[go: up one dir, main page]

WO2010084794A1 - Electronic component and method for manufacturing same - Google Patents

Electronic component and method for manufacturing same Download PDF

Info

Publication number
WO2010084794A1
WO2010084794A1 PCT/JP2010/050142 JP2010050142W WO2010084794A1 WO 2010084794 A1 WO2010084794 A1 WO 2010084794A1 JP 2010050142 W JP2010050142 W JP 2010050142W WO 2010084794 A1 WO2010084794 A1 WO 2010084794A1
Authority
WO
WIPO (PCT)
Prior art keywords
electronic component
coil
conductor
layer
coil conductor
Prior art date
Application number
PCT/JP2010/050142
Other languages
French (fr)
Japanese (ja)
Inventor
慶一 都築
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2010084794A1 publication Critical patent/WO2010084794A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type
    • H01F17/0006Printed inductances
    • H01F17/0013Printed inductances with stacked layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type
    • H01F17/0006Printed inductances
    • H01F2017/0073Printed inductances with a special conductive pattern, e.g. flat spiral

Definitions

  • the present invention relates to an electronic component and a method for manufacturing the same, and more specifically to an electronic component having a coil built in a laminate and a method for manufacturing the same.
  • a chip type power inductor described in Patent Document 1 As a conventional electronic component, for example, a chip type power inductor described in Patent Document 1 is known.
  • the chip type power inductor is composed of a laminate and a coil.
  • the laminate is configured by laminating a magnetic layer and a nonmagnetic layer, and has a built-in coil.
  • the nonmagnetic material layer is provided in the laminated body so as to cross the coil.
  • the coil forms an open magnetic circuit type coil, and magnetic saturation is less likely to occur in the stacked body.
  • it is possible to suppress a sudden decrease in inductance value due to magnetic saturation and to obtain a good DC superposition characteristic.
  • an object of the present invention is to provide an electronic component incorporating a coil excellent in DC superposition characteristics and a method for manufacturing the same.
  • An electronic component includes a stacked body in which a plurality of first insulator layers and a second insulator layer having a lower magnetic permeability than the first insulator layers are stacked, and a wire A coil conductor that constitutes a coil built in the laminate, and at least a part of the coil conductor in contact with the second insulator layer is
  • the rectangular conductor has a square cross-sectional structure in which the corners at both ends of the predetermined side form an acute angle on a plane perpendicular to the extending direction of the linear conductor, and the second insulating layer is formed on the predetermined side. It is in contact.
  • An electronic component manufacturing method includes: a step of forming the second insulator layer; a step of forming the coil conductor on the second insulator layer; Forming the first insulator layer on the insulator layer using a mask having an opening other than the region corresponding to the coil conductor; and the first insulator layer and the second insulator layer.
  • FIG. 1 is an external perspective view of an electronic component according to an embodiment of the present invention. It is a disassembled perspective view of the laminated body of the electronic component which concerns on one Embodiment of this invention.
  • FIG. 3A is a cross-sectional view taken along the line AA of the electronic component in FIG. 1, and FIG. 3B is an enlarged view of the coil conductor in FIG.
  • It is process sectional drawing at the time of manufacture of an electronic component. It is process sectional drawing at the time of manufacture of an electronic component. It is sectional structure drawing of the electronic component which concerns on the comparative example used for computer simulation. It is the graph which showed the result of computer simulation.
  • FIG. 1 is an external perspective view of an electronic component 10 according to an embodiment of the present invention.
  • FIG. 2 is an exploded perspective view of the laminate 12 of the electronic component 10 of FIG. 3A is a cross-sectional structural view taken along the line AA of the electronic component 10 of FIG. 1, and
  • FIG. 3B is an enlarged view of the coil conductor 18d of FIG. 3A.
  • the stacking direction of the electronic component 10 is defined as the z-axis direction
  • the direction along the long side of the electronic component 10 is defined as the x-axis direction
  • the direction along the short side of the electronic component 10 is defined as the y-axis direction.
  • the x axis, the y axis, and the z axis are orthogonal to each other.
  • the electronic component 10 includes a laminate 12 and external electrodes 14a and 14b as shown in FIG.
  • the laminated body 12 has a rectangular parallelepiped shape and incorporates a coil L.
  • the external electrodes 14a and 14b are provided so as to cover the side surfaces located at both ends in the x-axis direction.
  • the laminated body 12 is configured by laminating magnetic layers (insulator layers) 16a to 16s and nonmagnetic layers (insulator layers) 17g and 17l.
  • the magnetic layers 16a to 16s are made of ferromagnetic ferrite (for example, Ni—Zn—Cu ferrite).
  • the magnetic layers 16a to 16c, 16e, 16h, 16j, 16m, 16o, and 16q to 16s are obtained by cutting a sheet-like ceramic green sheet into a rectangle of a predetermined size and firing it.
  • the magnetic layers 16d, 16g, 16i, 16l, 16n, and 16p are obtained by applying ceramic paste to the magnetic layers 16e, 16h, 16j, 16m, 16o, and 16q by screen printing and firing. .
  • the magnetic layers 16f and 16k are obtained by applying a ceramic paste on the magnetic layers 16g and 16l and the nonmagnetic layers 17g and 17l by screen printing and firing.
  • the nonmagnetic layers 17g and 17l are made of a material having a lower magnetic permeability than the magnetic layers 16a to 16s.
  • the nonmagnetic layers 17g and 17l are made of nonmagnetic ferrite (for example, Zn—Cu ferrite). Yes.
  • the non-magnetic layer 17g is provided between the magnetic layer 16f and the magnetic layer 16h, and has a square shape.
  • a magnetic layer 16g is provided at the center of the nonmagnetic layer 17g.
  • the nonmagnetic layer 17l is provided between the magnetic layer 16k and the magnetic layer 16m, and has a square shape.
  • a magnetic layer 16l is provided at the center of the nonmagnetic layer 17l.
  • the non-magnetic layers 17g and 17l are obtained by applying a ceramic paste on the magnetic layers 16h and 16m by screen printing and firing.
  • a ceramic paste on the magnetic layers 16h and 16m by screen printing and firing.
  • the coil L is a spiral coil that advances in the positive direction of the z-axis direction while rotating counterclockwise.
  • the coil L includes coil conductors 18a to 18f, lead portions 20a and 20f, and via hole conductors b1 to b7.
  • the coil conductors 18a to 18f are provided on the main surfaces of the magnetic layer 16e, the nonmagnetic layer 17g, the magnetic layer 16j, the nonmagnetic layer 17l, and the magnetic layers 16o and 16q, respectively. It is a linear conductor.
  • the coil conductors 18a to 18f are surrounded by magnetic layers 16d, 16f, 16i, 16k, 16n, and 16p, respectively.
  • Each of the coil conductors 18a to 18f is made of a conductive material made of Ag, has a length of 3/4 turns, and is arranged so as to overlap each other in the z-axis direction. Further, as shown in FIG.
  • the coil conductors 18a to 18f have an isosceles trapezoidal cross-sectional structure on a plane perpendicular to the extending direction of the linear conductor.
  • the coil conductors 18b and 18d are in contact with the nonmagnetic layers 17g and 17l at the lower base L1, respectively.
  • the angles ⁇ 1 and ⁇ 2 at both ends of the lower base L1 are acute angles.
  • the angles ⁇ 1 and ⁇ 2 are preferably 45 degrees or greater and 85 degrees or less, and more preferably 45 degrees or greater and 60 degrees or less.
  • the upper bases of the coil conductors 18a to 18f are in contact with the magnetic layers 16c, 16e, 16h, 16j, 16m, and 16o, and are not in contact with the nonmagnetic layers 17g and 17l.
  • an alphabet is appended to the reference symbol, and when referring to these, the alphabet after the reference symbol is omitted.
  • each of the via-hole conductors b1 to b7 includes the magnetic layer 16e, the nonmagnetic layer 17g, the magnetic layers 16h and 16j, the nonmagnetic layer 17l, and the magnetic layers 16m and 16o in the z-axis direction. It is provided to penetrate.
  • the via-hole conductors b1 to b7 function as connecting portions that connect the ends of the adjacent coil conductors 18 when the magnetic layers 16a to 16s and the nonmagnetic layers 17g and 17l are laminated. More specifically, the via-hole conductor b1 connects the end of the coil conductor 18a where the lead-out portion 20a is not provided and the end of the coil conductor 18b.
  • the via-hole conductor b2 connects the end of the coil conductor 18b to which the via-hole conductor b1 is not connected and the via-hole conductor b3.
  • the via hole conductor b3 connects the via hole conductor b2 and the end of the coil conductor 18c.
  • the via-hole conductor b4 connects the end of the coil conductor 18c that is not connected to the via-hole conductor b3 and the end of the coil conductor 18d.
  • the via-hole conductor b5 connects the end of the coil conductor 18d that is not connected to the via-hole conductor b4 and the via-hole conductor b6.
  • the via hole conductor b6 connects the via hole conductor b5 and the end of the coil conductor 18e.
  • the via-hole conductor b7 includes an end of the coil conductor 18e that is not connected to the via-hole conductor b6, and an end of the coil conductor 18f that is not provided with the lead-out portion 20f. Is connected.
  • the coil conductors 18a to 18f and the via hole conductors b1 to b7 constitute a spiral coil L.
  • the lead portions 20a and 20f are provided at the end portions of the coil conductors 18a and 18f, respectively, and are drawn to the side surface of the multilayer body 12 and connected to the external electrodes 14a and 14b. Thereby, the coil L is connected between the external electrodes 14a and 14b.
  • FIG. 4 and 5 are process cross-sectional views when the electronic component 10 is manufactured.
  • a method for manufacturing one electronic component 10 is described.
  • a plurality of electronic components 10 are simultaneously obtained by stacking mother ceramic sheets to produce a mother laminate and cutting the mother laminate.
  • a binder (vinyl acetate such as ethyl cellulose, water-soluble acrylic, etc.), a plasticizer, a wetting agent and a dispersing agent are added and mixed with a ball mill, and then defoamed under reduced pressure.
