WO2010095202A1 - Polarization controller, interferometer, and optical image measuring apparauts - Google Patents
Polarization controller, interferometer, and optical image measuring apparauts Download PDFInfo
- Publication number
- WO2010095202A1 WO2010095202A1 PCT/JP2009/006712 JP2009006712W WO2010095202A1 WO 2010095202 A1 WO2010095202 A1 WO 2010095202A1 JP 2009006712 W JP2009006712 W JP 2009006712W WO 2010095202 A1 WO2010095202 A1 WO 2010095202A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- optical fiber
- light
- polarization controller
- pair
- pressure
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B9/00—Measuring instruments characterised by the use of optical techniques
- G01B9/02—Interferometers
- G01B9/0209—Low-coherence interferometers
- G01B9/02091—Tomographic interferometers, e.g. based on optical coherence
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B2290/00—Aspects of interferometers not specifically covered by any group under G01B9/02
- G01B2290/70—Using polarization in the interferometer
Definitions
- the present invention relates to a polarization controller, an interferometer, and an optical image measurement device.
- the polarization controller according to the present invention changes the polarization state of light passing through the optical fiber by compressing the optical fiber by applying pressure.
- the interferometer according to the present invention is one to which this polarization controller is applied.
- the optical image measurement apparatus according to the present invention is one to which this interferometer is applied, and forms a tomographic image of an object to be measured using a light beam.
- optical image measurement technique that forms an image representing the surface form or internal form of an object to be measured using a light beam from a laser light source or the like has attracted attention. Since the optical image measurement technique does not have invasiveness to the human body like the X-ray CT apparatus, it is expected to be applied particularly in the medical field and the biological field.
- Patent Document 1 discloses an apparatus to which an optical image measurement technique is applied.
- the measuring arm scans an object with a rotary turning mirror (galvanomirror), a reference mirror is installed on the reference arm, and the intensity of the interference light of the light beam from the measuring arm and the reference arm is dispersed at the exit.
- An interferometer is provided for analysis by the instrument.
- the reference arm is configured to change the phase of the reference light beam stepwise by a discontinuous value.
- Patent Document 1 uses a so-called “Fourier Domain OCT (Fourier Domain Optical Coherence Tomography)” technique.
- a low-coherence beam is irradiated onto the object to be measured, the reflected light and the reference light are superimposed to generate interference light, and the spectral intensity distribution of the interference light is acquired and subjected to Fourier transform.
- This type of technique is also referred to as a spectral domain.
- the apparatus described in Patent Document 1 includes a galvanometer mirror that scans a light beam (signal light), thereby forming an image of a desired measurement target region of the object to be measured. Since this apparatus is configured to scan the light beam only in one direction (x direction) orthogonal to the z direction, the image formed by this apparatus is in the scanning direction (x direction) of the light beam. It becomes a two-dimensional tomogram in the depth direction (z direction) along.
- a plurality of horizontal two-dimensional tomographic images are formed by scanning signal light in the horizontal direction (x direction) and the vertical direction (y direction), and the measurement range is determined based on the plurality of tomographic images.
- a technique for acquiring and imaging three-dimensional tomographic information is disclosed. Examples of the three-dimensional imaging include a method of displaying a plurality of tomographic images side by side in a vertical direction (referred to as stack data) and a method of rendering a plurality of tomographic images to form a three-dimensional image. Conceivable.
- Patent Documents 3 and 4 disclose other types of OCT apparatuses.
- Patent Document 3 scans the wavelength of light applied to an object to be measured, acquires a spectral intensity distribution based on interference light obtained by superimposing reflected light of each wavelength and reference light,
- an OCT apparatus for imaging the form of an object to be measured by performing Fourier transform on the object is described.
- Such an OCT apparatus is called a swept source type.
- Patent Document 4 the traveling direction of light is obtained by irradiating the object to be measured with light having a predetermined beam diameter, and analyzing the component of interference light obtained by superimposing the reflected light and the reference light.
- An OCT apparatus for forming an image of an object to be measured in a cross-section orthogonal to is described. Such an OCT apparatus is called a full-field type or an en-face type.
- Patent Document 5 discloses a configuration in which the OCT technique is applied to the ophthalmic field. Prior to the application of the OCT apparatus to the ophthalmology field, a fundus observation apparatus such as a fundus camera was used (see, for example, Patent Document 6).
- the fundus photographing apparatus using the OCT technology has an advantage that a tomographic image and a three-dimensional image of the fundus can be acquired as compared with a fundus camera that only photographs the fundus from the front. Therefore, it is expected to contribute to improvement of diagnostic accuracy and early detection of lesions.
- a conventional optical image measurement device uses a polarization controller that matches the polarization states of two lights (signal light and reference light) that are superimposed to generate interference light.
- a polarization controller that matches the polarization states of two lights (signal light and reference light) that are superimposed to generate interference light.
- polarization controllers There are various types of polarization controllers. For example, there are a type using a polarizer, a type using a wave plate, a type compressing an optical fiber, a type vibrating an optical fiber, and a type using an electric field or a magnetic field. For application to an optical image measurement device, a type that compresses an optical fiber is considered desirable in view of size and performance.
- a compression type polarization controller for example, one disclosed in Patent Document 8 is known.
- the polarization controller fixes both ends of the optical fiber and changes the polarization state of the light passing through the optical fiber by compressing the central portion of the optical fiber with a pair of blocks.
- the optical fiber is configured to be rotatable so that the compression direction of the optical fiber can be changed.
- the conventional polarization controller is configured to apply pressure by sandwiching an optical fiber between a pair of blocks.
- the conventional polarization controller is configured to sandwich a linear optical fiber between a pair of blocks having a two-dimensional contact surface.
- the optical fiber When the optical fiber is compressed with such a structure, the optical fiber may move or rotate due to pressure. In particular, when the pressure is increased, the risk is increased.
- it is difficult to apply pressure uniformly to the optical fiber.
- the present invention has been made in order to solve such a problem, and an object of the present invention is to stably apply pressure to an optical fiber and suppress temporal variation of the polarization state of light passing through the optical fiber. It is to provide a technology that can.
- the invention according to claim 1 includes a pressure application unit that applies pressure to the optical fiber, and the polarization state of light passing through the optical fiber is changed by the applied pressure.
- a polarization controller to be changed wherein the pressure application unit is provided at a position facing the radial direction of the optical fiber, and has a pair of contact members each having a flat surface portion that contacts the side surface of the optical fiber, A member disposed between the pair of flat portions and having a thickness substantially equal to the diameter of the optical fiber, and the pair of contact members are relatively moved so as to change a distance between the pair of flat portions.
- a moving mechanism for applying the pressure is provided at a position facing the radial direction of the optical fiber, and has a pair of contact members each having a flat surface portion that contacts the side surface of the optical fiber, A member disposed between the pair of flat portions and having a thickness substantially equal to the diameter of the optical fiber, and the pair of contact members are relatively moved so as to change a distance between the pair of flat portions.
- the invention according to claim 2 is the polarization controller according to claim 1, further comprising a rotation mechanism that rotates the pressure application unit with the axial direction of the optical fiber as a rotation axis. To do.
- the invention according to claim 3 is the polarization controller according to claim 1 or 2, wherein the pressure application unit is a pair of contact members that are relatively moved by the moving mechanism. It further comprises a fixing mechanism for fixing the position.
- the invention according to claim 4 is the polarization controller according to any one of claims 1 to 3, wherein the member includes a linear member having a diameter substantially equal to that of the optical fiber. It is characterized by that.
- the invention according to claim 5 is the polarization controller according to claim 4, wherein the linear member is an optical fiber having the same form as the optical fiber.
- the invention according to claim 6 is the polarization controller according to claim 4 or 5, wherein the pressure application unit further includes a holding unit for holding the linear member. To do.
- the invention according to claim 7 is the polarization controller according to any one of claims 1 to 3, wherein the member is a position other than an arrangement position of the optical fiber in the pair of plane portions. It includes a film-like member provided at a location and having a thickness substantially equal to that of the optical fiber.
- the invention according to claim 8 is a first light guide including a first optical fiber, a second light guide including a second optical fiber, the first optical fiber and / or the first optical fiber.
- a polarization controller that changes the polarization state of light passing through the optical fiber by applying pressure to the second optical fiber, and the light guided by the first light guide and the second light guide
- An interferometer that generates interference light by superimposing the light guided by the optical fiber, wherein the polarization controller is provided at a position facing the radial direction of the optical fiber and is in contact with a side surface of the optical fiber
- a pair of abutting members each having a portion, a member disposed between the pair of plane portions and having a thickness substantially equal to the diameter of the optical fiber, and the interval between the pair of plane portions is changed.
- the pair of contact members are moved relative to each other to Comprising a moving mechanism for applying a force, and characterized in that.
- the invention according to claim 9 includes a light source that outputs low-coherence light, a dividing unit that divides the output low-coherence light into signal light and reference light, and a first optical fiber, A first light guide path that guides the signal light to irradiate the object to be measured, guides the signal light that has passed through the object to be measured, and a second optical fiber, and guides the reference light. Pressure is applied to the second light guide path that irradiates the reference object and guides the reference light via the reference object, and the first optical fiber and / or the second optical fiber. A polarization controller that changes a polarization state of light passing through the optical fiber, the signal light guided by the first light guide path through the object to be measured, and the second light through the reference object.
- the reference light guided by the light guide path is superimposed and dried.
- the polarization controller is provided at a position facing the radial direction of the optical fiber, and has a pair of abutting members each having a flat portion that abuts against a side surface of the optical fiber.
- the member disposed between the pair of flat portions and having a thickness substantially equal to the diameter of the optical fiber and the pair of contact members are relatively moved so as to change a distance between the pair of flat portions. And a moving mechanism for applying the pressure.
- the member having a thickness substantially equal to that of the optical fiber is disposed between the pair of plane portions together with the optical fiber, so that the pressure is compared with the conventional configuration in which only the optical fiber is sandwiched.
- the posture of the abutting member in a state where the pressure is applied is stabilized, and the pressure can be stably applied to the optical fiber.
- the interferometer according to the present invention includes the polarization controller according to the present invention, it is possible to suppress the temporal variation of the polarization state of the light passing through the optical fiber. Thereby, suitable interference light can be stably obtained.
- the optical image measurement device includes the interferometer according to the present invention, suitable interference light can be obtained stably. Thereby, a suitable tomographic image can be stably obtained.
- 1 Fundus observation device (optical image measurement device) 1A Fundus camera unit 141 Scan unit 150 OCT unit 160 Low coherence light source 161, 163, 164, 165 Optical fiber 162 Optical coupler 174 Reference mirror 180 Spectrometer 184 CCD 200 arithmetic control unit 210 control unit 220 image forming unit 230 image processing unit 240 display unit 250 operation unit 300, 400 polarization controller 1000, 4000 polarization controller 1010 main body unit 1020 rotation unit 1021 plane unit 1022 sub-fiber holding unit 1030 block 1032 plane unit 1040 Spring 1080 Adjustment screw fixing portion 1100 Adjustment screw 1120 Film member 2000 Optical fiber 3000 Sub fiber
- the polarization controller according to the present invention changes the polarization state of light passing through the optical fiber by compressing the optical fiber by applying pressure.
- the polarization state includes various physical quantities and expressions representing the polarization state, such as the polarization direction and the polarization amount, and the type of polarization (linearly polarized light, circularly polarized light, elliptically polarized light, etc.).
- the first embodiment is configured to stably apply pressure to an optical fiber by compressing a linear member having a diameter substantially equal to that of the optical fiber together with the optical fiber.
- 2nd Embodiment is comprised so that a pressure may be stably provided with respect to an optical fiber by compressing the film-like member of thickness substantially equal to an optical fiber with an optical fiber.
- the polarization controller 1000 changes the polarization state of light passing through the optical fiber 2000.
- the optical fiber 2000 is held by the main body 1010.
- the main body 1010 is formed in a substantially cylindrical shape. A central portion of the main body portion 1010 is cut away, and a planar mounting portion 1011 is formed.
- the rotating unit 1020 is mounted on the mounting unit 1011.
- holding portions 1012 that hold the rotating portion 1020 are formed at both ends of the mounting portion 1011. These holding units 1012 hold both ends of the rotating unit 1020.
- the rotating part 1020 is formed in a substantially cylindrical shape.
- the holding unit 1012 holds the rotating unit 1020 so that the cylindrical axis of the rotating unit 1020 matches the cylindrical axis of the main body unit 1010.
- An end portion 1013 is formed outside each holding portion 1012. Each end portion 1013 is formed so as to protrude outward from the holding portion 1012, and acts to guide the optical fiber 2000.
- a gap 1014 is formed along the axial direction of the main body portion 1010 on the upper side surface (side surface on the connecting portion 1050 side) of each holding portion 1012 and each end portion 1013.
- Each holding portion 1012 is formed with a hollow portion for fitting the end portion of the rotating portion 1020.
- the hollow portion is formed in a cylindrical shape with the cylindrical axis of the main body portion 1010 as an axis.
- the gap 1014 of each holding portion 1012 is formed from the side surface to the hollow portion.
- Each end 1013 is formed with a hole 1015 in which the optical fiber 2000 is disposed.
- the hole 1015 forms a cylindrical cavity.
- the hole 1015 is formed so that its cylindrical axis is parallel to the cylindrical axis of the main body 1010.
- the cylindrical axis of the hole 1015 is substantially coincident with the cylindrical axis of the main body 1010. That is, the hole 1015 is formed slightly eccentric with respect to the main body 1010. A gap 1014 at the end 1013 is formed from the side surface of the end 1013 to the hole 1015.
- a pair of screws 1016 for fixing / releasing the rotating part 1020 are provided on both sides of the gap 1014.
- Each screw 1016 is screwed into a screw hole (not shown) penetrating from the side surface of the holding portion 1012 to the hollow portion.
- the tip of each screw 1016 enters the hollow portion from the screw hole and comes into contact with the side surface of the rotating portion 1020.
- the pressure applied to the rotating portion 1020 by the screw 1016 increases and the rotating portion 1020 is fixed.
- the pressure applied by the screw 1016 to the rotating portion 1020 decreases, and the rotating portion 1020 becomes rotatable.
- the mechanism for rotating the rotating unit 1020 with respect to the main body unit 1010 may be any conventional mechanism such as Patent Document 8 described above.
- the rotating part 1020 is formed in a substantially cylindrical shape as described above, and both end parts thereof are held by the holding part 1012. Similar to the main body portion 1010, the rotating portion 1020 is notched at the center, and a flat portion 1021 on which the optical fiber 2000 and the sub-fiber 3000 are placed is formed. The flat portion 1021 is formed so that the normal direction thereof faces upward (the connecting portion 1050 side).
- the optical fiber 2000 is disposed so as to be substantially along the cylindrical axis of the rotating unit 1020.
- the sub fiber 3000 is disposed at a position away from the cylindrical axis.
- the sub-fiber 3000 may be arranged in parallel with the optical fiber 2000 or may be arranged non-parallel.
- the sub-fiber 3000 has a diameter substantially equal to that of the optical fiber 2000.
- a fiber having the same diameter as the optical fiber 2000 is used as the sub-fiber 3000, for example, a piece of an optical fiber of the same lot as the optical fiber 2000 is used as the sub-fiber 3000.
- the sub fiber 3000 does not need to be an optical fiber, and may be a linear member made of an arbitrary material having a diameter substantially equal to that of the optical fiber 2000.
- Sub-fiber holding parts 1022 for holding the sub-fiber 3000 are provided at both ends of the flat part 1021.
- Each sub-fiber holding portion 1022 is formed with a cut portion 1023 from the top to the bottom.
- Each notch 1023 has a width substantially equal to the diameter of the sub-fiber 3000.
- the end portion of the sub fiber 3000 is inserted into the cut portion 1023 from above.
- the cut portion 1023 sandwiches the end portion. In this way, the sub-fiber holding unit 1022 holds the sub-fiber 3000.
- a connecting hole 1024 is formed in a part of the rotating part 1020 outside the flat part 1021. Each connecting hole 1024 is open upward. A screw thread is formed on the peripheral surface of each connection hole 1024. That is, the connection hole 1024 is a female screw. The lower end portion of the connection screw 1060 is screwed into each connection hole 1024. Thereby, the rotation part 1020 and the connection part 1050 are connected.
- a cylindrical tube portion 1070 extending upward is joined to the connecting portion 1050.
- a cylindrical engaging member 1090 is joined to the inside of the cylindrical portion 1070.
- a thread is formed on the inner peripheral surface of the engaging member 1090.
- An engaging portion 1102 of the adjusting screw 1100 is screwed into the engaging member 1090.
- the adjustment screw 1100 and the engagement member 1090 have a relationship between a male screw and a female screw.
- the engaging portion 1102 is also rotated integrally, whereby the adjusting screw 1100 moves up and down in the engaging member 1090.
- a disc-shaped spring support member 1110 is provided at the lower end of the engaging portion 1102 of the adjusting screw 1100 (the end opposite to the head 1101).
- the upper surface of the spring support member 1110 is in contact with the lower end of the engaging portion 1102, and the lower surface is in contact with the upper end of the spring 1040. Note that these contact portions may simply be in contact with each other, or may be joined by an adhesive or the like.
- the spring 1040 is arranged to expand and contract in the vertical direction.
- the lower end of the spring 1040 is fitted into a recess 1031 formed on the upper surface of the block 1030.
- the adjustment screw 1100 is rotated and moved up and down, the block 1030 moves up and down together with the spring support member 1110.
- the lower surface (planar portion 1032) of the block 1030 is placed on the planar portion 1021 of the rotating portion 1020.
- the optical fiber 2000 and the sub-fiber 3000 are brought into contact with each other. Furthermore, the pressure applied to the optical fiber 2000 and the sub-fiber 3000 can be adjusted by adjusting the vertical position of the block 1030 with the adjusting screw 1100 (see FIG. 3A).
- the rotating unit 1020 when the rotating unit 1020 is rotated with respect to the main body unit 1010 in a state where the rotating unit 1020 and the connecting unit 1050 are connected, the block 1030, the spring 1040, the connecting unit 1050, the tube unit 1070, and the adjustment screw fixing unit 1080.
- the engaging member 1090 and the adjusting screw 1100 rotate integrally with the rotating unit 1020 (see FIG. 3B).
- the rotation axis of the rotation unit 1020 is the cylindrical axis C of the main body unit 1010 and the rotation unit 1020.
- the adjustment screw fixing portion 1080 is a nut that is rotatably provided around the cylindrical axis of the cylinder portion 1070, and is configured to tighten the engaging member 1090 inward when rotated in a predetermined direction. Yes. When the adjustment screw fixing portion 1080 is rotated in the reverse direction, the fastening with respect to the engaging member 1090 is loosened.
- the optical fiber 2000 and the sub-fiber 3000 are installed.
- the optical fiber 2000 is installed as follows, for example.
- the tip of the optical fiber 2000 is inserted from one hole 1015 and is taken out from the other hole 1015 via the flat surface 1021 of the rotating part 1020. It is also possible to install the optical fiber 2000 on the flat surface 1021 through the gap 1014 (this installation method is more suitable when using a relatively long optical fiber 2000).
- the sub-fiber 3000 is installed as follows. The end portions of the sub-fibers 3000 are inserted and held in the cut portions 1023 of both the sub-fiber holding portions 1022. Either the optical fiber 2000 or the sub-fiber 3000 may be installed first.
- the rotating part 1020 and the connecting part 1050 are connected by screwing the connecting screw 1060 into the connecting hole 1024.
- the rotational position of the rotating unit 1020 is changed, or light is adjusted with the adjusting screw 1100.
- a rotational position and pressure that can achieve a desired polarization state (polarization direction, polarization amount, etc.) are found.
- the quality of the polarization state can be confirmed using a device such as a polarization analyzer.
- the quality of the polarization state can be confirmed by, for example, analyzing the interference component of the generated interference light.
- the polarization controller 1000 is applied to an optical image measurement device, the quality of the polarization state can be confirmed by analyzing interference light or analyzing or visually checking the interference image, as will be described later.
- the adjustment screw fixing unit 1080 is rotated to fix the position of the adjustment screw 1100, and the screw 1016 is rotated to fix the rotation unit 1020.
- the position of the adjustment screw 1100 can be fixed by any mechanism other than the adjustment screw fixing portion 1080.
- a lock mechanism other than the screw 1016 can be provided to restrict the rotation of the rotating unit 1020 and the like.
- the polarization controller 1000 is a compression type polarization controller that changes the polarization state of light passing through the optical fiber 2000 by applying pressure to the optical fiber 2000.
- the polarization controller 1000 causes the planar portion 1021 of the rotating portion 1020 and the planar portion 1032 of the block 1030 to contact the optical fiber 2000, and moves the rotating portion 1020 and the block 1030 relative to each other by the adjustment screw 1100. Pressure is applied to the optical fiber 2000 by changing the distance between the portion 1021 and the flat portion 1032.
- the polarization controller 1000 includes a sub-fiber 3000 that is disposed between the flat portion 1021 and the flat portion 1032 and has a diameter substantially equal to that of the optical fiber 2000.
- a polarization controller 1000 since a plurality of members (the optical fiber 2000 and the sub fiber 3000) are interposed between the rotating unit 1020 and the block 1030, a conventional configuration in which a single optical fiber is sandwiched. In comparison, it is possible to apply pressure to the optical fiber 2000 while the planar portion 1021 and the planar portion 1032 are kept parallel. Thereby, pressure can be applied uniformly from the direction orthogonal to the axial direction of the optical fiber 2000.
- the presence of the sub-fiber 3000 stabilizes the posture of the block 1030 in a state where pressure is applied, so that the pressure can be stably applied to the optical fiber 2000. As a result, the temporal change in the polarization state of the light passing through the optical fiber 2000 can be suppressed.
- the rotating unit 1020 and the block 1030 are an example of “a pair of contact members” of the present invention.
- the sub fiber 3000 is an example of the “linear member” in the present invention.
- the “movement mechanism” of the present invention includes an adjustment screw 1100, an engagement member 1090, and a spring 1040.
- the “pressure applying unit” of the present invention includes a block 1030, a sub-fiber 3000, an adjusting screw 1100, an engaging member 1090, and a spring 1040.
- the rotation unit 1020 of the polarization controller 1000 is provided with a mechanism for rotating the block 1030, the sub fiber 3000, the adjustment screw 1100, the engagement member 1090, and the spring 1040 with the axial direction of the optical fiber 2000 as the rotation axis.
- This mechanism is an example of the “rotating mechanism” of the present invention, and includes a holding portion 1012 and a screw 1016.
- pressure can be applied to the optical fiber 2000 from various directions, and the degree of freedom in adjusting the polarization state is increased. For example, the polarization direction of light passing through the optical fiber 2000 can be adjusted.
- the pressure application unit of the polarization controller 1000 is provided with an adjustment screw fixing unit 1080 that fixes the position of the block 1030 moved by the adjustment screw 1100 or the like.
- the adjustment screw fixing portion 1080 is an example of the “fixing mechanism” of the present invention.
- the characteristic of the polarization controller 1000 according to this embodiment is that the sub-fiber 3000 is sandwiched together with the optical fiber 2000 as described above. With such a configuration, the pressure applied from the block 1030 is distributed between the pressure applied to the optical fiber 2000 and the pressure applied to the sub-fiber 3000.
- the axis of the spring 1040 (the central axis of the spiral spring 1040) is located between the optical fiber 2000 and the sub-fiber 3000 (see FIG. 3). In this case, half of the pressure applied from the block 1030 is applied to the optical fiber 2000.
- the pressure applied to the optical fiber 2000 with respect to the amount of rotation of the adjusting screw 1100 decreases, and as a result, the amount of change in the polarization state decreases, so that the polarization state can be finely adjusted.
- the pressure application unit of the polarization controller 1000 is provided with a sub-fiber holding unit 1022 that holds the sub-fiber 3000.
- the sub-fiber holding unit 1022 is an example of the “holding unit” in the present invention.
- the axis of the spring 1040 is arranged between the optical fiber 2000 and the sub-fiber 3000.
- the axis A of the spring 1040 is arranged at a position deviated from the middle between the optical fiber 2000 and the sub-fiber 3000. It may be arranged.
- the position of the concave portion of the block 1030 may be changed. As an example, as shown in FIG. 4, it is possible to arrange the axis A closer to the optical fiber 2000 by forming a recess 1033 closer to the optical fiber 2000. On the contrary, it is possible to arrange the axis A closer to the sub-fiber 3000 by forming a recess near the sub-fiber 3000. In consideration of the collapse of the posture of the block 1030 during application of pressure, it may not be desirable to form a recess at a position greatly deviated from the intermediate position.
