[go: up one dir, main page]

WO2010090288A1 - Refrigeration cycle container and refrigeration cycle device - Google Patents

Refrigeration cycle container and refrigeration cycle device Download PDF

Info

Publication number
WO2010090288A1
WO2010090288A1 PCT/JP2010/051719 JP2010051719W WO2010090288A1 WO 2010090288 A1 WO2010090288 A1 WO 2010090288A1 JP 2010051719 W JP2010051719 W JP 2010051719W WO 2010090288 A1 WO2010090288 A1 WO 2010090288A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigeration cycle
container
refrigerant pipe
container body
brazing
Prior art date
Application number
PCT/JP2010/051719
Other languages
French (fr)
Japanese (ja)
Inventor
哲巳 中谷
眞美 岩永
育訓 市川
Original Assignee
東芝キヤリア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東芝キヤリア株式会社 filed Critical 東芝キヤリア株式会社
Priority to JP2010549524A priority Critical patent/JPWO2010090288A1/en
Priority to CN2010800043558A priority patent/CN102272539A/en
Publication of WO2010090288A1 publication Critical patent/WO2010090288A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/0008Soldering, e.g. brazing, or unsoldering specially adapted for particular articles or work
    • B23K1/0012Brazing heat exchangers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/02Seam welding; Backing means; Inserts
    • B23K9/028Seam welding; Backing means; Inserts for curved planar seams
    • B23K9/0288Seam welding; Backing means; Inserts for curved planar seams for welding of tubes to tube plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/16Arc welding or cutting making use of shielding gas
    • B23K9/173Arc welding or cutting making use of shielding gas and of a consumable electrode
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/23Arc welding or cutting taking account of the properties of the materials to be welded
    • B23K9/232Arc welding or cutting taking account of the properties of the materials to be welded of different metals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • F25B43/006Accumulators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/04Tubular or hollow articles
    • B23K2101/12Vessels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/34Coated articles, e.g. plated or painted; Surface treated articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/18Dissimilar materials
    • B23K2103/22Ferrous alloys and copper or alloys thereof

