 (en) | 2009-02-24 | 2010-01-22 | Stereoscopic display device |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPWO2010098159A1 (en) |
WO (1) | WO2010098159A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012053033A1 (en) * | 2010-10-20 | 2012-04-26 | 三菱電機株式会社 | Three-dimensional display device |
JPWO2021131829A1 (en) * | 2019-12-27 | 2021-07-01 | ||
JP2022009244A (en) * | 2017-06-26 | 2022-01-14 | ローム株式会社 | Display system and how to display images |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002207191A (en) * | 2000-05-12 | 2002-07-26 | Nippon Telegr & Teleph Corp <Ntt> | Three-dimensional display device and three-dimensional display method |
JP2004334145A (en) * | 2003-05-06 | 2004-11-25 | Hideaki Miyashita | Method for displaying space by constituting screen to solid |
JP2006072115A (en) * | 2004-09-03 | 2006-03-16 | Fuji Photo Film Co Ltd | Image display device |
WO2007116910A1 (en) * | 2006-04-07 | 2007-10-18 | Nec Corporation | Image display |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7414831B1 (en) * | 2004-04-01 | 2008-08-19 | Fergason Patent Properties, Llc | Adjustable display system |
-
2010
- 2010-01-22 JP JP2011501532A patent/JPWO2010098159A1/en not_active Ceased
- 2010-01-22 WO PCT/JP2010/050787 patent/WO2010098159A1/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002207191A (en) * | 2000-05-12 | 2002-07-26 | Nippon Telegr & Teleph Corp <Ntt> | Three-dimensional display device and three-dimensional display method |
JP2004334145A (en) * | 2003-05-06 | 2004-11-25 | Hideaki Miyashita | Method for displaying space by constituting screen to solid |
JP2006072115A (en) * | 2004-09-03 | 2006-03-16 | Fuji Photo Film Co Ltd | Image display device |
WO2007116910A1 (en) * | 2006-04-07 | 2007-10-18 | Nec Corporation | Image display |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012053033A1 (en) * | 2010-10-20 | 2012-04-26 | 三菱電機株式会社 | Three-dimensional display device |
JP5781080B2 (en) * | 2010-10-20 | 2015-09-16 | 三菱電機株式会社 | 3D stereoscopic display device and 3D stereoscopic display processing device |
JP2022009244A (en) * | 2017-06-26 | 2022-01-14 | ローム株式会社 | Display system and how to display images |
JPWO2021131829A1 (en) * | 2019-12-27 | 2021-07-01 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2010098159A1 (en) | 2012-08-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Lee | Three-dimensional displays, past and present | |
US8976323B2 (en) | Switching dual layer display with independent layer content and a dynamic mask | |
JP4468341B2 (en) | 3D image display method and 3D image display apparatus | |
CN103873844B (en) | Multiple views automatic stereoscopic display device and control the method for its viewing ratio | |
US8646917B2 (en) | Three dimensional display with multiplane image display elements | |
JP4576390B2 (en) | Stereoscopic two-dimensional image display apparatus and stereoscopic two-dimensional image display method | |
US8836755B2 (en) | Two dimensional media combiner for creating three dimensional displays | |
US9049435B2 (en) | Image providing apparatus and image providing method based on user's location | |
CN106797462B (en) | Multi-view image shows equipment and its control method | |
CN102194382A (en) | Digital three-dimensional advertising light box | |
WO2010095486A1 (en) | Three-dimensional display device | |
US8717425B2 (en) | System for stereoscopically viewing motion pictures | |
WO2010098159A1 (en) | Stereoscopic display device | |
JP4137714B2 (en) | Object display method and object display device | |
CN105807434A (en) | Naked eye 3D display watching area indicating method | |
Hirayama et al. | Flatbed-type auto stereoscopic display systems using integral imaging method | |
CN108076337B (en) | A method for content fusion of stereoscopic display screen splicing | |
KR101879430B1 (en) | Apparatus and method for displaying 3D image | |
Dolgoff | Real-depth imaging: a new 3D imaging technology with inexpensive direct-view (no glasses) video and other applications | |
Li et al. | 68‐2: View‐Dependent Light‐Field Display that Supports Accommodation Using a Commercially‐Available High Pixel Density LCD Panel | |
Kurogi et al. | Scalable Autostereoscopic Display with Temporal Division Method. | |
CN107360414A (en) | A kind of movie theatre play system based on bore hole 3D | |
Lee et al. | 36.5 L: Late‐News Paper: Multi‐Projection 3D Display with Dual Projection System using Uniaxial Crystal | |
Smithwick et al. | Switching dual layer display with dynamic LCD mask | |
Yuyama et al. | Stereoscopic HDTV |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10746041 Country of ref document: EP Kind code of ref document: A1 |
|
DPE1 | Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101) | ||
ENP | Entry into the national phase |
Ref document number: 2011501532 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 10746041 Country of ref document: EP Kind code of ref document: A1 |