- the number of sub-fibers 3000 can be arbitrarily selected. That is, it is possible to install one or more arbitrary numbers of sub-fibers 3000.
- the amount of change in the polarization state by the adjusting screw 1100 may be adjusted by providing two or more springs.
- the sub-fiber 3000 is prevented from dropping by the sub-fiber holding unit 1022 having the notch 1023, but the same effect may be obtained with any other configuration.
- the sub-fiber by forming a groove along the sub-fiber placement position of the flat surface portion 1021 of the rotating unit 1020 and inserting the sub-fiber into this groove. It is desirable that the depth of the groove be slightly shallower than the diameter of the sub-fiber.
- This groove is an example of the “holding portion” of the present invention.
- the interval between the flat surface portion 1021 and the flat surface portion 1032 is changed by moving the block 1030 from above with respect to the rotating portion 1020.
- the present invention is not limited to this. .
- the distance between the flat portions may be changed by configuring both of the pair of abutting members that abut on the optical fiber to be movable.
- a linear member having a material or structure different from that of the optical fiber 2000 can be used as appropriate.
- the diameter of the linear member is preferably substantially equal to that of the optical fiber 2000.
- the rotation mechanism and the fixing mechanism according to the present invention are not limited to those of the above-described embodiment. If the rotation mechanism acts so as to integrally rotate the pair of contact members, a member having a thickness substantially equal to the diameter of the optical fiber, and the moving mechanism, with the axial direction of the optical fiber as the rotation axis The configuration is unquestioned. In addition, the configuration of the fixing mechanism is not limited as long as it functions to fix the position of the pair of contact members relatively moved by the moving mechanism.
- a polarization controller having a configuration different from that of the first embodiment will be described.
- the feature of the polarization controller of this embodiment is that a film-like member having a thickness substantially equal to that of the optical fiber is used instead of the linear member (sub-fiber or the like).
- the polarization controller 4000 includes a rotating unit 1020, a block 1030, a spring 1040, and the like, similar to the polarization controller 1000 of the first embodiment.
- the block 1030 and the spring 1040 have the same configuration as in the first embodiment.
- a film-like member 1120 is provided on the plane part 1021 of the rotating part 1020 of the polarization controller 4000.
- the film member 1120 has a thickness substantially equal to the diameter of the optical fiber 2000.
- the film-like member 1120 is provided at a place other than the arrangement position of the optical fiber 2000.
- the film-like member 1120 is disposed so as to cover a portion other than the placement position of the optical fiber 2000 on the flat portion 1021. Note that at least a part of the film-like member 1120 needs to be disposed between the flat portion 1021 and the flat portion 1032.
- the membrane member 1120 has appropriate elasticity.
- the film-like member 1120 may be affixed on the flat part 1021 or may be provided on the flat part 1021 by any other method.
- film-like member 1120 is not limited to the rectangular shape as shown in FIG. 6, and may be of any shape.
- the polarization controller 4000 having such a configuration, since a plurality of members (the optical fiber 2000 and the film-like member 1120) are interposed between the rotating unit 1020 and the block 1030, a single optical fiber is sandwiched between them. Compared with the configuration of FIG. 9, it is possible to apply pressure to the optical fiber 2000 while the flat portion 1021 and the flat portion 1032 are kept parallel. Thereby, pressure can be applied uniformly from the direction orthogonal to the axial direction of the optical fiber 2000.
- the posture of the block 1030 in a state where pressure is applied is stabilized due to the presence of the film-like member 1120, the pressure can be stably applied to the optical fiber 2000. As a result, the temporal change in the polarization state of the light passing through the optical fiber 2000 can be suppressed.
- An optical image measurement apparatus is an apparatus that forms a tomographic image of an object to be measured using OCT technology.
- An image acquired by the OCT technique may be referred to as an OCT image.
- the optical image measurement device is equipped with the interferometer according to the present invention.
- an optical image measurement device (fundus observation device) that acquires a tomographic image of the fundus using a Fourier domain type technique
- a fundus oculi observation device having substantially the same configuration as the device disclosed in Patent Document 5 will be taken up. Even when other types of OCT technology are applied, the same operation and effect can be obtained by using the same configuration as that of this embodiment.
- the fundus oculi observation device 1 includes a fundus camera unit 1 ⁇ / b> A, an OCT unit 150, and an arithmetic control device 200.
- the fundus camera unit 1A has an optical system that is substantially the same as that of a conventional fundus camera.
- the fundus camera is a device that captures the surface of the fundus and acquires a two-dimensional image.
- the fundus camera is also used for photographing the fundus blood vessel.
- the OCT unit 150 stores an optical system for acquiring an OCT image of the fundus.
- the arithmetic and control unit 200 includes a computer that executes various arithmetic processes and control processes.
- connection line 152 One end of a connection line 152 is attached to the OCT unit 150.
- a connector 151 for connecting the connection line 152 to the retinal camera unit 1A is attached to the other end of the connection line 152.
- An optical fiber 152a is conducted inside the connection line 152 (see FIG. 8).
- the OCT unit 150 and the fundus camera unit 1A are optically connected via a connection line 152.
- the arithmetic and control unit 200 is connected to each of the fundus camera unit 1A and the OCT unit 150 via a communication line that transmits an electrical signal.
- the fundus camera unit 1A includes an optical system for forming a two-dimensional image representing the form of the fundus surface.
- the two-dimensional image of the fundus surface includes a color image and a monochrome image obtained by photographing the fundus surface, and further a fluorescent image (fluorescein fluorescent image, indocyanine green fluorescent image, etc.) and the like.
- the fundus camera unit 1A is provided with an illumination optical system 100 and a photographing optical system 120 as in the case of a conventional fundus camera.
- the illumination optical system 100 irradiates the fundus oculi Ef with illumination light.
- the imaging optical system 120 guides the fundus reflection light of the illumination light to the imaging devices 10 and 12.
- the imaging optical system 120 guides the signal light from the OCT unit 150 to the fundus oculi Ef and guides the signal light passing through the fundus oculi Ef to the OCT unit 150.
- the illumination optical system 100 includes an observation light source 101, a condenser lens 102, a photographing light source 103, a condenser lens 104, exciter filters 105 and 106, a ring translucent plate 107 (ring slit 107a), a mirror 108, as in a conventional fundus camera.
- An LCD (Liquid Crystal Display) 109, an illumination stop 110, a relay lens 111, a perforated mirror 112, and an objective lens 113 are included.
- the observation light source 101 outputs illumination light including a wavelength in the visible region in the range of about 400 nm to 700 nm, for example.
- the imaging light source 103 outputs illumination light including a near-infrared wavelength in the range of about 700 nm to 800 nm, for example. This near-infrared light is set shorter than the wavelength of light used in the OCT unit 150 (described later).
- the illumination light output from the observation light source 101 is a perforated mirror 112 via condenser lenses 102 and 104, (exciter filter 105 or 106) ring translucent plate 107, mirror 108, LCD 109, illumination diaphragm 110, and relay lens 111. To reach. Further, the illumination light is reflected by the perforated mirror 112 and enters the eye E through the objective lens 113 to illuminate the fundus oculi Ef. On the other hand, the illumination light output from the imaging light source 103 enters the eye E through the condenser lens 104 to the objective lens 113 and illuminates the fundus oculi Ef.
- the photographing optical system 120 includes an objective lens 113, a perforated mirror 112 (hole 112a), a photographing aperture 121, barrier filters 122 and 123, a variable power lens 124, a relay lens 125, a photographing lens 126, a dichroic mirror 134, and a field lens. (Field lens) 128, half mirror 135, relay lens 131, dichroic mirror 136, photographing lens 133, imaging device 10, reflection mirror 137, photographing lens 138, imaging device 12, lens 139 and LCD 140 are configured.
- the photographing optical system 120 has substantially the same configuration as a conventional fundus camera.
- the dichroic mirror 134 reflects the fundus reflection light (having a wavelength included in the range of about 400 nm to 800 nm) of the illumination light from the illumination optical system 100.
- the dichroic mirror 134 transmits the signal light LS (for example, having a wavelength included in the range of about 800 nm to 900 nm; see FIG. 8) from the OCT unit 150.
- the dichroic mirror 136 transmits the fundus reflection light of the illumination light from the observation light source 101.
- the dichroic mirror 136 reflects the fundus reflection light of the illumination light from the imaging light source 103.
- the LCD 140 displays a fixation target (internal fixation target) for fixing the eye E to be examined.
- a fixation target (internal fixation target) for fixing the eye E to be examined.
- Light from the LCD 140 is collected by the lens 139, reflected by the half mirror 135, and reflected by the dichroic mirror 136 via the field lens 128. Further, this light is incident on the eye E through the photographing lens 126, the relay lens 125, the variable power lens 124, the aperture mirror 112 (the aperture 112a thereof), the objective lens 113, and the like. Thereby, the internal fixation target is projected onto the fundus oculi Ef.
- the fixation direction of the eye E can be changed by changing the display position of the internal fixation target on the LCD 140.
- As the fixation direction of the eye E for example, as with a conventional fundus camera, a fixation direction for acquiring an image centered on the macular portion of the fundus oculi Ef or an image centered on the optic disc is acquired. And the fixation direction for acquiring an image centered on the fundus center between the macula and the optic disc.
- the imaging device 10 includes an imaging element 10a.
- the imaging device 10 can particularly detect light having a wavelength in the near infrared region. That is, the imaging device 10 functions as an infrared television camera that detects near-infrared light.
- the imaging device 10 detects near infrared light and outputs a video signal.
- the imaging element 10a is an arbitrary imaging element (area sensor) such as a CCD (Charge Coupled Devices) or a CMOS (Complementary Metal Oxide Semiconductor).
- the imaging device 12 includes an imaging element 12a.
- the imaging device 12 can particularly detect light having a wavelength in the visible region. That is, the imaging device 12 functions as a television camera that detects visible light.
- the imaging device 12 detects visible light and outputs a video signal.
- the image sensor 12a is configured by an arbitrary image sensor (area sensor), similarly to the image sensor 10a.
- the touch panel monitor 11 displays the fundus oculi image Ef ′ based on the video signals from the image sensors 10a and 12a.
- the video signal is sent to the arithmetic and control unit 200.
- the fundus camera unit 1A is provided with a scanning unit 141 and a lens 142.
- the scanning unit 141 scans the irradiation position of the signal light LS output from the OCT unit 150 to the fundus oculi Ef.
- the scanning unit 141 scans the signal light LS on the xy plane shown in FIG.
- the scanning unit 141 is provided with, for example, a galvanometer mirror for scanning in the x direction and a galvanometer mirror for scanning in the y direction.
- the OCT unit 150 includes an optical system similar to that of a conventional Fourier domain type OCT apparatus. That is, the OCT unit 150 divides low-coherence light into reference light and signal light, and generates interference light by causing the signal light passing through the fundus of the subject's eye to interfere with the reference light passing through the reference object ( An interferometer) and detection means for detecting the interference light. The detection result (detection signal) of the interference light is sent to the arithmetic and control unit 200.
- the low coherence light source 160 is a broadband light source that outputs a broadband low coherence light L0.
- a broadband light source for example, a super luminescent diode (SLD), a light emitting diode (LED), or the like can be used.
- the low coherence light source 160 is an example of the “light source” of the present invention.
- the low coherence light L0 includes, for example, light having a wavelength in the near infrared region, and has a temporal coherence length of about several tens of micrometers.
- the low coherence light L0 includes a wavelength longer than the illumination light (wavelength of about 400 nm to 800 nm) of the fundus camera unit 1A, for example, a wavelength in the range of about 800 nm to 900 nm.
- the low coherence light L0 output from the low coherence light source 160 is guided to the optical coupler 162 through the optical fiber 161.
- the optical fiber 161 is configured by, for example, a single mode fiber, a PM fiber (Polarization maintaining fiber), or the like.
- the optical coupler 162 splits the low coherence light L0 into the reference light LR and the signal light LS.
- the optical coupler 162 has both functions of a splitting unit (splitter) that splits light and a superimposing unit (coupler) that superimposes light.
- a splitting unit splits light
- a superimposing unit superimposes light.
- it is conventionally referred to as an “optical coupler”. Called.
- a single member serves as both the dividing means and the superimposing means, but other types of interferometers are applied.
- the dividing means and the superimposing means are each constituted by individual members.
- the reference light LR generated by the optical coupler 162 is guided by an optical fiber 163 made of a single mode fiber or the like and emitted from the end face of the fiber.
- the optical fiber 163 is an example of the “second optical fiber” in the present invention.
- a polarization controller 400 is attached to the optical fiber 163.
- the polarization controller 400 is an arbitrary polarization controller according to the present invention.
- the polarization controller 400 changes the polarization state of the reference light LR that passes through the optical fiber 163.
- the adjustment operation of the polarization state of the reference light LR is performed, for example, before shipment or during maintenance.
- the reference light LR emitted from the optical fiber 163 via the polarization controller 400 is converted into a parallel light beam by the collimator lens 171, passes through the glass block 172, the polarizing plate ( ⁇ / 4 plate) 175, and the density filter 173, for reference. Reflected by the mirror 174.
- the reference mirror 174 is an example of the “reference object” in the present invention.
- the reference light LR reflected by the reference mirror 174 passes through the density filter 173, the polarizing plate 175, and the glass block 172 again, is condensed on the fiber end surface of the optical fiber 163 by the collimator lens 171, and passes through the optical fiber 163 to the optical coupler 162. Led to. Also at this time, the polarization state of the reference light LR passing through the optical fiber 163 is changed by the polarization controller 400.
- the optical path (reference optical path) through which the reference light LR is guided is an example of the “second light guide path” in the present invention.
- the glass block 172 and the density filter 173 act as delay means for matching the optical path lengths (optical distances) of the reference light LR and the signal light LS. Further, the glass block 172 and the density filter 173 function as dispersion compensation means for matching the dispersion characteristics of the reference light LR and the signal light LS.
- the density filter 173 acts as a neutral density filter that reduces the amount of the reference light LR.
- the density filter 173 is configured by, for example, a rotary ND (Neutral Density) filter.
- the density filter 173 is rotationally driven by a drive mechanism (not shown) to change the amount of the reference light LR that contributes to the generation of the interference light LC.
- the polarizing plate 175 is used to correct the optical path length of the reference light LR and is used to improve the image quality of the OCT image.
- the polarizing plate 175 is disposed so as to be inclined by, for example, about 3 degrees with respect to the direction orthogonal to the optical path direction of the reference light LR.
- the polarizing plate 175 is rotationally driven by a predetermined driving mechanism, thereby adjusting the image quality of the interference image.
- the polarizing plate 175 is rotated under the control of the arithmetic and control unit 200, for example. Further, a polarizing knob 175 may be rotated by providing a manual knob or the like.
- the reference mirror 174 is moved in the traveling direction of the reference light LR (the direction of the double-sided arrow shown in FIG. 8) by a driving mechanism (not shown). Thereby, the optical path length of the reference light LR can be ensured according to the axial length of the eye E and the working distance (distance between the objective lens 113 and the eye E).
- the signal light LS generated by the optical coupler 162 is guided to the end of the connection line 152 by an optical fiber 164 made of a single mode fiber or the like.
- the optical fiber 164 and the optical fiber 152a may be formed from a single optical fiber, or may be formed integrally by joining the respective end faces.
- the optical fiber 164 is an example of the “first optical fiber” in the present invention.
- a polarization controller 300 is attached to the optical fiber 164.
- the polarization controller 300 is an arbitrary polarization controller according to the present invention.
- the polarization controller 300 changes the polarization state of the signal light LS that passes through the optical fiber 164.
- the adjustment operation of the polarization state of the signal light LS is performed, for example, before shipment or during maintenance.
- the polarization state is adjusted, for example, by measuring the fundus of the model eye and including the peak value of the detection signal obtained by the CCD 184 within a predetermined range. Also, the polarization state may be adjusted so that the tomographic image of the fundus of the model eye has good image quality.
- the signal light LS having passed through the optical fiber 164 is guided by the optical fiber 152a and guided to the fundus camera unit 1A. Further, the signal light LS passes through the lens 142, the scanning unit 141, the dichroic mirror 134, the photographing lens 126, the relay lens 125, the variable magnification lens 124, the photographing aperture 121, the hole 112 a of the aperture mirror 112, and the objective lens 113.
- the eye E is irradiated to the fundus Ef.
- the barrier filters 122 and 123 are retracted from the optical path in advance.
- the signal light LS incident on the eye E is imaged and reflected on the fundus oculi Ef.
- the signal light LS is not only reflected by the surface of the fundus oculi Ef, but also reaches the deep region of the fundus oculi Ef and is scattered at the refractive index boundary. Therefore, the signal light LS passing through the fundus oculi Ef includes information reflecting the surface form of the fundus oculi Ef and information reflecting the state of backscattering at the refractive index boundary of the deep tissue of the fundus oculi Ef. This light may be simply referred to as “fundus reflected light of the signal light LS”.
- the fundus reflection light of the signal light LS is guided in the reverse direction along the same path as the signal light LS toward the eye E to be collected on the end surface of the optical fiber 152a. Further, the fundus reflection light of the signal light LS enters the OCT unit 150 through the optical fiber 152 a and returns to the optical coupler 162 through the optical fiber 164. Also at this time, the polarization state of the signal light LS passing through the optical fiber 164 is changed by the polarization controller 300.
- the optical path (signal optical path) through which the signal light LS is guided is an example of the “first light guide path” in the present invention.
- the optical coupler 162 superimposes the signal light LS returned via the fundus oculi Ef and the reference light LR reflected by the reference mirror 174 to generate interference light LC.
- the interference light LC is guided to the spectrometer 180 through an optical fiber 165 made of a single mode fiber or the like.
- a spectrometer (spectrometer) 180 detects a spectral component of the interference light LC.
- the spectrometer 180 includes a collimator lens 181, a diffraction grating 182, an imaging lens 183, and a CCD 184.
- the diffraction grating 182 may be transmissive or reflective. Further, in place of the CCD 184, other light detection elements (line sensor or area sensor) such as CMOS may be used.
- the interference light LC incident on the spectrometer 180 is converted into a parallel light beam by the collimator lens 181 and split (spectral decomposition) by the diffraction grating 182.
- the split interference light LC is imaged on the imaging surface of the CCD 184 by the imaging lens 183.
- the CCD 184 detects each spectral component of the separated interference light LC and converts it into electric charges.
- the CCD 184 accumulates this electric charge and generates a detection signal. Further, the CCD 184 sends this detection signal to the arithmetic and control unit 200.
- the spectrometer 180 (in particular, the CCD 184) is an example of the “detection means” of the present invention.
- a Michelson interferometer is used.
- any type of interferometer such as a Mach-Zehnder type can be appropriately used.
- the configuration of the arithmetic and control unit 200 will be described.
- the arithmetic and control unit 200 analyzes the detection signal input from the CCD 184 and forms an OCT image of the fundus oculi Ef.
- the arithmetic processing for this is the same as that of a conventional Fourier domain type OCT apparatus.
- the arithmetic and control unit 200 controls each part of the fundus camera unit 1A and the OCT unit 150.
- the arithmetic control device 200 controls the output of illumination light by the observation light source 101 and the imaging light source 103, and controls the insertion / retraction operation of the exciter filters 105 and 106 and the barrier filters 122 and 123 on the optical path. Then, operation control of a display device such as the LCD 140, movement control of the illumination aperture 110 (control of the aperture value), control of the aperture value of the photographing aperture 121, movement control of the variable power lens 124 (control of magnification), and the like are performed. Further, the arithmetic and control unit 200 controls the scanning unit 141 to scan the signal light LS.
- the arithmetic and control unit 200 controls the output of the low coherence light L0 by the low coherence light source 160, the movement control of the reference mirror 174, and the rotation operation of the density filter 173 (the amount of decrease in the light amount of the reference light LR). Control), charge accumulation time by CCD 184, charge accumulation timing, signal transmission timing, and the like. Further, the arithmetic and control unit 200 may perform rotation control of the polarizing plate 175.
- the arithmetic and control unit 200 includes a microprocessor, a RAM, a ROM, a hard disk drive, a keyboard, a mouse, a display, a communication interface, and the like, like a conventional computer.
- the hard disk drive stores a computer program for controlling the fundus oculi observation device 1.
- the arithmetic and control unit 200 may include a dedicated circuit board that forms an OCT image based on a detection signal from the CCD 184.
- Control system The configuration of the control system of the fundus oculi observation device 1 will be described with reference to FIG.
- the control system of the fundus oculi observation device 1 is configured around the control unit 210 of the arithmetic and control unit 200.
- the control unit 210 includes, for example, the aforementioned microprocessor, RAM, ROM, hard disk drive, communication interface, and the like.
- the control unit 210 is provided with a main control unit 211 and a storage unit 212.
- the main control unit 211 performs the various controls described above.
- the storage unit 212 stores various data. Examples of data stored in the storage unit 212 include image data of an OCT image, image data of a fundus oculi image Ef ′, and eye information to be examined.
- the eye information includes information about the subject such as patient ID and name, and information about the eye such as left / right eye identification information.
- the main control unit 211 performs a process of writing data to the storage unit 212 and a process of reading data from the storage unit 212.
- the image forming unit 220 receives image signals from the imaging devices 10 and 12 and forms image data of the fundus oculi image Ef ′.
- the image forming unit 220 forms tomographic image data of the fundus oculi Ef based on the detection signal from the CCD 184.
- This process includes processes such as noise removal (noise reduction), filter processing, FFT (Fast Fourier Transform), and the like, as in the conventional Fourier domain type OCT technology.
- the image forming unit 220 is an example of the “image forming unit” in the present invention.
- the image forming unit 220 includes, for example, the above-described circuit board and communication interface.
- image data and “image” presented based on the “image data” may be identified with each other.
- the image processing unit 230 performs various types of image processing and analysis processing on the image formed by the image forming unit 220. For example, the image processing unit 230 executes various correction processes such as image brightness correction and dispersion correction.
- the image processing unit 230 forms image data of a three-dimensional image of the fundus oculi Ef by executing interpolation processing for interpolating pixels between tomographic images formed by the image forming unit 220.
- the image data of a three-dimensional image means image data in which pixel positions are defined by a three-dimensional coordinate system.
- image data of a three-dimensional image there is image data composed of voxels arranged three-dimensionally. This image data is called volume data or voxel data.
- the image processing unit 230 When displaying an image based on the volume data, the image processing unit 230 performs rendering processing (volume rendering, MIP (Maximum Intensity Projection), etc.) on the volume data, and views the image from a specific line-of-sight direction.
- rendering processing volume rendering, MIP (Maximum Intensity Projection), etc.
- MIP Maximum Intensity Projection
- stack data of a plurality of tomographic images is image data of a three-dimensional image.
- the stack data is image data obtained by three-dimensionally arranging a plurality of tomographic images obtained along a plurality of scanning lines based on the positional relationship of the scanning lines. That is, the stack data is image data obtained by expressing a plurality of tomographic images originally defined by individual two-dimensional coordinate systems using one three-dimensional coordinate system (that is, embedding in one three-dimensional space). is there.
- the image processing unit 230 includes, for example, the above-described microprocessor, RAM, ROM, hard disk drive, circuit board, and the like.
- the display unit 240 includes a display.
- the operation unit 250 includes an input device such as a keyboard and a mouse and an operation device. Further, the operation unit 250 may include various buttons and keys provided on the housing of the fundus oculi observation device 1 or outside.
- the display unit 240 and the operation unit 250 need not be configured as individual devices.
- a device in which the display unit 240 and the operation unit 250 are integrated, such as a touch panel LCD, can be used.
- Examples of the scanning mode of the signal light LS by the fundus oculi observation device 1 include a horizontal scan, a vertical scan, a cross scan, a radiation scan, a circle scan, a concentric scan, and a spiral scan. These scanning modes are selectively used as appropriate in consideration of the observation site of the fundus, the analysis target (such as retinal thickness), the time required for scanning, the precision of scanning, and the like.
- the horizontal scan is to scan the signal light LS in the horizontal direction (x direction).
- the horizontal scan also includes an aspect in which the signal light LS is scanned along a plurality of horizontal scanning lines arranged in the vertical direction (y direction). In this aspect, it is possible to arbitrarily set the scanning line interval. By sufficiently narrowing the interval between the scanning lines, the above-described three-dimensional image can be formed (three-dimensional scan). The same applies to the vertical scan.