  • the obtained ceramic slurry is formed into a sheet shape on a carrier sheet 21h and dried by a doctor blade method to form a ceramic green sheet 116h to be the magnetic layer 16h.
  • a nonmagnetic ceramic paste is applied on the ceramic green sheet 116h by screen printing using a mask and dried by heating, whereby the ceramic to be the nonmagnetic layer 17g.
  • a green layer 117g is formed.
  • This mask is a mask having the same letter-shaped opening as the nonmagnetic layer 17g.
  • a ceramic green layer 116g to be the magnetic layer 16g is formed on the ceramic green sheet 116h by applying a magnetic ceramic paste by screen printing using a mask and drying by heating.
  • This mask has an opening that is inverted from the opening of the mask used when the ceramic green layer 117g is formed. More specifically, the mask has a shape in which a region other than the region corresponding to the ceramic green layer 117g is opened, and has a rectangular opening.
  • via holes are formed by irradiating a laser beam at positions where the via hole conductors b2 and b3 of the ceramic green sheet 116h and the ceramic green layer 117g are to be formed. Then, the via hole is filled with a conductive paste containing Ag as a main component to form via hole conductors b2 and b3.
  • a conductor paste mainly composed of Ag is applied on the ceramic green layer 117g by screen printing using a mask, followed by heating and drying, thereby forming a coil conductor 18b.
  • the coil conductor 18b has a dome-shaped cross-sectional structure.
  • via hole conductors b2 and b3 may be formed by filling the via hole with a conductive paste simultaneously with the formation of the coil conductor 18b.
  • the ceramic green layers 116g and 117g are coated with a magnetic ceramic paste by screen printing using a mask and dried by heating, whereby the ceramic green to be the magnetic layer 16f is obtained.
  • Layer 116f is formed.
  • the mask has an opening that is inverted from the opening of the mask used when forming the coil conductor 18b. More specifically, the mask has a shape in which an area other than the area corresponding to the coil conductor 18b is opened. Thereby, the magnetic layers 16f to 16h, the nonmagnetic layer 17g, the coil conductor 18b, and the via-hole conductors b2 and b3 are formed.
  • the magnetic layers 16k to 16m, the nonmagnetic layer 17l, the coil conductor 18d and the via hole conductors b5 and b6 are the same as the magnetic layers 16f to 16h, the nonmagnetic layer 17g, the coil conductor 18b and the via hole conductors b2 and b3. Since it is formed in this process, the description is omitted.
  • a ceramic green sheet 116j to be the magnetic layer 16j is formed on the carrier sheet 21j. Details of the formation of the ceramic green sheet 116j are the same as the details of the formation of the ceramic green sheet 116h, and thus description thereof is omitted.
  • a via hole is formed by irradiating a laser beam to a position where the via hole conductor b4 of the ceramic green sheet 116j is to be formed. Then, the via hole is filled with a conductor paste mainly composed of Ag to form a via hole conductor b4.
  • a conductor paste mainly composed of Ag is applied on the ceramic green sheet 116j by screen printing using a mask, and is heated and dried to form the coil conductor 18c. To do. At this time, the coil conductor 18c has a dome-shaped cross-sectional structure. Note that the via hole conductor b4 may be formed by filling the via hole with a conductive paste simultaneously with the formation of the coil conductor 18c.
  • a ceramic ceramic layer 116i to be the magnetic body layer 16i is formed by applying a magnetic ceramic paste on the ceramic green sheet 116j by screen printing using a mask and drying by heating.
  • the mask has an opening that is inverted from the opening of the mask used when the coil conductor 18c is formed. Thereby, the magnetic layers 16i and 16j, the coil conductor 18c, and the via-hole conductor b4 are formed.
  • the magnetic layers 16d, 16e, 16n, 16o, 16p, 16q, the coil conductors 18a, 18e, 18f, and the via-hole conductors b1, b7 are the same steps as the magnetic layers 16i, 16j, the coil conductor 18c, and the via-hole conductor b4. Since it is formed, the description is omitted.
  • the lead portions 20a and 20f are formed simultaneously with the formation of the coil conductors 18a and 18f.
  • ceramic green sheets 116a to 116c, 116r, and 116s (not shown) that are to become the magnetic layers 16a to 16c, 16r, and 16s are also formed by the same process as the formation of the ceramic green sheet 116h.
  • the produced ceramic green sheets 116a to 116c, 116e, 116h, 116j, 116m, 116o, and 116p to 116s are laminated so as to be arranged in this order from the positive side in the z-axis direction.
  • a ceramic green sheet 116s is disposed.
  • the ceramic green sheet 116r is disposed and temporarily pressed onto the ceramic green sheet 116s.
  • the ceramic green sheets 116q, 116p, 116o, 116m, 116j, 116h, 116e, 116c, 116b, and 116a are similarly laminated and temporarily bonded in this order to obtain a mother laminated body.
  • the mother laminate is subjected to main pressure bonding by a hydrostatic pressure press or the like.
  • the conditions for the main pressure bonding are, for example, a temperature of 45 ° C. and a pressure of 1.0 t / cm 2 .
  • the upper surfaces of the dome-shaped coil conductors 18b and 18c are crushed as shown in FIGS. 4 and 5 to form a trapezoidal shape as shown in FIG. .
  • the mother laminated body is cut into a laminated body 12 having a predetermined dimension (3.2 mm ⁇ 2.5 mm ⁇ 0.8 mm) by pressing to obtain an unfired laminated body 12.
  • the unfired laminate 12 is subjected to binder removal processing and firing.
  • the binder removal treatment is performed, for example, in a low oxygen atmosphere at 500 ° C. for 2 hours. Firing is performed at 890 ° C. for two and a half hours, for example.
  • the fired laminated body 12 is obtained through the above steps.
  • the laminated body 12 is chamfered by barrel processing.
  • a silver electrode to be the external electrodes 14a and 14b is formed on the surface of the laminate 12 by applying and baking an electrode paste whose main component is silver by a method such as an immersion method.
  • the silver electrode is dried at 100 ° C. for 10 minutes, and the silver electrode is baked at 780 ° C. for 2.5 hours.
  • the external electrodes 14a and 14b are formed by performing Ni plating / Sn plating on the surface of the silver electrode.
  • the magnetic material layer 16 is formed around the coil conductor 18, thereby forming the coil conductor 18 having a dome-shaped cross-sectional structure. Further, the coil conductor 18 is crushed by the temporary pressure bonding and the main pressure bonding of the laminated body 12 to have a trapezoidal cross-sectional structure. Then, the lower bottom of the coil conductor 18 comes into contact with the nonmagnetic layer 17.
  • the electronic component 10 configured as described above has excellent direct current superposition characteristics as described below.
  • the coil conductor 18d will be described as an example.
  • the coil conductor 18d has a trapezoidal cross-sectional structure in a plane perpendicular to the extending direction of the linear conductor, and is in contact with the nonmagnetic layer 17l at the bottom of the trapezoid. is doing.
  • the angles ⁇ 1 and ⁇ 2 located at both ends of the lower base L1 are acute angles.
  • the cross-sectional area of the magnetic layer 16k sandwiched between the coil conductor 18d and the nonmagnetic layer 17l is larger than when the angles ⁇ 1 and ⁇ 2 are 90 degrees or an obtuse angle. Thereby, the magnetic flux density in the magnetic layer 16k is lowered, and the occurrence of magnetic saturation is suppressed. As a result, the DC superposition characteristics of the electronic component 10 are improved.
  • FIG. 6 is a cross-sectional structure diagram of an electronic component 210 according to a comparative example used in computer simulation.
  • a model of the electronic component 10 shown in FIG. 3 was produced as the first model.
  • a model of the electronic component 210 shown in FIG. 6 was produced as a second model that is a comparative example.
  • the difference between the electronic component 10 and the electronic component 210 is only the structure of the coil conductor 18 and the coil conductor 218. More specifically, the coil conductor 18 has a trapezoidal cross-sectional structure, while the coil conductor 218 has a rectangular cross-sectional structure.
  • the number of turns of the coil L was set to 5.5.
  • the change of the inductance value was calculated by changing the direct current value passed through the first model and the second model.
  • FIG. 7 is a graph showing the results of this computer simulation.
  • the vertical axis represents the inductance value
  • the horizontal axis represents the direct current value.
  • the electronic component 10 can obtain superior DC superposition characteristics as compared with the electronic component 210 in which the coil made of the coil conductor 218 having a rectangular cross-sectional structure is built. I understand.
  • the electronic component according to the present invention is not limited to the electronic component 10 and may be changed within the scope of the gist thereof.
  • all the coil conductors 18 have a trapezoidal cross-sectional structure at all positions. However, not all coil conductors 18 need to have a trapezoidal cross-sectional structure at all positions.
  • the coil conductor 18 only needs to have a trapezoidal cross-sectional structure in a portion in contact with the nonmagnetic layer 17.
  • the coil conductor 18 preferably has a trapezoidal cross-sectional structure in the entire portion in contact with the nonmagnetic layer 17.
  • the coil conductor 18 does not need to have a trapezoidal cross-sectional structure in the entire portion in contact with the nonmagnetic layer 17. Therefore, the coil conductor 18 may have a trapezoidal cross-sectional structure in a part of the portion in contact with the nonmagnetic layer 17. Also by this, it is possible to improve the direct current superposition characteristics of the electronic component 10.
  • the coil conductor 18 has a trapezoidal cross-sectional structure, but the cross-sectional structure of the coil conductor 18 is not limited to a trapezoidal shape.
  • the coil conductor 18 need only be at least a quadrangular shape in which the corners at both ends of the side in contact with the nonmagnetic layer 17 are acute.
  • the present invention is useful for an electronic component and a manufacturing method thereof, and is particularly excellent in that the direct current superposition characteristics of an electronic component having a built-in coil can be improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Coils Or Transformers For Communication (AREA)

Abstract

In order to improve the direct current superimposition characteristics of an electronic component incorporating a coil, a multilayer body (12) is formed by laminating magnetic material layers (16) and non-magnetic material layers (17); coil conductors (18) configured from linear conductors constitute a coil (L) that is contained within the multilayer body (12); the coil conductors (18) have a trapezoidal cross-sectional structure wherein the angles (?1, ?2) at both ends of the bottom (L1) are acute in a plane perpendicular to the extension directions of the linear conductors; and the coil conductors in contact with a non-magnetic material layer (17) at the bottom (L1).

Description

電子部品及びその製造方法Electronic component and manufacturing method thereof
 本発明は、電子部品及びその製造方法に関し、より特定的には、積層体にコイルを内蔵している電子部品及びその製造方法に関する。 The present invention relates to an electronic component and a method for manufacturing the same, and more specifically to an electronic component having a coil built in a laminate and a method for manufacturing the same.
 従来の電子部品としては、例えば、特許文献1に記載のチップタイプパワーインダクタが知られている。該チップタイプパワーインダクタは、積層体及びコイルにより構成されている。積層体は、磁性体層と非磁性体層とが積層されて構成され、コイルを内蔵している。そして、非磁性体層は、コイルを横切るように積層体に設けられている。これにより、コイルは、開磁路型のコイルを構成するようになり、積層体内において磁気飽和が発生しにくくなる。その結果、チップタイプパワーインダクタにおいて、磁気飽和による急激なインダクタンス値の低下を抑制でき、良好な直流重畳特性を得ることができる。 As a conventional electronic component, for example, a chip type power inductor described in Patent Document 1 is known. The chip type power inductor is composed of a laminate and a coil. The laminate is configured by laminating a magnetic layer and a nonmagnetic layer, and has a built-in coil. And the nonmagnetic material layer is provided in the laminated body so as to cross the coil. As a result, the coil forms an open magnetic circuit type coil, and magnetic saturation is less likely to occur in the stacked body. As a result, in the chip type power inductor, it is possible to suppress a sudden decrease in inductance value due to magnetic saturation and to obtain a good DC superposition characteristic.
 ところで、近年、チップタイプパワーインダクタのように非磁性体層を備えた電子部品においてより良好な直流重畳特性が要求されている。 Incidentally, in recent years, better direct current superimposition characteristics are required in electronic parts having a nonmagnetic layer such as a chip type power inductor.
特開2004-311944号公報JP 2004-31944 A
 そこで、本発明の目的は、直流重畳特性に優れたコイルを内蔵した電子部品及びその製造方法を提供することである。 Therefore, an object of the present invention is to provide an electronic component incorporating a coil excellent in DC superposition characteristics and a method for manufacturing the same.
 本発明の一形態に係る電子部品は、複数の第1の絶縁体層及び該第1の絶縁体層よりも低い透磁率を有する第2の絶縁体層が積層されてなる積層体と、線状導体により構成されており、前記積層体に内蔵されているコイルを構成しているコイル導体と、を備え、前記第2の絶縁体層と接触している前記コイル導体の少なくとも一部分は、前記線状導体の延在方向に垂直な面において所定の辺の両端の角が鋭角をなしている四角形状の断面構造を有しており、かつ、該所定の辺において該第2の絶縁層と接触していること、を特徴とする。 An electronic component according to an embodiment of the present invention includes a stacked body in which a plurality of first insulator layers and a second insulator layer having a lower magnetic permeability than the first insulator layers are stacked, and a wire A coil conductor that constitutes a coil built in the laminate, and at least a part of the coil conductor in contact with the second insulator layer is The rectangular conductor has a square cross-sectional structure in which the corners at both ends of the predetermined side form an acute angle on a plane perpendicular to the extending direction of the linear conductor, and the second insulating layer is formed on the predetermined side. It is in contact.
 本発明の一形態に係る電子部品の製造方法は、前記第2の絶縁体層を形成する工程と、前記第2の絶縁体層上に、前記コイル導体を形成する工程と、前記第2の絶縁体層上に、前記コイル導体に対応した領域以外の領域が開口しているマスクを用いて、前記第1の絶縁体層を形成する工程と、前記第1の絶縁体層及び前記第2の絶縁体層を用いて前記積層体を形成する工程と、前記積層体を圧着する工程と、を備えていること、を特徴とする。 An electronic component manufacturing method according to an aspect of the present invention includes: a step of forming the second insulator layer; a step of forming the coil conductor on the second insulator layer; Forming the first insulator layer on the insulator layer using a mask having an opening other than the region corresponding to the coil conductor; and the first insulator layer and the second insulator layer. A step of forming the laminate using the insulating layer, and a step of pressure-bonding the laminate.
 本発明によれば、コイルを内蔵した電子部品の直流重畳特性を向上させることができる。 According to the present invention, it is possible to improve the direct current superposition characteristics of an electronic component having a built-in coil.
本発明の実施形態に係る電子部品の外観斜視図である。1 is an external perspective view of an electronic component according to an embodiment of the present invention. 本発明の一実施形態に係る電子部品の積層体の分解斜視図である。It is a disassembled perspective view of the laminated body of the electronic component which concerns on one Embodiment of this invention. 図3(a)は、図1の電子部品のA-Aにおける断面構造図であり、図3(b)は、図3(a)のコイル導体の拡大図である。FIG. 3A is a cross-sectional view taken along the line AA of the electronic component in FIG. 1, and FIG. 3B is an enlarged view of the coil conductor in FIG. 電子部品の製造時における工程断面図である。It is process sectional drawing at the time of manufacture of an electronic component. 電子部品の製造時における工程断面図である。It is process sectional drawing at the time of manufacture of an electronic component. コンピュータシミュレーションに用いた比較例に係る電子部品の断面構造図である。It is sectional structure drawing of the electronic component which concerns on the comparative example used for computer simulation. コンピュータシミュレーションの結果を示したグラフである。It is the graph which showed the result of computer simulation.
 以下に、本発明の実施形態に係る電子部品及びその製造方法について説明する。 Hereinafter, an electronic component and a manufacturing method thereof according to an embodiment of the present invention will be described.
(電子部品の構成)
 以下に、本発明の一実施形態に係る電子部品10について図面を参照しながら説明する。図1は、本発明の一実施形態に係る電子部品10の外観斜視図である。図2は、図1の電子部品10の積層体12の分解斜視図である。図3(a)は、図1の電子部品10のA-Aにおける断面構造図であり、図3(b)は、図3(a)のコイル導体18dの拡大図である。以下、電子部品10の積層方向をz軸方向と定義し、電子部品10の長辺に沿った方向をx軸方向と定義し、電子部品10の短辺に沿った方向をy軸方向と定義する。x軸、y軸及びz軸は互いに直交している。
(Configuration of electronic parts)
Hereinafter, an electronic component 10 according to an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is an external perspective view of an electronic component 10 according to an embodiment of the present invention. FIG. 2 is an exploded perspective view of the laminate 12 of the electronic component 10 of FIG. 3A is a cross-sectional structural view taken along the line AA of the electronic component 10 of FIG. 1, and FIG. 3B is an enlarged view of the coil conductor 18d of FIG. 3A. Hereinafter, the stacking direction of the electronic component 10 is defined as the z-axis direction, the direction along the long side of the electronic component 10 is defined as the x-axis direction, and the direction along the short side of the electronic component 10 is defined as the y-axis direction. To do. The x axis, the y axis, and the z axis are orthogonal to each other.
 電子部品10は、図1に示すように、積層体12及び外部電極14a,14bを備えている。積層体12は、直方体状を有しており、コイルLを内蔵している。外部電極14a,14bはそれぞれ、x軸方向の両端に位置する側面を覆うように設けられている。 The electronic component 10 includes a laminate 12 and external electrodes 14a and 14b as shown in FIG. The laminated body 12 has a rectangular parallelepiped shape and incorporates a coil L. The external electrodes 14a and 14b are provided so as to cover the side surfaces located at both ends in the x-axis direction.
 積層体12は、図2に示すように、磁性体層(絶縁体層)16a~16s及び非磁性体層(絶縁体層)17g,17lが積層されて構成されている。磁性体層16a~16sは、強磁性のフェライト(例えば、Ni-Zn-Cuフェライト)により作製されている。ここで、磁性体層16a~16c,16e,16h,16j,16m,16o,16q~16sは、シート状のセラミックグリーンシートが所定サイズの長方形にカットされ、焼成されたものである。また、磁性体層16d,16g,16i,16l,16n,16pはそれぞれ、磁性体層16e,16h,16j,16m,16o,16q上にスクリーン印刷によりセラミックペーストが塗布され、焼成されたものである。磁性体層16f,16kはそれぞれ、磁性体層16g,16l及び非磁性体層17g,17l上にスクリーン印刷によりセラミックペーストが塗布され、焼成されたものである。 As shown in FIG. 2, the laminated body 12 is configured by laminating magnetic layers (insulator layers) 16a to 16s and nonmagnetic layers (insulator layers) 17g and 17l. The magnetic layers 16a to 16s are made of ferromagnetic ferrite (for example, Ni—Zn—Cu ferrite). Here, the magnetic layers 16a to 16c, 16e, 16h, 16j, 16m, 16o, and 16q to 16s are obtained by cutting a sheet-like ceramic green sheet into a rectangle of a predetermined size and firing it. The magnetic layers 16d, 16g, 16i, 16l, 16n, and 16p are obtained by applying ceramic paste to the magnetic layers 16e, 16h, 16j, 16m, 16o, and 16q by screen printing and firing. . The magnetic layers 16f and 16k are obtained by applying a ceramic paste on the magnetic layers 16g and 16l and the nonmagnetic layers 17g and 17l by screen printing and firing.
 非磁性体層17g,17lは、磁性体層16a~16sよりも低い透磁率を有する材料により作製されており、本実施形態では、非磁性のフェライト(例えば、Zn-Cuフェライト)により作製されている。非磁性体層17gは、図3に示すように、磁性体層16fと磁性体層16hとの間に設けられており、ロ字型を有している。非磁性体層17gの中央部には、磁性体層16gが設けられている。また、非磁性体層17lは、図3に示すように、磁性体層16kと磁性体層16mとの間に設けられており、ロ字型を有している。非磁性体層17lの中央部には、磁性体層16lが設けられている。非磁性体層17g,17lは、磁性体層16h,16m上にスクリーン印刷によりセラミックペーストが塗布され、焼成されたものである。以下では、個別の磁性体層16a~16s及び非磁性体層17g,17lを指す場合には、参照符号の後ろにアルファベットを付し、これらを総称する場合には、参照符号の後ろのアルファベットを省略する。 The nonmagnetic layers 17g and 17l are made of a material having a lower magnetic permeability than the magnetic layers 16a to 16s. In the present embodiment, the nonmagnetic layers 17g and 17l are made of nonmagnetic ferrite (for example, Zn—Cu ferrite). Yes. As shown in FIG. 3, the non-magnetic layer 17g is provided between the magnetic layer 16f and the magnetic layer 16h, and has a square shape. A magnetic layer 16g is provided at the center of the nonmagnetic layer 17g. Further, as shown in FIG. 3, the nonmagnetic layer 17l is provided between the magnetic layer 16k and the magnetic layer 16m, and has a square shape. A magnetic layer 16l is provided at the center of the nonmagnetic layer 17l. The non-magnetic layers 17g and 17l are obtained by applying a ceramic paste on the magnetic layers 16h and 16m by screen printing and firing. In the following, when referring to the individual magnetic layers 16a to 16s and the non-magnetic layers 17g and 17l, an alphabet is added after the reference symbol, and when these are collectively referred to, the alphabet after the reference symbol is added. Omitted.
 コイルLは、図2に示すように、反時計回りに旋廻しながらz軸方向の正方向に向かって進行する螺旋状のコイルである。コイルLは、コイル導体18a~18f、引き出し部20a,20f及びビアホール導体b1~b7を含んでいる。 As shown in FIG. 2, the coil L is a spiral coil that advances in the positive direction of the z-axis direction while rotating counterclockwise. The coil L includes coil conductors 18a to 18f, lead portions 20a and 20f, and via hole conductors b1 to b7.
 コイル導体18a~18fはそれぞれ、図2に示すように、磁性体層16e、非磁性体層17g、磁性体層16j、非磁性体層17l、磁性体層16o,16qの主面上に設けられている線状導体である。コイル導体18a~18fの周囲はそれぞれ、磁性体層16d,16f,16i,16k,16n,16pにより囲まれている。各コイル導体18a~18fは、Agからなる導電性材料からなり、3/4ターン分の長さを有しており、z軸方向に互いに重なるように配置されている。また、コイル導体18a~18fは、図3(a)に示すように、線状導体の延在方向に垂直な面において、等脚台形状の断面構造を有している。そして、コイル導体18b,18dはそれぞれ、図3(b)に示すように、下底L1において非磁性体層17g,17lと接触している。下底L1の両端の角θ1,θ2は、鋭角をなしている。角θ1,θ2は、好ましくは、45度以上85度以下であり、より好ましくは、45度以上60度以下である。 As shown in FIG. 2, the coil conductors 18a to 18f are provided on the main surfaces of the magnetic layer 16e, the nonmagnetic layer 17g, the magnetic layer 16j, the nonmagnetic layer 17l, and the magnetic layers 16o and 16q, respectively. It is a linear conductor. The coil conductors 18a to 18f are surrounded by magnetic layers 16d, 16f, 16i, 16k, 16n, and 16p, respectively. Each of the coil conductors 18a to 18f is made of a conductive material made of Ag, has a length of 3/4 turns, and is arranged so as to overlap each other in the z-axis direction. Further, as shown in FIG. 3A, the coil conductors 18a to 18f have an isosceles trapezoidal cross-sectional structure on a plane perpendicular to the extending direction of the linear conductor. As shown in FIG. 3B, the coil conductors 18b and 18d are in contact with the nonmagnetic layers 17g and 17l at the lower base L1, respectively. The angles θ1 and θ2 at both ends of the lower base L1 are acute angles. The angles θ1 and θ2 are preferably 45 degrees or greater and 85 degrees or less, and more preferably 45 degrees or greater and 60 degrees or less.
 一方、コイル導体18a~18fの上底は、磁性体層16c、16e,16h,16j,16m,16oに接触しており、非磁性体層17g,17lとは接触していない。以下では、個別のコイル導体18a~18fを指す場合には、参照符号の後ろにアルファベットを付し、これらを総称する場合には、参照符号の後ろのアルファベットを省略する。 On the other hand, the upper bases of the coil conductors 18a to 18f are in contact with the magnetic layers 16c, 16e, 16h, 16j, 16m, and 16o, and are not in contact with the nonmagnetic layers 17g and 17l. In the following, when referring to the individual coil conductors 18a to 18f, an alphabet is appended to the reference symbol, and when referring to these, the alphabet after the reference symbol is omitted.
 ビアホール導体b1~b7はそれぞれ、図2に示すように、磁性体層16e、非磁性体層17g、磁性体層16h,16j、非磁性体層17l、磁性体層16m,16oをz軸方向に貫通するように設けられている。ビアホール導体b1~b7は、磁性体層16a~16s及び非磁性体層17g,17lが積層されたときに、隣り合うコイル導体18の端部同士を接続する接続部として機能する。より詳細には、ビアホール導体b1は、コイル導体18aの端部の内、引き出し部20aが設けられていない方の端部と、コイル導体18bの端部とを接続している。ビアホール導体b2は、コイル導体18bの端部の内、ビアホール導体b1が接続されていない方の端部と、ビアホール導体b3とを接続している。ビアホール導体b3は、ビアホール導体b2と、コイル導体18cの端部とを接続している。ビアホール導体b4は、コイル導体18cの端部の内、ビアホール導体b3が接続されていない方の端部と、コイル導体18dの端部とを接続している。ビアホール導体b5は、コイル導体18dの端部の内、ビアホール導体b4が接続されていない方の端部と、ビアホール導体b6とを接続している。ビアホール導体b6は、ビアホール導体b5と、コイル導体18eの端部とを接続している。ビアホール導体b7は、コイル導体18eの端部の内、ビアホール導体b6が接続されていない方の端部と、コイル導体18fの端部の内、引き出し部20fが設けられていない方の端部とを接続している。これにより、コイル導体18a~18f及びビアホール導体b1~b7は、螺旋状のコイルLを構成している。 As shown in FIG. 2, each of the via-hole conductors b1 to b7 includes the magnetic layer 16e, the nonmagnetic layer 17g, the magnetic layers 16h and 16j, the nonmagnetic layer 17l, and the magnetic layers 16m and 16o in the z-axis direction. It is provided to penetrate. The via-hole conductors b1 to b7 function as connecting portions that connect the ends of the adjacent coil conductors 18 when the magnetic layers 16a to 16s and the nonmagnetic layers 17g and 17l are laminated. More specifically, the via-hole conductor b1 connects the end of the coil conductor 18a where the lead-out portion 20a is not provided and the end of the coil conductor 18b. The via-hole conductor b2 connects the end of the coil conductor 18b to which the via-hole conductor b1 is not connected and the via-hole conductor b3. The via hole conductor b3 connects the via hole conductor b2 and the end of the coil conductor 18c. The via-hole conductor b4 connects the end of the coil conductor 18c that is not connected to the via-hole conductor b3 and the end of the coil conductor 18d. The via-hole conductor b5 connects the end of the coil conductor 18d that is not connected to the via-hole conductor b4 and the via-hole conductor b6. The via hole conductor b6 connects the via hole conductor b5 and the end of the coil conductor 18e. The via-hole conductor b7 includes an end of the coil conductor 18e that is not connected to the via-hole conductor b6, and an end of the coil conductor 18f that is not provided with the lead-out portion 20f. Is connected. Thus, the coil conductors 18a to 18f and the via hole conductors b1 to b7 constitute a spiral coil L.
 また、引き出し部20a,20fはそれぞれ、コイル導体18a,18fの端部に設けられており、積層体12の側面に引き出されて外部電極14a,14bと接続されている。これにより、コイルLは、外部電極14a,14bの間に接続されている。 The lead portions 20a and 20f are provided at the end portions of the coil conductors 18a and 18f, respectively, and are drawn to the side surface of the multilayer body 12 and connected to the external electrodes 14a and 14b. Thereby, the coil L is connected between the external electrodes 14a and 14b.
(電子部品の製造方法)
 以下に、電子部品10の製造方法について図面を参照しながら説明する。図4及び図5は、電子部品10の製造時における工程断面図である。なお、図面では、一つの電子部品10の製造方法について記載してある。しかしながら、実際には、マザーセラミックシートを積層してマザー積層体を作製し、マザー積層体をカットすることにより複数の電子部品10を同時に得ている。
(Method for manufacturing electronic parts)
Below, the manufacturing method of the electronic component 10 is demonstrated, referring drawings. 4 and 5 are process cross-sectional views when the electronic component 10 is manufactured. In the drawing, a method for manufacturing one electronic component 10 is described. However, in practice, a plurality of electronic components 10 are simultaneously obtained by stacking mother ceramic sheets to produce a mother laminate and cutting the mother laminate.
 まず、酸化第二鉄(Fe23)を48.0mol%、酸化亜鉛(ZnO)を20.0mol%、酸化ニッケル(NiO)を23.0mol%、及び、酸化銅(CuO)9.0mol%の比率で秤量したそれぞれの材料を原材料としてボールミルに投入し、湿式調合を行う。得られた混合物を乾燥してから粉砕し、得られた粉末を750℃で1時間仮焼する。得られた仮焼粉末をボールミルにて湿式粉砕した後、乾燥してから解砕して、フェライトセラミック粉末を得る。このフェライトセラミック粉末とエチルセルロース等のバインダとテルピネオール等の溶剤とを混練してペースト化し、磁性セラミックペーストを得る。 First, 48.0 mol% of ferric oxide (Fe 2 O 3 ), 20.0 mol% of zinc oxide (ZnO), 23.0 mol% of nickel oxide (NiO), and 9.0 mol of copper oxide (CuO) Each material weighed at a ratio of% is put into a ball mill as a raw material, and wet blending is performed. The obtained mixture is dried and pulverized, and the obtained powder is calcined at 750 ° C. for 1 hour. The obtained calcined powder is wet pulverized by a ball mill, dried and then crushed to obtain a ferrite ceramic powder. The ferrite ceramic powder, a binder such as ethyl cellulose, and a solvent such as terpineol are kneaded to obtain a magnetic ceramic paste.
 次に、酸化第二鉄(Fe23)を48.0mol%、酸化亜鉛(ZnO)を43.0mol%、及び、酸化銅(CuO)9.0mol%の比率で秤量したそれぞれの材料を原材料としてボールミルに投入し、湿式調合を行う。得られた混合物を乾燥してから粉砕し、得られた粉末を750℃で1時間仮焼する。得られた仮焼粉末をボールミルにて湿式粉砕した後、乾燥してから解砕して、フェライトセラミック粉末を得る。このフェライトセラミック粉末とエチルセルロース等のバインダとテルピネオール等の溶剤とを混練してペースト化し、非磁性セラミックペーストを得る。 Next, the respective materials weighed in a ratio of 48.0 mol% of ferric oxide (Fe 2 O 3 ), 43.0 mol% of zinc oxide (ZnO), and 9.0 mol% of copper oxide (CuO) were added. The raw material is put into a ball mill and wet blended. The obtained mixture is dried and pulverized, and the obtained powder is calcined at 750 ° C. for 1 hour. The obtained calcined powder is wet pulverized by a ball mill, dried and then crushed to obtain a ferrite ceramic powder. This ferrite ceramic powder, a binder such as ethyl cellulose, and a solvent such as terpineol are kneaded to obtain a non-magnetic ceramic paste.
 次に、磁性体層16f~16h、非磁性体層17g、コイル導体18b及びビアホール導体b2,b3の作製について説明する。まず、酸化第二鉄(Fe23)を48.0mol%、酸化亜鉛(ZnO)を20.0mol%、酸化ニッケル(NiO)を23.0mol%、及び、酸化銅(CuO)9.0mol%の比率で秤量したそれぞれの材料を原材料としてボールミルに投入し、湿式調合を行う。得られた混合物を乾燥してから粉砕し、得られた粉末を750℃で1時間仮焼する。得られた仮焼粉末をボールミルにて湿式粉砕した後、乾燥してから解砕して、フェライトセラミック粉末を得る。 Next, the production of the magnetic layers 16f to 16h, the nonmagnetic layer 17g, the coil conductor 18b, and the via-hole conductors b2 and b3 will be described. First, 48.0 mol% of ferric oxide (Fe 2 O 3 ), 20.0 mol% of zinc oxide (ZnO), 23.0 mol% of nickel oxide (NiO), and 9.0 mol of copper oxide (CuO) Each material weighed at a ratio of% is put into a ball mill as a raw material, and wet blending is performed. The obtained mixture is dried and pulverized, and the obtained powder is calcined at 750 ° C. for 1 hour. The obtained calcined powder is wet pulverized by a ball mill, dried and then crushed to obtain a ferrite ceramic powder.
