[go: up one dir, main page]

WO2010095475A1 - (meth)acrylate resin and process for producing same, and curable resin composition, cured object obtained therefrom, and plastic lens - Google Patents

(meth)acrylate resin and process for producing same, and curable resin composition, cured object obtained therefrom, and plastic lens Download PDF

Info

Publication number
WO2010095475A1
WO2010095475A1 PCT/JP2010/050308 JP2010050308W WO2010095475A1 WO 2010095475 A1 WO2010095475 A1 WO 2010095475A1 JP 2010050308 W JP2010050308 W JP 2010050308W WO 2010095475 A1 WO2010095475 A1 WO 2010095475A1
Authority
WO
WIPO (PCT)
Prior art keywords
meth
group
acrylate resin
acrylate
refractive index
Prior art date
Application number
PCT/JP2010/050308
Other languages
French (fr)
Japanese (ja)
Inventor
信哉 中村
伸生 小林
一郎 小椋
博之 徳田
Original Assignee
Dic株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dic株式会社 filed Critical Dic株式会社
Priority to JP2011500542A priority Critical patent/JP4803331B2/en
Publication of WO2010095475A1 publication Critical patent/WO2010095475A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/52Esters of acyclic unsaturated carboxylic acids having the esterified carboxyl group bound to an acyclic carbon atom
    • C07C69/533Monocarboxylic acid esters having only one carbon-to-carbon double bond
    • C07C69/54Acrylic acid esters; Methacrylic acid esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/26Esters containing oxygen in addition to the carboxy oxygen
    • C08F220/30Esters containing oxygen in addition to the carboxy oxygen containing aromatic rings in the alcohol moiety
    • C08F220/301Esters containing oxygen in addition to the carboxy oxygen containing aromatic rings in the alcohol moiety and one oxygen in the alcohol moiety
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2603/00Systems containing at least three condensed rings
    • C07C2603/02Ortho- or ortho- and peri-condensed systems
    • C07C2603/04Ortho- or ortho- and peri-condensed systems containing three rings
    • C07C2603/06Ortho- or ortho- and peri-condensed systems containing three rings containing at least one ring with less than six ring members
    • C07C2603/10Ortho- or ortho- and peri-condensed systems containing three rings containing at least one ring with less than six ring members containing five-membered rings
    • C07C2603/12Ortho- or ortho- and peri-condensed systems containing three rings containing at least one ring with less than six ring members containing five-membered rings only one five-membered ring
    • C07C2603/18Fluorenes; Hydrogenated fluorenes