Definitions

  • the present invention relates to a refrigeration cycle container that includes a refrigeration cycle container together with a refrigeration cycle container, such as an accumulator, a refrigerant tank, and an oil separator, and a refrigeration cycle container.
  • a refrigeration cycle container such as an accumulator, a refrigerant tank, and an oil separator
  • brazing is a joining method in which a brazing material melted into a gap (0.05 to 0.1 mm) between a pair of heated joint parts is poured using a capillary phenomenon. As a result, a thin alloy layer is formed by diffusion reaction between the joint metal and the brazing material, and joint parts are joined to each other.
  • the pipe connection structure of the compressor which includes a compressor that compresses the refrigerant, an accumulator (a refrigeration cycle container) that stores the refrigerant, and a suction pipe that connects the compressor and the accumulator and guides the refrigerant
  • a technique for connecting parts together by brazing or welding is disclosed (for example, see Japanese Patent Application Laid-Open No. 2004-360476).
  • Brazing used in the invention of Japanese Patent Application Laid-Open No. 2004-360476 is difficult to mechanize as compared with welding, and relies heavily on the manual work and skill of the operator. Therefore, in the case of a container for a refrigeration cycle with many brazing points, it takes a lot of time and affects the man-hours.
  • the base material and the wire are heated, and copper, which is the main component of the wire, is melted in an inert gas atmosphere, and this is introduced into the gap between the base materials to be brazed.
  • This type of welding method is characterized in that it generates less spatter and is excellent in appearance.
  • the present invention has been made on the basis of the above circumstances.
  • the purpose of the present invention is to reduce labor and work by adopting an optimum means other than brazing when joining the refrigerant pipe to the container body.
  • An object of the present invention is to provide a container for a refrigeration cycle that shortens the time and contributes to cost reduction.
  • an object of the present invention is to provide a refrigeration cycle apparatus that is provided with the above-described refrigeration cycle container and can be improved in reliability by constituting a refrigeration cycle.
  • the container for refrigeration cycle and the refrigeration cycle apparatus of the present invention are configured as follows.
  • ⁇ A refrigerant pipe is joined to the container body by MIG (metal inert gas) brazing. Further, the refrigeration cycle apparatus configures a refrigeration cycle by connecting a compressor, a condenser, an expansion device, an evaporator, and the refrigeration cycle container described above via a refrigerant pipe.
  • MIG metal inert gas
  • FIG. 1 is a front view of a refrigeration cycle container according to a first embodiment of the present invention.
  • FIG. 2 is a cross-sectional view showing a joint structure between the upper end plate of the container body and the refrigerant pipe constituting the container for the refrigeration cycle.
  • FIG. 3A is an explanatory view showing a process of processing the upper end plate.
  • FIG. 3B is an explanatory view showing a process of processing the upper end plate.
  • FIG. 3C is an explanatory diagram showing a process of processing the upper end plate.
  • FIG. 4 is a front view of the refrigeration cycle container according to the second embodiment of the present invention.
  • FIG. 5A is a cross-sectional view showing a joint structure between a container main body and a refrigerant pipe constituting the container for the refrigeration cycle.
  • FIG. 5B is a cross-sectional view showing a joint structure between the container body and the refrigerant pipe.
  • FIG. 6A is a front view showing a container for a refrigeration cycle according to a third embodiment of the present invention.
  • FIG. 6B is a side view showing the refrigeration cycle container.
  • FIG. 7 is a front view showing a refrigeration cycle container according to a fourth embodiment of the present invention.
  • FIG. 8A is a cross-sectional view showing a joint structure between a container body and a refrigerant pipe according to a fifth embodiment of the present invention.
  • FIG. 8B is a plan view showing a joint structure between a container body and a refrigerant pipe according to a fifth embodiment of the present invention.
  • FIG. 6A is a front view showing a container for a refrigeration cycle according to a third embodiment of the present invention.
  • FIG. 6B is a side view showing the refrigeration cycle container.
  • FIG. 7 is a front view showing a refrigeration cycle container according to
  • FIG. 9A is a plan view showing a joint structure between a container body and a refrigerant pipe according to a sixth embodiment of the present invention.
  • FIG. 9B is a cross-sectional view showing a joint structure between a container body and a refrigerant pipe according to a sixth embodiment of the present invention.
  • FIG. 10 is a configuration diagram of the refrigeration cycle of the refrigeration cycle apparatus according to the seventh embodiment of the present invention.
  • FIG. 10 is a configuration diagram of a refrigeration cycle of a refrigeration cycle apparatus, for example, an air conditioner.
  • reference numeral 1 denotes a compressor that compresses the sucked refrigerant into a high-temperature and high-pressure gas refrigerant and discharges it to the refrigerant pipe P.
  • the condenser 2 is communicated with the refrigerant pipe P to condense the guided gas refrigerant and convert it into a liquid refrigerant.
  • the expansion valve 3 which is an expansion device is communicated with the condenser 2 through a refrigerant pipe P to adiabatically expand the led liquid refrigerant. Further, an evaporator 4 is communicated with the expansion valve 3 via a refrigerant pipe P to evaporate the refrigerant, and the latent heat of vaporization at this time is taken from the heat exchange air and changed into cold air. That is, a freezing (cooling) action is obtained.
  • the accumulator 5 communicates with the evaporator 4 via a refrigerant pipe P to separate the introduced evaporated refrigerant into a gas and liquid. Only the separated gas refrigerant is sucked into the compressor 1 through the refrigerant pipe P, and the above-described refrigeration cycle is repeated again. By providing the accumulator 5, liquid compressor is not sucked by the compressor 1, and liquid compression is prevented.
  • an oil separator, a liquid tank, etc. (not shown) are also used, and together with the accumulator 5 are collectively referred to as a “refrigeration cycle container R”.
  • a refrigeration cycle container R an oil separator, a liquid tank, etc. (not shown) are also used, and together with the accumulator 5 are collectively referred to as a “refrigeration cycle container R”.
  • refrigeration cycle container R a joining structure between the refrigeration cycle container R and the refrigerant pipe P will be described.
  • FIG. 1 is a front view of a refrigeration cycle container Ra according to a first embodiment.
  • the refrigeration cycle container Ra includes a container body 10 provided with a separation plate 10a therein, a first refrigerant pipe P1 joined to the upper end of the container body 10, and one end joined to the bottom surface of the container body 10 and the other end. Is formed to rise inside the container body 10, one end is joined to the second refrigerant pipe P ⁇ b> 2 via the bottom surface of the container body 10, and the other end is substantially U-shaped outside the container body 10. It comprises a bent third refrigerant pipe P3.
  • the first refrigerant pipe P1 is connected to the evaporator 4, and the refrigerant evaporated here is guided into the container body 10 through the first refrigerant pipe P1.
  • a separation plate 10a is provided inside the container body 10 that faces the opening end of the first refrigerant pipe P1, and the vaporized refrigerant passes through the separator plate 10a to be separated into a gas refrigerant and a liquid refrigerant.
  • the liquid refrigerant accumulates in the bottom of the container body 10, and the gas refrigerant is sucked from the open end of the second refrigerant pipe P2 and led to the third refrigerant pipe P3, and further sucked into the compressor 1 and compressed.
  • the liquid refrigerant accumulated at the inner bottom of the container body 10 evaporates as time elapses or under the influence of the temperature of the external air, becomes a gas refrigerant, and is sucked from the open end of the second refrigerant pipe P2.
  • the container body 10 includes a cylindrical lens barrel 11 having upper and lower ends opened and a separation plate 10a fitted in the upper end, and an upper end opening of the lens barrel 11.
  • the upper end plate 12 is welded so as to be closed, and the lower end plate 13 is welded so as to close the lower end opening of the barrel 11.
  • a plurality of support legs 14 are attached to the peripheral surface of the lower end plate 13 with a predetermined interval by welding. All the components of the container body 10 are made of iron, and the entire peripheral surface including the support legs 14 is painted.
  • a copper pipe is used for the first refrigerant pipe P1.
  • coolant pipe P1 with respect to the upper end plate 12 which comprises the container main body 10 is as showing in FIG.
  • a mounting hole H is provided in the central portion of the upper end plate 12, and the lower end portion of the first refrigerant pipe P1 is inserted and temporarily held therein. In this state, the peripheral surface of the first refrigerant pipe P1 and the peripheral portion of the mounting hole H are processed by MIG brazing Y.
  • brazing material used for MIG brazing Y is mainly composed of copper and the brazing material itself serves as an electrode, it is also called “consumable electrode type arc brazing”. In other words, brazing is performed by arc heat, and there is a relatively low distortion and pinhole generation due to local heating, and the processing speed is high.
  • the processing sequence as the refrigeration cycle container Ra is such that when the upper end plate 12 is in a single state before the upper end plate 12 is joined to the end tube 11, the first refrigerant pipe P1 is attached to the upper end plate 12 by MIG brazing Y. Join.
  • the second refrigerant pipe P2 may be an iron pipe, but the third refrigerant pipe P3 is a copper pipe.
  • the second refrigerant pipe P2 and the third refrigerant pipe P3 are joined to the lower end plate 13 by MIG brazing Y.
  • the second refrigerant pipe P2 and the lower end plate 13 are joined by MIG brazing Y, and then one end of the third refrigerant pipe P3 is connected to the end of the lower end plate 13 and the second refrigerant pipe P2. And is joined by MIG brazing Y.
  • the upper end plate 12 joined with the first refrigerant pipe P1 is welded to the upper end portion of the lens barrel 11, and the upper end opening of the lens barrel 11 is closed.
  • the lower end plate 13 in which the second refrigerant pipe P2 and the third refrigerant pipe P3 are joined is welded to the lower end portion of the lens barrel 11, and the lower end opening of the lens barrel 11 is closed. Therefore, the container body 10 is assembled.
  • the processing time required for joining at one location is about 40 seconds for silver brazing and about 10 seconds for MIG brazing Y.
  • the cost of the brazing material is 27 thousand yen for silver brazing per kilogram (at the time of filing), and the copper brazing material used for the MIG brazing Y can be purchased for 5,000 yen (same as above).
  • MIG brazing Y has many advantages over silver brazing, and therefore, the labor required for joining the container body 10 and the refrigerant pipes P1 to P3 can be reduced and the processing time can be shortened. Can contribute to cost reduction.
  • FIG. 3A, FIG. 3B, and FIG. 3C are diagrams for explaining the manufacturing sequence of the upper end plate 12 constituting the container body 11 and the joining of the first refrigerant pipe P1. Although not particularly illustrated, the same applies to the joining of the lower end plate 13 and the second refrigerant pipe P2.
  • a rectangular plate body D is prepared in plan view, and a mounting hole H is provided at the center.
  • a rectangular plate D provided with a mounting hole H at the center is formed into a semicircular cross section by drawing. The peripheral end portion is aligned at the same position to form a substantially bowl-shaped upper end plate 12.
  • the mounting hole H provided earlier has a cross-sectional taper shape in which the outer surface side diameter of the upper end plate 12 is larger than the inner surface side diameter.
  • This is a cross-sectional shape that is inevitably formed by drawing a rectangular plate D having a predetermined plate thickness, and when the first refrigerant pipe P1 is inserted, a mounting hole on the outer surface side of the upper end plate 12 A certain amount of gap is generated from the H periphery.
  • the mounting hole H has a tapered cross section.
  • a conspicuous gap is formed on the outer surface side of the upper end plate 12 between the refrigerant pipe P1 and the periphery of the mounting hole H.
  • the brazing material of MIG brazing Y can easily enter the gap, so that the bonding strength between the upper end plate 12 and the first refrigerant pipe P1 is increased.
  • the iron material is selected for the barrel 11, the upper end plate 12, and the lower end plate 13 constituting the container body 10.
  • the present invention is not limited to this.
  • the refrigerant pipes P1 to P3 made of copper pipes are joined to the container body 10 by MIG brazing Y. There is no change in using a copper-based material as the brazing material, and the refrigerant pipes P1 to P3 can be firmly joined to the container body 10.
  • FIG. 4 is a front view of the refrigeration cycle container Rb in the second embodiment. Although the overall height and diameter of the container main body 10 are different from those described above with reference to FIG.
  • the refrigerant pipe is joined by two connecting refrigerant pipes P4 and P5 protruding upward from the upper end plate 12 constituting the container body 10 and MIG brazing Y through the connecting refrigerant pipes P4 and P5 and the upper end plate 12.
  • the U-shaped refrigerant pipe P ⁇ b> 6 is accommodated in the container body 10.
  • the connecting refrigerant pipes P4 and P5 are copper pipes
  • the U-shaped refrigerant pipe P6 is an iron pipe. That is, the refrigerant pipe connected to the outside from the container main body 10 is a copper material, and the U-shaped refrigerant pipe P6 accommodated in the container main body 10 is the same iron material as the container main body 10.
  • the iron material is used only for the U-shaped refrigerant pipe P6, but this refrigerant pipe P6 is housed inside the container body 10 and does not come into contact with external air, so that rust is hardly generated. By using inexpensive iron, it contributes to cost reduction. Naturally, there is no functional problem as the refrigeration cycle container Rb.
  • FIG. 5A or FIG. 5B In order to join the two upper and lower refrigerant pipes P through the container body 10, a joining structure as shown in FIG. 5A or FIG. 5B is used.
  • FIG. 5A the end portion of the upper refrigerant pipe Pa made of a copper pipe is inserted into the mounting hole H from the upper part of the container body 10. And the upper side refrigerant
  • a brazing material mainly composed of copper is used, strong bonding can be obtained in a short time.
  • the opening end of the lower refrigerant pipe Pb made of an iron pipe is applied so as to face the mounting hole H from the lower side of the container main body 10, and the lower refrigerant pipe Pb and the container main body 10 are joined by welding U. .
  • the joining process is in two stages.
  • the lower side refrigerant pipe Pb which is an iron pipe
  • the container body 10 made of an iron material are usually welded U. That's okay. Since the inside of the completed container body 10 is free of oxygen, rust is unlikely to occur in the lower refrigerant pipe Pb.
  • FIG. 5B shows another example of the joint structure.
  • the opening end of the lower refrigerant pipe Pd is inserted into the mounting hole H from the lower part of the container body 10 and protrudes to the upper surface side of the container body 10 to some extent. This state is temporarily held and the opening end of the upper refrigerant pipe Pc is opposed to the opening end of the lower refrigerant pipe Pd from the upper part of the container body 10.
  • the MIG brazing Y is performed simultaneously on the container body 10 and the upper end side refrigerant pipe Pc end portion and the lower side refrigerant pipe Pd end portion. As a joining process, only one step is required, and MIG brazing Y can ensure airtightness. And it remains unchanged that rust hardly occurs in the lower refrigerant pipe Pd inside the container body 10.
  • FIG. 6 shows a horizontal refrigeration cycle container Rc as a third embodiment of the present invention.
  • a plurality (at least two) of refrigerant pipes P are joined together by MIG brazing Y at intervals L along the axial direction of the horizontally placed container body 10A.
  • the interval L must be set to about 150 mm or more.
  • the MIG brazing Y can be automated. Specifically, a torch for holding the brazing material is necessary, and MIG brazing Y is performed while moving the torch along the periphery of the refrigerant pipe P.
  • the second refrigerant pipe P and the second refrigerant pipe P are close to each other in order to perform the MIG brazing Y.
  • the MIG brazing Y of the second refrigerant pipe P cannot be performed.
  • FIG. 7 is a front view of a refrigeration cycle container according to a fourth embodiment of the present invention.
  • the container body 10B is formed by joining the upper end plate 12 and the lower end plate 13 directly by welding. That is, the container main body 10B is configured without using the lens barrel 11 shown in FIG. 1, but there is no problem even if the lens barrel 11 is interposed between the upper and lower end plate 12 and 13.
  • a stainless steel wire (SUS wire) 15 is wound around a joint portion between the upper end plate 12 and the lower end plate 13 constituting the container body 10B, and welding is performed from above the stainless steel wire 15.
  • the joint portion is covered with a stainless material having an anticorrosive effect, and at least the repair coating on the joint portion becomes unnecessary.
  • FIG. 8A and 8B are views for explaining a joining means according to the fifth embodiment of the present invention.
  • FIG. 8A is a sectional view of the upper end plate 12 and
  • FIG. 8B is a plan view thereof.
  • the upper end plate 12 and the refrigerant pipe P are at normal temperature at the start of the operation, and are not heated, so it is difficult to join them. If it ends with incomplete joining, the refrigerant gas tends to leak from this part, and the reliability is lacking.
  • the brazing material is applied to a part that is spaced apart from the peripheral surface of the refrigerant pipe P and heated. So-called preheating is performed, and the temperature rise of the upper end plate 12 is awaited.
  • FIGS. 9A and 9B are views for explaining the joining means according to the sixth embodiment of the present invention.
  • FIG. 9A is a plan view of the lower end plate 13 and
  • FIG. 9B is a cross-sectional view.
  • the opening end of the refrigerant pipe P is inserted into the mounting hole H provided in the lower end plate 13 and the opening end of the refrigerant pipe P is protruded to the inner surface side of the lower end plate 13 to some extent. Temporarily holding this state, the opening end portion peripheral surface of the refrigerant pipe P protruding from the inner surface side of the lower end plate 13 is MIG brazed to the lower end plate 13 to join the lower end plate 13 and the refrigerant pipe P.
  • the lower end plate 13 is joined to the end tube 11 or the upper end plate 12 to constitute the container body 10 and completed as the container R for the refrigeration cycle. Then, it is subjected to a leak inspection for inspecting whether or not there is a leak from the joint portion.
  • the length of the straight portion along the axial direction of the refrigerant pipe P joined to the lower end plate 13 is very short, and there is also one that is bent in a substantially L shape without a sufficient distance from the lower end plate 13. is there.
  • a copper-aluminum-based brazing material is used for MIG brazing between the container body and the refrigerant pipe.
  • the present invention it is possible to obtain a container for a refrigeration cycle that contributes to cost reduction by reducing the labor required for joining the container body and the refrigerant pipe and shortening the processing time. Furthermore, according to the present invention, there is obtained a refrigeration cycle apparatus provided with the above refrigeration cycle container and capable of improving reliability.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Analytical Chemistry (AREA)
  • Power Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Arc Welding In General (AREA)