 得られたフェライトセラミック粉末に対して、結合剤(エチルセルロースなどの酢酸ビニル、水溶性アクリル等)、可塑剤、湿潤材及び分散剤を加えてボールミルで混合を行い、その後、減圧により脱泡を行う。得られたセラミックスラリーをドクターブレード法により、図4(a)に示すように、キャリアシート21h上にシート状に形成して乾燥させ、磁性体層16hとなるべきセラミックグリーンシート116hを形成する。 To the obtained ferrite ceramic powder, a binder (vinyl acetate such as ethyl cellulose, water-soluble acrylic, etc.), a plasticizer, a wetting agent and a dispersing agent are added and mixed with a ball mill, and then defoamed under reduced pressure. . As shown in FIG. 4A, the obtained ceramic slurry is formed into a sheet shape on a carrier sheet 21h and dried by a doctor blade method to form a ceramic green sheet 116h to be the magnetic layer 16h.
 次に、図4(b)に示すように、セラミックグリーンシート116h上に、マスクを用いたスクリーン印刷により非磁性セラミックペーストを塗布し、加熱乾燥することにより、非磁性体層17gとなるべきセラミックグリーン層117gを形成する。このマスクは、非磁性体層17gと同じロ字型の開口を有するマスクである。 Next, as shown in FIG. 4B, a nonmagnetic ceramic paste is applied on the ceramic green sheet 116h by screen printing using a mask and dried by heating, whereby the ceramic to be the nonmagnetic layer 17g. A green layer 117g is formed. This mask is a mask having the same letter-shaped opening as the nonmagnetic layer 17g.
 更に、図4(c)に示すように、セラミックグリーンシート116h上に、マスクを用いたスクリーン印刷により磁性セラミックペーストを塗布し、加熱乾燥することにより、磁性体層16gとなるべきセラミックグリーン層116gを形成する。このマスクは、セラミックグリーン層117gの形成時に用いたマスクの開口と反転した開口を有している。より詳細には、該マスクは、セラミックグリーン層117gに対応する領域以外の領域が開口した形状を有しており、長方形の開口を有している。 Further, as shown in FIG. 4 (c), a ceramic green layer 116g to be the magnetic layer 16g is formed on the ceramic green sheet 116h by applying a magnetic ceramic paste by screen printing using a mask and drying by heating. Form. This mask has an opening that is inverted from the opening of the mask used when the ceramic green layer 117g is formed. More specifically, the mask has a shape in which a region other than the region corresponding to the ceramic green layer 117g is opened, and has a rectangular opening.
 次に、図4(c)の工程において、セラミックグリーンシート116h及びセラミックグリーン層117gのビアホール導体b2,b3が形成されるべき位置に、レーザビームを照射することにより、ビアホールを形成する。そして、このビアホールに対して、Agを主成分とする導体ペーストを充填し、ビアホール導体b2,b3を形成する。 Next, in the process of FIG. 4C, via holes are formed by irradiating a laser beam at positions where the via hole conductors b2 and b3 of the ceramic green sheet 116h and the ceramic green layer 117g are to be formed. Then, the via hole is filled with a conductive paste containing Ag as a main component to form via hole conductors b2 and b3.
 次に、図4(d)に示すように、セラミックグリーン層117g上に、マスクを用いたスクリーン印刷によりAgを主成分とする導体ペーストを塗布し、加熱乾燥することにより、コイル導体18bを形成する。この際、コイル導体18bは、ドーム状の断面構造を有している。なお、コイル導体18bの形成と同時に、ビアホールに対して導体ペーストを充填してビアホール導体b2,b3を形成してもよい。 Next, as shown in FIG. 4 (d), a conductor paste mainly composed of Ag is applied on the ceramic green layer 117g by screen printing using a mask, followed by heating and drying, thereby forming a coil conductor 18b. To do. At this time, the coil conductor 18b has a dome-shaped cross-sectional structure. Note that via hole conductors b2 and b3 may be formed by filling the via hole with a conductive paste simultaneously with the formation of the coil conductor 18b.
 更に、図4(e)に示すように、セラミックグリーン層116g,117g上に、マスクを用いたスクリーン印刷により磁性セラミックペーストを塗布し、加熱乾燥することにより、磁性体層16fとなるべきセラミックグリーン層116fを形成する。該マスクは、コイル導体18bの形成時に用いたマスクの開口と反転した開口を有する。より詳細には、該マスクは、コイル導体18bに対応する領域以外の領域が開口した形状を有している。これにより、磁性体層16f~16h、非磁性体層17g、コイル導体18b及びビアホール導体b2,b3が形成される。なお、磁性体層16k~16m、非磁性体層17l、コイル導体18d及びビアホール導体b5,b6は、磁性体層16f~16h、非磁性体層17g、コイル導体18b及びビアホール導体b2,b3と同様の工程で形成されるので、説明を省略する。 Further, as shown in FIG. 4 (e), the ceramic green layers 116g and 117g are coated with a magnetic ceramic paste by screen printing using a mask and dried by heating, whereby the ceramic green to be the magnetic layer 16f is obtained. Layer 116f is formed. The mask has an opening that is inverted from the opening of the mask used when forming the coil conductor 18b. More specifically, the mask has a shape in which an area other than the area corresponding to the coil conductor 18b is opened. Thereby, the magnetic layers 16f to 16h, the nonmagnetic layer 17g, the coil conductor 18b, and the via-hole conductors b2 and b3 are formed. The magnetic layers 16k to 16m, the nonmagnetic layer 17l, the coil conductor 18d and the via hole conductors b5 and b6 are the same as the magnetic layers 16f to 16h, the nonmagnetic layer 17g, the coil conductor 18b and the via hole conductors b2 and b3. Since it is formed in this process, the description is omitted.
 次に、磁性体層16i,16j及びコイル導体18c及びビアホール導体b4の形成について説明する。まず、図5(a)に示すように、磁性体層16jとなるべきセラミックグリーンシート116jをキャリアシート21j上に形成する。セラミックグリーンシート116jの形成の詳細は、セラミックグリーンシート116hの形成の詳細と同じであるので説明を省略する。 Next, formation of the magnetic layers 16i and 16j, the coil conductor 18c, and the via-hole conductor b4 will be described. First, as shown in FIG. 5A, a ceramic green sheet 116j to be the magnetic layer 16j is formed on the carrier sheet 21j. Details of the formation of the ceramic green sheet 116j are the same as the details of the formation of the ceramic green sheet 116h, and thus description thereof is omitted.
 次に、図5(a)の工程において、セラミックグリーンシート116jのビアホール導体b4が形成されるべき位置に、レーザビームを照射することにより、ビアホールを形成する。そして、このビアホールに対して、Agを主成分とする導体ペーストを充填し、ビアホール導体b4を形成する。 Next, in the process of FIG. 5A, a via hole is formed by irradiating a laser beam to a position where the via hole conductor b4 of the ceramic green sheet 116j is to be formed. Then, the via hole is filled with a conductor paste mainly composed of Ag to form a via hole conductor b4.
 次に、図5(b)に示すように、セラミックグリーンシート116j上に、マスクを用いたスクリーン印刷によりAgを主成分とする導体ペーストを塗布し、加熱乾燥することにより、コイル導体18cを形成する。この際、コイル導体18cは、ドーム状の断面構造を有している。なお、コイル導体18cの形成と同時に、ビアホールに対して導体ペーストを充填してビアホール導体b4を形成してもよい。 Next, as shown in FIG. 5B, a conductor paste mainly composed of Ag is applied on the ceramic green sheet 116j by screen printing using a mask, and is heated and dried to form the coil conductor 18c. To do. At this time, the coil conductor 18c has a dome-shaped cross-sectional structure. Note that the via hole conductor b4 may be formed by filling the via hole with a conductive paste simultaneously with the formation of the coil conductor 18c.
 更に、図5(c)に示すように、セラミックグリーンシート116j上に、マスクを用いたスクリーン印刷により磁性セラミックペーストを塗布し、加熱乾燥することにより、磁性体層16iとなるべきセラミックグリーン層116iを形成する。該マスクは、コイル導体18cの形成時に用いたマスクの開口と反転した開口を有している。これにより、磁性体層16i,16j及びコイル導体18c及びビアホール導体b4が形成される。なお、磁性体層16d,16e,16n,16o,16p,16q及びコイル導体18a,18e,18f及びビアホール導体b1,b7は、磁性体層16i,16j及びコイル導体18c及びビアホール導体b4と同じ工程で形成されるので、説明を省略する。なお、コイル導体18a,18fの形成と同時に、引き出し部20a,20fが形成される。 Furthermore, as shown in FIG. 5 (c), a ceramic ceramic layer 116i to be the magnetic body layer 16i is formed by applying a magnetic ceramic paste on the ceramic green sheet 116j by screen printing using a mask and drying by heating. Form. The mask has an opening that is inverted from the opening of the mask used when the coil conductor 18c is formed. Thereby, the magnetic layers 16i and 16j, the coil conductor 18c, and the via-hole conductor b4 are formed. The magnetic layers 16d, 16e, 16n, 16o, 16p, 16q, the coil conductors 18a, 18e, 18f, and the via-hole conductors b1, b7 are the same steps as the magnetic layers 16i, 16j, the coil conductor 18c, and the via-hole conductor b4. Since it is formed, the description is omitted. The lead portions 20a and 20f are formed simultaneously with the formation of the coil conductors 18a and 18f.
 また、セラミックグリーンシート116hの形成と同じ工程により、磁性体層16a~16c,16r,16sとなるべきセラミックグリーンシート116a~116c、116r,116s(図示せず)も形成する。 Further, ceramic green sheets 116a to 116c, 116r, and 116s (not shown) that are to become the magnetic layers 16a to 16c, 16r, and 16s are also formed by the same process as the formation of the ceramic green sheet 116h.
 次に、作製したセラミックグリーンシート116a~116c,116e,116h,116j,116m,116o,116p~116sをz軸方向の正方向側からこの順に並ぶように積層する。具体的には、セラミックグリーンシート116sを配置する。次に、セラミックグリーンシート116s上に、セラミックグリーンシート116rの配置及び仮圧着を行う。この後、セラミックグリーンシート116q、116p,116o,116m,116j,116h,116e,116c,116b,116aについても同様にこの順番に積層及び仮圧着して、マザー積層体を得る。更に、マザー積層体には、静水圧プレスなどにより本圧着が施される。本圧着の条件は、例えば、45℃の温度で、1.0t/cm2の圧力である。仮圧着及び本圧着時において、図4及び図5に示したようにドーム状のコイル導体18b,18cは、その上面が押し潰されることにより、図3に示すように台形状をなすようになる。 Next, the produced ceramic green sheets 116a to 116c, 116e, 116h, 116j, 116m, 116o, and 116p to 116s are laminated so as to be arranged in this order from the positive side in the z-axis direction. Specifically, a ceramic green sheet 116s is disposed. Next, the ceramic green sheet 116r is disposed and temporarily pressed onto the ceramic green sheet 116s. Thereafter, the ceramic green sheets 116q, 116p, 116o, 116m, 116j, 116h, 116e, 116c, 116b, and 116a are similarly laminated and temporarily bonded in this order to obtain a mother laminated body. Further, the mother laminate is subjected to main pressure bonding by a hydrostatic pressure press or the like. The conditions for the main pressure bonding are, for example, a temperature of 45 ° C. and a pressure of 1.0 t / cm 2 . At the time of provisional pressure bonding and main pressure bonding, the upper surfaces of the dome-shaped coil conductors 18b and 18c are crushed as shown in FIGS. 4 and 5 to form a trapezoidal shape as shown in FIG. .
 次に、マザー積層体を押し切りにより所定寸法(3.2mm×2.5mm×0.8mm)の積層体12にカットして、未焼成の積層体12を得る。この未焼成の積層体12には、脱バインダ処理及び焼成がなされる。脱バインダ処理は、例えば、低酸素雰囲気中において500℃で2時間の条件で行う。焼成は、例えば、890℃で2時間半の条件で行う。 Next, the mother laminated body is cut into a laminated body 12 having a predetermined dimension (3.2 mm × 2.5 mm × 0.8 mm) by pressing to obtain an unfired laminated body 12. The unfired laminate 12 is subjected to binder removal processing and firing. The binder removal treatment is performed, for example, in a low oxygen atmosphere at 500 ° C. for 2 hours. Firing is performed at 890 ° C. for two and a half hours, for example.
 以上の工程により、焼成された積層体12が得られる。積層体12には、バレル加工を施して、面取りを行う。その後、積層体12の表面には、例えば、浸漬法等の方法により主成分が銀である電極ペーストを塗布及び焼き付けすることにより、外部電極14a,14bとなるべき銀電極を形成する。銀電極の乾燥は、100℃で10分間行われ、銀電極の焼き付けは、780℃で2時間半行われる。最後に、銀電極の表面に、Niめっき/Snめっきを施すことにより、外部電極14a,14bを形成する。以上の工程を経て、図1に示すような電子部品10が完成する。 The fired laminated body 12 is obtained through the above steps. The laminated body 12 is chamfered by barrel processing. Thereafter, a silver electrode to be the external electrodes 14a and 14b is formed on the surface of the laminate 12 by applying and baking an electrode paste whose main component is silver by a method such as an immersion method. The silver electrode is dried at 100 ° C. for 10 minutes, and the silver electrode is baked at 780 ° C. for 2.5 hours. Finally, the external electrodes 14a and 14b are formed by performing Ni plating / Sn plating on the surface of the silver electrode. Through the above steps, the electronic component 10 as shown in FIG. 1 is completed.
 以上のように、コイル導体18を非磁性体層17上に形成した後に、該コイル導体18の周囲に磁性体層16を形成することにより、ドーム状の断面構造を有するコイル導体18が、形成され、更にコイル導体18が、積層体12の仮圧着及び本圧着によって押し潰され、台形状の断面構造を有するようになる。そして、非磁性体層17にコイル導体18の下底が接触するようになる。 As described above, after the coil conductor 18 is formed on the nonmagnetic material layer 17, the magnetic material layer 16 is formed around the coil conductor 18, thereby forming the coil conductor 18 having a dome-shaped cross-sectional structure. Further, the coil conductor 18 is crushed by the temporary pressure bonding and the main pressure bonding of the laminated body 12 to have a trapezoidal cross-sectional structure. Then, the lower bottom of the coil conductor 18 comes into contact with the nonmagnetic layer 17.
(効果)
 以上のように構成された電子部品10は、以下に説明するように、優れた直流重畳特性を有する。以下、コイル導体18dを例にとって説明する。図3(b)に示すように、コイル導体18dは、線状導体の延在方向に垂直な面において台形状の断面構造を有し、かつ、台形の下底において非磁性体層17lと接触している。更に、下底L1の両端に位置する角θ1,θ2は、鋭角をなしている。そのため、コイル導体18d及び非磁性体層17lに挟まれた磁性体層16kの断面積は、角θ1,θ2が90度或いは鈍角である場合に比べて大きくなる。これにより、磁性体層16kにおける磁束密度が低くなり、磁気飽和の発生が抑制される。その結果、電子部品10の直流重畳特性が向上する。
(effect)
The electronic component 10 configured as described above has excellent direct current superposition characteristics as described below. Hereinafter, the coil conductor 18d will be described as an example. As shown in FIG. 3B, the coil conductor 18d has a trapezoidal cross-sectional structure in a plane perpendicular to the extending direction of the linear conductor, and is in contact with the nonmagnetic layer 17l at the bottom of the trapezoid. is doing. Furthermore, the angles θ1 and θ2 located at both ends of the lower base L1 are acute angles. Therefore, the cross-sectional area of the magnetic layer 16k sandwiched between the coil conductor 18d and the nonmagnetic layer 17l is larger than when the angles θ1 and θ2 are 90 degrees or an obtuse angle. Thereby, the magnetic flux density in the magnetic layer 16k is lowered, and the occurrence of magnetic saturation is suppressed. As a result, the DC superposition characteristics of the electronic component 10 are improved.
 本願発明者は、電子部品10が奏する効果をより明確なものとするために、以下に説明するコンピュータシミュレーションを行った。以下に、該コンピュータシミュレーションについて図面を参照しながら説明する。図6は、コンピュータシミュレーションに用いた比較例に係る電子部品210の断面構造図である。 The inventor of the present application conducted a computer simulation described below in order to make the effect of the electronic component 10 clearer. The computer simulation will be described below with reference to the drawings. FIG. 6 is a cross-sectional structure diagram of an electronic component 210 according to a comparative example used in computer simulation.
 本コンピュータシミュレーションでは、第1のモデルとして、図3に示した電子部品10のモデルを作製した。また、比較例である第2のモデルとして、図6に示した電子部品210のモデルを作製した。電子部品10と電子部品210との相違点は、コイル導体18及びコイル導体218の構造のみである。より詳細には、コイル導体18は、台形状の断面構造を有しているのに対して、コイル導体218は、長方形状の断面構造を有している。なお、第1のモデル及び第2のモデル共に、コイルLのターン数を5.5ターンとした。そして、第1のモデル及び第2のモデルに流す直流電流値を変化させて、インダクタンス値の変化を計算した。 In this computer simulation, a model of the electronic component 10 shown in FIG. 3 was produced as the first model. Further, a model of the electronic component 210 shown in FIG. 6 was produced as a second model that is a comparative example. The difference between the electronic component 10 and the electronic component 210 is only the structure of the coil conductor 18 and the coil conductor 218. More specifically, the coil conductor 18 has a trapezoidal cross-sectional structure, while the coil conductor 218 has a rectangular cross-sectional structure. In both the first model and the second model, the number of turns of the coil L was set to 5.5. And the change of the inductance value was calculated by changing the direct current value passed through the first model and the second model.
 図7は、本コンピュータシミュレーションの結果を示したグラフである。縦軸は、インダクタンス値を示し、横軸は、直流電流値を示している。図7によれば、第1のモデルの方が第2のモデルよりも、直流電流値の増加に伴う、インダクタンス値の減少が少ないことが分かる。よって、第1のモデルの方が、第2のモデルよりも優れた直流重畳特性を有していることが分かる。以上のように、本コンピュータシミュレーションによれば、電子部品10は、長方形状の断面構造を有するコイル導体218からなるコイルを内蔵した電子部品210に比べて、優れた直流重畳特性を得ることができることが分かる。 FIG. 7 is a graph showing the results of this computer simulation. The vertical axis represents the inductance value, and the horizontal axis represents the direct current value. According to FIG. 7, it can be seen that the first model has a smaller decrease in the inductance value due to the increase in the direct current value than the second model. Therefore, it can be seen that the first model has better DC superposition characteristics than the second model. As described above, according to this computer simulation, the electronic component 10 can obtain superior DC superposition characteristics as compared with the electronic component 210 in which the coil made of the coil conductor 218 having a rectangular cross-sectional structure is built. I understand.
(その他の実施形態)
 本発明に係る電子部品は、前記電子部品10に限らず、その要旨の範囲内において変更されてもよい。
(Other embodiments)
The electronic component according to the present invention is not limited to the electronic component 10 and may be changed within the scope of the gist thereof.
 電子部品10では、全てのコイル導体18が全ての位置において台形状の断面構造を有しているものとした。しかしながら、全てのコイル導体18が、全ての位置において台形状の断面構造を有する必要はない。コイル導体18は、非磁性体層17と接触している部分において台形状の断面構造を有していればよい。特に、コイル導体18は、非磁性体層17と接触している部分全体において台形状の断面構造を有していることが望ましい。しかしながら、コイル導体18は、非磁性体層17と接触している部分全体において台形状の断面構造を有している必要はない。よって、コイル導体18は、非磁性体層17の接触している部分の一部において台形状の断面構造を有していてもよい。これによっても、電子部品10の直流重畳特性を向上させることが可能である。 In the electronic component 10, all the coil conductors 18 have a trapezoidal cross-sectional structure at all positions. However, not all coil conductors 18 need to have a trapezoidal cross-sectional structure at all positions. The coil conductor 18 only needs to have a trapezoidal cross-sectional structure in a portion in contact with the nonmagnetic layer 17. In particular, the coil conductor 18 preferably has a trapezoidal cross-sectional structure in the entire portion in contact with the nonmagnetic layer 17. However, the coil conductor 18 does not need to have a trapezoidal cross-sectional structure in the entire portion in contact with the nonmagnetic layer 17. Therefore, the coil conductor 18 may have a trapezoidal cross-sectional structure in a part of the portion in contact with the nonmagnetic layer 17. Also by this, it is possible to improve the direct current superposition characteristics of the electronic component 10.
 更に、電子部品10では、コイル導体18は、台形状の断面構造を有しているものとしたが、該コイル導体18の断面構造は台形状に限らない。コイル導体18は、少なくとも、非磁性体層17と接触している辺の両端の角が鋭角をなしている四角形状であれば足りる。 Furthermore, in the electronic component 10, the coil conductor 18 has a trapezoidal cross-sectional structure, but the cross-sectional structure of the coil conductor 18 is not limited to a trapezoidal shape. The coil conductor 18 need only be at least a quadrangular shape in which the corners at both ends of the side in contact with the nonmagnetic layer 17 are acute.
 本発明は、電子部品及びその製造方法に有用であり、特に、コイルを内蔵した電子部品の直流重畳特性を向上させることができる点において優れている。 The present invention is useful for an electronic component and a manufacturing method thereof, and is particularly excellent in that the direct current superposition characteristics of an electronic component having a built-in coil can be improved.
 L コイル
 L1 下底
 b1~b7 ビアホール導体
 10 電子部品
 12 積層体
 14a,14b 外部電極
 16a~16s 磁性体層
 17g,17l 非磁性体層
 18a~18f コイル導体
 20a,20f 引き出し部
L coil L1 bottom bottom b1 to b7 via hole conductor 10 electronic component 12 laminate 14a, 14b external electrode 16a to 16s magnetic layer 17g, 17l nonmagnetic layer 18a to 18f coil conductor 20a, 20f lead-out part

Claims (7)

  1.  複数の第1の絶縁体層及び該第1の絶縁体層よりも低い透磁率を有する第2の絶縁体層が積層されてなる積層体と、
     線状導体により構成されており、前記積層体に内蔵されているコイルを構成しているコイル導体と、
     を備え、
     前記第2の絶縁体層と接触している前記コイル導体の少なくとも一部分は、前記線状導体の延在方向に垂直な面において所定の辺の両端の角が鋭角をなしている四角形状の断面構造を有しており、かつ、該所定の辺において該第2の絶縁層と接触していること、
     を特徴とする電子部品。
    A laminate in which a plurality of first insulator layers and a second insulator layer having a lower magnetic permeability than the first insulator layers are laminated;
    A coil conductor composed of a linear conductor and constituting a coil built in the laminate; and
    With
    At least a portion of the coil conductor in contact with the second insulator layer has a rectangular cross section in which the corners at both ends of a predetermined side form an acute angle in a plane perpendicular to the extending direction of the linear conductor. Having a structure and being in contact with the second insulating layer at the predetermined side;
    Electronic parts characterized by
  2.  前記コイル導体は、前記第2の絶縁体層と接触している部分の全体において、前記線状導体の延在方向に垂直な面において所定の辺の両端の角が鋭角をなしている四角形状の断面構造を有していること、
     を特徴とする請求項1に記載の電子部品。
    The coil conductor has a quadrangular shape in which the corners of both ends of a predetermined side form an acute angle in a plane perpendicular to the extending direction of the linear conductor in the entire portion in contact with the second insulator layer. Having a cross-sectional structure of
    The electronic component according to claim 1.
  3.  前記第2の絶縁体層と接触している前記コイル導体の少なくとも一部は、前記線状導体の延在方向に垂直な面において台形状の断面構造を有していること、
     を特徴とする請求項1又は請求項2のいずれかに記載の電子部品。
    At least a portion of the coil conductor in contact with the second insulator layer has a trapezoidal cross-sectional structure in a plane perpendicular to the extending direction of the linear conductor;
    The electronic component according to claim 1, wherein:
  4.  前記所定の辺の両端の角は、45度以上85度以下であること、
     を特徴とする請求項1ないし請求項3のいずれかに記載の電子部品。
    Angles at both ends of the predetermined side are 45 degrees or more and 85 degrees or less,
    The electronic component according to any one of claims 1 to 3, wherein:
  5.  前記所定の辺の両端の角は、45度以上60度以下であること、
     を特徴とする請求項1ないし請求項3のいずれかに記載の電子部品。
    Angles at both ends of the predetermined side are 45 degrees or more and 60 degrees or less,
    The electronic component according to any one of claims 1 to 3, wherein:
  6.  前記第2の絶縁層は、非磁性体層であること、
     を特徴とする請求項1ないし請求項5のいずれかに記載の電子部品。
    The second insulating layer is a non-magnetic layer;
    The electronic component according to claim 1, wherein:
  7.  請求項1に記載の電子部品の製造方法において、
     前記第2の絶縁体層を形成する工程と、
     前記第2の絶縁体層上に、前記コイル導体を形成する工程と、
     前記第2の絶縁体層上に、前記コイル導体に対応した領域以外の領域が開口しているマスクを用いて、前記第1の絶縁体層を形成する工程と、
     前記第1の絶縁体層及び前記第2の絶縁体層を用いて前記積層体を形成する工程と、
     前記積層体を圧着する工程と、
     を備えていること、
     を特徴とする電子部品の製造方法。
    In the manufacturing method of the electronic component of Claim 1,
    Forming the second insulator layer;
    Forming the coil conductor on the second insulator layer;
    Forming the first insulator layer on the second insulator layer using a mask in which a region other than the region corresponding to the coil conductor is opened;
    Forming the laminate using the first insulator layer and the second insulator layer;
    Crimping the laminate; and
    Having
    A method of manufacturing an electronic component characterized by the above.
PCT/JP2010/050142 2009-01-22 2010-01-08 Electronic component and method for manufacturing same WO2010084794A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009012047 2009-01-22
JP2009-012047 2009-01-22

Publications (1)

Publication Number Publication Date
WO2010084794A1 true WO2010084794A1 (en) 2010-07-29

Family

ID=42355848

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/050142 WO2010084794A1 (en) 2009-01-22 2010-01-08 Electronic component and method for manufacturing same

Country Status (1)

Country Link
WO (1) WO2010084794A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010192889A (en) * 2009-01-22 2010-09-02 Ngk Insulators Ltd Layered inductor
CN107919220A (en) * 2016-10-05 2018-04-17 Tdk株式会社 The manufacture method of multilayer coil component
JP2020107780A (en) * 2018-12-28 2020-07-09 太陽誘電株式会社 Laminated coil component
US20210202163A1 (en) * 2019-12-27 2021-07-01 Murata Manufacturing Co., Ltd. Multilayer coil component
US20210202160A1 (en) * 2019-12-27 2021-07-01 Murata Manufacturing Co., Ltd. Multilayer coil component
JP2023075629A (en) * 2021-11-19 2023-05-31 株式会社村田製作所 Laminated coil component

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11251146A (en) * 1998-02-27 1999-09-17 Fuji Elelctrochem Co Ltd Multilayer inductor and manufacturing method thereof
JP2006148027A (en) * 2004-11-24 2006-06-08 Tdk Corp Multilayer inductor
JP2006286931A (en) * 2005-03-31 2006-10-19 Tdk Corp Thin film device
JP2006318946A (en) * 2005-05-10 2006-11-24 Fdk Corp Multilayer inductor
JP2007123678A (en) * 2005-10-31 2007-05-17 Matsushita Electric Ind Co Ltd Multilayer ceramic electronic component and manufacturing method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11251146A (en) * 1998-02-27 1999-09-17 Fuji Elelctrochem Co Ltd Multilayer inductor and manufacturing method thereof
JP2006148027A (en) * 2004-11-24 2006-06-08 Tdk Corp Multilayer inductor
JP2006286931A (en) * 2005-03-31 2006-10-19 Tdk Corp Thin film device
JP2006318946A (en) * 2005-05-10 2006-11-24 Fdk Corp Multilayer inductor
JP2007123678A (en) * 2005-10-31 2007-05-17 Matsushita Electric Ind Co Ltd Multilayer ceramic electronic component and manufacturing method thereof

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010192889A (en) * 2009-01-22 2010-09-02 Ngk Insulators Ltd Layered inductor
CN107919220A (en) * 2016-10-05 2018-04-17 Tdk株式会社 The manufacture method of multilayer coil component
US10665388B2 (en) 2016-10-05 2020-05-26 Tdk Corporation Method of manufacturing laminated coil component
US11127529B2 (en) 2016-10-05 2021-09-21 Tdk Corporation Method of manufacturing laminated coil component
JP2020107780A (en) * 2018-12-28 2020-07-09 太陽誘電株式会社 Laminated coil component
JP7373902B2 (en) 2018-12-28 2023-11-06 太陽誘電株式会社 laminated coil parts
US20210202163A1 (en) * 2019-12-27 2021-07-01 Murata Manufacturing Co., Ltd. Multilayer coil component
US20210202160A1 (en) * 2019-12-27 2021-07-01 Murata Manufacturing Co., Ltd. Multilayer coil component
US12020847B2 (en) * 2019-12-27 2024-06-25 Murata Manufacturing Co., Ltd. Multilayer coil component
US12073987B2 (en) * 2019-12-27 2024-08-27 Murata Manufacturing Co., Ltd. Multilayer coil component
JP2023075629A (en) * 2021-11-19 2023-05-31 株式会社村田製作所 Laminated coil component
JP7521512B2 (en) 2021-11-19 2024-07-24 株式会社村田製作所 Multilayer coil parts

Similar Documents

Publication Publication Date Title
JP4535131B2 (en) Multilayer coil parts
JP5900373B2 (en) Electronic components
JP4530043B2 (en) Multilayer coil component and manufacturing method thereof
TWI467604B (en) Electronic parts and manufacturing methods thereof
US9455082B2 (en) Electronic component
WO2010092730A1 (en) Electronic component
JP5573680B2 (en) Electronic components
US9373435B2 (en) Electronic component and method for manufacturing the same
WO2009150921A1 (en) Electronic component
WO2009125656A1 (en) Electronic component
JP2014175349A (en) Laminated inductor
JP5078340B2 (en) Coil built-in board
WO2010084794A1 (en) Electronic component and method for manufacturing same
JP2010062502A (en) Electronic component, and electronic device equipped with the same
JP4780232B2 (en) Multilayer electronic components
WO2011145517A1 (en) Electronic component
JP2020194808A (en) Laminated coil component
JP5327231B2 (en) Electronic components
WO2010010799A1 (en) Electronic component and method for manufacturing same
JP2009176829A (en) Electronic component
JP5957895B2 (en) Manufacturing method of electronic parts
WO2009147899A1 (en) Electronic part and method for manufacturing the same
JP2009170446A (en) Electronic component and method of manufacturing the same
JP2011091221A (en) Electronic component
JP2014170879A (en) Electronic component manufacturing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10733401

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10733401

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP