WO2010060302A1 - 具有微热管阵列的新型热管及其加工工艺及新型换热系统 - Google Patents
具有微热管阵列的新型热管及其加工工艺及新型换热系统 Download PDFInfo
- Publication number
- WO2010060302A1 WO2010060302A1 PCT/CN2009/072362 CN2009072362W WO2010060302A1 WO 2010060302 A1 WO2010060302 A1 WO 2010060302A1 CN 2009072362 W CN2009072362 W CN 2009072362W WO 2010060302 A1 WO2010060302 A1 WO 2010060302A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- heat pipe
- heat
- micro
- microporous
- novel
- Prior art date
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D15/00—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
- F28D15/02—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
- F28D15/04—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure
- F28D15/046—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure characterised by the material or the construction of the capillary structure
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D15/00—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
- F28D15/02—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
- F28D15/0233—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes the conduits having a particular shape, e.g. non-circular cross-section, annular
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/34—Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
- H01L23/42—Fillings or auxiliary members in containers or encapsulations selected or arranged to facilitate heating or cooling
- H01L23/427—Cooling by change of state, e.g. use of heat pipes
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D15/00—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
- F28D15/02—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
- F28D2015/0225—Microheat pipes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/0001—Technical content checked by a classifier
- H01L2924/0002—Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
Definitions
- the invention relates to the field of heat exchange technology, in particular to a novel heat pipe with a micro heat pipe array for phase change heat and a processing method thereof, and a novel heat exchange system using the same. Background technique
- phase change heat technology Compared with natural convection and forced convection heat transfer, heat transfer efficiency using phase change heat technology has been widely used in the industry due to the high heat transfer efficiency of phase change heat.
- the most typical one is the heat pipe heat exchanger technology.
- the main heat transfer mode of the heat pipe is evaporation and condensation, which has the characteristics of large heat transfer capacity, strong temperature control capability and high heat transfer efficiency.
- the heat transfer efficiency of the oscillating heat pipe is high, the heat transfer element needs to have a vibration temperature difference, and the application range is greatly limited; the manufacturing process of the ordinary capillary heat pipe, such as the preparation of the capillary core material and the maintenance process are very complicated, Therefore, the application of the heat pipe is greatly limited; and the ordinary heat pipe adopts a circular pipe having a certain diameter, and the contact area with the element to be cooled is small, resulting in a large equivalent thermal resistance.
- the heat pipes are arranged side by side, the metal heat transfer plates are externally attached, or the side-by-side structure is formed by welding between the pipes and the pipes to form a planar surface, but
- the plate-shaped heat pipe of the metal heat transfer plate has a large heat resistance due to an air cavity between the pipe and the pipe, so that the heat dissipation efficiency is low, and the internal pressure bearing capacity is poor, and the shape is easy to change.
- the plate-shaped heat pipe formed by welding due to welding The work efficiency is low, resulting in low output, and the welding is easy to cause welding quality problems such as virtual welding, and can not adapt to the work of the heat pipe under pressure conditions. Summary of the invention
- the object of the present invention is to provide a micro-applied surface, a small heat resistance, a high heat dissipation efficiency, and a high pressure bearing capability.
- a new type of heat pipe for heat pipe arrays. The invention also provides a processing technology of the novel heat pipe and a novel heat exchange system using the same.
- a novel heat pipe having a micro heat pipe array comprising: a solid heat conducting entity having two or more microporous tubes arranged in parallel in the heat conducting body, the microporous tube being sealed in heat conduction
- a working medium which acts as a phase change heat is filled in the microporous tube and forms a micro heat pipe array in the heat conducting entity.
- the microporous tube is arranged in parallel along the surface of the thermally conductive body that is in close contact with the element by the cooling surface.
- the thermally conductive body is a strip or plate-like body, and the parallel-arranged microporous tubes are parallel to a surface having a wide lateral width of the strip or the plate-like body.
- the microporous tubes are arranged in two or more layers.
- the thermally conductive entity is made of a metal or alloy material.
- the microporous tube has an equivalent diameter or a hydraulic diameter of between 0.1 mm and 8 mm, and a distance between adjacent two microporous tubes is between 0.1 mm and 1.0 mm.
- Each of the microporous tubes is closed at both ends, and each microporous tube is an independent heat pipe structure.
- each microporous tube is open in the heat conducting entity, that is, communicates with each other, but the heat conducting body is closed at the end, and the other microporous tube is closed at the other end, and each microporous tube is a semi-independent heat pipe structure.
- each microporous tube is a heat pipe structure as a whole.
- the channel cross-sectional shape of each microporous tube is rectangular or triangular or circular.
- each of the microporous tubes is provided with micro fins for enhancing heat transfer or concave microvoids for traveling along the longitudinal direction of the microporous tube.
- micro fins are sized and configured to form capillary microgrooves along the length of the microporous tube with the inner wall of the microporous tube.
- a novel heat exchange system employing a novel heat pipe having a micro heat pipe array as described above.
- a section of the new heat pipe is in contact with the component by the cooling face, and the other part of the new heat pipe is the adiabatic section and the condensation section.
- One end of the new heat pipe is located in the heat source and absorbs heat to evaporate; the other end is cooled by air or liquid, and the steam inside the heat pipe is condensed and released.
- the novel heat exchange system is used as a heat collector of a solar water heater, and one end of each microporous tube absorbs solar radiation energy to evaporate, and the other end condenses heat in a heat exchanger to prepare hot water.
- a processing method for a novel heat pipe as described above characterized in that it comprises the following steps.
- the heat conducting entity in step A is a metal or alloy material, and the heat conducting body is heated to a softening temperature and then injected into an extrusion die or pressed by a stamping die having two or more parallel rows.
- the columnar punch, the heat conducting body is pressed or stamped and then cooled to normal temperature.
- the thermally conductive body is a strip or plate-like body, and the parallel-arranged microporous tubes are parallel to a surface having a wide lateral width of the strip or the plate-like body.
- a plurality of micro-pits or outer fins are disposed on the inner wall of the micro-porous tube, and the inner wall of the micro-porous tube is provided with an enhanced heat transfer effect by extrusion or stamping.
- a number of micro fins or concave capillary channels are as follows:
- the invention provides a novel heat pipe having a micro heat pipe array, comprising a heat conducting entity having microporous tubes arranged in parallel, the heat conducting body is sealed and filled with a working fluid which functions as a phase change heat, that is, a microporous tube filling
- a working fluid which functions as a phase change heat
- the working medium forms a micro heat pipe and transfers heat by phase change heat, which naturally forms a heat pipe effect.
- Each microporous tube can form one or more micro heat pipes.
- the extrusion or stamping process is convenient to prepare, so that the invention can be widely used.
- the microporous tube is a cavity structure formed inside the heat conducting body, it is not welded or externally added to the metal heat transfer plate, so the microporous tube and The microporous tube is a heat-conducting solid body as a reinforcing rib, and there is no air cavity between the tube and the tube, which solves the large thermal resistance caused by the air cavity, the heat dissipation efficiency is low, and the internal pressure bearing capacity is poor and easy to change, and A series of problems, such as low welding efficiency, the heat-conducting entity makes the heat dissipation efficiency of the new heat pipe greatly improved, the thermal resistance is small, and the pressure bearing capacity and work safety can be enhanced. Sex.
- the novel heat pipe of the present invention has the efficiency of heat absorption of the plate surface and the high efficiency heat transport of the internal micro heat pipe, compared with the prior art plate heat pipe, eliminating the ordinary
- the heat pipe and the oscillating heat pipe and the component are short in contact area by the cooling surface, and the equivalent thermal resistance is large, and overcome the shortcoming of the oscillating heat pipe, and the preparation of the capillary core material is eliminated.
- Maintenance and other complicated processes have overcome the problem that the traditional flat-type heat pipe structure adopts a single heat pipe structure, which causes internal pressure bearing capacity, reliability, local maximum heat transfer density, and maximum heat transfer capacity to be greatly limited.
- the utility model has the advantages of simple structure, reliable work and high heat dissipation efficiency.
- the microporous tube is arranged in parallel along the surface of the heat conducting body and the component which is closely adhered to the cooling surface, and the heat conducting body forms a heat exchange surface with the surface of the component which is closely adhered by the cooling surface, so that when the component is cooled, the surface is a curved surface.
- the thermally conductive entity can also be in surface contact with the largest area of the component being cooled, and the contact surface forms a heat exchange surface, so that the equivalent thermal resistance is very small, and there is a layered arrangement near the heat exchange surface.
- the microporous tube improves the heat exchange efficiency.
- the microporous tube is a microporous tube arranged in a multi-layered arrangement in the heat conducting body, so that the heat pipe and the heat exchange object are sequentially subjected to heat conduction between the microporous tubes under the limited contact area, that is, The evaporation section of the first layer of the microporous tube that is in contact with the heat exchange object is thermally transferred to the microporous tube of the second layer to form an evaporation section. If there is a third layer of microporous tube, the second layer will be further to the third layer. The layer conducts heat and finally transfers heat to all layers. The evaporation sections of each layer evaporate and vaporize, and flow to the condensation section of the respective microporous tubes.
- the condensation section releases the heat and liquefaction and flows back to the evaporation section, automatically completing the circulation of the respective microporous tubes.
- the condensation sections of the layers are also mutually thermally transmissive, so that the efficiency of the overall condensation and exothermic heat of the microporous tubes of each layer can be improved, and the local maximum heat transfer density is improved, without reducing the number of microporous tubes arranged side by side in the heat pipe.
- the distance and the diameter of the microporous tube itself, in addition, the multi-layered arrangement of the microporous tube structure further enhances the strength and reliability of the heat pipe.
- each microporous tube is closed at both ends, so that each microporous tube is an independent heat pipe structure, which is more conducive to the overall reliability of the heat pipe, and if a microporous tube is damaged, such as leakage, it will not affect other micropores. Tube work.
- One end is connected to each other, the other end is closed, or both ends of the microporous tube are open in the heat conducting body, and each microporous tube respectively forms a semi-independent heat pipe or an integral heat pipe, and the end of the microporous pipe does not need to be closed, thereby reducing the vacuum degree requirement of the heat pipe.
- micro fins with enhanced heat transfer function are provided, which can further enhance the phase change heat capacity of the working fluid, and if the distance between the micro fins is appropriate, a capillary core structure is formed, and The specific surface area is greatly increased, so that the new heat pipe has higher heat exchange efficiency.
- the size and structure of the micro fins are suitable for forming capillary microgrooves along the inner length of the microporous tube along the length of the microporous tube to further improve the apparent heat flux density of the new heat pipe and the bidirectional heat transfer characteristics of the heat pipe.
- the microporous tube in the processing process of the novel heat pipe according to the present invention is an integrated structure formed by extrusion or stamping, and the heat conducting body is integrally extruded or stamped into two or more microporous tubes arranged side by side, micro The air is discharged from the hole tube and filled with liquid working medium to form a micro heat pipe, which naturally forms a heat pipe effect.
- the process is simple, and the process of preparing and maintaining the existing heat pipe such as capillary core material is omitted, and Because it is integrally formed, it is not necessary to use a brazing process to form a unitary structure by integral brazing in the brazing furnace, and the preparation process of the novel heat pipe of the invention is advantageous for industrial production, and the heat conducting entity can be placed on the production line in batches. Pressing the die or pressing the stamping die into the following procedure is beneficial to the mass production of the new heat pipe and at the same time improving the production efficiency of the new heat pipe.
- FIG. 1 is a schematic structural view of a first embodiment of a novel heat pipe according to the present invention
- FIG. 2 is a schematic structural view of a second embodiment of a novel heat pipe according to the present invention.
- FIG. 3 is a schematic structural view of a third embodiment of a novel heat pipe according to the present invention.
- FIG. 4 is a schematic structural view of a fourth embodiment of a novel heat pipe according to the present invention.
- Figure 5 is a schematic structural view of a fifth embodiment of the novel heat pipe of the present invention.
- FIG. 6 is a schematic structural view of a sixth embodiment of a novel heat pipe according to the present invention.
- FIG. 7 is a schematic structural view of a seventh embodiment of a novel heat pipe according to the present invention.
- FIG. 8 is a schematic view showing the structure of a solar collector according to an eighth embodiment of the novel heat pipe of the present invention.
- FIG. 9 is a flow chart showing a preferred process of the preparation process of the novel heat pipe of the present invention. detailed description
- FIG. 1 is a schematic structural view of a first embodiment of a heat pipe according to the present invention, comprising a solid heat conducting body 1 which may be made of a metal or alloy material.
- the heat conducting body 1 in this embodiment is a plate body.
- the thermally conductive body 1 has two or more microporous tubes 2 arranged in parallel, and the microporous tubes 2 arranged in parallel are parallel to the lateral width of the plate body.
- the cross-sectional shape of the microporous tube 2 is circular, and the microporous tube 2 is sealed in the heat conducting body 1 and filled with a liquid working medium which acts as a phase change heat in the microporous tube 2, in the heat conducting entity 1
- the micro heat pipe array is formed, and the microporous tube 2 is filled with a liquid working medium to form a micro heat pipe, which transfers heat by phase change heat, and naturally forms a heat pipe effect.
- the equivalent diameter or hydraulic diameter of the microporous tube 2 is preferably between 0.1 mm and 8 mm, and the distance between two adjacent microporous tubes is between 0.1 mm and 1.0. Between mm.
- Each of the microporous tubes 2 may form an independent heat pipe structure, a semi-independent heat pipe structure, or may be a heat pipe structure as a whole.
- each microporous tube 2 is closed at both ends, each microporous tube 2 is an independent heat pipe structure, and each microporous tube 2 can work independently, which is more advantageous for the reliability and safety maintenance of the whole heat pipe, in case a certain Damage to the microporous tube, such as air leakage, does not affect the operation of other microporous tubes.
- each microporous tube 2 When the two ends of the microporous tubes are open in the heat conducting entity 1, that is, they are connected to each other, but the end of the heat conducting body 1 is closed, and when the other end of each microporous tube 2 is closed, each microporous tube 2 is a semi-independent heat pipe structure; Both ends of the hole tube 2 are open in the heat conducting body, and the heat conducting body 1 is closed at both ends, and each of the micro tube 2 is a heat pipe structure. Since the end of the micro tube 2 is open, it is not necessary to close the end of each micro tube. The heat pipe is required to reduce the vacuum, but the end of each microporous tube is open in the heat conducting body and the heat conducting body of the end is closed.
- each microporous tube is a semi-independent heat pipe or an integral heat pipe, once a microporous pipe is damaged, it will affect the work of other microporous pipes, so the reliability will be somewhat reduced.
- FIG. 2 is a schematic structural view of a second embodiment of a novel heat pipe according to the present invention, which is different from the first embodiment shown in FIG. 1 in that each circular microporous tube 2 of the embodiment is surrounded by
- the inner wall is provided with a plurality of micro fins 3 made of a heat conductive material, and the distance between the micro fins 3 adjacent to the longitudinal direction of the novel heat pipe of the present invention is suitable to form a capillary core, and further, along the length direction of the novel heat pipe of the present invention.
- the arrangement of the adjacent micro fins 3 forms a capillary microgroove, and the arrangement of the micro fins, the capillary core, and the capillary microgrooves can improve the heat conduction efficiency of the heat pipe.
- Fig. 3 is a schematic view showing the structure of a third embodiment of the novel heat pipe of the present invention.
- the cross-sectional shape of the microporous tube 2 is rectangular, and the cross section of the microporous tube may also be triangular or other shapes.
- a plurality of micro fins 3 made of a heat conductive material are disposed on the upper and lower opposite inner walls of each of the rectangular microporous tubes 2, and a capillary core is formed between the micro fins 3 adjacent to the longitudinal direction of the novel heat pipe of the present invention, further The arrangement of the micro fins 3 adjacent to the longitudinal direction of the novel heat pipe of the present invention forms a capillary microgroove.
- the micro fins 3 may be provided on the upper and lower opposing inner walls of the microporous tube 2, or may be provided only on one side or any two sides or three sides or four sides of the inner wall of the microporous tube 2.
- the structural schematic view of the fourth embodiment of the novel heat pipe of the present invention shown in FIG. 4 is different from the third embodiment shown in FIG. 3 in that the four corners of the heat conducting body 1 in FIG. 3 are both right angles, and The four corners of the heat conducting body 1 in Fig. 4 are all circular arcs, and the arc setting is convenient for the extrusion preparation of the heat pipe and for facilitating the movement.
- the shape of the heat conducting entity of the novel heat pipe of the present invention can also be flexibly varied.
- the cooled surface of the component 4 is a curved surface, and the microporous tube 2 is arranged in parallel along the surface of the heat conducting body 1 and the component to be closely adhered by the cooling surface.
- the layer, the heat conducting body 1 has a surface that closely adheres to the cooled surface of the element 4 and forms a heat exchange surface, and the microporous tube 2 is arranged in a layered manner near the heat exchange surface, since the heat conducting entity 1 can be combined with the component 4
- the surface contact of the cooled surface is realized in the largest area, so that the equivalent thermal resistance is very small, and the heat exchange efficiency is improved.
- the microporous tube can be arranged in a multi-layered layer in the heat conducting entity, as shown in the structural example of the seventh embodiment of the novel heat pipe of the present invention shown in FIG. 7.
- the microporous tube 2 is in the heat conducting entity 1
- Two layers are arranged in layers.
- the invention also relates to a novel heat exchange system comprising the novel heat pipe with a micro heat pipe array according to the invention, the novel heat exchange system can be used as an electronic device heat sink, a heat pipe heat exchanger and a solar heat collector Device.
- a side of the heat pipe can be insulated from the heat generating surface of the electronic device, and the electronic device is automatically absorbed.
- the heat, the rest of the heat pipe is used as the adiabatic section and the condensation section respectively, so as to achieve efficient heat dissipation; or a part of one end of the heat pipe is in contact with the heat generating surface, and the heat is evaporated, and the other part of the heat pipe is adiabatic and condensed.
- one end of the heat pipe is located in the heat source, and absorbs heat to evaporate; the other end is cooled by air or liquid, and the steam inside the heat pipe is condensed and released.
- the two ends of the heat pipe are respectively located in a heat source and a refrigerant that require heat exchange, and the heat pipe can efficiently exchange heat by evaporation condensation.
- the novel heat exchange system of the invention can also be used as a heat collector of a solar water heater, wherein one end of each microporous tube absorbs solar radiation energy to evaporate, and the other end condenses heat in a heat exchanger to prepare hot water, as shown in FIG.
- the solar collector comprises a heat absorbing plate 5 composed of a heat pipe, a heat exchanger 6, an inlet and outlet water pipe 7 and a water pipe 8, wherein the heat absorbing plate 5 has a heat absorbing surface facing the bare side to absorb the sun light,
- the heat section is disposed in the heat exchanger 6, and the heat release section condenses and releases heat in the heat exchanger 6, and heats the water stored in the heat exchanger 6.
- the outer surface of the heat absorbing surface may be provided with an endothermic coating capable of efficiently absorbing solar energy, so as to increase the heat absorbing efficiency as much as possible.
- the heat absorbing plate 5 is provided with a microporous tube, and is filled with a refrigerant, and the working medium is filled respectively. At one end of each microporous tube, these microporous tubes are respectively corresponding to heat pipes.
- the heat absorption section of the heat absorbing plate 5 absorbs the solar radiant heat
- the heat medium in the heat pipe absorbs heat
- the high temperature steam enters the heat release section through each pipeline to perform condensation heat release
- the heat exchanger 6 The water in the water exchanges heat and then condenses into liquid to flow back to the lower part of the heat absorbing plate 5, and the liquid absorbs heat and then evaporates..., so that the radiant heat absorbed by the heat absorbing plate 5 can be continuously transmitted to the heat exchanger 6 Water will thus achieve the purpose of using solar radiant heat.
- a capillary microchannel can be formed in the microporous tube, and the heat absorbing plate 5 with a plurality of capillary microchannels can use gravity and capillary driving force to promote the vapor of the evaporation section to move to the condensation section more quickly, and can also promote the condensed liquid. Return to evaporation faster The segment is re-evaporated and sequentially circulated.
- the size of the capillary microgroove By adjusting the size of the capillary microgroove, the unidirectional heat conduction of the solar heat collecting heat pipe can be realized, and the heat absorbing plate structure has a larger heat collecting efficiency than the conventional common heat collecting plate.
- FIG. 9 is a flow chart of a preferred process for preparing a novel heat pipe according to the present invention, the preparation process comprising the following steps:
- the heat conducting body may be a metal material, and the metal material is heated to a softening temperature and then injected into the body. Pressing the die, the side of the die is provided with a flat shell, and the inside of the shell is provided with two or more columnar punches arranged side by side parallel to the outer casing, and the cylindrical punches are provided with a plurality of dimples on the sides pit;
- micro fin array flat structure having two or more side by side arrays, and the inner wall of the microporous tube is provided with an extruded heat transfer enhancement effect.
- the heat pipe prepared by the preparation process is the new heat pipe of the second embodiment shown in FIG. 2; if the micro-pits are not provided on the columnar punch in the extrusion die in the preparation process, the prepared new heat pipes are each There is no micro fin on the inner wall of the circular microporous tube to form the novel heat pipe of the first embodiment shown in Fig. 1.
- the preparation process of the novel heat pipe in this embodiment is a hot extrusion process.
- a cold extrusion or a warm extrusion process may be selected, and the wear resistance and hardness should be selected in the cold extrusion or warm extrusion process.
- the high extrusion die requires a large extrusion pressure to extrude the metal material.
- the cold extrusion or warm extrusion process has a higher cost than the hot extrusion, but the extruded heat pipe has a flat surface and a high smoothness.
- a stamping process can also be selected to prepare the novel heat pipe of the present invention, and the heat-conducting body is punched by a stamping die with two or more columnar punches arranged in parallel, especially when a relatively short new heat pipe is prepared.
- the stamping process is easier to implement and, as such, can be prepared by hot stamping, warm stamping or cold stamping.
- the new heat pipe is integrally formed by extrusion or stamping, and the process is simple, the process of preparing and maintaining the existing heat pipe, such as capillary core material, is eliminated, and the brazing process is not required to be integrated into the brazing furnace by integral brazing.
- the heat conducting entity can be batch placed on the production line, extruded by the extrusion die or stamped by the stamping die and then enters the following procedure, which is beneficial to the mass production of the new heat pipe and at the same time The production efficiency of the new heat pipe.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
Description
具有微热管阵列的新型热管及其加工工艺及新型换热系统 技术领域
本发明涉及换热技术领域, 特别涉及一种用于相变换热的具有微热管阵列的新型热管及 其加工工艺, 以及采用该新型热管的一种新型换热系统。 背景技术
与自然对流和强制对流的换热方式相比, 由于相变换热的方式传热效率高, 利用相变换 热技术的换热器在工业中得到了广泛的应用, 在此类相变换热器技术中, 最典型的要属热管 换热器技术, 热管的主要传热方式为蒸发和冷凝, 具有传热能力大、 温度控制能力强、 传热 效率高的特点。 其中振荡型热管虽然传热效率较高, 但该种传热元件需要起振温差, 应用范 围受到很大限制;普通的毛细芯热管其制作工艺如毛细芯材料的制备以及维护过程非常复杂, 也使得其应用受到很大的限制; 而且普通的热管由于采用具有一定直径的圆管, 与元件被冷 却面接触面积小, 导致等效热阻大。 针对板状受热面, 为了利用热管的优势, 现有技术将热 管并排排列, 外贴金属传热板, 或者在管与管之间通过焊接连接形成并排结构以构成面状表 面, 但是, 对于外加金属传热板的板状热管由于管与管之间有空气腔, 造成较大的热阻, 使 散热效率低, 而且内部承压能力差, 易变型, 对于焊接形成的板状热管, 由于焊接工作效率 低, 造成产量低, 且焊接很容易造成虚焊等焊接质量问题, 不能适应热管在承受压力条件下 的工作。 发明内容
针对现有热管技术存在的应用受到限制、 散热效率低、 承压差的缺陷和不足, 本发明的 目的在于提供一种适用面广、 热阻小、 散热效率高、 承压能力强的具有微热管阵列的新型热 管。 本发明还提供一种所述新型热管的加工工艺以及采用该新型热管的一种新型换热系统。
本发明的技术方案如下:
一种具有微热管阵列的新型热管, 其特征在于: 包括一实心的导热实体, 在所述导热实 体内具有两个或两个以上平行排布的微孔管, 所述微孔管密封在导热实体内并在微孔管内灌 装有起相变换热作用的工质, 在导热实体内形成微热管阵列。
所述微孔管沿着所述导热实体与元件被冷却面紧密贴合的表面平行排布成一层。
所述导热实体为条状或板状体, 所述平行排布的微孔管平行于条状或板状体横向宽度较 宽的表面。
所述微孔管排布成两层或两层以上。
所述导热实体为金属或合金材料制成。
所述微孔管等效直径或水力直径在 0.1mm至 8mm之间, 相邻两微孔管之间的距离在 0.1mm至 1.0mm之间。
所述各微孔管两端均封闭, 各微孔管均为独立热管结构。
所述各微孔管一端在导热实体内开放, 即彼此连通, 但导热实体该端封闭, 各微孔管另 一端封闭, 各微孔管为半独立热管结构。
所述微孔管两端在导热实体内均开放, 导热实体两端封闭, 各微孔管整体为一热管结构。 所述各微孔管的通道截面形状为矩形或三角形或圆形。
所述各微孔管的通道内壁中, 设置有具有强化传热作用的微翅片或沿微孔管长度方向走 向的内凹毛细微槽。
所述微翅片的大小和结构适合于与微孔管内壁形成沿微孔管长度方向走向的毛细微槽。 采用如上所述的具有微热管阵列的新型热管的一种新型换热系统。
所述新型热管的一段侧面与元件被冷却面相接触, 新型热管的其它部分为绝热段和冷凝 段。
所述新型热管的一端位于热源之中, 并吸热蒸发; 另一端外部通过空气或液体冷却, 热 管内部蒸汽冷凝放热。
所述新型换热系统作为太阳能热水器的集热器,各微孔管一端吸收太阳能辐射能量蒸发, 另一端在换热器中冷凝放热以制备热水。
一种如上所述的新型热管的加工工艺, 其特征在于: 包括如下步骤。
A、 采用挤压或冲压工艺制备出其内具有两个或两个以上平行排布并贯通的微孔管的导 热实体;
B、 将微孔管内空气排出及灌装液体工质, 并将导热实体两端密封封装。
步骤 A所述导热实体为金属或合金材料, 将导热实体加热到软化温度后注入挤压模具挤 压或由冲压模具冲压, 所述挤压或冲压模具具有平行排布的两个或两个以上的柱状凸模, 所 述导热实体被挤压或冲压后冷却至常温。
所述导热实体为条状或板状体, 所述平行排布的微孔管平行于条状或板状体横向宽度较 宽的表面。
步骤 A所述挤压模具或冲压模具内的柱状凸模上均设置有若干微凹坑或外翅片, 使所述 微孔管内壁上带有挤压或冲压成型的具有强化传热作用的若干微翅片或内凹毛细微槽。
本发明的技术效果如下:
本发明提供一种具有微热管阵列的新型热管,包括一具有平行排布的微孔管的导热实体, 导热实体密封并灌装有起相变换热作用的工质, 即微孔管内灌装有工质形成微热管, 并以相 变换热的方式传热, 自然形成热管效应, 各微孔管可以形成一个或多个微热管, 由于在一个 整体结构内排布微热管, 因此可以采取挤压或冲压工艺很方便制备, 从而使本发明可以有很 广泛的应用, 同时由于微孔管为导热实体内部形成的腔体结构, 并非靠焊接或外加金属传热 板, 故微孔管与微孔管之间为导热实体本体作为加强筋, 管与管之间不存在空气腔, 解决了 空气腔造成较大的热阻, 使散热效率低, 而且内部承压能力差, 易变型, 以及焊接工作效率 低等一系列问题, 导热实体使得新型热管散热效率大大提高, 热阻小, 并增强了承压能力和 工作安全可靠性。
