WO2010078323A1 - Procédé de fabrication de timbres de perforateur à solution solide et leurs utilisations - Google Patents
Procédé de fabrication de timbres de perforateur à solution solide et leurs utilisations Download PDFInfo
- Publication number
- WO2010078323A1 WO2010078323A1 PCT/US2009/069685 US2009069685W WO2010078323A1 WO 2010078323 A1 WO2010078323 A1 WO 2010078323A1 US 2009069685 W US2009069685 W US 2009069685W WO 2010078323 A1 WO2010078323 A1 WO 2010078323A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- mold
- microneedle
- microneedles
- microneedle array
- negative mold
- Prior art date
Links
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods
- A61B17/20—Surgical instruments, devices or methods for vaccinating or cleaning the skin previous to the vaccination
- A61B17/205—Vaccinating by means of needles or other puncturing devices
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M37/00—Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin
- A61M37/0015—Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin by using microneedles
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M37/00—Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin
- A61M37/0015—Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin by using microneedles
- A61M2037/0053—Methods for producing microneedles
Definitions
- the present invention relates generally to a method for fabricating and manufacturing solid solution perforators (SSPs) such as dissolving microneedles using sharp metal or glass needles or precision machining and/or subsequent molding. More particularly, the invention relates to a method of creating micromold structures made of curable materials, from fine needle array alignments, and uses thereof. Additionally, the invention relates to methods for increasing mechanical strength of microneedles, designing flexible microneedle patches, and patch injection/insertion and uses thereof.
- SSPs solid solution perforators
- Transdermal or intradermal delivery of drugs is a very effective method for achieving systemic or localized pharmacological effects.
- Skin consists of multiple layers.
- the stratum corneum is the outermost layer, then there is a viable epidermal layer, and finally a dermal tissue layer.
- the thin layer of stratum corneum of 10-50 ⁇ m represents a major barrier for drug delivery through the skin.
- the stratum corneum is responsible for 50%-90% of the skin barrier property against transdermal drug delivery, depending upon the physical and chemical properties of the drug material, in particular, lipophilicity and molecular weight.
- microneedles refers to a plurality of elongated structures that are sufficiently long to penetrate through the stratum corneum skin layer into the epidermal or dermal or subcutaneous layer. In general, the microneedles are not so long as to penetrate into the dermal layer, although there are circumstances where penetrating the dermal layer would be necessary or desirable.
- the use of microneedles as an alternative to the use of hypodermic needles for drug delivery by injection is disclosed in U.S. Pat. No.
- microneedle and microblade structures are disclosed in PCT Publications Nos. WO 98/00193, WO 97/48440, WO 97/48441, WO 97/48442 and WO 96/37256.
- Microneedles (less than 1 mm in diameter) have been used to effect percutaneous drug delivery. Microneedles have also been used to deliver a drug through a lumen in the needles, to deliver a drug along the outside of the needle shafts, or as skin perforators for subsequent patch drug application.
- Silicon microneedles for example, have been developed using the microfabrication method or MicroElectroMechanicalSystems (MEMS) fabrication method. Examples are described in U.S. Patent Nos.
- microneedles are fabricated by the MEMS fabrication method.
- PDMS polydimethylsilozane
- U.S. Patent Nos. 6,663,820 and 6,334,856 the use of polydimethylsilozane (PDMS) mold for casting polymeric microneedles is disclosed in U.S. Patent Nos. 6,663,820 and 6,334,856 in which the positive matter of microneedles is fabricated by using MEMS technology.
- MEMS fabrication for the master microneedle array can be expensive and complicated.
- the polymeric microneedles may require drug loading or drug coating, rendering the casting methods unsuitable for mass production.
- the present invention overcomes these problems and provides inexpensive and uncomplicated methods for manufacturing SSP drug delivery systems including dissolvable microneedles.
- the invention provides a method for constructing positive microneedle master molds made from an array of various types of fine needles.
- the microneedles for use in the present invention are made by making a mold from a metal, polymer, or glass (or other extendable) material wire.
- a positive master mold from an alignment needle
- the individual needles for the positive master are made by, for example, grinding a wire end or pulling a wire and then sharpening. Other suitable methods for making sharp needles are known and will find use herein.
- the needles may have various shapes, for example, round in cross-section or square in cross-section.
- the individual needles from wires are integrated or arranged into the master structure relatively quickly and with much less expense than making a negative mold which is used to cast the final dissolving microneedles.
- the integration of needles in the hole plates include: (1) parallel alignment of first and second plates having hole arrays and (2) passing needles through holes of the first and second plates to desired, preselected protrusion lengths above the second plate.
- the needle tip positioning can be done by (1) using a stop wall at the desired distance from the second plate, (2) using tapered holes in the second plate, or (3) using an individually addressable actuator array that moves individual needles.
- Another method for constructing a positive master mold is by precision machining, such as Computer Numerical Control (CNC) milling, grinding or drilling.
- CNC Computer Numerical Control
- two trench arrays can be cut in two perpendicular directions with predetermined side-wall angles and an array of pyramid shaped microneedles can be generated with desired side angles.
- Another method for constructing a positive master mold is to cast microneedles from a negative mold fabricated by the MEMS fabrication method or the CNC precision machining method such as by drilling or grinding.
- a mold called a "negative mold” herein, can be made and used for fabricating dissolvable SSPs.
- the dissolvable system includes a solid matrix of dissolvable (including meltable) material that optionally holds one or more selected drugs and is formed into one or more perforators from the negative mold.
- the matrix can be composed of fast-dissolving and/or swelling materials.
- the solid solution can be a homogeneous, non-homogeneous, suspension solution with a different drug loading phase.
- a positive master prototype is first manufactured with the methods described above.
- a negative mold of silicone or curable materials is then fabricated from the positive master.
- the secondary silicone negative mold fabrication allows cost-effective mass production and utilizes the inherent properties of silicone materials, such as surface tension, flexibility, gas-permeation, and the like.
