WO2010073293A1 - Radio communication system and radio communication method - Google Patents
Radio communication system and radio communication method Download PDFInfo
- Publication number
- WO2010073293A1 WO2010073293A1 PCT/JP2008/003900 JP2008003900W WO2010073293A1 WO 2010073293 A1 WO2010073293 A1 WO 2010073293A1 JP 2008003900 W JP2008003900 W JP 2008003900W WO 2010073293 A1 WO2010073293 A1 WO 2010073293A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- band
- signal
- cell
- antenna
- unit
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W16/00—Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
- H04W16/02—Resource partitioning among network components, e.g. reuse partitioning
- H04W16/10—Dynamic resource partitioning
Definitions
- each of a plurality of antenna devices arranged geographically dispersed in a cell performs radio communication with a mobile station, and is provided in each cell and connected to each antenna device through a predetermined transmission link.
- the present invention relates to a radio communication system and a radio communication method in which a signal processing device processes an uplink signal and a downlink signal.
- a distributed antenna system includes a plurality of antenna devices (antenna units) that are geographically dispersed in a cell, and a signal processing device (central processing unit) that is connected to each antenna device via an optical fiber cable. It is done.
- each antenna device performs radio communication with a mobile station (user device), and a downlink signal from the signal processing device and an uplink signal from each antenna device are a predetermined transmission link (optical fiber cable). Etc.).
- the coverage of a cell is an aggregate of a relatively narrow range of coverage by each antenna device.
- a mobile station located at a cell boundary transmits both a downlink signal (a signal from a nearby antenna device) in a cell to which the mobile station belongs and a signal from another antenna device in an adjacent cell. Since both signals can be received in a strong signal strength state, downlink inter-cell interference occurs.
- the antenna device located at the cell boundary transmits an uplink signal (a signal from a nearby mobile station) in a cell to which the own device belongs and a signal from a mobile station in another adjacent cell, both signals Since the signal can be received in a strong signal strength state, downlink inter-cell interference occurs.
- an object is to provide a radio including a plurality of antenna devices that are distributed in each cell and perform radio communication with a mobile station, and a signal processing device connected to each of the plurality of antenna devices. In a communication system, it is to reduce inter-cell interference.
- a wireless communication system for achieving the above object is as follows: A plurality of antenna devices that are distributed in each cell and perform wireless communication with a mobile station, and a signal processing device connected to each of the plurality of antenna devices, Proximity antenna devices that are close to each other across cell boundaries and belong to different cells have a filter in which a transmission band that allows transmission without transmitting a downlink signal is set in the system band, The transmission band of each filter of the proximity antenna device is set so as not to overlap.
- the band of the downlink signal from the proximity antenna device that is close to each other across the cell boundary and belongs to different cells does not overlap with the mobile station. Therefore, downlink inter-cell interference for mobile stations near the cell boundary is reduced. Inter-cell interference is similarly reduced in a wireless communication method having the same operation as this wireless communication system.
- a wireless communication system for achieving the above object is as follows: A plurality of antenna devices that are distributed in each cell and perform wireless communication with a mobile station, and a signal processing device connected to each of the plurality of antenna devices, Proximity antenna devices that are close to each other across cell boundaries and belong to different cells have a filter in which a transmission band for transmitting uplink signals without being suppressed is set in the system band, It is set so that the transmission band of each filter of the proximity antenna device does not overlap,
- the signal processing device is a signal included in an uplink signal from a mobile station, and evaluates the signal quality of each band based on a reference signal for each of a plurality of bands dividing the system band, Allocation of uplink signal frequency resources to mobile stations is performed.
- the uplink signal from the mobile station to the proximity antenna apparatus is transmitted to the signal processing apparatus connected to each antenna apparatus in a non-overlapping transmission band.
- the frequency resource of the uplink signal is assigned to the mobile station based on the signal quality of the reference signal included in the uplink signal. Therefore, the setting of the transmission band of each antenna apparatus is reflected in the allocation of uplink frequency resources to mobile stations that perform radio communication with each antenna apparatus.
- uplink inter-cell interference from mobile stations near the cell boundary is reduced. Inter-cell interference is similarly reduced in a wireless communication method having the same operation as this wireless communication system.
- PSD frequency-power spectral density
- CU Central processing unit 10, 11: Encoding modulation unit, 12: Signal multiplexing unit, 13 ... Subcarrier mapping unit, 14 ... IFFT unit, 15 ... CP adding unit, 16 ... Transmission radio unit, 17 ... Optical transmitter, DESCRIPTION OF SYMBOLS 18 ... Optical receiver, 19 ... Reception radio part, 20 ... OFDM demodulation part, 21 ... Pilot signal extraction part, 22 ... Reception quality measurement part, 23 ... Subcarrier allocation part, 24 ... MCS determination part, 25 ... Control information generation 26: CQI extraction unit RAU ... Antenna unit 30 ... Antenna, 31 ... Duplexer, 32 ... Optical receiver, 33, 35 ...
- FIG. 1 is a diagram for explaining a configuration in a unit cell of the wireless communication system of the present embodiment.
- this wireless communication system is abbreviated as a plurality of remote antenna units (hereinafter simply referred to as “antenna units” or RAUs (Remote Antenna Units), which are geographically distributed in a cell.
- RAUs Remote Antenna Units
- RAUn 0, 1, 2,
- CU Central processing unit
- the antenna unit is an embodiment of the antenna device
- the central processing unit is an embodiment of the signal processing device.
- Each antenna unit RAU performs wireless communication with a mobile station (hereinafter abbreviated as MS (Mobile Station) as appropriate) within the signal reach of the unit.
- MS Mobile Station
- the range in which each antenna unit RAU can communicate with the mobile station MS is referred to as a micro cell.
- a single cell is formed by a plurality of microcells covered by each antenna unit RAU.
- Each antenna unit RAU and the central processing unit CU are connected by an optical fiber cable.
- a downlink signal from the central processing unit CU to the mobile station MS is transmitted from the central processing unit CU to the antenna unit RAU via an optical fiber cable, and transmitted from the antenna unit RAU to the mobile station MS as a radio signal.
- An uplink signal from the mobile station MS to the central processing unit CU is transmitted as a radio signal from the mobile station MS to the antenna unit RAU, and transmitted from the antenna unit RAU to the central processing unit CU via an optical fiber cable.
- the central processing unit CU has substantially the same function as a base station, except that it does not have an antenna.
- the communication system of this radio communication system is preferably a multi-carrier transmission system that adaptively controls the downlink or uplink carrier frequency allocated to the mobile station within the system band (band allocated on the system).
- Typical examples of such multicarrier transmission systems include MC-CDMA (Multi-Carrier Code Division Multiple Access), OFDMA (Orthogonal). Frequency Division Multiple Access) method.
- MC-CDMA system is 3GPP (Third Generation) The Partnership Project has been studied.
- the OFDMA scheme is, for example, LTE (Long Term) which is being studied by 3GPP. (Evolution) downlink transmission method.
- any multicarrier transmission scheme can be applied to the wireless communication system of the present embodiment, a case will be described below as an example where the wireless communication system of the present embodiment adopts the OFDMA scheme.
- the OFDMA scheme it is possible to adaptively allocate mobile stations MS (radio resource allocation) to a plurality of subcarriers in the system band.
- the OFDMA scheme is also a scheme with high frequency efficiency because the same system band (frequency) can be reused in a multi-cell environment.
- FIG. 2 is a block diagram showing a main part of the internal configuration of the central processing unit CU.
- FIG. 3 is a block diagram showing a main part of the internal configuration of the antenna unit RAU.
- FIG. 4 is a block diagram showing the main part of the internal configuration of the mobile station MS.
- the central processing unit CU includes coded modulation units 10 and 11, a signal multiplexing unit 12, a subcarrier mapping unit 13, an IFFT unit 14, and a CP adding unit. 15, a transmission radio unit 16, an optical transmitter 17, an optical receiver 18, a reception radio unit 19, an OFDM demodulation unit 20, a pilot signal extraction unit 21, a reception quality measurement unit 22, a subcarrier allocation unit 23, an MCS determination unit 24, A control information generation unit 25 and a CQI extraction unit 26 are provided.
- the encoding modulation unit 10 performs predetermined error correction encoding on the control information including the bit data sequence, and further uses a predetermined modulation multilevel modulation scheme (for example, BPSK modulation, QPSK modulation) to generate a symbol data sequence. Generate a signal.
- a predetermined modulation multilevel modulation scheme for example, BPSK modulation, QPSK modulation
- Generate a signal as the coding rate and the modulation multi-level number when performing error correction coding, preset fixed values are used.
- control information is transmitted using a low coding rate by BPSK modulation or QPSK modulation because high-quality transmission is required.
- the encoding modulation unit 11 performs predetermined error correction encoding on user data composed of a bit data sequence, and further uses symbol data using a predetermined modulation multi-level modulation scheme (for example, QPSK, 16QAM, 64QAM modulation).
- a predetermined modulation multi-level modulation scheme for example, QPSK, 16QAM, 64QAM modulation.
- a series signal is generated and output to the signal multiplexer 12.
- the signal multiplexing unit 12 multiplexes the inputs from the encoding modulation unit 10 and the encoding modulation unit 11 and outputs the multiplexed data as a frequency data block to the subcarrier mapping unit 13.
- the subcarrier mapping unit 13 maps the frequency data block that is the output of the signal multiplexing unit 12 to a specific subcarrier (hereinafter referred to as subcarrier mapping), and outputs it to the IFFT unit 14. At this time, the subcarrier mapping unit 13 performs mapping using the subcarrier allocation information (number of subcarriers, subcarrier number, etc.) from the subcarrier allocation unit 23.
- An IFFT (Inverse Fast Fourier Transform) unit 14 performs an inverse fast Fourier transform on the output of the subcarrier mapping unit 13 and outputs the result to the CP adding unit 15.
- the CP adding unit 15 adds CP (Cyclic) to the transmission data input from the IFFT unit 14.
- a guard interval using Prefix) is inserted and output to the transmission radio unit 16.
- the transmission radio unit 16 outputs the transmission data from the CP adding unit 65 to the optical transmitter 17 by up-converting the baseband frequency to the radio frequency.
- the optical transmitter 17 optically modulates the radio signal (downlink signal) from the transmission radio unit 16 to convert it into an optical signal, and transmits it to each antenna unit RAU0 to RAUn through the optical fiber cable OC1.
- the optical receiver 18 receives an optical signal (a signal in which a radio signal is optical intensity modulated) transmitted from each of the antenna units RAU0 to RAUn through the optical fiber cable OC2, and uses the optical signal as an original radio signal (uplink signal). ).
- the reception radio unit 19 performs amplification processing, band limitation processing, and frequency conversion processing on the radio signal, and outputs the result as a complex baseband signal including an in-phase signal and a quadrature-phase signal.
- the OFDM demodulator 20 performs OFDM demodulation on each input baseband signal. That is, after time and frequency synchronization processing, GI (Guard Interval) removal, FFT (Fast Fourier Transform) processing, and serial-parallel conversion processing are performed.
- GI Guard Interval
- FFT Fast Fourier Transform
- the pilot signal extraction unit 21 extracts the pilot signal transmitted from the mobile station from the reception signal input from the OFDM demodulation unit 20 and outputs the pilot signal to the reception quality measurement unit 22.
- the CQI extraction unit 26 extracts channel quality information (CQI: Channel Quality Information) transmitted from the mobile station from the received signal input from the OFDM demodulation unit 20 and outputs the channel quality information (CQI) to the subcarrier allocation unit 23.
- CQI Channel Quality Information
- the reception quality measurement unit 22 measures the reception quality for each subcarrier based on the output of the pilot signal extraction unit 21. Specifically, the reception quality measurement unit 22 measures the reception quality for each subcarrier using the pilot signal from the pilot signal extraction unit 21 and outputs it to the subcarrier allocation unit 23. As this reception quality, CIR (Carrier to Interferer Ratio) or SIR (Signal to Interferer Ratio), SNR (Signal Use any measured value such as Noise Ratio).
- the subcarrier allocation unit 23 allocates uplink subcarriers from each mobile station using the reception quality for each subcarrier measured by the reception quality measurement unit 22 (allocates frequency resources). Specifically, the subcarrier allocation unit 23 sets the number of subcarriers, the subcarrier number, and the like as the subcarrier allocation information. Here, subcarriers with high reception quality from each mobile station are assigned to each mobile station. Then, the subcarrier allocation unit 23 outputs uplink subcarrier allocation information from each mobile station to the subcarrier mapping unit 13 and the MCS determination unit 24.
- the subcarrier allocation unit 23 allocates downlink subcarriers to each mobile station (allocates frequency resources) using the CQI of each subcarrier extracted by the CQI extraction unit 26. Specifically, the subcarrier allocation unit 23 sets the number of subcarriers, the subcarrier number, and the like as the subcarrier allocation information. Here, subcarriers with good CQI (higher quality) from each mobile station are assigned to each mobile station. Then, the subcarrier allocation unit 23 outputs the subcarrier allocation information for the downlink to each mobile station to the subcarrier mapping unit 13 and the MCS determination unit 24.
- the MCS determination unit 24 Based on the subcarrier allocation information from the subcarrier allocation unit 23 and the information on the reception quality of each subcarrier, the MCS determination unit 24 performs modulation modulation for each subcarrier or for each subcarrier block in which a plurality of subcarriers are set. MCS (Modulation and Coding Schemes) information such as the number of values and code rate is adaptively selected and output to the control information generation unit 25.
- the control information generation unit 25 generates a control signal including MCS information and subcarrier allocation information, and outputs the control signal to the encoding modulation unit 10 as control information.
- FIG. 3 shows only the internal configuration of antenna unit RAU0 among the plurality of antenna units RAU0 to RAUn, but other antenna units have the same configuration.
- the antenna unit RAU0 includes an antenna 30, a duplexer 31, an optical receiver 32, an amplifier 33 (for downlink signal), a filter 34 (for downlink signal), an amplifier 35 (for uplink signal), A filter 36 (for uplink signal) and an optical transmitter 37 are provided.
- the duplexer 31 (DPX) is provided to share the antenna 30 in the transmission / reception system.
- the optical receiver 32 receives an optical signal transmitted from the central processing unit CU through the optical fiber cable OC1 (a signal obtained by modulating a radio intensity of the radio signal), and demodulates the optical signal into an original radio signal.
- the filter 34 is set so that a band through which the radio signal (downlink signal) amplified by the amplifier 33 is transmitted is a predetermined transmission band that is a part of the system band.
- the radio signal received by the antenna 30 from the mobile station is amplified by the amplifier 35 and then input to the filter 36.
- the filter 36 is set so that the band that transmits the input radio signal (uplink signal) without being suppressed is a predetermined transmission band that is a part of the system band.
- the optical transmitter 37 converts the radio signal transmitted through the filter 36 into an optical signal by modulating the optical intensity, and outputs the optical signal to the central processing unit CU through the optical fiber cable OC2.
- the filters 34 and 36 are known BPFs (Band Pass Filters) and can be configured as digital filters or analog filters.
- the mobile station MS includes an antenna 50, a duplexer 51, a reception radio unit 52, an OFDM demodulation unit 53, a control information extraction unit 54, a demodulation / decoding unit 55, Carrier allocation information extraction unit 56, pilot signal extraction unit 57, MCS information extraction unit 58, CQI measurement unit 59, encoding modulation unit 60, encoding modulation unit 61, signal multiplexing unit 62, subcarrier mapping unit 63, IFFT unit 64 , A CP adding unit 65, a transmission radio unit 66, and a pilot signal generating unit 67.
- the duplexer 51 (DPX) is provided to share the antenna 50 in the transmission / reception system.
- the encoding / modulation unit 60 performs predetermined error correction coding on user data consisting of a bit data sequence, and further uses a predetermined modulation multi-level modulation scheme (for example, QPSK, 16QAM, 64QAM modulation) to generate symbols.
- a data series signal is generated and output to the signal multiplexing unit 62.