如果采用条状或板状体作为导热实体, 则相对于现有技术的板状热管, 本发明的新型热 管具有板面吸热的高效性和内部微热管高效热输运的特性, 消除了普通热管和振荡热管与元 件被冷却面接触面积小, 等效热阻大的缺点, 同时克服了振荡热管需要起振温差的缺点, 并 省去了现有毛细芯热管制作时如毛细芯材料制备以及维护等复杂的工艺, 还克服了传统的平 板式的热管结构采用单一热管结构导致内部承压能力、 可靠性、 局部最大换热密度以及最大 热输送能力受到很大限制的问题, 具有适用范围广、 结构简单、 工作可靠、 散热效率高的特 点。
微孔管沿着导热实体与元件被冷却面紧密贴合的表面平行排布成一层, 导热实体与元件 被冷却面紧密贴合的表面形成换热面, 这样, 当元件被冷却面为一曲面时, 导热实体也能与 元件被冷却面最大面积地实现面接触, 接触到的面形成换热面, 使得等效热阻非常小, 再加 上靠近换热面处具有一层层状排布的微孔管, 提高了换热效率。
微孔管为在导热实体内排布成多层层状排布的微孔管, 使得该热管与换热对象在有限的 接触面积下, 各层微孔管之间依次进行导热传递, 即与换热对象接触的第一层的微孔管的蒸 发段导热给第二层的微孔管使其也形成蒸发段, 若还有第三层的微孔管, 第二层会再向第三 层导热传递, 最终导热至所有层, 各层的蒸发段均蒸发汽化, 流动到各自微孔管的冷凝段, 冷凝段放热液化流回蒸发段, 自动完成各自微孔管的循环, 而各层的冷凝段之间也是互相导 热传递的, 故各层微孔管整体冷凝放热的效率能够提高, 提高了局部最大的换热密度, 无需 縮小热管内的并排排列的微孔管之间的距离以及微孔管自身的直径, 此外, 该多层层状排布 的微孔管结构还进一步提高了热管的强度和可靠性。
各微孔管两端均封闭, 使得各微孔管均为独立热管结构, 这样更加有利于热管整体的可 靠性, 万一某一微孔管发生损坏比如漏气后也不会影响其它微孔管的工作。 而对于各微孔管
一端彼此连通、 另一端封闭, 或者微孔管两端在导热实体内开放, 各微孔管分别形成半独立 热管或整体热管, 无需封闭微孔管的端头, 降低了热管对真空度要求。
各微孔管的通道内壁中, 设置有具有强化传热作用的微翅片, 能够进一步增强工质的相 变换热能力, 微翅片之间如果距离合适也会形成毛细芯结构, 同时由于比表面积大幅增加, 从而该新型热管具有更高的换热效率。
微翅片的大小和结构适合于与微孔管内壁形成沿微孔管长度方向走向的毛细微槽可以进 一步提高新型热管的表观热流密度以及热管的双向换热特性。
本发明涉及的新型热管的加工工艺中微孔管为采用挤压或冲压而成的一体结构, 将导热 实体经过整体挤压或冲压成型为两个或两个以上并排排列的微孔管, 微孔管内排出空气并灌 装有液体工质形成微热管, 自然形成热管效应, 由于是挤压或冲压成型, 工艺简单, 省去了 现有热管制作时如毛细芯材料制备以及维护等工艺, 又因为是整体成型, 故无需使用钎焊工 艺在钎焊炉内通过整体钎焊加工为一体结构, 并且本发明的新型热管的制备工艺有利于工业 化生产, 导热实体可批量置于生产线上, 经挤压模具挤压或由冲压模具冲压后进入下面的程 序, 有利于该新型热管的批量生产, 同时提高了该新型热管的生产效率。 附图说明
图 1为本发明新型热管的第一种实施例的结构示意图;
图 2为本发明新型热管的第二种实施例的结构示意图;
图 3为本发明新型热管的第三种实施例的结构示意图;
图 4为本发明新型热管的第四种实施例的结构示意图;
图 5为本发明新型热管的第五种实施例的结构示意图;
图 6为本发明新型热管的第六种实施例的结构示意图;
图 7为本发明新型热管的第七种实施例的结构示意图;
图 8为本发明新型热管的第八种实施例-太阳能集热器结构示意图;
图 9为本发明新型热管的制备工艺的优选工艺流程图。 具体实施方式
下面结合附图对本发明进行说明。
图 1为本发明新型热管的第一种实施例的结构示意图, 包括一实心的导热实体 1, 该导 热实体可以为金属或合金材料制成, 该实施例中的导热实体 1为板状体, 导热实体 1内具有 两个或两个以上平行排布的微孔管 2, 平行排布的微孔管 2平行于板状体横向宽度较宽的表
面, 微孔管 2的通道截面形状为圆形, 微孔管 2密封在导热实体 1内并在微孔管 2内灌装有 起相变换热作用的液体工质, 在导热实体 1内形成微热管阵列, 微孔管 2中灌装有液体工质 形成微热管, 以相变换热的方式传热, 自然形成热管效应。 为使得该新型热管的热流密度以 及相变换热更好, 微孔管 2等效直径或水力直径优选在 0.1mm至 8mm之间, 相邻两微孔管 之间的距离在 0.1mm至 1.0mm之间。
各微孔管 2可以形成独立热管结构、 半独立热管结构, 也可以整体为一热管结构。例如, 当各微孔管 2两端均封闭时各微孔管 2均为独立热管结构, 各微孔管 2可独立工作, 这样更 加有利于热管整体的可靠性和安全维护, 万一某一微孔管发生损坏比如漏气后也不会影响其 它微孔管的工作。 当各微孔管 2—端在导热实体 1内开放, 即彼此连通, 但导热实体 1该端 封闭, 各微孔管 2另一端封闭时, 各微孔管 2为半独立热管结构; 当微孔管 2两端在导热实 体内均开放, 导热实体 1两端封闭, 各微孔管 2整体为一热管结构, 由于微孔管 2端头开放 故无需封闭各微孔管的端头, 从而降低了热管对真空度要求, 但是这种各微孔管的端头在导 热实体内开放而该端的导热实体封闭的情况在制作时需要焊接工艺, 如使用氩弧焊、 高频焊 或钎焊等焊接工艺制作, 并且各微孔管由于为半独立热管或整体热管, 一旦某一微孔管发生 损坏就会影响其它微孔管的工作, 故可靠性会有些降低。
图 2为本发明新型热管的第二种实施例的结构示意图,该实施例与图 1所示的第一种实施 例的区别为, 该实施例的每个圆形的微孔管 2的四周内壁上均设置有大量的导热材料制成的 微翅片 3, 沿本发明新型热管长度方向相邻的微翅片 3之间距离适当可形成毛细芯, 更进一 步, 沿本发明新型热管长度方向相邻的微翅片 3的排布形成毛细微槽, 微翅片、 毛细芯以及 毛细微槽的设置能够提高热管的导热效率。
图 3为本发明新型热管的第三种实施例的结构示意图, 该实施例中微孔管 2的通道截面 形状为矩形, 当然微孔管横截面也可以为三角形或其它形状。 每个矩形的微孔管 2的上下相 对的内壁上均设置有若干导热材料制成的微翅片 3, 沿本发明新型热管长度方向相邻的微翅 片 3之间形成毛细芯, 更进一步, 沿本发明新型热管长度方向相邻的微翅片 3的排布形成毛 细微槽。 同样, 微翅片 3可以是在微孔管 2的上下相对的内壁上设置, 也可以只在微孔管 2 内壁中的一侧或任意两侧或三侧或四侧设置。
图 4所示的本发明新型热管的第四种实施例的结构示意图, 与图 3所示的第三种实施例 的区别为, 图 3中的导热实体 1的四个棱角均为直角, 而图 4中的导热实体 1的四个棱角均 为圆弧, 圆弧设置既便于热管的挤压制备, 又便于搬转。 本发明新型热管的导热实体的外形 也可灵活多变, 如图 5所示的本发明新型热管的第五种实施例的结构示意图中, 导热实体 1 的外形为半椭圆形。
图 6为本发明新型热管的第六种实施例的结构示意图, 元件 4的被冷却面为一曲面, 微 孔管 2沿着导热实体 1与元件被冷却面紧密贴合的表面平行排布成一层, 导热实体 1具有与 元件 4被冷却面紧密贴合的表面并形成换热面, 并且微孔管 2在靠近换热面处为一层层状排 布, 由于导热实体 1能与元件 4的被冷却面最大面积地实现面接触, 使得等效热阻非常小, 提高了换热效率。
微孔管可以在导热实体内呈多层层状排布, 如图 7所示的本发明新型热管的第七种实施 例的结构示意图, 该实施例中微孔管 2在导热实体 1内呈两层层状排布。
本发明还涉及一种新型换热系统, 该新型换热系统包括了发明涉及到的具有微热管阵列 的新型热管, 该新型换热系统可作为电子器件散热装置、 热管换热器及太阳能集热器。
当本发明的新型换热系统用于电子器件散热时, 如 CPU、 LED散热器, 太阳能电池冷却 等应用, 可将热管的一段侧面与电子器件的发热面绝缘接触, 并自动吸收电子器件所散发的 热量, 热管的其余部分分别作为绝热段和冷凝段, 从而达到高效散热的目的; 或者是将热管 的一端的某一部分与发热面相接触, 并吸热蒸发, 热管的其它部分为绝热段和冷凝段; 或者 是将热管的一端位于热源之中, 并吸热蒸发; 另一端外部通过空气或液体冷却, 热管内部蒸 汽冷凝放热。
当本发明的新型换热系统作为热管换热器时, 热管的两端分别位于需要热交换的热源与 冷媒中, 热管就可以通过自身的蒸发冷凝进行高效换热。
本发明的新型换热系统还可以作为太阳能热水器的集热器, 各微孔管一端吸收太阳能辐 射能量蒸发, 另一端在换热器中冷凝放热以制备热水, 如图 8所示的本发明新型热管的一种 实施例-太阳能集热器结构示意图。 本实施例中太阳能集热器包括热管构成的吸热板 5、 换热 器 6及其进出口一水管 7和水管 8, 其中吸热板 5的吸热面向阳裸露设置以吸收太阳光线, 放热段设置于换热器 6中, 放热段在换热器 6中冷凝放热, 并将换热器 6中的储水加热。 吸 热面的外表面可以设置能高效吸收太阳能的吸热涂层, 以尽可能提高吸热效率, 吸热板 5内 设置有微孔管, 并灌装有制冷工质, 工质分别充填于各微孔管的一端, 这些微孔管就分别相 应成为热管。
本实施例的工作原理: 吸热板 5的吸热段吸收太阳辐射热, 热管内工质吸热蒸发, 高温 蒸气分别通过各管路进入放热段进行冷凝放热, 在与换热器 6中的水交换热量后冷凝为液体 流回吸热板 5下部, 液体吸热再蒸发…, 如此周而复始, 就可以将吸热板 5所吸收的辐射热 量源源不断地传递给换热器 6中的水, 将从而达到利用太阳能辐射热的目的。
微孔管中可形成毛细微槽, 这种带有多个毛细微槽的吸热板 5可以利用重力和毛细驱动 力促使蒸发段的蒸汽更快速的向冷凝段移动, 同时也可以促使冷凝液体更快速的返回到蒸发
段进行再次蒸发, 依次循环, 通过调节毛细微槽的尺寸, 可实现太阳能集热热管的单向导热, 这种吸热板结构具有比现有普通集热板更大的集热效率。
图 9为本发明新型热管的制备工艺的优选工艺流程图, 该制备工艺包括如下步骤:
A、 采用挤压或冲压工艺制备出其内具有两个或两个以上平行排布并贯通的微孔管的导 热实体; 该导热实体可以为金属材料, 将金属材料加热到软化温度后注入挤压模具挤压, 该 挤压模具的侧面设置有平板外壳, 外壳内部设置有与外壳分别平行的两个或两个以上并排排 列的柱状凸模, 该柱状凸模四周侧面均设置有若干微凹坑;
B、 金属材料被挤压后冷却至常温, 成型为具有两个或两个以上并排排列的微孔管阵列 平板结构, 并且微孔管内壁上带有挤压成型的具有强化传热作用的若干微翅片;
C、 将微孔管内空气排出 (例如抽真空) 及灌装液体工质形成微热管, 并将导热实体两 端密封封装。
该制备工艺制备出的热管即为图 2所示的第二种实施例的新型热管; 若制备工艺中的挤 压模具中的柱状凸模上没有设置微凹坑, 则制备的新型热管每个圆形的微孔管的四周内壁上 没有微翅片, 形成图 1所示的第一种实施例的新型热管。
该实施例中的新型热管的制备工艺为热挤压工艺, 除此工艺外, 还可以选择冷挤压或温 挤压工艺, 在冷挤压或温挤压工艺中应选择耐磨损、 硬度高的挤压模具, 并需要很大的挤压 压力去挤压金属材料, 冷挤压或温挤压工艺较热挤压成本高, 但是挤压出的热管表面平整度 和光滑度高。 当然也可以选择冲压工艺来制备本发明的新型热管, 由带有平行排布的两个或 两个以上的柱状凸模的冲压模具去冲压导热实体, 尤其是制备比较短的新型热管时, 该冲压 工艺更易实现, 同样, 可选择热冲压、 温冲压或冷冲压工艺来制备。 该新型热管是挤压或冲 压整体成型, 工艺简单, 省去了现有热管制作时如毛细芯材料制备以及维护等工艺, 也无需 使用钎焊工艺在钎焊炉内通过整体钎焊加工为一体结构, 并且本发明的制备工艺有利于工业 化生产, 导热实体可批量置于生产线上, 经挤压模具挤压或由冲压模具冲压后进入下面的程 序, 有利于该新型热管的批量生产, 同时提高了新型热管的生产效率。
应当指出, 以上所述具体实施方式可以使本领域的技术人员更全面地理解本发明创造, 但不以任何方式限制本发明创造。 因此, 尽管本说明书参照附图和实施例对本发明创造已进 行了详细的说明, 但是, 本领域技术人员应当理解, 仍然可以对本发明创造进行修改或者等 同替换, 总之, 一切不脱离本发明创造的精神和范围的技术方案及其改进, 其均应涵盖在本 发明创造专利的保护范围当中。
Claims
1、 一种具有微热管阵列的新型热管, 其特征在于: 包括一实心的导热实体, 在所述导热 实体内具有两个或两个以上平行排布的微孔管, 所述微孔管密封在导热实体内并在微孔管内 灌装有起相变换热作用的工质, 在导热实体内形成微热管阵列。
2、根据权利要求 1所述的具有微热管阵列的新型热管, 其特征在于: 所述微孔管沿着所 述导热实体与元件被冷却面紧密贴合的表面平行排布成一层。
3、根据权利要求 2所述的具有微热管阵列的新型热管, 其特征在于: 所述导热实体为条 状或板状体, 所述平行排布的微孔管平行于条状或板状体横向宽度较宽的表面。
4、根据权利要求 3所述的具有微热管阵列的新型热管, 其特征在于: 所述微孔管排布成 两层或两层以上。
5、根据权利要求 1至 4之一所述的具有微热管阵列的新型热管, 其特征在于: 所述导热 实体为金属或合金材料制成。
6、根据权利要求 1至 4之一所述的具有微热管阵列的新型热管, 其特征在于: 所述微孔 管等效直径或水力直径在 0.1mm至 8mm之间, 相邻两微孔管之间的距离在 0.1mm至 1.0mm 之间。
7、根据权利要求 1至 4之一所述的具有微热管阵列的新型热管, 其特征在于: 所述各微 孔管两端均封闭, 各微孔管均为独立热管结构。
8、根据权利要求 1至 4之一所述的具有微热管阵列的新型热管, 其特征在于: 所述各微 孔管一端在导热实体内开放, 即彼此连通, 但导热实体该端封闭, 各微孔管另一端封闭, 各 微孔管为半独立热管结构。
9、根据权利要求 1至 4之一所述的具有微热管阵列的新型热管, 其特征在于: 所述微孔 管两端在导热实体内均开放, 导热实体两端封闭, 各微孔管整体为一热管结构。
10、 根据权利要求 1至 4之一所述的具有微热管阵列的新型热管, 其特征在于: 所述各 微孔管的通道截面形状为矩形或三角形或圆形。
11、 根据权利要求 1至 4之一所述的具有微热管阵列的新型热管, 其特征在于: 所述各 微孔管的通道内壁中, 设置有具有强化传热作用的微翅片或沿微孔管长度方向走向的内凹毛 细微槽。
12、根据权利要求 11所述的具有微热管阵列的新型热管, 其特征在于: 所述微翅片的大 小和结构适合于与微孔管内壁形成沿微孔管长度方向走向的毛细微槽。
13、 采用权利要求 1至 12之一所述的具有微热管阵列的新型热管的一种新型换热系统。
14、根据权利要求 13所述的新型换热系统, 其特征在于: 所述新型热管的一段侧面与元
件被冷却面相接触, 新型热管的其它部分为绝热段和冷凝段。
15、根据权利要求 13所述的新型换热系统, 其特征在于: 所述新型热管的一端位于热源 之中, 并吸热蒸发; 另一端外部通过空气或液体冷却, 热管内部蒸汽冷凝放热。
16、根据权利要求 13所述的新型换热系统, 其特征在于: 所述新型换热系统作为太阳能 热水器的集热器, 各微孔管一端吸收太阳能辐射能量蒸发, 另一端在换热器中冷凝放热以制 备热水。
17、 一种如权利要求 1所述的新型热管的加工工艺, 其特征在于: 包括如下步骤:
A、 采用挤压或冲压工艺制备出其内具有两个或两个以上平行排布并贯通的微孔管的导 热实体;
B、 将微孔管内空气排出及灌装液体工质, 并将导热实体两端密封封装。
18、 根据权利要求 17所述的加工工艺, 其特征在于, 步骤 A所述导热实体为金属或合 金材料, 将导热实体加热到软化温度后注入挤压模具挤压或由冲压模具冲压, 所述挤压或冲 压模具具有平行排布的两个或两个以上的柱状凸模, 所述导热实体被挤压或冲压后冷却至常 温。
19、 根据权利要求 18所述的加工工艺, 其特征在于, 所述导热实体为条状或板状体, 所 述平行排布的微孔管平行于条状或板状体横向宽度较宽的表面。
20、 根据权利要求 17或 18或 19所述的加工工艺, 其特征在于, 步骤 A所述挤压模具 或冲压模具内的柱状凸模上均设置有若干微凹坑或外翅片, 使所述微孔管内壁上带有挤压或 冲压成型的具有强化传热作用的若干微翅片或内凹毛细微槽。
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2009/074775 WO2010060342A1 (zh) | 2008-11-03 | 2009-11-03 | 具有微孔管阵列的热管及其加工工艺及换热系统 |
ES09828602.4T ES2578291T3 (es) | 2008-11-03 | 2009-11-03 | Conducto de calor con matriz de microtubos y procedimiento para la fabricación del mismo y sistema de intercambio de calor |
US13/127,444 US11022380B2 (en) | 2008-11-03 | 2009-11-03 | Heat pipe with micro-pore tube array and heat exchange system employing the heat pipe |
JP2011533524A JP2012507680A (ja) | 2008-11-03 | 2009-11-03 | 微細管配列を有するマイクロヒートパイプアレイ及びその作製方法並びに熱交換システム |
HUE09828602A HUE029949T2 (en) | 2008-11-03 | 2009-11-03 | With a microcircuit system, its manufacturing process and heat exchange system |
EP09828602.4A EP2357440B1 (en) | 2008-11-03 | 2009-11-03 | Heat pipe with micro tubes array and making method thereof and heat exchanging system |
US17/246,597 US11852421B2 (en) | 2008-11-03 | 2021-05-01 | Heat pipe with micro-pore tubes array and making method thereof and heat exchanging system |
Applications Claiming Priority (16)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN200810225649.8 | 2008-11-03 | ||
CNA2008102256498A CN101403578A (zh) | 2008-11-03 | 2008-11-03 | 一种板状热管及其加工工艺 |
CN200810225726.X | 2008-11-10 | ||
CN200810225726XA CN101430141B (zh) | 2008-11-10 | 2008-11-10 | 一种板式太阳能集热器及集热系统以及加工工艺 |
CN200810239002.0 | 2008-12-04 | ||
CN2008102390020A CN101414644B (zh) | 2008-12-04 | 2008-12-04 | 光伏电池散热装置 |
CN2009100789030A CN101493296B (zh) | 2009-02-27 | 2009-02-27 | 一种具有层列微槽微热管群的新型平板热管 |
CN200910078903.0 | 2009-02-27 | ||
CN200910078719.6 | 2009-03-02 | ||
CN2009100787196A CN101504197B (zh) | 2009-03-02 | 2009-03-02 | 一种新型太阳能热水系统 |
CNA2009100794113A CN101504198A (zh) | 2009-03-10 | 2009-03-10 | 一种改进的平板式太阳能集热方法及其集热器和热水系统 |
CN200910079411.3 | 2009-03-10 | ||
CN200910080179.5 | 2009-03-24 | ||
CN2009100801780A CN101515572B (zh) | 2009-03-24 | 2009-03-24 | 用于led及大功率散热器件的散热器 |
CN200910080178.0 | 2009-03-24 | ||
CN2009100801795A CN101510533B (zh) | 2009-03-24 | 2009-03-24 | 新型微电子器件散热器 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010060302A1 true WO2010060302A1 (zh) | 2010-06-03 |
Family
ID=42225227
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2009/072362 WO2010060302A1 (zh) | 2008-11-03 | 2009-06-19 | 具有微热管阵列的新型热管及其加工工艺及新型换热系统 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2010060302A1 (zh) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103574938A (zh) * | 2012-07-23 | 2014-02-12 | 深圳市鹏桑普太阳能股份有限公司 | 一种热媒超导管板一体集热器板芯及其制作方法 |
CN106747755A (zh) * | 2017-03-28 | 2017-05-31 | 谭家玉 | 固体生物有机肥微热管速酵仪 |
CN107660099A (zh) * | 2016-07-26 | 2018-02-02 | 东莞爵士先进电子应用材料有限公司 | 平板薄膜式散热装置 |
CN110822470A (zh) * | 2019-12-18 | 2020-02-21 | 王永亮 | 微旋流烟气余热利用装置 |
US10638639B1 (en) | 2015-08-07 | 2020-04-28 | Advanced Cooling Technologies, Inc. | Double sided heat exchanger cooling unit |
US10837712B1 (en) | 2015-04-15 | 2020-11-17 | Advanced Cooling Technologies, Inc. | Multi-bore constant conductance heat pipe for high heat flux and thermal storage |
CN114166048A (zh) * | 2021-12-07 | 2022-03-11 | 王乾新 | 一种板管散热器及冰箱、酒柜、除湿机和饮水机 |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN2289176Y (zh) * | 1997-06-12 | 1998-08-26 | 财团法人工业技术研究院 | 太阳能热管集热器 |
CN1564322A (zh) * | 2004-04-07 | 2005-01-12 | 李建民 | 曲面热管散热器及其应用方法 |
US6863118B1 (en) * | 2004-02-12 | 2005-03-08 | Hon Hai Precision Ind. Co., Ltd. | Micro grooved heat pipe |
CN2786532Y (zh) * | 2005-04-08 | 2006-06-07 | 珍通科技股份有限公司 | 板状热管 |
US20060157228A1 (en) * | 2002-09-03 | 2006-07-20 | Moon Seok H | Micro heat pipe with poligonal cross-section manufactured via extrusion or drawing |
CN1825577A (zh) * | 2005-02-23 | 2006-08-30 | 朋程科技股份有限公司 | 整流器的散热结构的制造方法 |
CN101403578A (zh) * | 2008-11-03 | 2009-04-08 | 赵耀华 | 一种板状热管及其加工工艺 |
CN101414644A (zh) * | 2008-12-04 | 2009-04-22 | 赵耀华 | 光伏电池散热装置 |
CN101430141A (zh) * | 2008-11-10 | 2009-05-13 | 赵耀华 | 一种板式太阳能集热器及集热系统以及加工工艺 |
-
2009
- 2009-06-19 WO PCT/CN2009/072362 patent/WO2010060302A1/zh active Application Filing
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN2289176Y (zh) * | 1997-06-12 | 1998-08-26 | 财团法人工业技术研究院 | 太阳能热管集热器 |
US20060157228A1 (en) * | 2002-09-03 | 2006-07-20 | Moon Seok H | Micro heat pipe with poligonal cross-section manufactured via extrusion or drawing |
US6863118B1 (en) * | 2004-02-12 | 2005-03-08 | Hon Hai Precision Ind. Co., Ltd. | Micro grooved heat pipe |
CN1564322A (zh) * | 2004-04-07 | 2005-01-12 | 李建民 | 曲面热管散热器及其应用方法 |
CN1825577A (zh) * | 2005-02-23 | 2006-08-30 | 朋程科技股份有限公司 | 整流器的散热结构的制造方法 |
CN2786532Y (zh) * | 2005-04-08 | 2006-06-07 | 珍通科技股份有限公司 | 板状热管 |
CN101403578A (zh) * | 2008-11-03 | 2009-04-08 | 赵耀华 | 一种板状热管及其加工工艺 |
CN101430141A (zh) * | 2008-11-10 | 2009-05-13 | 赵耀华 | 一种板式太阳能集热器及集热系统以及加工工艺 |
CN101414644A (zh) * | 2008-12-04 | 2009-04-22 | 赵耀华 | 光伏电池散热装置 |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103574938A (zh) * | 2012-07-23 | 2014-02-12 | 深圳市鹏桑普太阳能股份有限公司 | 一种热媒超导管板一体集热器板芯及其制作方法 |
US10837712B1 (en) | 2015-04-15 | 2020-11-17 | Advanced Cooling Technologies, Inc. | Multi-bore constant conductance heat pipe for high heat flux and thermal storage |
US10638639B1 (en) | 2015-08-07 | 2020-04-28 | Advanced Cooling Technologies, Inc. | Double sided heat exchanger cooling unit |
CN107660099A (zh) * | 2016-07-26 | 2018-02-02 | 东莞爵士先进电子应用材料有限公司 | 平板薄膜式散热装置 |
CN107660099B (zh) * | 2016-07-26 | 2024-05-24 | 东莞钱锋特殊胶粘制品有限公司 | 平板薄膜式散热装置 |
CN106747755A (zh) * | 2017-03-28 | 2017-05-31 | 谭家玉 | 固体生物有机肥微热管速酵仪 |
CN110822470A (zh) * | 2019-12-18 | 2020-02-21 | 王永亮 | 微旋流烟气余热利用装置 |
CN114166048A (zh) * | 2021-12-07 | 2022-03-11 | 王乾新 | 一种板管散热器及冰箱、酒柜、除湿机和饮水机 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2010060342A1 (zh) | 具有微孔管阵列的热管及其加工工艺及换热系统 | |
WO2010060302A1 (zh) | 具有微热管阵列的新型热管及其加工工艺及新型换热系统 | |
CN102506597A (zh) | 一种板状热管及其加工工艺 | |
CN101709929B (zh) | 一种板状热管及其加工工艺 | |
CN108847511A (zh) | 一种基于电池模组的一体化换热结构 | |
CN203163564U (zh) | 一种具有平板式蒸发器的环路重力热管传热装置 | |
CN106885485B (zh) | 一种热端变截面多脉动冷端热管散热器 | |
CN201044554Y (zh) | 水冷式微槽群与热电组合激光器热控制系统 | |
CN101818999A (zh) | 用于低品位热能利用的脉动热管传热装置 | |
CN107044745B (zh) | 一种微通道冷凝器 | |
CN107462094B (zh) | 相变集热腔热管组 | |
CN204345947U (zh) | 整体板式微流结构强化换热平板太阳能集热器 | |
CN106766404B (zh) | 微通道冷凝器 | |
CN102128552A (zh) | 单面波浪板式脉动热管 | |
CN101545735A (zh) | 金属丝结构的微槽道平板热管 | |
CN209802161U (zh) | 一种环路热管组件及其热管换热器 | |
CN201306961Y (zh) | 可串接的热管 | |
CN206540340U (zh) | 微通道冷凝器 | |
CN106500536A (zh) | 热管散热器 | |
CN2329925Y (zh) | 平面型热管散热器 | |
CN111207612A (zh) | 一种复合环路热管及其换热组件 | |
CN108801014A (zh) | 微热管暖气片及其制作方法 | |
CN202254521U (zh) | 一种用于热泵热水器的微通道冷凝器 | |
CN102401506A (zh) | 热管与tec的组合散热装置 | |
CN202032931U (zh) | 一种单面波浪板式脉动热管 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09828563 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 09828563 Country of ref document: EP Kind code of ref document: A1 |