Definitions

  • the present invention has a low viscosity and is cured by irradiation with active energy rays or heating. After curing, the cured product has a high refractive index and high heat resistance and high moisture resistance.
  • (Meth) acrylate resin suitable for overcoat agent, hard coat agent, antireflection film, spectacle lens, optical component such as optical fiber, optical waveguide, hologram, and other plastic lens such as prism lens, Fresnel lens, lenticular lens, and production method thereof The present invention relates to a curable resin composition and a cured product thereof.
  • resin materials have been widely used for optical parts such as optical overcoat agents, hard coat agents, antireflection films, spectacle lenses, optical fibers, optical waveguides, and holograms because of their excellent processing and productivity. Therefore, a resin material having a high refractive index is demanded from the viewpoint of miniaturization and thinning of optical components, or adjustment of antireflection properties.
  • an acrylate resin having a fluorene skeleton has been known as an optical material having a high refractive index that meets such requirements.
  • Patent Literature 1 a bifunctional compound in which an acryloyl group is bonded to a fluorene skeleton via an alkyleneoxy group
  • Patent Literature 2 a bifunctional compound in which an acryloyl group is bonded to a fluorene skeleton via an alkyleneoxy group
  • Patent Literature 3 a bifunctional compound in which an acryloyl group is bonded to a fluorene skeleton via an alkyleneoxy group
  • Patent Literature 4 compounds obtained by reacting diglycidyl ether containing a fluorene skeleton with acrylic acid or methacrylic acid
  • the refractive index of the cured product becomes high, but the acrylate resin itself is solid or has a high value of 3000 Pa ⁇ S or more at room temperature. Since it is a viscous liquid, it is necessary to use a large amount of a diluent having a low refractive index, so that the refractive index of the resulting cured product eventually becomes low.
  • the cured product of the acrylate resin having a fluorene skeleton is inferior in heat resistance and high moisture resistance, and inferior in the long-term reliability of the optical material.
  • a polyester resin having a binaphthol skeleton is known as an optical material having a high refractive index (see Patent Document 5 below).
  • the polyester resin having such a binaphthol skeleton has a high weight average molecular weight (Mw) of 10,000 to 100,000 and is a solid thermoplastic resin at room temperature, it can be used for active energy rays or thermosetting resins. In addition, it was inferior in solvent resistance, heat resistance and high moisture resistance, and the long-term reliability of the optical material was low.
  • the problem to be solved by the present invention is a (meth) acrylate resin, a curable resin composition, which has a high refractive index in a cured product as an organic optical material, and is excellent in heat resistance and moisture resistance of the cured product, And it is providing the hardened
  • the present inventors have a binaphthalene skeleton in the molecular structure and an alkylene having a (meth) acryloyloxy group at the end as a substituent on the aromatic nucleus of the binaphthalene skeleton. It has been found that a compound having an oxy group introduced itself has a low viscosity and a high refractive index of a cured product, and can further have excellent heat resistance and moisture resistance, and the present invention has been completed.
  • the present invention has a binaphthalene skeleton in the molecular structure, and the following structural formula (A) as a substituent on the aromatic nucleus of the binaphthalene skeleton.
  • R 1 is a linear or branched alkylene group having 2 to 5 carbon atoms
  • R 2 is a hydrogen atom or a methyl group
  • l is an integer of 1 to 10 as a repeating unit.
  • the present invention further relates to a method for producing a (meth) acrylate resin, characterized in that a binaphthol is reacted with an alkylene carbonate, and then a (meth) acrylate agent is reacted with the obtained reaction product.
  • the present invention further relates to a curable resin composition comprising the (meth) acrylate resin (A) and the radical polymerization initiator (B) as essential components.
  • the present invention further relates to a cured product obtained by curing the curable resin composition by irradiation with active energy rays or heating.
  • the present invention further relates to a plastic lens obtained by molding and curing the curable resin composition.
  • a (meth) acrylate resin, a curable resin composition, which has a high refractive index in a cured product as an organic optical material, and is excellent in heat resistance and moisture resistance of the cured product, and such performance are combined.
  • a cured product can be provided.
  • the (meth) acrylate resin of the present invention can be widely applied to optical parts such as optical overcoat agents, hard coat agents, antireflection films, spectacle lenses, optical fibers, optical waveguides, holograms, and prism lenses.
  • FIG. 1 is a 13 C-NMR spectrum of the hydroxyl group-containing compound (a) obtained in Example 1.
  • FIG. 2 is a 13 C-NMR spectrum of the (meth) acrylate resin (A) obtained in Example 1.
  • the (meth) acrylate resin of the present invention means a resin having an acryloyloxy group or a methacryloyloxy group. Specifically, the (meth) acrylate resin has a binaphthalene skeleton in the molecular structure and has an aromatic nucleus on the binaphthalene skeleton.
  • A a substituent of the following structural formula (A)
  • R 1 is a linear or branched alkylene group having 2 to 5 carbon atoms
  • R 2 is a hydrogen atom or a methyl group
  • l is an integer of 1 to 10 as a repeating unit.
  • the (meth) acrylate resin has a binaphthalene skeleton, it has excellent heat resistance and moisture resistance, and is an organic material having a very high refractive index of 1.60 or more.
  • the degree of freedom of the (meth) acryloyloxy group which is a reactive functional group is Higher reactivity and better heat resistance and moisture resistance of the cured product.
  • binaphthalene skeleton examples include a 1,1-binaphthalene skeleton, a 1,2-binaphthalene skeleton, a 2,2-binaphthalene skeleton, and the like. Is preferred.
  • R 1 is a linear or branched alkylene group having 2 to 5 carbon atoms
  • R 2 is a hydrogen atom or a methyl group
  • l is an integer of 1 to 10 as a repeating unit.
  • the substituent represented by is a structural site that functions as a reactive group when the (meth) acrylate resin of the present invention is cured by irradiation with active energy rays or heating. Since the (meth) acryloyloxy group is bonded to the binaphthalene structure via a monoalkyloxy group or a polyoxyalkylene group, the structural site has a degree of freedom of the (meth) acryloyloxy group that is a reactive functional group. It becomes high and the reactivity is excellent, and the heat resistance and moisture resistance of the cured product become high.
  • R 1 in the structural formula (A) examples include ethylene, n-propylene, isopropylene, butylene, 4-methyl-n-butylene, and n-pentene.
  • an alkylene group selected from the group consisting of ethylene, n-propylene and isopropylene is particularly preferred from the viewpoint that the refractive index of the (meth) acrylate resin itself is high.
  • the substituent represented by the structural formula (A) is contained in a ratio of 1.5 to 4.0 on average per mole of the binaphthalene skeleton constituting the resin in the (meth) acrylate resin. From the viewpoint of improving the refractive index of the (meth) acrylate resin itself, it is preferably contained in a ratio of 1.5 to 1.98.
  • the value of l in the structural formula (A) is an integer of 1 to 10, but when it exceeds 10, the refractive index of the (meth) acrylate resin itself is lowered, and the refractive index in the cured product intended by the present invention is reduced. The rate will not reach a sufficient level.
  • the average value of l is in the range of 1.0 to 3.0, particularly in the range of 1.0 to 1.5. It is particularly preferable that the number is substantially 1.
  • Such a (meth) acrylate resin uses 1,1-binaphthol as a starting material, converts a phenolic hydroxyl group in the 1,1-binaphthol to alkylene oxide, and then converts the hydroxyl group generated as a result of the alkylene oxide to (meta) It is preferable that it has a molecular structure obtained by acryloyloxylation from the viewpoint of obtaining a cured product having excellent heat resistance and moisture resistance and a high refractive index.
  • Examples of such (meth) acrylate resins starting from 1,1-binaphthol include, for example, the following general formula (1)
  • X 1 to X 12 are each independently a hydrogen atom, a halogen atom, a hydrocarbon group having 1 to 10 carbon atoms, or an alkoxy group having 1 to 10 carbon atoms, and A 1 and A 2 are carbon atoms.
  • the structural sites represented by A 1 and A 2 correspond to R 1 in the structural formula (A), specifically, ethylene, n-propylene. Isopropylene, butylene, 4-methyl-n-butylene, n-pentene and the like.
  • an alkylene group selected from the group consisting of ethylene, n-propylene and isopropylene is particularly preferred from the viewpoint that the refractive index of the (meth) acrylate resin itself is high.
  • m or n represents a repeating unit corresponding to l in the structural formula (A).
  • examples of the halogen atom constituting X 1 to X 12 in the general formula (1) include a chlorine atom and a bromine atom.
  • examples of the hydrocarbon group having 1 to 10 carbon atoms include a methyl group, an ethyl group, A propyl group, t-butyl group, cyclohexyl group, octyl group, linear or branched alkyl group such as decyl group, and an aralkyl group formed by reacting the binaphthalene skeleton with a benzylating agent. There may be.
  • alkoxy group having 1 to 10 carbon atoms examples include methoxy group, ethoxy group, butoxy group, octyloxy group, decyloxy group and the like.
  • halogen atoms constituting X 1 to X 12 when halogen atoms constituting X 1 to X 12 are used, the refractive index of the acrylate resin itself is increased, but it is difficult to apply to applications requiring non-halogenation.
  • a hydrocarbon group having 1 to 10 carbon atoms or an alkoxy group having 1 to 10 carbon atoms is used, the viscosity of the acrylate resin can be further reduced.
  • Y 1 and Y 2 represent a hydroxyl group, an acryloyloxy group, or a methacryloyloxy group
  • n And m is an integer of 1 to 10 as a repeating unit.
  • at least one of Y 1 and Y 2 is an acryloyloxy group or a methacryloyloxy group.
  • those having a halogen atom as X 1 to X 12 in the formula can further increase the refractive index of the acrylate resin itself as described above. Application to applications requiring halogenation becomes difficult.
  • those having a high degree of freedom in the structure itself such as linear alkyl groups or alkoxy groups as X 1 to X 12 are effective in reducing the viscosity of the acrylate resin, but the refractive index is represented by the general formula (1 ), All of X 1 to X 12 are relatively lower than those in which all are hydrogen atoms.
  • X 1 to X 12 in the above general formula (1) are each independently a hydrogen atom or a carbon atom number of 1 from the viewpoint of compatibility of both properties of refractive index and viscosity, difficulty in synthesis, and cost. It is preferably an alkyl group of 1 to 3, particularly preferably all of which are hydrogen atoms. Therefore, in the acrylate resin represented by the general formula (1), A 1 and A 2 are alkylene groups selected from the group consisting of ethylene, n-propylene, and isopropylene, and X 1 to X 12 are all A (meth) acrylate resin that is a hydrogen atom is preferred.
  • Y 1 and Y 2 in the general formula (1) represent a functional group selected from a hydroxyl group, an acryloyloxy group, and a methacryloyloxy group as described above, and one of Y 1 and Y 2 , or Both are acryloyloxy groups or methacryloyloxy groups.
  • acryloyloxy groups are particularly preferred because the refractive index of the (meth) acrylate resin itself is high. .
  • the (meth) acrylate resin represented by the general formula (1) can be used as a mixture of various compounds satisfying the general formula (1).
  • the hydroxyl group constituting Y 1 and Y 2 in the general formula (1) in the (meth) acrylate resin (hereinafter abbreviated as “hydroxyl group (y1)”), acryloyloxy group or The ratio of yloxy group (hereinafter abbreviated as “(meth) acryloyl group (y2)”) can be arbitrarily adjusted.
  • the ratio of the hydroxyl group (y1) to the (meth) acryloyl group (y2) is preferably in the range of 75/25 to 1/99 in terms of molar ratio (y1 / y2).
  • the amount of (meth) acryloyl group (y2) is more than 75/25 in terms of molar ratio (y1 / y2), the curability by active energy rays or heating is improved, and the liquid temperature is normal. It becomes a (meth) acrylate resin and has a sufficiently low viscosity.
  • the amount of the (meth) acryloyl group (y2) is lower than 1/99 in the molar ratio (y1 / y2), the crystallinity of the (meth) acrylate resin itself can be moderately suppressed. The viscosity at can be reduced.
  • the structural parts represented by A 1 and A 2 in the general formula (1) are carbon such as ethylene, n-propylene, isopropylene, butylene, 4-methyl-n-butylene, n-pentene and the like.
  • it is a linear or branched alkylene group having 2 to 5 atoms, it is possible to arbitrarily adjust the abundance ratio thereof in the present invention.
  • ethylene (hereinafter referred to as this) in the (meth) acrylate resin can be adjusted. Is abbreviated as “ethylene group (a1)”), the refractive index of the (meth) acrylate resin itself increases.
  • alkylene group having 3 to 5 carbon atoms (hereinafter abbreviated as “alkylene group having 3 to 5 carbon atoms (a2)”) allows (meth) Crystallization of the acrylate resin can be suppressed, and the viscosity can be reduced. Therefore, in the present invention, the molar ratio (a1 / a2) between the ethylene group (a1) and the alkylene group (a2) having 3 to 5 carbon atoms is in the range of 50/50 to 98/2.
  • the (meth) acrylate resin is preferable because it is liquid at room temperature and has a low viscosity, and the refractive index of the (meth) acrylate resin itself is high.
  • the alkylene group (a2) having 3 to 5 carbon atoms is preferably n-propylene or isopropylene (hereinafter abbreviated as “C3 alkyl”)
  • the ethylene group (a1 ) And C3 alkyl is preferably in the range of 50/50 to 98/2.
  • m and n are integers of 1 to 10 representing repeating units. From the viewpoint of increasing the refractive index of the (meth) acrylate resin itself, m and n are respectively averages thereof. It is preferably in the range of 1.0 to 3.0, particularly preferably in the range of 1.0 to 1.5, and particularly preferably substantially 1.
  • the (meth) acrylate resin described in detail above has a viscosity of not more than 3000 Pa ⁇ s at 25 ° C., and it has good fluidity and wide application range for various applications. It is preferable because the amount of diluent used can be reduced. In particular, the range of 1000 to 100 Pa ⁇ s is preferable from the standpoint that this effect is remarkable.
  • the (meth) acrylate resin itself has a high refractive index. Specifically, the (meth) acrylate resin has a refractive index of 1.55 or more, and a refractive index of 1.60 or more depending on the selection of the molecular structure. Become a material.
  • the method for producing the (meth) acrylate resin described in detail above is to obtain a compound having a hydroxyl group by reacting binaphthols with an alkylene oxide, a halogenoalkanol, or an alkylene carbonate, and then the resulting reaction product having a hydroxyl group.
  • a desired (meth) acrylate resin can be obtained by reacting a product with a (meth) acrylate agent.
  • binaphthols that can be used include those having a binaphthalene structure corresponding to the general formula (1), specifically, the following structural formula (2)
  • X 1 to X 12 each independently represents a hydrogen atom, a halogen atom, a hydrocarbon group having 1 to 10 carbon atoms, or an alkoxy group having 1 to 10 carbon atoms
  • X 1 to X 12 each independently represents a hydrogen atom, a halogen atom, a hydrocarbon group having 1 to 10 carbon atoms, or an alkoxy group having 1 to 10 carbon atoms
  • X 1 to X 12 in the above general formula (1) are each independently a hydrogen atom or carbon from the viewpoints of compatibility of both properties of refractive index and viscosity, difficulty in synthesis, and cost.
  • An alkyl group having 1 to 3 atoms is preferable, and all of them are particularly preferably hydrogen atoms. Therefore, in the acrylate resin represented by the general formula (1), A 1 and A 2 are alkylene groups selected from the group consisting of ethylene, n-propylene, and isopropylene, and X 1 to X 12 are all A (meth) acrylate resin that is a hydrogen atom is preferred.
  • a temperature condition of 100 to 200 ° C. in the presence of an alkali catalyst is used as a method of reacting binaphthols with alkylene oxide.
  • a method of subjecting an alkylene oxide such as ethylene oxide, propylene oxide, and butylene oxide to a polyaddition reaction is used as a method of reacting binaphthols with alkylene oxide.
  • halogenoalkanols such as 2-chloroethanol, 3-chloro-2-propanol and 2- (2-chloroethoxy) ethanol are added to the binaphthols in the presence of an alkali catalyst.
  • a method of reacting under a temperature condition of 100 to 200 ° C. is mentioned below.
  • the method of reacting the binaphthols with the alkylene carbonate specifically includes the method of reacting the binaphthols with the alkylene carbonate in the presence of an alkali catalyst or an acid catalyst at a temperature of 80 to 200 ° C.
  • the method of reacting binaphthols with alkylene oxide is difficult to adjust the repeating unit 1 in the above structural formula (A), and the method of reacting binaphthols with halogenoalkanol is as follows:
  • the reaction kettle is corroded because acid substances such as hydrochloric acid are by-produced.
  • the method of reacting binaphthols with alkylene carbonate is easy to adjust the repeating unit 1 and is advantageous for production on an industrial scale without causing the formation of corrosive substances. It is preferable.
  • a method of reacting the binaphthols with alkylene oxide will be described in detail.
  • the alkylene carbonate used in the method of reacting binaphthols with alkylene carbonate may be any alkylene group having 2 to 5 carbon atoms, such as ethylene carbonate, propylene carbonate, butylene carbonate, and pentylene carbonate.
  • ethylene, n-propylene, and isopropylene have a high (meth) acrylate resin refractive index and a low resin viscosity. Therefore, ethylene carbonate and propylene carbonate are preferable as the alkylene carbonate.
  • the ratio of ethylene carbonate to propylene carbonate it is preferable to use the (molar ratio) in such a ratio that the former / the latter is 50/50 to 98/2.
  • the reaction ratio between the binaphthols and the alkylene carbonate is not particularly limited, and the higher the equivalent ratio of the alkylene carbonate to the hydroxyl group of the binaphthols, the more preferable is the value of 1 in the structural formula (A).
  • the values of m and n in the general formula (1) are increased.
  • the value of l in the structural formula (A) and the values of m and n in the general formula (1) are integers of 1 to 10, and in order to adjust to this range, the hydroxyl group of the binaphthols It is preferably in the range of 1 to 10 equivalents of alkylene carbonate with respect to 1 equivalent.
  • the value of l in the structural formula (A) and the values of m and n in the general formula (1) are 1.0 to 1.0 on average because the refractive index of the (meth) acrylate resin itself is high. It is preferably 3.0, particularly 1.0 to 1.5, and more preferably 1, but in order to adjust to such a range, 1 to 5 equivalents of alkylene carbonate per 1 equivalent of hydroxyl group of binaphthols. It is preferably in the range of ⁇ 5 equivalents, particularly in the range of 1 to 3 equivalents.
  • alkylene carbonate ethylene carbonate, propylene carbonate, butylene carbonate, pentylene carbonate, etc. can be used.
  • the catalyst in the reaction of the method 3) may be either an alkali catalyst or an acid catalyst, but is preferably an alkali catalyst from the viewpoint that the reaction proceeds rapidly and impurities are reduced.
  • the alkali catalyst include potassium hydroxide, sodium hydroxide, barium hydroxide, magnesium oxide, sodium carbonate, potassium carbonate and the like, among which potassium hydroxide and sodium hydroxide are preferable.
  • the acid catalyst is not particularly limited, and examples thereof include sulfuric acid, p-toluenesulfonic acid, methanesulfonic acid and the like. Among them, p-toluenesulfonic acid is preferable.
  • the catalyst is preferably used in an amount of 0.001 to 0.1 equivalent of catalyst with respect to 1 equivalent of hydroxyl group of polynaphthol.
  • reaction temperature is preferably in the range of 80 to 200 ° C. as described above, and more preferably in the range of 100 to 180 ° C., since the reaction proceeds well and the impurities are reduced.
  • X 1 to X 12 are each independently a hydrogen atom, a halogen atom, a hydrocarbon group having 1 to 10 carbon atoms, or an alkoxy group having 1 to 10 carbon atoms, and A 1 and A 2 are carbon atoms.
  • a linear or branched alkylene group having 2 to 5 atoms, n and m are repeating units and are integers of 1 to 10, provided that at least one of Y 1 and Y 2 is an acryloyloxy group or a methacryloyloxy group;
  • the desired (meth) acrylate resin can be obtained by reacting with a (meth) acrylate agent.
  • (meth) acrylic acid such as acrylic acid and methacrylic acid
  • (meth) acrylic acid halogen such as acrylic acid chloride and methacrylic acid chloride
  • methyl acrylate, methyl methacrylate, acrylic acid Examples include alkyl (meth) acrylates such as ethyl and ethyl methacrylate.
  • alkyl (meth) acrylates such as ethyl and ethyl methacrylate.
  • halogens (meth) acrylates cause by-products such as hydrochloric acid during reaction to cause corrosion problems in the reaction kettle, and when alkyl (meth) acrylates are used, by-product alcohol is removed.
  • (Meth) acrylic acid is preferable because it is necessary to carry out a dealcoholization treatment.
  • the reaction between the hydroxyl group-containing compound and (meth) acrylic acid can be carried out, for example, by performing a dehydration reaction in an organic solvent such as toluene, benzene, cyclohexane, n-hexane, n-heptane and the like in the presence of an acid catalyst.
  • an organic solvent such as toluene, benzene, cyclohexane, n-hexane, n-heptane and the like
  • an acid catalyst include sulfuric acid, p-toluenesulfonic acid, methanesulfonic acid and the like.
  • a polymerization inhibitor for example, hydroquinone, p-methoxyphenol, methylhydroquinone, etc.
  • the reaction ratio between the hydroxyl group-containing compound and (meth) acrylic acid is preferably such that (meth) acrylic acid is 0.75 to 0.99 equivalents per hydroxyl group equivalent of the hydroxyl group-containing compound.
  • the reaction temperature is preferably 60 to 120 ° C., and the reaction time is preferably 3 to 20 hours.
  • the curable resin composition of the present invention comprises a (meth) acrylate resin described in detail above (hereinafter, the (meth) acrylate resin is abbreviated as “(meth) acrylate resin (A)”), a radical polymerization initiator ( And B) as essential components.
  • radical polymerization initiator (B) used here examples include a photopolymerization initiator and a thermal polymerization initiator.
  • Specific examples of the photopolymerization initiator include benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin butyl ether, 2-methylbenzoin, benzophenone, Michler's ketone, benzyldimethyl ketal, 2,2-diethoxyacetophenone, benzoylbenzoic acid, 4-benzoyl-4′-methyldiphenyl sulfide, 3,3′-dimethyl-4-methoxybenzophenone, 1- (4-dodecylphenyl) -2-hydroxy-2-methylpropan-1-one, 1-hydroxycyclohexylphenyl Ketone, 2-hydroxy-2-methyl-1-phenylpropan-1-one, 2-methyl-1- [4- (methylthiophenyl)]-2-morpholino) propane-1, 2-chlorothioxanthone
  • photopolymerization initiators can be used alone or as a mixture of two or more.
  • the amount used is preferably such that the photopolymerization initiator is 0.01 to 30 parts by weight with respect to 100 parts by weight of the (meth) acrylate resin (A), particularly preferably 0.01 to 20 parts by weight. Or less.
  • the blending range is less than this range, the polymerization rate becomes slow and the curing becomes insufficient. On the other hand, if this range is exceeded, the refractive index will drop.
  • photopolymerization initiators can be used in combination with a photopolymerization accelerator such as amines.
  • a photopolymerization accelerator such as amines. Examples include 2-dimethylaminoethyl benzoate, dimethylaminoacetophenone, ethyl p-dimethylaminobenzoate, isoamyl p-dimethylaminobenzoate, and the like.
  • the use ratio of these photopolymerization accelerators is in the range of 0.1 to 100 parts by weight with respect to 100 parts by weight of the photopolymerization initiator, the polymerization rate is high, and the refractive index of the cured product is high. This is preferable.
  • ketone peroxide initiators such as methyl ethyl ketone peroxide, methyl isobutyl ketone peroxide, cyclohexanone peroxide, methyl cyclohexane ketone peroxide, acetylacetone peroxide, isobutyl peroxide
  • diacyl peroxide initiators such as m-chlorobenzoyl peroxide, 2,4-dichlorobenzoyl peroxide, ⁇ -methylbenzoyl peroxide, bis-3,5,5-trimethylhexanoyl peroxide, 2,4,4 Hydroperoxides such as trimethylpentyl-2-hydroperoxide, diisopropylbenzene hydroperoxide, cumene hydroperoxide, t-butyl hydroperoxide Id initiator, dicumyl
  • thermal polymerization initiators can be used alone or as a mixture of two or more.
  • the amount used is such that the thermal polymerization initiator is in the range of 0.1 to 10 parts by weight with respect to 100 parts by weight of the (meth) acrylate resin (A), the polymerization rate is fast, and the curing is This is preferable from the viewpoint of increasing the refractive index of the object.
  • the curable resin composition of the present invention further includes a radical polymerizable monomer as a diluent for adjusting the viscosity of the composition.
  • a radical polymerizable monomer as a diluent for adjusting the viscosity of the composition.
  • the body (C) or other organic solvent (D) can be used in combination.
  • the radically polymerizable monomer (C) is particularly preferable because the cured product has good heat resistance and moisture resistance.
  • the radical polymerizable monomer (C) used here is a (meth) acrylate monomer such as a monofunctional (meth) acrylate monomer, a bifunctional (meth) acrylate monomer, or a trifunctional or higher polyfunctional (meth) acrylate monomer.
  • vinyl monomers such as styrene, methylstyrene, halogenated styrene, and divinylbenzene.
  • Examples of the monofunctional (meth) acrylate monomer include acryloylmorpholine, 2-hydroxypropyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, cyclohexane-1,4-dimethanol mono (meth) acrylate, tetrahydro Furfuryl (meth) acrylate, phenoxyethyl (meth) acrylate, phenyl polyethoxy (meth) acrylate, 2-hydroxy-3-phenyloxypropyl (meth) acrylate, p-cumylphenoxyethyl (meth) acrylate, isobornyl (meth) ) Acrylate, tribromophenyloxyethyl (meth) acrylate, dicyclopentanyl (meth) acrylate, dicyclopentenyl (meth) acrylate, dicyclopentenyloxyethyl ( Data) acrylate, o- phenylphenol polyethoxy
  • bifunctional (meth) acrylate monomers examples include 1,4-butanediol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, 1,9-nonanediol di (meth) acrylate, and tricyclodecanedi.
  • Examples of the trifunctional or higher polyfunctional (meth) acrylate monomer include tris (acryloxyethyl) isocyanurate, pentaerythritol tetra (meth) acrylate, dipentaerythritol hexa (meth) acrylate, dipentaerythritol penta (meth) acrylate, Pentaerythritol hexa (meth) acrylate, tripentaerythritol penta (meth) acrylate, di (meth) acrylate of ⁇ -caprolactone adduct of hydroxypentylglycolate dipentylglycol, trimethylolpropane tri (meth) acrylate, trimethylolpropane poly Examples thereof include ethoxytri (meth) acrylate and ditrimethylolpropane tetra (meth) acrylate.
  • acryloylmorpholine, tetrahydrofurfuryl (meth) acrylate, phenoxyethyl (meth) acrylate are particularly effective as a diluent in a curable resin composition because of the effect of reducing the viscosity of the composition and maintaining a high refractive index of the cured product.
  • phenoxyethyl (meth) acrylate, o Phenylphenol polyethoxy (meth) acrylate, and those selected from the group consisting of divinylbenzene is preferable from the point where the high refractive index of the cured product is excellent in dilution capability.
  • examples of the organic solvent (D) include methyl ethyl ketone, carbitol acetate, butyl cellosolve acetate, diethylene glycol dimethyl ether, dipropylene glycol dimethyl ether, and solvent naphtha.
  • the diluent sufficiently exhibits the effect of reducing the viscosity of the composition, and can maintain the refractive index of the cured product at a high level in a mass ratio of [(meth) acrylate resin / diluent] of 90/10 to It is preferably used at a ratio of 30/70, particularly 80/20 to 40/60.
  • additives such as a silane coupling agent, a polymerization inhibitor, and a leveling agent can be added as long as the original characteristics are not changed for further performance improvement.
  • silane coupling agent examples include ⁇ -methacryloxypropyltrimethoxysilane, ⁇ - (2-aminoethyl) aminopropyltrimethoxysilane, ⁇ -mercaptopropyltrimethoxysilane, and the like.
  • polymerization inhibitor examples include hydroquinone monomethyl ether, methyl hydroquinone, t-butylcatechol, p-benzoquinone, 2,5-t-butyl-hydroquinone, and phenothiazine.
  • leveling agent examples include “Modaflow” manufactured by Monsanto.
  • the method of curing the curable resin composition of the present invention described in detail is that the curable resin composition is applied or molded to a substrate according to the purpose and application, and then irradiated with active energy rays or heated. The method of doing is mentioned.
  • an electron beam when it hardens
  • an electron beam, an ultraviolet-ray, visible light etc. are mentioned as this active energy ray.
  • an electron beam is used as the active energy beam
  • the curable resin composition of the present invention can be cured using a generator.
  • ultraviolet rays When ultraviolet rays are used as the active energy ray, they can be cured by irradiation with a mercury lamp such as an ultrahigh pressure mercury lamp, a high pressure mercury lamp or a low pressure mercury lamp, a xenon lamp, a carbon arc, a metal height lamp or the like.
  • a mercury lamp such as an ultrahigh pressure mercury lamp, a high pressure mercury lamp or a low pressure mercury lamp, a xenon lamp, a carbon arc, a metal height lamp or the like.
  • the amount of ultraviolet light exposure is preferably in the range of 0.1 to 1000 mJ / cm 2 .
  • the curable resin composition of the present invention described in detail above has performances such as high refractive index, high heat resistance, and high moisture resistance, plastic lenses such as spectacle lenses, digital camera lenses, Fresnel lenses, and prism lenses. It can be applied to various optical materials such as optical overcoat agent, hard coat agent, antireflection film, optical fiber, optical waveguide, hologram, prism lens, LED sealing material, solar cell coating material and the like.
  • a plastic lens because of its high refractive index in the cured product and excellent heat resistance and moisture resistance of the cured product, and is particularly useful as a prism lens for a liquid crystal substrate.
  • the prism lens for a liquid crystal substrate has a plurality of fine prism-shaped portions on one side of a sheet-like molded body, and usually has a prism surface on the back side (light source side) of the liquid crystal display element and on the element side. Further, the sheet-like lens is used so that the light guide sheet is arranged on the back surface thereof, or the prism lens is a sheet-like lens having a function of the light guide sheet.
  • the prism portion of the prism lens preferably has a prism apex angle ⁇ in the range of 70 to 110 ° from the viewpoint of excellent light-collecting properties and improved luminance, and particularly in the range of 75 to 100 °. In particular, the range of 80 to 95 ° is particularly preferable.
  • the prism pitch is preferably 100 ⁇ m or less, and particularly preferably in the range of 70 ⁇ m or less from the viewpoint of preventing the generation of moiré patterns on the screen and further improving the definition of the screen.
  • the height of the unevenness of the prism is determined by the value of the prism apex angle ⁇ and the prism pitch, but is preferably in the range of 50 ⁇ m or less.
  • the sheet thickness of the prism lens is preferably thick from the viewpoint of strength, but optically it is preferably thin in order to suppress light absorption. From the viewpoint of these balances, the sheet thickness is in the range of 50 ⁇ m to 1000 ⁇ m. preferable.
  • the curable resin composition is applied to a molding die such as a mold or a resin die on which a prism pattern is formed, and the resin composition After smoothing the surface, a method of producing by irradiating and curing a transparent base material and irradiating active energy rays can be mentioned.
  • the transparent base material is highly transparent, a material having a thickness of 3 mm or less is preferable in consideration of the transparency of the active energy ray, the handleability, and the like.
  • the material for the transparent substrate include acrylic resins, polycarbonate resins, polyester resins, polystyrene resins, fluorine resins, polyimide resins, synthetic resins such as a mixture of these polymers, and glass.
  • the prism sheet formed on the transparent substrate thus obtained can be used as it is, but the transparent substrate may be peeled off and used as a single prism portion.
  • the transparent substrate may be peeled off and used as a single prism portion.
  • the transparent substrate when used after being peeled off, it is preferable that the transparent substrate can be peeled relatively easily, and the surface of the transparent substrate is preferably subjected to a surface treatment with silicone or a fluorine-based release agent.
  • Viscosity Measured at 25 ° C. using an E type viscometer (“TV-20 type” cone plate type manufactured by Toki Sangyo Co., Ltd.). 2) 13 C-NMR: NMR “GSX270” manufactured by JEOL Ltd. 3) FD-MS: Double convergence type mass spectrometer “AX505H (FD505H)” manufactured by JEOL Ltd.
  • FD-MS mass spectrum
  • the ratio of the compound ( ⁇ ) to the compound ( ⁇ ) [molar ratio of ( ⁇ ) / ( ⁇ )] is 90/10.
  • the acryloyloxy group / hydroxyl molar ratio was confirmed to be 95/5.
  • This acrylate resin has a refractive index of 1.63 and a viscosity measured by an E-type viscometer of 460 Pa.s. s.
  • Example 2 Except having changed the usage-amount of acrylic acid into 61 g (0.85 mol), it carried out similarly to Example 1 and obtained 190 g of acrylate resin (B). From the gas chromatograph (each isolated and calculated by the internal standard method), the ratio of the compound ( ⁇ ) to the compound ( ⁇ ) [molar ratio of ( ⁇ ) / ( ⁇ )] is 60/40, and acryloyl It was confirmed that the oxy group / hydroxyl group was 80/20 (molar ratio).
  • This acrylate resin has a refractive index of 1.64 and a viscosity measured by an E-type viscometer of 490 Pa.s. s. (Curability evaluation) The curability was evaluated in the same manner as in Example 1 except that the acrylate resin (A) was changed to the acrylate resin (B). Table 1 shows the curability results together with the properties of the acrylate resin (B).
  • Example 3 Except having changed the usage-amount of acrylic acid into 86 g (1.2 mol) and having changed reaction time into 12 hours, it carried out similarly to the synthesis example 1, and obtained acrylate resin (C) 205g. From the gas chromatograph (each isolated and calculated by the internal standard method), the ratio of the compound ( ⁇ ) to the compound ( ⁇ ) [molar ratio of ( ⁇ ) / ( ⁇ )] is 99/1, and the acryloyloxy group / It was confirmed that the hydroxyl group was 99.5 / 0.5 (molar ratio).
  • This acrylate resin has a refractive index of 1.63 and a viscosity measured by an E-type viscometer of 440 Pa.s. s.
  • the acrylate resin crystallized when left at 25 ° C. for 2 hours.
  • the curability evaluation The curability was evaluated in the same manner as in Example 1 except that the acrylate resin (A) was changed to the acrylate resin (C). Table 1 shows the curability results together with the properties of the acrylate resin (C).
  • Example 4 Except having changed the usage-amount of acrylic acid into 58 g (0.80 mol) and changing reaction time into 6 hours, it carried out similarly to Example 1 and obtained 185g of acrylate resin (D). From the gas chromatograph (isolated and calculated by the internal standard method), the ratio of the compound ( ⁇ ) to the compound ( ⁇ ) [molar ratio of ( ⁇ ) / ( ⁇ )] was 40/60, and acryloyl group / It was confirmed that the hydroxyl group was 70/30 (molar ratio).
  • This acrylate resin has a refractive index of 1.65 and a viscosity measured by an E-type viscometer of 510 Pa. s. (Curability evaluation) The curability was evaluated in the same manner as in Example 1 except that the acrylate resin (A) was changed to the acrylate resin (D). Table 1 shows the curability results together with the properties of the acrylate resin (D).
  • Example 5 286 g (1 mol) of binaphthol, 190 g (2.16 mol) of ethylene carbonate, 24 g (0.24 mol) of propylene carbonate, 48 mass in a 2 L four-necked flask equipped with a stirrer, thermometer, Dean-Stark trap and condenser 8 g of an aqueous potassium hydroxide solution was added and reacted at 170 ° C. for 4 hours. Thereafter, 500 g of methyl isobutoxy ketone was added and dissolved, 300 g of water was added, stirring was stopped, and the lower layer was discarded. Further, 300 g of water was added, stirring was stopped, and the lower layer was discarded. Thereafter, the solvent was removed at 150 ° C. to obtain 340 g of a resin.
  • an acrylate resin (E) was obtained by the solvent at 100 ° C. to obtain 201 g of an acrylate resin (E). Further, from the measurement result of 13 C-NMR, it was confirmed that the molar ratio of ethyleneoxo group / propyleneoxo group was 90/10.
  • This acrylate resin has a refractive index of 1.63 and a viscosity measured with an E-type viscometer of 465 Pa.s. s. (Curability evaluation) The curability was evaluated in the same manner as in Example 1 except that the acrylate resin (A) was changed to the acrylate resin (E). Table 2 shows the results of curability together with the properties of the acrylate resin (E).
  • Example 6 Except having changed into 127 g (1.44 mol) of ethylene carbonate and 98 g (0.96 mol) of propylene carbonate, it carried out similarly to Example 5 and obtained 203 g of acrylate resin (F). Further, from the measurement result of 13 C-NMR, it was confirmed that the molar ratio of ethyleneoxo group / propyleneoxo group was 60/40.
  • This acrylate resin has a refractive index of 1.62 and a viscosity measured by an E-type viscometer of 480 Pa.s. s. (Curability evaluation) The curability was evaluated in the same manner as in Example 1 except that the acrylate resin (A) was changed to the acrylate resin (F). Table 2 shows the curability results together with the properties of the acrylate resin (F).
  • Example 7 Except having changed into ethylene carbonate 209g (2.38 mol) and propylene carbonate 2g (0.02 mol), it carried out similarly to Example 5 and obtained acrylate resin (G) 206g. Further, from the measurement result of 13 C-NMR, it was confirmed that the molar ratio of ethyleneoxo group / propyleneoxo group was 99/1.
  • This acrylate resin has a refractive index of 1.63 and a viscosity measured by an E-type viscometer of 455 Pa.s. s. The acrylate resin crystallized when left at 25 ° C. for 2 hours.
  • the curability evaluation The curability was evaluated in the same manner as in Example 1 except that the acrylate resin (A) was changed to the acrylate resin (G). Table 2 shows the curability results together with the properties of the acrylate resin (G).
  • the acrylate resin (H) has a refractive index of 1.61 and a viscosity measured by an E-type viscometer of 510 Pa. s. (Curability evaluation) The curability was evaluated in the same manner as in Example 1 except that the acrylate resin (A) was changed to the acrylate resin (H). Table 2 shows the curability results together with the properties of the acrylate resin (H).
  • Comparative Example 1 Compound (a) 187 g (0.5 mol), terephthalic acid 83 g (0.5 mol), dibutyltin obtained in Example 1 in a 1 L four-necked flask equipped with a stirrer, thermometer, condenser and decanter Esterification was performed by adding 0.7 g of oxide and gradually heating from 190 ° C. to 230 ° C. under a reduced pressure of 5 to 10 Torr while stirring. After extracting a predetermined amount of water out of the system, the temperature was increased and the pressure was gradually reduced, and the temperature of the heating tank was reached to 280 ° C. and the degree of pressure reduction to 133.322 Pa or less while removing the generated water. After maintaining this condition for 1 hour, the reaction product was extruded into water to obtain 210 g of a polyester resin (I). The refractive index of this resin was 1.67. The E type viscometer could not be measured because it was solid.
  • the refractive index of the fluorene type acrylate represented by the formula (acrylate resin (J), “Ogsol EA-0200” manufactured by Osaka Gas Chemical Company) was 1.59.
  • the E type viscometer could not be measured because it was semi-solid.
  • the refractive index of the fluorene type epoxy acrylate represented by the formula (acrylate resin (K), “ASF-400” manufactured by Nippon Steel Chemical Co., Ltd.) was 1.58.
  • the E type viscometer could not be measured because it was solid.
  • polyester resin (I) was heated to 150 ° C. and melted, and applied to a glass plate using a bar coater (No. 20).
  • the coating film obtained by preparing the coating film was placed in a constant temperature and humidity machine at 85 ° C. and a humidity of 85% and held for 300 hours. The change of the coating film after holding was visually observed. Evaluation was judged as follows. Evaluation ⁇ : No change ⁇ : Change in hue only, no change in shape ⁇ : Change in hue and shape
  • the acrylate resin of the present invention has a low viscosity and a high refractive index, and the cured product after light irradiation is excellent in a high refractive index, solvent resistance, heat resistance, and moisture resistance.
  • the acrylate resin of the present invention has a low viscosity and a high refractive index, and the cured product after heat curing is excellent in a high refractive index, solvent resistance, heat resistance, and moisture resistance.
  • Examples 17 to 22 and Comparative Examples 10 to 11 A varnish-like composition was prepared according to the formulation shown in Table 5 below, and the liquid refractive index and viscosity of the composition were measured by the following method. Then, a cured coating film was produced in the same manner as in Example 12. The solvent resistance, heat resistance, and moisture resistance were evaluated. Moreover, the cured film A and the board
  • cured film A The composition prepared according to the composition shown in Table 5 below was placed between a chrome-plated metal plate and a transparent untreated PET film, the thickness was adjusted, and a UV light of 500 mJ / cm 2 was applied to the transparent substrate using a high-pressure mercury lamp. After being irradiated and cured from the side, a cured film (hereinafter abbreviated as “cured film A”) was taken out from the metal plate and the transparent substrate.
  • substrate B with cured film The composition prepared in accordance with the composition shown in Table 5 below was placed between a chrome-plated metal plate and a transparent surface adhesion-treated PET film, and then the thickness was adjusted. Using a high-pressure mercury lamp, UV light of 500 mJ / cm 2 was used as a transparent base. After being cured by irradiation from the material side, only the metal plate was peeled off to obtain a substrate with a cured film (hereinafter abbreviated as “substrate B with cured film”).
  • a film showing a transmittance of 85% or more in all regions was marked with ⁇ , and a light transmittance less than that was marked with ⁇ .
  • Adhesion Using the substrate B with a cured film, the adhesion between the base material and the cured film layer was measured in accordance with JIS K5400. [Releasability] The composition adjusted according to the composition shown in Table 5 below was placed between the chrome-plated prism mold and the transparent surface adhesion-treated PET film, the thickness was adjusted, and UV light of 500 mJ / cm 2 was made transparent with a high-pressure mercury lamp. After being cured by irradiation from the material side, when the mold was released from the mold, the one in which the composition did not remain in the mold was marked with ⁇ , and the remaining one was marked with x.
  • phenoxyethyl acrylate is “Light acrylate PO-A” manufactured by Kyoeisha Chemical Co., Ltd.
  • OPPPEA o-phenylphenol ethylene oxide modified acrylate
  • Nix TO-1463 manufactured by Toagosei Co., Ltd.
  • Photoinitiator is 1-hydroxycyclohexyl phenyl ketone (“Irgacure 184” manufactured by Ciba Specialty Chemicals).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

A (meth)acrylate resin which gives, as an organic optical material, a cured object having a high refractive index and having excellent heat resistance and moisture resistance; a curable resin composition; a cured object obtained from the composition; and a plastic lens. A (meth)acrylate resin characterized by having a binaphthalene skeleton in the molecular structure and having a substituent represented by structural formula (A) as a substituent on the aromatic nuclei of the binaphthalene skeleton is cured by heating or irradiation with actinic energy rays. (In the formula, R1 is a linear or branched C2-5 alkylene; R2 is a hydrogen atom or methyl; and l, indicating the number of repeating units, is an integer of 1-10.)