- the cross scan scans the signal light LS along a cross-shaped trajectory composed of two linear trajectories (straight trajectories) orthogonal to each other.
- the signal light LS is scanned along a radial trajectory composed of a plurality of linear trajectories arranged at a predetermined angle.
- the cross scan is an example of a radiation scan.
- the circle scan scans the signal light LS along a circular locus.
- the signal light LS is scanned along a plurality of circular trajectories arranged concentrically around a predetermined center position.
- a circle scan is considered a special case of a concentric scan.
- the spiral scan scans the signal light LS along a spiral trajectory.
- the scanning unit 141 can scan the signal light LS independently in the x direction and the y direction, respectively, by the configuration as described above. Therefore, the scanning unit 141 can scan the signal light LS along an arbitrary locus on the xy plane. . Thereby, various scanning modes as described above can be realized.
- a tomographic image in the depth direction (x direction) along the scanning line (scanning locus) can be formed.
- the above-described three-dimensional image can be formed.
- the fundus oculi observation device 1 includes a polarization controller 300 installed in the signal optical path and a polarization controller 400 installed in the reference optical path.
- Each polarization controller 300, 400 is a polarization controller according to the present invention. That is, the polarization controllers 300 and 400 are provided at the radial positions of the optical fibers 164 and 163, respectively, and a pair of abutting members each having a flat portion that abuts against the side surfaces of the optical fibers 164 and 163; A member disposed between the pair of flat portions and having a thickness substantially equal to the diameter of the optical fibers 164 and 163 and a movement for relatively moving the pair of contact members so as to change the distance between the pair of flat portions.
- polarization controllers 300 and 400 it is possible to uniformly apply pressure from a direction orthogonal to the axial direction of the optical fibers 164 and 163, and to pass through the optical fibers 164 and 163. Time-dependent fluctuations in the polarization state of the signal light LS and the reference light LR can be suppressed.
- the polarization state of the signal light LS and the reference light LR is set to a suitable state, it is possible to obtain an OCT image with good image quality over a longer period of time than before. Further, at the time of detecting the interference light LC, a suitable interference light LC can be stably obtained, and a suitable OCT image can be stably formed. That is, it is possible to obtain an OCT image without blurring (or little).
- the reference light LR of the fundus oculi observation device 1 is provided with a polarizing plate 175, and the polarizing state of the reference light LR can be appropriately adjusted by the polarizing plate 175.
- adjustment by the polarizing plate 175 is not in time, adjustment by the polarization controllers 300 and 400 may be performed.
- a polarization controller is installed in each of the signal optical path and the reference optical path.
- a polarization controller is installed in at least one of the signal optical path and the reference optical path. Is enough. However, by providing polarization controllers in both the signal optical path and the reference optical path, it is possible to match the polarization state of the signal light and the polarization state of the reference light with higher accuracy (the closer the both polarization states are, A detection signal reflecting the state of the fundus oculi Ef with higher accuracy is obtained).
- the fundus oculi observation device 1 is equipped with an interferometer according to the present invention. That is, the interferometer is provided for the first light guide including the first optical fiber, the second light guide including the second optical fiber, the first optical fiber, and / or the second optical fiber.
- a polarization controller that changes the polarization state of the light passing through the optical fiber by applying pressure, and superimposing the light guided by the first light guide and the light guided by the second light guide
- the polarization controller includes a pair of abutting members that are provided at opposed positions in the radial direction of the optical fiber and each have a flat portion that abuts against the side surface of the optical fiber.
- pressure can be applied uniformly from the direction orthogonal to the axial direction of the optical fibers 164 and 163, and the signal light LS and the reference light LR passing through the optical fibers 164 and 163 can be applied.
- a polarization controller is provided that can suppress fluctuations in the polarization state over time, once the polarization state is set to a suitable state, it is possible to obtain suitable interference light over a longer period of time than before. is there.
- suitable interference light can be stably obtained when generating interference light. That is, it is possible to obtain interference light without blurring (or little).
- It can be configured to automatically adjust the polarization state of signal light and reference light by automatically controlling the polarization controller.
- a mechanism (pulse motor or the like) that rotationally drives the adjusting screw of the polarization controller and a mechanism (pulse motor or the like) that rotationally drives the rotating unit or the like are provided, and these mechanisms are controlled by the arithmetic and control unit 200.
- This control can be executed, for example, by determining the positions of the adjusting screw and the rotating unit while analyzing the detection signal and the interference image.
- the Fourier domain type optical image measurement device has been described. However, even if a similar polarization controller is mounted on a swept source type or full field type, or even a time domain type optical image measurement device, Similar actions and effects can be obtained.
- the interferometer according to the present invention can be mounted on any device other than the optical image measurement device. That is, the polarization controller according to the present invention can be applied to an arbitrary apparatus on which an interferometer is mounted.
- the position of the reference mirror 174 is changed to change the optical path length difference between the optical path of the signal light LS and the optical path of the reference light LR.
- the method of changing the optical path length difference is limited to this. Is not to be done.
- the optical path length difference can be changed by moving the fundus camera unit 1A or the OCT unit 150 with respect to the eye E to change the optical path length of the signal light LS. It is also effective to change the optical path length difference by moving the measurement object in the depth direction (z direction), particularly when the measurement object is not a living body part.
Landscapes
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Radiology & Medical Imaging (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
- Length Measuring Devices By Optical Means (AREA)
- Instruments For Measurement Of Length By Optical Means (AREA)
- Mechanical Light Control Or Optical Switches (AREA)
- Eye Examination Apparatus (AREA)
Abstract
A pressure is stably applied to an optical fiber to restrict a temporal change in the polarization state of light passing through the optical fiber. A polarization controller (1000) comprises a rotating portion (1020) with a planar portion (1021) and a block (1030) with a planar portion (1032), wherein the planar portions abut on an optical fiber (2000). The distance between the planar portion (1021) and the planar portion (1032) is varied by moving the rotating portion (1020) and the block (1030) relative to each other by means of an adjusting screw (1100) to thereby apply a pressure to the optical fiber (2000). The polarization controller (1000) further comprises a sub-fiber (3000) which is arranged between the planar portion (1021) and the planar portion (1032) and has a diameter approximately identical to the optical fiber (2000).
Description
この発明は、偏光コントローラ、干渉計及び光画像計測装置に関する。この発明に係る偏光コントローラは、光ファイバに圧力を加えて圧縮することにより、この光ファイバを通過する光の偏光状態を変化させるものである。また、この発明に係る干渉計は、この偏光コントローラが適用されたものである。また、この発明に係る光画像計測装置は、この干渉計が適用されたものであり、光ビームを用いて被測定物体の断層像を形成するものである。
The present invention relates to a polarization controller, an interferometer, and an optical image measurement device. The polarization controller according to the present invention changes the polarization state of light passing through the optical fiber by compressing the optical fiber by applying pressure. The interferometer according to the present invention is one to which this polarization controller is applied. The optical image measurement apparatus according to the present invention is one to which this interferometer is applied, and forms a tomographic image of an object to be measured using a light beam.
近年、レーザ光源等からの光ビームを用いて被測定物体の表面形態や内部形態を表す画像を形成する光画像計測技術が注目を集めている。光画像計測技術は、X線CT装置のような人体に対する侵襲性を持たないことから、特に医療分野や生物学分野における応用の展開が期待されている。
In recent years, an optical image measurement technique that forms an image representing the surface form or internal form of an object to be measured using a light beam from a laser light source or the like has attracted attention. Since the optical image measurement technique does not have invasiveness to the human body like the X-ray CT apparatus, it is expected to be applied particularly in the medical field and the biological field.
特許文献1には、光画像計測技術を適用した装置が開示されている。この装置は、測定腕が回転式転向鏡(ガルバノミラー)により物体を走査し、参照腕に参照ミラーが設置されており、その出口に計測腕及び参照腕からの光束の干渉光の強度を分光器で分析する干渉器が設けられている。更に、参照腕は、参照光光束位相を不連続な値で段階的に変えるように構成されている。
Patent Document 1 discloses an apparatus to which an optical image measurement technique is applied. In this device, the measuring arm scans an object with a rotary turning mirror (galvanomirror), a reference mirror is installed on the reference arm, and the intensity of the interference light of the light beam from the measuring arm and the reference arm is dispersed at the exit. An interferometer is provided for analysis by the instrument. Further, the reference arm is configured to change the phase of the reference light beam stepwise by a discontinuous value.
特許文献1の装置は、いわゆる「フーリエドメインOCT(Fourier Domain Optical Coherence Tomography)」の手法を用いるものである。すなわち、被測定物体に対して低コヒーレンス光のビームを照射し、その反射光と参照光とを重ね合わせて干渉光を生成し、この干渉光のスペクトル強度分布を取得してフーリエ変換を施すことにより被測定物体の深度方向(z方向)の形態を画像化するものである。なお、このタイプの手法は、スペクトラルドメイン(Spectral Domain)とも呼ばれる。
The apparatus of Patent Document 1 uses a so-called “Fourier Domain OCT (Fourier Domain Optical Coherence Tomography)” technique. In other words, a low-coherence beam is irradiated onto the object to be measured, the reflected light and the reference light are superimposed to generate interference light, and the spectral intensity distribution of the interference light is acquired and subjected to Fourier transform. Thus, the form of the object to be measured in the depth direction (z direction) is imaged. This type of technique is also referred to as a spectral domain.
更に、特許文献1に記載の装置は、光ビーム(信号光)を走査するガルバノミラーを備え、それにより被測定物体の所望の測定対象領域の画像を形成するようになっている。この装置においては、z方向に直交する1方向(x方向)にのみ光ビームを走査するように構成されているので、この装置により形成される画像は、光ビームの走査方向(x方向)に沿った深度方向(z方向)の2次元断層像となる。
Furthermore, the apparatus described in Patent Document 1 includes a galvanometer mirror that scans a light beam (signal light), thereby forming an image of a desired measurement target region of the object to be measured. Since this apparatus is configured to scan the light beam only in one direction (x direction) orthogonal to the z direction, the image formed by this apparatus is in the scanning direction (x direction) of the light beam. It becomes a two-dimensional tomogram in the depth direction (z direction) along.
特許文献2には、信号光を水平方向(x方向)及び垂直方向(y方向)に走査することにより水平方向の2次元断層像を複数形成し、これら複数の断層像に基づいて測定範囲の3次元の断層情報を取得して画像化する技術が開示されている。この3次元画像化としては、たとえば、複数の断層像を垂直方向に並べて表示させる方法や(スタックデータなどと呼ばれる)、複数の断層像にレンダリング処理を施して3次元画像を形成する方法などが考えられる。
In Patent Document 2, a plurality of horizontal two-dimensional tomographic images are formed by scanning signal light in the horizontal direction (x direction) and the vertical direction (y direction), and the measurement range is determined based on the plurality of tomographic images. A technique for acquiring and imaging three-dimensional tomographic information is disclosed. Examples of the three-dimensional imaging include a method of displaying a plurality of tomographic images side by side in a vertical direction (referred to as stack data) and a method of rendering a plurality of tomographic images to form a three-dimensional image. Conceivable.
特許文献3、4には、他のタイプのOCT装置が開示されている。特許文献3には、被測定物体に照射される光の波長を走査し、各波長の光の反射光と参照光とを重ね合わせて得られる干渉光に基づいてスペクトル強度分布を取得し、それに対してフーリエ変換を施すことにより被測定物体の形態を画像化するOCT装置が記載されている。このようなOCT装置は、スウェプトソース(Swept Source)タイプなどと呼ばれる。
Patent Documents 3 and 4 disclose other types of OCT apparatuses. Patent Document 3 scans the wavelength of light applied to an object to be measured, acquires a spectral intensity distribution based on interference light obtained by superimposing reflected light of each wavelength and reference light, On the other hand, an OCT apparatus for imaging the form of an object to be measured by performing Fourier transform on the object is described. Such an OCT apparatus is called a swept source type.
また、特許文献4には、所定のビーム径を有する光を被測定物体に照射し、その反射光と参照光とを重ね合わせて得られる干渉光の成分を解析することにより、光の進行方向に直交する断面における被測定物体の画像を形成するOCT装置が記載されている。このようなOCT装置は、フルフィールド(full-field)タイプ、或いはエンフェイス(en-face)タイプなどと呼ばれる。
In Patent Document 4, the traveling direction of light is obtained by irradiating the object to be measured with light having a predetermined beam diameter, and analyzing the component of interference light obtained by superimposing the reflected light and the reference light. An OCT apparatus for forming an image of an object to be measured in a cross-section orthogonal to is described. Such an OCT apparatus is called a full-field type or an en-face type.
特許文献5には、OCT技術を眼科分野に適用した構成が開示されている。なお、OCT装置が眼科分野に応用される以前には、眼底カメラ等の眼底観察装置が利用されていた(たとえば特許文献6を参照)。
Patent Document 5 discloses a configuration in which the OCT technique is applied to the ophthalmic field. Prior to the application of the OCT apparatus to the ophthalmology field, a fundus observation apparatus such as a fundus camera was used (see, for example, Patent Document 6).
OCT技術を用いた眼底撮影装置は、眼底を前方から撮影するだけの眼底カメラと比較して、眼底の断層像や3次元画像を取得できるという利点がある。そのため、診断精度の向上や病変の早期発見への寄与が期待されている。
The fundus photographing apparatus using the OCT technology has an advantage that a tomographic image and a three-dimensional image of the fundus can be acquired as compared with a fundus camera that only photographs the fundus from the front. Therefore, it is expected to contribute to improvement of diagnostic accuracy and early detection of lesions.
ところで、従来の光画像計測装置には、画質の向上を図るために、干渉光を生成するために重畳される2つの光(信号光、参照光)の偏光状態を一致させる偏光コントローラを用いたものがある(たとえば特許文献7を参照)。
By the way, in order to improve the image quality, a conventional optical image measurement device uses a polarization controller that matches the polarization states of two lights (signal light and reference light) that are superimposed to generate interference light. There are some (see, for example, Patent Document 7).
偏光コントローラには様々なタイプがある。たとえば、偏光子を用いたもの、波長板を用いたもの、光ファイバを圧縮するもの、光ファイバを振動させるもの、電界や磁界を用いたものなどがある。光画像計測装置に適用するには、サイズや性能を考慮すると、光ファイバを圧縮するタイプが望ましいと考えられる。
There are various types of polarization controllers. For example, there are a type using a polarizer, a type using a wave plate, a type compressing an optical fiber, a type vibrating an optical fiber, and a type using an electric field or a magnetic field. For application to an optical image measurement device, a type that compresses an optical fiber is considered desirable in view of size and performance.
圧縮タイプの偏光コントローラとしては、たとえば特許文献8に開示されたものが知られている。この偏光コントローラは、光ファイバの両端を固定するとともに、光ファイバの中央部分を一対のブロックで圧縮することにより光ファイバを通過する光の偏光状態を変更するものであり、更に、一対のブロックを回転可能として光ファイバの圧縮方向を変更できるように構成されている。
As a compression type polarization controller, for example, one disclosed in Patent Document 8 is known. The polarization controller fixes both ends of the optical fiber and changes the polarization state of the light passing through the optical fiber by compressing the central portion of the optical fiber with a pair of blocks. The optical fiber is configured to be rotatable so that the compression direction of the optical fiber can be changed.
このような従来の圧縮タイプの偏光コントローラでは、その構造上、光ファイバに対して圧力を安定的に付与することが難しく、光ファイバを通過する光の偏光状態が経時的に変動するおそれがある。
In such a conventional compression type polarization controller, it is difficult to stably apply pressure to the optical fiber due to its structure, and the polarization state of the light passing through the optical fiber may vary over time. .
すなわち、従来の偏光コントローラは、光ファイバを一対のブロックで挟み込んで圧力を加えるようになっている。換言すると、従来の偏光コントローラは、線状の光ファイバを2次元的な接触面を有する一対のブロックで挟み込むようになっている。このような構造で光ファイバを圧縮すると、圧力によって光ファイバが移動したり回転したりするおそれがある。特に、圧力を強くした場合にはそのおそれが強くなる。更に、このような構造では、光ファイバに対して一様に圧力を付与することも難しい。また、このような構造では、光ファイバに対して一定の圧力を安定して付与し続けることも難しい。
That is, the conventional polarization controller is configured to apply pressure by sandwiching an optical fiber between a pair of blocks. In other words, the conventional polarization controller is configured to sandwich a linear optical fiber between a pair of blocks having a two-dimensional contact surface. When the optical fiber is compressed with such a structure, the optical fiber may move or rotate due to pressure. In particular, when the pressure is increased, the risk is increased. Furthermore, with such a structure, it is difficult to apply pressure uniformly to the optical fiber. Also, with such a structure, it is difficult to stably apply a constant pressure to the optical fiber.
このような従来の偏光コントローラを干渉計や光画像計測装置に適用すると、干渉光の強度等が経時的に変動するおそれがある。更に、光画像計測装置においては、画質が劣化するおそれがある。
When such a conventional polarization controller is applied to an interferometer or an optical image measurement device, the intensity of the interference light may change over time. Furthermore, in the optical image measurement device, there is a possibility that the image quality is deteriorated.
この発明は、このような問題を解決するためになされたもので、その目的は、光ファイバに対して安定的に圧力を付与し、光ファイバを通過する光の偏光状態の経時的変動を抑えることが可能な技術を提供することにある。
The present invention has been made in order to solve such a problem, and an object of the present invention is to stably apply pressure to an optical fiber and suppress temporal variation of the polarization state of light passing through the optical fiber. It is to provide a technology that can.
上記目的を達成するために、請求項1に記載の発明は、光ファイバに対して圧力を印加する圧力印加部を有し、前記印加される圧力により前記光ファイバを通過する光の偏光状態を変化させる偏光コントローラであって、前記圧力印加部は、前記光ファイバの径方向の対向位置に設けられ、前記光ファイバの側面に当接される平面部をそれぞれ有する一対の当接部材と、前記一対の平面部の間に配置され、前記光ファイバの径と略等しい厚さを有する部材と、前記一対の平面部の間隔を変更するように前記一対の当接部材を相対的に移動させて前記圧力を印加する移動機構と、を備える、ことを特徴とする。
In order to achieve the above object, the invention according to claim 1 includes a pressure application unit that applies pressure to the optical fiber, and the polarization state of light passing through the optical fiber is changed by the applied pressure. A polarization controller to be changed, wherein the pressure application unit is provided at a position facing the radial direction of the optical fiber, and has a pair of contact members each having a flat surface portion that contacts the side surface of the optical fiber, A member disposed between the pair of flat portions and having a thickness substantially equal to the diameter of the optical fiber, and the pair of contact members are relatively moved so as to change a distance between the pair of flat portions. And a moving mechanism for applying the pressure.
また、請求項2に記載の発明は、請求項1に記載の偏光コントローラであって、前記光ファイバの軸方向を回転軸として前記圧力印加部を回転させる回転機構を更に備える、ことを特徴とする。
The invention according to claim 2 is the polarization controller according to claim 1, further comprising a rotation mechanism that rotates the pressure application unit with the axial direction of the optical fiber as a rotation axis. To do.
また、請求項3に記載の発明は、請求項1又は請求項2に記載の偏光コントローラであって、前記圧力印加部は、前記移動機構により相対的に移動される前記一対の当接部材の位置を固定する固定機構を更に備える、ことを特徴とする。
The invention according to claim 3 is the polarization controller according to claim 1 or 2, wherein the pressure application unit is a pair of contact members that are relatively moved by the moving mechanism. It further comprises a fixing mechanism for fixing the position.
また、請求項4に記載の発明は、請求項1~請求項3のいずれか一項に記載の偏光コントローラであって、前記部材は、前記光ファイバと略等しい径を有する線状部材を含む、ことを特徴とする。
The invention according to claim 4 is the polarization controller according to any one of claims 1 to 3, wherein the member includes a linear member having a diameter substantially equal to that of the optical fiber. It is characterized by that.
また、請求項5に記載の発明は、請求項4に記載の偏光コントローラであって、前記線状部材は、前記光ファイバと同じ形態の光ファイバである、ことを特徴とする。
Further, the invention according to claim 5 is the polarization controller according to claim 4, wherein the linear member is an optical fiber having the same form as the optical fiber.
また、請求項6に記載の発明は、請求項4又は請求項5に記載の偏光コントローラであって、前記圧力印加部は、前記線状部材を保持する保持部を更に備える、ことを特徴とする。
The invention according to claim 6 is the polarization controller according to claim 4 or 5, wherein the pressure application unit further includes a holding unit for holding the linear member. To do.
また、請求項7に記載の発明は、請求項1~請求項3のいずれか一項に記載の偏光コントローラであって、前記部材は、前記一対の平面部における前記光ファイバの配置位置以外の場所に設けられ、前記光ファイバと略等しい厚さを有する膜状部材を含む、ことを特徴とする。
The invention according to claim 7 is the polarization controller according to any one of claims 1 to 3, wherein the member is a position other than an arrangement position of the optical fiber in the pair of plane portions. It includes a film-like member provided at a location and having a thickness substantially equal to that of the optical fiber.
また、請求項8に記載の発明は、第1の光ファイバを含む第1の導光路と、第2の光ファイバを含む第2の導光路と、前記第1の光ファイバ及び/又は前記第2の光ファイバに対して圧力を印加して当該光ファイバを通過する光の偏光状態を変化させる偏光コントローラとを有し、前記第1の導光路により導かれた光と前記第2の導光路により導かれた光とを重畳させて干渉光を生成する干渉計であって、前記偏光コントローラは、前記光ファイバの径方向の対向位置に設けられ、前記光ファイバの側面に当接される平面部をそれぞれ有する一対の当接部材と、前記一対の平面部の間に配置され、前記光ファイバの径と略等しい厚さを有する部材と、前記一対の平面部の間隔を変更するように前記一対の当接部材を相対的に移動させて前記圧力を印加する移動機構と、を備える、ことを特徴とする。
The invention according to claim 8 is a first light guide including a first optical fiber, a second light guide including a second optical fiber, the first optical fiber and / or the first optical fiber. A polarization controller that changes the polarization state of light passing through the optical fiber by applying pressure to the second optical fiber, and the light guided by the first light guide and the second light guide An interferometer that generates interference light by superimposing the light guided by the optical fiber, wherein the polarization controller is provided at a position facing the radial direction of the optical fiber and is in contact with a side surface of the optical fiber A pair of abutting members each having a portion, a member disposed between the pair of plane portions and having a thickness substantially equal to the diameter of the optical fiber, and the interval between the pair of plane portions is changed. The pair of contact members are moved relative to each other to Comprising a moving mechanism for applying a force, and characterized in that.
また、請求項9に記載の発明は、低コヒーレンス光を出力する光源と、前記出力された低コヒーレンス光を信号光と参照光とに分割する分割手段と、第1の光ファイバを含み、前記信号光を導光して被測定物体に照射し、前記被測定物体を経由した前記信号光を導光する第1の導光路と、第2の光ファイバを含み、前記参照光を導光して参照物体に照射し、前記参照物体を経由した前記参照光を導光する第2の導光路と、前記第1の光ファイバ及び/又は前記第2の光ファイバに対して圧力を印加して当該光ファイバを通過する光の偏光状態を変化させる偏光コントローラと、前記被測定物体を経由して前記第1の導光路により導かれた前記信号光と、前記参照物体を経由して前記第2の導光路により導かれた前記参照光とを重畳させて干渉光を生成する重畳手段と、前記生成された干渉光を検出して検出信号を生成する検出手段と、前記生成された検出信号に基づいて前記被測定物体の断層像を形成する画像形成手段と、を有する光画像計測装置であって、前記偏光コントローラは、前記光ファイバの径方向の対向位置に設けられ、前記光ファイバの側面に当接される平面部をそれぞれ有する一対の当接部材と、前記一対の平面部の間に配置され、前記光ファイバの径と略等しい厚さを有する部材と、前記一対の平面部の間隔を変更するように前記一対の当接部材を相対的に移動させて前記圧力を印加する移動機構と、を備える、ことを特徴とする。
The invention according to claim 9 includes a light source that outputs low-coherence light, a dividing unit that divides the output low-coherence light into signal light and reference light, and a first optical fiber, A first light guide path that guides the signal light to irradiate the object to be measured, guides the signal light that has passed through the object to be measured, and a second optical fiber, and guides the reference light. Pressure is applied to the second light guide path that irradiates the reference object and guides the reference light via the reference object, and the first optical fiber and / or the second optical fiber. A polarization controller that changes a polarization state of light passing through the optical fiber, the signal light guided by the first light guide path through the object to be measured, and the second light through the reference object. The reference light guided by the light guide path is superimposed and dried. Superimposing means for generating light; detecting means for detecting the generated interference light to generate a detection signal; and image forming means for forming a tomographic image of the object to be measured based on the generated detection signal; The polarization controller is provided at a position facing the radial direction of the optical fiber, and has a pair of abutting members each having a flat portion that abuts against a side surface of the optical fiber. The member disposed between the pair of flat portions and having a thickness substantially equal to the diameter of the optical fiber and the pair of contact members are relatively moved so as to change a distance between the pair of flat portions. And a moving mechanism for applying the pressure.
この発明に係る偏光コントローラによれば、光ファイバと略等しい厚さの部材を光ファイバとともに一対の平面部の間に配置させているので、光ファイバのみを挟み込む従来の構成と比較して、圧力を印加している状態の当接部材の姿勢が安定し、光ファイバに対して安定的に圧力を付与することができる。それにより、光ファイバを通過する光の偏光状態の経時的変動を抑えることが可能である。
According to the polarization controller of the present invention, the member having a thickness substantially equal to that of the optical fiber is disposed between the pair of plane portions together with the optical fiber, so that the pressure is compared with the conventional configuration in which only the optical fiber is sandwiched. The posture of the abutting member in a state where the pressure is applied is stabilized, and the pressure can be stably applied to the optical fiber. Thereby, it is possible to suppress the temporal variation of the polarization state of the light passing through the optical fiber.
この発明に係る干渉計は、この発明に係る偏光コントローラを備えているので、光ファイバを通過する光の偏光状態の経時的変動を抑えることができる。それにより、好適な干渉光を安定的に得ることができる。
Since the interferometer according to the present invention includes the polarization controller according to the present invention, it is possible to suppress the temporal variation of the polarization state of the light passing through the optical fiber. Thereby, suitable interference light can be stably obtained.
この発明に係る光画像計測装置は、この発明に係る干渉計を備えているので、好適な干渉光を安定的に得ることができる。それにより、好適な断層像を安定的に得ることが可能である。
Since the optical image measurement device according to the present invention includes the interferometer according to the present invention, suitable interference light can be obtained stably. Thereby, a suitable tomographic image can be stably obtained.
1 眼底観察装置(光画像計測装置)
1A 眼底カメラユニット
141 走査ユニット
150 OCTユニット
160 低コヒーレンス光源
161、163、164、165 光ファイバ
162 光カプラ
174 参照ミラー
180 スペクトロメータ
184 CCD
200 演算制御装置
210 制御部
220 画像形成部
230 画像処理部
240 表示部
250 操作部
300、400 偏光コントローラ
1000、4000 偏光コントローラ
1010 本体部
1020 回転部
1021 平面部
1022 サブファイバ保持部
1030 ブロック
1032 平面部
1040 バネ
1080 調整ネジ固定部
1100 調整ネジ
1120 膜状部材
2000 光ファイバ
3000 サブファイバ 1 Fundus observation device (optical image measurement device)
1AFundus camera unit 141 Scan unit 150 OCT unit 160 Low coherence light source 161, 163, 164, 165 Optical fiber 162 Optical coupler 174 Reference mirror 180 Spectrometer 184 CCD
200arithmetic control unit 210 control unit 220 image forming unit 230 image processing unit 240 display unit 250 operation unit 300, 400 polarization controller 1000, 4000 polarization controller 1010 main body unit 1020 rotation unit 1021 plane unit 1022 sub-fiber holding unit 1030 block 1032 plane unit 1040 Spring 1080 Adjustment screw fixing portion 1100 Adjustment screw 1120 Film member 2000 Optical fiber 3000 Sub fiber
1A 眼底カメラユニット
141 走査ユニット
150 OCTユニット
160 低コヒーレンス光源
161、163、164、165 光ファイバ
162 光カプラ
174 参照ミラー
180 スペクトロメータ
184 CCD
200 演算制御装置
210 制御部
220 画像形成部
230 画像処理部
240 表示部
250 操作部
300、400 偏光コントローラ
1000、4000 偏光コントローラ
1010 本体部
1020 回転部
1021 平面部
1022 サブファイバ保持部
1030 ブロック
1032 平面部
1040 バネ
1080 調整ネジ固定部
1100 調整ネジ
1120 膜状部材
2000 光ファイバ
3000 サブファイバ 1 Fundus observation device (optical image measurement device)
1A
200
この発明に係る偏光コントローラ、干渉計及び光画像計測装置の実施形態の一例について、図面を参照しながら詳細に説明する。
An example of an embodiment of a polarization controller, an interferometer, and an optical image measurement device according to the present invention will be described in detail with reference to the drawings.
〈偏光コントローラ〉
まず、この発明に係る偏光コントローラの実施形態を説明する。この発明に係る偏光コントローラは、光ファイバに圧力を加えて圧縮することにより、この光ファイバを通過する光の偏光状態を変化させるものである。なお、偏光状態には、偏光方向や偏光量、更には偏光の種類(直線偏光、円偏光、楕円偏光等)など、偏光の状態を表す各種の物理量や表現が含まれる。 <Polarization controller>
First, an embodiment of a polarization controller according to the present invention will be described. The polarization controller according to the present invention changes the polarization state of light passing through the optical fiber by compressing the optical fiber by applying pressure. The polarization state includes various physical quantities and expressions representing the polarization state, such as the polarization direction and the polarization amount, and the type of polarization (linearly polarized light, circularly polarized light, elliptically polarized light, etc.).
まず、この発明に係る偏光コントローラの実施形態を説明する。この発明に係る偏光コントローラは、光ファイバに圧力を加えて圧縮することにより、この光ファイバを通過する光の偏光状態を変化させるものである。なお、偏光状態には、偏光方向や偏光量、更には偏光の種類(直線偏光、円偏光、楕円偏光等)など、偏光の状態を表す各種の物理量や表現が含まれる。 <Polarization controller>
First, an embodiment of a polarization controller according to the present invention will be described. The polarization controller according to the present invention changes the polarization state of light passing through the optical fiber by compressing the optical fiber by applying pressure. The polarization state includes various physical quantities and expressions representing the polarization state, such as the polarization direction and the polarization amount, and the type of polarization (linearly polarized light, circularly polarized light, elliptically polarized light, etc.).
第1の実施形態は、光ファイバと略等しい径を有する線状部材を光ファイバとともに圧縮することにより、光ファイバに対して安定的に圧力を付与するように構成されている。また、第2の実施形態は、光ファイバと略等しい厚さの膜状部材を光ファイバとともに圧縮することにより、光ファイバに対して安定的に圧力を付与するように構成されている。
The first embodiment is configured to stably apply pressure to an optical fiber by compressing a linear member having a diameter substantially equal to that of the optical fiber together with the optical fiber. Moreover, 2nd Embodiment is comprised so that a pressure may be stably provided with respect to an optical fiber by compressing the film-like member of thickness substantially equal to an optical fiber with an optical fiber.
[第1の実施形態]
第1の実施形態に係る偏光コントローラについて、図1~図3を参照しつつ説明する。偏光コントローラ1000は、光ファイバ2000を通過する光の偏光状態を変化させる。 [First Embodiment]
The polarization controller according to the first embodiment will be described with reference to FIGS. Thepolarization controller 1000 changes the polarization state of light passing through the optical fiber 2000.
第1の実施形態に係る偏光コントローラについて、図1~図3を参照しつつ説明する。偏光コントローラ1000は、光ファイバ2000を通過する光の偏光状態を変化させる。 [First Embodiment]
The polarization controller according to the first embodiment will be described with reference to FIGS. The
〔構成〕
光ファイバ2000は、本体部1010により保持される。本体部1010は、略円柱状に形成されている。本体部1010の中央部分は切り欠かれており、平面状の載置部1011が形成されている。載置部1011には回転部1020が載置される。 〔Constitution〕
Theoptical fiber 2000 is held by the main body 1010. The main body 1010 is formed in a substantially cylindrical shape. A central portion of the main body portion 1010 is cut away, and a planar mounting portion 1011 is formed. The rotating unit 1020 is mounted on the mounting unit 1011.
光ファイバ2000は、本体部1010により保持される。本体部1010は、略円柱状に形成されている。本体部1010の中央部分は切り欠かれており、平面状の載置部1011が形成されている。載置部1011には回転部1020が載置される。 〔Constitution〕
The
載置部1011の両端には、回転部1020を保持する保持部1012が形成されている。これら保持部1012は、回転部1020の両端を保持している。回転部1020は略円柱状に形成されている。保持部1012は、回転部1020の円柱軸が本体部1010の円柱軸に一致するように回転部1020を保持している。
At both ends of the mounting portion 1011, holding portions 1012 that hold the rotating portion 1020 are formed. These holding units 1012 hold both ends of the rotating unit 1020. The rotating part 1020 is formed in a substantially cylindrical shape. The holding unit 1012 holds the rotating unit 1020 so that the cylindrical axis of the rotating unit 1020 matches the cylindrical axis of the main body unit 1010.
各保持部1012の外側には、端部1013が形成されている。各端部1013は、保持部1012から外側に向かって突出するように形成されており、光ファイバ2000をガイドするように作用する。
An end portion 1013 is formed outside each holding portion 1012. Each end portion 1013 is formed so as to protrude outward from the holding portion 1012, and acts to guide the optical fiber 2000.
各保持部1012及び各端部1013の上部側面(連結部1050側の側面)には、本体部1010の軸方向に沿って間隙1014が形成されている。各保持部1012には、回転部1020の端部を嵌め込むための中空部が形成されている。中空部は、本体部1010の円柱軸を軸とする円柱形状に形成されている。各保持部1012の間隙1014は、その側面から当該中空部まで形成されている。各端部1013には、光ファイバ2000が配置される孔部1015が形成されている。孔部1015は円柱形状の空洞を形成している。孔部1015は、その円柱軸が本体部1010の円柱軸に対して平行になるように形成されている。更に、孔部1015の円柱軸は、本体部1010の円柱軸にほぼ一致するようになっている。すなわち、孔部1015は、本体部1010に対して僅かに偏心して形成されている。端部1013の間隙1014は、端部1013の側面から孔部1015まで形成されている。
A gap 1014 is formed along the axial direction of the main body portion 1010 on the upper side surface (side surface on the connecting portion 1050 side) of each holding portion 1012 and each end portion 1013. Each holding portion 1012 is formed with a hollow portion for fitting the end portion of the rotating portion 1020. The hollow portion is formed in a cylindrical shape with the cylindrical axis of the main body portion 1010 as an axis. The gap 1014 of each holding portion 1012 is formed from the side surface to the hollow portion. Each end 1013 is formed with a hole 1015 in which the optical fiber 2000 is disposed. The hole 1015 forms a cylindrical cavity. The hole 1015 is formed so that its cylindrical axis is parallel to the cylindrical axis of the main body 1010. Further, the cylindrical axis of the hole 1015 is substantially coincident with the cylindrical axis of the main body 1010. That is, the hole 1015 is formed slightly eccentric with respect to the main body 1010. A gap 1014 at the end 1013 is formed from the side surface of the end 1013 to the hole 1015.
間隙1014の両側部には、回転部1020を固定/解放するための一対のネジ1016が設けられている。各ネジ1016は、保持部1012の側面から中空部まで貫通するネジ穴(図示せず)に螺入される。各ネジ1016の先端はネジ穴から中空部に進入し、回転部1020の側面に当接するようになっている。中空部に進入する方向にネジ1016を進めることにより、ネジ1016が回転部1020に与える圧力が増大して回転部1020が固定される。逆に、中空部から退避する方向にネジ1016を進めることにより、ネジ1016が回転部1020に与える圧力が減少し、回転部1020は回転自在となる。なお、本体部1010に対して回転部1020が回転する機構は、たとえば前述の特許文献8のような、従来の任意の機構であってもよい。
A pair of screws 1016 for fixing / releasing the rotating part 1020 are provided on both sides of the gap 1014. Each screw 1016 is screwed into a screw hole (not shown) penetrating from the side surface of the holding portion 1012 to the hollow portion. The tip of each screw 1016 enters the hollow portion from the screw hole and comes into contact with the side surface of the rotating portion 1020. By advancing the screw 1016 in the direction of entering the hollow portion, the pressure applied to the rotating portion 1020 by the screw 1016 increases and the rotating portion 1020 is fixed. Conversely, by advancing the screw 1016 in the direction of retreating from the hollow portion, the pressure applied by the screw 1016 to the rotating portion 1020 decreases, and the rotating portion 1020 becomes rotatable. Note that the mechanism for rotating the rotating unit 1020 with respect to the main body unit 1010 may be any conventional mechanism such as Patent Document 8 described above.
回転部1020は、前述のように略円柱状に形成されており、その両端部が保持部1012によって保持されている。回転部1020は、本体部1010と同様に、その中央部位が切り欠かれており、光ファイバ2000やサブファイバ3000が載置される平面部1021が形成されている。平面部1021は、その法線方向が上方(連結部1050側)を向くように形成されている。
The rotating part 1020 is formed in a substantially cylindrical shape as described above, and both end parts thereof are held by the holding part 1012. Similar to the main body portion 1010, the rotating portion 1020 is notched at the center, and a flat portion 1021 on which the optical fiber 2000 and the sub-fiber 3000 are placed is formed. The flat portion 1021 is formed so that the normal direction thereof faces upward (the connecting portion 1050 side).
光ファイバ2000は、回転部1020の円柱軸にほぼ沿うように配置される。サブファイバ3000は、当該円柱軸から離れた位置に配置される。なお、サブファイバ3000は、光ファイバ2000と平行に配置されてもよいし、非平行に配置されてもよい。
The optical fiber 2000 is disposed so as to be substantially along the cylindrical axis of the rotating unit 1020. The sub fiber 3000 is disposed at a position away from the cylindrical axis. The sub-fiber 3000 may be arranged in parallel with the optical fiber 2000 or may be arranged non-parallel.
また、サブファイバ3000は、光ファイバ2000と略等しい径を有するものである。望ましくは、たとえば光ファイバ2000と同じロットの光ファイバの切れ端をサブファイバ3000として用いるなど、光ファイバ2000と等しい径のものがサブファイバ3000として用いられる。また、サブファイバ3000は、光ファイバである必要はなく、光ファイバ2000と略等しい径を有する任意の材料からなる線状部材であってもよい。
Further, the sub-fiber 3000 has a diameter substantially equal to that of the optical fiber 2000. Desirably, a fiber having the same diameter as the optical fiber 2000 is used as the sub-fiber 3000, for example, a piece of an optical fiber of the same lot as the optical fiber 2000 is used as the sub-fiber 3000. The sub fiber 3000 does not need to be an optical fiber, and may be a linear member made of an arbitrary material having a diameter substantially equal to that of the optical fiber 2000.
平面部1021の両端には、サブファイバ3000を保持するサブファイバ保持部1022が設けられている。各サブファイバ保持部1022には、上方から下方に向かって切込部1023が形成されている。各切込部1023は、サブファイバ3000の径に略等しい幅を有する。サブファイバ3000の端部は、上方から切込部1023に挿入される。切込部1023は当該端部を挟み込む。このようにしてサブファイバ保持部1022はサブファイバ3000を保持する。
Sub-fiber holding parts 1022 for holding the sub-fiber 3000 are provided at both ends of the flat part 1021. Each sub-fiber holding portion 1022 is formed with a cut portion 1023 from the top to the bottom. Each notch 1023 has a width substantially equal to the diameter of the sub-fiber 3000. The end portion of the sub fiber 3000 is inserted into the cut portion 1023 from above. The cut portion 1023 sandwiches the end portion. In this way, the sub-fiber holding unit 1022 holds the sub-fiber 3000.
平面部1021の外側の回転部1020の部位には、連結孔1024が形成されている。各連結孔1024は、上方に向かって開口している。各連結孔1024の周面にはネジ山が形成されている。すなわち、連結孔1024は雌ネジである。各連結孔1024には連結ネジ1060の下端部が螺入される。それにより、回転部1020と連結部1050とが連結される。
A connecting hole 1024 is formed in a part of the rotating part 1020 outside the flat part 1021. Each connecting hole 1024 is open upward. A screw thread is formed on the peripheral surface of each connection hole 1024. That is, the connection hole 1024 is a female screw. The lower end portion of the connection screw 1060 is screwed into each connection hole 1024. Thereby, the rotation part 1020 and the connection part 1050 are connected.
連結部1050には、上方に延びる円筒状の筒部1070が接合されている。筒部1070の内部には、円筒状の係合部材1090が接合されている。係合部材1090の内周面にはネジ山が形成されている。係合部材1090には調整ネジ1100の係合部1102が螺入されている。このように、調整ネジ1100と係合部材1090は、雄ネジと雌ネジの関係を有する。調整ネジ1100のヘッド1101を回転させると、係合部1102も一体的に回転し、それにより、調整ネジ1100が係合部材1090内を上下に移動する。
A cylindrical tube portion 1070 extending upward is joined to the connecting portion 1050. A cylindrical engaging member 1090 is joined to the inside of the cylindrical portion 1070. A thread is formed on the inner peripheral surface of the engaging member 1090. An engaging portion 1102 of the adjusting screw 1100 is screwed into the engaging member 1090. Thus, the adjustment screw 1100 and the engagement member 1090 have a relationship between a male screw and a female screw. When the head 1101 of the adjusting screw 1100 is rotated, the engaging portion 1102 is also rotated integrally, whereby the adjusting screw 1100 moves up and down in the engaging member 1090.
調整ネジ1100の係合部1102の下端(ヘッド1101の反対側の端部)には、円盤状のバネ支持部材1110が設けられている。バネ支持部材1110の上面は係合部1102の下端に接触しており、下面はバネ1040の上端に接触している。なお、これら接触部分は、単に接触しているだけであってもよいし、接着剤等により接合されていてもよい。
A disc-shaped spring support member 1110 is provided at the lower end of the engaging portion 1102 of the adjusting screw 1100 (the end opposite to the head 1101). The upper surface of the spring support member 1110 is in contact with the lower end of the engaging portion 1102, and the lower surface is in contact with the upper end of the spring 1040. Note that these contact portions may simply be in contact with each other, or may be joined by an adhesive or the like.
バネ1040は上下方向に伸縮するように配置されている。バネ1040の下端は、ブロック1030の上面に形成された凹部1031に嵌入されている。調整ネジ1100が回転されて上下に移動されると、ブロック1030はバネ支持部材1110とともに上下に移動する。
The spring 1040 is arranged to expand and contract in the vertical direction. The lower end of the spring 1040 is fitted into a recess 1031 formed on the upper surface of the block 1030. When the adjustment screw 1100 is rotated and moved up and down, the block 1030 moves up and down together with the spring support member 1110.
連結ネジ1060により回転部1020と連結部1050とが連結された状態でブロック1030を下方に移動させると、ブロック1030の下面(平面部1032)が、回転部1020の平面部1021上に載置された光ファイバ2000とサブファイバ3000とに当接される。更に、調整ネジ1100によりブロック1030の上下位置を調整することにより、光ファイバ2000及びサブファイバ3000に印加される圧力を調整することができる(図3Aを参照)。
When the block 1030 is moved downward in a state where the rotating portion 1020 and the connecting portion 1050 are connected by the connecting screw 1060, the lower surface (planar portion 1032) of the block 1030 is placed on the planar portion 1021 of the rotating portion 1020. The optical fiber 2000 and the sub-fiber 3000 are brought into contact with each other. Furthermore, the pressure applied to the optical fiber 2000 and the sub-fiber 3000 can be adjusted by adjusting the vertical position of the block 1030 with the adjusting screw 1100 (see FIG. 3A).
また、回転部1020と連結部1050とが連結された状態で、本体部1010に対して回転部1020を回転させると、ブロック1030、バネ1040、連結部1050、筒部1070、調整ネジ固定部1080、係合部材1090及び調整ネジ1100は、回転部1020と一体的に回転する(図3Bを参照)。このとき、回転部1020の回転軸は、本体部1010及び回転部1020の円柱軸Cである。
In addition, when the rotating unit 1020 is rotated with respect to the main body unit 1010 in a state where the rotating unit 1020 and the connecting unit 1050 are connected, the block 1030, the spring 1040, the connecting unit 1050, the tube unit 1070, and the adjustment screw fixing unit 1080. The engaging member 1090 and the adjusting screw 1100 rotate integrally with the rotating unit 1020 (see FIG. 3B). At this time, the rotation axis of the rotation unit 1020 is the cylindrical axis C of the main body unit 1010 and the rotation unit 1020.
調整ネジ固定部1080は、筒部1070の円筒軸を中心に回転可能に設けられたナットであり、これを所定方向に回転させると、係合部材1090を内側に向かって締め付けるように構成されている。調整ネジ固定部1080を逆方向に回転させると、係合部材1090に対する締め付けをゆるめるようになっている。
The adjustment screw fixing portion 1080 is a nut that is rotatably provided around the cylindrical axis of the cylinder portion 1070, and is configured to tighten the engaging member 1090 inward when rotated in a predetermined direction. Yes. When the adjustment screw fixing portion 1080 is rotated in the reverse direction, the fastening with respect to the engaging member 1090 is loosened.
〔使用例〕
以上のように構成された偏光コントローラ1000の使用方法の一例を説明する。 〔Example of use〕
An example of how to use thepolarization controller 1000 configured as described above will be described.
以上のように構成された偏光コントローラ1000の使用方法の一例を説明する。 〔Example of use〕
An example of how to use the
まず、光ファイバ2000とサブファイバ3000を設置する。光ファイバ2000の設置は、たとえば次のようにして行う。光ファイバ2000の先端を一方の孔部1015から挿入し、回転部1020の平面部1021上を経由して他方の孔部1015から出す。また、間隙1014を介して光ファイバ2000を平面部1021に設置することも可能である(比較的長い光ファイバ2000を使用する場合には、この設置方法の方が好適である)。
First, the optical fiber 2000 and the sub-fiber 3000 are installed. The optical fiber 2000 is installed as follows, for example. The tip of the optical fiber 2000 is inserted from one hole 1015 and is taken out from the other hole 1015 via the flat surface 1021 of the rotating part 1020. It is also possible to install the optical fiber 2000 on the flat surface 1021 through the gap 1014 (this installation method is more suitable when using a relatively long optical fiber 2000).
サブファイバ3000の設置は、たとえば次のようにして行う。双方のサブファイバ保持部1022の切込部1023にサブファイバ3000の端部を挿入して保持させる。なお、光ファイバ2000の設置とサブファイバ3000の設置は、どちらを先に行ってもよい。
For example, the sub-fiber 3000 is installed as follows. The end portions of the sub-fibers 3000 are inserted and held in the cut portions 1023 of both the sub-fiber holding portions 1022. Either the optical fiber 2000 or the sub-fiber 3000 may be installed first.
次に、連結ネジ1060を連結孔1024に螺合させることにより、回転部1020と連結部1050とを接続する。
Next, the rotating part 1020 and the connecting part 1050 are connected by screwing the connecting screw 1060 into the connecting hole 1024.
続いて、光ファイバ2000の一端から他端に向けて光を通し、他端から出射される光の偏光状態の良否を確認しながら、回転部1020の回転位置を変えたり、調整ネジ1100で光ファイバ2000に付与する圧力を調整したりすることにより、所望の偏光状態(偏光方向、偏光量等)になるような回転位置や圧力を見つける。
Subsequently, while passing light from one end of the optical fiber 2000 toward the other end and confirming the quality of the polarization state of the light emitted from the other end, the rotational position of the rotating unit 1020 is changed, or light is adjusted with the adjusting screw 1100. By adjusting the pressure applied to the fiber 2000, a rotational position and pressure that can achieve a desired polarization state (polarization direction, polarization amount, etc.) are found.
このとき、偏光状態の良否は、たとえば偏光アナライザ等の装置を用いて確認することができる。また、偏光コントローラ1000を干渉計に適用する場合には、たとえば、生成される干渉光の干渉成分を解析するなどして偏光状態の良否を確認できる。また、偏光コントローラ1000を光画像計測装置に適用する場合には、たとえば後述のように、干渉光を解析したり、干渉像を解析又は視認したりすることにより偏光状態の良否を確認できる。
At this time, the quality of the polarization state can be confirmed using a device such as a polarization analyzer. In addition, when the polarization controller 1000 is applied to an interferometer, the quality of the polarization state can be confirmed by, for example, analyzing the interference component of the generated interference light. When the polarization controller 1000 is applied to an optical image measurement device, the quality of the polarization state can be confirmed by analyzing interference light or analyzing or visually checking the interference image, as will be described later.
また、回転部1020の回転位置を変更する際には、光ファイバ2000に対する圧力を一旦解除するか緩めるかして、光ファイバ2000が捻れないようにすることが望ましい。
Also, when changing the rotational position of the rotating unit 1020, it is desirable to temporarily release or loosen the pressure on the optical fiber 2000 so that the optical fiber 2000 is not twisted.
所望の偏光状態が得られたら、調整ネジ固定部1080を回転させて調整ネジ1100の位置を固定するとともに、ネジ1016を回転させて回転部1020を固定する。なお、調整ネジ固定部1080以外の任意の機構によって調整ネジ1100の位置を固定することも可能である。また、ネジ1016以外のロック機構を設けて回転部1020等の回転を規制することも可能である。
When a desired polarization state is obtained, the adjustment screw fixing unit 1080 is rotated to fix the position of the adjustment screw 1100, and the screw 1016 is rotated to fix the rotation unit 1020. Note that the position of the adjustment screw 1100 can be fixed by any mechanism other than the adjustment screw fixing portion 1080. In addition, a lock mechanism other than the screw 1016 can be provided to restrict the rotation of the rotating unit 1020 and the like.
〔作用・効果〕
以上のような偏光コントローラ1000の作用及び効果を説明する。 [Action / Effect]
The operation and effect of thepolarization controller 1000 will be described.
以上のような偏光コントローラ1000の作用及び効果を説明する。 [Action / Effect]
The operation and effect of the
偏光コントローラ1000は、光ファイバ2000に対して圧力を印加することにより、光ファイバ2000を通過する光の偏光状態を変化させる、圧縮タイプの偏光コントローラである。
The polarization controller 1000 is a compression type polarization controller that changes the polarization state of light passing through the optical fiber 2000 by applying pressure to the optical fiber 2000.
偏光コントローラ1000は、回転部1020の平面部1021とブロック1030の平面部1032とを光ファイバ2000に当接させ、調整ネジ1100によって回転部1020とブロック1030とを相対的に移動させることにより、平面部1021と平面部1032との間隔を変更して光ファイバ2000に圧力を印加するようになっている。
The polarization controller 1000 causes the planar portion 1021 of the rotating portion 1020 and the planar portion 1032 of the block 1030 to contact the optical fiber 2000, and moves the rotating portion 1020 and the block 1030 relative to each other by the adjustment screw 1100. Pressure is applied to the optical fiber 2000 by changing the distance between the portion 1021 and the flat portion 1032.
更に、偏光コントローラ1000は、平面部1021と平面部1032との間に配置され、光ファイバ2000と略等しい径を有するサブファイバ3000を有している。
Furthermore, the polarization controller 1000 includes a sub-fiber 3000 that is disposed between the flat portion 1021 and the flat portion 1032 and has a diameter substantially equal to that of the optical fiber 2000.
このような偏光コントローラ1000によれば、複数の部材(光ファイバ2000及びサブファイバ3000)を回転部1020とブロック1030との間に介在させているので、単一の光ファイバを挟み込む従来の構成と比較して、平面部1021と平面部1032とが平行状態を保ったまま光ファイバ2000に圧力を印加することが可能である。それにより、光ファイバ2000の軸方向に対して直交方向から一様に圧力を掛けることができる。
According to such a polarization controller 1000, since a plurality of members (the optical fiber 2000 and the sub fiber 3000) are interposed between the rotating unit 1020 and the block 1030, a conventional configuration in which a single optical fiber is sandwiched. In comparison, it is possible to apply pressure to the optical fiber 2000 while the planar portion 1021 and the planar portion 1032 are kept parallel. Thereby, pressure can be applied uniformly from the direction orthogonal to the axial direction of the optical fiber 2000.
また、サブファイバ3000の存在により、圧力を印加している状態のブロック1030の姿勢が安定するので、光ファイバ2000に対して安定的に圧力を付与することができる。それにより、光ファイバ2000を通過する光の偏光状態の経時的変動を抑えることができる。
Further, the presence of the sub-fiber 3000 stabilizes the posture of the block 1030 in a state where pressure is applied, so that the pressure can be stably applied to the optical fiber 2000. As a result, the temporal change in the polarization state of the light passing through the optical fiber 2000 can be suppressed.
なお、回転部1020とブロック1030は、この発明の「一対の当接部材」の一例である。また、サブファイバ3000は、この発明の「線状部材」の一例である。また、この発明の「移動機構」は、調整ネジ1100、係合部材1090及びバネ1040を含んで構成される。また、この発明の「圧力印加部」は、ブロック1030、サブファイバ3000、調整ネジ1100、係合部材1090及びバネ1040を含んで構成される。
The rotating unit 1020 and the block 1030 are an example of “a pair of contact members” of the present invention. The sub fiber 3000 is an example of the “linear member” in the present invention. The “movement mechanism” of the present invention includes an adjustment screw 1100, an engagement member 1090, and a spring 1040. The “pressure applying unit” of the present invention includes a block 1030, a sub-fiber 3000, an adjusting screw 1100, an engaging member 1090, and a spring 1040.
更に、偏光コントローラ1000の回転部1020には、光ファイバ2000の軸方向を回転軸として、ブロック1030、サブファイバ3000、調整ネジ1100、係合部材1090及びバネ1040を回転させる機構が設けられている。この機構は、この発明の「回転機構」の一例であり、保持部1012やネジ1016を含んで構成される。
Further, the rotation unit 1020 of the polarization controller 1000 is provided with a mechanism for rotating the block 1030, the sub fiber 3000, the adjustment screw 1100, the engagement member 1090, and the spring 1040 with the axial direction of the optical fiber 2000 as the rotation axis. . This mechanism is an example of the “rotating mechanism” of the present invention, and includes a holding portion 1012 and a screw 1016.
このような回転機構を設けることで、光ファイバ2000に対して様々な方向から圧力を印加することが可能となり、偏光状態を調整する際の自由度が高まる。たとえば、光ファイバ2000を通過する光の偏光方向等を調整することが可能となる。
By providing such a rotation mechanism, pressure can be applied to the optical fiber 2000 from various directions, and the degree of freedom in adjusting the polarization state is increased. For example, the polarization direction of light passing through the optical fiber 2000 can be adjusted.
更に、偏光コントローラ1000の圧力印加部には、調整ネジ1100等により移動されるブロック1030の位置を固定する調整ネジ固定部1080が設けられている。調整ネジ固定部1080は、この発明の「固定機構」の一例である。
Furthermore, the pressure application unit of the polarization controller 1000 is provided with an adjustment screw fixing unit 1080 that fixes the position of the block 1030 moved by the adjustment screw 1100 or the like. The adjustment screw fixing portion 1080 is an example of the “fixing mechanism” of the present invention.
このような固定機構を設けることにより、光ファイバ2000に対する圧力を維持することができ、光ファイバ2000を通過する光の偏光状態の経時的変動を効果的に抑えることが可能となる。
By providing such a fixing mechanism, it is possible to maintain the pressure on the optical fiber 2000 and to effectively suppress the temporal variation of the polarization state of the light passing through the optical fiber 2000.
この実施形態に係る偏光コントローラ1000の特徴は、上記のように、光ファイバ2000とともにサブファイバ3000を挟み込む点にある。このような構成により、ブロック1030から印加される圧力は、光ファイバ2000に対する圧力とサブファイバ3000に対する圧力とに分散される。この実施形態では、バネ1040の軸(螺旋状のバネ1040の中心軸)は、光ファイバ2000とサブファイバ3000との中間に位置するものとする(図3を参照)。この場合、ブロック1030から与えられる圧力の半分が光ファイバ2000に印加される。それにより、調整ネジ1100の回転量に対する光ファイバ2000への印加圧力が減少し、結果として偏光状態の変化量が減少するので、偏光状態を微細に調整することが可能となる。
The characteristic of the polarization controller 1000 according to this embodiment is that the sub-fiber 3000 is sandwiched together with the optical fiber 2000 as described above. With such a configuration, the pressure applied from the block 1030 is distributed between the pressure applied to the optical fiber 2000 and the pressure applied to the sub-fiber 3000. In this embodiment, it is assumed that the axis of the spring 1040 (the central axis of the spiral spring 1040) is located between the optical fiber 2000 and the sub-fiber 3000 (see FIG. 3). In this case, half of the pressure applied from the block 1030 is applied to the optical fiber 2000. As a result, the pressure applied to the optical fiber 2000 with respect to the amount of rotation of the adjusting screw 1100 decreases, and as a result, the amount of change in the polarization state decreases, so that the polarization state can be finely adjusted.
また、偏光コントローラ1000の圧力印加部には、サブファイバ3000を保持するサブファイバ保持部1022が設けられている。サブファイバ保持部1022は、この発明の「保持部」の一例である。
In addition, the pressure application unit of the polarization controller 1000 is provided with a sub-fiber holding unit 1022 that holds the sub-fiber 3000. The sub-fiber holding unit 1022 is an example of the “holding unit” in the present invention.
このような保持部を設けることにより、圧力を印加している際のサブファイバ3000のズレを防止できるとともに、回転部1020等を回転させる際のサブファイバ3000のズレや落下を防止できる。それにより、光ファイバ2000を通過する光の偏光状態の経時的変動を効果的に抑えことが可能となる。
By providing such a holding portion, it is possible to prevent displacement of the sub-fiber 3000 when pressure is applied, and to prevent displacement and dropping of the sub-fiber 3000 when rotating the rotating portion 1020 and the like. Thereby, it is possible to effectively suppress the temporal variation of the polarization state of the light passing through the optical fiber 2000.
[変形例]
以上に説明した実施形態は、この発明に係る偏光コントローラの一例に過ぎない。この発明を実施しようとする者は、上記の構成に加えて、又は上記の構成の一部に代えて、任意の変形を施すことが可能である。 [Modification]
The embodiment described above is merely an example of a polarization controller according to the present invention. A person who intends to implement the present invention can make arbitrary modifications in addition to the above configuration or instead of a part of the above configuration.
以上に説明した実施形態は、この発明に係る偏光コントローラの一例に過ぎない。この発明を実施しようとする者は、上記の構成に加えて、又は上記の構成の一部に代えて、任意の変形を施すことが可能である。 [Modification]
The embodiment described above is merely an example of a polarization controller according to the present invention. A person who intends to implement the present invention can make arbitrary modifications in addition to the above configuration or instead of a part of the above configuration.
〔第1の変形例〕
上記の実施形態においては、光ファイバ2000とサブファイバ3000との中間にバネ1040の軸を配置しているが、光ファイバ2000とサブファイバ3000との中間から外れた位置にバネ1040の軸Aを配置させてもよい。そのためには、ブロック1030の凹部の位置を変更すればよい。一例として、図4に示すように、光ファイバ2000寄りに凹部1033を形成することにより、軸Aを光ファイバ2000寄りに配置させることが可能である。逆に、サブファイバ3000寄りに凹部を形成することにより、軸Aをサブファイバ3000寄りに配置させることも可能である。なお、圧力印加中におけるブロック1030の姿勢の崩れを考慮すると、中間位置から大きく外れた位置に凹部を形成することは望ましくない場合がある。 [First Modification]
In the above embodiment, the axis of thespring 1040 is arranged between the optical fiber 2000 and the sub-fiber 3000. However, the axis A of the spring 1040 is arranged at a position deviated from the middle between the optical fiber 2000 and the sub-fiber 3000. It may be arranged. For that purpose, the position of the concave portion of the block 1030 may be changed. As an example, as shown in FIG. 4, it is possible to arrange the axis A closer to the optical fiber 2000 by forming a recess 1033 closer to the optical fiber 2000. On the contrary, it is possible to arrange the axis A closer to the sub-fiber 3000 by forming a recess near the sub-fiber 3000. In consideration of the collapse of the posture of the block 1030 during application of pressure, it may not be desirable to form a recess at a position greatly deviated from the intermediate position.
上記の実施形態においては、光ファイバ2000とサブファイバ3000との中間にバネ1040の軸を配置しているが、光ファイバ2000とサブファイバ3000との中間から外れた位置にバネ1040の軸Aを配置させてもよい。そのためには、ブロック1030の凹部の位置を変更すればよい。一例として、図4に示すように、光ファイバ2000寄りに凹部1033を形成することにより、軸Aを光ファイバ2000寄りに配置させることが可能である。逆に、サブファイバ3000寄りに凹部を形成することにより、軸Aをサブファイバ3000寄りに配置させることも可能である。なお、圧力印加中におけるブロック1030の姿勢の崩れを考慮すると、中間位置から大きく外れた位置に凹部を形成することは望ましくない場合がある。 [First Modification]
In the above embodiment, the axis of the
このように軸Aの位置をずらすことにより、光ファイバ2000への印加圧力とサブファイバ3000への印加圧力との比率を変更することが可能である。すなわち、光ファイバ2000寄りに軸Aを配置させることにより、光ファイバ2000への印加圧力をサブファイバ3000への印加圧力よりも大きくすることができる。逆に、サブファイバ3000寄りに軸Aを配置させることにより、サブファイバ3000への印加圧力を光ファイバ2000への印加圧力よりも大きくすることができる。前者の場合には、光ファイバ2000に対してより効率的に圧力を印加できるというメリットがある。後者の場合には、光ファイバ2000への印加圧力をより微細に調整できるというメリットがある。
By shifting the position of the axis A in this way, it is possible to change the ratio between the pressure applied to the optical fiber 2000 and the pressure applied to the sub-fiber 3000. In other words, by arranging the axis A closer to the optical fiber 2000, the pressure applied to the optical fiber 2000 can be made larger than the pressure applied to the sub-fiber 3000. Conversely, by placing the axis A closer to the sub-fiber 3000, the pressure applied to the sub-fiber 3000 can be made larger than the pressure applied to the optical fiber 2000. In the former case, there is an advantage that pressure can be applied to the optical fiber 2000 more efficiently. In the latter case, there is an advantage that the pressure applied to the optical fiber 2000 can be adjusted more finely.
〔第2の変形例〕
調整ネジ1100による偏光状態の変化量を調整するために、サブファイバ3000の本数を任意に選択することが可能である。すなわち、1本以上の任意の本数のサブファイバ3000を設置することが可能である。 [Second Modification]
In order to adjust the amount of change in polarization state by the adjustingscrew 1100, the number of sub-fibers 3000 can be arbitrarily selected. That is, it is possible to install one or more arbitrary numbers of sub-fibers 3000.
調整ネジ1100による偏光状態の変化量を調整するために、サブファイバ3000の本数を任意に選択することが可能である。すなわち、1本以上の任意の本数のサブファイバ3000を設置することが可能である。 [Second Modification]
In order to adjust the amount of change in polarization state by the adjusting
また、任意のバネ定数のバネ1040を使用することにより、調整ネジ1100による偏光状態の変化量を調整することも可能である。
It is also possible to adjust the amount of change in the polarization state by the adjusting screw 1100 by using the spring 1040 having an arbitrary spring constant.
また、2本以上のバネを設けることにより、調整ネジ1100による偏光状態の変化量を調整するようにしてもよい。
Further, the amount of change in the polarization state by the adjusting screw 1100 may be adjusted by providing two or more springs.
〔第3の変形例〕
上記の実施形態では、切込部1023を有するサブファイバ保持部1022によってサブファイバ3000の落下等を防止しているが、これ以外の任意の構成で同様の効果を得るようにしてもよい。 [Third Modification]
In the above-described embodiment, the sub-fiber 3000 is prevented from dropping by thesub-fiber holding unit 1022 having the notch 1023, but the same effect may be obtained with any other configuration.
上記の実施形態では、切込部1023を有するサブファイバ保持部1022によってサブファイバ3000の落下等を防止しているが、これ以外の任意の構成で同様の効果を得るようにしてもよい。 [Third Modification]
In the above-described embodiment, the sub-fiber 3000 is prevented from dropping by the
たとえば、回転部1020の平面部1021のサブファイバ載置位置に沿って溝を形成し、この溝にサブファイバを嵌入することによってサブファイバを保持することも可能である。この溝の深さは、サブファイバの径よりもやや浅めに形成することが望ましい。この溝は、この発明の「保持部」の一例である。
For example, it is also possible to hold the sub-fiber by forming a groove along the sub-fiber placement position of the flat surface portion 1021 of the rotating unit 1020 and inserting the sub-fiber into this groove. It is desirable that the depth of the groove be slightly shallower than the diameter of the sub-fiber. This groove is an example of the “holding portion” of the present invention.
また、サブファイバ載置位置の両端にサブファイバの径よりもやや薄目の厚さの膜状部材(シール等)を設置することにより、上記と同様の溝を形成し、この溝にサブファイバを嵌入することによってサブファイバを保持することも可能である。
Also, by installing a film member (seal etc.) with a thickness slightly thinner than the diameter of the sub-fiber at both ends of the sub-fiber placement position, a groove similar to the above is formed, and the sub-fiber is placed in this groove. It is also possible to hold the sub-fiber by fitting.
このような溝にサブファイバを配置させることにより、サブファイバの落下等を防止できるとともに、圧縮等によるサブファイバの変形を防止することが可能である(つまり、サブファイバを直線状に維持することが可能である)。
By arranging the sub-fiber in such a groove, it is possible to prevent the sub-fiber from dropping or the like, and to prevent the sub-fiber from being deformed due to compression or the like (that is, maintaining the sub-fiber in a straight line). Is possible).
〔第4の変形例〕
上記の実施形態では、回転部1020に対して上方からブロック1030を移動させることにより、平面部1021と平面部1032との間隔を変更しているが、この発明はこれに限定されるものではない。 [Fourth Modification]
In the above embodiment, the interval between theflat surface portion 1021 and the flat surface portion 1032 is changed by moving the block 1030 from above with respect to the rotating portion 1020. However, the present invention is not limited to this. .
上記の実施形態では、回転部1020に対して上方からブロック1030を移動させることにより、平面部1021と平面部1032との間隔を変更しているが、この発明はこれに限定されるものではない。 [Fourth Modification]
In the above embodiment, the interval between the
たとえば、光ファイバに当接される一対の当接部材の双方を移動可能に構成することにより双方の平面部の間隔を変更できるようにしてもよい。
For example, the distance between the flat portions may be changed by configuring both of the pair of abutting members that abut on the optical fiber to be movable.
〔第5の変形例〕
上記の実施形態では、光ファイバ2000と同じ形態(同じ材質、同じ構造、等しい径など)のサブファイバ3000を使用することを推奨している。すなわち、光ファイバ2000と同じロットの生産品をサブファイバ3000として使用することを推奨している。 [Fifth Modification]
In the above embodiment, it is recommended to use the sub-fiber 3000 having the same form (the same material, the same structure, the same diameter, etc.) as theoptical fiber 2000. That is, it is recommended to use a product of the same lot as the optical fiber 2000 as the sub-fiber 3000.
上記の実施形態では、光ファイバ2000と同じ形態(同じ材質、同じ構造、等しい径など)のサブファイバ3000を使用することを推奨している。すなわち、光ファイバ2000と同じロットの生産品をサブファイバ3000として使用することを推奨している。 [Fifth Modification]
In the above embodiment, it is recommended to use the sub-fiber 3000 having the same form (the same material, the same structure, the same diameter, etc.) as the
しかし、この発明を実施する際に、光ファイバ2000と異なる材質や構造の線状部材を適宜に使用することも可能である。なお、線状部材の径は、光ファイバ2000と略等しいことが望ましい。
However, when carrying out the present invention, a linear member having a material or structure different from that of the optical fiber 2000 can be used as appropriate. The diameter of the linear member is preferably substantially equal to that of the optical fiber 2000.
〔その他の変形例〕
この発明に係る回転機構や固定機構は、上記の実施形態のものに限定されるものではない。回転機構は、光ファイバの軸方向を回転軸として、一対の当接部材、光ファイバの径と略等しい厚さを有する部材、及び移動機構を一体的に回転させるように作用するものであれば、その構成は不問である。また、固定機構は、移動機構により相対的に移動される一対の当接部材の位置を固定するように作用するものであれば、その構成は不問である。 [Other variations]
The rotation mechanism and the fixing mechanism according to the present invention are not limited to those of the above-described embodiment. If the rotation mechanism acts so as to integrally rotate the pair of contact members, a member having a thickness substantially equal to the diameter of the optical fiber, and the moving mechanism, with the axial direction of the optical fiber as the rotation axis The configuration is unquestioned. In addition, the configuration of the fixing mechanism is not limited as long as it functions to fix the position of the pair of contact members relatively moved by the moving mechanism.
この発明に係る回転機構や固定機構は、上記の実施形態のものに限定されるものではない。回転機構は、光ファイバの軸方向を回転軸として、一対の当接部材、光ファイバの径と略等しい厚さを有する部材、及び移動機構を一体的に回転させるように作用するものであれば、その構成は不問である。また、固定機構は、移動機構により相対的に移動される一対の当接部材の位置を固定するように作用するものであれば、その構成は不問である。 [Other variations]
The rotation mechanism and the fixing mechanism according to the present invention are not limited to those of the above-described embodiment. If the rotation mechanism acts so as to integrally rotate the pair of contact members, a member having a thickness substantially equal to the diameter of the optical fiber, and the moving mechanism, with the axial direction of the optical fiber as the rotation axis The configuration is unquestioned. In addition, the configuration of the fixing mechanism is not limited as long as it functions to fix the position of the pair of contact members relatively moved by the moving mechanism.
[第2の実施形態]
第1の実施形態とは異なる構成の偏光コントローラについて説明する。この実施形態の偏光コントローラの特徴は、線状部材(サブファイバ等)の代わりに、光ファイバと略等しい厚さを有する膜状部材を使用する点にある。 [Second Embodiment]
A polarization controller having a configuration different from that of the first embodiment will be described. The feature of the polarization controller of this embodiment is that a film-like member having a thickness substantially equal to that of the optical fiber is used instead of the linear member (sub-fiber or the like).
第1の実施形態とは異なる構成の偏光コントローラについて説明する。この実施形態の偏光コントローラの特徴は、線状部材(サブファイバ等)の代わりに、光ファイバと略等しい厚さを有する膜状部材を使用する点にある。 [Second Embodiment]
A polarization controller having a configuration different from that of the first embodiment will be described. The feature of the polarization controller of this embodiment is that a film-like member having a thickness substantially equal to that of the optical fiber is used instead of the linear member (sub-fiber or the like).
この実施形態に係る偏光コントローラの一例を図5及び図6に示す。なお、第1の実施形態と同じ構成部分(たとえば本体部1010、連結部1050、筒部1070、調整ネジ固定部1080、係合部材1090、調整ネジ1100等)については省略する。
An example of the polarization controller according to this embodiment is shown in FIGS. Note that the same components as the first embodiment (for example, the main body portion 1010, the connecting portion 1050, the cylinder portion 1070, the adjusting screw fixing portion 1080, the engaging member 1090, the adjusting screw 1100, etc.) are omitted.
偏光コントローラ4000は、第1の実施形態の偏光コントローラ1000と同様に、回転部1020、ブロック1030、バネ1040等を有する。ブロック1030やバネ1040は第1の実施形態と同じ構成を有する。
The polarization controller 4000 includes a rotating unit 1020, a block 1030, a spring 1040, and the like, similar to the polarization controller 1000 of the first embodiment. The block 1030 and the spring 1040 have the same configuration as in the first embodiment.
偏光コントローラ4000の回転部1020の平面部1021上には、膜状部材1120が設けられている。膜状部材1120は、光ファイバ2000の径と略等しい厚さを有する。
A film-like member 1120 is provided on the plane part 1021 of the rotating part 1020 of the polarization controller 4000. The film member 1120 has a thickness substantially equal to the diameter of the optical fiber 2000.
また、膜状部材1120は、光ファイバ2000の配置位置以外の場所に設けられる。この実施形態では、膜状部材1120は、平面部1021上における光ファイバ2000の載置位置以外の部分を覆うように配置されている。なお、膜状部材1120の少なくとも一部は、平面部1021と平面部1032との間に配置されている必要がある。
Further, the film-like member 1120 is provided at a place other than the arrangement position of the optical fiber 2000. In this embodiment, the film-like member 1120 is disposed so as to cover a portion other than the placement position of the optical fiber 2000 on the flat portion 1021. Note that at least a part of the film-like member 1120 needs to be disposed between the flat portion 1021 and the flat portion 1032.
膜状部材1120は、適当な弾性を有することが望ましい。膜状部材1120は、平面部1021上に貼り付けられたものであってもよいし、その他の任意の手法によって平面部1021上に設けられたものであってもよい。
Desirably, the membrane member 1120 has appropriate elasticity. The film-like member 1120 may be affixed on the flat part 1021 or may be provided on the flat part 1021 by any other method.
また、膜状部材1120は、図6に示すような矩形状のものには限定されず、任意の形状のものであってよい。
Further, the film-like member 1120 is not limited to the rectangular shape as shown in FIG. 6, and may be of any shape.
このような構成の偏光コントローラ4000によれば、複数の部材(光ファイバ2000及び膜状部材1120)を回転部1020とブロック1030との間に介在させているので、単一の光ファイバを挟み込む従来の構成と比較して、平面部1021と平面部1032とが平行状態を保ったまま光ファイバ2000に圧力を印加することが可能である。それにより、光ファイバ2000の軸方向に対して直交方向から一様に圧力を掛けることができる。
According to the polarization controller 4000 having such a configuration, since a plurality of members (the optical fiber 2000 and the film-like member 1120) are interposed between the rotating unit 1020 and the block 1030, a single optical fiber is sandwiched between them. Compared with the configuration of FIG. 9, it is possible to apply pressure to the optical fiber 2000 while the flat portion 1021 and the flat portion 1032 are kept parallel. Thereby, pressure can be applied uniformly from the direction orthogonal to the axial direction of the optical fiber 2000.
また、膜状部材1120の存在により、圧力を印加している状態のブロック1030の姿勢が安定するので、光ファイバ2000に対して安定的に圧力を付与することができる。それにより、光ファイバ2000を通過する光の偏光状態の経時的変動を抑えることができる。
Further, since the posture of the block 1030 in a state where pressure is applied is stabilized due to the presence of the film-like member 1120, the pressure can be stably applied to the optical fiber 2000. As a result, the temporal change in the polarization state of the light passing through the optical fiber 2000 can be suppressed.
この実施形態に係る偏光コントローラに、第1の実施形態やその変形例で説明した任意の構成を付加することが可能である。以下、この発明に係る偏光コントローラの応用例を説明する。
It is possible to add the arbitrary configuration described in the first embodiment or its modification to the polarization controller according to this embodiment. Hereinafter, application examples of the polarization controller according to the present invention will be described.
〈光画像計測装置〉
この発明に係る光画像計測装置は、OCT技術を用いて被測定物体の断層像を形成する装置である。OCT技術により取得される画像をOCT画像と呼ぶことがある。この発明に係る光画像計測装置には、この発明に係る干渉計が搭載される。 <Optical image measuring device>
An optical image measurement apparatus according to the present invention is an apparatus that forms a tomographic image of an object to be measured using OCT technology. An image acquired by the OCT technique may be referred to as an OCT image. The optical image measurement device according to the present invention is equipped with the interferometer according to the present invention.
この発明に係る光画像計測装置は、OCT技術を用いて被測定物体の断層像を形成する装置である。OCT技術により取得される画像をOCT画像と呼ぶことがある。この発明に係る光画像計測装置には、この発明に係る干渉計が搭載される。 <Optical image measuring device>
An optical image measurement apparatus according to the present invention is an apparatus that forms a tomographic image of an object to be measured using OCT technology. An image acquired by the OCT technique may be referred to as an OCT image. The optical image measurement device according to the present invention is equipped with the interferometer according to the present invention.
この実施形態では、フーリエドメインタイプの手法を適用して、眼底の断層像を取得する光画像計測装置(眼底観察装置)について説明する。特に、この実施形態では、特許文献5に開示された装置とほぼ同様の構成を具備する眼底観察装置を取り上げる。なお、他のタイプのOCT技術を適用する場合においても、この実施形態と同様の構成を用いることで同様の作用及び効果が得られる。
In this embodiment, an optical image measurement device (fundus observation device) that acquires a tomographic image of the fundus using a Fourier domain type technique will be described. In particular, in this embodiment, a fundus oculi observation device having substantially the same configuration as the device disclosed in Patent Document 5 will be taken up. Even when other types of OCT technology are applied, the same operation and effect can be obtained by using the same configuration as that of this embodiment.
[構成]
眼底観察装置1は、図7に示すように、眼底カメラユニット1A、OCTユニット150及び演算制御装置200を含んで構成される。眼底カメラユニット1Aは、従来の眼底カメラとほぼ同様の光学系を有する。眼底カメラは、眼底の表面を撮影して2次元画像を取得する装置である。また、眼底カメラは、眼底血管の形態の撮影にも利用される。OCTユニット150は、眼底のOCT画像を取得するための光学系を格納している。演算制御装置200は、各種の演算処理や制御処理等を実行するコンピュータを具備している。 [Constitution]
As shown in FIG. 7, the fundusoculi observation device 1 includes a fundus camera unit 1 </ b> A, an OCT unit 150, and an arithmetic control device 200. The fundus camera unit 1A has an optical system that is substantially the same as that of a conventional fundus camera. The fundus camera is a device that captures the surface of the fundus and acquires a two-dimensional image. The fundus camera is also used for photographing the fundus blood vessel. The OCT unit 150 stores an optical system for acquiring an OCT image of the fundus. The arithmetic and control unit 200 includes a computer that executes various arithmetic processes and control processes.
眼底観察装置1は、図7に示すように、眼底カメラユニット1A、OCTユニット150及び演算制御装置200を含んで構成される。眼底カメラユニット1Aは、従来の眼底カメラとほぼ同様の光学系を有する。眼底カメラは、眼底の表面を撮影して2次元画像を取得する装置である。また、眼底カメラは、眼底血管の形態の撮影にも利用される。OCTユニット150は、眼底のOCT画像を取得するための光学系を格納している。演算制御装置200は、各種の演算処理や制御処理等を実行するコンピュータを具備している。 [Constitution]
As shown in FIG. 7, the fundus
OCTユニット150には、接続線152の一端が取り付けられている。接続線152の他端には、接続線152を眼底カメラユニット1Aに接続するコネクタ部151が取り付けられている。接続線152の内部には光ファイバ152aが導通されている(図8を参照)。OCTユニット150と眼底カメラユニット1Aは、接続線152を介して光学的に接続されている。演算制御装置200は、眼底カメラユニット1A及びOCTユニット150のそれぞれと、電気信号を伝達する通信線を介して接続されている。
One end of a connection line 152 is attached to the OCT unit 150. A connector 151 for connecting the connection line 152 to the retinal camera unit 1A is attached to the other end of the connection line 152. An optical fiber 152a is conducted inside the connection line 152 (see FIG. 8). The OCT unit 150 and the fundus camera unit 1A are optically connected via a connection line 152. The arithmetic and control unit 200 is connected to each of the fundus camera unit 1A and the OCT unit 150 via a communication line that transmits an electrical signal.
〔眼底カメラユニット〕
眼底カメラユニット1Aは、眼底表面の形態を表す2次元画像を形成するための光学系を有する。ここで、眼底表面の2次元画像には、眼底表面を撮影したカラー画像やモノクロ画像、更には蛍光画像(フルオレセイン蛍光画像、インドシアニングリーン蛍光画像等)などが含まれる。 [Fundus camera unit]
The fundus camera unit 1A includes an optical system for forming a two-dimensional image representing the form of the fundus surface. Here, the two-dimensional image of the fundus surface includes a color image and a monochrome image obtained by photographing the fundus surface, and further a fluorescent image (fluorescein fluorescent image, indocyanine green fluorescent image, etc.) and the like.
眼底カメラユニット1Aは、眼底表面の形態を表す2次元画像を形成するための光学系を有する。ここで、眼底表面の2次元画像には、眼底表面を撮影したカラー画像やモノクロ画像、更には蛍光画像(フルオレセイン蛍光画像、インドシアニングリーン蛍光画像等)などが含まれる。 [Fundus camera unit]
The fundus camera unit 1A includes an optical system for forming a two-dimensional image representing the form of the fundus surface. Here, the two-dimensional image of the fundus surface includes a color image and a monochrome image obtained by photographing the fundus surface, and further a fluorescent image (fluorescein fluorescent image, indocyanine green fluorescent image, etc.) and the like.
眼底カメラユニット1Aには、従来の眼底カメラと同様に、照明光学系100と撮影光学系120が設けられている。照明光学系100は眼底Efに照明光を照射する。撮影光学系120は、この照明光の眼底反射光を撮像装置10、12に導く。また、撮影光学系120は、OCTユニット150からの信号光を眼底Efに導くとともに、眼底Efを経由した信号光をOCTユニット150に導く。
The fundus camera unit 1A is provided with an illumination optical system 100 and a photographing optical system 120 as in the case of a conventional fundus camera. The illumination optical system 100 irradiates the fundus oculi Ef with illumination light. The imaging optical system 120 guides the fundus reflection light of the illumination light to the imaging devices 10 and 12. The imaging optical system 120 guides the signal light from the OCT unit 150 to the fundus oculi Ef and guides the signal light passing through the fundus oculi Ef to the OCT unit 150.
照明光学系100は、従来の眼底カメラと同様に、観察光源101、コンデンサレンズ102、撮影光源103、コンデンサレンズ104、エキサイタフィルタ105及び106、リング透光板107(リングスリット107a)、ミラー108、LCD(Liquid Crystal Display)109、照明絞り110、リレーレンズ111、孔開きミラー112、対物レンズ113を含んで構成される。
The illumination optical system 100 includes an observation light source 101, a condenser lens 102, a photographing light source 103, a condenser lens 104, exciter filters 105 and 106, a ring translucent plate 107 (ring slit 107a), a mirror 108, as in a conventional fundus camera. An LCD (Liquid Crystal Display) 109, an illumination stop 110, a relay lens 111, a perforated mirror 112, and an objective lens 113 are included.
観察光源101は、たとえば約400nm~700nmの範囲の可視領域の波長を含む照明光を出力する。撮影光源103は、たとえば約700nm~800nmの範囲の近赤外領域の波長を含む照明光を出力する。この近赤外光は、OCTユニット150で使用する光の波長よりも短く設定されている(後述)。
The observation light source 101 outputs illumination light including a wavelength in the visible region in the range of about 400 nm to 700 nm, for example. The imaging light source 103 outputs illumination light including a near-infrared wavelength in the range of about 700 nm to 800 nm, for example. This near-infrared light is set shorter than the wavelength of light used in the OCT unit 150 (described later).
観察光源101から出力された照明光は、コンデンサレンズ102、104、(エキサイタフィルタ105又は106、)リング透光板107、ミラー108、LCD109、照明絞り110、リレーレンズ111を介して孔開きミラー112に到達する。更に、この照明光は、孔開きミラー112により反射され、対物レンズ113を介して被検眼Eに入射して眼底Efを照明する。一方、撮影光源103から出力された照明光は、コンデンサレンズ104から対物レンズ113までを経由して被検眼Eに入射して眼底Efを照明する。
The illumination light output from the observation light source 101 is a perforated mirror 112 via condenser lenses 102 and 104, (exciter filter 105 or 106) ring translucent plate 107, mirror 108, LCD 109, illumination diaphragm 110, and relay lens 111. To reach. Further, the illumination light is reflected by the perforated mirror 112 and enters the eye E through the objective lens 113 to illuminate the fundus oculi Ef. On the other hand, the illumination light output from the imaging light source 103 enters the eye E through the condenser lens 104 to the objective lens 113 and illuminates the fundus oculi Ef.
撮影光学系120は、対物レンズ113、孔開きミラー112(の孔部112a)、撮影絞り121、バリアフィルタ122及び123、変倍レンズ124、リレーレンズ125、撮影レンズ126、ダイクロイックミラー134、フィールドレンズ(視野レンズ)128、ハーフミラー135、リレーレンズ131、ダイクロイックミラー136、撮影レンズ133、撮像装置10、反射ミラー137、撮影レンズ138、撮像装置12、レンズ139及びLCD140を含んで構成される。撮影光学系120は、従来の眼底カメラとほぼ同様の構成を有する。
The photographing optical system 120 includes an objective lens 113, a perforated mirror 112 (hole 112a), a photographing aperture 121, barrier filters 122 and 123, a variable power lens 124, a relay lens 125, a photographing lens 126, a dichroic mirror 134, and a field lens. (Field lens) 128, half mirror 135, relay lens 131, dichroic mirror 136, photographing lens 133, imaging device 10, reflection mirror 137, photographing lens 138, imaging device 12, lens 139 and LCD 140 are configured. The photographing optical system 120 has substantially the same configuration as a conventional fundus camera.
ダイクロイックミラー134は、照明光学系100からの照明光の眼底反射光(約400nm~800nmの範囲に含まれる波長を有する)を反射する。また、ダイクロイックミラー134は、OCTユニット150からの信号光LS(たとえば約800nm~900nmの範囲に含まれる波長を有する;図8を参照)を透過させる。
The dichroic mirror 134 reflects the fundus reflection light (having a wavelength included in the range of about 400 nm to 800 nm) of the illumination light from the illumination optical system 100. The dichroic mirror 134 transmits the signal light LS (for example, having a wavelength included in the range of about 800 nm to 900 nm; see FIG. 8) from the OCT unit 150.
ダイクロイックミラー136は、観察光源101からの照明光の眼底反射光を透過させる。また、ダイクロイックミラー136は、撮影光源103からの照明光の眼底反射光を反射する。
The dichroic mirror 136 transmits the fundus reflection light of the illumination light from the observation light source 101. The dichroic mirror 136 reflects the fundus reflection light of the illumination light from the imaging light source 103.
LCD140は、被検眼Eを固視させるための固視標(内部固視標)を表示する。LCD140からの光は、レンズ139により集光され、ハーフミラー135により反射され、フィールドレンズ128を経由してダイクロイックミラー136に反射される。更に、この光は、撮影レンズ126、リレーレンズ125、変倍レンズ124、孔開きミラー112(の孔部112a)、対物レンズ113等を経由して被検眼Eに入射する。それにより、眼底Efに内部固視標が投影される。
LCD 140 displays a fixation target (internal fixation target) for fixing the eye E to be examined. Light from the LCD 140 is collected by the lens 139, reflected by the half mirror 135, and reflected by the dichroic mirror 136 via the field lens 128. Further, this light is incident on the eye E through the photographing lens 126, the relay lens 125, the variable power lens 124, the aperture mirror 112 (the aperture 112a thereof), the objective lens 113, and the like. Thereby, the internal fixation target is projected onto the fundus oculi Ef.
LCD140による内部固視標の表示位置を変更することにより、被検眼Eの固視方向を変更することができる。被検眼Eの固視方向としては、たとえば従来の眼底カメラと同様に、眼底Efの黄斑部を中心とする画像を取得するための固視方向や、視神経乳頭を中心とする画像を取得するための固視方向や、黄斑部と視神経乳頭との間の眼底中心を中心とする画像を取得するための固視方向などがある。
The fixation direction of the eye E can be changed by changing the display position of the internal fixation target on the LCD 140. As the fixation direction of the eye E, for example, as with a conventional fundus camera, a fixation direction for acquiring an image centered on the macular portion of the fundus oculi Ef or an image centered on the optic disc is acquired. And the fixation direction for acquiring an image centered on the fundus center between the macula and the optic disc.
撮像装置10には、撮像素子10aが内蔵されている。撮像装置10は、特に近赤外領域の波長の光を検出可能である。つまり、撮像装置10は、近赤外光を検出する赤外線テレビカメラとして機能する。撮像装置10は、近赤外光を検出して映像信号を出力する。撮像素子10aは、たとえば、CCD(Charge Coupled Devices)やCMOS(Complementary Metal Oxide Semiconductor)等の任意の撮像素子(エリアセンサ)である。
The imaging device 10 includes an imaging element 10a. The imaging device 10 can particularly detect light having a wavelength in the near infrared region. That is, the imaging device 10 functions as an infrared television camera that detects near-infrared light. The imaging device 10 detects near infrared light and outputs a video signal. The imaging element 10a is an arbitrary imaging element (area sensor) such as a CCD (Charge Coupled Devices) or a CMOS (Complementary Metal Oxide Semiconductor).
撮像装置12には、撮像素子12aが内蔵されている。撮像装置12は、特に可視領域の波長の光を検出可能である。つまり、撮像装置12は、可視光を検出するテレビカメラとして機能する。撮像装置12は、可視光を検出して映像信号を出力する。撮像素子12aは、撮像素子10aと同様に、任意の撮像素子(エリアセンサ)により構成される。
The imaging device 12 includes an imaging element 12a. The imaging device 12 can particularly detect light having a wavelength in the visible region. That is, the imaging device 12 functions as a television camera that detects visible light. The imaging device 12 detects visible light and outputs a video signal. The image sensor 12a is configured by an arbitrary image sensor (area sensor), similarly to the image sensor 10a.
タッチパネルモニタ11は、各撮像素子10a、12aからの映像信号に基づいて眼底画像Ef′を表示する。また、この映像信号は演算制御装置200に送られる。
The touch panel monitor 11 displays the fundus oculi image Ef ′ based on the video signals from the image sensors 10a and 12a. The video signal is sent to the arithmetic and control unit 200.
眼底カメラユニット1Aには、走査ユニット141とレンズ142とが設けられている。走査ユニット141は、OCTユニット150から出力される信号光LSの眼底Efに対する照射位置を走査する。
The fundus camera unit 1A is provided with a scanning unit 141 and a lens 142. The scanning unit 141 scans the irradiation position of the signal light LS output from the OCT unit 150 to the fundus oculi Ef.
走査ユニット141は、図7に示すxy平面上において信号光LSを走査する。そのために、走査ユニット141には、たとえば、x方向への走査用のガルバノミラーと、y方向への走査用のガルバノミラーとが設けられている。
The scanning unit 141 scans the signal light LS on the xy plane shown in FIG. For this purpose, the scanning unit 141 is provided with, for example, a galvanometer mirror for scanning in the x direction and a galvanometer mirror for scanning in the y direction.
〔OCTユニット〕
次に、OCTユニット150の構成について図8を参照しつつ説明する。OCTユニット150は、従来のフーリエドメインタイプのOCT装置と同様の光学系を備えている。すなわち、OCTユニット150は、低コヒーレンス光を参照光と信号光に分割し、被検眼の眼底を経由した信号光と参照物体を経由した参照光とを干渉させて干渉光を生成する光学系(干渉計)と、この干渉光を検出する検出手段とを備えている。干渉光の検出結果(検出信号)は演算制御装置200に送られる。 [OCT unit]
Next, the configuration of theOCT unit 150 will be described with reference to FIG. The OCT unit 150 includes an optical system similar to that of a conventional Fourier domain type OCT apparatus. That is, the OCT unit 150 divides low-coherence light into reference light and signal light, and generates interference light by causing the signal light passing through the fundus of the subject's eye to interfere with the reference light passing through the reference object ( An interferometer) and detection means for detecting the interference light. The detection result (detection signal) of the interference light is sent to the arithmetic and control unit 200.
次に、OCTユニット150の構成について図8を参照しつつ説明する。OCTユニット150は、従来のフーリエドメインタイプのOCT装置と同様の光学系を備えている。すなわち、OCTユニット150は、低コヒーレンス光を参照光と信号光に分割し、被検眼の眼底を経由した信号光と参照物体を経由した参照光とを干渉させて干渉光を生成する光学系(干渉計)と、この干渉光を検出する検出手段とを備えている。干渉光の検出結果(検出信号)は演算制御装置200に送られる。 [OCT unit]
Next, the configuration of the
低コヒーレンス光源160は、広帯域の低コヒーレンス光L0を出力する広帯域光源である。この広帯域光源としては、たとえば、スーパールミネセントダイオード(Super Luminescent Diode:SLD)や、発光ダイオード(Light Emitting Diode:LED)などを用いることができる。低コヒーレンス光源160は、この発明の「光源」の一例である。
The low coherence light source 160 is a broadband light source that outputs a broadband low coherence light L0. As the broadband light source, for example, a super luminescent diode (SLD), a light emitting diode (LED), or the like can be used. The low coherence light source 160 is an example of the “light source” of the present invention.
低コヒーレンス光L0は、たとえば、近赤外領域の波長の光を含み、かつ、数十マイクロメートル程度の時間的コヒーレンス長を有する。低コヒーレンス光L0は、眼底カメラユニット1Aの照明光(波長約400nm~800nm)よりも長い波長、たとえば約800nm~900nmの範囲の波長を含んでいる。
The low coherence light L0 includes, for example, light having a wavelength in the near infrared region, and has a temporal coherence length of about several tens of micrometers. The low coherence light L0 includes a wavelength longer than the illumination light (wavelength of about 400 nm to 800 nm) of the fundus camera unit 1A, for example, a wavelength in the range of about 800 nm to 900 nm.
低コヒーレンス光源160から出力された低コヒーレンス光L0は、光ファイバ161を通じて光カプラ162に導かれる。光ファイバ161は、たとえばシングルモードファイバやPMファイバ(Polarization maintaining fiber;偏波面保持ファイバ)等により構成される。光カプラ162は、低コヒーレンス光L0を参照光LRと信号光LSとに分割する。
The low coherence light L0 output from the low coherence light source 160 is guided to the optical coupler 162 through the optical fiber 161. The optical fiber 161 is configured by, for example, a single mode fiber, a PM fiber (Polarization maintaining fiber), or the like. The optical coupler 162 splits the low coherence light L0 into the reference light LR and the signal light LS.
なお、光カプラ162は、光を分割する分割手段(スプリッタ;splitter)、及び、光を重畳する重畳手段(カプラ;coupler)の双方の作用を有するが、ここでは慣用的に「光カプラ」と称する。なお、この実施形態では、マイケルソン型の干渉計を用いているので、分割手段と重畳手段とを単一の部材(光カプラ)が兼ねているが、他のタイプの干渉計を適用する場合には、分割手段と重畳手段とをそれぞれ個別の部材により構成することがある。
The optical coupler 162 has both functions of a splitting unit (splitter) that splits light and a superimposing unit (coupler) that superimposes light. Here, it is conventionally referred to as an “optical coupler”. Called. In this embodiment, since a Michelson interferometer is used, a single member (optical coupler) serves as both the dividing means and the superimposing means, but other types of interferometers are applied. In some cases, the dividing means and the superimposing means are each constituted by individual members.
光カプラ162により生成された参照光LRは、シングルモードファイバ等からなる光ファイバ163により導光されてそのファイバ端面から出射される。光ファイバ163は、この発明の「第2の光ファイバ」の一例である。
The reference light LR generated by the optical coupler 162 is guided by an optical fiber 163 made of a single mode fiber or the like and emitted from the end face of the fiber. The optical fiber 163 is an example of the “second optical fiber” in the present invention.
光ファイバ163には、偏光コントローラ400が取り付けられている。偏光コントローラ400は、この発明に係る任意の偏光コントローラである。偏光コントローラ400は、光ファイバ163を通過する参照光LRの偏光状態を変化させる。参照光LRの偏光状態の調整作業は、たとえば出荷前やメンテナンス時などに実施される。
A polarization controller 400 is attached to the optical fiber 163. The polarization controller 400 is an arbitrary polarization controller according to the present invention. The polarization controller 400 changes the polarization state of the reference light LR that passes through the optical fiber 163. The adjustment operation of the polarization state of the reference light LR is performed, for example, before shipment or during maintenance.
偏光コントローラ400を経由して光ファイバ163から出射された参照光LRは、コリメータレンズ171により平行光束とされ、ガラスブロック172、偏光板(λ/4板)175及び濃度フィルタ173を経由し、参照ミラー174により反射される。参照ミラー174は、この発明の「参照物体」の例である。
The reference light LR emitted from the optical fiber 163 via the polarization controller 400 is converted into a parallel light beam by the collimator lens 171, passes through the glass block 172, the polarizing plate (λ / 4 plate) 175, and the density filter 173, for reference. Reflected by the mirror 174. The reference mirror 174 is an example of the “reference object” in the present invention.
参照ミラー174により反射された参照光LRは、再び濃度フィルタ173、偏光板175及びガラスブロック172を経由し、コリメータレンズ171によって光ファイバ163のファイバ端面に集光され、光ファイバ163を通じて光カプラ162に導かれる。このときにも、偏光コントローラ400により、光ファイバ163を通過する参照光LRの偏光状態が変化される。参照光LRが導光される当該光路(参照光路)は、この発明の「第2の導光路」の一例である。
The reference light LR reflected by the reference mirror 174 passes through the density filter 173, the polarizing plate 175, and the glass block 172 again, is condensed on the fiber end surface of the optical fiber 163 by the collimator lens 171, and passes through the optical fiber 163 to the optical coupler 162. Led to. Also at this time, the polarization state of the reference light LR passing through the optical fiber 163 is changed by the polarization controller 400. The optical path (reference optical path) through which the reference light LR is guided is an example of the “second light guide path” in the present invention.
なお、ガラスブロック172と濃度フィルタ173は、参照光LRと信号光LSの光路長(光学距離)を合わせるための遅延手段として作用する。また、ガラスブロック172と濃度フィルタ173は、参照光LRと信号光LSの分散特性を合わせるための分散補償手段として作用する。
Note that the glass block 172 and the density filter 173 act as delay means for matching the optical path lengths (optical distances) of the reference light LR and the signal light LS. Further, the glass block 172 and the density filter 173 function as dispersion compensation means for matching the dispersion characteristics of the reference light LR and the signal light LS.
濃度フィルタ173は、参照光LRの光量を減少させる減光フィルタとして作用する。濃度フィルタ173は、たとえば、回転型のND(Neutral Density)フィルタにより構成される。濃度フィルタ173は、図示しない駆動機構によって回転駆動されて、干渉光LCの生成に寄与する参照光LRの光量を変更する。
The density filter 173 acts as a neutral density filter that reduces the amount of the reference light LR. The density filter 173 is configured by, for example, a rotary ND (Neutral Density) filter. The density filter 173 is rotationally driven by a drive mechanism (not shown) to change the amount of the reference light LR that contributes to the generation of the interference light LC.
また、偏光板175は、参照光LRの光路長を補正するために用いられるとともに、OCT画像の画質を高めるために使用される。偏光板175は、参照光LRの光路方向に直交する方向に対してたとえば3度程度傾斜して配置される。偏光板175は、所定の駆動機構により回転駆動され、それにより干渉像の画質が調整される。偏光板175は、たとえば演算制御装置200の制御を受けて回転される。また、手動のノブ等を設けて偏光板175を回転させるようにしてもよい。
The polarizing plate 175 is used to correct the optical path length of the reference light LR and is used to improve the image quality of the OCT image. The polarizing plate 175 is disposed so as to be inclined by, for example, about 3 degrees with respect to the direction orthogonal to the optical path direction of the reference light LR. The polarizing plate 175 is rotationally driven by a predetermined driving mechanism, thereby adjusting the image quality of the interference image. The polarizing plate 175 is rotated under the control of the arithmetic and control unit 200, for example. Further, a polarizing knob 175 may be rotated by providing a manual knob or the like.
また、参照ミラー174は、図示しない駆動機構により、参照光LRの進行方向(図8に示す両側矢印方向)に移動される。それにより、被検眼Eの眼軸長やワーキングディスタンス(対物レンズ113と被検眼Eとの間の距離)などに応じて、参照光LRの光路長を確保できる。
Also, the reference mirror 174 is moved in the traveling direction of the reference light LR (the direction of the double-sided arrow shown in FIG. 8) by a driving mechanism (not shown). Thereby, the optical path length of the reference light LR can be ensured according to the axial length of the eye E and the working distance (distance between the objective lens 113 and the eye E).
他方、光カプラ162により生成された信号光LSは、シングルモードファイバ等からなる光ファイバ164により接続線152の端部まで導光される。ここで、光ファイバ164と光ファイバ152aは、単一の光ファイバから形成されていてもよいし、各々の端面同士を接合するなどして一体的に形成されていてもよい。
On the other hand, the signal light LS generated by the optical coupler 162 is guided to the end of the connection line 152 by an optical fiber 164 made of a single mode fiber or the like. Here, the optical fiber 164 and the optical fiber 152a may be formed from a single optical fiber, or may be formed integrally by joining the respective end faces.
光ファイバ164は、この発明の「第1の光ファイバ」の一例である。光ファイバ164には、偏光コントローラ300が取り付けられている。偏光コントローラ300は、この発明に係る任意の偏光コントローラである。偏光コントローラ300は、光ファイバ164を通過する信号光LSの偏光状態を変化させる。信号光LSの偏光状態の調整作業は、たとえば出荷前やメンテナンス時などに実施される。
The optical fiber 164 is an example of the “first optical fiber” in the present invention. A polarization controller 300 is attached to the optical fiber 164. The polarization controller 300 is an arbitrary polarization controller according to the present invention. The polarization controller 300 changes the polarization state of the signal light LS that passes through the optical fiber 164. The adjustment operation of the polarization state of the signal light LS is performed, for example, before shipment or during maintenance.
なお、参照光LR及び信号光LSの各偏光状態の調整は並行して実施される。偏光状態の調整は、たとえば、模型眼の眼底を計測しつつ、CCD184により得られる検出信号のピーク値を所定範囲内に含ませるようにして行う。また、模型眼の眼底の断層像が良好な画質になるように偏光状態を調整するようにしてもよい。
Note that adjustment of the polarization states of the reference light LR and the signal light LS is performed in parallel. The polarization state is adjusted, for example, by measuring the fundus of the model eye and including the peak value of the detection signal obtained by the CCD 184 within a predetermined range. Also, the polarization state may be adjusted so that the tomographic image of the fundus of the model eye has good image quality.
光ファイバ164を通過した信号光LSは、光ファイバ152aにより導光されて眼底カメラユニット1Aに案内される。更に、信号光LSは、レンズ142、走査ユニット141、ダイクロイックミラー134、撮影レンズ126、リレーレンズ125、変倍レンズ124、撮影絞り121、孔開きミラー112の孔部112a、対物レンズ113を経由して被検眼Eに照射されて眼底Efに照射される。なお、信号光LSを眼底Efに照射させるときには、バリアフィルタ122、123は事前に光路から退避される。
The signal light LS having passed through the optical fiber 164 is guided by the optical fiber 152a and guided to the fundus camera unit 1A. Further, the signal light LS passes through the lens 142, the scanning unit 141, the dichroic mirror 134, the photographing lens 126, the relay lens 125, the variable magnification lens 124, the photographing aperture 121, the hole 112 a of the aperture mirror 112, and the objective lens 113. The eye E is irradiated to the fundus Ef. When irradiating the fundus oculi Ef with the signal light LS, the barrier filters 122 and 123 are retracted from the optical path in advance.
被検眼Eに入射した信号光LSは、眼底Ef上にて結像し反射される。このとき、信号光LSは、眼底Efの表面で反射されるだけでなく、眼底Efの深部領域にも到達して屈折率境界において散乱される。したがって、眼底Efを経由した信号光LSは、眼底Efの表面形態を反映する情報と、眼底Efの深層組織の屈折率境界における後方散乱の状態を反映する情報とを含んでいる。この光を単に「信号光LSの眼底反射光」と呼ぶことがある。
The signal light LS incident on the eye E is imaged and reflected on the fundus oculi Ef. At this time, the signal light LS is not only reflected by the surface of the fundus oculi Ef, but also reaches the deep region of the fundus oculi Ef and is scattered at the refractive index boundary. Therefore, the signal light LS passing through the fundus oculi Ef includes information reflecting the surface form of the fundus oculi Ef and information reflecting the state of backscattering at the refractive index boundary of the deep tissue of the fundus oculi Ef. This light may be simply referred to as “fundus reflected light of the signal light LS”.
信号光LSの眼底反射光は、被検眼Eに向かう信号光LSと同じ経路を逆方向に案内されて光ファイバ152aの端面に集光される。更に、信号光LSの眼底反射光は、光ファイバ152aを通じてOCTユニット150に入射し、光ファイバ164を通じて光カプラ162に戻ってくる。このときにも、偏光コントローラ300により、光ファイバ164を通過する信号光LSの偏光状態が変化される。信号光LSが導光される当該光路(信号光路)は、この発明の「第1の導光路」の一例である。
The fundus reflection light of the signal light LS is guided in the reverse direction along the same path as the signal light LS toward the eye E to be collected on the end surface of the optical fiber 152a. Further, the fundus reflection light of the signal light LS enters the OCT unit 150 through the optical fiber 152 a and returns to the optical coupler 162 through the optical fiber 164. Also at this time, the polarization state of the signal light LS passing through the optical fiber 164 is changed by the polarization controller 300. The optical path (signal optical path) through which the signal light LS is guided is an example of the “first light guide path” in the present invention.
光カプラ162は、眼底Efを経由して戻ってきた信号光LSと、参照ミラー174にて反射された参照光LRとを重ね合わせて干渉光LCを生成する。干渉光LCは、シングルモードファイバ等からなる光ファイバ165を通じてスペクトロメータ180に導かれる。
The optical coupler 162 superimposes the signal light LS returned via the fundus oculi Ef and the reference light LR reflected by the reference mirror 174 to generate interference light LC. The interference light LC is guided to the spectrometer 180 through an optical fiber 165 made of a single mode fiber or the like.
スペクトロメータ(分光計)180は、干渉光LCのスペクトル成分を検出する。スペクトロメータ180は、コリメータレンズ181、回折格子182、結像レンズ183、CCD184を含んで構成される。回折格子182は、透過型でも反射型でもよい。また、CCD184に代えて、CMOS等の他の光検出素子(ラインセンサ又はエリアセンサ)を用いることも可能である。
A spectrometer (spectrometer) 180 detects a spectral component of the interference light LC. The spectrometer 180 includes a collimator lens 181, a diffraction grating 182, an imaging lens 183, and a CCD 184. The diffraction grating 182 may be transmissive or reflective. Further, in place of the CCD 184, other light detection elements (line sensor or area sensor) such as CMOS may be used.
スペクトロメータ180に入射した干渉光LCは、コリメータレンズ181により平行光束とされ、回折格子182によって分光(スペクトル分解)される。分光された干渉光LCは、結像レンズ183によってCCD184の撮像面上に結像される。CCD184は、分光された干渉光LCの各スペクトル成分を検出して電荷に変換する。CCD184は、この電荷を蓄積して検出信号を生成する。更に、CCD184は、この検出信号を演算制御装置200に送る。スペクトロメータ180(特にCCD184)は、この発明の「検出手段」の一例である。
The interference light LC incident on the spectrometer 180 is converted into a parallel light beam by the collimator lens 181 and split (spectral decomposition) by the diffraction grating 182. The split interference light LC is imaged on the imaging surface of the CCD 184 by the imaging lens 183. The CCD 184 detects each spectral component of the separated interference light LC and converts it into electric charges. The CCD 184 accumulates this electric charge and generates a detection signal. Further, the CCD 184 sends this detection signal to the arithmetic and control unit 200. The spectrometer 180 (in particular, the CCD 184) is an example of the “detection means” of the present invention.
なお、この実施形態ではマイケルソン型の干渉計を採用しているが、たとえばマッハツェンダー型など任意のタイプの干渉計を適宜に採用することが可能である。
In this embodiment, a Michelson interferometer is used. However, for example, any type of interferometer such as a Mach-Zehnder type can be appropriately used.
〔演算制御装置〕
演算制御装置200の構成について説明する。演算制御装置200は、CCD184から入力される検出信号を解析して眼底EfのOCT画像を形成する。そのための演算処理は、従来のフーリエドメインタイプのOCT装置と同様である。 [Calculation control device]
The configuration of the arithmetic andcontrol unit 200 will be described. The arithmetic and control unit 200 analyzes the detection signal input from the CCD 184 and forms an OCT image of the fundus oculi Ef. The arithmetic processing for this is the same as that of a conventional Fourier domain type OCT apparatus.
演算制御装置200の構成について説明する。演算制御装置200は、CCD184から入力される検出信号を解析して眼底EfのOCT画像を形成する。そのための演算処理は、従来のフーリエドメインタイプのOCT装置と同様である。 [Calculation control device]
The configuration of the arithmetic and
また、演算制御装置200は、眼底カメラユニット1A及びOCTユニット150の各部を制御する。
The arithmetic and control unit 200 controls each part of the fundus camera unit 1A and the OCT unit 150.
眼底カメラユニット1Aの制御として、演算制御装置200は、観察光源101や撮影光源103による照明光の出力制御、エキサイタフィルタ105、106やバリアフィルタ122、123の光路上への挿入/退避動作の制御、LCD140等の表示装置の動作制御、照明絞り110の移動制御(絞り値の制御)、撮影絞り121の絞り値の制御、変倍レンズ124の移動制御(倍率の制御)などを行う。更に、演算制御装置200は、走査ユニット141を制御して信号光LSを走査させる。
As control of the fundus camera unit 1A, the arithmetic control device 200 controls the output of illumination light by the observation light source 101 and the imaging light source 103, and controls the insertion / retraction operation of the exciter filters 105 and 106 and the barrier filters 122 and 123 on the optical path. Then, operation control of a display device such as the LCD 140, movement control of the illumination aperture 110 (control of the aperture value), control of the aperture value of the photographing aperture 121, movement control of the variable power lens 124 (control of magnification), and the like are performed. Further, the arithmetic and control unit 200 controls the scanning unit 141 to scan the signal light LS.
また、OCTユニット150の制御として、演算制御装置200は、低コヒーレンス光源160による低コヒーレンス光L0の出力制御、参照ミラー174の移動制御、濃度フィルタ173の回転動作(参照光LRの光量の減少量の変更動作)の制御、CCD184による電荷蓄積時間や電荷蓄積タイミングや信号送信タイミングの制御などを行う。また、演算制御装置200は、偏光板175の回転制御を行ってもよい。
Further, as the control of the OCT unit 150, the arithmetic and control unit 200 controls the output of the low coherence light L0 by the low coherence light source 160, the movement control of the reference mirror 174, and the rotation operation of the density filter 173 (the amount of decrease in the light amount of the reference light LR). Control), charge accumulation time by CCD 184, charge accumulation timing, signal transmission timing, and the like. Further, the arithmetic and control unit 200 may perform rotation control of the polarizing plate 175.
演算制御装置200は、従来のコンピュータと同様に、マイクロプロセッサ、RAM、ROM、ハードディスクドライブ、キーボード、マウス、ディスプレイ、通信インターフェイスなどを含んで構成される。ハードディスクドライブには、眼底観察装置1を制御するためのコンピュータプログラムが記憶されている。また、演算制御装置200は、CCD184からの検出信号に基づいてOCT画像を形成する専用の回路基板を備えていてもよい。
The arithmetic and control unit 200 includes a microprocessor, a RAM, a ROM, a hard disk drive, a keyboard, a mouse, a display, a communication interface, and the like, like a conventional computer. The hard disk drive stores a computer program for controlling the fundus oculi observation device 1. Further, the arithmetic and control unit 200 may include a dedicated circuit board that forms an OCT image based on a detection signal from the CCD 184.
〔制御系〕
眼底観察装置1の制御系の構成について図9を参照しつつ説明する。 [Control system]
The configuration of the control system of the fundusoculi observation device 1 will be described with reference to FIG.
眼底観察装置1の制御系の構成について図9を参照しつつ説明する。 [Control system]
The configuration of the control system of the fundus
(制御部)
眼底観察装置1の制御系は、演算制御装置200の制御部210を中心に構成される。制御部210は、たとえば、前述のマイクロプロセッサ、RAM、ROM、ハードディスクドライブ、通信インターフェイス等を含んで構成される。 (Control part)
The control system of the fundusoculi observation device 1 is configured around the control unit 210 of the arithmetic and control unit 200. The control unit 210 includes, for example, the aforementioned microprocessor, RAM, ROM, hard disk drive, communication interface, and the like.
眼底観察装置1の制御系は、演算制御装置200の制御部210を中心に構成される。制御部210は、たとえば、前述のマイクロプロセッサ、RAM、ROM、ハードディスクドライブ、通信インターフェイス等を含んで構成される。 (Control part)
The control system of the fundus
制御部210には、主制御部211と記憶部212が設けられている。主制御部211は、前述した各種の制御を行う。
The control unit 210 is provided with a main control unit 211 and a storage unit 212. The main control unit 211 performs the various controls described above.
記憶部212は、各種のデータを記憶する。記憶部212に記憶されるデータとしては、たとえば、OCT画像の画像データ、眼底画像Ef′の画像データ、被検眼情報などがある。被検眼情報は、患者IDや氏名などの被検者に関する情報や、左眼/右眼の識別情報などの被検眼に関する情報を含む。主制御部211は、記憶部212にデータを書き込む処理や、記憶部212からデータを読み出す処理を行う。
The storage unit 212 stores various data. Examples of data stored in the storage unit 212 include image data of an OCT image, image data of a fundus oculi image Ef ′, and eye information to be examined. The eye information includes information about the subject such as patient ID and name, and information about the eye such as left / right eye identification information. The main control unit 211 performs a process of writing data to the storage unit 212 and a process of reading data from the storage unit 212.
(画像形成部)
画像形成部220は、撮像装置10、12からの映像信号を受けて眼底画像Ef′の画像データを形成する。 (Image forming part)
Theimage forming unit 220 receives image signals from the imaging devices 10 and 12 and forms image data of the fundus oculi image Ef ′.
画像形成部220は、撮像装置10、12からの映像信号を受けて眼底画像Ef′の画像データを形成する。 (Image forming part)
The
また、画像形成部220は、CCD184からの検出信号に基づいて眼底Efの断層像の画像データを形成する。この処理には、従来のフーリエドメインタイプのOCT技術と同様に、ノイズ除去(ノイズ低減)、フィルタ処理、FFT(Fast Fourier Transform)などの処理が含まれている。画像形成部220は、この発明の「画像形成手段」の一例である。
Also, the image forming unit 220 forms tomographic image data of the fundus oculi Ef based on the detection signal from the CCD 184. This process includes processes such as noise removal (noise reduction), filter processing, FFT (Fast Fourier Transform), and the like, as in the conventional Fourier domain type OCT technology. The image forming unit 220 is an example of the “image forming unit” in the present invention.
画像形成部220は、たとえば、前述の回路基板や通信インターフェイス等を含んで構成される。なお、この明細書では、「画像データ」と、それに基づいて呈示される「画像」とを同一視することがある。
The image forming unit 220 includes, for example, the above-described circuit board and communication interface. In this specification, “image data” and “image” presented based on the “image data” may be identified with each other.
(画像処理部)
画像処理部230は、画像形成部220により形成された画像に対して各種の画像処理や解析処理を施す。たとえば、画像処理部230は、画像の輝度補正や分散補正等の各種補正処理などを実行する。 (Image processing unit)
Theimage processing unit 230 performs various types of image processing and analysis processing on the image formed by the image forming unit 220. For example, the image processing unit 230 executes various correction processes such as image brightness correction and dispersion correction.
画像処理部230は、画像形成部220により形成された画像に対して各種の画像処理や解析処理を施す。たとえば、画像処理部230は、画像の輝度補正や分散補正等の各種補正処理などを実行する。 (Image processing unit)
The
また、画像処理部230は、画像形成部220により形成された断層像の間の画素を補間する補間処理等を実行することにより、眼底Efの3次元画像の画像データを形成する。
Further, the image processing unit 230 forms image data of a three-dimensional image of the fundus oculi Ef by executing interpolation processing for interpolating pixels between tomographic images formed by the image forming unit 220.
なお、3次元画像の画像データとは、3次元座標系により画素の位置が定義された画像データを意味する。3次元画像の画像データとしては、3次元的に配列されたボクセルからなる画像データがある。この画像データは、ボリュームデータ或いはボクセルデータなどと呼ばれる。ボリュームデータに基づく画像を表示させる場合、画像処理部230は、このボリュームデータに対してレンダリング処理(ボリュームレンダリングやMIP(Maximum Intensity Projection:最大値投影)など)を施して、特定の視線方向から見たときの擬似的な3次元画像の画像データを形成する。表示部240等の表示デバイスには、この擬似的な3次元画像が表示される。
Note that the image data of a three-dimensional image means image data in which pixel positions are defined by a three-dimensional coordinate system. As image data of a three-dimensional image, there is image data composed of voxels arranged three-dimensionally. This image data is called volume data or voxel data. When displaying an image based on the volume data, the image processing unit 230 performs rendering processing (volume rendering, MIP (Maximum Intensity Projection), etc.) on the volume data, and views the image from a specific line-of-sight direction. Image data of a pseudo three-dimensional image is formed. This pseudo three-dimensional image is displayed on a display device such as the display unit 240.
また、3次元画像の画像データとして、複数の断層像のスタックデータを形成することも可能である。スタックデータは、複数の走査線に沿って得られた複数の断層像を、走査線の位置関係に基づいて3次元的に配列させることで得られる画像データである。すなわち、スタックデータは、元々個別の2次元座標系により定義されていた複数の断層像を、一つの3次元座標系により表現する(つまり一つの3次元空間に埋め込む)ことにより得られる画像データである。
It is also possible to form stack data of a plurality of tomographic images as image data of a three-dimensional image. The stack data is image data obtained by three-dimensionally arranging a plurality of tomographic images obtained along a plurality of scanning lines based on the positional relationship of the scanning lines. That is, the stack data is image data obtained by expressing a plurality of tomographic images originally defined by individual two-dimensional coordinate systems using one three-dimensional coordinate system (that is, embedding in one three-dimensional space). is there.
画像処理部230は、たとえば、前述のマイクロプロセッサ、RAM、ROM、ハードディスクドライブ、回路基板等を含んで構成される。
The image processing unit 230 includes, for example, the above-described microprocessor, RAM, ROM, hard disk drive, circuit board, and the like.
(表示部、操作部)
表示部240は、ディスプレイを含んで構成される。操作部250は、キーボードやマウス等の入力デバイスや操作デバイスを含んで構成される。又、操作部250には、眼底観察装置1の筐体や外部に設けられた各種のボタンやキーが含まれていてもよい。 (Display section, operation section)
Thedisplay unit 240 includes a display. The operation unit 250 includes an input device such as a keyboard and a mouse and an operation device. Further, the operation unit 250 may include various buttons and keys provided on the housing of the fundus oculi observation device 1 or outside.
表示部240は、ディスプレイを含んで構成される。操作部250は、キーボードやマウス等の入力デバイスや操作デバイスを含んで構成される。又、操作部250には、眼底観察装置1の筐体や外部に設けられた各種のボタンやキーが含まれていてもよい。 (Display section, operation section)
The
なお、表示部240と操作部250は、それぞれ個別のデバイスとして構成される必要はない。たとえばタッチパネル方式のLCDのように、表示部240と操作部250とが一体化されたデバイスを用いることも可能である。
Note that the display unit 240 and the operation unit 250 need not be configured as individual devices. For example, a device in which the display unit 240 and the operation unit 250 are integrated, such as a touch panel LCD, can be used.
〔信号光の走査及びOCT画像について〕
信号光LSの走査及びOCT画像について説明する。 [Scanning signal light and OCT images]
The scanning of the signal light LS and the OCT image will be described.
信号光LSの走査及びOCT画像について説明する。 [Scanning signal light and OCT images]
The scanning of the signal light LS and the OCT image will be described.
眼底観察装置1による信号光LSの走査態様としては、たとえば、水平スキャン、垂直スキャン、十字スキャン、放射スキャン、円スキャン、同心円スキャン、螺旋スキャンなどがある。これらの走査態様は、眼底の観察部位、解析対象(網膜厚など)、走査に要する時間、走査の精密さなどを考慮して適宜に選択的に使用される。
Examples of the scanning mode of the signal light LS by the fundus oculi observation device 1 include a horizontal scan, a vertical scan, a cross scan, a radiation scan, a circle scan, a concentric scan, and a spiral scan. These scanning modes are selectively used as appropriate in consideration of the observation site of the fundus, the analysis target (such as retinal thickness), the time required for scanning, the precision of scanning, and the like.
水平スキャンは、信号光LSを水平方向(x方向)に走査させるものである。水平スキャンには、垂直方向(y方向)に配列された複数の水平方向に延びる走査線に沿って信号光LSを走査させる態様も含まれる。この態様においては、走査線の間隔を任意に設定することが可能である。走査線の間隔を十分に狭くすることにより、前述の3次元画像を形成することができる(3次元スキャン)。垂直スキャンについても同様である。
The horizontal scan is to scan the signal light LS in the horizontal direction (x direction). The horizontal scan also includes an aspect in which the signal light LS is scanned along a plurality of horizontal scanning lines arranged in the vertical direction (y direction). In this aspect, it is possible to arbitrarily set the scanning line interval. By sufficiently narrowing the interval between the scanning lines, the above-described three-dimensional image can be formed (three-dimensional scan). The same applies to the vertical scan.
十字スキャンは、互いに直交する2本の直線状の軌跡(直線軌跡)からなる十字型の軌跡に沿って信号光LSを走査するものである。放射スキャンは、所定の角度を介して配列された複数の直線軌跡からなる放射状の軌跡に沿って信号光LSを走査するものである。なお、十字スキャンは放射スキャンの一例である。
The cross scan scans the signal light LS along a cross-shaped trajectory composed of two linear trajectories (straight trajectories) orthogonal to each other. In the radiation scan, the signal light LS is scanned along a radial trajectory composed of a plurality of linear trajectories arranged at a predetermined angle. The cross scan is an example of a radiation scan.
円スキャンは、円形状の軌跡に沿って信号光LSを走査させるものである。同心円スキャンは、所定の中心位置の周りに同心円状に配列された複数の円形状の軌跡に沿って信号光LSを走査させるものである。円スキャンは同心円スキャンの特殊例と考えられる。螺旋スキャンは、螺旋状の軌跡に沿って信号光LSを走査するものである。
The circle scan scans the signal light LS along a circular locus. In the concentric scan, the signal light LS is scanned along a plurality of circular trajectories arranged concentrically around a predetermined center position. A circle scan is considered a special case of a concentric scan. The spiral scan scans the signal light LS along a spiral trajectory.
走査ユニット141は、前述のような構成により、信号光LSをx方向及びy方向にそれぞれ独立に走査できるので、xy面上の任意の軌跡に沿って信号光LSを走査することが可能である。それにより、上記のような各種の走査態様を実現できる。
The scanning unit 141 can scan the signal light LS independently in the x direction and the y direction, respectively, by the configuration as described above. Therefore, the scanning unit 141 can scan the signal light LS along an arbitrary locus on the xy plane. . Thereby, various scanning modes as described above can be realized.
上記のような態様で信号光LSを走査することにより、走査線(走査軌跡)に沿った深度方向(x方向)の断層像を形成することができる。また、特に走査線の間隔が狭い場合には、前述の3次元画像を形成することができる。
By scanning the signal light LS in the above-described manner, a tomographic image in the depth direction (x direction) along the scanning line (scanning locus) can be formed. In particular, when the interval between scanning lines is narrow, the above-described three-dimensional image can be formed.
[作用・効果]
以上のような眼底観察装置1の作用及び効果について説明する。 [Action / Effect]
The operation and effect of the fundusoculi observation device 1 as described above will be described.
以上のような眼底観察装置1の作用及び効果について説明する。 [Action / Effect]
The operation and effect of the fundus
眼底観察装置1は、信号光路に設置された偏光コントローラ300と、参照光路に設置された偏光コントローラ400とを有する。各偏光コントローラ300、400は、この発明に係る偏光コントローラである。すなわち、偏光コントローラ300、400は、それぞれ、光ファイバ164、163の径方向の対向位置に設けられ、光ファイバ164、163の側面に当接される平面部をそれぞれ有する一対の当接部材と、一対の平面部の間に配置され、光ファイバ164、163の径と略等しい厚さを有する部材と、一対の平面部の間隔を変更するように一対の当接部材を相対的に移動させる移動機構とを有する。
The fundus oculi observation device 1 includes a polarization controller 300 installed in the signal optical path and a polarization controller 400 installed in the reference optical path. Each polarization controller 300, 400 is a polarization controller according to the present invention. That is, the polarization controllers 300 and 400 are provided at the radial positions of the optical fibers 164 and 163, respectively, and a pair of abutting members each having a flat portion that abuts against the side surfaces of the optical fibers 164 and 163; A member disposed between the pair of flat portions and having a thickness substantially equal to the diameter of the optical fibers 164 and 163 and a movement for relatively moving the pair of contact members so as to change the distance between the pair of flat portions. Mechanism.
このような偏光コントローラ300、400によれば、前述したように、光ファイバ164、163の軸方向に対して直交方向から一様に圧力を掛けることができるとともに、光ファイバ164、163を通過する信号光LSや参照光LRの偏光状態の経時的変動を抑えることができる。
According to such polarization controllers 300 and 400, as described above, it is possible to uniformly apply pressure from a direction orthogonal to the axial direction of the optical fibers 164 and 163, and to pass through the optical fibers 164 and 163. Time-dependent fluctuations in the polarization state of the signal light LS and the reference light LR can be suppressed.
それにより、信号光LSや参照光LRの偏光状態を好適な状態に一旦設定すれば、良好な画質のOCT画像を従来よりも長期に亘って得ることが可能である。また、干渉光LCの検出時において、好適な干渉光LCを安定的に得ることができ、好適なOCT画像を安定的に形成することができる。つまり、ブレの無い(又は少ない)OCT画像を得ることが可能である。
Thereby, once the polarization state of the signal light LS and the reference light LR is set to a suitable state, it is possible to obtain an OCT image with good image quality over a longer period of time than before. Further, at the time of detecting the interference light LC, a suitable interference light LC can be stably obtained, and a suitable OCT image can be stably formed. That is, it is possible to obtain an OCT image without blurring (or little).
なお、眼底観察装置1の参照光LRには偏光板175が設けられており、この偏光板175によって参照光LRの偏光状態を適宜に調整することも可能である。偏光板175による調整が間に合わなくなったときには、偏光コントローラ300、400による調整を行えばよい。
Note that the reference light LR of the fundus oculi observation device 1 is provided with a polarizing plate 175, and the polarizing state of the reference light LR can be appropriately adjusted by the polarizing plate 175. When adjustment by the polarizing plate 175 is not in time, adjustment by the polarization controllers 300 and 400 may be performed.
眼底観察装置1には、信号光路と参照光路のそれぞれに偏光コントローラが設置されているが、この発明に係る光画像計測装置においては、信号光路と参照光路の少なくとも一方に偏光コントローラが設置されていれば十分である。しかし、信号光路と参照光路の双方に偏光コントローラを設けることにより、信号光の偏光状態と参照光の偏光状態とをより高精度で一致させることが可能である(双方の偏光状態を近づけるほど、眼底Efの状態をより高確度で反映した検出信号が得られる)。
In the fundus oculi observation device 1, a polarization controller is installed in each of the signal optical path and the reference optical path. In the optical image measurement device according to the present invention, a polarization controller is installed in at least one of the signal optical path and the reference optical path. Is enough. However, by providing polarization controllers in both the signal optical path and the reference optical path, it is possible to match the polarization state of the signal light and the polarization state of the reference light with higher accuracy (the closer the both polarization states are, A detection signal reflecting the state of the fundus oculi Ef with higher accuracy is obtained).
眼底観察装置1には、この発明に係る干渉計が搭載されている。すなわち、この干渉計は、第1の光ファイバを含む第1の導光路と、第2の光ファイバを含む第2の導光路と、第1の光ファイバ及び/又は第2の光ファイバに対して圧力を印加して当該光ファイバを通過する光の偏光状態を変化させる偏光コントローラとを有し、第1の導光路により導かれた光と第2の導光路により導かれた光とを重畳させて干渉光を生成するものであり、更に、上記偏光コントローラは、光ファイバの径方向の対向位置に設けられ、光ファイバの側面に当接される平面部をそれぞれ有する一対の当接部材と、一対の平面部の間に配置され、光ファイバの径と略等しい厚さを有する部材と、一対の平面部の間隔を変更するように一対の当接部材を相対的に移動させる移動機構とを備えるものである。
The fundus oculi observation device 1 is equipped with an interferometer according to the present invention. That is, the interferometer is provided for the first light guide including the first optical fiber, the second light guide including the second optical fiber, the first optical fiber, and / or the second optical fiber. A polarization controller that changes the polarization state of the light passing through the optical fiber by applying pressure, and superimposing the light guided by the first light guide and the light guided by the second light guide Further, the polarization controller includes a pair of abutting members that are provided at opposed positions in the radial direction of the optical fiber and each have a flat portion that abuts against the side surface of the optical fiber. A member disposed between the pair of plane portions and having a thickness substantially equal to the diameter of the optical fiber, and a moving mechanism for relatively moving the pair of contact members so as to change the interval between the pair of plane portions. Is provided.
このような干渉計によれば、光ファイバ164、163の軸方向に対して直交方向から一様に圧力を掛けることができるとともに、光ファイバ164、163を通過する信号光LSや参照光LRの偏光状態の経時的変動を抑えることが可能な偏光コントローラが設けられているので、偏光状態を好適な状態に一旦設定すれば、好適な干渉光を従来よりも長期に亘って得ることが可能である。また、干渉光の生成時において、好適な干渉光を安定的に得ることができる。つまり、ブレの無い(又は少ない)干渉光を得ることが可能である。
According to such an interferometer, pressure can be applied uniformly from the direction orthogonal to the axial direction of the optical fibers 164 and 163, and the signal light LS and the reference light LR passing through the optical fibers 164 and 163 can be applied. Since a polarization controller is provided that can suppress fluctuations in the polarization state over time, once the polarization state is set to a suitable state, it is possible to obtain suitable interference light over a longer period of time than before. is there. In addition, suitable interference light can be stably obtained when generating interference light. That is, it is possible to obtain interference light without blurring (or little).
[変形例]
以上に説明した構成は、この発明に係る光画像計測装置を好適に実施するための一例に過ぎない。よって、この発明の要旨の範囲内における任意の変形を適宜に施すことが可能である。 [Modification]
The configuration described above is merely an example for favorably implementing the optical image measurement device according to the present invention. Therefore, arbitrary modifications within the scope of the present invention can be made as appropriate.
以上に説明した構成は、この発明に係る光画像計測装置を好適に実施するための一例に過ぎない。よって、この発明の要旨の範囲内における任意の変形を適宜に施すことが可能である。 [Modification]
The configuration described above is merely an example for favorably implementing the optical image measurement device according to the present invention. Therefore, arbitrary modifications within the scope of the present invention can be made as appropriate.
偏光コントローラを自動で制御して、信号光や参照光の偏光状態を自動的に調整できるように構成することが可能である。一例として、偏光コントローラの調整ネジを回転駆動する機構(パルスモータ等)と、回転部等を回転駆動する機構(パルスモータ等)を設けるとともに、これら機構を演算制御装置200にて制御するように構成できる。この制御は、たとえば、検出信号や干渉像を解析しつつ、調整ネジや回転部の位置を決定することにより実行できる。
It can be configured to automatically adjust the polarization state of signal light and reference light by automatically controlling the polarization controller. As an example, a mechanism (pulse motor or the like) that rotationally drives the adjusting screw of the polarization controller and a mechanism (pulse motor or the like) that rotationally drives the rotating unit or the like are provided, and these mechanisms are controlled by the arithmetic and control unit 200. Can be configured. This control can be executed, for example, by determining the positions of the adjusting screw and the rotating unit while analyzing the detection signal and the interference image.
上記の実施形態では、フーリエドメインタイプの光画像計測装置について説明したが、スウェプトソースタイプやフルフィールドタイプ、更にはタイムドメインタイプの光画像計測装置に対して同様の偏光コントローラを搭載しても、同様の作用及び効果を得ることが可能である。
In the above embodiment, the Fourier domain type optical image measurement device has been described. However, even if a similar polarization controller is mounted on a swept source type or full field type, or even a time domain type optical image measurement device, Similar actions and effects can be obtained.
また、光画像計測装置以外の任意の装置に対して、この発明に係る干渉計を搭載することも可能である。すなわち、干渉計が搭載された任意の装置に対して、この発明に係る偏光コントローラを適用することが可能である。
Also, the interferometer according to the present invention can be mounted on any device other than the optical image measurement device. That is, the polarization controller according to the present invention can be applied to an arbitrary apparatus on which an interferometer is mounted.
上記の実施形態においては、参照ミラー174の位置を変更して信号光LSの光路と参照光LRの光路との光路長差を変更しているが、光路長差を変更する手法はこれに限定されるものではない。たとえば、被検眼Eに対して眼底カメラユニット1AやOCTユニット150を移動させて信号光LSの光路長を変更することにより光路長差を変更することができる。また、特に被測定物体が生体部位でない場合などには、被測定物体を深度方向(z方向)に移動させることにより光路長差を変更することも有効である。
In the above embodiment, the position of the reference mirror 174 is changed to change the optical path length difference between the optical path of the signal light LS and the optical path of the reference light LR. However, the method of changing the optical path length difference is limited to this. Is not to be done. For example, the optical path length difference can be changed by moving the fundus camera unit 1A or the OCT unit 150 with respect to the eye E to change the optical path length of the signal light LS. It is also effective to change the optical path length difference by moving the measurement object in the depth direction (z direction), particularly when the measurement object is not a living body part.
Claims (9)
- 光ファイバに対して圧力を印加する圧力印加部を有し、前記印加される圧力により前記光ファイバを通過する光の偏光状態を変化させる偏光コントローラであって、
前記圧力印加部は、
前記光ファイバの径方向の対向位置に設けられ、前記光ファイバの側面に当接される平面部をそれぞれ有する一対の当接部材と、
前記一対の平面部の間に配置され、前記光ファイバの径と略等しい厚さを有する部材と、
前記一対の平面部の間隔を変更するように前記一対の当接部材を相対的に移動させて前記圧力を印加する移動機構と、
を備える、
ことを特徴とする偏光コントローラ。 A polarization controller that includes a pressure application unit that applies pressure to the optical fiber and changes a polarization state of light passing through the optical fiber by the applied pressure;
The pressure application unit is
A pair of abutting members provided at opposed positions in the radial direction of the optical fiber, each having a flat portion that abuts against a side surface of the optical fiber;
A member disposed between the pair of plane portions and having a thickness substantially equal to the diameter of the optical fiber;
A moving mechanism that applies the pressure by relatively moving the pair of contact members so as to change the interval between the pair of plane portions;
Comprising
A polarization controller characterized by that. - 前記光ファイバの軸方向を回転軸として前記圧力印加部を回転させる回転機構を更に備える、
ことを特徴とする請求項1に記載の偏光コントローラ。 A rotation mechanism that rotates the pressure application unit with the axial direction of the optical fiber as a rotation axis;
The polarization controller according to claim 1. - 前記圧力印加部は、前記移動機構により相対的に移動される前記一対の当接部材の位置を固定する固定機構を更に備える、
ことを特徴とする請求項1又は請求項2に記載の偏光コントローラ。 The pressure application unit further includes a fixing mechanism that fixes positions of the pair of contact members relatively moved by the moving mechanism.
The polarization controller according to claim 1, wherein the polarization controller is provided. - 前記部材は、前記光ファイバと略等しい径を有する線状部材を含む、
ことを特徴とする請求項1~請求項3のいずれか一項に記載の偏光コントローラ。 The member includes a linear member having a diameter substantially equal to the optical fiber.
The polarization controller according to any one of claims 1 to 3, wherein: - 前記線状部材は、前記光ファイバと同じ形態の光ファイバである、
ことを特徴とする請求項4に記載の偏光コントローラ。 The linear member is an optical fiber having the same form as the optical fiber.
The polarization controller according to claim 4. - 前記圧力印加部は、前記線状部材を保持する保持部を更に備える、
ことを特徴とする請求項4又は請求項5に記載の偏光コントローラ。 The pressure application unit further includes a holding unit for holding the linear member.
The polarization controller according to claim 4 or 5, wherein - 前記部材は、前記一対の平面部における前記光ファイバの配置位置以外の場所に設けられ、前記光ファイバと略等しい厚さを有する膜状部材を含む、
ことを特徴とする請求項1~請求項3のいずれか一項に記載の偏光コントローラ。 The member includes a film-like member that is provided at a location other than the position where the optical fiber is disposed in the pair of plane portions and has a thickness substantially equal to the optical fiber.
The polarization controller according to any one of claims 1 to 3, wherein: - 第1の光ファイバを含む第1の導光路と、第2の光ファイバを含む第2の導光路と、前記第1の光ファイバ及び/又は前記第2の光ファイバに対して圧力を印加して当該光ファイバを通過する光の偏光状態を変化させる偏光コントローラとを有し、前記第1の導光路により導かれた光と前記第2の導光路により導かれた光とを重畳させて干渉光を生成する干渉計であって、
前記偏光コントローラは、
前記光ファイバの径方向の対向位置に設けられ、前記光ファイバの側面に当接される平面部をそれぞれ有する一対の当接部材と、
前記一対の平面部の間に配置され、前記光ファイバの径と略等しい厚さを有する部材と、
前記一対の平面部の間隔を変更するように前記一対の当接部材を相対的に移動させて前記圧力を印加する移動機構と、
を備える、
ことを特徴とする干渉計。 Pressure is applied to the first light guide including the first optical fiber, the second light guide including the second optical fiber, the first optical fiber and / or the second optical fiber. A polarization controller that changes a polarization state of the light passing through the optical fiber, and superimposing the light guided by the first light guide and the light guided by the second light guide to interfere. An interferometer that produces light,
The polarization controller is
A pair of abutting members provided at opposed positions in the radial direction of the optical fiber, each having a flat portion that abuts against a side surface of the optical fiber;
A member disposed between the pair of plane portions and having a thickness substantially equal to the diameter of the optical fiber;
A moving mechanism that applies the pressure by relatively moving the pair of contact members so as to change the interval between the pair of plane portions;
Comprising
An interferometer characterized by that. - 低コヒーレンス光を出力する光源と、
前記出力された低コヒーレンス光を信号光と参照光とに分割する分割手段と、
第1の光ファイバを含み、前記信号光を導光して被測定物体に照射し、前記被測定物体を経由した前記信号光を導光する第1の導光路と、
第2の光ファイバを含み、前記参照光を導光して参照物体に照射し、前記参照物体を経由した前記参照光を導光する第2の導光路と、
前記第1の光ファイバ及び/又は前記第2の光ファイバに対して圧力を印加して当該光ファイバを通過する光の偏光状態を変化させる偏光コントローラと、
前記被測定物体を経由して前記第1の導光路により導かれた前記信号光と、前記参照物体を経由して前記第2の導光路により導かれた前記参照光とを重畳させて干渉光を生成する重畳手段と、
前記生成された干渉光を検出して検出信号を生成する検出手段と、
前記生成された検出信号に基づいて前記被測定物体の断層像を形成する画像形成手段と、
を有する光画像計測装置であって、
前記偏光コントローラは、
前記光ファイバの径方向の対向位置に設けられ、前記光ファイバの側面に当接される平面部をそれぞれ有する一対の当接部材と、
前記一対の平面部の間に配置され、前記光ファイバの径と略等しい厚さを有する部材と、
前記一対の平面部の間隔を変更するように前記一対の当接部材を相対的に移動させて前記圧力を印加する移動機構と、
を備える、
ことを特徴とする光画像計測装置。 A light source that outputs low coherence light;
Splitting means for splitting the output low-coherence light into signal light and reference light;
A first light guide including a first optical fiber, guiding the signal light to irradiate the object to be measured, and guiding the signal light via the object to be measured;
A second light guide including a second optical fiber, guiding the reference light to irradiate the reference object, and guiding the reference light via the reference object;
A polarization controller that applies pressure to the first optical fiber and / or the second optical fiber to change a polarization state of light passing through the optical fiber;
Interfering light by superimposing the signal light guided by the first light guide through the measured object and the reference light guided by the second light guide through the reference object Superimposing means for generating
Detection means for detecting the generated interference light and generating a detection signal;
Image forming means for forming a tomographic image of the object to be measured based on the generated detection signal;
An optical image measuring device having
The polarization controller is
A pair of abutting members provided at opposed positions in the radial direction of the optical fiber, each having a flat portion that abuts against a side surface of the optical fiber;
A member disposed between the pair of plane portions and having a thickness substantially equal to the diameter of the optical fiber;
A moving mechanism that applies the pressure by relatively moving the pair of abutting members so as to change the interval between the pair of plane portions;
Comprising
An optical image measuring device characterized by that.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009-039370 | 2009-02-23 | ||
JP2009039370A JP2010197474A (en) | 2009-02-23 | 2009-02-23 | Polarization controller, interferometer and optical image measuring device |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010095202A1 true WO2010095202A1 (en) | 2010-08-26 |
Family
ID=42633505
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2009/006712 WO2010095202A1 (en) | 2009-02-23 | 2009-12-09 | Polarization controller, interferometer, and optical image measuring apparauts |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2010197474A (en) |
WO (1) | WO2010095202A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107065173A (en) * | 2017-05-26 | 2017-08-18 | 西安科技大学 | A kind of microminiature Polarization Controller |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5220155B2 (en) * | 2011-03-31 | 2013-06-26 | キヤノン株式会社 | Ophthalmic apparatus and method for controlling ophthalmic apparatus |
JP5220156B2 (en) * | 2011-03-31 | 2013-06-26 | キヤノン株式会社 | Medical devices and systems |
JP2013148509A (en) * | 2012-01-20 | 2013-08-01 | Canon Inc | Image processing device and image processing method |
JP5919175B2 (en) * | 2012-11-29 | 2016-05-18 | 株式会社トプコン | Optical image measuring device |
CN203658691U (en) * | 2013-11-13 | 2014-06-18 | 江苏昂德光电科技有限公司 | Optical fiber rotation extrusion type polarization controller |
EP3555581B1 (en) | 2016-12-13 | 2022-11-23 | Magic Leap, Inc. | Augmented and virtual reality eyewear for delivering polarized light and determing glucose levels |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5448657A (en) * | 1993-04-22 | 1995-09-05 | Agency For Defense Development | Polarimetric fiber laser sensors |
US5903684A (en) * | 1997-08-12 | 1999-05-11 | The United States Of America As Represented By The Secretary Of The Navy | Independent control of one of normally interdependent light transmission characteristics of optical fiber |
JP2001264246A (en) * | 2000-03-21 | 2001-09-26 | Olympus Optical Co Ltd | Optical imaging device |
JP2003156639A (en) * | 2001-11-21 | 2003-05-30 | Sumitomo Electric Ind Ltd | Optical component, optical component characteristic adjusting method, and optical communication system |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5561726A (en) * | 1995-09-05 | 1996-10-01 | Yao; X. Steve | Apparatus and method for connecting polarization sensitive devices |
-
2009
- 2009-02-23 JP JP2009039370A patent/JP2010197474A/en active Pending
- 2009-12-09 WO PCT/JP2009/006712 patent/WO2010095202A1/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5448657A (en) * | 1993-04-22 | 1995-09-05 | Agency For Defense Development | Polarimetric fiber laser sensors |
US5903684A (en) * | 1997-08-12 | 1999-05-11 | The United States Of America As Represented By The Secretary Of The Navy | Independent control of one of normally interdependent light transmission characteristics of optical fiber |
JP2001264246A (en) * | 2000-03-21 | 2001-09-26 | Olympus Optical Co Ltd | Optical imaging device |
JP2003156639A (en) * | 2001-11-21 | 2003-05-30 | Sumitomo Electric Ind Ltd | Optical component, optical component characteristic adjusting method, and optical communication system |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107065173A (en) * | 2017-05-26 | 2017-08-18 | 西安科技大学 | A kind of microminiature Polarization Controller |
CN107065173B (en) * | 2017-05-26 | 2020-07-28 | 西安科技大学 | An ultra-miniature polarization controller |
Also Published As
Publication number | Publication date |
---|---|
JP2010197474A (en) | 2010-09-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8801180B2 (en) | Ophthalmic tomographic imager with corneo-retinal image analysis | |
JP4896794B2 (en) | Optical image measuring apparatus, program for controlling the same, and optical image measuring method | |
JP4971864B2 (en) | Optical image measuring device and program for controlling the same | |
EP2591309B1 (en) | Optical tomographic imaging apparatus | |
JP5404078B2 (en) | Optical image measuring device | |
JP4996918B2 (en) | Optical image measurement device and program for controlling optical image measurement device | |
RU2533976C2 (en) | Optic tomographic image former and method for forming image for above device | |
JP5491064B2 (en) | Optical image measuring device | |
WO2010095202A1 (en) | Polarization controller, interferometer, and optical image measuring apparauts | |
JP5415812B2 (en) | Optical image measuring device and control method thereof | |
WO2011052131A1 (en) | Optical image measurement device | |
JP2013153798A (en) | Optical tomographic apparatus and control method | |
CN103251380A (en) | Optical tomographic apparatus and control method therefor | |
US9068812B2 (en) | Imaging apparatus, imaging method, and storage medium | |
JP4994911B2 (en) | Optical image measuring device | |
US9072457B2 (en) | Optical image measurement apparatus and optical attenuator | |
WO2013085042A1 (en) | Fundus observation device | |
US9717409B2 (en) | Image processing apparatus and image processing method | |
JP5584345B2 (en) | Optical image measuring device and photographing device | |
JP5144579B2 (en) | Ophthalmic observation device | |
JP5919175B2 (en) | Optical image measuring device | |
JP5905711B2 (en) | Optical image measuring device | |
JP2013195305A (en) | Optical image measurement device and polarization controller | |
JP2017104319A (en) | Ophthalmologic apparatus | |
JP5766225B2 (en) | Optical tomographic imaging apparatus and control method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09840309 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 09840309 Country of ref document: EP Kind code of ref document: A1 |