- the MCS information Modulation and Coding Schemes
- the MCS information extraction unit that extracts MCS information from a control signal transmitted from the central processing unit CU. 58 based on the output of 58. This setting enables adaptive modulation according to the propagation path condition.
- the encoding modulation unit 61 performs predetermined error correction encoding on the control information including the bit data sequence, and further uses a predetermined modulation multilevel modulation scheme (for example, BPSK modulation, QPSK modulation) to generate a symbol data sequence. Generate a signal.
- a predetermined modulation multilevel modulation scheme for example, BPSK modulation, QPSK modulation
- the coding rate and the modulation multi-level number used for error correction coding are fixed in advance.
- control information since control information requires high-quality transmission, it is transmitted using a low coding rate by BPSK modulation or QPSK modulation.
- the signal multiplexing unit 62 multiplexes the inputs from the encoding modulation units 60 and 61 and outputs the multiplexed data as a frequency data block to the subcarrier mapping unit 63.
- the subcarrier mapping unit 63 maps the frequency data block, which is the output of the signal multiplexing unit 62, to a specific subcarrier (hereinafter referred to as subcarrier mapping), and outputs it to the IFFT unit 64. At this time, the subcarrier mapping unit 63 performs mapping using the subcarrier allocation information (number of subcarriers, subcarrier number, etc.) extracted by the subcarrier allocation information extraction unit 56.
- the IFFT unit 64 performs inverse fast Fourier transform on the output of the subcarrier mapping unit 63 and outputs the result to the CP adding unit 65.
- CP adding section 65 inserts a guard interval using CP (Cyclic Prefix) into the transmission data input from IFFT section 64 and outputs the result to transmission radio section 66.
- the transmission radio unit 66 radiates the transmission data from the CP adding unit 65 from the antenna 50 to the space by up-converting the baseband frequency to the radio frequency.
- the reception radio unit 52 performs amplification processing, band limitation processing, and frequency conversion processing on the radio signal received by the antenna 50, and forms a complex baseband signal composed of an in-phase signal and a quadrature-phase signal. Output.
- the OFDM demodulator 53 performs OFDM demodulation on each input baseband signal. That is, after time and frequency synchronization processing, GI (Guard Interval) removal, FFT (Fast Fourier Transform) processing, and serial-parallel conversion processing are performed.
- GI Guard Interval
- FFT Fast Fourier Transform
- the control information extraction unit 54 extracts control information from the central processing unit CU from the received signal input from the OFDM demodulation unit 53 and outputs the control information to the demodulation and decoding unit 55.
- This control signal includes subcarrier allocation information, pilot signals, and MCS information.
- the subcarrier allocation information extraction unit 56, pilot signal extraction unit 57, and MCS information extraction unit 58 are subcarrier allocation information, pilot signal, and MCS, respectively, from the control information demodulated and decoded by the demodulation and decoding unit 55. Extract information.
- CQI measurement section 59 measures channel quality information (CQI) of each subcarrier based on the output of pilot signal extraction section 57. Specifically, CQI measurement unit 59 measures the CQI for each subcarrier using the pilot signal from pilot signal extraction unit 57 and outputs the CQI to signal multiplexing unit 62. CIR (Carrier based on pilot signal) as CQI to Interferer Ratio), SIR (Signal to Interferer Ratio), SNR (Signal to Noise) Any measured value such as Ratio) can be applied.
- the CQI of each subcarrier represents downlink signal quality for the mobile station.
- the CQI of each subcarrier is transmitted to the central processing unit CU, and is used for downlink subcarrier allocation to each mobile station.
- the pilot signal generator 67 generates a pilot signal that is a signal sequence that is known in advance for the central processing unit CU, and outputs the pilot signal to the signal multiplexer 62.
- the signal sequence used for the pilot signal is set based on the output of the pilot signal extraction unit 57.
- the antenna of the micro cell near the cell boundary or close to the cell boundary.
- the characteristics of the unit filter 34 (for downlink signals) are such that the transmission band transmitted without suppressing the downlink signal is different from the transmission bands of other antenna units belonging to different cells that are close to each other across the cell boundary. It is set not to overlap.
- the characteristics of the filter 36 (for uplink signal) of the antenna unit of the microcell in the vicinity of the cell boundary or in the vicinity of the cell boundary among the antenna units RAU0 to RAUn in the cell can suppress the uplink signal.
- the transmission band to be transmitted is set so as not to overlap with the transmission bands of other antenna units that are close to each other and belong to different cells across the cell boundary. That is, the filter characteristics of the proximity antenna units are set so as not to overlap.
- the filter characteristics are set in order to reduce inter-cell interference between the antenna unit and the mobile station at the cell boundary.
- interference is generally planned to be avoided by appropriate scheduling or the like.
- setting of a filter for interference of the communication link in the same cell is planned. Is not considered. For example, there is no restriction on the filter characteristics of antenna units that are close together in the same cell.
- filter setting FS1 a setting for suppressing (not completely blocking) a band other than the transmission band
- filter setting FS2 a setting for completely blocking a band other than the transmission band
- the filter 34 for downlink signal
- the filter setting FS2 the transmission power of a signal in a band other than the transmission band decreases in the antenna unit.
- the reach of is limited. That is, since radio waves do not reach the vicinity of the cell boundary, inter-cell interference (interference between downlink signals for each mobile station) is reduced unless the above-described transmission band overlap setting is made.
- the filter 36 for the uplink signal
- the filter setting FS1 a setting that does not completely cut off the band other than the transmission band
- the filter setting FS2 setting for completely blocking bands other than the transmission band
- the filter characteristics of the filter 34 (for downlink signal) and the filter 36 (for uplink signal) can be set separately according to the downlink band and the uplink band specified in the system, respectively. Further, a filter may be provided substantially only in either the downlink or the uplink (that is, either one is set to transmit all bands).
- FIG. 5 is a diagram illustrating the relationship between frequency and power spectral density (PSD) as a filter characteristic.
- FIG. 5A is a characteristic that transmits the entire system band (hereinafter referred to as a full band transmission characteristic)
- FIG. I s a characteristic of transmitting only the band F1 without being suppressed in the system band (hereinafter referred to as F1 band transmission characteristic)
- F1 band transmission characteristic a characteristic of transmitting only the band F2 of the system band without being suppressed
- F2 a characteristic of transmitting only the band F2 of the system band without being suppressed
- FIG. 6 to 7 are diagrams showing the characteristics of the antenna unit RAU in three mutually adjacent cells C1 to C3. F0 to F3 described together with the antenna unit have filter characteristics of the antenna unit shown in FIG. a) to (d).
- the cell C1 is provided with a central processing unit CU1 and a plurality of antenna units RAU10 to RAU16.
- the central processing unit CU1 and each antenna unit are connected by an optical fiber cable (not shown).
- the cell C2 is provided with a central processing unit CU2 and a plurality of antenna units RAU20 to RAU26, and the central processing unit CU2 and each antenna unit are connected by an optical fiber cable (not shown).
- the cell C3 is provided with a central processing unit CU3 and a plurality of antenna units RAU30 to RAU36, and the central processing unit CU3 and each antenna unit are connected by an optical fiber cable (not shown).
- FIG. 6 is an example in which the filter characteristics of each antenna unit are set such that the filter characteristics of the antenna units existing at the cell boundary of the same cell are the same and the filter characteristics are different between different cells.
- the antenna units RAU12 to 14 belonging to the cell C1 are all set to the F1 band transmission characteristics
- the antenna units RAU24 to 26 belonging to the cell C2 are all set to the F2 band transmission characteristics
- 32 to 36 are all set to F3 band transmission characteristics.
- the transmission band of the proximity antenna unit of the adjacent micro cell across the cell boundary does not overlap (the above requirement A).
- the antenna units RAU 10, 20, and 30 at the center of each cell do not need to consider inter-cell interference, so there is no limitation on the filter characteristics (requirement B above), and here the full-band transmission characteristics are used.
- 7 and 8 are examples in which the filter characteristics of each antenna unit are set when the filter characteristics of the antenna units existing at the cell boundary of the same cell can be different for each microcell.
- the filter characteristic of the antenna unit RAU13 belonging to the cell C1 is the F1 band transmission characteristic
- the filter characteristic of the antenna unit RAU31 adjacent to the antenna unit RAU13 across the cell boundary is the F3 band transmission characteristic.
- the filter characteristics of the antenna unit RAU13 belonging to the cell C1 and the antenna unit RAU25 of the other cell C2 adjacent to the antenna unit RAU31 belonging to the cell C3 across the cell boundary are F2 band transmission characteristics.
- the antenna unit RAU14 of the cell C1 has the F3 band transmission characteristic as a filter characteristic different from the antenna unit RAU36 (F2 band transmission characteristic) that is adjacent to each other across the cell boundary.
- the antenna unit RAU14 has a filter characteristic that is different from the antenna unit RAU13 (F1 band transmission characteristic) that is adjacent in the same cell.
- the filter characteristics of other antenna units are set.
- the antenna units RAU 10, 20, and 30 at the center of each cell do not need to consider inter-cell interference, so there is no limitation on the filter characteristics (requirement B above), and here the full-band transmission characteristics are used.
- the filter characteristic of the antenna unit RAU13 belonging to the cell C1 is the F1 band transmission characteristic
- the filter characteristic of the antenna unit RAU31 adjacent to the antenna unit RAU13 across the cell boundary is the F2 band transmission characteristic.
- the filter characteristics of the antenna unit RAU13 belonging to the cell C1 and the antenna unit RAU25 of another cell C2 adjacent to the antenna unit RAU31 belonging to the cell C3 across the cell boundary are F3 band transmission characteristics.
- the antenna unit RAU14 of the cell C1 has the F2 band transmission characteristic as a filter characteristic different from the antenna unit RAU36 (F3 band transmission characteristic) that is adjacent to each other across the cell boundary.
- the antenna unit RAU14 has a filter characteristic that is different from the antenna unit RAU13 (F1 band transmission characteristic) that is adjacent in the same cell.
- the filter characteristics of other antenna units are set.
- the antenna units RAU 10, 20, and 30 at the center of each cell do not need to consider inter-cell interference, so there is no limitation on the filter characteristics (requirement B above), and here the full-band transmission characteristics are used.
- the antenna unit filters (for downlink signals and uplink signals) do not need to be provided for all antenna units in the cell, and are located near the cell boundary where they are severely positioned against inter-cell interference. It is only necessary to provide the antenna unit. Further, even when the filter is provided for all antenna units in the cell, it can be set so that the transmission band becomes wider as the distance from the cell boundary increases. This is because an antenna unit closer to the center of the cell is more advantageous for inter-cell interference.
- FIG. 9 is a diagram illustrating communication between an antenna unit of a micro cell adjacent between cells and a mobile station.
- RAU 13 and RAU 31 (see FIG. 6 or FIG. 7) as an example of antenna units of microcells adjacent between cells, and central processing units CU1 and CU3 connected to each antenna unit by an optical fiber cable, Mobile stations MS1 and MS3 that perform wireless communication with each antenna unit are shown. Further, as shown in the figure, the filter characteristics of the antenna units RAU13 and RAU31 are an F1 band transmission characteristic and an F3 band transmission characteristic, respectively. In the following description, it is assumed that the higher the CQI value as quality information, the better (higher quality).
- the antenna unit RAU13 demodulates the optical signal transmitted from the central processing unit CU1 into an original radio signal, and performs filtering of F1 band transmission characteristics on the radio signal. Apply.
- the mobile station MS1 extracts a pilot signal included in each subcarrier and measures the CQI of each subcarrier.
- the CQI of the subcarrier corresponding to the band F1 becomes high, and the band F1 The CQI of the subcarriers in the bands other than is low.
- the CQI of each subcarrier measured by the mobile station MS1 is mapped to the uplink signal together with the pilot signal of each subcarrier and fed back to the central processing unit CU1.
- the central processing unit CU1 the CQI of each subcarrier is extracted based on the uplink signal from the mobile station MS1, and this CQI is reflected in the assignment of the downlink subcarrier to the mobile station MS1 (frequency resource assignment). Is done. In the example shown in FIG. 9, the CQI of the subcarrier corresponding to the band F1 is high, and the CQI of the subcarrier in the band other than the band F1 is low. For this reason, the central processing unit CU1 allocates subcarriers corresponding to the band F1 to the downlink addressed to the mobile station MS1.
- a subcarrier corresponding to the band F3 is assigned to the downlink addressed to the mobile station MS3. Accordingly, the subcarrier frequencies of the downlink signals for mobile stations MS1 and MS3 existing in different adjacent cells are separated from each other, and interference is avoided.
- inter-cell interference is suppressed even if frequency resources are not allocated on the central processing unit CU side. That is, in FIG. 9, the received signals of the mobile stations MS1 and MS3 are not related to the frequency resource allocation in the central processing unit CU because the bands other than the bands F1 and F3 are suppressed or blocked, respectively. , Downlink signal interference to the mobile stations MS1 and MS3 is suppressed. However, it is preferable to assign frequency resources by the central processing unit CU in order to reliably avoid interference because the subcarriers assigned to the mobile stations MS1 and MS3 are reliably distinguished.
- the mobile station MS1 maps the pilot signal of each subcarrier together with the CQI of each subcarrier to the uplink signal. Based on this pilot signal, the central processing unit CU1 measures (evaluates) the reception quality of each subcarrier of the uplink signal from the mobile station MS1. That is, the central processing unit CU1 extracts the pilot signal of each subcarrier from the uplink signal from the mobile station MS1, and based on this pilot signal, the reception quality (for example, signal power to interference power ratio) of each subcarrier. SIR) is measured.
- the reception quality for example, signal power to interference power ratio
- the measurement result of the reception quality of each subcarrier is reflected in the subcarrier allocation (frequency resource allocation) to the uplink from the mobile station MS1.
- the reception quality of subcarriers corresponding to the band F1 is high, and the reception quality of subcarriers in bands other than the band F1 is low.
- the central processing unit CU1 allocates subcarriers corresponding to the band F1 to the uplink from the mobile station MS1.
- the central processing unit CU3 allocates a subcarrier corresponding to the band F3 for the uplink from the mobile station MS3. Therefore, the subcarrier frequencies of the uplink signals from mobile stations MS1 and MS3 existing in different adjacent cells to each antenna unit are separated from each other, and interference is avoided.
- the filter characteristics of the filters (for uplink signals) of the antenna units RAU13 and RAU31 are preferably FS2 characteristics (setting for completely blocking bands other than the transmission band) as described above. Thereby, the inter-cell interference in the uplink from the mobile stations MS1 and MS3 is further reduced.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
A radio communication system includes: a plurality of antenna devices distributed in respective cells for performing a radio communication with a mobile station; and a signal processing device connected to each of the antenna devices. Adjacent antenna devices positioned to sandwich a cell boundary and belonging to different cells have filters each having a transmission band set to transmit a downlink signal in the system band without suppressing the signal. The transmission bands of the respective filters of the adjacent antenna devices are set so that the bands are not overlapped. Accordingly, the bands of the downlink signals from the adjacent antenna devices to a mobile station are not overlapped. This reduces the inter-cell interference of the downstream link for the mobile station in the vicinity of the cell boundary.
Description
本発明は、セル内で地理的に分散して配置された複数のアンテナ装置の各々が、移動局と無線通信を行い、各セルに設けられて各アンテナ装置と所定の伝送リンクで接続される信号処理装置が上りリンク信号及び下りリンク信号を処理する、無線通信システム及び無線通信方法に関する。
In the present invention, each of a plurality of antenna devices arranged geographically dispersed in a cell performs radio communication with a mobile station, and is provided in each cell and connected to each antenna device through a predetermined transmission link. The present invention relates to a radio communication system and a radio communication method in which a signal processing device processes an uplink signal and a downlink signal.