Description

(メタ)アクリレート樹脂、その製造方法、硬化性樹脂組成物、その硬化物、及びプラスチックレンズ(Meth) acrylate resin, production method thereof, curable resin composition, cured product thereof, and plastic lens
 本発明は、低粘度であって活性エネルギー線照射又は加熱により硬化し、また、硬化後は、屈折率が高く、かつ、高耐熱性及び高耐湿性を兼備した硬化物となるため、光学用オーバーコート剤、ハードコート剤、反射防止膜、眼鏡レンズ、光ファイバー、光導波路、ホログラム等の光学部品、その他プリズムレンズ、フレネルレンズ、レンチキュラーレンズ等のプラスチックレンズに適する(メタ)アクリレート樹脂、その製造方法、硬化性樹脂組成物、及びその硬化物に関する。 The present invention has a low viscosity and is cured by irradiation with active energy rays or heating. After curing, the cured product has a high refractive index and high heat resistance and high moisture resistance. (Meth) acrylate resin suitable for overcoat agent, hard coat agent, antireflection film, spectacle lens, optical component such as optical fiber, optical waveguide, hologram, and other plastic lens such as prism lens, Fresnel lens, lenticular lens, and production method thereof The present invention relates to a curable resin composition and a cured product thereof.
 光学用オーバーコート剤、ハードコート剤、反射防止膜、眼鏡レンズ、光ファイバー、光導波路、ホログラム等の光学部品には、近年、加工・生産性に優れる点から樹脂材料が広く用いられており、また、光学部品の小型化、薄型化といった傾向、或いは、反射防止性の調整といった観点から屈折率の高い樹脂材料が求められている。
 従来より、かかる要求に応える屈折率の高い光学材料として、フルオレン骨格を有するアクリレート樹脂が知られており、例えば、アクリロイル基がアルキレンオキシ基を介してフルオレン骨格に結合した2官能型化合物や(下記特許文献1、特許文献2、特許文献3参照)、フルオレン骨格を含有するジグリシジルエーテルとアクリル酸又はメタクリル酸とを反応させて得られる化合物(下記特許文献4参照)が知られている。
In recent years, resin materials have been widely used for optical parts such as optical overcoat agents, hard coat agents, antireflection films, spectacle lenses, optical fibers, optical waveguides, and holograms because of their excellent processing and productivity. Therefore, a resin material having a high refractive index is demanded from the viewpoint of miniaturization and thinning of optical components, or adjustment of antireflection properties.
Conventionally, an acrylate resin having a fluorene skeleton has been known as an optical material having a high refractive index that meets such requirements. For example, a bifunctional compound in which an acryloyl group is bonded to a fluorene skeleton via an alkyleneoxy group (see below) Patent Literature 1, Patent Literature 2, and Patent Literature 3), and compounds obtained by reacting diglycidyl ether containing a fluorene skeleton with acrylic acid or methacrylic acid (see Patent Literature 4 below) are known.
 然しながら、前記したフルオレン骨格を有するアクリレート樹脂は、重合性成分としてそれ単独で用いた場合には硬化物の屈折率は高くなるものの、該アクリレート樹脂自体が固形、または常温で3000Pa・S以上の高粘度液体であるために、屈折率が低い希釈剤を多量に併用する必要があり、そのため得られる硬化物の屈折率が、結局、低くなってしまうものであった。加えて、フルオレン骨格を有するアクリレート樹脂の硬化物は、耐熱性、高耐湿性に劣り、光学材料の長期信頼性に劣るものであった。 However, when the acrylate resin having a fluorene skeleton described above is used alone as a polymerizable component, the refractive index of the cured product becomes high, but the acrylate resin itself is solid or has a high value of 3000 Pa · S or more at room temperature. Since it is a viscous liquid, it is necessary to use a large amount of a diluent having a low refractive index, so that the refractive index of the resulting cured product eventually becomes low. In addition, the cured product of the acrylate resin having a fluorene skeleton is inferior in heat resistance and high moisture resistance, and inferior in the long-term reliability of the optical material.
 また、高屈折率の光学材料としてはビナフトール骨格を有するポリエステル樹脂が知られている(下記特許文献5参照)。
 然しながら、かかるビナフトール骨格を有するポリエステル樹脂は、重量平均分子量(Mw)が10,000~100,000と高く、常温で固形の熱可塑性樹脂であるため、活性エネルギー線または熱硬化樹脂の用途に適用できるものでなく、更に、耐溶剤性、耐熱性、高耐湿性に劣る他、光学材料の長期信頼性も低いものであった。
A polyester resin having a binaphthol skeleton is known as an optical material having a high refractive index (see Patent Document 5 below).
However, since the polyester resin having such a binaphthol skeleton has a high weight average molecular weight (Mw) of 10,000 to 100,000 and is a solid thermoplastic resin at room temperature, it can be used for active energy rays or thermosetting resins. In addition, it was inferior in solvent resistance, heat resistance and high moisture resistance, and the long-term reliability of the optical material was low.
特許第3130555号Japanese Patent No. 3130555 特開2007-84815号公報JP 2007-84815 A 国際公開番号WO2005/033061International Publication Number WO2005 / 033061 特開平03-106918号公報Japanese Patent Laid-Open No. 03-106918 特開2002-332345号公報JP 2002-332345 A
 従って、本発明が解決しようとする課題は、有機系光学材料として硬化物における屈折率が高く、かつ、硬化物の耐熱性及び耐湿性にも優れる(メタ)アクリレート樹脂、硬化性樹脂組成物、及びかかる性能を兼備した硬化物を提供することにある。 Therefore, the problem to be solved by the present invention is a (meth) acrylate resin, a curable resin composition, which has a high refractive index in a cured product as an organic optical material, and is excellent in heat resistance and moisture resistance of the cured product, And it is providing the hardened | cured material which has such performance.
 本発明者らは、上記課題を解決するため、鋭意検討した結果、ビナフタレン骨格を分子構造中に有すると共に、該ビナフタレン骨格の芳香核上の置換基として(メタ)アクリロイルオキシ基を末端に有するアルキレンオキシ基を導入した化合物が、それ自体低粘度であると共に硬化物の屈折率が高く、更に優れた耐熱性・耐湿性を兼備できることを見出し、本発明を完成するに至った。 As a result of diligent studies to solve the above problems, the present inventors have a binaphthalene skeleton in the molecular structure and an alkylene having a (meth) acryloyloxy group at the end as a substituent on the aromatic nucleus of the binaphthalene skeleton. It has been found that a compound having an oxy group introduced itself has a low viscosity and a high refractive index of a cured product, and can further have excellent heat resistance and moisture resistance, and the present invention has been completed.
 即ち、本発明は、ビナフタレン骨格を分子構造中に有すると共に、該ビナフタレン骨格の芳香核上の置換基として下記構造式(A) That is, the present invention has a binaphthalene skeleton in the molecular structure, and the following structural formula (A) as a substituent on the aromatic nucleus of the binaphthalene skeleton.
Figure JPOXMLDOC01-appb-C000003

(式中、Rは炭素原子数2~5の直鎖状又は分岐状アルキレン基、Rは水素原子又はメチル基であり、lは繰り返し単位で1~10の整数である。)
で表される置換基を有することを特徴とする(メタ)アクリレート樹脂に関する。
 本発明は、更に、ビナフトール類とアルキレンカーボネートを反応させて、次いで、得られた反応生成物に(メタ)アクリレート化剤を反応させることを特徴とする(メタ)アクリレート樹脂の製造方法に関する。
 本発明は、更に、前記(メタ)アクリレート樹脂(A)とラジカル重合開始剤(B)とを必須成分とすることを特徴とする硬化性樹脂組成物に関する。
 本発明は、更に、前記硬化性樹脂組成物を活性エネルギー線照射又は加熱により硬化させてなる硬化物に関する。
 本発明は、更に、前記硬化性樹脂組成物を成形、硬化させてなるプラスチックレンズに関する。
Figure JPOXMLDOC01-appb-C000003

(Wherein R 1 is a linear or branched alkylene group having 2 to 5 carbon atoms, R 2 is a hydrogen atom or a methyl group, and l is an integer of 1 to 10 as a repeating unit.)
It has a substituent represented by (meth) acrylate resin characterized by the above-mentioned.
The present invention further relates to a method for producing a (meth) acrylate resin, characterized in that a binaphthol is reacted with an alkylene carbonate, and then a (meth) acrylate agent is reacted with the obtained reaction product.
The present invention further relates to a curable resin composition comprising the (meth) acrylate resin (A) and the radical polymerization initiator (B) as essential components.
The present invention further relates to a cured product obtained by curing the curable resin composition by irradiation with active energy rays or heating.
The present invention further relates to a plastic lens obtained by molding and curing the curable resin composition.
 本発明によれば、有機系光学材料として硬化物における屈折率が高く、かつ、硬化物の耐熱性及び耐湿性にも優れる(メタ)アクリレート樹脂、硬化性樹脂組成物、及びかかる性能を兼備した硬化物を提供できる。 According to the present invention, a (meth) acrylate resin, a curable resin composition, which has a high refractive index in a cured product as an organic optical material, and is excellent in heat resistance and moisture resistance of the cured product, and such performance are combined. A cured product can be provided.
 従って、本発明の(メタ)アクリレート樹脂は、光学用オーバーコート剤、ハードコート剤、反射防止膜、眼鏡レンズ、光ファイバー、光導波路、ホログラム、プリズムレンズ等の光学部品に広く適用することができる。 Therefore, the (meth) acrylate resin of the present invention can be widely applied to optical parts such as optical overcoat agents, hard coat agents, antireflection films, spectacle lenses, optical fibers, optical waveguides, holograms, and prism lenses.
図1は実施例1で得られた水酸基含有化合物(a)の13C-NMRスペクトルである。FIG. 1 is a 13 C-NMR spectrum of the hydroxyl group-containing compound (a) obtained in Example 1. 図2は実施例1で得られた(メタ)アクリレート樹脂(A)の13C-NMRスペクトルである。FIG. 2 is a 13 C-NMR spectrum of the (meth) acrylate resin (A) obtained in Example 1.
 本発明の(メタ)アクリレート樹脂は、アクリロイルオキシ基又はメタクロイルオキシ基を有する樹脂を意味するものであり、具体的には、ビナフタレン骨格を分子構造中に有すると共に、該ビナフタレン骨格の芳香核上の置換基として、下記構造式(A) The (meth) acrylate resin of the present invention means a resin having an acryloyloxy group or a methacryloyloxy group. Specifically, the (meth) acrylate resin has a binaphthalene skeleton in the molecular structure and has an aromatic nucleus on the binaphthalene skeleton. As a substituent of the following structural formula (A)
Figure JPOXMLDOC01-appb-C000004

(式中、Rは炭素原子数2~5の直鎖状又は分岐状アルキレン基、Rは水素原子又はメチル基であり、lは繰り返し単位で1~10の整数である。)
で表される置換基を有することを特徴とするものである。前記(メタ)アクリレート樹脂は、ビナフタレン骨格を有することから、耐熱性及び耐湿性が良好なものとなると共に、有機材料としては極めて高い1.60以上の屈折率を有する材料となる。また、該ビナフタレン骨格上の置換基として末端にアクリロイルオキシ基又はメタクロイルオキシ基を有するアルキルオキシ基又はポリオキシアルキレン基を有することから反応性官能基である(メタ)アクリロイルオキシ基の自由度が高くなり、反応性に優れ硬化物の耐熱性・耐湿性が高くなる。
Figure JPOXMLDOC01-appb-C000004

(Wherein R 1 is a linear or branched alkylene group having 2 to 5 carbon atoms, R 2 is a hydrogen atom or a methyl group, and l is an integer of 1 to 10 as a repeating unit.)
It has the substituent represented by these. Since the (meth) acrylate resin has a binaphthalene skeleton, it has excellent heat resistance and moisture resistance, and is an organic material having a very high refractive index of 1.60 or more. Moreover, since it has an alkyloxy group or polyoxyalkylene group having an acryloyloxy group or a methacryloyloxy group as a substituent on the binaphthalene skeleton, the degree of freedom of the (meth) acryloyloxy group which is a reactive functional group is Higher reactivity and better heat resistance and moisture resistance of the cured product.
 ここでビナフタレン骨格は、1,1-ビナフタレン骨格、1,2-ビナフタレン骨格、2,2-ビナフタレン骨格等が挙げられるが、低粘度、高屈折率といった観点から1,1-ビナフタレン骨格であることが好ましい。 Examples of the binaphthalene skeleton include a 1,1-binaphthalene skeleton, a 1,2-binaphthalene skeleton, a 2,2-binaphthalene skeleton, and the like. Is preferred.
 また、該ビナフタレン骨格の芳香核上の置換基である、下記構造式(A) Further, the following structural formula (A), which is a substituent on the aromatic nucleus of the binaphthalene skeleton
Figure JPOXMLDOC01-appb-C000005

(式中、Rは炭素原子数2~5の直鎖状又は分岐状アルキレン基、Rは水素原子又はメチル基であり、lは繰り返し単位で1~10の整数である。)
で表される置換基は、本発明の(メタ)アクリレート樹脂を活性エネルギー線の照射、或いは加熱により硬化させる際の反応性基として機能する構造部位である。該構造部位は、モノアルキルオキシ基又はポリオキシアルキレン基を介して(メタ)アクリロイルオキシ基がビナフタレン構造に結合していることから、反応性官能基である(メタ)アクリロイルオキシ基の自由度が高くなり、反応性が優れると共に、硬化物の耐熱性・耐湿性が高くなる。
Figure JPOXMLDOC01-appb-C000005

(Wherein R 1 is a linear or branched alkylene group having 2 to 5 carbon atoms, R 2 is a hydrogen atom or a methyl group, and l is an integer of 1 to 10 as a repeating unit.)
The substituent represented by is a structural site that functions as a reactive group when the (meth) acrylate resin of the present invention is cured by irradiation with active energy rays or heating. Since the (meth) acryloyloxy group is bonded to the binaphthalene structure via a monoalkyloxy group or a polyoxyalkylene group, the structural site has a degree of freedom of the (meth) acryloyloxy group that is a reactive functional group. It becomes high and the reactivity is excellent, and the heat resistance and moisture resistance of the cured product become high.
 ここで、前記構造式(A)中のRは、具体的には、エチレン、n-プロピレン、イソプロピレン、ブチレン、4-メチル-n-ブチレン、n-ペンテン等が挙げられる。これらの中でも特に該(メタ)アクリレート樹脂自体の屈折率が高くなる点からエチレン、n-プロピレン、イソプロピレンからなる群から選択されるアルキレン基であることが好ましい。 Here, specific examples of R 1 in the structural formula (A) include ethylene, n-propylene, isopropylene, butylene, 4-methyl-n-butylene, and n-pentene. Among these, an alkylene group selected from the group consisting of ethylene, n-propylene and isopropylene is particularly preferred from the viewpoint that the refractive index of the (meth) acrylate resin itself is high.
 前記構造式(A)で表される置換基は、(メタ)アクリレート樹脂中の該樹脂を構成するビナフタレン骨格1モルあたり平均で1.5~4.0となる割合で含有されることが耐熱性、耐湿性の点から好ましく、特に(メタ)アクリレート樹脂自体の屈折率が高くなる点から1.5~1.98となる割合で含有されることが好ましい。 The substituent represented by the structural formula (A) is contained in a ratio of 1.5 to 4.0 on average per mole of the binaphthalene skeleton constituting the resin in the (meth) acrylate resin. From the viewpoint of improving the refractive index of the (meth) acrylate resin itself, it is preferably contained in a ratio of 1.5 to 1.98.
 前記構造式(A)におけるlの値は1~10の整数であるが、10を超える場合には、(メタ)アクリレート樹脂自体の屈折率が低くなり、本発明の目的とする硬化物における屈折率が十分なレベルに達しなくなる。本発明では、(メタ)アクリレート樹脂自体の屈折率が高くなる点から、lの値の平均が1.0~3.0の範囲であること、特に1.0~1.5の範囲であることが好ましく、とりわけ実質的に1であることが好ましい。 The value of l in the structural formula (A) is an integer of 1 to 10, but when it exceeds 10, the refractive index of the (meth) acrylate resin itself is lowered, and the refractive index in the cured product intended by the present invention is reduced. The rate will not reach a sufficient level. In the present invention, since the refractive index of the (meth) acrylate resin itself is high, the average value of l is in the range of 1.0 to 3.0, particularly in the range of 1.0 to 1.5. It is particularly preferable that the number is substantially 1.
 かかる(メタ)アクリレート樹脂は、1,1-ビナフトールを出発原料として用い、該1,1-ビナフトール中のフェノール性水酸基をアルキレンオキサイド化し、次いで、該アルキレンオキサイド化の結果生成する水酸基を、(メタ)アクリロイルオキシ化して得られる分子構造を有するものであることが、耐熱性・耐湿性に優れ、かつ、屈折率の高い硬化物が得られる点から好ましい。このような1,1-ビナフトールを出発原料とする(メタ)アクリレート樹脂としては、例えば、下記一般式(1) Such a (meth) acrylate resin uses 1,1-binaphthol as a starting material, converts a phenolic hydroxyl group in the 1,1-binaphthol to alkylene oxide, and then converts the hydroxyl group generated as a result of the alkylene oxide to (meta) It is preferable that it has a molecular structure obtained by acryloyloxylation from the viewpoint of obtaining a cured product having excellent heat resistance and moisture resistance and a high refractive index. Examples of such (meth) acrylate resins starting from 1,1-binaphthol include, for example, the following general formula (1)
Figure JPOXMLDOC01-appb-C000006

(式中、X~X12は、各々独立的に水素原子、ハロゲン原子、炭素原子数1~10の炭化水素基、又は炭素原子数1~10のアルコキシ基、A、Aは炭素原子数2~5の直鎖状又は分岐状アルキレン基、Y、Yは水酸基、アクリロイルオキシ基、又はメタクロイルオキシ基であり、n及びmは繰り返し単位であって、それぞれ1~10の整数である。但し、Y及びYの少なくとも一方はアクリロイルオキシ基又はメタクロイルオキシ基である。)
で表される分子構造を有するものが挙げられる。
Figure JPOXMLDOC01-appb-C000006