- the silicone negative mold is not separated from the microneedle array until the microneedle array is used.
- the silicone mold is used as packaging material to keep the microneedle array intact because the silicone material is reasonably inexpensive.
- the microneedle cavity in the negative mold has an open end at the cavity bottom corner to easily fill the cavity with gel by applying a vacuum through the hole or even by pressing gel into the cavity.
- the SSP microneedle array including drug is fabricated by casting a drug- containing hydrogel or like moldable material in the negative silicone mold.
- the drug can be concentrated into the microneedle tip by a casting and centrifuging process, such as described in PCT Publication No. WO 07/030477, incorporated herein by reference in its entirety.
- microneedle tip is meant the tapered end of the microneedle.
- drug will be concentrated in the bottom half to a third of the microneedle, preferably in the bottom quarter or less of the portion of the microneedle that forms the pointed tip.
- An adhesive layer can be cast between microneedles by a multiple casting/wiping process of the drug gel and adhesive layer.
- the microneedle array With adhesives (especially water-based adhesives) as a basal layer, the microneedle array becomes sticky except for the microneedle portion and the SSP patch does not need additional sticky peripheral adhesives on the backing film.
- a flexible layer can be laminated over the sticky layer.
- the final microneedle will be a flexible and a self-sticky microneedle array.
- the drug-loaded patch is mounted in a cartridge. The cartridge is attached to an injector. The adhesive layer between microneedles can hold the microneedle patch on the skin upon administration of the SSP patch with the injector.
- a cartridge can be used in the injection device as described in U.S. Patent No. 6,945,952, 7,182,747 and 7,211 ,062, incorporated herein by reference in their entireties.
- the drug- microneedle array patch is attached in the center of the cartridge to bring the microneedle tips into contact with the skin of the injection target.
- the cartridge is mounted to the end of the injector, such as by rotation-locking, push-fitting, detachable glue, by magnetic attachment, or by using a temporary locking mechanism of the cartridge at the end of the injector.
- the penetrating depth of the microneedles can be made consistent by hitting the microneedles in the cartridge by the applicator.
- the cartridge is flat and thin, preferably not thicker than about 10 mm.
- the exterior of the cartridge can be in any of various shapes and sizes.
- the cartridge can be made of moldable plastic.
- the cartridge may be designed for one-time use and can be disposable.
- the cartridge can be attached on the injector piston to be moved with the piston to the skin.
- the microneedle array is placed close to the target skin instead of onto the piston of the injector. This design is simple for use and mass-production without losing the efficiency.
- An alternative method for applying the patch is to insert the patch with the thumb or a finger and the insertion force and duration can be controlled by using a pressure sensor film or inserting device.
- Another method for penetrating effectively into the skin is to increase the mechanical strength of the microneedles by a formulating and post-drying process of the microneedle.
- the mechanical strength can be improved.
- use of a post-drying process (or removing additional water content from the microneedle matrix) after separating from the mold improves the mechanical strength of the microneedle.
- the invention is directed to a method of manufacturing a microneedle array comprising (a) preparing a positive master mold by positioning microneedles in a defining plate comprising a top and bottom surface, wherein the microneedles are placed at a predetermined distance from one another, and further wherein the microneedle tips protrude from the bottom of the defining plate; (b) preparing a negative mold by either casting a castable material onto the positive master mold or dipping the positive master mold into a curable gel or thermoplastic material, to produce a negative mold having the same surface contour as the positive master mold; (c) adding a dissolvable polymer to the negative mold to form a microneedle array; and (d) drying the microneedle array.
- all the microneedles positioned in the defining plate protrude the same distance from the bottom of the defining plate. In other embodiments, at least one of the microneedles positioned in the defining plate protrudes a different distance from the bottom of the defining plate than the other microneedles.
- individual needle lengths in the defining plate are adjusted using an actuator mechanism that moves individual needles to a desired distance through the defining plate.
- the microneedle tip is positioned using a stop wall at a desired distance from the defining plate.
- the microneedle tip is positioned using tapered holes in the defining plate.
- the method further comprises applying a vacuum, centrifuge or compressive force to the negative mold to fill the mold with the dissolvable polymer and/or a selected drug.
- the method further comprises separating the dried microneedle array from the negative mold.
- the invention is directed to a method of manufacturing a microneedle array comprising (a) preparing a positive master mold by drilling, milling or grinding a metal or formable plate in a predetermined direction at a predetermined angle to define a plurality of microneedles; (b) preparing a negative mold by either casting a castable material onto the positive master mold or dipping the positive master mold into a curable gel or thermoplastic material, to produce a negative mold having the same surface contour as the positive master mold; (c) adding a dissolvable polymer to the negative mold to form a microneedle array; and (d) drying the microneedle array.
- the drilling, milling or grinding is done using precision machining, such as by Computer Numerical Control (CNC) milling, grinding or drilling.
- CNC Computer Numerical Control
- the methods above further comprise casting an adhesive layer between the microneedles of the microneedle array. In other embodiments, the methods above further comprise casting a flexible and sticky layer on microneedle array. In further embodiments, the methods above further comprise creating a micro-hole at the microneedle tip of the negative mold.
- the curable gel or castable material is uncured silicone.
- the curable gel or castable material is polydimethylsilozane (PDMS).
- the dissolvable polymer is a hydrogel, such as a hydrogel comprising sodium carboxymethyl cellulose (SCMC).
- a selected drug and/or vitamin C is added to the negative mold, such as added to a hydrogel that is applied to the negative mold.
- the invention is directed to a method of manufacturing a microneedle array system comprising (a) manufacturing a microneedle array according to any one of the methods above; and (b) mounting the manufactured microneedle array in a cartridge for delivery to skin.
- the cartridge is in association with an injector.
- Figures IA, I B and 1C are magnified representations of a positive master.
- Figure ID is an actual image of the positive master from integrating and lining individual needles.
- Figure IE shows a method for making pyramid microneedles by precision grinding.
- Figure IF shows a pyramid microneedle array cast from a negative mold made by precision grinding.
- Figure 1 G shows a negative mold made by precision drilling.
- Figure 1 H shows a negative mold fabrication by precision grinding and laminating.
- Figure 2A and 2B are flow charts of exemplary fabrication procedures for a solid perforator from positive and negative molds.
- Figure 2C is a schematic diagram of cavity with an open end.
- Figure 2D is a schematic diagram of the cavity- fill process by using an open end cavity array.
- Figure 2E is a schematic diagram of a sticky and flexible microneedle array.
- Figure 3 A is a schematic diagram of the use of an injector according to the present methods.
- Figure 3 B and 3 C are diagrams of a push-button (Figure 3B) and mouse style (Figure 3C) injector, respectively.
- Figure 3D and 3E are top view (Figure 3D) and cross-sectional view ( Figure 3E), respectively, of a cartridge attachable to an injector.
- Figure 3 F is a side view of insertion with a pressure sensing film.
- Figure 4 is an example of skin treatment before and/or after patch administration.
- Figures 5 A and 5B are actual images of an SSP.
- Figure 6 is the actual image of acne treatment with gel and SSP patch treatment.
- Figures 1 A-IC show cross-sectional views of positive microneedle array masters for making mold 11, including a hole defining plate 12 with top and bottom surfaces, optional supporting plates 13, a sharp needle 14, spacer 15 for determining the length of microneedles and needle tip alignment plate 16.
- a fine metal or glass wire can be sharpened to make sharp needle 14.
- the fine wire can be any material, including metal, plastic and/or ceramics, including glass.
- the sharpness is determined by how the needle is prepared.
- a metal needle typically wire is ground to the desired sharpness.
- a sharp needle is obtained by typically extending wire above the glass transition temperature.
- an acupuncture medical needle can be used for making the positive master.
- the needles can have any of various shapes, such as round cross-section, square cross-section, etc.
- the holes in plates 12 and 13 can be drilled, etched or punched.
- the holes can have any of various shapes that can be made by, for example, photolithography and subsequent etching as used in MEMS fabrication.
- the holes can be arranged in any layout form such as square, honeycomb, or any pattern.
- the integration of the microneedles 14 in the plates 12 and 13 includes (1) parallel alignment of the two plates 12 and 13, both having the same hole layout and (2) passing needles though the holes of the first plate and second plate, to the desired protrusion length beyond the second plate 12.
- the protrusion length beyond the defining plate 12 is determined by the spacer 15 between the defining plate 12 and the needle tip alignment plate 16 positioned parallel to the defining plate at the protrusion length from the defining plate.
- the protrusion length will differ, depending in part on the desired length of the microneedle, and can range anywhere from .1 to 5000 ⁇ m, such as .5 to 250 ⁇ m, or 250 to 1500 ⁇ m, or any length between these ranges.
- the microneedle length above the defining plate 12 can be adjusted by changing the thickness of spacer 15 and again will depend on the desired length of the microneedle to be produced, and can range anywhere from 1 to 5000 ⁇ m, such as 1 to 250 ⁇ m, 250 to 1500 ⁇ m, or any length between these ranges.
- the microneedle length is simply adjustable by adjusting spacer thickness and different lengths of microneedles in the same SSP can be designed by adjusting individual needles. This design of combining different lengths of microneedles can advantageously reduce the friction when penetrating into skin.
- Supporting plate 13 can be any structure to support the needles, such as a sponge material. The needles can be fixed to the plate 13 and/or the plate 12 with glue or other fixatives or adhesives.
- the distance between needles will vary, depending on the size of the plate and the number of needles present. Typically, needles will be placed at a distance from 5 ⁇ m to 5000 ⁇ m from each other, such as from 100 to 3000 ⁇ m apart, 250 to 1000 ⁇ m apart, or any distance within these ranges.
- the plate can include any number of microneedles, such as 1 to 1 ,000,000, typically, 10 to 100,000, such as 50 to 10,000, 100 to 1000, or any number within these ranges.
- the holes in the defining plate, 12 are tapered with the same slope as the needle tip (Figure IB).
- the individual adjustment can be in the form of an addressable actuator array 18, where each actuator moves each individual needle (Figure 1C).
- Actuator mechanisms and materials can be piezoelectric, electroactive polymers, thermal expansion, and electrochemical actuation. The actual image of a positive master with holes in the defining plate 112 and the needle tips 114 is shown in Figure 1 D.
- a negative mold is made by casting from the positive master mold.
- Curable gel or castable polymer materials such as uncured silicone or polydimethylsilozane (PDMS)
- PDMS polydimethylsilozane
- Another method for preparing a negative mold is to dip the positive needle array into curable gel or thermoplastic materials directly without components 12, 15 and 16.
- the microneedle-shaped cavity of the negative mold is determined by the depth of the microneedle penetration in the curable gel, which is controlled using a spacer or a fine linear motion actuator.
- Another method for fabricating the positive micromold is precision tooling, such as by a computer numerical controlled (CNC) profile forming grinder.
- CNC computer numerical controlled
- a positive mold can be made by cutting across a block in at least two different directions to provide a mold comprising a base surface with a plurality of microneedles protruding form the base. See, e.g., U.S. Patent No. 7,497,980, incorporated herein by reference in its entirety.
- the metal or formable base plate 221 can be repeatedly ground in a predetermined direction, such as 222, or 223 at a predetermined angle 224 to define the aspect ratio and the block plate can be removed to form an array of multi-faceted microneedles 225.
- Figure 1 F shows a dissolving pyramid microneedle array cast from a silicone secondary mold made from the positive master mold machined by a CNC profile forming grinder.