Abstract

In order to allow for decreased labor and shortened work time, and to contribute to decreased cost, when joining coolant pipes to a container body, a refrigeration cycle container (R) is constituted so that the coolant pipes (P) are joined to the container body (10) by metal inert gas brazing (Y). A refrigeration cycle device improves reliability by configuring a refrigeration cycle using the coolant pipes (P) to connect a compressor (1), a condenser (2), an expansion valve (3), an evaporator (4), and the aforementioned refrigeration cycle container (R).

Description

冷凍サイクル用容器と冷凍サイクル装置Refrigeration cycle container and refrigeration cycle equipment
 本発明は、アキュームレータ、冷媒タンク、オイルセパレータ等である冷凍サイクル用容器と、冷凍サイクル構成機器とともに冷凍サイクル用容器を備えて冷凍サイクルを構成する冷凍サイクル装置に関する。 The present invention relates to a refrigeration cycle container that includes a refrigeration cycle container together with a refrigeration cycle container, such as an accumulator, a refrigerant tank, and an oil separator, and a refrigeration cycle container.
 周知なように、ろう付けとは、加熱した対の継手部品の隙間(0.05~0.1mm)に対して溶かしたろう材を毛細管現象を利用して流し込む接合方法である。その結果、継手金属とろう材との間に、拡散反応による薄い合金層が形成され、継手部品相互の接合が得られる。 As is well known, brazing is a joining method in which a brazing material melted into a gap (0.05 to 0.1 mm) between a pair of heated joint parts is poured using a capillary phenomenon. As a result, a thin alloy layer is formed by diffusion reaction between the joint metal and the brazing material, and joint parts are joined to each other.
 より完全なろう付けを行うためには、金属表面における酸化膜等の不純物の生成を防ぐとともに、金属表面と大気との接触を遮断し、ろう材の流れを良くする必要がある。そこで、継手金属にフラックスを塗布し、金属表面を活性化(ぬれ)させるとともに、ろう材の流れを良くするための最適温度の設定が必要となる。 In order to perform more complete brazing, it is necessary to prevent the generation of impurities such as an oxide film on the metal surface, and to block the contact between the metal surface and the atmosphere to improve the flow of the brazing material. Therefore, it is necessary to apply a flux to the joint metal to activate (wet) the metal surface and to set an optimum temperature for improving the flow of the brazing material.
 ところで、冷媒を圧縮する圧縮機と、冷媒を貯留するアキュームレータ(冷凍サイクル用容器)と、これら圧縮機とアキュームレータを接続し冷媒を導く吸入配管とを備えた圧縮機の配管接続構造において、前記構成部品相互をろう付けもしくは溶接により接続する技術が開示されている(例えば、特開2004-360476号公報参照)。 By the way, in the pipe connection structure of the compressor, which includes a compressor that compresses the refrigerant, an accumulator (a refrigeration cycle container) that stores the refrigerant, and a suction pipe that connects the compressor and the accumulator and guides the refrigerant, A technique for connecting parts together by brazing or welding is disclosed (for example, see Japanese Patent Application Laid-Open No. 2004-360476).
 特開2004-360476号公報の発明に用いられるろう付けは、溶接と比較して機械化が困難であり、作業者の手作業と熟練度に頼るところが大である。したがって、ろう付け箇所が多い冷凍サイクル用容器の場合は、非常に手間がかかり、工数に影響が出る。 Brazing used in the invention of Japanese Patent Application Laid-Open No. 2004-360476 is difficult to mechanize as compared with welding, and relies heavily on the manual work and skill of the operator. Therefore, in the case of a container for a refrigeration cycle with many brazing points, it takes a lot of time and affects the man-hours.
 一方、例えば自動車関連機器や事務機器関連部品では、炭素鋼板や、亜鉛メッキ鋼板あるいはステンレス鋼板が用いられている。これらの鋼板相互を接合するのに、多くはMIG(メタルイナートガス)ブレージング法が行われている。 On the other hand, for example, carbon steel plates, galvanized steel plates, or stainless steel plates are used in automobile-related equipment and office equipment-related parts. In many cases, MIG (metal inert gas) brazing is performed to join these steel plates.
 このMIGブレージング法は、母材及びワイヤを加熱するとともに、不活性ガス雰囲気の中でワイヤの主成分である銅を溶融させ、これを母材間の間隙に流入させてブレージング(ろう付け)する方法である。この種の溶接法によれば、スパッタの発生が少なく、外観上も優れていることが特徴である。 In this MIG brazing method, the base material and the wire are heated, and copper, which is the main component of the wire, is melted in an inert gas atmosphere, and this is introduced into the gap between the base materials to be brazed. Is the method. This type of welding method is characterized in that it generates less spatter and is excellent in appearance.
 すなわち、母材の溶融がほとんど無く、母材の材質変化や熱変形の少ない接合が可能となるので、これを通常の銀ろう付け加工に代って冷凍サイクル用容器を構成する容器本体と冷媒パイプとの接合に応用する考えに至った。 That is, there is almost no melting of the base material, and it is possible to join the base material with little material change or thermal deformation, so that the container body and the refrigerant constituting the container for the refrigeration cycle can be replaced with the usual silver brazing process. It came to the idea of applying to joining with a pipe.
 本発明は上記事情にもとづきなされたものであり、その目的とするところは、容器本体に冷媒パイプを接合するにあたって、ろう付け以外の最適手段を採用することで、作業手間の軽減化と、作業時間の短縮化を図り、コスト低減に寄与する冷凍サイクル用容器を提供しようとするものである。 The present invention has been made on the basis of the above circumstances. The purpose of the present invention is to reduce labor and work by adopting an optimum means other than brazing when joining the refrigerant pipe to the container body. An object of the present invention is to provide a container for a refrigeration cycle that shortens the time and contributes to cost reduction.
 さらに本発明の目的とするところは、上記冷凍サイクル用容器を備えて冷凍サイクルを構成することにより、信頼性の向上を得られる冷凍サイクル装置を提供しようとするものである。 Furthermore, an object of the present invention is to provide a refrigeration cycle apparatus that is provided with the above-described refrigeration cycle container and can be improved in reliability by constituting a refrigeration cycle.
 前記課題を解決し目的を達成するために、本発明の冷凍サイクル用容器及び冷凍サイクル装置は次のように構成されている。 In order to solve the above problems and achieve the object, the container for refrigeration cycle and the refrigeration cycle apparatus of the present invention are configured as follows.
 MIG(メタルイナートガス)ブレージングにより、容器本体に冷媒パイプを接合する。また、冷凍サイクル装置は、圧縮機と、凝縮器と、膨張装置と、蒸発器及び上記記載の冷凍サイクル用容器を、冷媒パイプを介して連通し冷凍サイクルを構成する。 ¡A refrigerant pipe is joined to the container body by MIG (metal inert gas) brazing. Further, the refrigeration cycle apparatus configures a refrigeration cycle by connecting a compressor, a condenser, an expansion device, an evaporator, and the refrigeration cycle container described above via a refrigerant pipe.
図1は、本発明における第1の実施の形態に係る冷凍サイクル用容器の正面図である。FIG. 1 is a front view of a refrigeration cycle container according to a first embodiment of the present invention. 図2は、同冷凍サイクル用容器を構成する容器本体の上部鏡板と冷媒パイプとの接合構造を示す断面図である。FIG. 2 is a cross-sectional view showing a joint structure between the upper end plate of the container body and the refrigerant pipe constituting the container for the refrigeration cycle. 図3Aは、同上部鏡板の加工工程を示す説明図である。FIG. 3A is an explanatory view showing a process of processing the upper end plate. 図3Bは、同上部鏡板の加工工程を示す説明図である。FIG. 3B is an explanatory view showing a process of processing the upper end plate. 図3Cは、同上部鏡板の加工工程を示す説明図である。FIG. 3C is an explanatory diagram showing a process of processing the upper end plate. 図4は、本発明における第2の実施の形態に係る冷凍サイクル用容器の正面図である。FIG. 4 is a front view of the refrigeration cycle container according to the second embodiment of the present invention. 図5Aは、同冷凍サイクル用容器を構成する容器本体と冷媒パイプとの接合構造を示す断面図である。FIG. 5A is a cross-sectional view showing a joint structure between a container main body and a refrigerant pipe constituting the container for the refrigeration cycle. 図5Bは、同容器本体と冷媒パイプとの接合構造を示す断面図である。FIG. 5B is a cross-sectional view showing a joint structure between the container body and the refrigerant pipe. 図6Aは、本発明における第3の実施の形態に係る冷凍サイクル用容器を示す正面図である。FIG. 6A is a front view showing a container for a refrigeration cycle according to a third embodiment of the present invention. 図6Bは、同冷凍サイクル用容器を示す側面図である。FIG. 6B is a side view showing the refrigeration cycle container. 図7は、本発明における第4の実施の形態に係る冷凍サイクル用容器を示す正面図である。FIG. 7 is a front view showing a refrigeration cycle container according to a fourth embodiment of the present invention. 図8Aは、本発明における第5の実施の形態に係る容器本体と冷媒パイプとの接合構造を示す断面図である。FIG. 8A is a cross-sectional view showing a joint structure between a container body and a refrigerant pipe according to a fifth embodiment of the present invention. 図8Bは、本発明における第5の実施の形態に係る容器本体と冷媒パイプとの接合構造を示す平面図である。FIG. 8B is a plan view showing a joint structure between a container body and a refrigerant pipe according to a fifth embodiment of the present invention. 図9Aは、本発明における第6の実施の形態に係る容器本体と冷媒パイプとの接合構造を示す平面図である。FIG. 9A is a plan view showing a joint structure between a container body and a refrigerant pipe according to a sixth embodiment of the present invention. 図9Bは、本発明における第6の実施の形態に係る容器本体と冷媒パイプとの接合構造を示す断面図である。FIG. 9B is a cross-sectional view showing a joint structure between a container body and a refrigerant pipe according to a sixth embodiment of the present invention. 図10は、本発明における第7の実施の形態に係る冷凍サイクル装置の冷凍サイクル構成図である。FIG. 10 is a configuration diagram of the refrigeration cycle of the refrigeration cycle apparatus according to the seventh embodiment of the present invention.
 以下、本発明の実施の形態を、図面にもとづいて説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 図10は、例えば空気調和機である、冷凍サイクル装置の冷凍サイクル構成図である。 FIG. 10 is a configuration diagram of a refrigeration cycle of a refrigeration cycle apparatus, for example, an air conditioner.
 図中1は、吸込んだ冷媒を圧縮して高温高圧のガス冷媒となし、冷媒パイプPへ吐出する圧縮機である。この冷媒パイプPを介して凝縮器2が連通され、導かれてきたガス冷媒を凝縮して液冷媒に変える。 In the figure, reference numeral 1 denotes a compressor that compresses the sucked refrigerant into a high-temperature and high-pressure gas refrigerant and discharges it to the refrigerant pipe P. The condenser 2 is communicated with the refrigerant pipe P to condense the guided gas refrigerant and convert it into a liquid refrigerant.
 前記凝縮器2には冷媒パイプPを介して膨張装置である膨張弁3が連通されていて、導かれてきた液冷媒を断熱膨張させる。さらに、膨張弁3には冷媒パイプPを介して蒸発器4が連通されていて、冷媒を蒸発させ、このときの蒸発潜熱を熱交換空気から奪って冷気に変える。すなわち、冷凍(冷房)作用が得られる。 The expansion valve 3 which is an expansion device is communicated with the condenser 2 through a refrigerant pipe P to adiabatically expand the led liquid refrigerant. Further, an evaporator 4 is communicated with the expansion valve 3 via a refrigerant pipe P to evaporate the refrigerant, and the latent heat of vaporization at this time is taken from the heat exchange air and changed into cold air. That is, a freezing (cooling) action is obtained.
 前記蒸発器4には冷媒パイプPを介してアキュームレータ5が連通し、導かれてきた蒸発冷媒を気液分離する。分離されたガス冷媒のみが冷媒パイプPを介して圧縮機1に吸込まれ、再び上述の冷凍サイクルが繰り返される。アキュームレータ5を備えることで、圧縮機1にて液冷媒を吸込むことが無く、液圧縮が防止される。 The accumulator 5 communicates with the evaporator 4 via a refrigerant pipe P to separate the introduced evaporated refrigerant into a gas and liquid. Only the separated gas refrigerant is sucked into the compressor 1 through the refrigerant pipe P, and the above-described refrigeration cycle is repeated again. By providing the accumulator 5, liquid compressor is not sucked by the compressor 1, and liquid compression is prevented.
 なお、この冷凍サイクルには図示しないオイルセパレータや、リキッドタンクなども用いられていて、前記アキュームレータ5とともに総称して、「冷凍サイクル用容器R」と呼ぶ。以下、冷凍サイクル用容器Rと冷媒パイプPとの接合構造について説明する。 In this refrigeration cycle, an oil separator, a liquid tank, etc. (not shown) are also used, and together with the accumulator 5 are collectively referred to as a “refrigeration cycle container R”. Hereinafter, a joining structure between the refrigeration cycle container R and the refrigerant pipe P will be described.
 図1は、第1の実施の形態に係る冷凍サイクル用容器Raの正面図である。 FIG. 1 is a front view of a refrigeration cycle container Ra according to a first embodiment.
 この冷凍サイクル用容器Raは、内部に分離板10aを備えた容器本体10と、容器本体10上端部に接合される第1の冷媒パイプP1と、一端が容器本体10底面部に接合され他端が容器本体10内部に立ち上がり形成される第2の冷媒パイプP2と、一端が容器本体10底面部を介して第2の冷媒パイプP2に接合され他端が容器本体10外部に略U字状に曲成される第3の冷媒パイプP3とから構成される。 The refrigeration cycle container Ra includes a container body 10 provided with a separation plate 10a therein, a first refrigerant pipe P1 joined to the upper end of the container body 10, and one end joined to the bottom surface of the container body 10 and the other end. Is formed to rise inside the container body 10, one end is joined to the second refrigerant pipe P <b> 2 via the bottom surface of the container body 10, and the other end is substantially U-shaped outside the container body 10. It comprises a bent third refrigerant pipe P3.
 冷凍サイクル構成上は、第1の冷媒パイプP1が上記蒸発器4に接続され、ここで蒸発した冷媒が第1の冷媒パイプP1を介して容器本体10内に導かれる。第1の冷媒パイプP1開口端と対向する容器本体10内部に分離板10aが設けられていて、蒸発冷媒が通過することでガス冷媒と液冷媒に分離される。 In the refrigeration cycle configuration, the first refrigerant pipe P1 is connected to the evaporator 4, and the refrigerant evaporated here is guided into the container body 10 through the first refrigerant pipe P1. A separation plate 10a is provided inside the container body 10 that faces the opening end of the first refrigerant pipe P1, and the vaporized refrigerant passes through the separator plate 10a to be separated into a gas refrigerant and a liquid refrigerant.
 液冷媒は容器本体10内底部に溜り、ガス冷媒は第2の冷媒パイプP2の開口端から吸込まれて第3の冷媒パイプP3に導かれ、さらに圧縮機1に吸込まれて圧縮される。容器本体10内底部に溜まった液冷媒は時間の経過とともに、あるいは外部空気の温度影響を受けて蒸発し、ガス冷媒となって第2の冷媒パイプP2の開口端から吸込まれる。 The liquid refrigerant accumulates in the bottom of the container body 10, and the gas refrigerant is sucked from the open end of the second refrigerant pipe P2 and led to the third refrigerant pipe P3, and further sucked into the compressor 1 and compressed. The liquid refrigerant accumulated at the inner bottom of the container body 10 evaporates as time elapses or under the influence of the temperature of the external air, becomes a gas refrigerant, and is sucked from the open end of the second refrigerant pipe P2.
 冷凍サイクル用容器Raの構成についてなお説明すると、前記容器本体10は、上下端部が開口され上端に分離板10aが嵌め込まれた円筒状の鏡筒11と、この鏡筒11の上端開口部を閉塞するよう溶接される上部鏡板12と、前記鏡筒11の下端開口部を閉塞するよう溶接される下部鏡板13とから構成される。 The configuration of the refrigeration cycle container Ra will be described below. The container body 10 includes a cylindrical lens barrel 11 having upper and lower ends opened and a separation plate 10a fitted in the upper end, and an upper end opening of the lens barrel 11. The upper end plate 12 is welded so as to be closed, and the lower end plate 13 is welded so as to close the lower end opening of the barrel 11.
 さらに、下部鏡板13の周面に所定間隔を存して複数の支持脚14が溶接加工により取付けられている。このような容器本体10の構成部品は全て鉄材が用いられていて、支持脚14を含む全周面が塗装される。 Furthermore, a plurality of support legs 14 are attached to the peripheral surface of the lower end plate 13 with a predetermined interval by welding. All the components of the container body 10 are made of iron, and the entire peripheral surface including the support legs 14 is painted.
 第1の冷媒パイプP1は、銅パイプが用いられる。容器本体10を構成する上部鏡板12に対する第1の冷媒パイプP1の接合構造は、図2に示すようになっている。 A copper pipe is used for the first refrigerant pipe P1. The joining structure of the 1st refrigerant | coolant pipe P1 with respect to the upper end plate 12 which comprises the container main body 10 is as showing in FIG.
 上部鏡板12の中心部に取付け用孔Hが設けられ、ここに第1の冷媒パイプP1の下端部が挿入され、仮保持される。そして、この状態で第1の冷媒パイプP1周面と取付け用孔Hの周部に対してMIGブレージングYによる加工が施される。 A mounting hole H is provided in the central portion of the upper end plate 12, and the lower end portion of the first refrigerant pipe P1 is inserted and temporarily held therein. In this state, the peripheral surface of the first refrigerant pipe P1 and the peripheral portion of the mounting hole H are processed by MIG brazing Y.
 MIGブレージングYに用いられるろう材は銅を主成分としていて、ろう材自体が電極となるので、「消耗電極式のアークろう付け」とも呼ばれている。すなわち、アーク熱によってろう付けするものであり、局部加熱のために歪やピンホールの発生が比較的少なく、加工速度が速い特徴を有する。 Since the brazing material used for MIG brazing Y is mainly composed of copper and the brazing material itself serves as an electrode, it is also called “consumable electrode type arc brazing”. In other words, brazing is performed by arc heat, and there is a relatively low distortion and pinhole generation due to local heating, and the processing speed is high.
 冷凍サイクル用容器Raとしての加工順序は、上部鏡板12を鏡筒11に接合する以前の、上部鏡板12が単独状態にあるときに、第1の冷媒パイプP1を上部鏡板12にMIGブレージングYにより接合する。 The processing sequence as the refrigeration cycle container Ra is such that when the upper end plate 12 is in a single state before the upper end plate 12 is joined to the end tube 11, the first refrigerant pipe P1 is attached to the upper end plate 12 by MIG brazing Y. Join.
 第2の冷媒パイプP2は鉄パイプであってもよいが、第3の冷媒パイプP3は銅パイプが用いられる。下部鏡板13を鏡筒11に接合する以前の、下部鏡板13が単独状態にあるときに、第2の冷媒パイプP2及び第3の冷媒パイプP3を下部鏡板13にMIGブレージングYにより接合する。 The second refrigerant pipe P2 may be an iron pipe, but the third refrigerant pipe P3 is a copper pipe. When the lower end plate 13 is in a single state before the lower end plate 13 is joined to the barrel 11, the second refrigerant pipe P2 and the third refrigerant pipe P3 are joined to the lower end plate 13 by MIG brazing Y.
 なお説明すると、はじめに、第2の冷媒パイプP2と下部鏡板13とをMIGブレージングYにより接合し、そのあと、第3の冷媒パイプP3の一端部を下部鏡板13と第2の冷媒パイプP2端部との接合部に当てて、MIGブレージングYにより接合する。 In other words, first, the second refrigerant pipe P2 and the lower end plate 13 are joined by MIG brazing Y, and then one end of the third refrigerant pipe P3 is connected to the end of the lower end plate 13 and the second refrigerant pipe P2. And is joined by MIG brazing Y.
 さらに、第1の冷媒パイプP1を接合した上部鏡板12を鏡筒11の上端部に溶接加工して、鏡筒11の上端開口部を閉塞する。次に、第2の冷媒パイプP2と第3の冷媒パイプP3を接合した下部鏡板13を鏡筒11の下端部に溶接加工して、鏡筒11の下端開口部を閉塞する。したがって、容器本体10の組立てがなされる。 Furthermore, the upper end plate 12 joined with the first refrigerant pipe P1 is welded to the upper end portion of the lens barrel 11, and the upper end opening of the lens barrel 11 is closed. Next, the lower end plate 13 in which the second refrigerant pipe P2 and the third refrigerant pipe P3 are joined is welded to the lower end portion of the lens barrel 11, and the lower end opening of the lens barrel 11 is closed. Therefore, the container body 10 is assembled.
 例えば、上部鏡板12に対して第1の冷媒パイプP1を接続するのに、従来のように銀ろう付けする場合と、本発明で説明したようにMIGブレージングYする場合とを、比較してみる。 For example, when connecting the first refrigerant pipe P1 to the upper end plate 12, a case of silver brazing as in the prior art and a case of MIG brazing Y as described in the present invention are compared. .
 1箇所の接合に要する加工時間は、銀ろう付けでは約40秒が必要であり、MIGブレージングYでは約10秒で済む。ろう材のコストは、1キロあたり、銀ろうが27千円(出願当時)であり、MIGブレージングYに用いる銅のろう材は5千円(同)で購入できる。 The processing time required for joining at one location is about 40 seconds for silver brazing and about 10 seconds for MIG brazing Y. The cost of the brazing material is 27 thousand yen for silver brazing per kilogram (at the time of filing), and the copper brazing material used for the MIG brazing Y can be purchased for 5,000 yen (same as above).
 実際の作業は、銀ろう付けでは作業者(人手)による作業とならざるを得ないが、MIGブレージングYでは自動化が容易である。さらに、前後の処理として、銀ろう付けではフラックス+湯洗処理工程が必要であるが、MIGブレージングYでは前後の処理が不要である。 Actual work must be done by a worker (manual) in silver brazing, but it is easy to automate in MIG brazing Y. Furthermore, as the front and rear processing, the silver brazing requires a flux + hot water washing process, but the MIG brazing Y does not require the front and rear processing.
 このようにして、MIGブレージングYは銀ろう付けと比較して有利な点が多々あり、よって容器本体10と冷媒パイプP1~P3との接合に要する手間の軽減化と、加工時間の短縮化を図ることができて、コスト低減に寄与する。 In this way, MIG brazing Y has many advantages over silver brazing, and therefore, the labor required for joining the container body 10 and the refrigerant pipes P1 to P3 can be reduced and the processing time can be shortened. Can contribute to cost reduction.
 図3A,図3B,図3Cは、容器本体11を構成する上部鏡板12の製作順序と、第1の冷媒パイプP1の接合を説明する図である。特に図示していないが、下部鏡板13と第2の冷媒パイプP2との接合も同様である。 3A, FIG. 3B, and FIG. 3C are diagrams for explaining the manufacturing sequence of the upper end plate 12 constituting the container body 11 and the joining of the first refrigerant pipe P1. Although not particularly illustrated, the same applies to the joining of the lower end plate 13 and the second refrigerant pipe P2.
 はじめ図3Aに示すように、平面視で矩形状の板体Dを用意し、この中心部に取付け用孔Hを設ける。次に図3Bに示すように、中心部に取付け用孔Hを設けた矩形状板体Dを絞り加工により断面半円状に形成する。周端部は同一位置に揃えて、略椀状の上部鏡板12を形成する。 First, as shown in FIG. 3A, a rectangular plate body D is prepared in plan view, and a mounting hole H is provided at the center. Next, as shown in FIG. 3B, a rectangular plate D provided with a mounting hole H at the center is formed into a semicircular cross section by drawing. The peripheral end portion is aligned at the same position to form a substantially bowl-shaped upper end plate 12.
 図3Cに示すように、先に設けた取付け用孔Hは、上部鏡板12の外面側直径が内面側直径よりも大な断面テーパ状をなす。これは、所定の板厚を有する矩形状板体Dを絞り加工したことにより、必然的に形成される断面形状であり、第1の冷媒パイプP1を挿入すると上部鏡板12外面側の取付け用孔H周縁とある程度の隙間が生じる。 As shown in FIG. 3C, the mounting hole H provided earlier has a cross-sectional taper shape in which the outer surface side diameter of the upper end plate 12 is larger than the inner surface side diameter. This is a cross-sectional shape that is inevitably formed by drawing a rectangular plate D having a predetermined plate thickness, and when the first refrigerant pipe P1 is inserted, a mounting hole on the outer surface side of the upper end plate 12 A certain amount of gap is generated from the H periphery.
 すなわち、矩形状板体Dの段階で第1の冷媒パイプP1直径と同一直径の取付け用孔Hを設けても、矩形状板体Dを絞り加工して略椀状の上部鏡板12を形成することで、取付け用孔Hが断面テーパ状をなす。 That is, even if the mounting hole H having the same diameter as the first refrigerant pipe P1 is provided at the stage of the rectangular plate D, the rectangular plate D is drawn to form the substantially bowl-shaped upper end plate 12. Thus, the mounting hole H has a tapered cross section.
 ここに第1の冷媒パイプP1を挿入すると、上部鏡板12の外面側に、冷媒パイプP1と取付け用孔H周縁とに目立つ程度の隙間が形成される。上記隙間にMIGブレージングYのろう材が入り易く、よって上部鏡板12と第1の冷媒パイプP1との接合強度が大になる。 When the first refrigerant pipe P1 is inserted here, a conspicuous gap is formed on the outer surface side of the upper end plate 12 between the refrigerant pipe P1 and the periphery of the mounting hole H. The brazing material of MIG brazing Y can easily enter the gap, so that the bonding strength between the upper end plate 12 and the first refrigerant pipe P1 is increased.
 また、上記実施の形態では、容器本体10を構成する鏡筒11と上部鏡板12及び下部鏡板13ともに鉄材が選択されると説明したが、これに限定されるものではない。 In the above embodiment, it has been described that the iron material is selected for the barrel 11, the upper end plate 12, and the lower end plate 13 constituting the container body 10. However, the present invention is not limited to this.
 容器本体10の構成部材として、高耐食性メッキ鋼板を用いることにより、表面塗装が不用でありながら高い防錆効果が得られる。強度的には何らの遜色もなく、かつコストに影響することもない。 By using a highly corrosion-resistant plated steel plate as a constituent member of the container body 10, a high rust prevention effect can be obtained while surface coating is unnecessary. There is no inferiority in strength and it does not affect the cost.
 そして、上記容器本体10に銅パイプからなる冷媒パイプP1~P3を、MIGブレージングYにより接合する。ろう材として、銅を主成分としたものを用いることには変りがなく、容器本体10に各冷媒パイプP1~P3を強固に接合できる。 The refrigerant pipes P1 to P3 made of copper pipes are joined to the container body 10 by MIG brazing Y. There is no change in using a copper-based material as the brazing material, and the refrigerant pipes P1 to P3 can be firmly joined to the container body 10.
 図4は、第2の実施の形態における冷凍サイクル用容器Rbの正面図である。容器本体10は先に図1で説明したものと全高及び直径が相違するが、構造的には同様であるので、特に説明は省略する。 FIG. 4 is a front view of the refrigeration cycle container Rb in the second embodiment. Although the overall height and diameter of the container main body 10 are different from those described above with reference to FIG.
 冷媒パイプは、容器本体10を構成する上部鏡板12から上部へ突出する2本の接続用冷媒パイプP4,P5と、これら接続用冷媒パイプP4,P5と上部鏡板12を介してMIGブレージングYにより接合され、容器本体10内部に収容されるU字状冷媒パイプP6からなる。 The refrigerant pipe is joined by two connecting refrigerant pipes P4 and P5 protruding upward from the upper end plate 12 constituting the container body 10 and MIG brazing Y through the connecting refrigerant pipes P4 and P5 and the upper end plate 12. The U-shaped refrigerant pipe P <b> 6 is accommodated in the container body 10.
 ここでは、接続用冷媒パイプP4,P5が銅パイプを用いており、U字状冷媒パイプP6は鉄パイプを用いたことを特徴としている。すなわち、容器本体10から外部に接続される冷媒パイプは銅材であり、容器本体10内に収容されるU字状冷媒パイプP6は、容器本体10と同じ鉄材である。 Here, the connecting refrigerant pipes P4 and P5 are copper pipes, and the U-shaped refrigerant pipe P6 is an iron pipe. That is, the refrigerant pipe connected to the outside from the container main body 10 is a copper material, and the U-shaped refrigerant pipe P6 accommodated in the container main body 10 is the same iron material as the container main body 10.
 U字状冷媒パイプP6のみ鉄材を用いているが、この冷媒パイプP6は容器本体10内部に収容され、外部空気と接触しないから錆が発生し難い。廉価な鉄材を用いることで、コストの低減に寄与する。当然、冷凍サイクル用容器Rbとして機能的には何らの支障もない。 The iron material is used only for the U-shaped refrigerant pipe P6, but this refrigerant pipe P6 is housed inside the container body 10 and does not come into contact with external air, so that rust is hardly generated. By using inexpensive iron, it contributes to cost reduction. Naturally, there is no functional problem as the refrigeration cycle container Rb.
 容器本体10を介して上下2本の冷媒パイプPを接合するには、図5Aもしくは図5Bに示すような接合構造が用いられる。 In order to join the two upper and lower refrigerant pipes P through the container body 10, a joining structure as shown in FIG. 5A or FIG. 5B is used.
 図5Aでは、容器本体10の上部から、取付け用孔Hに銅パイプからなる上部側冷媒パイプPaの端部を挿入する。そして、上部側冷媒パイプPaと鉄材からなる容器本体10とをMIGブレージングYにて接合する。ろう材として銅を主成分としたものを用いているから、短時間で強固な接合が得られる。 In FIG. 5A, the end portion of the upper refrigerant pipe Pa made of a copper pipe is inserted into the mounting hole H from the upper part of the container body 10. And the upper side refrigerant | coolant pipe Pa and the container main body 10 which consists of iron materials are joined by MIG brazing Y. FIG. Since a brazing material mainly composed of copper is used, strong bonding can be obtained in a short time.
 そのあと、容器本体10の下部側から取付け用孔Hに対向するよう、鉄パイプからなる下部側冷媒パイプPbの開口端を当て、溶接Uにより下部側冷媒パイプPbと容器本体10とを接合する。 Thereafter, the opening end of the lower refrigerant pipe Pb made of an iron pipe is applied so as to face the mounting hole H from the lower side of the container main body 10, and the lower refrigerant pipe Pb and the container main body 10 are joined by welding U. .
 このように接合工程として二段階になるが、MIGブレージングYを用いたことにより気密性を確保できるので、鉄パイプである下部側冷媒パイプPbと鉄材からなる容器本体10とは通常の溶接加工Uですむ。完成した容器本体10内部は酸素が無いため、下部側冷媒パイプPbに錆が発生し難い。 As described above, the joining process is in two stages. However, since the airtightness can be secured by using the MIG brazing Y, the lower side refrigerant pipe Pb, which is an iron pipe, and the container body 10 made of an iron material are usually welded U. That's okay. Since the inside of the completed container body 10 is free of oxygen, rust is unlikely to occur in the lower refrigerant pipe Pb.
 図5Bは、接合構造の他の例を示す。 FIG. 5B shows another example of the joint structure.
 容器本体10の下部から取付け用孔Hに下部側冷媒パイプPdの開口端部を挿入し、ある程度容器本体10の上面側に突出させる。この状態を仮保持して、容器本体10の上部から上部側冷媒パイプPcの開口端を下部側冷媒パイプPdの開口端に対向させる。 The opening end of the lower refrigerant pipe Pd is inserted into the mounting hole H from the lower part of the container body 10 and protrudes to the upper surface side of the container body 10 to some extent. This state is temporarily held and the opening end of the upper refrigerant pipe Pc is opposed to the opening end of the lower refrigerant pipe Pd from the upper part of the container body 10.
 そして、容器本体10と、上部側冷媒パイプPc端部及び、下部側冷媒パイプPd端部を同時にMIGブレージングYする。接合工程として一段階ですみ、MIGブレージングYで気密性を確保できる。そして、容器本体10内部の下部側冷媒パイプPdに錆が発生し難いのは変りがない。 The MIG brazing Y is performed simultaneously on the container body 10 and the upper end side refrigerant pipe Pc end portion and the lower side refrigerant pipe Pd end portion. As a joining process, only one step is required, and MIG brazing Y can ensure airtightness. And it remains unchanged that rust hardly occurs in the lower refrigerant pipe Pd inside the container body 10.
 図6は、本発明における第3の実施の形態として、横置き型の冷凍サイクル用容器Rcを示している。 FIG. 6 shows a horizontal refrigeration cycle container Rc as a third embodiment of the present invention.
 ここでの冷凍サイクル用容器Rcでは、横置きされた容器本体10Aの軸方向に沿って複数(少なくとも2本)の冷媒パイプPが、互いに間隔Lを存してMIGブレージングYにより接合される。上記間隔Lは、150mm程度以上に設定しなければならない。 In the refrigeration cycle container Rc here, a plurality (at least two) of refrigerant pipes P are joined together by MIG brazing Y at intervals L along the axial direction of the horizontally placed container body 10A. The interval L must be set to about 150 mm or more.
 すなわち、MIGブレージングYは、自動化が可能なことは前述したとおりである。具体的には、ろう材を保持するトーチが必要であり、このトーチを冷媒パイプPの周囲に沿って移動しながらMIGブレージングYを行う。 That is, as described above, the MIG brazing Y can be automated. Specifically, a torch for holding the brazing material is necessary, and MIG brazing Y is performed while moving the torch along the periphery of the refrigerant pipe P.
 したがって、1本目の冷媒パイプPをMIGブレージングYした後、2本目の冷媒パイプPをMIGブレージングYするのに、1本目の冷媒パイプPと2本目の冷媒パイプPとが接近した位置にあると、2本目の冷媒パイプPのMIGブレージングYができない。 Therefore, after the first refrigerant pipe P is MIG brazed Y, the second refrigerant pipe P and the second refrigerant pipe P are close to each other in order to perform the MIG brazing Y. The MIG brazing Y of the second refrigerant pipe P cannot be performed.
 上述したように、互いの冷媒パイプPの間隔Lを150mm程度以上あけることで、2本目の冷媒パイプPのMIGブレージングYでのトーチに対する干渉を避けて、支障の無い加工をなすことができる。 As described above, by setting the interval L between the refrigerant pipes P to about 150 mm or more, it is possible to avoid interference with the torch at the MIG brazing Y of the second refrigerant pipe P and to perform processing without any trouble.
 図7は、本発明における第4の実施の形態に係る冷凍サイクル用容器の正面図である。 FIG. 7 is a front view of a refrigeration cycle container according to a fourth embodiment of the present invention.
 容器本体10Bに冷媒パイプPがMIGブレージングYにより接合されることは、ここでも変りがない。 The fact that the refrigerant pipe P is joined to the container body 10B by the MIG brazing Y is not changed here either.
 なお、前記容器本体10Bは、上部鏡板12と下部鏡板13とが直接、溶接加工により接合されてなる。すなわち、図1で示した鏡筒11を用いることなく容器本体10Bを構成しているが、上部鏡板12と下部鏡板13との間に鏡筒11を介在させても何らの支障も無い。 The container body 10B is formed by joining the upper end plate 12 and the lower end plate 13 directly by welding. That is, the container main body 10B is configured without using the lens barrel 11 shown in FIG. 1, but there is no problem even if the lens barrel 11 is interposed between the upper and lower end plate 12 and 13.
 要は、容器本体10Bを構成する上部鏡板12と下部鏡板13との接合部にステンレス系ワイヤ(SUSワイヤ)15を巻き付け、このステンレス系ワイヤ15の上から溶接加工をなすことを特徴とする。 In short, a stainless steel wire (SUS wire) 15 is wound around a joint portion between the upper end plate 12 and the lower end plate 13 constituting the container body 10B, and welding is performed from above the stainless steel wire 15.
 通常の溶接加工では、その後、容器本体10Bを塗装する必要があるが、長期の使用に亘り錆が発生することが多い。そのため、溶接部分の塗装を厚くするように補修塗装をなしていて、手間がかかるうえに効果的に不安が残る。 In normal welding, it is necessary to paint the container body 10B afterwards, but rust often occurs over a long period of use. For this reason, repair painting is performed so as to thicken the coating of the welded portion, which is troublesome and effectively uneasy.
 そこで、上述したようにステンレス系ワイヤ15を接合部に巻き付けたうえで、溶接加工をなす。このことにより、接合部分が防錆効果のあるステンレス材で覆われ、少なくとも接合部分に対する補修塗装が不要となる。 Therefore, as described above, after the stainless steel wire 15 is wound around the joint, welding is performed. As a result, the joint portion is covered with a stainless material having an anticorrosive effect, and at least the repair coating on the joint portion becomes unnecessary.
 図8A,図8Bは、本発明における第5の実施の形態に係る接合手段を説明する図であり、図8Aは上部鏡板12の断面図、図8Bはその平面図である。 8A and 8B are views for explaining a joining means according to the fifth embodiment of the present invention. FIG. 8A is a sectional view of the upper end plate 12 and FIG. 8B is a plan view thereof.
 上部鏡板12に冷媒パイプPをMIGブレージングYするにあたって、作業開始時は上部鏡板12と冷媒パイプP相互が常温であり、高温化していないので接合し難い。不完全な接合で終ると、この部分から冷媒ガスがリークし易く、信頼性に欠けてしまう。 When carrying out MIG brazing Y of the refrigerant pipe P on the upper end plate 12, the upper end plate 12 and the refrigerant pipe P are at normal temperature at the start of the operation, and are not heated, so it is difficult to join them. If it ends with incomplete joining, the refrigerant gas tends to leak from this part, and the reliability is lacking.
 そこで、MIGブレージングYの作業開始時は、冷媒パイプPの周面からある程度離間した部分にろう材を当てて加熱する。いわゆる予備加熱を行うこととなり、上部鏡板12の温度上昇を待つ。 Therefore, at the start of the operation of MIG brazing Y, the brazing material is applied to a part that is spaced apart from the peripheral surface of the refrigerant pipe P and heated. So-called preheating is performed, and the temperature rise of the upper end plate 12 is awaited.
 この状態を所定時間継続して、上部鏡板12の取付け用孔H周辺を充分に温度上昇させてから、冷媒パイプP周面をMIGブレージングYすることで、上部鏡板12に対する冷媒パイプPの確実な接合をなす。 This state is continued for a predetermined time, and the temperature around the mounting hole H of the upper end plate 12 is sufficiently increased, and then the MIG brazing Y is performed on the peripheral surface of the refrigerant pipe P. Join.
 図9A,図9Bは、本発明における第6の実施の形態に係る接合手段を説明する図であり、図9Aは下部鏡板13の平面図、図9Bは断面図である。 FIGS. 9A and 9B are views for explaining the joining means according to the sixth embodiment of the present invention. FIG. 9A is a plan view of the lower end plate 13 and FIG. 9B is a cross-sectional view.
 下部鏡板13に設けた取付け用孔Hに冷媒パイプPの開口端部を挿入するとともに、冷媒パイプPの開口端部をある程度、下部鏡板13の内面側に突出させる。この状態を仮保持して、下部鏡板13の内面側から突出する冷媒パイプPの開口端部周面を下部鏡板13にMIGブレージングYし、下部鏡板13と冷媒パイプPとを接合する。 The opening end of the refrigerant pipe P is inserted into the mounting hole H provided in the lower end plate 13 and the opening end of the refrigerant pipe P is protruded to the inner surface side of the lower end plate 13 to some extent. Temporarily holding this state, the opening end portion peripheral surface of the refrigerant pipe P protruding from the inner surface side of the lower end plate 13 is MIG brazed to the lower end plate 13 to join the lower end plate 13 and the refrigerant pipe P.
 下部鏡板13を鏡筒11もしくは上部鏡板12に接合して容器本体10を構成し、冷凍サイクル用容器Rとして完成させる。そして、接合箇所から漏れがないかを検査するリーク検査にかける。 The lower end plate 13 is joined to the end tube 11 or the upper end plate 12 to constitute the container body 10 and completed as the container R for the refrigeration cycle. Then, it is subjected to a leak inspection for inspecting whether or not there is a leak from the joint portion.
 リーク検査の結果、下部鏡板13と冷媒パイプPとの接合部から漏れがないことを確認できれば問題がない。上記接合部に漏れがあることを確認した場合は、下部鏡板13の外面側から冷媒パイプPの周面をMIGブレージングYして補修する。 As a result of the leak test, there is no problem if it can be confirmed that there is no leak from the joint between the lower end plate 13 and the refrigerant pipe P. When it is confirmed that there is a leak in the joint, the peripheral surface of the refrigerant pipe P is repaired by MIG brazing Y from the outer surface side of the lower end plate 13.
 すなわち、通常の製作工程として、下部鏡板13の外面側から冷媒パイプPとMIGブレージングYしたうえで、リーク検査で漏れがあることを発見した場合を考える。このとき、既に下部鏡板13の外面側にはろう付けされたろうがあり、このうえから補修用のMIGブレージングYをなしても効果が弱い。 That is, as a normal manufacturing process, a case is considered in which a leak is detected in the leak inspection after the refrigerant pipe P and the MIG brazing Y from the outer surface side of the lower end plate 13. At this time, there has already been brazing on the outer surface side of the lower end plate 13, and even if MIG brazing Y for repair is made on this, the effect is weak.
 上述したように、下部鏡板13の内面側から冷媒パイプPをMIGブレージングYしておけば、たとえリーク検査で漏れが発見された場合でも、下部鏡板13の外面側は何らの加工もなされていないので、補修が容易でかつ確実となる。 As described above, if the refrigerant pipe P is MIG brazed Y from the inner surface side of the lower end plate 13, no processing is performed on the outer surface side of the lower end plate 13 even if a leak is found in the leak inspection. Therefore, repair is easy and reliable.
 また、下部鏡板13に接合される冷媒パイプPにおいて、この軸方向に沿う直状部分の長さが充分にあり、そこから略L字状に折曲していれば、下部鏡板13の外面側から冷媒パイプPをMIGブレージングYするのにさほど困難ではない。 Further, in the refrigerant pipe P joined to the lower end plate 13, if the length of the straight portion along this axial direction is sufficiently long and bent from there to a substantially L shape, the outer surface side of the lower end plate 13 Therefore, it is not so difficult to perform MIG brazing Y on the refrigerant pipe P.
 しかしながら、下部鏡板13に接合される冷媒パイプPの軸方向に沿う直状部分の長さがごく短く、下部鏡板13と充分な間隔のない状態で略L字状に折曲されているものもある。 However, the length of the straight portion along the axial direction of the refrigerant pipe P joined to the lower end plate 13 is very short, and there is also one that is bent in a substantially L shape without a sufficient distance from the lower end plate 13. is there.
 この場合は、下部鏡板13の外面側から完璧なMIGブレージングYをなすことは到底困難である。そこで、リーク検査にNGが出されないように下部鏡板13の内面側から完璧なMIGブレージングYを行うとよい。 In this case, it is extremely difficult to perform a perfect MIG brazing Y from the outer surface side of the lower end plate 13. Therefore, it is preferable to perform perfect MIG brazing Y from the inner surface side of the lower end plate 13 so that NG is not output in the leak inspection.
 以上説明したように、容器本体と冷媒パイプとをMIGブレージングするのに、ワイヤであるろう材に銅-アルミニュウム系のものを使用する。 As described above, a copper-aluminum-based brazing material is used for MIG brazing between the container body and the refrigerant pipe.
 ろう材として、銅-シリコン系のものも存在するが、実際に使用すると、ブレージング部分に穴やクラックが発生して気密構造が保てなかった。実験の結果、銅-アルミニゥム系(アルミブロンズ)を用いると、何らの問題もなく接合できた。 There are copper-silicon-based brazing materials, but when actually used, holes and cracks occurred in the brazing portion, and the airtight structure could not be maintained. As a result of the experiment, when copper-aluminum system (aluminum bronze) was used, it was possible to join without any problem.
 なお、本発明は上述した実施の形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。そして、上述した実施の形態に開示されている複数の構成要素の適宜な組合せにより種々の発明を形成できる。 Note that the present invention is not limited to the above-described embodiments as they are, and can be embodied by modifying the constituent elements without departing from the scope of the invention in the implementation stage. Various inventions can be formed by appropriately combining a plurality of constituent elements disclosed in the above-described embodiments.
 本発明によれば、容器本体と冷媒パイプとの接合に要する手間の軽減と、加工時間の短縮化を図り、コスト低減に寄与する冷凍サイクル用容器が得られる。さらに本発明によれば、上記冷凍サイクル用容器を備えて、信頼性の向上を得られる冷凍サイクル装置が得ら According to the present invention, it is possible to obtain a container for a refrigeration cycle that contributes to cost reduction by reducing the labor required for joining the container body and the refrigerant pipe and shortening the processing time. Furthermore, according to the present invention, there is obtained a refrigeration cycle apparatus provided with the above refrigeration cycle container and capable of improving reliability.

Claims (5)

  1.  容器本体と、
     この容器本体に、メタルイナートガスブレージングにより接合される冷媒パイプと、
    を具備することを特徴とする冷凍サイクル用容器。
    A container body;
    A refrigerant pipe joined to the container body by metal inert gas brazing,
    A container for a refrigeration cycle comprising:
  2.  前記容器本体は、高耐食性メッキ鋼板からなり、
     前記冷媒パイプは複数本接合されていて、
     そのうちの少なくとも一部は、銅パイプからなり、
     前記メタルイナートガスブレージングは、銅を主成分とするろう材が用いられる
    ことを特徴とする請求項1記載の冷凍サイクル用容器。
    The container body is made of a highly corrosion-resistant plated steel plate,
    A plurality of the refrigerant pipes are joined,
    At least some of them consist of copper pipes,
    2. The refrigeration cycle container according to claim 1, wherein the metal inert gas brazing uses a brazing material containing copper as a main component.
  3.  前記容器本体から外部に突出する冷媒パイプとして、銅パイプが用いられ、
     前記容器本体の内部に収容される冷媒パイプとして、鉄パイプが用いられる
    ことを特徴とする請求項2記載の冷凍サイクル用容器。
    A copper pipe is used as a refrigerant pipe protruding outside from the container body,
    The refrigeration cycle container according to claim 2, wherein an iron pipe is used as the refrigerant pipe accommodated in the container main body.
  4.  前記容器本体から外部に突出する銅パイプからなる冷媒パイプは、端部が容器本体を貫通してこの内面側に突出され、かつこの突出端部が容器本体の内面側からメタルイナートガスブレージングにより接合されることを特徴とする請求項2及び請求項3のいずれかに記載の冷凍サイクル用容器。 The refrigerant pipe made of a copper pipe projecting outward from the container body has an end penetrating the container body and projecting to the inner surface side, and the projecting end part is joined from the inner surface side of the container body by metal inert gas brazing. The container for a refrigeration cycle according to any one of claims 2 and 3, wherein
  5.  圧縮機と、凝縮器と、膨張装置と、蒸発器と、上記請求項1ないし請求項4のいずれかに記載の冷凍サイクル用容器とを冷媒パイプを介して連通し、冷凍サイクルを構成することを特徴とする冷凍サイクル装置。 A compressor, a condenser, an expansion device, an evaporator, and the refrigeration cycle container according to any one of claims 1 to 4 are connected via a refrigerant pipe to constitute a refrigeration cycle. A refrigeration cycle apparatus characterized by.
PCT/JP2010/051719 2009-02-06 2010-02-05 Refrigeration cycle container and refrigeration cycle device WO2010090288A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010549524A JPWO2010090288A1 (en) 2009-02-06 2010-02-05 Refrigeration cycle container and refrigeration cycle equipment
CN2010800043558A CN102272539A (en) 2009-02-06 2010-02-05 Refrigeration cycle container and refrigeration cycle device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-026278 2009-02-06
JP2009026278 2009-02-06

Publications (1)

Publication Number Publication Date
WO2010090288A1 true WO2010090288A1 (en) 2010-08-12

Family

ID=42542179

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/051719 WO2010090288A1 (en) 2009-02-06 2010-02-05 Refrigeration cycle container and refrigeration cycle device

Country Status (3)

Country Link
JP (1) JPWO2010090288A1 (en)
CN (1) CN102272539A (en)
WO (1) WO2010090288A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015081760A (en) * 2013-10-24 2015-04-27 木村化工機株式会社 Heat exchanger
JP2016068146A (en) * 2014-10-01 2016-05-09 株式会社キーレックス Mig blazing device and method for mig brazing
JP2020008240A (en) * 2018-07-11 2020-01-16 三菱重工サーマルシステムズ株式会社 Accumulator and refrigeration cycle
JP2020008241A (en) * 2018-07-11 2020-01-16 三菱重工サーマルシステムズ株式会社 accumulator
US20230082318A1 (en) * 2020-05-21 2023-03-16 Daikin Industries, Ltd. Pressure vessel and refrigeration apparatus

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6083872U (en) * 1983-11-17 1985-06-10 松下電器産業株式会社 Accumulator mounting device
JPS61164967U (en) * 1985-04-02 1986-10-13
JPS62117479U (en) * 1986-01-20 1987-07-25
JP2002130874A (en) * 2000-10-19 2002-05-09 Denso Corp Refrigerating cycle device
JP2002361469A (en) * 2001-06-12 2002-12-18 Mitsubishi Heavy Ind Ltd Welding method
JP2004116343A (en) * 2002-09-25 2004-04-15 Toshikazu Okuno Accumulator for cooler compressor
JP2005308293A (en) * 2004-04-21 2005-11-04 Matsushita Electric Ind Co Ltd Heat exchanger and manufacturing method thereof
JP2008082906A (en) * 2006-09-28 2008-04-10 Hitachi-Ge Nuclear Energy Ltd Radioactive material storage container

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6083872U (en) * 1983-11-17 1985-06-10 松下電器産業株式会社 Accumulator mounting device
JPS61164967U (en) * 1985-04-02 1986-10-13
JPS62117479U (en) * 1986-01-20 1987-07-25
JP2002130874A (en) * 2000-10-19 2002-05-09 Denso Corp Refrigerating cycle device
JP2002361469A (en) * 2001-06-12 2002-12-18 Mitsubishi Heavy Ind Ltd Welding method
JP2004116343A (en) * 2002-09-25 2004-04-15 Toshikazu Okuno Accumulator for cooler compressor
JP2005308293A (en) * 2004-04-21 2005-11-04 Matsushita Electric Ind Co Ltd Heat exchanger and manufacturing method thereof
JP2008082906A (en) * 2006-09-28 2008-04-10 Hitachi-Ge Nuclear Energy Ltd Radioactive material storage container

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015081760A (en) * 2013-10-24 2015-04-27 木村化工機株式会社 Heat exchanger
JP2016068146A (en) * 2014-10-01 2016-05-09 株式会社キーレックス Mig blazing device and method for mig brazing
JP2020008240A (en) * 2018-07-11 2020-01-16 三菱重工サーマルシステムズ株式会社 Accumulator and refrigeration cycle
JP2020008241A (en) * 2018-07-11 2020-01-16 三菱重工サーマルシステムズ株式会社 accumulator
JP7156841B2 (en) 2018-07-11 2022-10-19 三菱重工サーマルシステムズ株式会社 Accumulator and refrigeration cycle
JP2022173565A (en) * 2018-07-11 2022-11-18 三菱重工サーマルシステムズ株式会社 Accumulator and refrigeration cycle
JP7235451B2 (en) 2018-07-11 2023-03-08 三菱重工サーマルシステムズ株式会社 accumulator
JP7430759B2 (en) 2018-07-11 2024-02-13 三菱重工サーマルシステムズ株式会社 Accumulator and refrigeration cycle
US20230082318A1 (en) * 2020-05-21 2023-03-16 Daikin Industries, Ltd. Pressure vessel and refrigeration apparatus

Also Published As

Publication number Publication date
JPWO2010090288A1 (en) 2012-08-09
CN102272539A (en) 2011-12-07

Similar Documents

Publication Publication Date Title
WO2010090288A1 (en) Refrigeration cycle container and refrigeration cycle device
US6701598B2 (en) Joining and forming of tubular members
CN107131366B (en) A kind of connection structure of pipe fitting joint structure and stainless steel pipe and copper pipe
CN101666568B (en) Liquid storage device, manufacturing method thereof and air conditioner
CN107110624B (en) Refrigerant distributor, method and apparatus for manufacturing the same
CN108506548B (en) Electronic expansion valve
CN105033386B (en) Method for welding titanium or titanium alloy with 2219 aluminum alloy
JP2009535801A (en) Manufacturing method of susceptor and susceptor manufactured by this method
KR20160020313A (en) Heat exchanger
KR101467226B1 (en) Weld joint method for distribution pipe of refrigerating and airconditioning machine
CN102039520A (en) Manufacturing method of aluminium alloy heat exchanger for gas water heater
JP2017002341A (en) Clad material, manufacturing method of pipe, pipe and heat exchanger using pipe
CN105171259A (en) Composite pipe and manufacturing method and application thereof
CN106270915A (en) A kind of air conditioning liquid reservoir welding protection device and using method thereof
CN103406627B (en) The method for welding of a kind of aluminum radiator hourglass pipe nitrogen protection
CN109048020A (en) A kind of band pole weldering welding procedure suitable for aluminum steel dissimilar metal
CN102049667B (en) Method for manufacturing hollow section joints and hollow section joints
EP1906112B1 (en) Aluminium-coil and copper fitting evaporator construction
JP2011202672A (en) Joint body and heat exchanger with the same
JP2003042474A (en) Method for fixing part on fluid circulation pipe constituting part of heat exchanger, particularly condenser, of air conditioner
JPH11173470A (en) Connection pipe of metal piping system, connection structure of metal piping system using the connection pipe, and method of manufacturing connection pipe of metal piping system
JP3573928B2 (en) Compressor
US20120211208A1 (en) Brazing joints
KR20160031833A (en) Connecting method of aluminum material and copper material
JP3250805U (en) Copper pipe expansion joints, heat transfer circuit components and heat transfer circuit devices using the same, and copper pipe expansion tools

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080004355.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10738619

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2010549524

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10738619

Country of ref document: EP

Kind code of ref document: A1