(Wherein X 1 to X 12 are each independently a hydrogen atom, a halogen atom, a hydrocarbon group having 1 to 10 carbon atoms, or an alkoxy group having 1 to 10 carbon atoms, and A 1 and A 2 are carbon atoms. A linear or branched alkylene group having 2 to 5 atoms, Y 1 and Y 2 are a hydroxyl group, an acryloyloxy group, or a methacryloyloxy group, n and m are repeating units, each having 1 to 10 (However, at least one of Y 1 and Y 2 is an acryloyloxy group or a methacryloyloxy group.)
The thing which has the molecular structure represented by these is mentioned.
 ここで、一般式(1)中、A及びAで表される構造部位は、前記構造式(A)中のRに対応するものであり、具体的には、エチレン、n-プロピレン、イソプロピレン、ブチレン、4-メチル-n-ブチレン、n-ペンテン等が挙げられる。これらの中でも特に該(メタ)アクリレート樹脂自体の屈折率が高くなる点からエチレン、n-プロピレン、イソプロピレンからなる群から選択されるアルキレン基であることが好ましい。 Here, in the general formula (1), the structural sites represented by A 1 and A 2 correspond to R 1 in the structural formula (A), specifically, ethylene, n-propylene. Isopropylene, butylene, 4-methyl-n-butylene, n-pentene and the like. Among these, an alkylene group selected from the group consisting of ethylene, n-propylene and isopropylene is particularly preferred from the viewpoint that the refractive index of the (meth) acrylate resin itself is high.
 また、一般式(1)中、m又はnは、前記構造式(A)中のlに対応する繰り返し単位を表す。更に、一般式(1)中のX~X12を構成するハロゲン原子としは、塩素原子、臭素原子が挙げられ、炭素原子数1~10の炭化水素基としては、メチル基、エチル基、プロピル基、t-ブチル基、シクロヘキシル基、オクチル基、直鎖状又は分岐状のでデシル基等のアルキル基の他、前記ビナフタレン骨格に対してベンジル化剤を反応させることによって形成されるアラルキル基であってもよい。また、炭素原子数1~10のアルコキシ基としては、メトキシ基、エトキシ基、ブトキシ基、オクチルオキシ基、デシルオキシ基等が挙げられる。ここで、X~X12を構成するハロゲン原子を用いた場合には、該アクレート樹脂自体の屈折率が高くなるが、非ハロゲン化が要求される用途への適用は困難なものとなる。一方、炭素原子数1~10の炭化水素基又は炭素原子数1~10のアルコキシ基を用いた場合には、アクレート樹脂の粘度をより低減させることができる。 In the general formula (1), m or n represents a repeating unit corresponding to l in the structural formula (A). Furthermore, examples of the halogen atom constituting X 1 to X 12 in the general formula (1) include a chlorine atom and a bromine atom. Examples of the hydrocarbon group having 1 to 10 carbon atoms include a methyl group, an ethyl group, A propyl group, t-butyl group, cyclohexyl group, octyl group, linear or branched alkyl group such as decyl group, and an aralkyl group formed by reacting the binaphthalene skeleton with a benzylating agent. There may be. Examples of the alkoxy group having 1 to 10 carbon atoms include methoxy group, ethoxy group, butoxy group, octyloxy group, decyloxy group and the like. Here, when halogen atoms constituting X 1 to X 12 are used, the refractive index of the acrylate resin itself is increased, but it is difficult to apply to applications requiring non-halogenation. On the other hand, when a hydrocarbon group having 1 to 10 carbon atoms or an alkoxy group having 1 to 10 carbon atoms is used, the viscosity of the acrylate resin can be further reduced.
 このような上記一般式(1)で表される(メタ)アクリレート樹脂の中でも、本発明の効果である高耐熱性・高耐湿性、及び高屈折率という点から好ましいものとして下記の分子構造を有するものが挙げられる。 Among such (meth) acrylate resins represented by the above general formula (1), the following molecular structure is preferable from the viewpoint of high heat resistance, high moisture resistance, and high refractive index, which are the effects of the present invention. The thing which has.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009

Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010

 ここで、上記式(1)~(21)で表される構造式において、一般式(1)と同様に、Y、Yは水酸基、アクリロイルオキシ基、又はメタクロイルオキシ基を表し、n及びmは繰り返し単位で1~10の整数である。但し、Y及びYの少なくとも一方はアクリロイルオキシ基又はメタクロイルオキシ基である。 Here, in the structural formulas represented by the above formulas (1) to (21), as in the general formula (1), Y 1 and Y 2 represent a hydroxyl group, an acryloyloxy group, or a methacryloyloxy group, and n And m is an integer of 1 to 10 as a repeating unit. However, at least one of Y 1 and Y 2 is an acryloyloxy group or a methacryloyloxy group.
 上記一般式(1)で表されるアクレート樹脂において、式中、X~X12としてハロゲン原子を有するものは、前記した通り、該アクレート樹脂自体の屈折率を一層高めることができるものの、非ハロゲン化が要求される用途への適用は困難なものとなる。他方、X~X12として直鎖状のアルキル基又はアルコキシ基の様にその構造自体の自由度が高いものアクレート樹脂の粘度低減には効果的ではあるものの、屈折率は、一般式(1)においてX~X12の全てが水素原子であるものに比べ、比較的低いものとなる。そのため、屈折率と粘度の両特性の両立、合成上の難易度およびコストの面から、上記一般式(1)中の、X~X12は、各々独立的に水素原子又は炭素原子数1~3のアルキル基であることが好ましく、特にその全てが水素原子であることが好ましい。よって、上記一般式(1)で表されるアクレート樹脂は、A、Aが、エチレン、n-プロピレン、イソプロピレンからなる群から選択されるアルキレン基であり、X~X12が全て水素原子である(メタ)アクリレート樹脂であることが好ましい。 In the acrylate resin represented by the general formula (1), those having a halogen atom as X 1 to X 12 in the formula can further increase the refractive index of the acrylate resin itself as described above. Application to applications requiring halogenation becomes difficult. On the other hand, those having a high degree of freedom in the structure itself such as linear alkyl groups or alkoxy groups as X 1 to X 12 are effective in reducing the viscosity of the acrylate resin, but the refractive index is represented by the general formula (1 ), All of X 1 to X 12 are relatively lower than those in which all are hydrogen atoms. Therefore, X 1 to X 12 in the above general formula (1) are each independently a hydrogen atom or a carbon atom number of 1 from the viewpoint of compatibility of both properties of refractive index and viscosity, difficulty in synthesis, and cost. It is preferably an alkyl group of 1 to 3, particularly preferably all of which are hydrogen atoms. Therefore, in the acrylate resin represented by the general formula (1), A 1 and A 2 are alkylene groups selected from the group consisting of ethylene, n-propylene, and isopropylene, and X 1 to X 12 are all A (meth) acrylate resin that is a hydrogen atom is preferred.
 更に、上記一般式(1)中のY及びYは、前記した通り、水酸基、アクリロイルオキシ基、及びメタクロイルオキシ基から選択される官能基を表し、Y及びYの一方、或いは双方がアクリロイルオキシ基又はメタクロイルオキシ基であるが、本発明では、アクリロイルオキシ基及びメタクロイルオキシ基の中でも、特に、(メタ)アクリレート樹脂自体の屈折率が高くなる点からアクリロイルオキシ基が好ましい。 Furthermore, Y 1 and Y 2 in the general formula (1) represent a functional group selected from a hydroxyl group, an acryloyloxy group, and a methacryloyloxy group as described above, and one of Y 1 and Y 2 , or Both are acryloyloxy groups or methacryloyloxy groups. In the present invention, among acryloyloxy groups and methacryloyloxy groups, acryloyloxy groups are particularly preferred because the refractive index of the (meth) acrylate resin itself is high. .
 また、前記一般式(1)で表される(メタ)アクリレート樹脂は、該一般式(1)を満たす種々の化合物の混合物として用いることができる。この際、(メタ)アクリレート樹脂に占める上記一般式(1)中のY及びYを構成する水酸基(以下、これを「水酸基(y1)」と略記する。)と、アクリロイルオキシ基又はメタクロイルオキシ基(以下、これを「(メタ)アクリロイル基(y2)」と略記する。)との割合は任意に調整することができる。本発明では、水酸基(y1)と、(メタ)アクリロイル基(y2)との割合がモル比率(y1/y2)で75/25~1/99の範囲であることが好ましい。即ち、(メタ)アクリロイル基(y2)の量が、モル比(y1/y2)で75/25より多い場合には、活性エネルギー線又は加熱による硬化性が良好なものとなる他、常温液状の(メタ)アクリレート樹脂となり粘度も十分に低いものとなる。一方、(メタ)アクリロイル基(y2)の量が、モル比(y1/y2)で1/99より低い場合には、(メタ)アクリレート樹脂自体の結晶性を適度に抑えることができ、やはり常温での粘度を低減できる。 Moreover, the (meth) acrylate resin represented by the general formula (1) can be used as a mixture of various compounds satisfying the general formula (1). At this time, the hydroxyl group constituting Y 1 and Y 2 in the general formula (1) in the (meth) acrylate resin (hereinafter abbreviated as “hydroxyl group (y1)”), acryloyloxy group or The ratio of yloxy group (hereinafter abbreviated as “(meth) acryloyl group (y2)”) can be arbitrarily adjusted. In the present invention, the ratio of the hydroxyl group (y1) to the (meth) acryloyl group (y2) is preferably in the range of 75/25 to 1/99 in terms of molar ratio (y1 / y2). That is, when the amount of (meth) acryloyl group (y2) is more than 75/25 in terms of molar ratio (y1 / y2), the curability by active energy rays or heating is improved, and the liquid temperature is normal. It becomes a (meth) acrylate resin and has a sufficiently low viscosity. On the other hand, when the amount of the (meth) acryloyl group (y2) is lower than 1/99 in the molar ratio (y1 / y2), the crystallinity of the (meth) acrylate resin itself can be moderately suppressed. The viscosity at can be reduced.
 前記した通り、前記一般式(1)中のA及びAで表される構造部位は、エチレン、n-プロピレン、イソプロピレン、ブチレン、4-メチル-n-ブチレン、n-ペンテン等の炭素原子数2~5の直鎖状又は分岐状アルキレン基であるが、本発明ではこれらの存在比率を任意に調節することが可能であり、例えば、(メタ)アクリレート樹脂に占めるエチレン(以下、これを「エチレン基(a1)」と略記する)の割合が高い方が(メタ)アクリレート樹脂自体の屈折率が高くなる。他方、その他の構造、即ち炭素原子数3~5のアルキレン基(以下、これを「炭素原子数3~5のアルキレン基(a2)」と略記する。)が適量存在することによって、(メタ)アクリレート樹脂の結晶化を抑制でき、粘度低減を図ることができる。従って、本発明では、前記エチレン基(a1)と前記炭素原子数3~5のアルキレン基(a2)とのモル比率(a1/a2)が50/50~98/2の範囲であることが、該(メタ)アクリレート樹脂が常温液状で粘度も低くなる点、更に該(メタ)アクリレート樹脂自体の屈折率が高くなる点から好ましい。
 更に、前記した通り、前記炭素原子数3~5のアルキレン基(a2)としてn-プロピレン又はイソプロピレン(以下、これらを「C3アルキル」と略記する。)が好ましいことから、前記エチレン基(a1)とC3アルキルとのモル比率(エチレン基(a1)/C3アルキル)が、50/50~98/2の範囲であることが好ましい。
As described above, the structural parts represented by A 1 and A 2 in the general formula (1) are carbon such as ethylene, n-propylene, isopropylene, butylene, 4-methyl-n-butylene, n-pentene and the like. Although it is a linear or branched alkylene group having 2 to 5 atoms, it is possible to arbitrarily adjust the abundance ratio thereof in the present invention. For example, ethylene (hereinafter referred to as this) in the (meth) acrylate resin can be adjusted. Is abbreviated as “ethylene group (a1)”), the refractive index of the (meth) acrylate resin itself increases. On the other hand, the presence of an appropriate amount of another structure, that is, an alkylene group having 3 to 5 carbon atoms (hereinafter abbreviated as “alkylene group having 3 to 5 carbon atoms (a2)”) allows (meth) Crystallization of the acrylate resin can be suppressed, and the viscosity can be reduced. Therefore, in the present invention, the molar ratio (a1 / a2) between the ethylene group (a1) and the alkylene group (a2) having 3 to 5 carbon atoms is in the range of 50/50 to 98/2. The (meth) acrylate resin is preferable because it is liquid at room temperature and has a low viscosity, and the refractive index of the (meth) acrylate resin itself is high.
Further, as described above, since the alkylene group (a2) having 3 to 5 carbon atoms is preferably n-propylene or isopropylene (hereinafter abbreviated as “C3 alkyl”), the ethylene group (a1 ) And C3 alkyl (ethylene group (a1) / C3 alkyl) is preferably in the range of 50/50 to 98/2.
 また、上記一般式(1)中のm、nは繰り返し単位を表す1~10の整数であるが、(メタ)アクリレート樹脂自体の屈折率が高くなる点から、m、nは、それぞれその平均1.0~3.0の範囲であること、特に1.0~1.5の範囲であることが好ましく、とりわけ実質的に1であることが好ましい。 In the above general formula (1), m and n are integers of 1 to 10 representing repeating units. From the viewpoint of increasing the refractive index of the (meth) acrylate resin itself, m and n are respectively averages thereof. It is preferably in the range of 1.0 to 3.0, particularly preferably in the range of 1.0 to 1.5, and particularly preferably substantially 1.
 以上詳述した(メタ)アクリレート樹脂は、25℃での粘度が3000Pa・s以下であることが、流動性が良好で各種用途への応用範囲が広がる他、粘度調整に使用する低屈折率物質である希釈剤の使用量を低減できることから好ましい。特にこの効果が顕著なものとなる点から1000~100Pa・sの範囲であることが好ましい。 The (meth) acrylate resin described in detail above has a viscosity of not more than 3000 Pa · s at 25 ° C., and it has good fluidity and wide application range for various applications. It is preferable because the amount of diluent used can be reduced. In particular, the range of 1000 to 100 Pa · s is preferable from the standpoint that this effect is remarkable.
 (メタ)アクリレート樹脂は、上記した通り、それ自体高い屈折率を有するものであり、具体的には、1.55以上の屈折率、分子構造の選択によっては1.60以上の屈折率を有する材料となる。 As described above, the (meth) acrylate resin itself has a high refractive index. Specifically, the (meth) acrylate resin has a refractive index of 1.55 or more, and a refractive index of 1.60 or more depending on the selection of the molecular structure. Become a material.
 以上詳述した(メタ)アクリレート樹脂を製造する方法は、ビナフトール類と、アルキレンオキサイド、ハロゲノアルカノール、又はアルキレンカーボネートとを反応させて水酸基を有する化合物を得、次いで、得られた水酸基を有する反応生成物に(メタ)アクリレート化剤を反応させることにより目的とする(メタ)アクリレート樹脂を得ることができる。 The method for producing the (meth) acrylate resin described in detail above is to obtain a compound having a hydroxyl group by reacting binaphthols with an alkylene oxide, a halogenoalkanol, or an alkylene carbonate, and then the resulting reaction product having a hydroxyl group. A desired (meth) acrylate resin can be obtained by reacting a product with a (meth) acrylate agent.
 ここで、使用し得るビナフトール類としては、前記一般式(1)に対応するビナフタレン構造を有するものが挙げられ、具体的には、下記構造式(2) Here, examples of the binaphthols that can be used include those having a binaphthalene structure corresponding to the general formula (1), specifically, the following structural formula (2)
Figure JPOXMLDOC01-appb-C000011


(式中、X~X12は、各々独立的に水素原子、ハロゲン原子、炭素原子数1~10の炭化水素基、又は炭素原子数1~10のアルコキシ基を表す。)
で表されるものが挙げられる。
Figure JPOXMLDOC01-appb-C000011


(Wherein X 1 to X 12 each independently represents a hydrogen atom, a halogen atom, a hydrocarbon group having 1 to 10 carbon atoms, or an alkoxy group having 1 to 10 carbon atoms)
The thing represented by is mentioned.
 これらの中でも特に、屈折率と粘度の両特性の両立、合成上の難易度およびコストの面から、上記一般式(1)中の、X~X12は、各々独立的に水素原子又は炭素原子数1~3のアルキル基であることが好ましく、特にその全てが水素原子であることが好ましい。よって、上記一般式(1)で表されるアクレート樹脂は、A、Aが、エチレン、n-プロピレン、イソプロピレンからなる群から選択されるアルキレン基であり、X~X12が全て水素原子である(メタ)アクリレート樹脂であることが好ましい。 Among these, X 1 to X 12 in the above general formula (1) are each independently a hydrogen atom or carbon from the viewpoints of compatibility of both properties of refractive index and viscosity, difficulty in synthesis, and cost. An alkyl group having 1 to 3 atoms is preferable, and all of them are particularly preferably hydrogen atoms. Therefore, in the acrylate resin represented by the general formula (1), A 1 and A 2 are alkylene groups selected from the group consisting of ethylene, n-propylene, and isopropylene, and X 1 to X 12 are all A (meth) acrylate resin that is a hydrogen atom is preferred.
 上記ビナフトール類と、アルキレンオキサイド、ハロゲノアルカノール、又はアルキレンカーボネートとを反応させる工程において、例えば、ビナフトール類とアルキレンオキサイドとを反応させる方法としては、アルカリ触媒の存在下、100~200℃の温度条件で、エチレンオキサイド、プロピレンオキサイド、ブチレンオキサイド等のアルキレンオキサイドを重付加反応させる方法が挙げられる。 In the step of reacting the above binaphthols with alkylene oxide, halogenoalkanol, or alkylene carbonate, for example, as a method of reacting binaphthols with alkylene oxide, a temperature condition of 100 to 200 ° C. in the presence of an alkali catalyst is used. And a method of subjecting an alkylene oxide such as ethylene oxide, propylene oxide, and butylene oxide to a polyaddition reaction.
 次に、ビナフトール類とハロゲノアルカノールとを反応させる方法としては、ビナフトール類に2-クロロエタノール、3-クロロ-2-プロパノール、2-(2-クロロエトキシ)エタノールなどのハロゲノアルカノールをアルカリ触媒の存在下、100~200℃の温度条件で反応させる方法が挙げられる。 Next, as a method of reacting binaphthols with halogenoalkanols, halogenoalkanols such as 2-chloroethanol, 3-chloro-2-propanol and 2- (2-chloroethoxy) ethanol are added to the binaphthols in the presence of an alkali catalyst. A method of reacting under a temperature condition of 100 to 200 ° C. is mentioned below.
 次に、ビナフトール類とアルキレンカーボネートとを反応させる方法は、具体的にはビナフトール類とアルキレンカーボネートとをアルカリ触媒又は酸触媒の存在下、80~200℃の温度条件で反応させる方法が挙げられる。 Next, the method of reacting the binaphthols with the alkylene carbonate specifically includes the method of reacting the binaphthols with the alkylene carbonate in the presence of an alkali catalyst or an acid catalyst at a temperature of 80 to 200 ° C.
 上記した各方法において、ビナフトール類とアルキレンオキサイドとを反応させる方法は、前記した構造式(A)における、繰り返し単位lの調節が困難であり、また、ビナフトール類とハロゲノアルカノールとを反応させる方法は、塩酸などの酸性物質が副生するため反応釜の腐食を招く、といった問題がある。これに対して、ビナフトール類とアルキレンカーボネートとを反応させる方法は、前記繰り返し単位lの調節が容易であり、また、腐食性の物質の生成を招くこともなく、工業的規模での生産に有利であり、好ましい。以下、このビナフトール類とアルキレンオキサイドとを反応させる方法について詳述する。 In each of the above methods, the method of reacting binaphthols with alkylene oxide is difficult to adjust the repeating unit 1 in the above structural formula (A), and the method of reacting binaphthols with halogenoalkanol is as follows: In addition, there is a problem that the reaction kettle is corroded because acid substances such as hydrochloric acid are by-produced. On the other hand, the method of reacting binaphthols with alkylene carbonate is easy to adjust the repeating unit 1 and is advantageous for production on an industrial scale without causing the formation of corrosive substances. It is preferable. Hereinafter, a method of reacting the binaphthols with alkylene oxide will be described in detail.
 ビナフトール類とアルキレンカーボネートとを反応させる方法において用いられるアルキレンカーボネートは、炭素原子数2~5のアルキレン基を持つものであればよく、例えば、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ペンチレンカーボネートなどが挙げられるが、前記したとおり、一般式(1)のA及びAとして、エチレン、n-プロピレン、イソプロピレンであることが(メタ)アクリレート樹脂の屈折率が高く、かつ、樹脂粘度が低くなる点から好ましく、よって、該アルキレンカーボネートとしてはエチレンカーボネート、プロピレンカーボネートが好ましい。ここで、(メタ)アクリレート樹脂中のC2アルキルとC3アルキルとのモル比率(C2アルキル/C3アルキル)を50/50~98/2の範囲に調節するには、エチレンカーボネートとプロピレンカーボネートとの比率(モル比)を前者/後者が50/50~98/2となる割合で用いることが好ましい。 The alkylene carbonate used in the method of reacting binaphthols with alkylene carbonate may be any alkylene group having 2 to 5 carbon atoms, such as ethylene carbonate, propylene carbonate, butylene carbonate, and pentylene carbonate. As described above, as A 1 and A 2 in the general formula (1), ethylene, n-propylene, and isopropylene have a high (meth) acrylate resin refractive index and a low resin viscosity. Therefore, ethylene carbonate and propylene carbonate are preferable as the alkylene carbonate. Here, in order to adjust the molar ratio of C2 alkyl to C3 alkyl (C2 alkyl / C3 alkyl) in the (meth) acrylate resin in the range of 50/50 to 98/2, the ratio of ethylene carbonate to propylene carbonate It is preferable to use the (molar ratio) in such a ratio that the former / the latter is 50/50 to 98/2.
 ビナフトール類とアルキレンカーボネートの反応割合は、特に制限されるものではなく、ビナフトール類の水酸基に対するアルキレンカーボネートの当量比を高める程、前記構造式(A)におけるlの値、即ち、好ましい実施態様である一般式(1)におけるm、nの値が大きくなる。前記した通り、前記構造式(A)におけるlの値、上記一般式(1)中のm、nの値は1~10の整数であり、この範囲に調整するためには、ビナフトール類の水酸基1当量に対してアルキレンカーボネート1~10当量の範囲であることが好ましい。 The reaction ratio between the binaphthols and the alkylene carbonate is not particularly limited, and the higher the equivalent ratio of the alkylene carbonate to the hydroxyl group of the binaphthols, the more preferable is the value of 1 in the structural formula (A). The values of m and n in the general formula (1) are increased. As described above, the value of l in the structural formula (A) and the values of m and n in the general formula (1) are integers of 1 to 10, and in order to adjust to this range, the hydroxyl group of the binaphthols It is preferably in the range of 1 to 10 equivalents of alkylene carbonate with respect to 1 equivalent.
 また、前記構造式(A)におけるlの値、上記一般式(1)中のm、nの値は、(メタ)アクリレート樹脂自体の屈折率が高くなる点から、その平均が1.0~3.0、特に1.0~1.5であること、更に実質的に1であることが好ましいが、かかる範囲に調整する為には、ビナフトール類の水酸基1当量に対してアルキレンカーボネートが1~5当量の範囲、特に1~3当量の範囲であることが好ましい。 In addition, the value of l in the structural formula (A) and the values of m and n in the general formula (1) are 1.0 to 1.0 on average because the refractive index of the (meth) acrylate resin itself is high. It is preferably 3.0, particularly 1.0 to 1.5, and more preferably 1, but in order to adjust to such a range, 1 to 5 equivalents of alkylene carbonate per 1 equivalent of hydroxyl group of binaphthols. It is preferably in the range of ˜5 equivalents, particularly in the range of 1 to 3 equivalents.
 アルキレンカーボネートとしてはエチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ペンチレンカーボネートなどが使用できるが、 As alkylene carbonate, ethylene carbonate, propylene carbonate, butylene carbonate, pentylene carbonate, etc. can be used.
 前記方法3)の反応における触媒は、アルカリ触媒、酸触媒のいずれであってもよいが、反応の進行が速く、不純物が少なくなる点からアルカリ触媒であることが好ましい。アルカリ触媒は、例えば水酸化カリウム、水酸化ナトリウム、水酸化バリウム、酸化マグネシウム、炭酸ナトリウム、炭酸カリウム等が挙げられるが、中でも水酸化カリウム、水酸化ナトリウムが好ましい。酸触媒を使用する場合も特に限定されるものではなく、硫酸、p-トルエンスルホン酸、メタンスルホン酸等が挙げられるが、中でもp-トルエンスルホン酸が好ましい。触媒の使用割合はポリナフトールの水酸基1当量に対して触媒0.001~0.1当量を使用するのが好ましい。 The catalyst in the reaction of the method 3) may be either an alkali catalyst or an acid catalyst, but is preferably an alkali catalyst from the viewpoint that the reaction proceeds rapidly and impurities are reduced. Examples of the alkali catalyst include potassium hydroxide, sodium hydroxide, barium hydroxide, magnesium oxide, sodium carbonate, potassium carbonate and the like, among which potassium hydroxide and sodium hydroxide are preferable. The acid catalyst is not particularly limited, and examples thereof include sulfuric acid, p-toluenesulfonic acid, methanesulfonic acid and the like. Among them, p-toluenesulfonic acid is preferable. The catalyst is preferably used in an amount of 0.001 to 0.1 equivalent of catalyst with respect to 1 equivalent of hydroxyl group of polynaphthol.
 上記反応は無溶剤であっても反応は進行するが、使用する場合は反応を阻害するアルコール系溶剤の他の有機溶剤、例えば、トルエン、キシレンを用いることが好ましい。また、反応温度は前記した通り、80~200℃の範囲であることが好ましく、反応が良好に進行し、不純物が少なくなることから、特に100~180℃の範囲であることがさらに好ましい。 The above reaction proceeds even without solvent, but when used, it is preferable to use other organic solvents such as toluene and xylene other than alcohol solvents that inhibit the reaction. Further, the reaction temperature is preferably in the range of 80 to 200 ° C. as described above, and more preferably in the range of 100 to 180 ° C., since the reaction proceeds well and the impurities are reduced.
 次いで、この様にして得られた水酸基含有化合物は、具体的には、下記一般式(3) Next, the hydroxyl group-containing compound thus obtained is specifically represented by the following general formula (3)
Figure JPOXMLDOC01-appb-C000012
(式中、X~X12は、各々独立的に水素原子、ハロゲン原子、炭素原子数1~10の炭化水素基、又は炭素原子数1~10のアルコキシ基、A、Aは炭素原子数2~5の直鎖状又は分岐状アルキレン基、n及びmは繰り返し単位で1~10の整数である。但し、Y及びYの少なくとも一方はアクリロイルオキシ基又はメタクロイルオキシ基である。)を(メタ)アクリレート化剤と反応させることにより、目的とする(メタ)アクリレート樹脂を得ることができる。
Figure JPOXMLDOC01-appb-C000012
(Wherein X 1 to X 12 are each independently a hydrogen atom, a halogen atom, a hydrocarbon group having 1 to 10 carbon atoms, or an alkoxy group having 1 to 10 carbon atoms, and A 1 and A 2 are carbon atoms. A linear or branched alkylene group having 2 to 5 atoms, n and m are repeating units and are integers of 1 to 10, provided that at least one of Y 1 and Y 2 is an acryloyloxy group or a methacryloyloxy group; The desired (meth) acrylate resin can be obtained by reacting with a (meth) acrylate agent.
 ここで(メタ)アクリレート化剤としては、アクリル酸、メタクリル酸などの(メタ)アクリル酸;アクリル酸クロリド、メタクリル酸クロリドなどの(メタ)アクリル酸ハロゲン;アクリル酸メチル、メタクリル酸メチル、アクリル酸エチル、メタクリル酸エチルなどの(メタ)アクリル酸アルキルが挙げられる。これらのうち、(メタ)アクリル酸ハロゲンは反応時に塩酸などの酸性物質が副生し反応釜腐食の問題を引き起こす他、(メタ)アクリル酸アルキルを用いた場合には、副生するアルコールを除去するための脱アルコール処理を施す必要があることから(メタ)アクリル酸であることが好ましい。 Here, as the (meth) acrylate agent, (meth) acrylic acid such as acrylic acid and methacrylic acid; (meth) acrylic acid halogen such as acrylic acid chloride and methacrylic acid chloride; methyl acrylate, methyl methacrylate, acrylic acid Examples include alkyl (meth) acrylates such as ethyl and ethyl methacrylate. Of these, halogens (meth) acrylates cause by-products such as hydrochloric acid during reaction to cause corrosion problems in the reaction kettle, and when alkyl (meth) acrylates are used, by-product alcohol is removed. (Meth) acrylic acid is preferable because it is necessary to carry out a dealcoholization treatment.
 前記水酸基含有化合物と(メタ)アクリル酸との反応は、例えば、トルエン、ベンゼン、シクロヘキサン、n-ヘキサン、n-ヘプタン等の有機溶剤中で酸触媒下に脱水反応を行うことにより行うことができる。ここで用いる酸触媒としては、例えば、硫酸、p-トルエンスルホン酸、メタンスルホン酸等が挙げられる。また、反応中、重合を防止するために重合禁止剤(例えば、ハイドロキノン、p-メトキシフェノール、メチルハイドロキノン等)を使用することが好ましい。 The reaction between the hydroxyl group-containing compound and (meth) acrylic acid can be carried out, for example, by performing a dehydration reaction in an organic solvent such as toluene, benzene, cyclohexane, n-hexane, n-heptane and the like in the presence of an acid catalyst. . Examples of the acid catalyst used here include sulfuric acid, p-toluenesulfonic acid, methanesulfonic acid and the like. In addition, it is preferable to use a polymerization inhibitor (for example, hydroquinone, p-methoxyphenol, methylhydroquinone, etc.) in order to prevent polymerization during the reaction.
 また、前記水酸基含有化合物と(メタ)アクリル酸との反応割合は、水酸基含有化合物の水酸基1当量に対して(メタ)アクリル酸0.75~0.99当量となる割合であることが好ましい。また、反応温度は60~120℃が好ましく、反応時間は3~20時間であることが好ましい。 The reaction ratio between the hydroxyl group-containing compound and (meth) acrylic acid is preferably such that (meth) acrylic acid is 0.75 to 0.99 equivalents per hydroxyl group equivalent of the hydroxyl group-containing compound. The reaction temperature is preferably 60 to 120 ° C., and the reaction time is preferably 3 to 20 hours.
 本発明の硬化性樹脂組成物は、以上詳述した(メタ)アクリレート樹脂(以下、該(メタ)アクリレート樹脂を「(メタ)アクリレート樹脂(A)」と略記する)と、ラジカル重合開始剤(B)とを必須成分とするものである。 The curable resin composition of the present invention comprises a (meth) acrylate resin described in detail above (hereinafter, the (meth) acrylate resin is abbreviated as “(meth) acrylate resin (A)”), a radical polymerization initiator ( And B) as essential components.
 ここで用いるラジカル重合開始剤(B)は、光重合開始剤、及び熱重合開始剤が挙げられる。光重合開始剤としては、具体的には、ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインブチルエーテル、2-メチルベンゾイン、ベンゾフェノン、ミヒラーズケトン、ベンジルジメチルケタール、2,2-ジエトキシアセトフェノン、ベンゾイル安息香酸、4-ベンゾイル-4’-メチルジフェニルサルファイド、3,3’-ジメチル-4-メトキシベンゾフェノン、1-(4-ドデシルフェニル)-2-ヒドロキシ-2-メチルプロパン-1-オン、1-ヒドロキシシクロヘキシルフェニルケトン、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、2-メチル-1-〔4-(メチルチオフェニル)〕-2-モルホリノ)プロパン-1、2-クロロチオキサントン、2,4-ジエチルチオキサントン、2,4-ジイソプロピルチオキサントン、2,4,6-トリメチルベンゾイルジフェニルホスフィンオキサイド等が挙げられる。 Examples of the radical polymerization initiator (B) used here include a photopolymerization initiator and a thermal polymerization initiator. Specific examples of the photopolymerization initiator include benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin butyl ether, 2-methylbenzoin, benzophenone, Michler's ketone, benzyldimethyl ketal, 2,2-diethoxyacetophenone, benzoylbenzoic acid, 4-benzoyl-4′-methyldiphenyl sulfide, 3,3′-dimethyl-4-methoxybenzophenone, 1- (4-dodecylphenyl) -2-hydroxy-2-methylpropan-1-one, 1-hydroxycyclohexylphenyl Ketone, 2-hydroxy-2-methyl-1-phenylpropan-1-one, 2-methyl-1- [4- (methylthiophenyl)]-2-morpholino) propane-1, 2-chlorothioxanthone, 2,4 -Diethylthioki Cantonal, 2,4-diisopropyl thioxanthone, 2,4,6-trimethylbenzoyl diphenylphosphine oxide, and the like.
 これらの光重合開始剤は、それぞれ単独で用いることができ、また、2種以上の混合物として使用することもできる。その使用量は、(メタ)アクリレート樹脂(A)の100重量部に対して光重合開始剤が0.01~30重量部となる割合であることが好ましく、特に好ましくは0.01~20重量部以下である。配合範囲がこの範囲を下回ると、重合速度が遅くなって硬化不足となる。反対に、この範囲を上回ると、屈折率低下が起こる。 These photopolymerization initiators can be used alone or as a mixture of two or more. The amount used is preferably such that the photopolymerization initiator is 0.01 to 30 parts by weight with respect to 100 parts by weight of the (meth) acrylate resin (A), particularly preferably 0.01 to 20 parts by weight. Or less. When the blending range is less than this range, the polymerization rate becomes slow and the curing becomes insufficient. On the other hand, if this range is exceeded, the refractive index will drop.
 また、これらの光重合開始剤には、アミン類等の光重合促進剤を併用することができる。例えば、2-ジメチルアミノエチルベンゾエート、ジメチルアミノアセトフェノン、p-ジメチルアミノ安息香酸エチル、p-ジメチルアミノ安息香酸イソアミル等が挙げられる。これらの光重合促進剤の使用割合は、光重合開始剤100重量部に対して、0.1~100重量部の範囲であることが、重合速度が速く、かつ、硬化物の屈折率が高くなる点から好ましい。 These photopolymerization initiators can be used in combination with a photopolymerization accelerator such as amines. Examples include 2-dimethylaminoethyl benzoate, dimethylaminoacetophenone, ethyl p-dimethylaminobenzoate, isoamyl p-dimethylaminobenzoate, and the like. The use ratio of these photopolymerization accelerators is in the range of 0.1 to 100 parts by weight with respect to 100 parts by weight of the photopolymerization initiator, the polymerization rate is high, and the refractive index of the cured product is high. This is preferable.
 次に、熱重合開始剤としては、公知の過酸化物系開始剤やアゾビス系開始剤を使用することができる。過酸化物系開始剤としては、具体的には、メチルエチルケトンパーオキサイド、メチルイソブチルケトンパーオキサイド、シクロヘキサノンパーオキサイド、メチルシクロヘキサンケトンパーオキサイド、アセチルアセトンパーオキサイド等のケトンパーオキサイド系開始剤、イソブチルパーオキサイド、m-クロロベンゾイルパーオキサイド、2,4-ジクロロベンゾイルパーオキサイド、α-メチルベンゾイルパーオキサイド、ビス-3,5,5-トリメチルヘキサノイルパーオキサイド等のジアシルパーオキサイド系開始剤、2,4,4-トリメチルペンチル-2-ハイドロパーオキサイド、ジイソプロピルベンゼンハイドロパーオキサイド、クメンハイドロパーオキサイド、t-ブチルハイドロパーオキサイド等のハイドロパーオキサイド系開始剤、ジクミルパーオキサイド、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキサン、1,3-ビス(t-ブチルパーオキシイソプロピル)ベンゼン、t-ブチルクミルパーオキサイド等のジアルキルパーオキサイド系開始剤、1,1-ジ-t-ブチルパーオキシ-3,3,5-トリメチルシクロヘキサン、2,2-ジ-(t-ブチルパーオキシ)ブタン、4,4-ジ-t-ブチルパーオキシ吉草酸-n-ブチルエステル等のパーオキシケタール系開始剤、2,4,4-トリメチルペンチルパーオキシフェノキシアセテート、α-クミルパーオキシネオデカノエート、t-ブチルパーオキシベンゾエート、ジ-t-ブチルパーオキシトリメチルオジペート等のアルキルパーエステル系開始剤、ジ-t-メチキシブチルパーオキシジカーボネート、ジ-2-エチルヘキシルパーオキシジカーボネート、ビス(4-t-ブチルシクロヘキシル)パーオキシジカーボネート、ジイソプロピルパーオキシジカーボネート等のパーカーボネート系開始剤、その他のアセチルシクロヘキシルスルフォニルパーオキシジカーボネート、t-ブチルパーオキシアリルカーボネート等のものが挙げられ、また、アゾビス系開始剤としては、具体的には、1,1’-アゾビスシクロヘキサン-1-カルボニトリル、2,2’-アゾビス-(2,4-ジメチルバレロニトリル)、2,2’-アゾビス-(4-メトキシ-2,4-ジメチルバレロニトリル)、2,2’-アゾビス-(メチルイソブチレート)、α,α’-アゾビス-(イソブチロニトリル)、4,4’-アゾビス-(4-シアノバレイン酸)等が挙げられる。 Next, as the thermal polymerization initiator, known peroxide initiators and azobis initiators can be used. Specifically, as the peroxide initiator, ketone peroxide initiators such as methyl ethyl ketone peroxide, methyl isobutyl ketone peroxide, cyclohexanone peroxide, methyl cyclohexane ketone peroxide, acetylacetone peroxide, isobutyl peroxide, diacyl peroxide initiators such as m-chlorobenzoyl peroxide, 2,4-dichlorobenzoyl peroxide, α-methylbenzoyl peroxide, bis-3,5,5-trimethylhexanoyl peroxide, 2,4,4 Hydroperoxides such as trimethylpentyl-2-hydroperoxide, diisopropylbenzene hydroperoxide, cumene hydroperoxide, t-butyl hydroperoxide Id initiator, dicumyl peroxide, 2,5-dimethyl-2,5-di (t-butylperoxy) hexane, 1,3-bis (t-butylperoxyisopropyl) benzene, t-butylcumylper Dialkyl peroxide initiators such as oxide, 1,1-di-t-butylperoxy-3,3,5-trimethylcyclohexane, 2,2-di- (t-butylperoxy) butane, 4,4- Peroxyketal initiators such as di-t-butylperoxyvaleric acid-n-butylester, 2,4,4-trimethylpentylperoxyphenoxyacetate, α-cumylperoxyneodecanoate, t-butylper Alkyl perester initiators such as oxybenzoate and di-t-butylperoxytrimethylodipate, di-t-methoxybutyl -Peroxydicarbonate, di-2-ethylhexylperoxydicarbonate, percarbonate-based initiators such as bis (4-t-butylcyclohexyl) peroxydicarbonate and diisopropylperoxydicarbonate, and other acetylcyclohexylsulfonylperoxydi Examples of the azobis initiator include 1,1′-azobiscyclohexane-1-carbonitrile and 2,2′-azobis. -(2,4-dimethylvaleronitrile), 2,2'-azobis- (4-methoxy-2,4-dimethylvaleronitrile), 2,2'-azobis- (methylisobutyrate), α, α ' -Azobis- (isobutyronitrile), 4,4'-azobis- (4 Shianobarein acid).
 これらの熱重合開始剤は、それぞれ単独で用いることができ、また、2種以上の混合物として使用することもできる。その使用量は、(メタ)アクリレート樹脂(A)の100重量部に対して熱重合開始剤が0.1~10重量部の範囲となる割合であることが、重合速度が速く、かつ、硬化物の屈折率が高くなる点から好ましい。 These thermal polymerization initiators can be used alone or as a mixture of two or more. The amount used is such that the thermal polymerization initiator is in the range of 0.1 to 10 parts by weight with respect to 100 parts by weight of the (meth) acrylate resin (A), the polymerization rate is fast, and the curing is This is preferable from the viewpoint of increasing the refractive index of the object.
 本発明の硬化性樹脂組成物は、上記した(メタ)アクリレート樹脂(A)、及びラジカル重合開始剤(B)に加え、組成物の粘度調整の為に、更に希釈剤としてラジカル重合性単量体(C)又はその他の有機溶剤(D)を併用することができる。本発明では、これらの希釈剤のなかでも特にラジカル重合性単量体(C)が、硬化物の耐熱性及び耐湿性が良好なものとなる点から好ましい。 In addition to the (meth) acrylate resin (A) and the radical polymerization initiator (B) described above, the curable resin composition of the present invention further includes a radical polymerizable monomer as a diluent for adjusting the viscosity of the composition. The body (C) or other organic solvent (D) can be used in combination. In the present invention, among these diluents, the radically polymerizable monomer (C) is particularly preferable because the cured product has good heat resistance and moisture resistance.
 ここで用いるラジカル重合性単量体(C)としては、単官能(メタ)アクリレートモノマー、2官能(メタ)アクリレートモノマー、3官能以上の多官能(メタ)アクリレートモノマー等の(メタ)アクリレート系モノマー;スチレン、メチルスチレン、ハロゲン化スチレン、ジビニルベンゼン等のビニル系モノマー等が挙げられる。 The radical polymerizable monomer (C) used here is a (meth) acrylate monomer such as a monofunctional (meth) acrylate monomer, a bifunctional (meth) acrylate monomer, or a trifunctional or higher polyfunctional (meth) acrylate monomer. And vinyl monomers such as styrene, methylstyrene, halogenated styrene, and divinylbenzene.
 ここで単官能(メタ)アクリレートモノマーとしては、例えば、アクリロイルモルホリン、2-ヒドロキシプロピル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、シクロヘキサン-1,4-ジメタノールモノ(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、フェニルポリエトキシ(メタ)アクリレート、2-ヒドロキシ-3-フェニルオキシプロピル(メタ)アクリレート、p-クミルフェノキシエチル(メタ)アクリレート、イソボルニル(メタ)アクリレート、トリブロモフェニルオキシエチル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、ジシクロペンテニルオキシエチル(メタ)アクリレート、o-フェニルフェノールポリエトキシ(メタ)アクリレート等を挙げることができる。 Examples of the monofunctional (meth) acrylate monomer include acryloylmorpholine, 2-hydroxypropyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, cyclohexane-1,4-dimethanol mono (meth) acrylate, tetrahydro Furfuryl (meth) acrylate, phenoxyethyl (meth) acrylate, phenyl polyethoxy (meth) acrylate, 2-hydroxy-3-phenyloxypropyl (meth) acrylate, p-cumylphenoxyethyl (meth) acrylate, isobornyl (meth) ) Acrylate, tribromophenyloxyethyl (meth) acrylate, dicyclopentanyl (meth) acrylate, dicyclopentenyl (meth) acrylate, dicyclopentenyloxyethyl ( Data) acrylate, o- phenylphenol polyethoxy (meth) acrylate, and the like.
 2官能(メタ)アクリレートモノマーとしては、1,4-ブタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、トリシクロデカンジメタノール(メタ)アクリレート、ビスフェノールAポリエトキシジ(メタ)アクリレート、ビスフェノールAポリプロポキシジ(メタ)アクリレート、ビスフェノールFポリエトキシジ(メタ)アクリレート、
エチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート等を挙げることができる。
Examples of bifunctional (meth) acrylate monomers include 1,4-butanediol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, 1,9-nonanediol di (meth) acrylate, and tricyclodecanedi. Methanol (meth) acrylate, bisphenol A polyethoxydi (meth) acrylate, bisphenol A polypropoxydi (meth) acrylate, bisphenol F polyethoxydi (meth) acrylate,
Examples thereof include ethylene glycol di (meth) acrylate and polyethylene glycol di (meth) acrylate.
 3官能以上の多官能(メタ)アクリレートモノマーとしては、トリス(アクリロキシエチル)イソシアヌレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、トリペンタエリスリトールヘキサ(メタ)アクリレート、トリペンタエリスリトールペンタ(メタ)アクリレート、ヒドロキシビバリン酸ネオペンチルグリコールのε-カプロラクトン付加物のジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、トリメチロールプロパンポリエトキシトリ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート等を挙げることができる。 Examples of the trifunctional or higher polyfunctional (meth) acrylate monomer include tris (acryloxyethyl) isocyanurate, pentaerythritol tetra (meth) acrylate, dipentaerythritol hexa (meth) acrylate, dipentaerythritol penta (meth) acrylate, Pentaerythritol hexa (meth) acrylate, tripentaerythritol penta (meth) acrylate, di (meth) acrylate of ε-caprolactone adduct of hydroxypentylglycolate dipentylglycol, trimethylolpropane tri (meth) acrylate, trimethylolpropane poly Examples thereof include ethoxytri (meth) acrylate and ditrimethylolpropane tetra (meth) acrylate.
 これらの中でも、特に硬化性樹脂組成物における希釈剤として組成物の粘度低減の効果及び硬化物の屈折率が高く維持できる点からアクリロイルモルホリン、テトラヒドロフルフリル(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、イソボルニル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、ジシクロペンテニルオキシエチル(メタ)アクリレート、o-フェニルフェノールポリエトキシ(メタ)アクリレート等の単官能あるいは2官能(メタ)アクリレートモノマー、ジビニルベンゼンが好ましく、特にフェノキシエチル(メタ)アクリレート、o-フェニルフェノールポリエトキシ(メタ)アクリレート、及びジビニルベンゼンから成る群から選択されるものが希釈能に優れると共に硬化物の屈折率が高くなる点から好ましい。 Among these, acryloylmorpholine, tetrahydrofurfuryl (meth) acrylate, phenoxyethyl (meth) acrylate are particularly effective as a diluent in a curable resin composition because of the effect of reducing the viscosity of the composition and maintaining a high refractive index of the cured product. 1,4-butanediol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, isobornyl (meth) acrylate, dicyclopentanyl (meth) acrylate, dicyclopentenyl (meth) acrylate, dicyclo Monofunctional or bifunctional (meth) acrylate monomers such as pentenyloxyethyl (meth) acrylate, o-phenylphenol polyethoxy (meth) acrylate, and divinylbenzene are preferred. Particularly, phenoxyethyl (meth) acrylate, o Phenylphenol polyethoxy (meth) acrylate, and those selected from the group consisting of divinylbenzene is preferable from the point where the high refractive index of the cured product is excellent in dilution capability.
 一方、前記有機溶剤(D)としては、例えば、メチルエチルケトン、カルビトールアセテート、ブチルセロソルブアセテート、ジエチレングリコールジメチルエーテル、ジプロピレングリコールジメチルエーテル、ソルベントナフサ等が挙げられる。 On the other hand, examples of the organic solvent (D) include methyl ethyl ketone, carbitol acetate, butyl cellosolve acetate, diethylene glycol dimethyl ether, dipropylene glycol dimethyl ether, and solvent naphtha.
 前記希釈剤は、組成物の粘度低減の効果を十分に発揮すると共に、硬化物の屈折率を高いレベルに維持できる点から[(メタ)アクリレート樹脂/希釈剤]の質量比率で90/10~30/70の割合、なかでも80/20~40/60の割合で用いることが好ましい。 The diluent sufficiently exhibits the effect of reducing the viscosity of the composition, and can maintain the refractive index of the cured product at a high level in a mass ratio of [(meth) acrylate resin / diluent] of 90/10 to It is preferably used at a ratio of 30/70, particularly 80/20 to 40/60.
 本発明の硬化性樹脂組成物には、さらに性能改良のため、本来の特性を変えない範囲で、シランカップリング剤、重合禁止剤、レベリング剤等の添加物を添加することができる
使用しうるシランカップリング剤としては、例えば、γ-メタクリロキシプロピルトリメトキシシラン、γ-(2-アミノエチル)アミノプロピルトリメトキシシラン、γ-メルカプトプロピルトリメトキシシラン等が挙げられる。
In the curable resin composition of the present invention, additives such as a silane coupling agent, a polymerization inhibitor, and a leveling agent can be added as long as the original characteristics are not changed for further performance improvement. Examples of the silane coupling agent include γ-methacryloxypropyltrimethoxysilane, γ- (2-aminoethyl) aminopropyltrimethoxysilane, γ-mercaptopropyltrimethoxysilane, and the like.
 ここで使用しうる重合禁止剤としては、例えば、ハイドロキノンモノメチルエーテル、メチルハイドロキノン、t-ブチルカテコール、p-ベンゾキノン、2,5-t-ブチル-ハイドロキノン、フェノチアジン等が挙げられる。また、レベリング剤としては、例えば、モンサント社の「モダフロー」等が挙げられる。 Examples of the polymerization inhibitor that can be used here include hydroquinone monomethyl ether, methyl hydroquinone, t-butylcatechol, p-benzoquinone, 2,5-t-butyl-hydroquinone, and phenothiazine. Examples of the leveling agent include “Modaflow” manufactured by Monsanto.
 詳述した本発明の硬化性樹脂組成物を硬化させる方法は、該硬化性樹脂組成物を目的・用途に応じて基材へ塗布或いは成型した後、活性エネルギー線を照射するか、或いは、加熱する方法が挙げられる。 The method of curing the curable resin composition of the present invention described in detail is that the curable resin composition is applied or molded to a substrate according to the purpose and application, and then irradiated with active energy rays or heated. The method of doing is mentioned.
 ここで、活性エネルギー線の照射によって硬化させる場合、かかる活性エネルギー線としては、電子線、紫外線、可視光線等が挙げられる。活性エネルギー線として、電子線を用いる場合には、コックロフトワルトン型加速器、バンデグラフ型電子加速器、共振変圧器型加速器、絶縁コア変圧器型、ダイナミトロン型、リニアフィラメント型および高周波型などの電子線発生装置を用いて本発明の硬化性樹脂組成物を硬化させることができる。また、活性エネルギー線として紫外線を用いる場合は、超高圧水銀灯、高圧水銀灯、低圧水銀灯等の水銀灯、キセノンランプ、カーボンアーク、メタルハイトランプ等により照射し、硬化させることができる。この際の紫外線の露光量は0.1~1000mJ/cmの範囲であることが好ましい。 Here, when it hardens | cures by irradiation of an active energy ray, an electron beam, an ultraviolet-ray, visible light etc. are mentioned as this active energy ray. When an electron beam is used as the active energy beam, a Cochloft Walton type accelerator, a bandegraph type electron accelerator, a resonant transformer type accelerator, an insulated core transformer type, a dynamitron type, a linear filament type, a high frequency type, etc. The curable resin composition of the present invention can be cured using a generator. When ultraviolet rays are used as the active energy ray, they can be cured by irradiation with a mercury lamp such as an ultrahigh pressure mercury lamp, a high pressure mercury lamp or a low pressure mercury lamp, a xenon lamp, a carbon arc, a metal height lamp or the like. In this case, the amount of ultraviolet light exposure is preferably in the range of 0.1 to 1000 mJ / cm 2 .
 一方、加熱によって硬化させる場合は、60~250℃の温度領域に加熱することによって硬化させることができる。 On the other hand, when cured by heating, it can be cured by heating to a temperature range of 60 to 250 ° C.
 以上詳述した本発明の硬化性樹脂組成物は、高屈折率、高耐熱性、高耐湿性といった性能を有することから、眼鏡レンズ、デジタルカメラ用レンズ、フレネルレンズ、及びプリズムレンズ等のプラスチックレンズ、光学用オーバーコート剤、ハードコート剤、反射防止膜、光ファイバー、光導波路、ホログラム、プリズムレンズ、LED封止材料、太陽光電池用コーティング材等の各種光学材料に適用することができる。 Since the curable resin composition of the present invention described in detail above has performances such as high refractive index, high heat resistance, and high moisture resistance, plastic lenses such as spectacle lenses, digital camera lenses, Fresnel lenses, and prism lenses. It can be applied to various optical materials such as optical overcoat agent, hard coat agent, antireflection film, optical fiber, optical waveguide, hologram, prism lens, LED sealing material, solar cell coating material and the like.
 これらのなかでも特に、硬化物における屈折率が高く、かつ、硬化物の耐熱性及び耐湿性にも優れるという特性からプラスチックレンズに好ましく適用でき、特に液晶基板用プリズムレンズとして有用である。 Among these, in particular, it can be preferably applied to a plastic lens because of its high refractive index in the cured product and excellent heat resistance and moisture resistance of the cured product, and is particularly useful as a prism lens for a liquid crystal substrate.
 ここで液晶基板用プリズムレンズとは、シート状成形体の片面に微細なプリズム形状部を複数有するものであって、通常、液晶表示素子の背面(光源側)に、該素子側にプリズム面が向くように配設され、更に、その背面に導光シートが配設されるように用いられるシート状レンズ、或いは前記プリズムレンズがこの導光シートの機能を兼ねているシート状レンズである。
 ここで該プリズムレンズのプリズム部の形状は、プリズム頂角の角度θが70~110°の範囲であることが、集光性に優れ輝度が向上する点から好ましく、特に75~100°の範囲、中でも80~95°の範囲であることが特に好ましい。
Here, the prism lens for a liquid crystal substrate has a plurality of fine prism-shaped portions on one side of a sheet-like molded body, and usually has a prism surface on the back side (light source side) of the liquid crystal display element and on the element side. Further, the sheet-like lens is used so that the light guide sheet is arranged on the back surface thereof, or the prism lens is a sheet-like lens having a function of the light guide sheet.
Here, the prism portion of the prism lens preferably has a prism apex angle θ in the range of 70 to 110 ° from the viewpoint of excellent light-collecting properties and improved luminance, and particularly in the range of 75 to 100 °. In particular, the range of 80 to 95 ° is particularly preferable.
 また、プリズムのピッチは、100μm以下であることが好ましく、特に70μm以下の範囲であることが、画面のモアレ模様の発生防止や、画面の精細度がより向上する点から好ましい。また、プリズムの凹凸の高さは、プリズム頂角の角度θとプリズムのピッチの値によって決定されるが、好ましくは50μm以下の範囲であることが好ましい。さらに、プリズムレンズのシート厚さは、強度面からは厚い方が好ましいが、光学的には光の吸収を抑えるため薄い方が好ましく、これらのバランスの点から50μm~1000μmの範囲であることが好ましい。 Also, the prism pitch is preferably 100 μm or less, and particularly preferably in the range of 70 μm or less from the viewpoint of preventing the generation of moiré patterns on the screen and further improving the definition of the screen. Further, the height of the unevenness of the prism is determined by the value of the prism apex angle θ and the prism pitch, but is preferably in the range of 50 μm or less. In addition, the sheet thickness of the prism lens is preferably thick from the viewpoint of strength, but optically it is preferably thin in order to suppress light absorption. From the viewpoint of these balances, the sheet thickness is in the range of 50 μm to 1000 μm. preferable.
 本発明の硬化性樹脂組成物から前記したプリズムレンズを製造するには、例えば、該硬化性樹脂組成物をプリズムパターンが形成された金型あるいは樹脂型等の成形型に塗布し、樹脂組成物の表面を平滑化した後、透明基材を重ね合わせ活性エネルギー線を照射、硬化させることによって製造する方法が挙げられる。 In order to produce the prism lens described above from the curable resin composition of the present invention, for example, the curable resin composition is applied to a molding die such as a mold or a resin die on which a prism pattern is formed, and the resin composition After smoothing the surface, a method of producing by irradiating and curing a transparent base material and irradiating active energy rays can be mentioned.
 ここで、透明基材としては透明性の高いものであれば、活性エネルギー線の透過性や取扱性等を考慮した場合には、厚さ3mm以下のものが好ましい。また、透明基材の材料としては、例えば、アクリル樹脂、ポリカーボネート樹脂、ポリエステル樹脂、ポリスチレン樹脂、フッ素樹脂、ポリイミド樹脂、これらポリマーの混合物等の合成樹脂あるいはガラス等が挙げられる。 Here, as long as the transparent base material is highly transparent, a material having a thickness of 3 mm or less is preferable in consideration of the transparency of the active energy ray, the handleability, and the like. Examples of the material for the transparent substrate include acrylic resins, polycarbonate resins, polyester resins, polystyrene resins, fluorine resins, polyimide resins, synthetic resins such as a mixture of these polymers, and glass.
 このようにして得られる透明基材上に形成されたプリズムシートは、そのまま使用することもできるが、透明基材を剥離してプリズム部単独の状態として使用してもよい。透明基材上にプリズム部を形成したまま使用する場合には、その界面の接着が十分であることが耐候性および耐久性の点で重要であり、透明基材にプライマー処理等の接着性向上処理を施すことが好ましい。 The prism sheet formed on the transparent substrate thus obtained can be used as it is, but the transparent substrate may be peeled off and used as a single prism portion. When using with the prism part formed on a transparent substrate, it is important from the viewpoint of weather resistance and durability that the interface is adequately bonded. It is preferable to perform the treatment.
 一方、透明基材を剥離して使用する場合、比較的容易に剥離できるようにすることが好ましく、透明基材の表面をシリコーンやフッ素系の剥離剤で表面処理を施すことが好ましい。 On the other hand, when the transparent substrate is used after being peeled off, it is preferable that the transparent substrate can be peeled relatively easily, and the surface of the transparent substrate is preferably subjected to a surface treatment with silicone or a fluorine-based release agent.
以下本発明の態様を合成例によって更に詳細に説明するが、本発明はこれに限定されるものではない。
1)粘度:25℃にてE型粘度計(東機産業(株)製「TV-20形」コーンプレートタイプを使用して測定した。
2)13C-NMR:日本電子株式会社製NMR「GSX270」
3)FD-MS:日本電子株式会社製 二重収束型質量分析装置「AX505H(FD505H)」
In the following, embodiments of the present invention will be described in more detail with reference to synthesis examples, but the present invention is not limited thereto.
1) Viscosity: Measured at 25 ° C. using an E type viscometer (“TV-20 type” cone plate type manufactured by Toki Sangyo Co., Ltd.).
2) 13 C-NMR: NMR “GSX270” manufactured by JEOL Ltd.
3) FD-MS: Double convergence type mass spectrometer “AX505H (FD505H)” manufactured by JEOL Ltd.
 実施例1
 攪拌機、温度計、ディーンスタークトラップ、コンデンサーが装着された5Lの4つ口フラスコにビナフトール858g(3モル)、エチレンカーボネート634g(7.2モル)、48質量%水酸化カリウム24gを加え、170℃で4時間反応させた。その後、メチルイソブトキシケトン1500gを加えて溶解し、水1000gを加え、攪拌を停止して下層を棄却した。更に水1000gを加え、攪拌を停止して下層を棄却した。その後、150℃で脱溶剤を行いDSC測定による融点108℃の樹脂1050gを得た。この樹脂をマススペクトル(FD-MS)で測定し、M=374のピークが確認されたこと、また、図1に示した13C-NMRの測定結果から、下記構造式で表される水酸基含有化合物(a)であることを確認した。
Example 1
To a 5 L four-necked flask equipped with a stirrer, thermometer, Dean-Stark trap and condenser were added 858 g (3 mol) of binaphthol, 634 g (7.2 mol) of ethylene carbonate and 24 g of 48% by mass potassium hydroxide at 170 ° C. For 4 hours. Thereafter, 1500 g of methyl isobutoxy ketone was added and dissolved, 1000 g of water was added, stirring was stopped, and the lower layer was discarded. Further, 1000 g of water was added, stirring was stopped, and the lower layer was discarded. Thereafter, the solvent was removed at 150 ° C. to obtain 1050 g of a resin having a melting point of 108 ° C. by DSC measurement. This resin was measured by mass spectrum (FD-MS), and a peak of M = 374 was confirmed. From the measurement result of 13 C-NMR shown in FIG. It was confirmed to be compound (a).
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013

 次いで、攪拌機、温度計、コンデンサー、デカンターが装着された1Lの4つ口フラスコに上記水酸基含有化合物(a)187g(0.5モル)、トルエン200g、アクリル酸72g(1.0モル)、p-トルエンスルホン酸15g、ハイドロキノン1gを加え、80-100℃で10時間脱水反応を行った。 Next, in a 1 L four-necked flask equipped with a stirrer, thermometer, condenser and decanter, 187 g (0.5 mol) of the hydroxyl group-containing compound (a), 200 g of toluene, 72 g (1.0 mol) of acrylic acid, p -Toluenesulfonic acid (15 g) and hydroquinone (1 g) were added, and dehydration reaction was carried out at 80-100 ° C for 10 hours.
 次いで反応液を冷却し、トルエン200gおよび20%苛性ソーダ水溶液100gを仕込み、攪拌を停止して下層を棄却した。次いで20%塩化ナトリウム、水溶液100gを用いて2回洗浄した。その後、100℃で脱溶剤を行い、樹脂200gを得た。この樹脂をマススペクトルで測定し、M=482およびM=428のピークが確認されたこと、また図2に示した13C-NMRの測定結果から、下記構造式(α)で表される化合物(α)及び下記構造式(β)で表される化合物(β)の混合物であるアクリレート樹脂(A)であることを確認した。 Next, the reaction liquid was cooled, charged with 200 g of toluene and 100 g of a 20% aqueous sodium hydroxide solution, the stirring was stopped, and the lower layer was discarded. Subsequently, it was washed twice with 20% sodium chloride and 100 g of an aqueous solution. Thereafter, the solvent was removed at 100 ° C. to obtain 200 g of a resin. When this resin was measured by mass spectrum, peaks of M = 482 and M = 428 were confirmed, and from the measurement result of 13 C-NMR shown in FIG. 2, the compound represented by the following structural formula (α) It confirmed that it was an acrylate resin (A) which is a mixture of ((alpha)) and the compound ((beta)) represented by following structural formula ((beta)).
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
 また、ガスクロマトグラフ(各々を単離し、内部標準法により算出)より、化合物(α)と化合物(β)との比率[(α)/(β)のモル比]は90/10であり、また、アクリロイルオキシ基/水酸基のモル比は95/5であることを確認した。このアクリレート樹脂の屈折率は1.63、E型粘度計で測定した粘度は460Pa.sであった。 From the gas chromatograph (each isolated and calculated by the internal standard method), the ratio of the compound (α) to the compound (β) [molar ratio of (α) / (β)] is 90/10. The acryloyloxy group / hydroxyl molar ratio was confirmed to be 95/5. This acrylate resin has a refractive index of 1.63 and a viscosity measured by an E-type viscometer of 460 Pa.s. s.
(硬化性評価)
 次いで、得られたアクリレート樹脂(A)の80質量部、フェノキシエチルアクリレート20質量部、光重合開始剤として1-ヒドロキシシクロヘキシルフェニルケトン(チバ・スペシャルティ・ケミカルズ製「イルガキュアー184」)3質量部を配合した組成物をバーコーター(No.20)を用いてガラス板に塗布し、その後、空気雰囲気下で120W/cmの高圧水銀灯を用い、100mJ/cmの照射量で照射し、硬化性を評価した。評価は以下の基準にて判断した。
  ○:硬化(タック性なし)
  ×:未硬化(タック性あり)
 硬化性の結果をアクリレート樹脂(A)の性状と共に表1に示す。
(Curability evaluation)
Next, 80 parts by mass of the obtained acrylate resin (A), 20 parts by mass of phenoxyethyl acrylate, and 3 parts by mass of 1-hydroxycyclohexyl phenyl ketone (“Irgacure 184” manufactured by Ciba Specialty Chemicals) as a photopolymerization initiator were used. The blended composition was applied to a glass plate using a bar coater (No. 20), and then irradiated with a high-pressure mercury lamp of 120 W / cm 2 in an air atmosphere at a dose of 100 mJ / cm 2 to be curable. Evaluated. Evaluation was judged according to the following criteria.
○: Curing (no tack)
×: Uncured (with tackiness)
Table 1 shows the curability results together with the properties of the acrylate resin (A).
 実施例2
 アクリル酸の使用量を61g(0.85モル)に変更した以外は実施例1と同様に行い、アクリレート樹脂(B)190gを得た。ガスクロマトグラフ(各々を単離し、内部標準法により算出)より、化合物(α)と化合物(β)との比率[(α)/(β)のモル比]は60/40であり、また、アクリロイルオキシ基/水酸基は80/20(モル比)であることを確認した。このアクリレート樹脂の屈折率は1.64、E型粘度計で測定した粘度は490Pa.sであった。
(硬化性評価)
 アクリレート樹脂(A)をアクリレート樹脂(B)に変更する他は実施例1と同様にして硬化性を評価した。硬化性の結果をアクリレート樹脂(B)の性状と共に表1に示す。
Example 2
Except having changed the usage-amount of acrylic acid into 61 g (0.85 mol), it carried out similarly to Example 1 and obtained 190 g of acrylate resin (B). From the gas chromatograph (each isolated and calculated by the internal standard method), the ratio of the compound (α) to the compound (β) [molar ratio of (α) / (β)] is 60/40, and acryloyl It was confirmed that the oxy group / hydroxyl group was 80/20 (molar ratio). This acrylate resin has a refractive index of 1.64 and a viscosity measured by an E-type viscometer of 490 Pa.s. s.
(Curability evaluation)
The curability was evaluated in the same manner as in Example 1 except that the acrylate resin (A) was changed to the acrylate resin (B). Table 1 shows the curability results together with the properties of the acrylate resin (B).
 実施例3
 アクリル酸の使用量を86g(1.2モル)に変更、反応時間を12時間に変更した以外は合成例1と同様に行い、アクリレート樹脂(C)205gを得た。ガスクロマトグラフ(各々を単離し、内部標準法により算出)より化合物(α)と化合物(β)との比率[(α)/(β)のモル比]は99/1、また、アクリロイルオキシ基/水酸基は99.5/0.5(モル比)であることを確認した。このアクリレート樹脂の屈折率は1.63、E型粘度計で測定した粘度は440Pa.sであった。また、このアクリレート樹脂を25℃で2時間放置したところ結晶化した。
(硬化性評価)
 アクリレート樹脂(A)をアクリレート樹脂(C)に変更する他は実施例1と同様にして硬化性を評価した。硬化性の結果をアクリレート樹脂(C)の性状と共に表1に示す。
Example 3
Except having changed the usage-amount of acrylic acid into 86 g (1.2 mol) and having changed reaction time into 12 hours, it carried out similarly to the synthesis example 1, and obtained acrylate resin (C) 205g. From the gas chromatograph (each isolated and calculated by the internal standard method), the ratio of the compound (α) to the compound (β) [molar ratio of (α) / (β)] is 99/1, and the acryloyloxy group / It was confirmed that the hydroxyl group was 99.5 / 0.5 (molar ratio). This acrylate resin has a refractive index of 1.63 and a viscosity measured by an E-type viscometer of 440 Pa.s. s. The acrylate resin crystallized when left at 25 ° C. for 2 hours.
(Curability evaluation)
The curability was evaluated in the same manner as in Example 1 except that the acrylate resin (A) was changed to the acrylate resin (C). Table 1 shows the curability results together with the properties of the acrylate resin (C).
 実施例4
 アクリル酸の使用量を58g(0.80モル)に変更、反応時間を6時間に変更した以外は実施例1と同様に行い、アクリレート樹脂(D)185gを得た。ガスクロマトグラフ(各々を単離し、内部標準法により算出)より、化合物(α)と化合物(β)との比率[(α)/(β)のモル比]は40/60、また、アクリロイル基/水酸基=70/30(モル比)であることを確認した。このアクリレート樹脂の屈折率は1.65、E型粘度計で測定した粘度は510Pa.sであった。
(硬化性評価)
 アクリレート樹脂(A)をアクリレート樹脂(D)に変更する他は実施例1と同様にして硬化性を評価した。硬化性の結果をアクリレート樹脂(D)の性状と共に表1に示す。
Example 4
Except having changed the usage-amount of acrylic acid into 58 g (0.80 mol) and changing reaction time into 6 hours, it carried out similarly to Example 1 and obtained 185g of acrylate resin (D). From the gas chromatograph (isolated and calculated by the internal standard method), the ratio of the compound (α) to the compound (β) [molar ratio of (α) / (β)] was 40/60, and acryloyl group / It was confirmed that the hydroxyl group was 70/30 (molar ratio). This acrylate resin has a refractive index of 1.65 and a viscosity measured by an E-type viscometer of 510 Pa. s.
(Curability evaluation)
The curability was evaluated in the same manner as in Example 1 except that the acrylate resin (A) was changed to the acrylate resin (D). Table 1 shows the curability results together with the properties of the acrylate resin (D).
 実施例5
 攪拌機、温度計、ディーンスタークトラップ、コンデンサーが装着された2Lの4つ口フラスコにビナフトール286g(1モル)、エチレンカーボネート190g(2.16モル)、プロピレンカーボネート24g(0.24モル)、48質量%水酸化カリウム水溶液8gを加え、170℃で4時間反応させた。その後、メチルイソブトキシケトン500gを加えて溶解し、水300gを加え、攪拌を停止して下層を棄却した。更に水300gを加え、攪拌を停止して下層を棄却した。その後、150℃で脱溶剤を行い、樹脂340gを得た。
Example 5
286 g (1 mol) of binaphthol, 190 g (2.16 mol) of ethylene carbonate, 24 g (0.24 mol) of propylene carbonate, 48 mass in a 2 L four-necked flask equipped with a stirrer, thermometer, Dean-Stark trap and condenser 8 g of an aqueous potassium hydroxide solution was added and reacted at 170 ° C. for 4 hours. Thereafter, 500 g of methyl isobutoxy ketone was added and dissolved, 300 g of water was added, stirring was stopped, and the lower layer was discarded. Further, 300 g of water was added, stirring was stopped, and the lower layer was discarded. Thereafter, the solvent was removed at 150 ° C. to obtain 340 g of a resin.
 次に、攪拌機、温度計、コンデンサー、デカンターが装着された1Lの4つ口フラスコに得られたで樹脂187g、トルエン200g、アクリル酸86g(1.2モル)、p-トルエンスルホン酸15g、ハイドロキノン1gを加え、80-100℃で10時間脱水反応を行った。次いで反応液を冷却し、トルエン200gおよび20%苛性ソーダ水溶液100gを仕込み、攪拌を停止して下層を棄却した。次いで20%塩化ナトリウム、水溶液100gを用いて2回洗浄した。その後、100℃で脱溶剤を行いアクリレート樹脂(E)201gを得た。また、13C-NMRの測定結果から、エチレンオキソ基/プロピレンオキソ基のモル比が90/10であることを確認した。このアクリレート樹脂の屈折率は1.63、E型粘度計で測定した粘度は465Pa.sであった。
(硬化性評価)
 アクリレート樹脂(A)をアクリレート樹脂(E)に変更する他は実施例1と同様にして硬化性を評価した。硬化性の結果をアクリレート樹脂(E)の性状と共に表2に示す。
Next, 187 g of resin, 200 g of toluene, 86 g of acrylic acid (1.2 mol), 15 g of p-toluenesulfonic acid, hydroquinone obtained in a 1 L four-necked flask equipped with a stirrer, thermometer, condenser and decanter 1 g was added and dehydration reaction was carried out at 80-100 ° C. for 10 hours. Next, the reaction liquid was cooled, charged with 200 g of toluene and 100 g of a 20% aqueous sodium hydroxide solution, the stirring was stopped, and the lower layer was discarded. Subsequently, it was washed twice with 20% sodium chloride and 100 g of an aqueous solution. Thereafter, the solvent was removed at 100 ° C. to obtain 201 g of an acrylate resin (E). Further, from the measurement result of 13 C-NMR, it was confirmed that the molar ratio of ethyleneoxo group / propyleneoxo group was 90/10. This acrylate resin has a refractive index of 1.63 and a viscosity measured with an E-type viscometer of 465 Pa.s. s.
(Curability evaluation)
The curability was evaluated in the same manner as in Example 1 except that the acrylate resin (A) was changed to the acrylate resin (E). Table 2 shows the results of curability together with the properties of the acrylate resin (E).
 実施例6
 エチレンカーボネート127g(1.44モル)、プロピレンカーボネート98g(0.96モル)に変更した以外は実施例5と同様に行い、アクリレート樹脂(F)203gを得た。また、13C-NMRの測定結果から、エチレンオキソ基/プロピレンオキソ基のモル比が60/40であることを確認した。このアクリレート樹脂の屈折率は1.62、E型粘度計で測定した粘度は480Pa.sであった。
(硬化性評価)
 アクリレート樹脂(A)をアクリレート樹脂(F)に変更する他は実施例1と同様にして硬化性を評価した。硬化性の結果をアクリレート樹脂(F)の性状と共に表2に示す。
Example 6
Except having changed into 127 g (1.44 mol) of ethylene carbonate and 98 g (0.96 mol) of propylene carbonate, it carried out similarly to Example 5 and obtained 203 g of acrylate resin (F). Further, from the measurement result of 13 C-NMR, it was confirmed that the molar ratio of ethyleneoxo group / propyleneoxo group was 60/40. This acrylate resin has a refractive index of 1.62 and a viscosity measured by an E-type viscometer of 480 Pa.s. s.
(Curability evaluation)
The curability was evaluated in the same manner as in Example 1 except that the acrylate resin (A) was changed to the acrylate resin (F). Table 2 shows the curability results together with the properties of the acrylate resin (F).
 実施例7
 エチレンカーボネート209g(2.38モル)、プロピレンカーボネート2g(0.02モル)に変更した以外は実施例5と同様に行い、アクリレート樹脂(G)206gを得た。また、13C-NMRの測定結果から、エチレンオキソ基/プロピレンオキソ基のモル比が99/1であることを確認した。このアクリレート樹脂の屈折率は1.63、E型粘度計で測定した粘度は455Pa.sであった。また、このアクリレート樹脂を25℃で2時間放置したところ結晶化した。
(硬化性評価)
 アクリレート樹脂(A)をアクリレート樹脂(G)に変更する他は実施例1と同様にして硬化性を評価した。硬化性の結果をアクリレート樹脂(G)の性状と共に表2に示す。
Example 7
Except having changed into ethylene carbonate 209g (2.38 mol) and propylene carbonate 2g (0.02 mol), it carried out similarly to Example 5 and obtained acrylate resin (G) 206g. Further, from the measurement result of 13 C-NMR, it was confirmed that the molar ratio of ethyleneoxo group / propyleneoxo group was 99/1. This acrylate resin has a refractive index of 1.63 and a viscosity measured by an E-type viscometer of 455 Pa.s. s. The acrylate resin crystallized when left at 25 ° C. for 2 hours.
(Curability evaluation)
The curability was evaluated in the same manner as in Example 1 except that the acrylate resin (A) was changed to the acrylate resin (G). Table 2 shows the curability results together with the properties of the acrylate resin (G).
 実施例8
 エチレンカーボネート95g(1.08モル)、プロピレンカーボネート135g(1.32モル)、に変更した以外は実施例5と同様に行い、アクリレート樹脂(H)206gを得た。また、NMRよりエチレンオキソ基/プロピレンオキソ基=45/55(モル比)であることを確認した。このアクリレート樹脂(H)の屈折率は1.61、E型粘度計で測定した粘度は510Pa.sであった。
(硬化性評価)
 アクリレート樹脂(A)をアクリレート樹脂(H)に変更する他は実施例1と同様にして硬化性を評価した。硬化性の結果をアクリレート樹脂(H)の性状と共に表2に示す。
Example 8
Except having changed into 95 g (1.08 mol) of ethylene carbonate and 135 g (1.32 mol) of propylene carbonate, it carried out similarly to Example 5 and obtained 206 g of acrylate resin (H). Further, NMR confirmed that ethyleneoxo group / propyleneoxo group = 45/55 (molar ratio). The acrylate resin (H) has a refractive index of 1.61 and a viscosity measured by an E-type viscometer of 510 Pa. s.
(Curability evaluation)
The curability was evaluated in the same manner as in Example 1 except that the acrylate resin (A) was changed to the acrylate resin (H). Table 2 shows the curability results together with the properties of the acrylate resin (H).
Figure JPOXMLDOC01-appb-T000015

 以上のように、アクリロイル基/水酸基=75/25~99/1(モル比)の範囲にある場合は常温で液状になり、硬化性も良好であった。一方、水酸基の比率が、この範囲より少ない場合は結晶性が高くなり、常温で2時間放置したところ結晶化した。
Figure JPOXMLDOC01-appb-T000015

As described above, when it was in the range of acryloyl group / hydroxyl group = 75/25 to 99/1 (molar ratio), it became liquid at room temperature and had good curability. On the other hand, when the ratio of the hydroxyl group is less than this range, the crystallinity becomes high, and crystallization occurred when left at room temperature for 2 hours.
Figure JPOXMLDOC01-appb-T000016

以上のように、エチレンオキソ基/プロピレンオキソ基の比率がエチレンオキソ基/プロピレンオキソ基=50/50~98/2(モル比)の範囲にある場合は常温で液状になった。しかし、プロピレンオキソの比率が、この範囲より少ない場合は結晶性が高くなり、常温で2時間放置したところ結晶化した。
Figure JPOXMLDOC01-appb-T000016

As described above, when the ratio of ethyleneoxo group / propyleneoxo group was in the range of ethyleneoxo group / propyleneoxo group = 50/50 to 98/2 (molar ratio), it became liquid at normal temperature. However, when the ratio of propylene oxo was less than this range, the crystallinity was high, and crystallization occurred upon standing at room temperature for 2 hours.
 比較例1
 攪拌機、温度計、コンデンサー、デカンターが装着された1Lの4つ口フラスコに実施例1で得られたで化合物(a)187g(0.5モル)、テレフタル酸83g(0.5モル)、ジブチルスズオキシド0.7gを加え、撹拌しながら減圧度5~10Torr、温度を190℃から230℃に徐々に加熱してエステル化を行なった。所定量の水を系外へ抜き出した後、昇温と減圧を徐々に行ない、発生する水を抜きながら、加熱槽温度を280℃、減圧度を133.322Pa以下に到達させた。この条件を1時間維持した後、反応物を水中に押し出してポリエステル樹脂(I)210gを得た。この樹脂の屈折率は1.67であった。またE型粘度計は固形のため測定できなかった。
Comparative Example 1
Compound (a) 187 g (0.5 mol), terephthalic acid 83 g (0.5 mol), dibutyltin obtained in Example 1 in a 1 L four-necked flask equipped with a stirrer, thermometer, condenser and decanter Esterification was performed by adding 0.7 g of oxide and gradually heating from 190 ° C. to 230 ° C. under a reduced pressure of 5 to 10 Torr while stirring. After extracting a predetermined amount of water out of the system, the temperature was increased and the pressure was gradually reduced, and the temperature of the heating tank was reached to 280 ° C. and the degree of pressure reduction to 133.322 Pa or less while removing the generated water. After maintaining this condition for 1 hour, the reaction product was extruded into water to obtain 210 g of a polyester resin (I). The refractive index of this resin was 1.67. The E type viscometer could not be measured because it was solid.
 比較例2
下記構造式
Comparative Example 2
The following structural formula
Figure JPOXMLDOC01-appb-C000017

で表されるフルオレン型アクリレート(アクリレート樹脂(J)、大阪ガスケミカル社製「オグゾールEA-0200」)の屈折率は1.59であった。またE型粘度計は半固形のため測定できなかった。
Figure JPOXMLDOC01-appb-C000017

The refractive index of the fluorene type acrylate represented by the formula (acrylate resin (J), “Ogsol EA-0200” manufactured by Osaka Gas Chemical Company) was 1.59. The E type viscometer could not be measured because it was semi-solid.
 比較例3
 下記構造式
Comparative Example 3
The following structural formula
Figure JPOXMLDOC01-appb-C000018

で表されるフルオレン型エポキシアクリレート(アクリレート樹脂(K)、新日鉄化学社製「ASF-400」)の屈折率は1.58であった。またE型粘度計は固形のため測定できなかった。
Figure JPOXMLDOC01-appb-C000018

The refractive index of the fluorene type epoxy acrylate represented by the formula (acrylate resin (K), “ASF-400” manufactured by Nippon Steel Chemical Co., Ltd.) was 1.58. The E type viscometer could not be measured because it was solid.
 実施例9~12及び比較例4~6
 アクリレート樹脂(A)、(B)、(E)、(F)、比較化合物1のフルオレン型アクリレート樹脂(J)、フルオレン型エポキシアクリレート樹脂(K)、ポリエステル樹脂(I)を用いて下記の方法で塗膜を作成し、各種評価を行った。結果を表3に示す。
Examples 9 to 12 and Comparative Examples 4 to 6
The following method using acrylate resins (A), (B), (E), (F), fluorene type acrylate resin (J), fluorene type epoxy acrylate resin (K), and polyester resin (I) of Comparative Compound 1 A coating film was prepared and evaluated in various ways. The results are shown in Table 3.
(アクリレート樹脂(A)、(B)、(E)、(F)、(J)又は(K)の硬化塗膜の作成)
 アクリレート樹脂(A)、(B)、(E)、(F)、(J)又は(K)のアクリレート樹脂80質量部、フェノキシエチルアクリレート20質量部、光重合開始剤としてイラガキュアー184(3部、チバ・スペシャルティ・ケミカルズ製)を配合した組成物をバーコーター(No.20)を用いてガラス板に塗布した。次に、空気雰囲気下で120W/cmの高圧水銀灯を用い、500mJ/cmの照射量で照射し、硬化塗膜を得た。
(Creation of cured coating film of acrylate resin (A), (B), (E), (F), (J) or (K))
80 parts by mass of an acrylate resin (A), (B), (E), (F), (J) or (K), 20 parts by mass of phenoxyethyl acrylate, Iragacure 184 (3 parts) as a photopolymerization initiator , Ciba Specialty Chemicals) was applied to a glass plate using a bar coater (No. 20). Next, it irradiated with the irradiation amount of 500 mJ / cm < 2 > using the 120 W / cm < 2 > high pressure mercury lamp in air atmosphere, and obtained the cured coating film.
(ポリエステル樹脂(I)を用いた塗膜の調整)
 ポリエステル樹脂(I)を150℃に加熱し溶融させ、バーコーター(No.20)を用いてガラス板に塗布した。
(Adjustment of coating film using polyester resin (I))
The polyester resin (I) was heated to 150 ° C. and melted, and applied to a glass plate using a bar coater (No. 20).
(耐溶剤性)
塗膜作製で得られた塗膜をメチルエチルケトンを含ませた綿棒(ジョンソン社製)で50往復擦った後に塗膜の変化を目視で観察した。評価は以下のように判断した。
評価
  ○:変化なし
  ×:曇り、剥がれなどの変化あり
(耐熱性)
塗膜作製で得られた塗膜を125℃の乾燥機に入れ150時間保持した。保持後の塗膜の変化を目視で観察した。評価は以下のように判断した。
評価
  ○:変化なし
  △:色相のみ変化、形状変化なし
  ×:色相および形状が変化
(耐湿性)
塗膜作製で得られた塗膜を85℃、湿度85%の恒温恒湿機に入れ300時間保持した。保持後の塗膜の変化を目視で観察した。評価は以下のように判断した。
評価
  ○:変化なし
  △:色相のみ変化、形状変化なし
  ×:色相および形状が変化
(Solvent resistance)
The coating film obtained by preparing the coating film was rubbed 50 times with a cotton swab (manufactured by Johnson) containing methyl ethyl ketone, and the change of the coating film was visually observed. Evaluation was judged as follows.
Evaluation ○: No change ×: Change such as cloudiness and peeling (heat resistance)
The coating film obtained by preparing the coating film was placed in a 125 ° C. drier and held for 150 hours. The change of the coating film after holding was visually observed. Evaluation was judged as follows.
Evaluation ○: No change △: Change in hue only, no change in shape ×: Change in hue and shape (moisture resistance)
The coating film obtained by preparing the coating film was placed in a constant temperature and humidity machine at 85 ° C. and a humidity of 85% and held for 300 hours. The change of the coating film after holding was visually observed. Evaluation was judged as follows.
Evaluation ○: No change △: Change in hue only, no change in shape ×: Change in hue and shape
Figure JPOXMLDOC01-appb-T000019

以上のように、本発明のアクリレート樹脂は低粘度、高屈折率であり、さらに光照射後の硬化物は高屈折率、耐溶剤性、耐熱性、耐湿性に優れることを確認した。
Figure JPOXMLDOC01-appb-T000019

As described above, it was confirmed that the acrylate resin of the present invention has a low viscosity and a high refractive index, and the cured product after light irradiation is excellent in a high refractive index, solvent resistance, heat resistance, and moisture resistance.
 実施例13~16、比較例7~9
 アクリレート樹脂(A)、(B)、(E)、(F)、比較化合物1のフルオレン型アクリレート樹脂(J)、比較化合物2のフルオレン型エポキシアクリレート樹脂(K)を用いた活性エネルギー線硬化物、および比較例1で得られたポリエステル樹脂(I)を用いて下記の方法で塗膜を作成し、実施例12と同様にして各種評価を行った。結果を表4に示す。
(アクリレート樹脂(A)、(B)、(E)、(F)、(J)又は(K)の硬化塗膜の作成)
 アクリレート樹脂(A)、(B)、(E)、(F)、(J)又は(K)のアクリレート樹脂80質量部、フェノキシエチルアクリレート20質量部、熱重合開始剤としてメチルエチルケトンパーオキサイド3質量部を配合した組成物をバーコーター(No.20)を用いてガラス板に塗布した。次に、100℃の乾燥機に入れ4時間保持し、硬化塗膜を得た。
(ポリエステル樹脂(I)を用いた塗膜の調整)
 ポリエステル樹脂(I)を150℃に加熱し溶融させ、バーコーター(No.20)を用いてガラス板に塗布した。
Examples 13 to 16, Comparative Examples 7 to 9
Active energy ray cured product using acrylate resins (A), (B), (E), (F), fluorene-type acrylate resin (J) of comparative compound 1 and fluorene-type epoxy acrylate resin (K) of comparative compound 2 A coating film was prepared by the following method using the polyester resin (I) obtained in Comparative Example 1, and various evaluations were performed in the same manner as in Example 12. The results are shown in Table 4.
(Creation of cured coating film of acrylate resin (A), (B), (E), (F), (J) or (K))
80 parts by mass of acrylate resin (A), (B), (E), (F), (J) or (K), 20 parts by mass of phenoxyethyl acrylate, 3 parts by mass of methyl ethyl ketone peroxide as a thermal polymerization initiator The composition containing was applied to a glass plate using a bar coater (No. 20). Next, it was put into a dryer at 100 ° C. and held for 4 hours to obtain a cured coating film.
(Adjustment of coating film using polyester resin (I))
The polyester resin (I) was heated to 150 ° C. and melted, and applied to a glass plate using a bar coater (No. 20).
Figure JPOXMLDOC01-appb-T000020

以上のように、本発明のアクリレート樹脂は低粘度、高屈折率であり、さらに加熱硬化後の硬化物は高屈折率、耐溶剤性、耐熱性、耐湿性に優れることを確認した。
Figure JPOXMLDOC01-appb-T000020

As described above, it was confirmed that the acrylate resin of the present invention has a low viscosity and a high refractive index, and the cured product after heat curing is excellent in a high refractive index, solvent resistance, heat resistance, and moisture resistance.
 実施例17~22及び比較例10~11
 下記表5の配合に従い、ワニス状の組成物を調整し、該組成物の液屈折率及び粘度を下記の方法にて測定し、次いで、実施例12と同様にして、硬化塗膜を製造し、耐溶剤性、耐熱性、耐湿性を評価した。
 また、各組成物を用いて下記の方法で硬化フィルムA及び硬化フィルム付き基板Bを製造して透明性、密着性を評価した。更に、該組成物を用い下記の方法にて金型からの離型性を評価した。結果を表5に示す。
Examples 17 to 22 and Comparative Examples 10 to 11
A varnish-like composition was prepared according to the formulation shown in Table 5 below, and the liquid refractive index and viscosity of the composition were measured by the following method. Then, a cured coating film was produced in the same manner as in Example 12. The solvent resistance, heat resistance, and moisture resistance were evaluated.
Moreover, the cured film A and the board | substrate B with a cured film were manufactured by the following method using each composition, and transparency and adhesiveness were evaluated. Furthermore, the release property from a metal mold | die was evaluated by the following method using this composition. The results are shown in Table 5.
[硬化フィルムAの製造]
 下記表5の配合に従って調整した組成物を、クロムメッキ処理金属板と透明表面未処理PETフィルムとの間に入れた後に厚さを調整し、高圧水銀灯により500mJ/cmの紫外線を透明基材側から照射して硬化させた後、金属板および透明基材から硬化フィルム(以下、これを「硬化フィルムA」と略記する。)を取り出した。
[Production of cured film A]
The composition prepared according to the composition shown in Table 5 below was placed between a chrome-plated metal plate and a transparent untreated PET film, the thickness was adjusted, and a UV light of 500 mJ / cm 2 was applied to the transparent substrate using a high-pressure mercury lamp. After being irradiated and cured from the side, a cured film (hereinafter abbreviated as “cured film A”) was taken out from the metal plate and the transparent substrate.
[硬化フィルム付き基板Bの製造]
 下記表5の配合に従って調整した組成物を、クロムメッキ処理金属板と透明表面密着処理PETフィルムとの間に入れた後に厚さを調整し、高圧水銀灯により、500mJ/cmの紫外線を透明基材側から照射して硬化させた後、金属板のみを剥離し、硬化フィルム付基板(以下、これを「硬化フィルム付き基板B」と略記する。)を得た。
[Manufacture of substrate B with cured film]
The composition prepared in accordance with the composition shown in Table 5 below was placed between a chrome-plated metal plate and a transparent surface adhesion-treated PET film, and then the thickness was adjusted. Using a high-pressure mercury lamp, UV light of 500 mJ / cm 2 was used as a transparent base. After being cured by irradiation from the material side, only the metal plate was peeled off to obtain a substrate with a cured film (hereinafter abbreviated as “substrate B with cured film”).
[液屈折率]
 アッベ屈折計のプリズムに直接塗布し、25℃にて屈折率(589.3mmのD線)の測定を行った。
[粘度]
 E型回転粘度計にて25℃での粘度測定を行った。
[硬化物屈折率]
 硬化フィルムAを、1-ブロモナフタレンにより、アッベ屈折計のプリズムに密着させ、25℃にて屈折率(589.3mmのD線)の測定を行った。
[透明性]
 硬化フィルムAを用い、400~900nmの波長領域の光透過率を測定し、全領域で85%以上の透過率を示すものを○とし、透過率がそれ未満のものを×とした。
[密着性]
 硬化フィルム付き基板Bを用い、基材と硬化フィルム層との密着性をJIS K5400に準拠して測定し、升目が全て残存する時を○、それ以外を×とした。
[離型性]
 クロムメッキ処理したプリズム金型と透明表面密着処理PETフィルムとの間に下記表5の配合に従って調整した組成物を入れた後に厚さを調整し、高圧水銀灯により500mJ/cmの紫外線を透明基材側から照射して硬化させた後、金型から離型する際、金型に組成物が残らないものを○、残るものを×とした。
[Liquid refractive index]
It applied directly to the prism of an Abbe refractometer, and the refractive index (D-line of 589.3 mm) was measured at 25 ° C.
[viscosity]
Viscosity was measured at 25 ° C. with an E-type rotational viscometer.
[Hardened material refractive index]
The cured film A was adhered to the Abbe refractometer prism with 1-bromonaphthalene, and the refractive index (D line of 589.3 mm) was measured at 25 ° C.
[transparency]
Using the cured film A, the light transmittance in the wavelength region of 400 to 900 nm was measured. A film showing a transmittance of 85% or more in all regions was marked with ◯, and a light transmittance less than that was marked with ×.
[Adhesion]
Using the substrate B with a cured film, the adhesion between the base material and the cured film layer was measured in accordance with JIS K5400.
[Releasability]
The composition adjusted according to the composition shown in Table 5 below was placed between the chrome-plated prism mold and the transparent surface adhesion-treated PET film, the thickness was adjusted, and UV light of 500 mJ / cm 2 was made transparent with a high-pressure mercury lamp. After being cured by irradiation from the material side, when the mold was released from the mold, the one in which the composition did not remain in the mold was marked with ◯, and the remaining one was marked with x.
Figure JPOXMLDOC01-appb-T000021

表5中、「フェノキシエチルアクリレート」は共栄社化学(株)製「ライトアクリレートPO-A」、「OPPEA」はo-フェニルフェノールエチレンオキサイド変性アクリレート(東亞合成(株)製「アロニックスTO-1463」)、「光開始剤」は1-ヒドロキシシクロヘキシルフェニルケトン(チバ・スペシャルティ・ケミカルズ製「イルガキュアー184」)である。
Figure JPOXMLDOC01-appb-T000021

In Table 5, “phenoxyethyl acrylate” is “Light acrylate PO-A” manufactured by Kyoeisha Chemical Co., Ltd., and “OPPEA” is o-phenylphenol ethylene oxide modified acrylate (“Aronix TO-1463” manufactured by Toagosei Co., Ltd.). “Photoinitiator” is 1-hydroxycyclohexyl phenyl ketone (“Irgacure 184” manufactured by Ciba Specialty Chemicals).

Claims (11)

  1. ビナフタレン骨格を分子構造中に有すると共に、該ビナフタレン骨格の芳香核上の置換基として下記構造式(A)
    Figure JPOXMLDOC01-appb-C000001

    (式中、Rは炭素原子数2~5の直鎖状又は分岐状アルキレン基、Rは水素原子又はメチル基であり、lは繰り返し単位で1~10の整数である。)
    で表される置換基を有することを特徴とする(メタ)アクリレート樹脂。
    In addition to having a binaphthalene skeleton in the molecular structure, as a substituent on the aromatic nucleus of the binaphthalene skeleton, the following structural formula (A)
    Figure JPOXMLDOC01-appb-C000001

    (Wherein R 1 is a linear or branched alkylene group having 2 to 5 carbon atoms, R 2 is a hydrogen atom or a methyl group, and l is an integer of 1 to 10 as a repeating unit.)
    (Meth) acrylate resin characterized by having the substituent represented by these.
  2. 下記一般式(1)
    Figure JPOXMLDOC01-appb-C000002

    (式中、X~X12は、各々独立的に水素原子、ハロゲン原子、炭素原子数1~10の炭化水素基、又は炭素原子数1~10のアルコキシ基、A、Aは炭素原子数2~5の直鎖状又は分岐状アルキレン基、Y、Yは水酸基、アクリロイルオキシ基、又はメタクロイルオキシ基であり、n及びmは繰り返し単位であって、それぞれ1~10の整数である。但し、Y及びYの少なくとも一方はアクリロイルオキシ基又はメタクロイルオキシ基である。)
    で表される分子構造を有する請求項1記載の(メタ)アクリレート樹脂。
    The following general formula (1)
    Figure JPOXMLDOC01-appb-C000002

    (Wherein X 1 to X 12 are each independently a hydrogen atom, a halogen atom, a hydrocarbon group having 1 to 10 carbon atoms, or an alkoxy group having 1 to 10 carbon atoms, and A 1 and A 2 are carbon atoms. A linear or branched alkylene group having 2 to 5 atoms, Y 1 and Y 2 are a hydroxyl group, an acryloyloxy group, or a methacryloyloxy group, n and m are repeating units, each having 1 to 10 (However, at least one of Y 1 and Y 2 is an acryloyloxy group or a methacryloyloxy group.)
    The (meth) acrylate resin of Claim 1 which has the molecular structure represented by these.
  3. 25℃において液状である請求項1又は2記載の(メタ)アクリレート樹脂。 The (meth) acrylate resin according to claim 1 or 2, which is liquid at 25 ° C.
  4. 前記(メタ)アクリレート樹脂が、前記一般式(1)で表される種々の化合物の混合物であって、かつ、前記一般式(1)のY及びYにおける、水酸基(y1)と、アクリロイルオキシ基又はメタクロイルオキシ基(y2)との割合がモル比率(y2/y1)で75/25~99/1の範囲である請求項2記載の(メタ)アクリレート樹脂。 The (meth) acrylate resin is a mixture of various compounds represented by the general formula (1), and the hydroxyl group (y1) and acryloyl in Y 1 and Y 2 of the general formula (1) The (meth) acrylate resin according to claim 2, wherein the ratio with the oxy group or methacryloyloxy group (y2) is in the range of 75/25 to 99/1 in terms of molar ratio (y2 / y1).
  5. 前記(メタ)アクリレート樹脂が、前記一般式(1)で表される種々の化合物の混合物であって、かつ、前記構造式(1)のA及びAが、それぞれ独立的にエチレン基(a1)及び炭素原子数3~5のアルキレン基(a2)からなる群から選択されるものであり、かつ、前記エチレン基(a1)と前記炭素原子数3~5のアルキレン基(a2)とのモル比率(a1/a2)が50/50~98/2の範囲となるものである請求項2記載の(メタ)アクリレート樹脂。 The (meth) acrylate resin is a mixture of various compounds represented by the general formula (1), and A 1 and A 2 in the structural formula (1) are each independently an ethylene group ( a1) and an alkylene group having 3 to 5 carbon atoms (a2), and the ethylene group (a1) and the alkylene group having 3 to 5 carbon atoms (a2) The (meth) acrylate resin according to claim 2, wherein the molar ratio (a1 / a2) is in the range of 50/50 to 98/2.
  6. 25℃における粘度が3000Pa・s以下のものである請求項1~5の何れか1つに記載の(メタ)アクリレート樹脂。 The (meth) acrylate resin according to any one of claims 1 to 5, which has a viscosity at 25 ° C of 3000 Pa · s or less.
  7. ビナフトール類と、アルキレンオキサイド、ハロゲノアルカノール、又はアルキレンカーボネートとを反応させて水酸基を有する化合物を得、次いで、得られた水酸基を有する反応生成物に(メタ)アクリレート化剤を反応させることを特徴とする(メタ)アクリレート樹脂の製造方法。 It is characterized by reacting binaphthols with alkylene oxide, halogenoalkanol, or alkylene carbonate to obtain a compound having a hydroxyl group, and then reacting the resulting reaction product having a hydroxyl group with a (meth) acrylate agent. A method for producing (meth) acrylate resin.
  8. 請求項1~6の何れか1つに記載の(メタ)アクリレート樹脂(A)とラジカル重合開始剤(B)とを必須成分とすることを特徴とする硬化性樹脂組成物。 A curable resin composition comprising the (meth) acrylate resin (A) according to any one of claims 1 to 6 and a radical polymerization initiator (B) as essential components.
  9. 前記(メタ)アクリレート樹脂(A)及び前記ラジカル重合開始剤(B)に加え、更にラジカル重合性単量体(C)を含む請求項8記載の硬化性樹脂組成物。 The curable resin composition according to claim 8, further comprising a radical polymerizable monomer (C) in addition to the (meth) acrylate resin (A) and the radical polymerization initiator (B).
  10. 請求項9記載の硬化性樹脂組成物を活性エネルギー線照射又は加熱により硬化させてなる硬化物。 A cured product obtained by curing the curable resin composition according to claim 9 by irradiation with active energy rays or heating.
  11. 請求項9記載の硬化性樹脂組成物を成形、硬化させてなるプラスチックレンズ。 A plastic lens obtained by molding and curing the curable resin composition according to claim 9.
PCT/JP2010/050308 2009-02-18 2010-01-14 (meth)acrylate resin and process for producing same, and curable resin composition, cured object obtained therefrom, and plastic lens WO2010095475A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011500542A JP4803331B2 (en) 2009-02-18 2010-01-14 (Meth) acrylate resin, production method thereof, curable resin composition, cured product thereof, and plastic lens

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009035163 2009-02-18
JP2009-035163 2009-02-18
JP2009-148580 2009-06-23
JP2009148580 2009-06-23

Publications (1)

Publication Number Publication Date
WO2010095475A1 true WO2010095475A1 (en) 2010-08-26

Family

ID=42633762

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/050308 WO2010095475A1 (en) 2009-02-18 2010-01-14 (meth)acrylate resin and process for producing same, and curable resin composition, cured object obtained therefrom, and plastic lens

Country Status (3)

Country Link
JP (1) JP4803331B2 (en)
TW (1) TW201041846A (en)
WO (1) WO2010095475A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013167837A (en) * 2012-02-17 2013-08-29 Nippon Kayaku Co Ltd Energy beam curable resin composition for hard coat film, and hard coat film (2)
JP2013166900A (en) * 2012-02-17 2013-08-29 Nippon Kayaku Co Ltd Energy beam curable resin composition for hard coat film, and hard coat film (1)
CN107001246A (en) * 2014-12-12 2017-08-01 科思创德国股份有限公司 It is used as naphthyl acrylate of the photopolymer with writing monomer
US10355155B2 (en) 2014-01-06 2019-07-16 Kuraray Co., Ltd. Method of producing glass base material laminate, method of producing optical element, optical element, and concentrating photovoltaic device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2664635B1 (en) * 2011-06-13 2015-05-20 DIC Corporation Radically polymerizable composition, cured product, and plastic lens
WO2018051713A1 (en) 2016-09-15 2018-03-22 富士フイルム株式会社 Curable composition, cured material, optical member, lens, and compound

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4906713A (en) * 1989-01-31 1990-03-06 E. I. Du Pont De Nemours And Company "Acrylic" ladder polymers
JP2001066431A (en) * 1999-08-25 2001-03-16 Nippon Mitsubishi Oil Corp Manufacturing method of polarization diffraction element
JP2005283632A (en) * 2004-03-26 2005-10-13 Fuji Photo Film Co Ltd Polymerizable composition and negative image recording material
JP2008116931A (en) * 2006-10-12 2008-05-22 Merck Patent Gmbh Liquid crystal display
JP2008201972A (en) * 2007-02-22 2008-09-04 Kyocera Chemical Corp Highly refractive material and optical transmission article using the same
JP2008209533A (en) * 2007-02-26 2008-09-11 Jsr Corp Radiation-sensitive composition for forming colored layer, color filter, and color liquid crystal display element
JP2010018753A (en) * 2008-07-14 2010-01-28 Nippon Kayaku Co Ltd (meth)acrylate compound, active energy ray-curable resin composition containing the same, and cured object thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10360772A1 (en) * 2003-12-23 2005-07-28 Oxeno Olefinchemie Gmbh Process for the preparation of organoacyl phosphites
DE10360771A1 (en) * 2003-12-23 2005-07-28 Oxeno Olefinchemie Gmbh Process for the preparation of trivalent organophosphorus compounds

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4906713A (en) * 1989-01-31 1990-03-06 E. I. Du Pont De Nemours And Company "Acrylic" ladder polymers
JP2001066431A (en) * 1999-08-25 2001-03-16 Nippon Mitsubishi Oil Corp Manufacturing method of polarization diffraction element
JP2005283632A (en) * 2004-03-26 2005-10-13 Fuji Photo Film Co Ltd Polymerizable composition and negative image recording material
JP2008116931A (en) * 2006-10-12 2008-05-22 Merck Patent Gmbh Liquid crystal display
JP2008201972A (en) * 2007-02-22 2008-09-04 Kyocera Chemical Corp Highly refractive material and optical transmission article using the same
JP2008209533A (en) * 2007-02-26 2008-09-11 Jsr Corp Radiation-sensitive composition for forming colored layer, color filter, and color liquid crystal display element
JP2010018753A (en) * 2008-07-14 2010-01-28 Nippon Kayaku Co Ltd (meth)acrylate compound, active energy ray-curable resin composition containing the same, and cured object thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013167837A (en) * 2012-02-17 2013-08-29 Nippon Kayaku Co Ltd Energy beam curable resin composition for hard coat film, and hard coat film (2)
JP2013166900A (en) * 2012-02-17 2013-08-29 Nippon Kayaku Co Ltd Energy beam curable resin composition for hard coat film, and hard coat film (1)
US10355155B2 (en) 2014-01-06 2019-07-16 Kuraray Co., Ltd. Method of producing glass base material laminate, method of producing optical element, optical element, and concentrating photovoltaic device
CN107001246A (en) * 2014-12-12 2017-08-01 科思创德国股份有限公司 It is used as naphthyl acrylate of the photopolymer with writing monomer
JP2018501224A (en) * 2014-12-12 2018-01-18 コベストロ、ドイチュラント、アクチエンゲゼルシャフトCovestro Deutschland Ag Naphthyl acrylate as a writing monomer for photopolymers

Also Published As

Publication number Publication date
JP4803331B2 (en) 2011-10-26
JPWO2010095475A1 (en) 2012-08-23
TW201041846A (en) 2010-12-01

Similar Documents

Publication Publication Date Title
KR101798206B1 (en) Curable resin composition and cured product thereof
JP5509880B2 (en) Curable resin composition, cured product thereof, and plastic lens
CN105026444B (en) Curable composition, transparent heat-resistant material and use thereof
TWI439522B (en) Radical-polymerizable composition, cured article and plastic lens
CN101965373A (en) Polyfunctional vinyl aromatic copolymer, process for producing the same, and resin composition
JP5532293B2 (en) Curable resin composition, cured product thereof, and plastic lens
JP4803331B2 (en) (Meth) acrylate resin, production method thereof, curable resin composition, cured product thereof, and plastic lens
JP5625281B2 (en) Curable resin composition, cured product thereof, and plastic lens
JP6381318B2 (en) Active energy ray-curable resin composition for optical lenses
WO2007145241A1 (en) Polymerization accelerator, curable composition, cured product and method for producing thiol compound
JP5625280B2 (en) Curable resin composition, cured product thereof, and plastic lens
JP2013028662A (en) Energy ray-curable resin composition for optical lens sheet and cured product using the same
JP5981750B2 (en) Hard coat resin composition, cured product thereof, and method for producing cured product
JP2011184623A (en) Curable resin composition, cured product thereof and plastic lens
JP2002138131A (en) Epoxy (meth) acrylate, resin composition using the epoxy (meth) acrylate, and cured product thereof
JP2011157437A (en) Curable resin composition, cured product thereof, and plastic lens
JP5509719B2 (en) Curable resin composition, cured product thereof, and plastic lens
CN107531831A (en) (methyl) acrylate and optical component
JP4870374B2 (en) Curable composition for optical parts
JP6346739B2 (en) Acrylate compound, acrylic resin composition and cured product thereof, and optical material
JP3804442B2 (en) Polymerizable composition and optical plastic member
JP2011184588A (en) Photocurable type resin composition, and film light-guiding plate by using the same
JP2009096862A (en) Polymerizable compound and polymer
JP2009114374A (en) Composition and hardened product
JP4255392B2 (en) (Meth) acrylic acid and / or esters thereof, photocurable composition containing the same, and cured product thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10743604

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011500542

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10743604

Country of ref document: EP

Kind code of ref document: A1