- the positive master microneedle mold can be any material if the material is castable and has a structural integrity suitable for following the cast.
- the microneedle array cast can be water nonsoluble, such as ethylcellulose or water-soluble, such as sodium carboxymethyl cellulose (SCMC).
- SCMC sodium carboxymethyl cellulose
- the negative mold can be made by CNC precision drilling, milling, or grinding. For example, a microcavity array 232 is drilled in Teflon plate 231 in Figure IG and used to produce an ethylcellulose positive master microneedle array.
- edge of plate 242 is cut at a predetermined shape and cut space, edges of the cut plates 241 are aligned and laminated to form the negative mold.
- Another method to make a negative mold is by casting any curable material such as PDMS from the positive master mold as described above.
- Replication materials include polycarbonate, polymethyl methacrylate (PMMA), polyvinyl chloride, polyethylene (PE), and polydimethylsilozane (PDMS), and any thermally or chemically or light-activated cross-linking materials or thermoplastic materials.
- PDMS is the preferred mold material.
- PDMS precursors are generally a mixture of dimethylsilixane and a curing agent.
- One preferred material is medical grade silicone.
- SYLGARD 184 Dow Corning, Midland, MI
- SYLGARD 184 although not approved as a medical grade silicone to date, can be fully cured at 65 0 C.
- a plastic mold including PDMS from this positive master is beneficial for making dissolvable SSPs because it is inexpensive, can be mass produced and provides an easy medium for removing microbubbles that might form in the hydrogel.
- a centrifuge process can be used for filling the hydrogel solution into the PDMS mold.
- the hydrogel easily fills into the tip of the mold without external pressure, especially when the silicone mold is in a vacuum. Without being bound by any particular theory, this may be due to the unique surface properties of PDMS and its compatibility with the hydrogel.
- Another possible explanation is that a vacuum is generated inside PDMS at low pressure and the internal vacuum particularly in the microneedle cavity wall region is a pulling force for filling the solution or gel into the tip of microneedle cavity.
- a centrifuge or vacuum applied to the bottom of the negative mold, or a compressive force that pushes the gel into the microneedle cavity may be used.
- ventilation provided at the bottom of the microneedle hole in the mold is beneficial.
- the micro-hole or porous plates inside the microneedle cavity can be produced to ventilate the mold and prevent microbubble formation when the negative mold is used for making SSPs.
- additional force such as centrifugal force, vacuum force, or a compression force may be used to fill the mold with optionally high temperature.
- the solvent can be air- dried, vacuum-dried, freeze-dried, convection oven dried or any other suitable drying method can be used.
- flexible plastic including PDMS silicone can be effectively utilized. Referring to Figure 2C, the cavity tip of the negative mold is open 206 and lined up for continuous production.
- the tip Since the tip is open, a vacuum from the bottom or external pressure from the top can easily fill the cavity with liquid solution. As shown in Fig. 2D, the gel is poured 207, cast, pressed 208, or optionally vacuumed 209 then dried 210. Once fully dried, an inexpensive plastic mold or silicone mold can be used as a packaging material. Both the microneedle and mold can be cut and combined until use.
- the mold dimension does not determine the final dimension of the SSP because the solvent and water content is evaporated during the drying process. Therefore the final dimension of the SSP is smaller than the mold dimension.
- multiple different layers in the microneedle can be fabricated with repeating casting/wiping of the same or different concentration of solid solution.
- an adhesive layer is cast after the microneedle is formed, a sticky microneedle patch can be easily generated.
- a material such as SCMC is cast and dried 205, then an adhesive layer is cast 206 and a soft baking layer made of silicone or another soft hydrogel is cast 207.
- a sticky and flexible microneedle patch is produced.
- the dried SSP is separated from the mold and cut to an appropriate shape and size for a patch component.
- an appropriate shape and size for a patch component For a description of representative shapes and sizes of such perforators, see, e.g., U.S. Patent Nos. 6,945,952, 7,182,747 and 7,21 1,062, incorporated herein by reference in their entireties.
- Suitable matrix materials for an SSP perforator include dissolvable polymers, including but not limited to sodium carboxymethyl cellulose (SCMC), sodium hyaluronate (HA), polyvinylpyrolidone (PVP), polyethylene glycol (PEG), polyvinyl alcohol (PVA), polyethylene oxide (PEO), polyacrylic acid, polystylene sulfonate, polypeptide, cellulose, hydroxypropyl cellulose (HPC), hydroxyethyl cellulose (HEC), hydroxypropyl methylcellulose (HPMC), dextrin, dextran, mono- and polysaccharide, polyalcohol, gelatin, gum arabic, alginate, chitosan cylcodextrin, carbohydrate and other water dissolvable natural and synthetic polymer and combinations of the above.
- dissolvable polymers including but not limited to sodium carboxymethyl cellulose (SCMC), sodium hyaluronate (HA), polyvinylpyrolidone (PVP), polyethylene glyco
- Carbohydrate derivatives such as sugar derivatives (for example, trehalose, glucose, maltose, lactose, sucrose, maltulose, iso-maltulose, lactulose, fructose, turanose, melitose, mannose, melezitose, dextran, maltodextrin, icodextrin, cyclodextrin, maltotol, sorbitol, xylitol, inositol, palatinit, mannitol, stachyose and raff ⁇ nose) can be used or mixed with above.
- sugar derivatives for example, trehalose, glucose, maltose, lactose, sucrose, maltulose, iso-maltulose, lactulose, fructose, turanose, melitose, mannose, melezitose, dextran, maltodextrin, icodextrin, cyclodextrin,
- the carbohydrate can be melted to form microneedles from the mold or dissolved with a water soluble polymer as described above. Once dried and separated from the mold, an additional drying process (post drying-treatment) can be used or water content removed. In this way, the mechanical strength of the microneedles is increased or adjusted and compression strength of microneedles can be controlled.
- Water-soluble ingredients such as phosphate, nitrate and carboxylate glasses, magnesium chloride, potassium chloride and calcium chloride can also be used for a matrix material, alone or mixed with a matrix polymer. This component can be used for stabilizing or enhancing the drug delivery or vaccination capability. For vaccination, undissolvable particles, such as depot adjuvants, can be mixed in the matrix.
- the matrix can also include vitamin C or vitamin C derivatives. Vitamin C can diminish potential skin reactions. It has been observed that adding vitamin C reduces viscosity of the matrix to achieve a better filling of the mold.
- the surface properties of the mold can be modified by various techniques, such as silanization, corona treatment, plasma treatment, surface coating, polymer surface grafting etc., in order to improve the compatibility of the gel with the mold and to provide for easy separation of the gel when dried. It has been observed by the present inventor that PDMS molding is very compatible with SCMC hydrogels and microbubbles do not form.
- FIG. 3A demonstrates patch application with a spring- driven applicator.
- the cartridge 301 with the solid solution patch can be loaded on an applicator with a compressed spring 300, to result in a loaded spring compressed applicator 302 that includes a spring trigger 303.
- the user can administer the microneedle patch alone without aid.
- the occlusive flat form of the cartridge has the advantages of volume reduction in storage and transport. In the flat form cartridge, the piston of the applicator strikes the patch laying on the skin, which may maximize the striking force or impact energy to help the SSP penetrate consistently into target skin. The cartridge can protect the SSP both physically and chemically from the environment until used.
- microneedles are contacted or placed in close proximity to the skin and then the piston part of the applicator impacts the microneedle array against the skin.
- This microneedle insertion mechanism is equivalent or better than when the microneedles are placed on the skin with a large gap between the microneedle and the targeted skin.
- Figures 3 B and 3 C show additional examples of applicators, push-button style 310 ( Figure 3B) and mouse style 313 ( Figure 3C), respectively.
- the microneedle cartridge 312 can be attached to applicator 310 and the trigger 311 is activated when pushed.
- the trigger 314 is on top of the mouse.
- a top and side view of a cartridge is depicted in Figures 3D and 3E, respectively.
- the microneedle 318 is held on a rupturable membrane 319 inside a disposable plastic case 320 and is protected by occlusive film 322 on the 321 surface.
- Figure 3F shows a mode of insertion using a pressure sensing film 323.
- Drug delivery by SSP Figure 4 shows another example of patch application with formulated gel that includes a cream and/or lotion.
- This formulated gel can contain one or more active ingredients which are the same or different from the active ingredients in the SSP, depending on the application.
- the formulated gel can contain beneficial agents for skin such as a humidifying excipient or anti- irritant or anti-bacterial agents.
- the formulated gel 42 is applied on the target skin 43 prior to patch application.
- the patch application on pretreated the skin is depicted in 44.
- 45 and 46 the patch is applied to the skin and after SSPs are dissolved, the formulated gel is applied on the sites 43.
- the active ingredient in the gel can be delivered through the pores created by patch insertion and dissolution.
- the SSP perforators can have straight or tapered shafts or can be corn-shaped, pyramids, wedges or blades, as predetermined by the positive master.
- the outer diameter of an SSP perforator is greatest at the base or second end, about 1-2000 ⁇ m, and the perforator outer diameter near the first end is preferably 1-100 ⁇ m.
- the length of an SSP perforator is typically in a range 10-5000 ⁇ m, more preferably in a range 100-2000 ⁇ m. Skin is not a smooth surface, but rather has a rugged surface and has different depths microscopically.
- the thickness of the stratum corneum and elasticity of the skin varies from person to person and from location to location on any given person's body.
- a desirable penetration depth has a range, rather than a single value, for effective drug delivery and relatively painless and bloodless penetration.
- Penetration depth of an SSP perforator can affect pain as well as delivery efficiency.
- the perforator penetrates to a depth in the range of 10-1000 ⁇ m.
- the "penetrated depth" of the SSP perforator is preferably less than 500 ⁇ m so that a perforator, inserted into the skin through the stratum corneum, does not penetrate past the epidermis. This is an optimal approach to avoid contacting nerves and blood vessels.
- the actual length of the SSP perforator can be longer because the basal layer associated with the SSP system may not be fully inserted into the skin because of elasticity and the rough surface of the skin.
- an SSP perforator can be optimized by adjusting perforator variables (SSP length, dimension, mechanical properties of the basal or substrate layer as well as stroke and speed of insertion of an SSP perforator), as well as accounting for target skin elasticity, skin hardness and surface roughness.
- SSP length SSP length
- dimension dimension
- mechanical properties of the basal or substrate layer as well as stroke and speed of insertion of an SSP perforator
- accounting for target skin elasticity, skin hardness and surface roughness The primary functions of an SSP perforator are to pierce the stratum corneum, to provide instant initiation of drug delivery from the matrix and optionally to help keep the channels open for subsequent gel or cream or lotion application or from a reservoir.
- any biocompatible material can serve as an SSP perforator.
- a non-dissolving microneedle is useful.
- a water-insoluble hydrogel such as ethylcellulose, can be used in the above- described fabrication method.
- FIGS. 5A and 5B show an actual image of an SSP composed of sodium methyl cellulose using a silicone negative mold.
- the flexible and sticky base with the microneedle array can be simply fabricated as described above. For example, SCMC fills the microneedle mold and an adhesive layer is cast and a soft hydrogel formulation are cast sequentially. The resulting patch is a hard microneedle and a sticky/soft basal microneedle array which does not require other adhesive backing film or overlay.
- An SSP patch system optionally includes a reservoir containing a liquid or gel form of the second drug and one or more perforators extending from at least a part of the reservoir's surface.
- the SSP perforators associated with the patch system penetrate the stratum corneum of the skin to enhance percutaneous drug administration and to provide prompt drug delivery.
- the SSP perforators and the reservoir can be constructed as a single unit or as separate units.
- An SSP patch system is applied to the skin so that one or more SSP perforators penetrate through the stratum corneum, into the epidermis or into the dermis depending on the application.
- an SSP and gel, cream and/or lotion are used.
- the gel can include a drug and/or desired excipients and can be applied or spread at the desired sites.
- An SSP patch is subsequently inserted.
- the gel can be applied after patch use.
- An SSP system can transport therapeutic and/or prophylactic agents, including drugs and vaccines and other bioactive molecules, across or into skin and other tissues.
- An SSP device permits drug delivery and access to body fluids across skin or other tissue barriers, with minimal damage, pain and/or irritation at the tissue.
- an SSP perforator is primarily composed of an active drug (or drug particle itself) and a composition of gel (including cream and lotion) can be designed depending on a desired drug profile.
- an osmotically active or anti-irritant compound or anti-bacterial agent can have a beneficial effect.
- the SSP perforator can include or consist of sensor materials loaded that react to the presence of specific analytes or metabolites.
- an external physical enhancement system using iontophoresis, electrophoresis, sonophoresis, piezoelectric response, a heating element, magnetic element, or a similar response or combination of above, can be provided with the overlay layer.
- Drugs to be delivered by SSP system can be proteins, peptides, nucleotides, DNA, RNA, siRNA, genes, polysaccharides, and synthetic organic and inorganic compounds.
- Representative agents include, but are not limited to, anti-infectives, hormones, growth regulators, drugs regulating cardiac action or blood flow, and drugs for pain control.
- the drug can be for vaccination or local treatment or for regional or systemic therapy.
- Many drugs can be delivered at a variety of therapeutic rates, controlled by varying a number of design factors including: dimensions of the SSP, drug loading in the SSP, dissolving rate of the matrix, number of SSP perforators, size of the SSP patch, size and composition of the gel (including creams and lotion), and frequency of use of the device, etc.
- Most applications of SSP drug transdermal delivery target the epidermis, although delivery into blood stream directly is available by extending the penetration length of an SSP patch.
- the SSP patch systems disclosed herein are also useful for controlling transport across tissues other than skin.
- Other non-skin tissues for delivery include nasal or vaginal, buccal, ocular, dental regions or inside a tissue with the aid of a laparoscope or into other accessible mucosal layers to facilitate transport into or across those tissues.
- an SSP patch can be inserted into a patient's eye to control or correct conjunctiva, sclera, and/or cornea problems, to facilitate delivery of drugs into the eye with a slow moving actuator. The formulated drug stays in the tissue for sustained drug delivery even after the patch is removed.
- An SSP patch can also be inserted into the oral cavity including buccal membrane for rapid systemic drug delivery or short delivery duration for example breakthrough pain management and for dental treatment applications.
- a drug may be delivered across the buccal mucosa for local treatment in the mouth or gingiva to act as a muscle relaxant for orthodontic applications.
- SSP systems may be used internally within the body on, for example, the lining of the gastrointestinal tract to facilitate uptake of orally-ingested drugs or at the lining of blood vessels to facilitate penetration of drugs into the vessel wall.
- use of a bioadhesive SSP material can help the SSP stay in place longer.
- a food patch including essential amino acids, fats and vitamins can be used, such as in emergencies.
- Intradermal drug delivery applications Another important application is vaccination and for treating and preventing allergies.
- the skin is an ideal site for effective vaccine delivery because it contains a network of antigen presenting cells, such as Langerhans and dermal dendrite cells.
- An SSP system for skin immunization can reduce vaccine dose and induce rapid delivery to skin dendrite cell and can provide a depot effect for better vaccination.
- the SSP system can be easily designed for multivalent vaccines and is expected to provide more stability than the liquid form vaccine in transportation and storage.
- An SSP system with particles can be used efficiently and safely to remove or reduce wrinkle formation, skin aging hyperhidrosis and hair loss.
- Botulisum toxin Botox
- hydroxyacid vitamins and vitamin derivatives
- Epidermal Growth Factor EGF
- Adenosine Arbutin, and the like
- the systems are also useful for treating lesions or abnormal skin features, such as pimples, acne, corns, warts, calluses, bunions, actinic keratoses and hard hyperkeratotic skin, which is often found on the face, arms, legs or feet.
- An SSP system is also useful as a tattoo-creating/ removing patch for cosmetic application. Active or sham SSP systems can also be used for acupuncture.
- Example 1 Fabrication positive master and SSPS from silicone mold Holes were made in glass as shown in Figure ID by chemical etching through holes on a photoresist film patterned by photolithography and acupuncture needles were aligned through the holes 114. The tip of the needles through the holes are depicted.
- PDMS was poured on this side and cured overnight.
- 8% sodium methyl cellulose hydrogel was poured on this silicone mold and centrifuged at 3,000 rpm for 5 minutes. After centrifuging, the hydrogel was dried for one day and separated from the mold.
- Figure 5 is the image of dissolvable microneedle made of cellulose. Another micromold from CNC profile forming grinding techniques is depicted in Figure IF.
- Example 2 compression break force and dissolution time with various compositions
- Example 3 Mechanical properties with different lactose compositions Compression and dissolution tests were done on various compositions of lactose. As lactose was added, the test article dissolved faster and compression force increased. See, Table 2.
- Example 4 Combination treatment of SSP and gel in acne treatment
- a benzoyl peroxide microneedle patch was applied followed by the application of an acne gel.
- the acne severity decreased significantly and rapidly after microneedle patch and gel treatment.
- the combination treatment appeared more effective than the microneedle patch.
- the treated acne sites became soft and smooth after all treatments.
- the combination treatment is practical. For example, the SSP can be applied at night with subsequent gel application during the day.
- Example 5 microparticle-concentrated microneedle tip
- Two casting steps were carried out as follows. First, the gel-containing microparticles were spun on the mold, immediately followed by removal of the gel from the exterior of the cavities while leaving the gel in the cavities. In the second coating, the gel made of excipients without the microparticle was added on the vaccine layer. The amount of microparticle was determined by their concentrations in the first layer gel and the volume of the total cavities in the patch.
- Example 6 Vacuum treatment of silicone mold for filling cavity with gel Silicone molds were put in the vacuum of 27 inch Hg to generate vacuum inside the silicone. Then, SCMC gel with 10% lactose was coated on the mold. Air in the cone-shaped cavities under the gel layer was slowly removed into the silicone body, pulling down the SCMC gel on the mold into the cavities, and finally filling down to the cavity tip. DI water was used in the same test. Experimental parameters and results are given below.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Surgery (AREA)
- Medical Informatics (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Hematology (AREA)
- Dermatology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Anesthesiology (AREA)
- Molecular Biology (AREA)
- Media Introduction/Drainage Providing Device (AREA)
Abstract
L'invention porte sur des procédés de fabrication et de production de perforateurs à solution solide (SSP) faisant intervenir des aiguilles très pointues en métal ou en verre et/ou des procédés de moulages et d'utilisations ultérieurs. Les procédés impliquent la fabrication de microaiguilles par diverses techniques d'usinage de précision et des structures de micromoule à partir de matériaux durcissables. L'invention porte sur diverses conceptions de timbre, cartouche et applicateur. L'invention porte également sur des procédés d'ajustement de la résistance mécanique des microaiguilles à l'aide d'une formulation et/ou de procédés post-séchage.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US20380008P | 2008-12-29 | 2008-12-29 | |
US61/203,800 | 2008-12-29 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010078323A1 true WO2010078323A1 (fr) | 2010-07-08 |
Family
ID=42310188
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2009/069685 WO2010078323A1 (fr) | 2008-12-29 | 2009-12-29 | Procédé de fabrication de timbres de perforateur à solution solide et leurs utilisations |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2010078323A1 (fr) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110121486A1 (en) * | 2008-05-21 | 2011-05-26 | Sea-Jin Oh | Method of manufacturing solid solution peforator patches and uses thereof |
WO2012023044A1 (fr) * | 2010-08-20 | 2012-02-23 | Novartis Ag | Ensembles d'aiguilles solubles pour l'administration de vaccins contre la grippe |
CN103009534A (zh) * | 2012-12-19 | 2013-04-03 | 中国科学院上海微系统与信息技术研究所 | 一种集成微结构的pdms薄膜制作方法 |
CN105596287A (zh) * | 2016-02-04 | 2016-05-25 | 广州新济药业科技有限公司 | 主动分离型可溶性微针及其制备方法 |
CN105726458A (zh) * | 2016-01-29 | 2016-07-06 | 广州新济药业科技有限公司 | 温度敏感型可溶性微针及其制备方法 |
CN108597335A (zh) * | 2018-06-15 | 2018-09-28 | 安徽中医药高等专科学校 | 一种绿色多功能教学微芯片的制备方法 |
CN109016274A (zh) * | 2018-08-15 | 2018-12-18 | 重庆大学 | 一种利用数控雕刻技术结合石蜡基片制作微流控芯片模具的方法 |
US10603477B2 (en) | 2014-03-28 | 2020-03-31 | Allergan, Inc. | Dissolvable microneedles for skin treatment |
CN111467575A (zh) * | 2020-04-17 | 2020-07-31 | 南京鼓楼医院 | 一种集成有诱导多能干细胞来源的心肌细胞导电微针补片及其制备方法和应用 |
US11065428B2 (en) | 2017-02-17 | 2021-07-20 | Allergan, Inc. | Microneedle array with active ingredient |
CN116135206A (zh) * | 2021-11-18 | 2023-05-19 | 中国人民解放军陆军军医大学第二附属医院 | 一种微针贴制备方法及高穿透性微针贴 |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3964482A (en) * | 1971-05-17 | 1976-06-22 | Alza Corporation | Drug delivery device |
US4423000A (en) * | 1980-10-17 | 1983-12-27 | Syoichi Teraoka | Method for molding hollow plastic articles |
US5056444A (en) * | 1990-08-29 | 1991-10-15 | Melco Industries, Inc. | Method and apparatus for automatically steering and adjusting the height of a needle in a chenille type embroidery machine |
US6053928A (en) * | 1996-04-10 | 2000-04-25 | Linvatec Corporation | Process for shaping and sharpening a rotatable surgical shaver blade |
US6256533B1 (en) * | 1999-06-09 | 2001-07-03 | The Procter & Gamble Company | Apparatus and method for using an intracutaneous microneedle array |
US6663820B2 (en) * | 2001-03-14 | 2003-12-16 | The Procter & Gamble Company | Method of manufacturing microneedle structures using soft lithography and photolithography |
US20050137525A1 (en) * | 2003-06-04 | 2005-06-23 | Georgia Tech Research Corporation | Drilling microneedle device |
WO2007030477A2 (fr) * | 2005-09-06 | 2007-03-15 | Theraject, Inc. | Perforateur a solution solide contenant des particules de medicament et/ou des particules a adsorption de medicament |
US20070191761A1 (en) * | 2004-02-23 | 2007-08-16 | 3M Innovative Properties Company | Method of molding for microneedle arrays |
-
2009
- 2009-12-29 WO PCT/US2009/069685 patent/WO2010078323A1/fr active Application Filing
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3964482A (en) * | 1971-05-17 | 1976-06-22 | Alza Corporation | Drug delivery device |
US4423000A (en) * | 1980-10-17 | 1983-12-27 | Syoichi Teraoka | Method for molding hollow plastic articles |
US5056444A (en) * | 1990-08-29 | 1991-10-15 | Melco Industries, Inc. | Method and apparatus for automatically steering and adjusting the height of a needle in a chenille type embroidery machine |
US6053928A (en) * | 1996-04-10 | 2000-04-25 | Linvatec Corporation | Process for shaping and sharpening a rotatable surgical shaver blade |
US6256533B1 (en) * | 1999-06-09 | 2001-07-03 | The Procter & Gamble Company | Apparatus and method for using an intracutaneous microneedle array |
US6663820B2 (en) * | 2001-03-14 | 2003-12-16 | The Procter & Gamble Company | Method of manufacturing microneedle structures using soft lithography and photolithography |
US20050137525A1 (en) * | 2003-06-04 | 2005-06-23 | Georgia Tech Research Corporation | Drilling microneedle device |
US20070191761A1 (en) * | 2004-02-23 | 2007-08-16 | 3M Innovative Properties Company | Method of molding for microneedle arrays |
WO2007030477A2 (fr) * | 2005-09-06 | 2007-03-15 | Theraject, Inc. | Perforateur a solution solide contenant des particules de medicament et/ou des particules a adsorption de medicament |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110121486A1 (en) * | 2008-05-21 | 2011-05-26 | Sea-Jin Oh | Method of manufacturing solid solution peforator patches and uses thereof |
US9381680B2 (en) * | 2008-05-21 | 2016-07-05 | Theraject, Inc. | Method of manufacturing solid solution perforator patches and uses thereof |
WO2012023044A1 (fr) * | 2010-08-20 | 2012-02-23 | Novartis Ag | Ensembles d'aiguilles solubles pour l'administration de vaccins contre la grippe |
US9517205B2 (en) | 2010-08-20 | 2016-12-13 | Seqirus UK Limited | Soluble needle arrays for delivery of influenza vaccines |
US9801935B2 (en) | 2010-08-20 | 2017-10-31 | Seqirus UK Limited | Soluble needle arrays for delivery of influenza vaccines |
CN103009534A (zh) * | 2012-12-19 | 2013-04-03 | 中国科学院上海微系统与信息技术研究所 | 一种集成微结构的pdms薄膜制作方法 |
US10603477B2 (en) | 2014-03-28 | 2020-03-31 | Allergan, Inc. | Dissolvable microneedles for skin treatment |
US10987503B2 (en) | 2014-03-28 | 2021-04-27 | Allergan, Inc. | Dissolvable microneedles for skin treatment |
CN105726458A (zh) * | 2016-01-29 | 2016-07-06 | 广州新济药业科技有限公司 | 温度敏感型可溶性微针及其制备方法 |
CN105596287A (zh) * | 2016-02-04 | 2016-05-25 | 广州新济药业科技有限公司 | 主动分离型可溶性微针及其制备方法 |
US11065428B2 (en) | 2017-02-17 | 2021-07-20 | Allergan, Inc. | Microneedle array with active ingredient |
CN108597335A (zh) * | 2018-06-15 | 2018-09-28 | 安徽中医药高等专科学校 | 一种绿色多功能教学微芯片的制备方法 |
CN109016274A (zh) * | 2018-08-15 | 2018-12-18 | 重庆大学 | 一种利用数控雕刻技术结合石蜡基片制作微流控芯片模具的方法 |
CN111467575A (zh) * | 2020-04-17 | 2020-07-31 | 南京鼓楼医院 | 一种集成有诱导多能干细胞来源的心肌细胞导电微针补片及其制备方法和应用 |
CN116135206A (zh) * | 2021-11-18 | 2023-05-19 | 中国人民解放军陆军军医大学第二附属医院 | 一种微针贴制备方法及高穿透性微针贴 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2728400C (fr) | Procede de fabrication de patches de perforateur a solutions solides et applications associees | |
WO2010078323A1 (fr) | Procédé de fabrication de timbres de perforateur à solution solide et leurs utilisations | |
Larrañeta et al. | Microneedle arrays as transdermal and intradermal drug delivery systems: Materials science, manufacture and commercial development | |
EP1940459B1 (fr) | Perforateur a solution solide contenant des particules de medicament et/ou des particules a adsorption de medicament | |
US20120193840A1 (en) | Method of manufacturing solid solution perforator patches | |
US9302903B2 (en) | Microneedle devices and production thereof | |
CN103079634B (zh) | 可整合至施药器的内置式非语言指导设备 | |
US8048017B2 (en) | High-aspect-ratio microdevices and methods for transdermal delivery and sampling of active substances | |
US20070060867A1 (en) | High-aspect-ratio microdevices and methods for transdermal delivery and sampling of active substances | |
KR101832716B1 (ko) | 정량 투여가 가능하며 약물 투입 속도 조절이 가능한 미세바늘 구조체 및 제조방법 | |
KR101628342B1 (ko) | 약물 투여량 및 투여 깊이 조절이 가능한 미세바늘 구조체 및 제조방법 | |
KR20170061042A (ko) | 미세니들, 이의 제조용 몰드 및 이의 제조방법 | |
Mishra et al. | MEMS-based hollow microneedles for transdermal drug delivery | |
KR20120036577A (ko) | 고용체 퍼포레이터 패치의 제조 방법 | |
Kaushik et al. | Microneedles–minimally invasive transdermal delivery technology | |
McAlister et al. | Microporation using microneedle arrays | |
Stoeber et al. | Microneedling in Clinical Practice | |
Santraa | Microneedles: Current Trends and Applications | |
On | The Journal of Pharmaceutical Sciences and Medicinal Research | |
JP6028063B2 (ja) | アプリケータに統合可能な内蔵非言語的指示デバイス | |
Supe et al. | EMERGING ERA OF MICRONEEDLE TECHNOLOGY FOR TRANSDERMAL DRUG DELIVERY SYSTEM | |
AU2002253812A1 (en) | Microneedle devices and production thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09837107 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 09837107 Country of ref document: EP Kind code of ref document: A1 |