100M~1Gビット/秒の高速伝送が要求される次世代無線通信システムでは高い周波数帯域の割り当てが想定されている。一般に高い周波数帯の信号は、低い周波数帯の信号に比べて直進性が強く、電波が到達しない不感地帯が多く発生することが知られている。そのため、基地局の送信電力が現在商用化されている無線通信システムと同一であると仮定した場合、高い周波数帯域の割り当てによりセルのカバレッジ(サービスエリア)が減少することになる。このことは、基地局の増加によるコスト上昇を招来する点だけでなく、頻繁なハンドオーバーが発生する点からも好ましくない。
Allocation of high frequency bands is assumed in next-generation wireless communication systems that require high-speed transmission at 100 M to 1 Gbit / sec. In general, it is known that a signal in a high frequency band is more straight ahead than a signal in a low frequency band, and many dead zones where radio waves do not reach occur. Therefore, when it is assumed that the transmission power of the base station is the same as that of a currently commercialized radio communication system, cell coverage (service area) is reduced due to allocation of a high frequency band. This is not preferable not only from the viewpoint of increasing the cost due to the increase in the number of base stations, but also from the point that frequent handover occurs.
上記問題を解決するため、例えば分散型アンテナシステムが提案されている(例えば特許文献1)。分散型アンテナシステムでは、セル内に地理的に分散して配置される複数のアンテナ装置(アンテナユニット)と、各アンテナ装置と光ファイバケーブルで接続される信号処理装置(中央処理ユニット)とが設けられる。分散型アンテナシステムでは、各アンテナ装置が移動局(ユーザ装置)と無線通信を行い、信号処理装置からの下りリンク信号と、各アンテナ装置からの上りリンク信号とは所定の伝送リンク(光ファイバケーブル等)を介して伝送される。この分散型アンテナシステムでは、セルのカバレッジは、各アンテナ装置による比較的狭い範囲のカバレッジの集合体となる。これにより、分散型アンテナシステムでは、高い周波数帯域が割り当てられた場合でも、セルのカバレッジが従来のシステムよりも減少しないというだけでなく、不感地帯の発生が抑制される。
In order to solve the above problem, for example, a distributed antenna system has been proposed (for example, Patent Document 1). A distributed antenna system includes a plurality of antenna devices (antenna units) that are geographically dispersed in a cell, and a signal processing device (central processing unit) that is connected to each antenna device via an optical fiber cable. It is done. In the distributed antenna system, each antenna device performs radio communication with a mobile station (user device), and a downlink signal from the signal processing device and an uplink signal from each antenna device are a predetermined transmission link (optical fiber cable). Etc.). In this distributed antenna system, the coverage of a cell is an aggregate of a relatively narrow range of coverage by each antenna device. Thereby, in the distributed antenna system, even when a high frequency band is assigned, not only does the cell coverage not decrease compared to the conventional system, but also the generation of dead zones is suppressed.
従来の分散型アンテナシステムでは、セル間干渉についての対策がなされていない点が課題である。具体的には、セル境界に位置する移動局は、自局が属するセル内の下りリンク信号(近くのアンテナ装置からの信号)と、隣接するセル内の別のアンテナ装置の信号とを、双方の信号ともに強い信号強度の状態で受信し得るため、下りリンクのセル間干渉が生じる。また、セル境界に位置するアンテナ装置は、自装置が属するセル内の上りリンク信号(近くの移動局からの信号)と、隣接する別のセル内の移動局の信号とを、双方の信号ともに強い信号強度の状態で受信し得るため、下りリンクのセル間干渉が生じる。
The problem with conventional distributed antenna systems is that no measures are taken for inter-cell interference. Specifically, a mobile station located at a cell boundary transmits both a downlink signal (a signal from a nearby antenna device) in a cell to which the mobile station belongs and a signal from another antenna device in an adjacent cell. Since both signals can be received in a strong signal strength state, downlink inter-cell interference occurs. In addition, the antenna device located at the cell boundary transmits an uplink signal (a signal from a nearby mobile station) in a cell to which the own device belongs and a signal from a mobile station in another adjacent cell, both signals Since the signal can be received in a strong signal strength state, downlink inter-cell interference occurs.
上記観点に鑑み、目的は、各セル内に分散して配置され、移動局と無線通信を行う複数のアンテナ装置と、前記複数のアンテナ装置の各々と接続される信号処理装置と、を含む無線通信システムにおいて、セル間干渉を低減させることにある。
In view of the above viewpoint, an object is to provide a radio including a plurality of antenna devices that are distributed in each cell and perform radio communication with a mobile station, and a signal processing device connected to each of the plurality of antenna devices. In a communication system, it is to reduce inter-cell interference.
上記目的を達成するための無線通信システムは、
各セル内に分散して配置され、移動局と無線通信を行う複数のアンテナ装置と、前記複数のアンテナ装置の各々と接続される信号処理装置と、を含み、
セル境界を挟んで近接し、互いに異なるセルに属する近接アンテナ装置は、システム帯域の内、下りリンク信号を抑制することなく透過させる透過帯域が設定されたフィルタを有し、
前記近接アンテナ装置の各々のフィルタの透過帯域が重複しないように設定される。 A wireless communication system for achieving the above object is as follows:
A plurality of antenna devices that are distributed in each cell and perform wireless communication with a mobile station, and a signal processing device connected to each of the plurality of antenna devices,
Proximity antenna devices that are close to each other across cell boundaries and belong to different cells have a filter in which a transmission band that allows transmission without transmitting a downlink signal is set in the system band,
The transmission band of each filter of the proximity antenna device is set so as not to overlap.
各セル内に分散して配置され、移動局と無線通信を行う複数のアンテナ装置と、前記複数のアンテナ装置の各々と接続される信号処理装置と、を含み、
セル境界を挟んで近接し、互いに異なるセルに属する近接アンテナ装置は、システム帯域の内、下りリンク信号を抑制することなく透過させる透過帯域が設定されたフィルタを有し、
前記近接アンテナ装置の各々のフィルタの透過帯域が重複しないように設定される。 A wireless communication system for achieving the above object is as follows:
A plurality of antenna devices that are distributed in each cell and perform wireless communication with a mobile station, and a signal processing device connected to each of the plurality of antenna devices,
Proximity antenna devices that are close to each other across cell boundaries and belong to different cells have a filter in which a transmission band that allows transmission without transmitting a downlink signal is set in the system band,
The transmission band of each filter of the proximity antenna device is set so as not to overlap.
この無線通信システムによれば、セル境界を挟んで近接し、互いに異なるセルに属する近接アンテナ装置から移動局に対する下りリンク信号の帯域が重複しない。そのため、セル境界付近の移動局に対する下りリンクのセル間干渉が低減する。この無線通信システムと同様の作用を奏する無線通信方法についても、同様にセル間干渉が低減する。
According to this radio communication system, the band of the downlink signal from the proximity antenna device that is close to each other across the cell boundary and belongs to different cells does not overlap with the mobile station. Therefore, downlink inter-cell interference for mobile stations near the cell boundary is reduced. Inter-cell interference is similarly reduced in a wireless communication method having the same operation as this wireless communication system.
上記目的を達成するための無線通信システムは、
各セル内に分散して配置され、移動局と無線通信を行う複数のアンテナ装置と、前記複数のアンテナ装置の各々と接続される信号処理装置と、を含み、
セル境界を挟んで近接し、互いに異なるセルに属する近接アンテナ装置は、システム帯域の内、上りリンク信号を抑制することなく透過させる透過帯域が設定されたフィルタを有し、
前記近接アンテナ装置の各々のフィルタの透過帯域が重複しないように設定され、
前記信号処理装置は、移動局からの上りリンク信号に含まれる信号であって、前記システム帯域を区分する複数の帯域の各々についての参照信号、に基づいて各帯域の信号品質を評価し、その移動局に対する上りリンク信号の周波数リソースの割り当てを行う。 A wireless communication system for achieving the above object is as follows:
A plurality of antenna devices that are distributed in each cell and perform wireless communication with a mobile station, and a signal processing device connected to each of the plurality of antenna devices,
Proximity antenna devices that are close to each other across cell boundaries and belong to different cells have a filter in which a transmission band for transmitting uplink signals without being suppressed is set in the system band,
It is set so that the transmission band of each filter of the proximity antenna device does not overlap,
The signal processing device is a signal included in an uplink signal from a mobile station, and evaluates the signal quality of each band based on a reference signal for each of a plurality of bands dividing the system band, Allocation of uplink signal frequency resources to mobile stations is performed.
各セル内に分散して配置され、移動局と無線通信を行う複数のアンテナ装置と、前記複数のアンテナ装置の各々と接続される信号処理装置と、を含み、
セル境界を挟んで近接し、互いに異なるセルに属する近接アンテナ装置は、システム帯域の内、上りリンク信号を抑制することなく透過させる透過帯域が設定されたフィルタを有し、
前記近接アンテナ装置の各々のフィルタの透過帯域が重複しないように設定され、
前記信号処理装置は、移動局からの上りリンク信号に含まれる信号であって、前記システム帯域を区分する複数の帯域の各々についての参照信号、に基づいて各帯域の信号品質を評価し、その移動局に対する上りリンク信号の周波数リソースの割り当てを行う。 A wireless communication system for achieving the above object is as follows:
A plurality of antenna devices that are distributed in each cell and perform wireless communication with a mobile station, and a signal processing device connected to each of the plurality of antenna devices,
Proximity antenna devices that are close to each other across cell boundaries and belong to different cells have a filter in which a transmission band for transmitting uplink signals without being suppressed is set in the system band,
It is set so that the transmission band of each filter of the proximity antenna device does not overlap,
The signal processing device is a signal included in an uplink signal from a mobile station, and evaluates the signal quality of each band based on a reference signal for each of a plurality of bands dividing the system band, Allocation of uplink signal frequency resources to mobile stations is performed.
この無線通信システムによれば、移動局からの近接アンテナ装置への上りリンク信号は、主として重複しない透過帯域で、各アンテナ装置に接続された信号処理装置へそれぞれ伝送される。各信号処理装置では、上りリンク信号に含まれる参照信号の信号品質に基づいて、その移動局に対する上りリンク信号の周波数リソースの割り当てが行われる。そのため、各アンテナ装置の透過帯域の設定が、各アンテナ装置と無線通信を行う移動局への、上りリンクの周波数リソースの割り当てに反映される。その結果、セル境界付近の移動局からの上りリンクのセル間干渉が低減する。この無線通信システムと同様の作用を奏する無線通信方法についても、同様にセル間干渉が低減する。
According to this wireless communication system, the uplink signal from the mobile station to the proximity antenna apparatus is transmitted to the signal processing apparatus connected to each antenna apparatus in a non-overlapping transmission band. In each signal processing device, the frequency resource of the uplink signal is assigned to the mobile station based on the signal quality of the reference signal included in the uplink signal. Therefore, the setting of the transmission band of each antenna apparatus is reflected in the allocation of uplink frequency resources to mobile stations that perform radio communication with each antenna apparatus. As a result, uplink inter-cell interference from mobile stations near the cell boundary is reduced. Inter-cell interference is similarly reduced in a wireless communication method having the same operation as this wireless communication system.
CU…中央処理ユニット
10,11…符号化変調部、12…信号多重部、13…サブキャリアマッピング部、14…IFFT部、15…CP付加部、16…送信無線部、17…光送信器、18…光受信器、19…受信無線部、20…OFDM復調部、21…パイロット信号抽出部、22…受信品質測定部、23…サブキャリア割当部、24…MCS決定部、25…制御情報生成部、26…CQI抽出部
RAU…アンテナユニット
30…アンテナ、31…デュプレクサ、32…光受信器、33,35…増幅器、34,36…フィルタ、37…光送信器
MS…移動局
50…アンテナ、51…デュプレクサ、52…受信無線部、53…OFDM復調部、54…制御情報抽出部、55…復調復号部、56…サブキャリア割当情報抽出部、57…パイロット信号抽出部、58…MCS情報抽出部、59…CQI測定部、60…符号化変調部、61…符号化変調部、62…信号多重部、63…サブキャリアマッピング部、64…IFFT部、65…CP付加部、66…送信無線部、67…パイロット信号生成部 CU:Central processing unit 10, 11: Encoding modulation unit, 12: Signal multiplexing unit, 13 ... Subcarrier mapping unit, 14 ... IFFT unit, 15 ... CP adding unit, 16 ... Transmission radio unit, 17 ... Optical transmitter, DESCRIPTION OF SYMBOLS 18 ... Optical receiver, 19 ... Reception radio part, 20 ... OFDM demodulation part, 21 ... Pilot signal extraction part, 22 ... Reception quality measurement part, 23 ... Subcarrier allocation part, 24 ... MCS determination part, 25 ... Control information generation 26: CQI extraction unit RAU ... Antenna unit 30 ... Antenna, 31 ... Duplexer, 32 ... Optical receiver, 33, 35 ... Amplifier, 34, 36 ... Filter, 37 ... Optical transmitter MS ... Mobile station 50 ... Antenna, DESCRIPTION OF SYMBOLS 51 ... Duplexer, 52 ... Reception radio | wireless part, 53 ... OFDM demodulation part, 54 ... Control information extraction part, 55 ... Demodulation decoding part, 56 ... Subcarrier allocation information extraction part, 57 ... Pilot signal extraction unit, 58... MCS information extraction unit, 59... CQI measurement unit, 60... Encoding modulation unit, 61... Encoding modulation unit, 62. 65... CP adding section, 66... Transmitting radio section, 67.
10,11…符号化変調部、12…信号多重部、13…サブキャリアマッピング部、14…IFFT部、15…CP付加部、16…送信無線部、17…光送信器、18…光受信器、19…受信無線部、20…OFDM復調部、21…パイロット信号抽出部、22…受信品質測定部、23…サブキャリア割当部、24…MCS決定部、25…制御情報生成部、26…CQI抽出部
RAU…アンテナユニット
30…アンテナ、31…デュプレクサ、32…光受信器、33,35…増幅器、34,36…フィルタ、37…光送信器
MS…移動局
50…アンテナ、51…デュプレクサ、52…受信無線部、53…OFDM復調部、54…制御情報抽出部、55…復調復号部、56…サブキャリア割当情報抽出部、57…パイロット信号抽出部、58…MCS情報抽出部、59…CQI測定部、60…符号化変調部、61…符号化変調部、62…信号多重部、63…サブキャリアマッピング部、64…IFFT部、65…CP付加部、66…送信無線部、67…パイロット信号生成部 CU:
1.無線通信システムの全体構成
先ず、無線通信システムの一実施形態(分散型アンテナシステム)の構成について、図1を参照して説明する。図1は、本実施形態の無線通信システムの単位セルにおける構成を説明するための図である。 1. First, the configuration of an embodiment (distributed antenna system) of a wireless communication system will be described with reference to FIG. FIG. 1 is a diagram for explaining a configuration in a unit cell of the wireless communication system of the present embodiment.
先ず、無線通信システムの一実施形態(分散型アンテナシステム)の構成について、図1を参照して説明する。図1は、本実施形態の無線通信システムの単位セルにおける構成を説明するための図である。 1. First, the configuration of an embodiment (distributed antenna system) of a wireless communication system will be described with reference to FIG. FIG. 1 is a diagram for explaining a configuration in a unit cell of the wireless communication system of the present embodiment.
図1に示すように、この無線通信システムは、セル内で地理的に略均等に分散されて配置される複数の遠隔アンテナユニット(以下、単に「アンテナユニット」又はRAU(Remote Antenna Unit)と略記する。)としてのRAUn(n=0,1,2,…)と、セルの略中央に設けられる中央処理ユニット(以下、適宜、CU(Central processing Unit) と略記する。)と、を含む。なお、アンテナユニットはアンテナ装置の一実施形態であり、中央処理ユニットは信号処理装置の一実施形態である。
As shown in FIG. 1, this wireless communication system is abbreviated as a plurality of remote antenna units (hereinafter simply referred to as “antenna units” or RAUs (Remote Antenna Units), which are geographically distributed in a cell. RAUn (n = 0, 1, 2,...) And a central processing unit (hereinafter abbreviated as CU (Central processing unit)) as appropriate. The antenna unit is an embodiment of the antenna device, and the central processing unit is an embodiment of the signal processing device.
各アンテナユニットRAUは、自ユニットの信号到達範囲内において、移動局(以下、適宜、MS(Mobile Station)と略記する。)と無線通信を行う。ここで、各アンテナユニットRAUが移動局MSと通信可能な範囲をマイクロセルと表記する。この無線通信システムでは、各アンテナユニットRAUがカバーする複数のマイクロセルによって単一のセルが形成される。
Each antenna unit RAU performs wireless communication with a mobile station (hereinafter abbreviated as MS (Mobile Station) as appropriate) within the signal reach of the unit. Here, the range in which each antenna unit RAU can communicate with the mobile station MS is referred to as a micro cell. In this wireless communication system, a single cell is formed by a plurality of microcells covered by each antenna unit RAU.
各アンテナユニットRAUと中央処理ユニットCUとは光ファイバケーブルで接続されている。中央処理ユニットCUから移動局MSに対する下りリンク信号は、中央処理ユニットCUからアンテナユニットRAUに対して光ファイバケーブルを介して伝送され、アンテナユニットRAUから移動局MSに対して無線信号で送信される。移動局MSから中央処理ユニットCUに対する上りリンク信号は、移動局MSからアンテナユニットRAUに対して無線信号で送信され、アンテナユニットRAUから中央処理ユニットCUに対して光ファイバケーブルを介して伝送される。この無線通信システムにおいて、中央処理ユニットCUは、アンテナを備えていないことを除けば、基地局と概ね同等の機能を備えている。
Each antenna unit RAU and the central processing unit CU are connected by an optical fiber cable. A downlink signal from the central processing unit CU to the mobile station MS is transmitted from the central processing unit CU to the antenna unit RAU via an optical fiber cable, and transmitted from the antenna unit RAU to the mobile station MS as a radio signal. . An uplink signal from the mobile station MS to the central processing unit CU is transmitted as a radio signal from the mobile station MS to the antenna unit RAU, and transmitted from the antenna unit RAU to the central processing unit CU via an optical fiber cable. . In this wireless communication system, the central processing unit CU has substantially the same function as a base station, except that it does not have an antenna.
この無線通信システムの通信方式は、移動局に割り当てる下りリンク又は上りリンクのキャリア周波数を、システム帯域(システム上割り当てられた帯域)内で適応的に制御するマルチキャリア伝送方式であることが好ましい。かかるマルチキャリア伝送方式として代表的なものに、MC-CDMA(Multi-Carrier Code Division Multiple Access)、OFDMA(Orthogonal
Frequency Division Multiple Access)方式等がある。MC-CDMA方式は、3GPP(Third Generation
Partnership Project)で検討が進められてきた。OFDMA方式は、例えば、3GPPで検討が進められているLTE(Long Term
Evolution)の下りの伝送方式に適用される。 The communication system of this radio communication system is preferably a multi-carrier transmission system that adaptively controls the downlink or uplink carrier frequency allocated to the mobile station within the system band (band allocated on the system). Typical examples of such multicarrier transmission systems include MC-CDMA (Multi-Carrier Code Division Multiple Access), OFDMA (Orthogonal).
Frequency Division Multiple Access) method. MC-CDMA system is 3GPP (Third Generation)
The Partnership Project has been studied. The OFDMA scheme is, for example, LTE (Long Term) which is being studied by 3GPP.
(Evolution) downlink transmission method.
Frequency Division Multiple Access)方式等がある。MC-CDMA方式は、3GPP(Third Generation
Partnership Project)で検討が進められてきた。OFDMA方式は、例えば、3GPPで検討が進められているLTE(Long Term
Evolution)の下りの伝送方式に適用される。 The communication system of this radio communication system is preferably a multi-carrier transmission system that adaptively controls the downlink or uplink carrier frequency allocated to the mobile station within the system band (band allocated on the system). Typical examples of such multicarrier transmission systems include MC-CDMA (Multi-Carrier Code Division Multiple Access), OFDMA (Orthogonal).
Frequency Division Multiple Access) method. MC-CDMA system is 3GPP (Third Generation)
The Partnership Project has been studied. The OFDMA scheme is, for example, LTE (Long Term) which is being studied by 3GPP.
(Evolution) downlink transmission method.
本実施形態の無線通信システムでは、いかなるマルチキャリア伝送方式も適用しうるが、以下では、本実施形態の無線通信システムがOFDMA方式を採る場合を例として説明する。
OFDMA方式では、システム帯域内の複数のサブキャリアに対して移動局MSを適応的に割り当てること(無線リソースの割り当て)が可能となっている。また、OFDMA方式は、マルチセル環境下で同一のシステム帯域(周波数)を再利用することができるため、周波数効率が高い方式でもある。 Although any multicarrier transmission scheme can be applied to the wireless communication system of the present embodiment, a case will be described below as an example where the wireless communication system of the present embodiment adopts the OFDMA scheme.
In the OFDMA scheme, it is possible to adaptively allocate mobile stations MS (radio resource allocation) to a plurality of subcarriers in the system band. The OFDMA scheme is also a scheme with high frequency efficiency because the same system band (frequency) can be reused in a multi-cell environment.
OFDMA方式では、システム帯域内の複数のサブキャリアに対して移動局MSを適応的に割り当てること(無線リソースの割り当て)が可能となっている。また、OFDMA方式は、マルチセル環境下で同一のシステム帯域(周波数)を再利用することができるため、周波数効率が高い方式でもある。 Although any multicarrier transmission scheme can be applied to the wireless communication system of the present embodiment, a case will be described below as an example where the wireless communication system of the present embodiment adopts the OFDMA scheme.
In the OFDMA scheme, it is possible to adaptively allocate mobile stations MS (radio resource allocation) to a plurality of subcarriers in the system band. The OFDMA scheme is also a scheme with high frequency efficiency because the same system band (frequency) can be reused in a multi-cell environment.
2.無線通信システムの各部の構成
以下、本実施形態の無線通信システムにおける中央処理ユニットCU、アンテナユニットRAU及び移動局MSの構成について、図2~4を参照して説明する。図2は、中央処理ユニットCUの内部構成の要部を示すブロック図である。図3は、アンテナユニットRAUの内部構成の要部を示すブロック図である。図4は、移動局MSの内部構成の要部を示すブロック図である。 2. Configuration of Each Part of Radio Communication System Hereinafter, the configuration of the central processing unit CU, the antenna unit RAU, and the mobile station MS in the radio communication system according to the present embodiment will be described with reference to FIGS. FIG. 2 is a block diagram showing a main part of the internal configuration of the central processing unit CU. FIG. 3 is a block diagram showing a main part of the internal configuration of the antenna unit RAU. FIG. 4 is a block diagram showing the main part of the internal configuration of the mobile station MS.
以下、本実施形態の無線通信システムにおける中央処理ユニットCU、アンテナユニットRAU及び移動局MSの構成について、図2~4を参照して説明する。図2は、中央処理ユニットCUの内部構成の要部を示すブロック図である。図3は、アンテナユニットRAUの内部構成の要部を示すブロック図である。図4は、移動局MSの内部構成の要部を示すブロック図である。 2. Configuration of Each Part of Radio Communication System Hereinafter, the configuration of the central processing unit CU, the antenna unit RAU, and the mobile station MS in the radio communication system according to the present embodiment will be described with reference to FIGS. FIG. 2 is a block diagram showing a main part of the internal configuration of the central processing unit CU. FIG. 3 is a block diagram showing a main part of the internal configuration of the antenna unit RAU. FIG. 4 is a block diagram showing the main part of the internal configuration of the mobile station MS.
(2-1)中央処理ユニットCUの構成
図2に示すように、中央処理ユニットCUは、符号化変調部10,11、信号多重部12、サブキャリアマッピング部13、IFFT部14、CP付加部15、送信無線部16、光送信器17、光受信器18、受信無線部19、OFDM復調部20、パイロット信号抽出部21、受信品質測定部22、サブキャリア割当部23、MCS決定部24、制御情報生成部25、CQI抽出部26を備える。 (2-1) Configuration of Central Processing Unit CU As shown in FIG. 2, the central processing unit CU includes coded modulation units 10 and 11, a signal multiplexing unit 12, a subcarrier mapping unit 13, an IFFT unit 14, and a CP adding unit. 15, a transmission radio unit 16, an optical transmitter 17, an optical receiver 18, a reception radio unit 19, an OFDM demodulation unit 20, a pilot signal extraction unit 21, a reception quality measurement unit 22, a subcarrier allocation unit 23, an MCS determination unit 24, A control information generation unit 25 and a CQI extraction unit 26 are provided.
図2に示すように、中央処理ユニットCUは、符号化変調部10,11、信号多重部12、サブキャリアマッピング部13、IFFT部14、CP付加部15、送信無線部16、光送信器17、光受信器18、受信無線部19、OFDM復調部20、パイロット信号抽出部21、受信品質測定部22、サブキャリア割当部23、MCS決定部24、制御情報生成部25、CQI抽出部26を備える。 (2-1) Configuration of Central Processing Unit CU As shown in FIG. 2, the central processing unit CU includes coded
符号化変調部10は、ビットデータ系列からなる制御情報に対し、所定の誤り訂正符号化を施し、更に所定の変調多値数の変調方式(例えばBPSK変調、QPSK変調)を用いてシンボルデータ系列信号を生成する。ここで、誤り訂正符号化を行う際の符号化率及び変調多値数は、予め設定された固定のものを用いる。一般的に、制御情報は、高品質伝送を必要とするためBPSK変調或いはQPSK変調で、低い符号化率を用いて伝送される。
The encoding modulation unit 10 performs predetermined error correction encoding on the control information including the bit data sequence, and further uses a predetermined modulation multilevel modulation scheme (for example, BPSK modulation, QPSK modulation) to generate a symbol data sequence. Generate a signal. Here, as the coding rate and the modulation multi-level number when performing error correction coding, preset fixed values are used. In general, control information is transmitted using a low coding rate by BPSK modulation or QPSK modulation because high-quality transmission is required.
符号化変調部11は、ビットデータ系列からなるユーザデータに対し、所定の誤り訂正符号化を施し、更に所定の変調多値数の変調方式(例えばQPSK、16QAM、64QAM変調)を用いてシンボルデータ系列信号を生成し、信号多重部12に出力する。信号多重部12は、符号化変調部10、符号化変調部11からの入力を多重し、周波数データブロックとして、サブキャリアマッピング部13に出力する。
The encoding modulation unit 11 performs predetermined error correction encoding on user data composed of a bit data sequence, and further uses symbol data using a predetermined modulation multi-level modulation scheme (for example, QPSK, 16QAM, 64QAM modulation). A series signal is generated and output to the signal multiplexer 12. The signal multiplexing unit 12 multiplexes the inputs from the encoding modulation unit 10 and the encoding modulation unit 11 and outputs the multiplexed data as a frequency data block to the subcarrier mapping unit 13.
サブキャリアマッピング部13は、信号多重部12の出力である周波数データブロックを、特定のサブキャリアにマッピング(以下、サブキャリアマッピング)し、IFFT部14に出力する。このとき、サブキャリアマッピング部13は、サブキャリア割当部23からのサブキャリア割当情報(サブブキャリア数、サブキャリア番号等)を用いてマッピングを行う。
The subcarrier mapping unit 13 maps the frequency data block that is the output of the signal multiplexing unit 12 to a specific subcarrier (hereinafter referred to as subcarrier mapping), and outputs it to the IFFT unit 14. At this time, the subcarrier mapping unit 13 performs mapping using the subcarrier allocation information (number of subcarriers, subcarrier number, etc.) from the subcarrier allocation unit 23.
IFFT(Inverse Fast Fourier Transform)部14は、サブキャリアマッピング部13の出力を、逆高速フーリエ変換して、CP付加部15に出力する。CP付加部15は、IFFT部14から入力した送信データにCP(Cyclic
Prefix)を用いたガード区間を挿入して送信無線部16へ出力する。 An IFFT (Inverse Fast Fourier Transform)unit 14 performs an inverse fast Fourier transform on the output of the subcarrier mapping unit 13 and outputs the result to the CP adding unit 15. The CP adding unit 15 adds CP (Cyclic) to the transmission data input from the IFFT unit 14.
A guard interval using Prefix) is inserted and output to thetransmission radio unit 16.
Prefix)を用いたガード区間を挿入して送信無線部16へ出力する。 An IFFT (Inverse Fast Fourier Transform)
A guard interval using Prefix) is inserted and output to the
送信無線部16は、CP付加部65からの送信データを、ベースバンド周波数から無線周波数へアップコンバート等して光送信器17へ出力する。光送信器17は、送信無線部16からの無線信号(下りリンク信号)を光強度変調して光信号に変換し、光ファイバケーブルOC1を通して各アンテナユニットRAU0~RAUnへ送信する。
The transmission radio unit 16 outputs the transmission data from the CP adding unit 65 to the optical transmitter 17 by up-converting the baseband frequency to the radio frequency. The optical transmitter 17 optically modulates the radio signal (downlink signal) from the transmission radio unit 16 to convert it into an optical signal, and transmits it to each antenna unit RAU0 to RAUn through the optical fiber cable OC1.
光受信器18は、各アンテナユニットRAU0~RAUnから光ファイバケーブルOC2を通して伝送される光信号(無線信号が光強度変調された信号)を受信し、この光信号を元の無線信号(上りリンク信号)に復調する。受信無線部19は、この無線信号に対し、増幅処理、帯域制限処理及び周波数変換処理を施し、同相(Inphase)信号及び直交(Quadrature Phase)信号からなる複素のベースバンド信号として出力する。
The optical receiver 18 receives an optical signal (a signal in which a radio signal is optical intensity modulated) transmitted from each of the antenna units RAU0 to RAUn through the optical fiber cable OC2, and uses the optical signal as an original radio signal (uplink signal). ). The reception radio unit 19 performs amplification processing, band limitation processing, and frequency conversion processing on the radio signal, and outputs the result as a complex baseband signal including an in-phase signal and a quadrature-phase signal.
OFDM復調部20は、入力された各々のベースバンド信号に対しOFDM復調を施す。すなわち、時間及び周波数同期処理後に、GI(Guard Interval)除去、FFT(Fast Fourier Transform)処理、直列並列変換処理を行う。
The OFDM demodulator 20 performs OFDM demodulation on each input baseband signal. That is, after time and frequency synchronization processing, GI (Guard Interval) removal, FFT (Fast Fourier Transform) processing, and serial-parallel conversion processing are performed.
パイロット信号抽出部21は、OFDM復調部20から入力された受信信号より、移動局から送信されたパイロット信号を抽出して受信品質測定部22へ出力する。CQI抽出部26は、OFDM復調部20から入力された受信信号より、移動局から送信されたチャネル品質情報(CQI:Channel Quality Information)を抽出してサブキャリア割当部23へ出力する。
The pilot signal extraction unit 21 extracts the pilot signal transmitted from the mobile station from the reception signal input from the OFDM demodulation unit 20 and outputs the pilot signal to the reception quality measurement unit 22. The CQI extraction unit 26 extracts channel quality information (CQI: Channel Quality Information) transmitted from the mobile station from the received signal input from the OFDM demodulation unit 20 and outputs the channel quality information (CQI) to the subcarrier allocation unit 23.
受信品質測定部22は、パイロット信号抽出部21の出力に基づいてサブキャリア毎の受信品質を測定する。具体的には、受信品質測定部22は、パイロット信号抽出部21からのパイロット信号を用いて、サブキャリア毎の受信品質を測定してサブキャリア割当部23に出力する。この受信品質として、パイロット信号に基づく、CIR(Carrier to Interferer Ratio)またはSIR(Signal to Interferer Ratio)、SNR(Signal
to Noise Ratio)等の任意の測定値を用いる。 The receptionquality measurement unit 22 measures the reception quality for each subcarrier based on the output of the pilot signal extraction unit 21. Specifically, the reception quality measurement unit 22 measures the reception quality for each subcarrier using the pilot signal from the pilot signal extraction unit 21 and outputs it to the subcarrier allocation unit 23. As this reception quality, CIR (Carrier to Interferer Ratio) or SIR (Signal to Interferer Ratio), SNR (Signal
Use any measured value such as Noise Ratio).
to Noise Ratio)等の任意の測定値を用いる。 The reception
Use any measured value such as Noise Ratio).
サブキャリア割当部23は、受信品質測定部22により測定された、サブキャリア毎の受信品質を用いて、各移動局からの上りリンクのサブキャリアを割り当てる(周波数リソースを割り当てる)。具体的には、サブキャリア割当部23は、サブキャリア割当情報として、サブブキャリア数、サブキャリア番号等を設定する。ここでは、各移動局からの受信品質が高くなるようなサブキャリアが移動局ごとに割り当てられる。そして、サブキャリア割当部23は、各移動局からの上りリンクに対するサブキャリア割当情報を、サブキャリアマッピング部13とMCS決定部24に出力する。
The subcarrier allocation unit 23 allocates uplink subcarriers from each mobile station using the reception quality for each subcarrier measured by the reception quality measurement unit 22 (allocates frequency resources). Specifically, the subcarrier allocation unit 23 sets the number of subcarriers, the subcarrier number, and the like as the subcarrier allocation information. Here, subcarriers with high reception quality from each mobile station are assigned to each mobile station. Then, the subcarrier allocation unit 23 outputs uplink subcarrier allocation information from each mobile station to the subcarrier mapping unit 13 and the MCS determination unit 24.
また、サブキャリア割当部23は、CQI抽出部26により抽出された、各サブキャリアのCQIを用いて、各移動局に対する下りリンクのサブキャリアを割り当てる(周波数リソースを割り当てる)。具体的には、サブキャリア割当部23は、サブキャリア割当情報として、サブブキャリア数、サブキャリア番号等を設定する。ここでは、各移動局からのCQIが良好となる(品質が高くなる)ようなサブキャリアが移動局ごとに割り当てられる。そして、サブキャリア割当部23は、各移動局への下りリンクに対するサブキャリア割当情報を、サブキャリアマッピング部13とMCS決定部24に出力する。
Also, the subcarrier allocation unit 23 allocates downlink subcarriers to each mobile station (allocates frequency resources) using the CQI of each subcarrier extracted by the CQI extraction unit 26. Specifically, the subcarrier allocation unit 23 sets the number of subcarriers, the subcarrier number, and the like as the subcarrier allocation information. Here, subcarriers with good CQI (higher quality) from each mobile station are assigned to each mobile station. Then, the subcarrier allocation unit 23 outputs the subcarrier allocation information for the downlink to each mobile station to the subcarrier mapping unit 13 and the MCS determination unit 24.
MCS決定部24は、サブキャリア割当部23からのサブキャリア割当情報と各サブキャリアの受信品質の情報を基に、サブキャリア毎或いは複数のサブキャリアをセットにしたサブキャリアブロック毎に、変調多値数及び符号率等のMCS(Modulation and Coding Schemes)情報を適応的に選択して制御情報生成部25に出力する。制御情報生成部25は、MCS情報及びサブキャリア割当情報を含む制御信号を生成し、制御情報として符号化変調部10に出力する。
Based on the subcarrier allocation information from the subcarrier allocation unit 23 and the information on the reception quality of each subcarrier, the MCS determination unit 24 performs modulation modulation for each subcarrier or for each subcarrier block in which a plurality of subcarriers are set. MCS (Modulation and Coding Schemes) information such as the number of values and code rate is adaptively selected and output to the control information generation unit 25. The control information generation unit 25 generates a control signal including MCS information and subcarrier allocation information, and outputs the control signal to the encoding modulation unit 10 as control information.
(2-2)アンテナユニットRAUの構成
図3では、複数のアンテナユニットRAU0~RAUnの内、アンテナユニットRAU0の内部構成のみを示しているが、その他のアンテナユニットについても同様の構成を備えている。図3に示すように、アンテナユニットRAU0は、アンテナ30、デュプレクサ31、光受信器32、増幅器33(下りリンク信号用)、フィルタ34(下りリンク信号用)、増幅器35(上りリンク信号用)、フィルタ36(上りリンク信号用)、光送信器37を備える。デュプレクサ31(DPX)は、送受信系でアンテナ30を共用するために設けられる。 (2-2) Configuration of Antenna Unit RAU FIG. 3 shows only the internal configuration of antenna unit RAU0 among the plurality of antenna units RAU0 to RAUn, but other antenna units have the same configuration. . As shown in FIG. 3, the antenna unit RAU0 includes anantenna 30, a duplexer 31, an optical receiver 32, an amplifier 33 (for downlink signal), a filter 34 (for downlink signal), an amplifier 35 (for uplink signal), A filter 36 (for uplink signal) and an optical transmitter 37 are provided. The duplexer 31 (DPX) is provided to share the antenna 30 in the transmission / reception system.
図3では、複数のアンテナユニットRAU0~RAUnの内、アンテナユニットRAU0の内部構成のみを示しているが、その他のアンテナユニットについても同様の構成を備えている。図3に示すように、アンテナユニットRAU0は、アンテナ30、デュプレクサ31、光受信器32、増幅器33(下りリンク信号用)、フィルタ34(下りリンク信号用)、増幅器35(上りリンク信号用)、フィルタ36(上りリンク信号用)、光送信器37を備える。デュプレクサ31(DPX)は、送受信系でアンテナ30を共用するために設けられる。 (2-2) Configuration of Antenna Unit RAU FIG. 3 shows only the internal configuration of antenna unit RAU0 among the plurality of antenna units RAU0 to RAUn, but other antenna units have the same configuration. . As shown in FIG. 3, the antenna unit RAU0 includes an
光受信器32は、中央処理ユニットCUから光ファイバケーブルOC1を通して伝送される光信号(無線信号が光強度変調された信号)を受信し、この光信号を元の無線信号に復調する。フィルタ34は、増幅器33で増幅された無線信号(下りリンク信号)を抑制することなく透過させる帯域が、システム帯域の一部である所定の透過帯域となるように設定されている。
The optical receiver 32 receives an optical signal transmitted from the central processing unit CU through the optical fiber cable OC1 (a signal obtained by modulating a radio intensity of the radio signal), and demodulates the optical signal into an original radio signal. The filter 34 is set so that a band through which the radio signal (downlink signal) amplified by the amplifier 33 is transmitted is a predetermined transmission band that is a part of the system band.
一方、移動局からアンテナ30が受信した無線信号は、増幅器35で増幅された後にフィルタ36に入力される。フィルタ36は、入力された無線信号(上りリンク信号)を抑制することなく透過させる帯域が、システム帯域の一部である所定の透過帯域となるように設定されている。光送信器37は、フィルタ36を透過した無線信号を光強度変調して光信号に変換し、光ファイバケーブルOC2を通して中央処理ユニットCUへ出力する。
On the other hand, the radio signal received by the antenna 30 from the mobile station is amplified by the amplifier 35 and then input to the filter 36. The filter 36 is set so that the band that transmits the input radio signal (uplink signal) without being suppressed is a predetermined transmission band that is a part of the system band. The optical transmitter 37 converts the radio signal transmitted through the filter 36 into an optical signal by modulating the optical intensity, and outputs the optical signal to the central processing unit CU through the optical fiber cable OC2.
なお、フィルタ34,36は公知のBPF(Band Pass Filter)であり、デジタルフィルタとしてもアナログフィルタとしても構成可能である。
The filters 34 and 36 are known BPFs (Band Pass Filters) and can be configured as digital filters or analog filters.
(2-3)移動局MSの構成
図4に示すように、移動局MSは、アンテナ50、デュプレクサ51、受信無線部52、OFDM復調部53、制御情報抽出部54、復調復号部55、サブキャリア割当情報抽出部56、パイロット信号抽出部57、MCS情報抽出部58、CQI測定部59、符号化変調部60、符号化変調部61、信号多重部62、サブキャリアマッピング部63、IFFT部64、CP付加部65、送信無線部66、パイロット信号生成部67を備える。デュプレクサ51(DPX)は、送受信系でアンテナ50を共用するために設けられる。 (2-3) Configuration of Mobile Station MS As shown in FIG. 4, the mobile station MS includes anantenna 50, a duplexer 51, a reception radio unit 52, an OFDM demodulation unit 53, a control information extraction unit 54, a demodulation / decoding unit 55, Carrier allocation information extraction unit 56, pilot signal extraction unit 57, MCS information extraction unit 58, CQI measurement unit 59, encoding modulation unit 60, encoding modulation unit 61, signal multiplexing unit 62, subcarrier mapping unit 63, IFFT unit 64 , A CP adding unit 65, a transmission radio unit 66, and a pilot signal generating unit 67. The duplexer 51 (DPX) is provided to share the antenna 50 in the transmission / reception system.
図4に示すように、移動局MSは、アンテナ50、デュプレクサ51、受信無線部52、OFDM復調部53、制御情報抽出部54、復調復号部55、サブキャリア割当情報抽出部56、パイロット信号抽出部57、MCS情報抽出部58、CQI測定部59、符号化変調部60、符号化変調部61、信号多重部62、サブキャリアマッピング部63、IFFT部64、CP付加部65、送信無線部66、パイロット信号生成部67を備える。デュプレクサ51(DPX)は、送受信系でアンテナ50を共用するために設けられる。 (2-3) Configuration of Mobile Station MS As shown in FIG. 4, the mobile station MS includes an
符号化変調部60は、ビットデータ系列からなるユーザデータに対し、所定の誤り訂正符号化を施し、更に所定の変調多値数の変調方式(例えば、QPSK、16QAM、64QAM変調)を用いてシンボルデータ系列信号を生成し、信号多重部62に出力する。ここで、誤り訂正符号化を行う際の符号化率及び変調多値数に関するMCS情報(Modulation and Coding Schemes)は、中央処理ユニットCUから送信される制御信号からMCS情報を抽出するMCS情報抽出部58の出力に基づいて設定する。この設定により伝搬路状況に応じた適応変調が可能となっている。
The encoding / modulation unit 60 performs predetermined error correction coding on user data consisting of a bit data sequence, and further uses a predetermined modulation multi-level modulation scheme (for example, QPSK, 16QAM, 64QAM modulation) to generate symbols. A data series signal is generated and output to the signal multiplexing unit 62. Here, the MCS information (Modulation and Coding Schemes) regarding the coding rate and the modulation multi-level number when performing error correction coding is an MCS information extraction unit that extracts MCS information from a control signal transmitted from the central processing unit CU. 58 based on the output of 58. This setting enables adaptive modulation according to the propagation path condition.
符号化変調部61は、ビットデータ系列からなる制御情報に対し、所定の誤り訂正符号化を施し、更に所定の変調多値数の変調方式(例えばBPSK変調、QPSK変調)を用いてシンボルデータ系列信号を生成する。ここで、誤り訂正符号化を行う際の符号化率及び変調多値数は、予め固定のものを用いる。一般的に、制御情報は高品質伝送を必要とするためBPSK変調或いはQPSK変調で、低い符号化率を用いて伝送する。
The encoding modulation unit 61 performs predetermined error correction encoding on the control information including the bit data sequence, and further uses a predetermined modulation multilevel modulation scheme (for example, BPSK modulation, QPSK modulation) to generate a symbol data sequence. Generate a signal. Here, the coding rate and the modulation multi-level number used for error correction coding are fixed in advance. Generally, since control information requires high-quality transmission, it is transmitted using a low coding rate by BPSK modulation or QPSK modulation.
信号多重部62は、符号化変調部60,61からの入力を多重し、周波数データブロックとして、サブキャリアマッピング部63に出力する。
The signal multiplexing unit 62 multiplexes the inputs from the encoding modulation units 60 and 61 and outputs the multiplexed data as a frequency data block to the subcarrier mapping unit 63.
サブキャリアマッピング部63は、信号多重部62の出力である周波数データブロックを、特定のサブキャリアにマッピング(以下、サブキャリアマッピング)し、IFFT部64に出力する。このとき、サブキャリアマッピング部63は、サブキャリア割当情報抽出部56で抽出されたサブキャリア割当情報(サブブキャリア数、サブキャリア番号等)を用いてマッピングを行う。
The subcarrier mapping unit 63 maps the frequency data block, which is the output of the signal multiplexing unit 62, to a specific subcarrier (hereinafter referred to as subcarrier mapping), and outputs it to the IFFT unit 64. At this time, the subcarrier mapping unit 63 performs mapping using the subcarrier allocation information (number of subcarriers, subcarrier number, etc.) extracted by the subcarrier allocation information extraction unit 56.
IFFT部64は、サブキャリアマッピング部63の出力を、逆高速フーリエ変換して、CP付加部65に出力する。CP付加部65は、IFFT部64から入力した送信データにCP(Cyclic Prefix)を用いたガード区間を挿入して送信無線部66へ出力する。送信無線部66は、CP付加部65からの送信データを、ベースバンド周波数から無線周波数へアップコンバート等してアンテナ50から空間へ放射する。
The IFFT unit 64 performs inverse fast Fourier transform on the output of the subcarrier mapping unit 63 and outputs the result to the CP adding unit 65. CP adding section 65 inserts a guard interval using CP (Cyclic Prefix) into the transmission data input from IFFT section 64 and outputs the result to transmission radio section 66. The transmission radio unit 66 radiates the transmission data from the CP adding unit 65 from the antenna 50 to the space by up-converting the baseband frequency to the radio frequency.
受信無線部52は、アンテナ50にて受信した無線信号に対し、増幅処理、帯域制限処理及び周波数変換処理を施し、同相(Inphase)信号及び直交(Quadrature Phase)信号からなる複素のベースバンド信号として出力する。
The reception radio unit 52 performs amplification processing, band limitation processing, and frequency conversion processing on the radio signal received by the antenna 50, and forms a complex baseband signal composed of an in-phase signal and a quadrature-phase signal. Output.
OFDM復調部53は、入力された各々のベースバンド信号に対しOFDM復調を施す。すなわち、時間及び周波数同期処理後に、GI(Guard Interval)除去、FFT(Fast Fourier Transform)処理、直列並列変換処理を行う。
The OFDM demodulator 53 performs OFDM demodulation on each input baseband signal. That is, after time and frequency synchronization processing, GI (Guard Interval) removal, FFT (Fast Fourier Transform) processing, and serial-parallel conversion processing are performed.
制御情報抽出部54は、OFDM復調部53から入力した受信信号より、中央処理ユニットCUからの制御情報を抽出して復調復号部55へ出力する。この制御信号には、サブキャリア割当情報、パイロット信号、及びMCS情報が含まれる。サブキャリア割当情報抽出部56、パイロット信号抽出部57、及びMCS情報抽出部58は、復調復号部55で復調処理及び復号化処理された制御情報から、それぞれサブキャリア割当情報、パイロット信号、及びMCS情報を抽出する。
The control information extraction unit 54 extracts control information from the central processing unit CU from the received signal input from the OFDM demodulation unit 53 and outputs the control information to the demodulation and decoding unit 55. This control signal includes subcarrier allocation information, pilot signals, and MCS information. The subcarrier allocation information extraction unit 56, pilot signal extraction unit 57, and MCS information extraction unit 58 are subcarrier allocation information, pilot signal, and MCS, respectively, from the control information demodulated and decoded by the demodulation and decoding unit 55. Extract information.
CQI測定部59は、パイロット信号抽出部57の出力に基づいて各サブキャリアのチャネル品質情報(CQI:Channel Quality Information)を測定する。具体的には、CQI測定部59は、パイロット信号抽出部57からのパイロット信号を用いて、サブキャリア毎のCQIを測定して信号多重部62へ出力する。CQIとして、パイロット信号に基づく、CIR(Carrier
to Interferer Ratio)またはSIR(Signal to Interferer Ratio)、SNR(Signal to Noise
Ratio)等の任意の測定値を適用することができる。この各サブキャリアのCQIは、移動局に対する下りリンクの信号品質を表している。各サブキャリアのCQIは中央処理ユニットCUへ送信されて、各移動局への下りリンクのサブキャリアの割り当てに利用される。CQI measurement section 59 measures channel quality information (CQI) of each subcarrier based on the output of pilot signal extraction section 57. Specifically, CQI measurement unit 59 measures the CQI for each subcarrier using the pilot signal from pilot signal extraction unit 57 and outputs the CQI to signal multiplexing unit 62. CIR (Carrier based on pilot signal) as CQI
to Interferer Ratio), SIR (Signal to Interferer Ratio), SNR (Signal to Noise)
Any measured value such as Ratio) can be applied. The CQI of each subcarrier represents downlink signal quality for the mobile station. The CQI of each subcarrier is transmitted to the central processing unit CU, and is used for downlink subcarrier allocation to each mobile station.
to Interferer Ratio)またはSIR(Signal to Interferer Ratio)、SNR(Signal to Noise
Ratio)等の任意の測定値を適用することができる。この各サブキャリアのCQIは、移動局に対する下りリンクの信号品質を表している。各サブキャリアのCQIは中央処理ユニットCUへ送信されて、各移動局への下りリンクのサブキャリアの割り当てに利用される。
to Interferer Ratio), SIR (Signal to Interferer Ratio), SNR (Signal to Noise)
Any measured value such as Ratio) can be applied. The CQI of each subcarrier represents downlink signal quality for the mobile station. The CQI of each subcarrier is transmitted to the central processing unit CU, and is used for downlink subcarrier allocation to each mobile station.
パイロット信号生成部67は、中央処理ユニットCUに対し予め既知となる信号系列であるパイロット信号を生成し、信号多重部62に出力する。ここで、パイロット信号に用いる信号系列は、パイロット信号抽出部57の出力に基づいて設定される。
The pilot signal generator 67 generates a pilot signal that is a signal sequence that is known in advance for the central processing unit CU, and outputs the pilot signal to the signal multiplexer 62. Here, the signal sequence used for the pilot signal is set based on the output of the pilot signal extraction unit 57.
3.フィルタ特性
(3-1)フィルタ特性(フィルタの透過帯域)の設定
実施形態の無線通信システムにおいて、セル内のアンテナユニットRAU0~RAUnの内、セル境界近傍、又はセル境界に近接したマイクロセルのアンテナユニットのフィルタ34(下りリンク信号用)の特性は、下りリンク信号を抑制することなく透過させる透過帯域が、セル境界を挟んで近接し異なるセルに属する他のアンテナユニットの透過帯域とは、互いに重複しないように設定される。同様にして、セル内のアンテナユニットRAU0~RAUnの内、セル境界近傍、又はセル境界に近接したマイクロセルのアンテナユニットのフィルタ36(上りリンク信号用)の特性は、上りリンク信号を抑制することなく透過させる透過帯域が、セル境界を挟んで近接し異なるセルに属する他のアンテナユニットの透過帯域とは、互いに重複しないように設定される。すなわち、近接アンテナユニットの各々のフィルタ特性が重複しないように設定される。 3. Filter characteristics (3-1) Setting of filter characteristics (filter transmission band) In the wireless communication system of the embodiment, among the antenna units RAU0 to RAUn in the cell, the antenna of the micro cell near the cell boundary or close to the cell boundary. The characteristics of the unit filter 34 (for downlink signals) are such that the transmission band transmitted without suppressing the downlink signal is different from the transmission bands of other antenna units belonging to different cells that are close to each other across the cell boundary. It is set not to overlap. Similarly, the characteristics of the filter 36 (for uplink signal) of the antenna unit of the microcell in the vicinity of the cell boundary or in the vicinity of the cell boundary among the antenna units RAU0 to RAUn in the cell can suppress the uplink signal. The transmission band to be transmitted is set so as not to overlap with the transmission bands of other antenna units that are close to each other and belong to different cells across the cell boundary. That is, the filter characteristics of the proximity antenna units are set so as not to overlap.
(3-1)フィルタ特性(フィルタの透過帯域)の設定
実施形態の無線通信システムにおいて、セル内のアンテナユニットRAU0~RAUnの内、セル境界近傍、又はセル境界に近接したマイクロセルのアンテナユニットのフィルタ34(下りリンク信号用)の特性は、下りリンク信号を抑制することなく透過させる透過帯域が、セル境界を挟んで近接し異なるセルに属する他のアンテナユニットの透過帯域とは、互いに重複しないように設定される。同様にして、セル内のアンテナユニットRAU0~RAUnの内、セル境界近傍、又はセル境界に近接したマイクロセルのアンテナユニットのフィルタ36(上りリンク信号用)の特性は、上りリンク信号を抑制することなく透過させる透過帯域が、セル境界を挟んで近接し異なるセルに属する他のアンテナユニットの透過帯域とは、互いに重複しないように設定される。すなわち、近接アンテナユニットの各々のフィルタ特性が重複しないように設定される。 3. Filter characteristics (3-1) Setting of filter characteristics (filter transmission band) In the wireless communication system of the embodiment, among the antenna units RAU0 to RAUn in the cell, the antenna of the micro cell near the cell boundary or close to the cell boundary. The characteristics of the unit filter 34 (for downlink signals) are such that the transmission band transmitted without suppressing the downlink signal is different from the transmission bands of other antenna units belonging to different cells that are close to each other across the cell boundary. It is set not to overlap. Similarly, the characteristics of the filter 36 (for uplink signal) of the antenna unit of the microcell in the vicinity of the cell boundary or in the vicinity of the cell boundary among the antenna units RAU0 to RAUn in the cell can suppress the uplink signal. The transmission band to be transmitted is set so as not to overlap with the transmission bands of other antenna units that are close to each other and belong to different cells across the cell boundary. That is, the filter characteristics of the proximity antenna units are set so as not to overlap.
かかるフィルタ特性の設定は、セル境界において、アンテナユニットと移動局との間のセル間干渉を低減させるために行われる。一方、同一セル内の通信リンクでは一般に、適切なスケジューリング等により干渉が回避されることが予定されており、この無線通信システムにおいては、同一のセル内の通信リンクの干渉のためのフィルタの設定は考慮しない。例えば同一セル内で近接するアンテナユニットのフィルタ特性には制限は設けない。
The filter characteristics are set in order to reduce inter-cell interference between the antenna unit and the mobile station at the cell boundary. On the other hand, in the communication link in the same cell, interference is generally planned to be avoided by appropriate scheduling or the like. In this wireless communication system, setting of a filter for interference of the communication link in the same cell is planned. Is not considered. For example, there is no restriction on the filter characteristics of antenna units that are close together in the same cell.
フィルタ特性としては、透過帯域以外の帯域を抑制する(完全に遮断しない)ようにする設定(以下、フィルタ設定FS1)と、透過帯域以外の帯域を完全に遮断する設定(以下、フィルタ設定FS2)とが考えられる。このどちらのフィルタ設定を適用してもよいが、上りリンク信号用フィルタには、上記フィルタ設定FS2を適用することが好ましい。このことは、隣接するセル間で近接した位置に存在する2つの移動局を想定した場合に、以下のとおり説明される。
As filter characteristics, a setting for suppressing (not completely blocking) a band other than the transmission band (hereinafter, filter setting FS1) and a setting for completely blocking a band other than the transmission band (hereinafter, filter setting FS2). You could think so. Either of these filter settings may be applied, but it is preferable to apply the filter setting FS2 to the uplink signal filter. This will be explained as follows when two mobile stations existing in close positions between adjacent cells are assumed.
すなわち、下りリンクにおいて、フィルタ34(下りリンク信号用)をフィルタ設定FS2にした場合には、アンテナユニットにおいて透過帯域以外の帯域の信号の送信電力が低下するため、透過帯域以外の帯域の送信信号の到達範囲が制限される。つまり、セル境界付近まで電波が届かないために、上述したような透過帯域の重複設定がなされなければ、セル間干渉(各移動局に対する下りリンク信号同士の干渉)が低減することになる。
That is, in the downlink, when the filter 34 (for downlink signal) is set to the filter setting FS2, the transmission power of a signal in a band other than the transmission band decreases in the antenna unit. The reach of is limited. That is, since radio waves do not reach the vicinity of the cell boundary, inter-cell interference (interference between downlink signals for each mobile station) is reduced unless the above-described transmission band overlap setting is made.
一方、この無線通信システムでは移動局側にフィルタが設定されないので、上りリンクでは、隣接するセル間で近接した位置に存在する2つの移動局の送信電力自体は低下しない。そのため、フィルタ36(上りリンク信号用)をフィルタ設定FS1(透過帯域以外の帯域を完全に遮断しない設定)にしたときには、2つの移動局間の距離が短いため、各移動局からの送信信号の干渉が発生し得る。かかる観点から、上りリンク信号用フィルタには、上記フィルタ設定FS2(透過帯域以外の帯域を完全に遮断する設定)を適用することが好ましい。
On the other hand, since no filter is set on the mobile station side in this wireless communication system, the transmission power itself of two mobile stations existing at positions close to each other in adjacent cells does not decrease in the uplink. Therefore, when the filter 36 (for the uplink signal) is set to the filter setting FS1 (a setting that does not completely cut off the band other than the transmission band), the distance between the two mobile stations is short. Interference can occur. From this viewpoint, it is preferable to apply the filter setting FS2 (setting for completely blocking bands other than the transmission band) to the uplink signal filter.
なお、フィルタ34(下りリンク信号用)及びフィルタ36(上りリンク信号用)のフィルタ特性は、それぞれシステム上規定される下り用帯域及び上り用帯域に応じて別個に設定され得る。また、実質的に下りリンク又は上りリンクのいずれかにのみフィルタを実質的に設ける(すなわち、いずれか一方を全帯域透過の設定にする)ようにしてもよい。
Note that the filter characteristics of the filter 34 (for downlink signal) and the filter 36 (for uplink signal) can be set separately according to the downlink band and the uplink band specified in the system, respectively. Further, a filter may be provided substantially only in either the downlink or the uplink (that is, either one is set to transmit all bands).
(3-2)マルチセル環境下でのフィルタ特性の例
上述したように、マルチセル環境下での各アンテナユニットのフィルタ特性の設定は、以下の2つの要件(要件A,要件B)を考慮して決定される。
(要件A)互いに異なるセルに属する近接アンテナユニットのフィルタ特性(信号を抑制することなく透過させる透過帯域)は、互いに重複しない。
(要件B)同一セルで近接するアンテナユニットのフィルタ特性に制限はない。 (3-2) Examples of filter characteristics in a multi-cell environment As described above, the filter characteristics of each antenna unit in a multi-cell environment are set in consideration of the following two requirements (requirement A and requirement B). It is determined.
(Requirement A) The filter characteristics (transmission bands that pass through without suppressing signals) of the proximity antenna units belonging to different cells do not overlap each other.
(Requirement B) There is no limitation on the filter characteristics of antenna units that are adjacent to each other in the same cell.
上述したように、マルチセル環境下での各アンテナユニットのフィルタ特性の設定は、以下の2つの要件(要件A,要件B)を考慮して決定される。
(要件A)互いに異なるセルに属する近接アンテナユニットのフィルタ特性(信号を抑制することなく透過させる透過帯域)は、互いに重複しない。
(要件B)同一セルで近接するアンテナユニットのフィルタ特性に制限はない。 (3-2) Examples of filter characteristics in a multi-cell environment As described above, the filter characteristics of each antenna unit in a multi-cell environment are set in consideration of the following two requirements (requirement A and requirement B). It is determined.
(Requirement A) The filter characteristics (transmission bands that pass through without suppressing signals) of the proximity antenna units belonging to different cells do not overlap each other.
(Requirement B) There is no limitation on the filter characteristics of antenna units that are adjacent to each other in the same cell.
以下、マルチセル環境下でのフィルタ特性の設定例について、図5~8を参照して説明する。図5は、フィルタ特性としての周波数-パワースペクトル密度(PSD)の関係を例示する図であり、(a)はシステム帯域の全帯域を透過させる特性(以下、全帯域透過特性)、(b)はシステム帯域の内、帯域F1のみを抑制することなく透過させる特性(以下、F1帯域透過特性)、(c)はシステム帯域の内、帯域F2のみを抑制することなく透過させる特性(以下、F2帯域透過特性)、(b)はシステム帯域の内、帯域F3のみを抑制することなく透過させる特性(以下、F3帯域透過特性)、を示す。図6~7は、3つの互いに隣接したセルC1~C3におけるアンテナユニットRAUの特性を示す図であり、アンテナユニットとともに記載されたF0~F3は、そのアンテナユニットのフィルタ特性がそれぞれ図5の(a)~(d)であることを示している。
Hereinafter, setting examples of filter characteristics in a multi-cell environment will be described with reference to FIGS. FIG. 5 is a diagram illustrating the relationship between frequency and power spectral density (PSD) as a filter characteristic. FIG. 5A is a characteristic that transmits the entire system band (hereinafter referred to as a full band transmission characteristic), and FIG. Is a characteristic of transmitting only the band F1 without being suppressed in the system band (hereinafter referred to as F1 band transmission characteristic), and (c) is a characteristic of transmitting only the band F2 of the system band without being suppressed (hereinafter referred to as F2). (Band transmission characteristics) and (b) show characteristics (hereinafter referred to as F3 band transmission characteristics) that allow transmission without suppressing only the band F3 in the system band. 6 to 7 are diagrams showing the characteristics of the antenna unit RAU in three mutually adjacent cells C1 to C3. F0 to F3 described together with the antenna unit have filter characteristics of the antenna unit shown in FIG. a) to (d).
図6~8において、セルC1には、中央処理ユニットCU1と、複数のアンテナユニットRAU10~RAU16とが設けられ、中央処理ユニットCU1と各アンテナユニットは光ファイバケーブル(図示せず)で接続されている。セルC2には、中央処理ユニットCU2と、複数のアンテナユニットRAU20~RAU26とが設けられ、中央処理ユニットCU2と各アンテナユニットは光ファイバケーブル(図示せず)で接続されている。セルC3には、中央処理ユニットCU3と、複数のアンテナユニットRAU30~RAU36とが設けられ、中央処理ユニットCU3と各アンテナユニットは光ファイバケーブル(図示せず)で接続されている。
6 to 8, the cell C1 is provided with a central processing unit CU1 and a plurality of antenna units RAU10 to RAU16. The central processing unit CU1 and each antenna unit are connected by an optical fiber cable (not shown). Yes. The cell C2 is provided with a central processing unit CU2 and a plurality of antenna units RAU20 to RAU26, and the central processing unit CU2 and each antenna unit are connected by an optical fiber cable (not shown). The cell C3 is provided with a central processing unit CU3 and a plurality of antenna units RAU30 to RAU36, and the central processing unit CU3 and each antenna unit are connected by an optical fiber cable (not shown).
ここでは特に、セル境界を挟んで隣接したマイクロセルのアンテナユニット、すなわち、アンテナユニットRAU12~14、アンテナユニットRAU24~26、アンテナユニットRAU31~32,36のフィルタ特性に着目する。
Here, in particular, attention is paid to the filter characteristics of the antenna units of the microcells adjacent to each other across the cell boundary, that is, the antenna units RAU12 to 14, the antenna units RAU24 to 26, and the antenna units RAU31 to 32,36.
先ず図6は、同一セルのセル境界に存在するアンテナユニットのフィルタ特性が同一であって、かつ、そのフィルタ特性が異なるセル間で異なるようにして、各アンテナユニットのフィルタ特性を設定した例である。例えば図6では、セルC1に属するアンテナユニットRAU12~14はすべてF1帯域透過特性に設定され、セルC2に属するアンテナユニットRAU24~26はすべてF2帯域透過特性に設定され、セルC3に属するアンテナユニットRAU31~32,36はすべてF3帯域透過特性に設定される。これにより、セル境界を挟んで隣接するマイクロセルの近接アンテナユニットの透過帯域が重複しない(上記、要件A)。なお、各セルの中心にあるアンテナユニットRAU10,20,30はセル間干渉を考慮する必要がないため、フィルタ特性に制限はなく(上記、要件B)、ここでは全帯域透過特性としている。
First, FIG. 6 is an example in which the filter characteristics of each antenna unit are set such that the filter characteristics of the antenna units existing at the cell boundary of the same cell are the same and the filter characteristics are different between different cells. is there. For example, in FIG. 6, the antenna units RAU12 to 14 belonging to the cell C1 are all set to the F1 band transmission characteristics, and the antenna units RAU24 to 26 belonging to the cell C2 are all set to the F2 band transmission characteristics, and the antenna units RAU31 belonging to the cell C3. 32 to 36 are all set to F3 band transmission characteristics. Thereby, the transmission band of the proximity antenna unit of the adjacent micro cell across the cell boundary does not overlap (the above requirement A). The antenna units RAU 10, 20, and 30 at the center of each cell do not need to consider inter-cell interference, so there is no limitation on the filter characteristics (requirement B above), and here the full-band transmission characteristics are used.
図7,8は、同一セルのセル境界に存在するアンテナユニットのフィルタ特性がマイクロセル毎に異なりうる場合の、各アンテナユニットのフィルタ特性を設定した例である。
7 and 8 are examples in which the filter characteristics of each antenna unit are set when the filter characteristics of the antenna units existing at the cell boundary of the same cell can be different for each microcell.
図7では、セルC1に属するアンテナユニットRAU13のフィルタ特性はF1帯域透過特性とし、そのアンテナユニットRAU13にセル境界を挟んで近接するアンテナユニットRAU31のフィルタ特性はF3帯域透過特性とする。さらに、セルC1に属するアンテナユニットRAU13、及びセルC3に属するアンテナユニットRAU31とセル境界を挟んで隣接する他のセルC2のアンテナユニットRAU25のフィルタ特性は、F2帯域透過特性とする。これにより、3セル間の近接アンテナユニットRAU13,RAU31,RAU25の透過帯域が重複しない(上記、要件A)。
In FIG. 7, the filter characteristic of the antenna unit RAU13 belonging to the cell C1 is the F1 band transmission characteristic, and the filter characteristic of the antenna unit RAU31 adjacent to the antenna unit RAU13 across the cell boundary is the F3 band transmission characteristic. Further, the filter characteristics of the antenna unit RAU13 belonging to the cell C1 and the antenna unit RAU25 of the other cell C2 adjacent to the antenna unit RAU31 belonging to the cell C3 across the cell boundary are F2 band transmission characteristics. Thereby, the transmission bands of the proximity antenna units RAU13, RAU31, and RAU25 between the three cells do not overlap (the above requirement A).
このとき、例えばセルC1のアンテナユニットRAU14では、セル境界を挟んで近接するアンテナユニットRAU36(F2帯域透過特性)とは異なるフィルタ特性として、F3帯域透過特性とする。その結果、アンテナユニットRAU14は、同一セル内で近接するアンテナユニットRAU13(F1帯域透過特性)とは異なるフィルタ特性となっている。
At this time, for example, the antenna unit RAU14 of the cell C1 has the F3 band transmission characteristic as a filter characteristic different from the antenna unit RAU36 (F2 band transmission characteristic) that is adjacent to each other across the cell boundary. As a result, the antenna unit RAU14 has a filter characteristic that is different from the antenna unit RAU13 (F1 band transmission characteristic) that is adjacent in the same cell.
同様にして、他のアンテナユニットのフィルタ特性が設定される。なお、各セルの中心にあるアンテナユニットRAU10,20,30はセル間干渉を考慮する必要がないため、フィルタ特性に制限はなく(上記、要件B)、ここでは全帯域透過特性としている。
Similarly, the filter characteristics of other antenna units are set. The antenna units RAU 10, 20, and 30 at the center of each cell do not need to consider inter-cell interference, so there is no limitation on the filter characteristics (requirement B above), and here the full-band transmission characteristics are used.
図8では、セルC1に属するアンテナユニットRAU13のフィルタ特性はF1帯域透過特性とし、そのアンテナユニットRAU13にセル境界を挟んで近接するアンテナユニットRAU31のフィルタ特性はF2帯域透過特性とする。さらに、セルC1に属するアンテナユニットRAU13、及びセルC3に属するアンテナユニットRAU31とセル境界を挟んで隣接する他のセルC2のアンテナユニットRAU25のフィルタ特性は、F3帯域透過特性とする。これにより、3セル間の近接アンテナユニットRAU13,RAU31,RAU25の透過帯域が重複しない(上記、要件A)。
In FIG. 8, the filter characteristic of the antenna unit RAU13 belonging to the cell C1 is the F1 band transmission characteristic, and the filter characteristic of the antenna unit RAU31 adjacent to the antenna unit RAU13 across the cell boundary is the F2 band transmission characteristic. Further, the filter characteristics of the antenna unit RAU13 belonging to the cell C1 and the antenna unit RAU25 of another cell C2 adjacent to the antenna unit RAU31 belonging to the cell C3 across the cell boundary are F3 band transmission characteristics. Thereby, the transmission bands of the proximity antenna units RAU13, RAU31, and RAU25 between the three cells do not overlap (the above requirement A).
このとき、例えばセルC1のアンテナユニットRAU14では、セル境界を挟んで近接するアンテナユニットRAU36(F3帯域透過特性)とは異なるフィルタ特性として、F2帯域透過特性とする。その結果、アンテナユニットRAU14は、同一セル内で近接するアンテナユニットRAU13(F1帯域透過特性)とは異なるフィルタ特性となっている。
At this time, for example, the antenna unit RAU14 of the cell C1 has the F2 band transmission characteristic as a filter characteristic different from the antenna unit RAU36 (F3 band transmission characteristic) that is adjacent to each other across the cell boundary. As a result, the antenna unit RAU14 has a filter characteristic that is different from the antenna unit RAU13 (F1 band transmission characteristic) that is adjacent in the same cell.
同様にして、他のアンテナユニットのフィルタ特性が設定される。なお、各セルの中心にあるアンテナユニットRAU10,20,30はセル間干渉を考慮する必要がないため、フィルタ特性に制限はなく(上記、要件B)、ここでは全帯域透過特性としている。
Similarly, the filter characteristics of other antenna units are set. The antenna units RAU 10, 20, and 30 at the center of each cell do not need to consider inter-cell interference, so there is no limitation on the filter characteristics (requirement B above), and here the full-band transmission characteristics are used.
なお、アンテナユニットのフィルタ(下りリンク信号用、上りリンク信号用)は、セル内のすべてのアンテナユニットに対して設ける必要はなく、セル間干渉に対して厳しい位置に配置される、セル境界近傍のアンテナユニットにのみ設ければよい。また、セル内のすべてのアンテナユニットに対して上記フィルタを設ける場合でも、セル境界から離れるにつれてその透過帯域が広くなるように設定することができる。セルの中心に近いアンテナユニットほどセル間干渉に対して有利となるためである。
Note that the antenna unit filters (for downlink signals and uplink signals) do not need to be provided for all antenna units in the cell, and are located near the cell boundary where they are severely positioned against inter-cell interference. It is only necessary to provide the antenna unit. Further, even when the filter is provided for all antenna units in the cell, it can be set so that the transmission band becomes wider as the distance from the cell boundary increases. This is because an antenna unit closer to the center of the cell is more advantageous for inter-cell interference.
4.無線通信システムの動作例
次に、本実施形態の無線通信システムの動作について、図9を参照して説明する。図9は、セル間で隣接するマイクロセルのアンテナユニットと移動局との通信について示す図である。 4). Operation Example of Radio Communication System Next, the operation of the radio communication system according to the present embodiment will be described with reference to FIG. FIG. 9 is a diagram illustrating communication between an antenna unit of a micro cell adjacent between cells and a mobile station.
次に、本実施形態の無線通信システムの動作について、図9を参照して説明する。図9は、セル間で隣接するマイクロセルのアンテナユニットと移動局との通信について示す図である。 4). Operation Example of Radio Communication System Next, the operation of the radio communication system according to the present embodiment will be described with reference to FIG. FIG. 9 is a diagram illustrating communication between an antenna unit of a micro cell adjacent between cells and a mobile station.
図9では、セル間で隣接するマイクロセルのアンテナユニットの一例としてのRAU13及びRAU31(図6又は図7参照)と、各アンテナユニットと光ファイバケーブルで接続される中央処理ユニットCU1及びCU3と、各アンテナユニットとそれぞれ無線通信を行う移動局MS1及びMS3とが示されている。また、図に示すように、アンテナユニットRAU13,RAU31のフィルタ特性は、それぞれF1帯域透過特性,F3帯域透過特性である。なお、以下の説明では、品質情報としてのCQIの値が高いほど良好(高品質)であるとする。
In FIG. 9, RAU 13 and RAU 31 (see FIG. 6 or FIG. 7) as an example of antenna units of microcells adjacent between cells, and central processing units CU1 and CU3 connected to each antenna unit by an optical fiber cable, Mobile stations MS1 and MS3 that perform wireless communication with each antenna unit are shown. Further, as shown in the figure, the filter characteristics of the antenna units RAU13 and RAU31 are an F1 band transmission characteristic and an F3 band transmission characteristic, respectively. In the following description, it is assumed that the higher the CQI value as quality information, the better (higher quality).
(4-1)下りリンクの動作
図9において、アンテナユニットRAU13は、中央処理ユニットCU1から伝送される光信号を元の無線信号に復調し、この無線信号に対してF1帯域透過特性のフィルタリングを施す。移動局MS1は、アンテナユニットRAU13から無線信号を受信すると、各サブキャリアに含まれるパイロット信号を抽出して、各サブキャリアのCQIを測定する。ここで、アンテナユニットRAU13からの無線信号は、帯域F1以外の帯域の信号が減衰されているので、移動局MS1におけるCQIの測定では、帯域F1に相当するサブキャリアのCQIが高くなり、帯域F1以外の帯域のサブキャリアのCQIが低くなる。 (4-1) Downlink Operation In FIG. 9, the antenna unit RAU13 demodulates the optical signal transmitted from the central processing unit CU1 into an original radio signal, and performs filtering of F1 band transmission characteristics on the radio signal. Apply. When receiving a radio signal from the antenna unit RAU13, the mobile station MS1 extracts a pilot signal included in each subcarrier and measures the CQI of each subcarrier. Here, since the signal of the band other than the band F1 is attenuated in the radio signal from the antenna unit RAU13, in the measurement of CQI in the mobile station MS1, the CQI of the subcarrier corresponding to the band F1 becomes high, and the band F1 The CQI of the subcarriers in the bands other than is low.
図9において、アンテナユニットRAU13は、中央処理ユニットCU1から伝送される光信号を元の無線信号に復調し、この無線信号に対してF1帯域透過特性のフィルタリングを施す。移動局MS1は、アンテナユニットRAU13から無線信号を受信すると、各サブキャリアに含まれるパイロット信号を抽出して、各サブキャリアのCQIを測定する。ここで、アンテナユニットRAU13からの無線信号は、帯域F1以外の帯域の信号が減衰されているので、移動局MS1におけるCQIの測定では、帯域F1に相当するサブキャリアのCQIが高くなり、帯域F1以外の帯域のサブキャリアのCQIが低くなる。 (4-1) Downlink Operation In FIG. 9, the antenna unit RAU13 demodulates the optical signal transmitted from the central processing unit CU1 into an original radio signal, and performs filtering of F1 band transmission characteristics on the radio signal. Apply. When receiving a radio signal from the antenna unit RAU13, the mobile station MS1 extracts a pilot signal included in each subcarrier and measures the CQI of each subcarrier. Here, since the signal of the band other than the band F1 is attenuated in the radio signal from the antenna unit RAU13, in the measurement of CQI in the mobile station MS1, the CQI of the subcarrier corresponding to the band F1 becomes high, and the band F1 The CQI of the subcarriers in the bands other than is low.
移動局MS1で測定された各サブキャリアのCQIは、各サブキャリアのパイロット信号とともに上りリンク信号にマッピングされて、中央処理ユニットCU1へフィードバックされる。
The CQI of each subcarrier measured by the mobile station MS1 is mapped to the uplink signal together with the pilot signal of each subcarrier and fed back to the central processing unit CU1.
中央処理ユニットCU1では、移動局MS1からの上りリンク信号に基づいて、各サブキャリアのCQIを抽出し、このCQIが移動局MS1への下りリンクのサブキャリアの割り当て(周波数リソースの割り当て)に反映される。図9に示す例では、帯域F1に相当するサブキャリアのCQIが高く、帯域F1以外の帯域のサブキャリアのCQIが低くなっている。このため、中央処理ユニットCU1は、移動局MS1宛ての下りリンクに対し、帯域F1に対応するサブキャリアを割り当てる。
In the central processing unit CU1, the CQI of each subcarrier is extracted based on the uplink signal from the mobile station MS1, and this CQI is reflected in the assignment of the downlink subcarrier to the mobile station MS1 (frequency resource assignment). Is done. In the example shown in FIG. 9, the CQI of the subcarrier corresponding to the band F1 is high, and the CQI of the subcarrier in the band other than the band F1 is low. For this reason, the central processing unit CU1 allocates subcarriers corresponding to the band F1 to the downlink addressed to the mobile station MS1.
同様の動作の結果、中央処理ユニットCU3では、移動局MS3宛ての下りリンクについては、帯域F3に対応するサブキャリアが割り当てられる。したがって、隣接した異なるセルに存在する移動局MS1,MS3に対する下りリンク信号のサブキャリアの周波数が互いに離れることになり、干渉が回避される。
As a result of the same operation, in the central processing unit CU3, a subcarrier corresponding to the band F3 is assigned to the downlink addressed to the mobile station MS3. Accordingly, the subcarrier frequencies of the downlink signals for mobile stations MS1 and MS3 existing in different adjacent cells are separated from each other, and interference is avoided.
なお、下りリンクの場合には、中央処理ユニットCU側で周波数リソースの割り当てを行わないとしても、セル間干渉が抑制される。すなわち、図9において、移動局MS1,MS3の受信信号は、それぞれ帯域F1,F3以外の帯域が抑制されるか、又は遮断されているため、中央処理ユニットCUにおける周波数リソースの割り当てとは無関係に、移動局MS1,MS3への下りリンク信号の干渉が抑制される。しかしながら、中央処理ユニットCUによって周波数リソースを割り当てることは、移動局MS1,MS3に割り当てられるサブキャリアが確実に区別されるため、干渉を確実に回避する点で好ましい。
In the case of the downlink, inter-cell interference is suppressed even if frequency resources are not allocated on the central processing unit CU side. That is, in FIG. 9, the received signals of the mobile stations MS1 and MS3 are not related to the frequency resource allocation in the central processing unit CU because the bands other than the bands F1 and F3 are suppressed or blocked, respectively. , Downlink signal interference to the mobile stations MS1 and MS3 is suppressed. However, it is preferable to assign frequency resources by the central processing unit CU in order to reliably avoid interference because the subcarriers assigned to the mobile stations MS1 and MS3 are reliably distinguished.
(4-2)上りリンクの動作
上述したように、移動局MS1は、各サブキャリアのCQIとともに、各サブキャリアのパイロット信号を上りリンク信号にマッピングする。このパイロット信号に基づいて中央処理ユニットCU1は、移動局MS1からの上りリンク信号の各サブキャリアの受信品質を測定(評価)する。すなわち、中央処理ユニットCU1は、移動局MS1からの上りリンク信号から、各サブキャリアのパイロット信号を抽出し、このパイロット信号に基づいて、各サブキャリアの受信品質(例えば、信号電力対干渉電力比SIR)を測定する。 (4-2) Uplink Operation As described above, the mobile station MS1 maps the pilot signal of each subcarrier together with the CQI of each subcarrier to the uplink signal. Based on this pilot signal, the central processing unit CU1 measures (evaluates) the reception quality of each subcarrier of the uplink signal from the mobile station MS1. That is, the central processing unit CU1 extracts the pilot signal of each subcarrier from the uplink signal from the mobile station MS1, and based on this pilot signal, the reception quality (for example, signal power to interference power ratio) of each subcarrier. SIR) is measured.
上述したように、移動局MS1は、各サブキャリアのCQIとともに、各サブキャリアのパイロット信号を上りリンク信号にマッピングする。このパイロット信号に基づいて中央処理ユニットCU1は、移動局MS1からの上りリンク信号の各サブキャリアの受信品質を測定(評価)する。すなわち、中央処理ユニットCU1は、移動局MS1からの上りリンク信号から、各サブキャリアのパイロット信号を抽出し、このパイロット信号に基づいて、各サブキャリアの受信品質(例えば、信号電力対干渉電力比SIR)を測定する。 (4-2) Uplink Operation As described above, the mobile station MS1 maps the pilot signal of each subcarrier together with the CQI of each subcarrier to the uplink signal. Based on this pilot signal, the central processing unit CU1 measures (evaluates) the reception quality of each subcarrier of the uplink signal from the mobile station MS1. That is, the central processing unit CU1 extracts the pilot signal of each subcarrier from the uplink signal from the mobile station MS1, and based on this pilot signal, the reception quality (for example, signal power to interference power ratio) of each subcarrier. SIR) is measured.
この各サブキャリアの受信品質の測定結果は、移動局MS1からの上りリンクに対するサブキャリアの割り当て(周波数リソースの割り当て)に反映される。図9に示す例では、帯域F1に相当するサブキャリアの受信品質が高く、帯域F1以外の帯域のサブキャリアの受信品質が低くなる。このため、中央処理ユニットCU1は、移動局MS1からの上りリンクに対し、帯域F1に対応するサブキャリアを割り当てる。
The measurement result of the reception quality of each subcarrier is reflected in the subcarrier allocation (frequency resource allocation) to the uplink from the mobile station MS1. In the example shown in FIG. 9, the reception quality of subcarriers corresponding to the band F1 is high, and the reception quality of subcarriers in bands other than the band F1 is low. For this reason, the central processing unit CU1 allocates subcarriers corresponding to the band F1 to the uplink from the mobile station MS1.
同様の動作の結果、中央処理ユニットCU3では、移動局MS3からの上りリンクについては、帯域F3に対応するサブキャリアが割り当てられる。したがって、隣接した異なるセルに存在する移動局MS1,MS3から各アンテナユニットへの上りリンク信号のサブキャリアの周波数が互いに離れることになり、干渉が回避される。
As a result of the same operation, the central processing unit CU3 allocates a subcarrier corresponding to the band F3 for the uplink from the mobile station MS3. Therefore, the subcarrier frequencies of the uplink signals from mobile stations MS1 and MS3 existing in different adjacent cells to each antenna unit are separated from each other, and interference is avoided.
なお、この場合、アンテナユニットRAU13及びRAU31のフィルタ(上りリンク信号用)のフィルタ特性は、前述したように、FS2特性(透過帯域以外の帯域を完全に遮断する設定)が好ましい。これにより、移動局MS1,MS3からの上りリンクにおけるセル間干渉がさらに低減する。
In this case, the filter characteristics of the filters (for uplink signals) of the antenna units RAU13 and RAU31 are preferably FS2 characteristics (setting for completely blocking bands other than the transmission band) as described above. Thereby, the inter-cell interference in the uplink from the mobile stations MS1 and MS3 is further reduced.
Claims (8)
- 各セル内に分散して配置され、移動局と無線通信を行う複数のアンテナ装置と、前記複数のアンテナ装置の各々と接続される信号処理装置と、を含む無線通信システムであって、
セル境界を挟んで近接し、互いに異なるセルに属する近接アンテナ装置は、システム帯域の内、下りリンク信号を抑制することなく透過させる透過帯域が設定されたフィルタを有し、
前記近接アンテナ装置の各々のフィルタの透過帯域が重複しないように設定される、
無線通信システム。 A wireless communication system including a plurality of antenna devices distributed in each cell and performing wireless communication with a mobile station, and a signal processing device connected to each of the plurality of antenna devices,
Proximity antenna devices that are close to each other across cell boundaries and belong to different cells have a filter in which a transmission band that allows transmission without transmitting a downlink signal is set in the system band,
The transmission band of each filter of the proximity antenna device is set not to overlap,
Wireless communication system. - 前記信号処理装置は、
移動局からの上りリンク信号に含まれる情報であって、前記システム帯域を区分する複数の帯域の各々についての品質情報、に基づいて、その移動局に対する下りリンク信号の周波数リソースの割り当てを行う、
請求項1に記載された無線通信システム。 The signal processing device includes:
Allocation of downlink signal frequency resources to the mobile station based on quality information for each of a plurality of bands that divide the system band, which is information included in an uplink signal from the mobile station;
The wireless communication system according to claim 1. - 前記複数のアンテナ装置は、システム帯域の内、下りリンク信号を抑制することなく透過させる透過帯域が設定されたフィルタを有し、
複数のアンテナ装置の各々のフィルタに設定された透過帯域は、セル境界から離れるにつれて広くなるように設定される、
請求項1又は2に記載された無線通信システム。 The plurality of antenna devices have a filter in which a transmission band that allows transmission without suppressing a downlink signal is set in the system band,
The transmission band set for each filter of the plurality of antenna devices is set to become wider as the distance from the cell boundary increases.
The wireless communication system according to claim 1 or 2. - 各セル内に分散して配置され、移動局と無線通信を行う複数のアンテナ装置と、前記複数のアンテナ装置の各々と接続される信号処理装置と、を含む無線通信システムであって、
セル境界を挟んで近接し、互いに異なるセルに属する近接アンテナ装置は、システム帯域の内、上りリンク信号を抑制することなく透過させる透過帯域が設定されたフィルタを有し、
前記近接アンテナ装置の各々のフィルタの透過帯域が重複しないように設定され、
前記信号処理装置は、移動局からの上りリンク信号に含まれる信号であって、前記システム帯域を区分する複数の帯域の各々についての参照信号、に基づいて各帯域の信号品質を評価し、その移動局に対する上りリンク信号の周波数リソースの割り当てを行う、
無線通信システム。 A wireless communication system including a plurality of antenna devices distributed in each cell and performing wireless communication with a mobile station, and a signal processing device connected to each of the plurality of antenna devices,
Proximity antenna devices that are close to each other across cell boundaries and belong to different cells have a filter in which a transmission band for transmitting uplink signals without being suppressed is set in the system band,
It is set so that the transmission band of each filter of the proximity antenna device does not overlap,
The signal processing device is a signal included in an uplink signal from a mobile station, and evaluates the signal quality of each band based on a reference signal for each of a plurality of bands dividing the system band, Assigns uplink signal frequency resources to mobile stations,
Wireless communication system. - 前記フィルタは、上りリンク信号に対し、前記透過帯域以外の帯域を遮断する、
請求項4に記載された無線通信システム。 The filter blocks bands other than the transmission band for uplink signals.
The wireless communication system according to claim 4. - 各セル内に分散して配置されて移動局と無線通信を行う複数のアンテナ装置と、セル内の複数のアンテナ装置の各々と接続される信号処理装置との間の無線通信方法であって、
セル境界を挟んで近接し、互いに異なるセルに属する近接アンテナ装置の内、第1アンテナ装置は、システム帯域の内、下りリンク信号を抑制することなく透過させる帯域を第1透過帯域に制限し、
前記近接のアンテナ装置の内、第2アンテナ装置は、下りリンク信号を抑制することなく透過させる帯域を、前記第1透過帯域とは重複しない第2透過帯域に制限し、
各セルの信号処理装置は、移動局からの上りリンク信号に含まれる情報であって、前記システム帯域を区分する複数の帯域の各々についての品質情報、に基づいて、その移動局に対する下りリンク信号の周波数リソースの割り当てを行う、
無線通信方法。 A wireless communication method between a plurality of antenna devices distributed in each cell and performing wireless communication with a mobile station, and a signal processing device connected to each of the plurality of antenna devices in the cell,
Among the proximity antenna devices that are close to each other across the cell boundary and belong to different cells, the first antenna device limits the transmission band of the system band without suppressing the downlink signal to the first transmission band,
Among the adjacent antenna devices, the second antenna device restricts a band to be transmitted without suppressing a downlink signal to a second transmission band that does not overlap with the first transmission band,
The signal processing apparatus for each cell is a downlink signal for the mobile station based on information included in an uplink signal from the mobile station and quality information for each of a plurality of bands that divide the system band. Frequency resource allocation,
Wireless communication method. - 各セル内に分散して配置されて移動局と無線通信を行う複数のアンテナ装置と、セル内の複数のアンテナ装置の各々と接続される信号処理装置との間の無線通信方法であって、
セル境界を挟んで近接し、互いに異なるセルに属する近接アンテナ装置の内、第1アンテナ装置は、システム帯域の内、上りリンク信号を抑制することなく透過させる帯域を第3透過帯域に制限し、
前記近接アンテナ装置の内、第2アンテナ装置は、上りリンク信号を抑制することなく透過させる帯域を、前記第3透過帯域とは重複しない第4透過帯域に制限し、
各セルの信号処理装置は、移動局からの上りリンク信号に含まれる信号であって、前記システム帯域を区分する複数の帯域の各々についての参照信号、に基づいて各帯域の信号品質を評価し、その移動局に対する上りリンク信号の周波数リソースの割り当てを行う、
無線通信方法。 A wireless communication method between a plurality of antenna devices distributed in each cell and performing wireless communication with a mobile station, and a signal processing device connected to each of the plurality of antenna devices in the cell,
Among the proximity antenna devices that are close to each other across the cell boundary and belong to different cells, the first antenna device limits the band to be transmitted without suppressing the uplink signal in the system band to the third transmission band,
Of the proximity antenna devices, the second antenna device restricts a band to be transmitted without suppressing an uplink signal to a fourth transmission band that does not overlap with the third transmission band,
The signal processing device for each cell evaluates the signal quality of each band based on a reference signal for each of a plurality of bands that are signals included in an uplink signal from a mobile station and divides the system band. Assign frequency resources of uplink signals to the mobile station,
Wireless communication method. - 前記第1アンテナ装置は上りリンク信号に対して前記第3透過帯域以外の帯域を遮断し、前記第2アンテナ装置は上りリンク信号に対して前記第4透過帯域以外の帯域を遮断する、
請求項7に記載された無線通信方法。 The first antenna device blocks a band other than the third transmission band for an uplink signal, and the second antenna device blocks a band other than the fourth transmission band for an uplink signal;
The wireless communication method according to claim 7.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2008/003900 WO2010073293A1 (en) | 2008-12-22 | 2008-12-22 | Radio communication system and radio communication method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2008/003900 WO2010073293A1 (en) | 2008-12-22 | 2008-12-22 | Radio communication system and radio communication method |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010073293A1 true WO2010073293A1 (en) | 2010-07-01 |
Family
ID=42286965
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2008/003900 WO2010073293A1 (en) | 2008-12-22 | 2008-12-22 | Radio communication system and radio communication method |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2010073293A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012065280A (en) * | 2010-09-17 | 2012-03-29 | Mitsubishi Electric Corp | Wireless communication system, base station and group gateway |
JP2012253496A (en) * | 2011-06-01 | 2012-12-20 | Nippon Telegr & Teleph Corp <Ntt> | Radio communication system, cell/antenna arrangement pattern optimization device, and program |
JP2014503136A (en) * | 2010-11-22 | 2014-02-06 | サムスン エレクトロニクス カンパニー リミテッド | Antenna allocation apparatus and method for cellular mobile communication system |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6336624A (en) * | 1985-07-31 | 1988-02-17 | ルーセント テクノロジーズ インコーポレイテッド | Digital radio transmission |
JPH09261726A (en) * | 1996-03-22 | 1997-10-03 | Canon Inc | Radio communication system |
JP2001285244A (en) * | 2000-03-30 | 2001-10-12 | Matsushita Electric Ind Co Ltd | Ofdm transmission system |
JP2008523647A (en) * | 2005-06-29 | 2008-07-03 | 株式会社東芝 | Wireless communication system |
-
2008
- 2008-12-22 WO PCT/JP2008/003900 patent/WO2010073293A1/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6336624A (en) * | 1985-07-31 | 1988-02-17 | ルーセント テクノロジーズ インコーポレイテッド | Digital radio transmission |
JPH09261726A (en) * | 1996-03-22 | 1997-10-03 | Canon Inc | Radio communication system |
JP2001285244A (en) * | 2000-03-30 | 2001-10-12 | Matsushita Electric Ind Co Ltd | Ofdm transmission system |
JP2008523647A (en) * | 2005-06-29 | 2008-07-03 | 株式会社東芝 | Wireless communication system |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012065280A (en) * | 2010-09-17 | 2012-03-29 | Mitsubishi Electric Corp | Wireless communication system, base station and group gateway |
JP2014503136A (en) * | 2010-11-22 | 2014-02-06 | サムスン エレクトロニクス カンパニー リミテッド | Antenna allocation apparatus and method for cellular mobile communication system |
US9484998B2 (en) | 2010-11-22 | 2016-11-01 | Samsung Electronics Co., Ltd | Antenna allocation apparatus and method for cellular mobile communication system |
JP2012253496A (en) * | 2011-06-01 | 2012-12-20 | Nippon Telegr & Teleph Corp <Ntt> | Radio communication system, cell/antenna arrangement pattern optimization device, and program |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20210345379A1 (en) | Base Station Apparatus, Mobile Station Apparatus, Method for Mapping a Response Signal, and Method for Determining a Response Signal Resource | |
US9681479B2 (en) | Device-to-device communication management using macrocell communication resources | |
CN107197524B (en) | Method and device for sending uplink data of narrow-band Internet of things user equipment | |
EP1408710B1 (en) | Apparatus and method for allocating resources of a virtual cell in an OFDM mobile communication system | |
CA2770993C (en) | Method and apparatus for allocating a control channel resource of a relay node in a backhaul subframe | |
CN104038329B (en) | Control in heterogeneous wireless communication networks and data signaling | |
EP1740008B1 (en) | Downlink soft handover in an OFDM system | |
KR101790040B1 (en) | Method and apparatus for transmission of dedicated control channel with dedicated reference signal in wireless communication system | |
US8982752B2 (en) | Base station apparatus and user terminal | |
JP4592523B2 (en) | Wireless transmission device and wireless reception device | |
US8868122B2 (en) | User apparatus, base station apparatus and communication control method | |
US9191951B2 (en) | Radio communication system for optimal CFI control in a cross-carrier scheduling environment | |
US9591628B2 (en) | Base station apparatus and communication control method | |
US9439181B2 (en) | Radio communication system, radio base station apparatus, user terminal, and radio communication method | |
US8761275B2 (en) | Wireless communication apparatus and method for wireless communication | |
WO2014192305A1 (en) | Communication system, base stations, and communication control method | |
US20090285174A1 (en) | Communication terminal apparatus, control station, and multicarrier communication method | |
CN111418178A (en) | Methods and apparatus for improvements in and relating to integrated access and backhaul and non-terrestrial networks | |
JP5083253B2 (en) | Wireless transmission device, wireless reception device, and transmission method | |
JP5187403B2 (en) | Wireless communication system, base station, relay station, mobile station | |
JP5131227B2 (en) | Wireless transmission device, wireless reception device, and transmission method | |
WO2010073293A1 (en) | Radio communication system and radio communication method | |
KR20070034905A (en) | Frequency resource operating system and method in broadband wireless access communication system | |
KR101359840B1 (en) | Apprarus and method for allocating resource in communication system using ofdm | |
JP2014232996A (en) | Communication system, base station, and communication control method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 08879092 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 08879092 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |