[go: up one dir, main page]

WO2010057425A1 - 一种光交换的方法和装置 - Google Patents

一种光交换的方法和装置 Download PDF

Info

Publication number
WO2010057425A1
WO2010057425A1 PCT/CN2009/074979 CN2009074979W WO2010057425A1 WO 2010057425 A1 WO2010057425 A1 WO 2010057425A1 CN 2009074979 W CN2009074979 W CN 2009074979W WO 2010057425 A1 WO2010057425 A1 WO 2010057425A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
unit
input
switching unit
switching
Prior art date
Application number
PCT/CN2009/074979
Other languages
English (en)
French (fr)
Inventor
张光勇
申书强
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to JP2011536732A priority Critical patent/JP2012509627A/ja
Priority to BRPI0922058A priority patent/BRPI0922058A2/pt
Priority to EP09827174A priority patent/EP2357739A4/en
Priority to CA2744111A priority patent/CA2744111A1/en
Publication of WO2010057425A1 publication Critical patent/WO2010057425A1/zh
Priority to US13/111,172 priority patent/US20110217038A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0005Switch and router aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0201Add-and-drop multiplexing
    • H04J14/0202Arrangements therefor
    • H04J14/0213Groups of channels or wave bands arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0201Add-and-drop multiplexing
    • H04J14/0215Architecture aspects
    • H04J14/0217Multi-degree architectures, e.g. having a connection degree greater than two
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0005Switch and router aspects
    • H04Q2011/0007Construction
    • H04Q2011/0016Construction using wavelength multiplexing or demultiplexing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0005Switch and router aspects
    • H04Q2011/0007Construction
    • H04Q2011/0024Construction using space switching
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0005Switch and router aspects
    • H04Q2011/0052Interconnection of switches
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q2011/0075Wavelength grouping or hierarchical aspects

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a method and apparatus for optical switching.
  • the existing Dense wavelength division multiplexing (DWDM) technology can accommodate hundreds of wavelengths in one fiber, and each wavelength can reach a transmission rate of 40 Gbit/s or even 100 Gbit/s.
  • the capacity can reach the Tbit/s level and above, and can meet the network bandwidth requirements.
  • dense wavelength division multiplexing technology has brought about a significant increase in network cost and control complexity. Since the number of wavelengths accommodated in the optical fiber is hundreds, the number of optical switching and wavelength switching ports in the optical cross-connect (OXC) is greatly increased, and the cost of optical switching is also greatly increased; meanwhile, OXC The larger the scale, the more difficult and complicated the control of OXC.
  • Multi-granular optical switching technology refers to the simultaneous optical fiber in the same optical node. Switching, band switching and wavelength switching.
  • the band exchange refers to a plurality of wavelengths forming a band, which can be exchanged as a unit, which can reduce the number of ports required for switching, thereby reducing the cost; at the same time, providing three types of switching granularity of optical fiber, band, and wavelength, which can be flexibly Adjusted according to business needs, reducing control complexity.
  • a technical problem to be solved by embodiments of the present invention is to provide a method and apparatus for optical switching, which saves a switching port.
  • the input light waves When the input light waves need to be grouped, the input light waves are exchanged to the optical grouping unit; and then the grouped light waves are received;
  • the grouped light waves are switched to the corresponding output port outputs.
  • Another embodiment of the present invention provides a method for optical switching, including:
  • the grouped light waves are transmitted to the optical switching device.
  • the embodiment of the invention further provides an optical switching device, including:
  • An optical switching unit and an optical grouping unit wherein a part of the output port of the optical switching unit is connected to an input port of the optical grouping unit, and an output port of the optical grouping unit is connected to an input port of the optical switching unit;
  • the optical switching unit is configured to control a transmission path of the optical wave;
  • the optical grouping unit is configured to use the optical packet.
  • the above technical solution has the following beneficial effects: in the scheme of optical switching by optical packet unit and optical switching unit switching, the combination of light according to requirements can reduce the requirement of the switch matrix, thereby saving the optical switching unit port.
  • FIG. 1 is a schematic structural view of a device according to an embodiment of the present invention.
  • FIG. 2a is a schematic structural diagram of an optical switching unit according to an embodiment of the present invention.
  • FIG. 2b is a schematic structural diagram of an optical switching unit according to an embodiment of the present invention.
  • 2c is a schematic structural diagram of an optical grouping unit according to an embodiment of the present invention.
  • FIG. 3a is a schematic structural view of a device according to Embodiment 2 of the present invention.
  • FIG. 3b is a schematic structural diagram of another apparatus according to Embodiment 2 of the present invention.
  • 3c is a schematic structural view of another device according to Embodiment 2 of the present invention.
  • FIG. 4a is a schematic structural view of a device according to a third embodiment of the present invention.
  • FIG. 4b is a schematic structural diagram of another apparatus according to Embodiment 3 of the present invention.
  • FIG. 5 is a schematic structural diagram of a device according to Embodiment 4 of the present invention.
  • a technical problem to be solved by embodiments of the present invention is to provide a method and apparatus for optical switching, which saves a switching port.
  • the input light wave is exchanged to the optical packet unit, and then the grouped light wave is received; and the grouped light wave is exchanged to the corresponding output port output.
  • the method further includes: when the optical wave exchanged by the optical switching unit needs to exchange services, transmitting the input optical wave to the service switching unit, and then receiving the optical wave after the service switching; and exchanging the optical wave after the service switching to the corresponding output port. Output.
  • the executor of the above solution may be a strict non-blocking optical switch.
  • the above method of exchange may include:
  • the light waves exchanged to the optical switching device include: the grouped light waves.
  • the execution body of the above solution may be a wavelength selective switch.
  • the above method embodiments will be further described in conjunction with subsequent device embodiments.
  • the need for the switch matrix can be reduced, and the optical switching unit port is saved.
  • an apparatus for optical switching may include: an optical switching unit 102, an optical grouping unit 103, and a service switching unit 101.
  • the embodiment of the present invention exchanges multiple granularities.
  • the optical switching unit 102 has an optical input port and a light output port, wherein a part of the optical output port is connected to the input port of the optical grouping unit 103;
  • the optical grouping unit 103 has an optical input port and an optical output port, wherein the optical input port of the optical grouping unit 103 is connected to the optical output port of the optical switching unit 102, and the optical output port of the optical grouping unit 103 is connected to the optical input port of the optical switching unit 102;
  • the optical switching unit 102 is for controlling the transmission path of the optical wave, for example, as shown in Figs. 2a and 2b, the optical switching unit 102a, any port input, arbitrary port output, the optical switching unit 102b, the multi-port input, and the function of one port output.
  • the optical grouping unit 103 is used for optical wave grouping, for example, as shown in Fig. 2c, the optical grouping unit 103a functions to output the input fiber wavelengths arbitrarily. It can be understood that the function of the multi-port input of FIG.
  • FIG. 2b and the output of one port can also be realized by the optical grouping unit 103a; the specific implementation is a multi-port input, and the light wave is output from the same output port when grouping (light wave)
  • the path is the reverse of the path shown in Figure 2c).
  • the arrows without arrows in Figures 2a and 2b can be represented as ports for input or output, and the lines with arrows are indicated as trajectories for light transmission.
  • the input fiber can be directly output from any port through the optical switching unit 102, as shown in Figure 1: Track of fiber B:
  • Optical fiber switching process Input fiber B -> optical switching unit 102 -> output fiber B Group, as shown in Figure 1, the wavelength of the input fiber C is divided into two groups of CI C2, which are respectively output from port 03 04; that is, output from the output fiber Cl and the output fiber C2 respectively;
  • the wavelength group and wavelength switching process are as follows:
  • I ⁇ Packet C2 Optical Switching Unit Output Port 04 Sub-wavelength switching: After the wavelength of the input fiber is exchanged by Electrical Cross Connect (EXC), it is loaded into any other fiber; as shown in Figure 1, the wavelength of the input fiber A
  • the service switching unit can be composed of wavelength division multiplexing (WDM) - EXC - WDM, and the wavelength of the input fiber A is exchanged from the WDM - EXC - WDM service, and is output from 01, of course. It can be loaded into other packets for output; the subwavelength switching process is as follows:
  • the above device may include only the optical grouping unit 103 and the optical switching unit 102.
  • the optical switching unit 102 may be a strictly non-blocking optical switch, and may be a single-stage structure or a cascade structure, such as a three-dimensional drum electro-mechanical system (Three dimensional Micro Electromechanical System, 3D MEMS) Single stage structure.
  • the optical grouping unit 103 implements any wavelength combination, and may be composed of a Wavelength Selective Switch (WSS).
  • the number of WSSs may be determined by the maximum switching dimension of the network node composed of the optical switching fabric in the network, and the required optical switching.
  • the size of the unit 102 may be the sum of the number of input fibers and the number of exchanged dimensions at the peak time.
  • the specific form of the optical switching unit 102 and the optical grouping unit 103 in the embodiment of the present invention does not affect the implementation of the embodiment of the present invention.
  • the optical fiber switching can be directly performed by the optical switching unit 102; the wavelength group and the wavelength switching are performed by the optical grouping unit 103; after the wavelengths are combined according to requirements, the requirement for the switch matrix can be reduced.
  • 9 input fibers F1, F2...F9
  • input fiber F1 needs to be divided into 8 groups at time T1, F2
  • F3 - F9 must be directly collused; at time T2, F1 needs to be divided into 5 groups, and F2 is in the enjoyment.
  • 49 49 exchange units are needed. .
  • the output of the WSS can be fed back to the next level of WSS, enabling flexible combination of WSS to achieve different dimensions of exchange.
  • Embodiment 2 The embodiment of the present invention further provides another apparatus for optical switching. This embodiment will be described in the context of sharing of optical grouping units.
  • the optical switching unit 302 and the optical grouping unit 303 can be used to implement the expansion of the dimension by using the sharing of the optical grouping subunits. It is assumed that: at time T1, the optical fiber A requires output of 9 dimensions, and the optical fiber B requires output of 17 dimensions; As shown in Figure 3b, at time T2, fiber A requires output of 17 dimensions, and fiber B requires output of 9 dimensions. As shown in Figure 3c, at time T3, fiber A needs to output 7 dimensions, fiber B needs to output 6 dimensions, and fiber A needs to output 6 dimensions. A7, and fiber B6 need to be synthesized in 1 dimension.
  • the optical switching unit may be composed of a three dimensional micro electromechanical system (3D MEMS) large optical switch
  • the optical grouping unit may be composed of optical grouping subunits.
  • the optical packet subunit has a 1-port input and a 9-dimensional output function, it can be understood that the input port and the output port may also be other numbers. The number of input ports and output ports should not be construed as limiting the embodiment of the present invention. .
  • the input fiber A is input to the optical packet subunit 3 in the optical packet unit through the optical switching unit to form a 9-dimensional output; similarly, the input fiber B forms a 17-dimensional output through the optical packet subunits 1 and 2.
  • connection relationship at time T1 is:
  • the output dimension of the input fiber A becomes 17 dimensions, and the output dimension of the input fiber B becomes 9;
  • the connection between the optical fibers A and B and the optical packet unit can be replaced by the optical switching unit.
  • connection relationship at time T2 is:
  • the input fiber A output dimension becomes 7 dimensions
  • the input fiber B output dimension becomes 6 dimensions, where A7 and B6 are combined into one dimension.
  • the total output dimensions of fiber A and B are 12 dimensions.
  • the implementation may be: the optical packet unit is composed of an optical packet sub-unit, including a first optical packet sub-unit and a second optical packet sub-unit. And a third optical grouping subunit;
  • An input port of the first optical grouping subunit is connected to an output port of the optical switching unit, a part of the output port of the first optical grouping subunit is connected to an input port of the third optical grouping subunit, and a part of the output interface is connected.
  • An input port of the third optical packet subunit is connected to an output port of the first optical packet subunit, a part of the output port of the third optical packet subunit is connected to an input port of the second optical packet subunit, and a part of the output interface is connected An input port of the optical switching unit;
  • An input port of the second optical packet subunit is connected to an output port of the third optical packet subunit, and an output port of the second optical packet subunit is connected to an input port of the optical switching unit.
  • the light is combined according to requirements, which reduces the need for the switch matrix and saves the optical switching unit port. Further, the optical packet unit can be saved by sharing the optical packet unit.
  • Embodiment 3 is an apparatus for optical switching according to an embodiment of the present invention. This embodiment will be described with a dimension expansion as a background.
  • the optical switching unit 402 and the optical grouping unit 403 may be included;
  • the input fiber B wavelength initial group is two groups B1 and B2, and it is determined that the input fiber B wavelengths are grouped into n groups, and the input fiber B can be input to the optical grouping unit 403 at the optical switching unit 402.
  • the optical grouping unit 403 groups the wavelengths into n, and feeds them back to the optical switching unit 402, and the optical grouping unit 403 can output the n packets to an arbitrary output port. Thereby an output packet extension is achieved.
  • the extension of the optical packet unit 403 can be achieved by the extension of the optical packet subunit.
  • the optical packet subunit can also be used to extend the switching dimension; assuming that at time T1, input fiber B requires output of 9 dimensions; at time T2, input fiber B requires output of 17 dimensions;
  • the output fiber is 9-dimensional and not n-dimensional, and the input fiber B is required to output 9-dimensional.
  • the packet sub-unit 1 realizes the requirement, that is, the input fiber is input to the packet sub-unit 1 through the optical switching unit 402.
  • the grouping subunit 1 divides the input light into 9 groups and feeds back to the output of the optical switching unit 402.
  • the optical grouping unit 403 is composed of optical grouping subunits.
  • the output dimension of the input fiber B becomes 17 dimensions, which can be achieved by adding the primary optical packet subunit 2.
  • the first-level optical packet sub-unit 1 is re-grouped, wherein a set of outputs is fed back to the optical switching unit 402 and input to the second-level optical packet sub-unit 2, and the optical packet sub-unit 2 groups the wavelengths and feeds them back to the optical switching unit 402. 17-dimensional loss Out
  • the light can be combined according to requirements, which can reduce the need for the switch matrix and save the optical switch unit port.
  • Embodiment 4 of the present invention further provides an apparatus for optical switching. This embodiment will be described with a wavelength scheduling as a background.
  • it may include: an optical switching unit 502, an optical grouping unit 503, and a service switching unit 501; assuming that the wavelengths ⁇ 1, ⁇ 2, ⁇ 3, and ⁇ 4 in the input fiber B are required to be switched into the fiber ⁇ .
  • the scheduling process may be:
  • the input fiber B is switched to the optical packet unit 503 via the optical switching unit 502, and the optical packet unit 503 divides the wavelength in the optical fiber B into B1 ( ⁇ 1, ⁇ 2, ⁇ 3, ⁇ 4) and ⁇ 2 ( ⁇ 5.. ⁇ . ⁇ 80) two groups, and fed back to the optical switching unit 502; the optical switching unit 502 simultaneously switches the B1 ( ⁇ 1, ⁇ 2, ⁇ 3, ⁇ 4) group and the input fiber ⁇ to the output port 01, that is, completes the wavelength ( ⁇ 1, ⁇ 2, ⁇ 3) , ⁇ 4) is switched to the fiber ⁇ .
  • Another group ⁇ 2 ( ⁇ 5.. ⁇ . ⁇ 80) is output from other ports as required.
  • the light can be combined according to requirements, which can reduce the need for the switch matrix and save the optical switch unit port.
  • the medium can be a read only memory, a magnetic disk or a compact disk or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Use Of Switch Circuits For Exchanges And Methods Of Control Of Multiplex Exchanges (AREA)
  • Optical Communication System (AREA)
  • Time-Division Multiplex Systems (AREA)

Description

一种光交换的方法和装置
本申请要求于 2008 年 11 月 20 日提交中国专利局、 申请号为 200810177646.1、 发明名称为 "一种光交换的方法和装置" 的中国专利申请的 优先权, 其全部内容通过引用结合在本申请中。
技术领域
本发明涉及通信技术领域, 特别涉及一种光交换的方法和装置。
背景技术
现有的密集波分复用 ( Dense wavelength division multiplexing, DWDM ) 技术能够在一根光纤中容纳上百个波长, 每个波长都能够达到 40 Gbit/s甚至 100Gbit/s的传输速率, 一根光纤的容量可以达到 Tbit/s量级以上, 能够 4艮好地 满足对网络带宽的需求。 同时, 密集波分复用技术带来了网络成本和控制复杂 度的大幅度增加。由于光纤中容纳的波长数目达数百个,使光交叉连接( optical cross-connect, OXC ) 中的光纤交换和波长交换的端口数量大幅度提高, 光交 换的成本也大幅提高; 同时, OXC的规模越大使 OXC的控制越困难、越复杂。 假设某节点处有 20根输入光纤, 20根输出光纤, 每根光纤 100个波长同时传 输, 采用普通的 OXC节点则需要 2000个输入端口、 2000个输出端口、 以及 2000 x 2000的光开关矩阵, 由此导致的 OXC的成本和复杂度相当高。 此外, 网络向动态全网状(Mesh ) 网络发展对业务信号的维度也提出了越来越高的 要求, 由于网络的动态性和灵活性, 波长随时间调度, 不同时刻, 波长所需要 交换的维度不同,对业务信号的维度也提出了越来越高的要求; 因此能够实现 多粒度和多维度,且具有可扩展性, 可灵活升级的交换结构对于动态网络的构 建和管理具有重要意义。
为了解决光网络技术发展所带来的交换成本和控制复杂度提高的问题,提 出了多粒度光交换技术。多粒度光交换技术是指在同一光节点内同时进行光纤 交换、 波带交换和波长交换。 其中波带交换是指多个波长组成一个波带, 作为 一个单元进行交换, 可以减少交换需要的端口数量, 从而降低了成本; 同时, 提供光纤、 波带、 波长 3种交换粒度, 可以灵活地按业务需要调整, 降低了控 制复杂度。
上述多粒度光交换技术可以通过带复用器和解复用器环回的光交换结构 来实现。 该方案能够动态交换和透明上下波带和波长。 解复用器环回 ( Demultiplexer, DMUX/DEMUX )每个输出端口具有周期通带, 能够实现任 何波带解成单个波长。 DEMUX将输入的 DWDM信道分成波带, 并直接反馈 到光开关, 然后根据需求进行调度。 该方案能够同时实现光纤级、 波长级和波 带级交换。
但实际上, 并非所有波长都需要被 DMUX解成单个波长进行交换, 而上 述方案将所有波长都通过 DMUX解成单个波长的波并反馈到交换单元, 占用 了交换端口, 造成光交换单元端口的浪费。
发明内容
本发明实施例要解决的技术问题是提供一种光交换的方法和装置,节省交 换端口。 技术方案实现:
接收输入光波;
当输入光波需要进行分组时,将输入光波交换到光分组单元; 然后接收分 组后的光波;
将分组后的光波交换到对应的输出端口输出。
本发明实施例还提供了另一种光交换的方法, 包括:
接收光交换装置交换的光波;
对所述光波进行分组;
将分组后的光波发送给光交换装置。
本发明实施例还提供了一种光交换装置, 包括:
光交换单元和光分组单元,其中所述光交换单元的一部分输出端口连接光 分组单元的输入端口, 光分组单元的输出端口连接光交换单元的输入端口; 其中, 所述光交换单元用于控制光波的传输路径; 所述光分组单元用于光 波分组。
上述技术方案具有如下有益效果:通过光分组单元分组后再通过光交换单 元交换完成光交换的方案中,光根据需求进行组合后能够降低对开关矩阵的需 求, 从而节约了光交换单元端口。
附图说明
图 1为本发明实施例一装置结构示意图;
图 2a为本发明实施例一光交换单元结构示意图;
图 2b为本发明实施例一光交换单元结构示意图;
图 2c为本发明实施例一光分组单元结构示意图;
图 3a为本发明实施例二装置结构示意图;
图 3b为本发明实施例二另一装置结构示意图;
图 3c为本发明实施例二另一装置结构示意图;
图 4a为本发明实施例三装置结构示意图;
图 4b为本发明实施例三另一装置结构示意图;
图 5为本发明实施例四装置结构示意图。
具体实施方式
本发明实施例要解决的技术问题是提供一种光交换的方法和装置,节省交 换端口。
本发明实施例提供的一种光交换的方法, 可以包括:
接收输入光波; 当输入光波需要进行分组时,将输入光波交换给光分组单 元, 然后接收分组后的光波; 将分组后的光波交换到对应的输出端口输出。
上述接收输入光波之后还可以包括: 当光交换单元交换的光波需要业务交 换时, 将输入光波传输给业务交换单元, 然后接收业务交换后的光波; 将业务 交换后的光波交换到对应的输出端口输出。
上述将分组后的光波在对应的输出端口输出可以是:将一部分分组后的光 波交换到光分组单元;接收再次分组后的光波; 将另一部分光波交换到对应的 输出端口输出, 将再次分组后的光波交换到对应的输出端口输出。
上述方案的执行主体可以为严格无阻塞光开关。 上述交换的方法, 从另一个角度来看可以包括:
接收光交换装置交换的光波; 对所述光波进行分组; 将分组后的光波传输 给光交换装置。
上述对光交换装置交换的光波包括: 经过分组后的光波。
上述方案的执行主体可以为波长选择开关。 上述方法实施例将结合后续装置实施例来作进一步说明。
据需求组合后, 能够降低对开关矩阵的需求, 节约了光交换单元端口。
实施例一, 如图 1所示, 本发明实施例提供的一种光交换的装置, 可以包 括: 光交换单元 102、 光分组单元 103、 业务交换单元 101 ; 本发明实施例将以 多粒度交换为背景进行说明。
光交换单元 102具有光输入端口和光输出端口, 其中一部分光输出端口连 接光分组单元 103的输入端口;
光分组单元 103具有光输入端口和光输出端口,其中光分组单元 103的光输 入端口连接光交换单元 102的光输出端口,光分组单元 103的光输出端口连接光 交换单元 102的光输入端口;
光交换单元 102用于控制光波的传输路径, 例如: 如图 2a和 2b所示, 光交 换单元 102a, 任意端口输入, 任意端口输出; 光交换单元 102b, 多端口输入, 一个端口输出的功能。 光分组单元 103用于光波分组, 例如: 如图 2c所示, 光 分组单元 103a, 将输入光纤波长任意分组输出的功能。 可以理解的是, 图 2b 的多端口输入, 一个端口输出的功能也是可以通过光分组单元 103a来实现的; 具体实现是多路端口输入,在分组的时候将光波从同一个输出端口输出(光波 路径为图 2c所示路径的逆向)。 图 2a和图 2b中无箭头的线条可以表示为输入或 输出的端口, 有箭头线条表示为光线传输轨迹。
下面通过常用的几种粒度交换的实现方案进行说明:
光纤交换: 输入光纤可通过光交换单元 102直接从任意端口输出, 如图 1 光纤 B的轨迹:
光纤交换流程: 输入光纤 B —>光交换单元 102 —>输出光纤 B 组, 如图 1 , 输入光纤 C中波长分成 CI C2两组, 分别从端口 03 04输出; 即 分别从输出光纤 Cl、 输出光纤 C2输出;
波长组、 波长交换流程如下式所示:
w , - , / ^ J"分组 C1 光交换单元 输出端口 03 输入光纤 光叉换卓元 光分组卓元 , ^
I·分组 C2 光交换单元 输出端口 04 子波长交换: 输入光纤中波长通过电交叉 ( Electrical Cross connect, EXC ) 进行业务交换后, 加载到其它任意光纤中去; 如图 1 , 输入光纤 A中波长经过 业务交换单元 101 , 业务交换单元可以由波分复用 (wavelength division multiplexing, WDM ) - EXC - WDM组成, 则输入光纤 A中波长经过 WDM - EXC - WDM业务交换后,从 01输出, 当然也可以加载到其它分组中输出; 子波长交换流程如下式所示:
Figure imgf000007_0001
业务交换
由上述方案可知上述装置可以仅包含光分组单元 103和光交换单元 102 上述光交换单元 102可以为严格无阻塞光开关, 可以是单级结构或者级联 结构, 如三维鼓电子机械系统 ( Three dimensional Micro Electromechanical System , 3D MEMS )单级结构。 光分组单元 103实现任意波长组合, 可以由 波长选择开关(Wavelength Selective Switch, WSS )组成, WSS的数量可以由 该光交换结构组成的网络节点在网络中的最大交换维度确定,所需的光交换单 元 102的规模可以为峰值时刻的输入光纤数和交换维度数之和; 本发明实施例 对光交换单元 102和光分组单元 103的具体形式不做限定不影响本发明实施例 的实现。
光纤交换可以通过光交换单元 102直接进行; 波长组、 波长交换通过光分 组单元 103分组后进行; 波长根据需求组合后, 能够降低对开关矩阵的需求。 假定 9根输入光纤 (F1,F2...F9 ), 其中输入光纤 F1在 T1时刻需要分成 8组, F2 在 Tl时刻需要分成 5组, F3 - F9须直接串通; 在 T2时刻 F1需要分成 5组, F2在 享, 假若 9根光纤在峰值时刻总共需要分成 40组, 那么需要 49 49的交换单元 即可。 而在业界方案中, Fl ~ F9经过 DMUX后连接到光交换矩阵, 所需交换 单元, 以每光纤中 80波为例, 则交换单元规模为: 720 x 720, 由此可见, 本方 案能够明显降低光交换单元 102的规模要求。
由于光开关内部连接的灵活性, 可以将 WSS的输出反馈到下一级 WSS , 实现 WSS的灵活组合, 从而实现不同维度的交换。
实施例二,本发明实施例还提供了另一种光交换的装置, 本实施例将以光 分组单元的共享为背景进行说明。
如图 3a所示, 可以包括: 光交换单元 302、 光分组单元 303; 利用光分组子 单元的共享实现维度的扩展; 假定: T1时刻, 光纤 A要求输出 9维, 光纤 B要求 输出 17维; 如图 3b所示, T2时刻, 光纤 A要求输出 17维, 光纤 B要求输出 9维; 如图 3c所示, T3时刻, 光纤 A需要输出 7维, 光纤 B需要输出 6维, 且光纤 A的 A7, 以及光纤 B6需要合成 1维。
在本实施例中,光交换单元可以由三维微电子机械系统( Three dimensional Micro Electromechanical System , 3D MEMS ) 大型光开关组成, 光分组单元 可以由光分组子单元组成。 假定光分组子单元具有 1端口输入, 9维输出功能, 可以理解的是输入的端口和输出的端口还可以是其它数量的,输入端口和输出 端口的数量不应理解为对本发明实施例的限定。
T1时刻, 输入光纤 A通过光交换单元, 输入到光分组单元中光分组子单元 3,形成 9维度输出; 类似的, 输入光纤 B通过光分组子单元 1和 2形成 17维输出。
即 T1时刻连接关系为:
输入光纤 A—— >光交换单元—— >光分组子单元 3—— >光交换单元—— > 输出光纤
输入光纤 B—— >光交换单元—— >光分组子单元 1—— >
一一 >光交换单元一一 >输出光纤
、—— >光分组子单元 2—— >光交换单元—— >输出光纤
T2时刻, 输入光纤 A的输出维数变成 17维, 输入光纤 B的输出维数变成 9; 可通过光交换单元输入光纤 A和 B与光分组单元的连接更换即可。
即 T2时刻连接关系为:
输入光纤 B—— >光交换单元—— >光分组子单元 3—— >光交换单元 一一 >输出光纤
输入光纤 A—— >光交换单元—— >光分组子单元 1
—一 >光交换单元一一 >输出光纤
L—— >光分组子单元 2—— >光交换单元—— >输出光纤
T3时刻, 输入光纤 A输出维数变成 7维, 输入光纤 B输出维度变成 6维, 其 中 A7与 B6合成 1维。 光纤 A和 B总输出维度为 12维。
输入光纤 A—— >光交换单元—— >光分组子单元 1—— >光交换单元 —一 >光交换单元一一 >输出光纤
L—— >光分组子单元 3—— >光交换单元—— >输出光纤
输入光纤 B—— >光交换单元—— >光分组子单元 2—— >光交换单元 - '一一 >光交换单元一一 >输出光纤
L—— >光分组子单元 3—— >光交换单元—— >输出光纤
此外, 光分组单元在输出维数变更时, 可以释放空闲光分组单元, 从而实 现节省光分组单元的目的。
上述光分组子单元将需要再次分组的光波直接传输给其它光分组子单元 时候, 实施方式可以是: 光分组单元由光分组子单元组成, 包括第一光分组子 单元、 第二光分组子单元和第三光分组子单元组成;
其中第一光分组子单元的的输入端口连接所述光交换单元的输出端口,所 述第一光分组子单元的一部分输出端口连接所述第三光分组子单元的输入端 口, 一部分输出接口连接所述光交换单元的输入端口;
第三光分组子单元的输入端口连接第一光分组子单元的输出端口,所述第 三光分组子单元的一部分输出端口连接所述第二光分组子单元的输入端口,一 部分输出接口连接所述光交换单元的输入端口;
第二光分组子单元的输入端口连接第三光分组子单元的输出端口,所述第 二光分组子单元的输出端口连接所述光交换单元的输入端口。
上述实施例中, 交换过程, 光根据需求组合后, 能够降低对开关矩阵的需求, 节约了光交换单 元端口。 更进一步地, 通过共享光分组单元可以节约光分组单元。
实施例三,本发明实施例提供的一种光交换的装置, 本实施例将以维度扩 展为背景进行说明。
如图 4a所示, 可以包括: 光交换单元 402、 光分组单元 403;
在本实施例中输入光纤 B波长初始分组为 B1和 B2两组,现支定需将输入光 纤 B波长分组为 n组, 则可以在光交换单元 402将输入光纤 B输入到光分组单元 403 , 光分组单元 403将波长进行 n分组后, 反馈到光交换单元 402, 光分组单元 403即可将这 n分组输出到任意输出端口。从而实现了输出分组扩展。 光分组单 元 403的扩展可以通过光分组子单元的扩展实现。
具体流程, 如下式所示:
初始分组 i
Figure imgf000010_0001
交换流程: f分组 Β 光交换单元 输出端口 02
输入光纤 光分组单元 分组 B2' 光交换单元 输出端口 03
L分组 Bn 光交换单元 输出端口 On
还可以利用光分组子单元扩展交换维度; 假定 T1时刻, 输入光纤 B要求输 出 9维; T2时刻, 输入光纤 B要求输出 17维;
T1时刻, 可以参阅图 4a, 不同点在于输出光纤是 9维不是 n维, 输入光纤 B 要求输出 9维, 通过分组子单元 1实现需求, 即输入光纤经过光交换单元 402输 入到分组子单元 1 , 分组子单元 1将输入光分成 9组后反馈到光交换单元 402输 出; T2时刻, 如图 4b所示, 光分组单元 403由光分组子单元组成。 输入光纤 B 的输出维数变为 17维, 则可以通过增加一级光分组子单元 2实现。 将第一级光 分组子单元 1重新分组,其中一组输出反馈到光交换单元 402并输入到第二级光 分组子单元 2, 光分组子单元 2将波长分组后反馈到光交换单元 402实现 17维输 出
上述实施例中,
交换过程, 光根据需求组合后, 能够降低对开关矩阵的需求, 节约了光交换单 元端口。
实施例四,本发明实施例还提供了一种光交换的装置,本实施例将以波长 调度为背景进行说明。
如图 5所示, 可以包括: 光交换单元 502、 光分组单元 503、 业务交换单元 501; 假定输入光纤 B中波长 λ1,λ2, λ3, λ4要求交换到光纤 Α中去。
调度过程可以是: 输入光纤 B经光交换单元 502交换到光分组单元 503, 光 分组单元 503将光纤 B中波长分成 B1 ( λ 1,λ2, λ3, λ4)和 Β2( λ5..·. λ 80 ) 两组, 并反馈到光交换单元 502; 光交换单元 502将 B1 ( λ1,λ2, λ 3, λ4)分 组与输入光纤 Α同时交换到输出端口 01, 即完成波长( λ1,λ2, λ3, λ4) 交 换到光纤 Α中。 另一分组 Β2 ( λ5..·. λ 80)根据需求从其它端口输出。 交换过程, 光根据需求组合后, 能够降低对开关矩阵的需求, 节约了光交换单 元端口。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分步骤 是可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可 读存储介质中, 上述提到的存储介质可以是只读存储器, 磁盘或光盘等。
以上对本发明实施例所提供的一种光交换的方法和装置进行了详细介绍, 说明只是用于帮助理解本发明的方法及其核心思想; 同时,对于本领域的一般 技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处, 综上所述, 本说明书内容不应理解为对本发明的限制。

Claims

权 利 要 求
1、 一种光交换的方法, 其特征在于, 包括:
接收输入光波;
当输入光波需要进行分组时,将输入光波交换到光分组单元; 然后接收分 组后的光波;
将分组后的光波交换到对应的输出端口输出。
2、根据权利要求 1所述方法,其特征在于,所述接收输入光波之后还包括: 当输入光波需要业务交换时,将输入光波交换到业务交换单元, 然后接收 业务交换后的光波;
将业务交换后的光波交换到对应的输出端口输出。
3、 根据权利要求 1或 2所述方法, 其特征在于, 所述将分组后的光波交换 到对应的输出端口输出包括:
将一部分分组后的光波发送给光分组单元;
接收再次分组后的光波; 将另一部分光波在需要的输出端口输出,将再次 分组后的光波在需要的输出端口输出。
4、 根据权利要求 1或 2所述方法, 其特征在于, 所述在对应的输出端口输 出包括:
根据需要经波长交换、光纤交换、子波长交换中的至少一种后在输出端口 输出。
5、 一种光交换的方法, 其特征在于, 包括:
接收光交换装置交换的光波;
对所述光波进行分组;
将分组后的光波发送给光交换装置。
6、 根据权利要求 5所述方法, 其特征在于, 所述接收光交换装置交换的光 波包括:
经过分组后的光波。
7、 根据权利要求 5或 6所述方法, 其特征在于, 所述分组包括:
根据波长进行分组。
8、 根据权利要求 5或 6所述方法, 其特征在于, 当所述光交换装置交换的光波需要分组的维度减少时释放空闲的输入和 输出端口。
9、 一种光交换装置, 其特征在于, 包括:
光交换单元和光分组单元,其中所述光交换单元的一部分输出端口连接光 分组单元的输入端口, 光分组单元的输出端口连接光交换单元的输入端口; 其中, 所述光交换单元用于控制光波的传输路径; 所述光分组单元用于光 波分组。
10、 根据权利要求 9所述装置, 其特征在于, 还包括: 业务交换单元, 所述光交换单元的一部分输出端口连接业务交换单元,业务交换单元的输 出端口连接所述光交换单元的输入端口; 所述业务交换单元用于业务交换。
11、 根据权利要求 9或 10所述装置, 其特征在于,
所述光分组单元由至少一个光分组子单元组成;
其中光分组子单元的的输入端口连接所述光交换单元的输出端口,所述光 分组子单元的输出端口连接所述光交换单元的输入端口;光分组子单元用于光 波分组。
12、 根据权利要求 11所述装置, 其特征在于,
所述光分组子单元,还用于当光交换单元交换的光波需要分组的维度减少 时释放空闲的输入和输出端口。
PCT/CN2009/074979 2008-11-20 2009-11-17 一种光交换的方法和装置 WO2010057425A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2011536732A JP2012509627A (ja) 2008-11-20 2009-11-17 光スイッチング方法及び装置
BRPI0922058A BRPI0922058A2 (pt) 2008-11-20 2009-11-17 método e dispositivo para comutação óptica.
EP09827174A EP2357739A4 (en) 2008-11-20 2009-11-17 OPTICAL SWITCHING DEVICE AND METHOD
CA2744111A CA2744111A1 (en) 2008-11-20 2009-11-17 Method and device for optical switching
US13/111,172 US20110217038A1 (en) 2008-11-20 2011-05-19 Method and device for optical switching

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200810177646A CN101742363A (zh) 2008-11-20 2008-11-20 一种光交换的方法和装置
CN200810177646.1 2008-11-20

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/111,172 Continuation US20110217038A1 (en) 2008-11-20 2011-05-19 Method and device for optical switching

Publications (1)

Publication Number Publication Date
WO2010057425A1 true WO2010057425A1 (zh) 2010-05-27

Family

ID=42197841

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/074979 WO2010057425A1 (zh) 2008-11-20 2009-11-17 一种光交换的方法和装置

Country Status (7)

Country Link
US (1) US20110217038A1 (zh)
EP (1) EP2357739A4 (zh)
JP (1) JP2012509627A (zh)
CN (1) CN101742363A (zh)
BR (1) BRPI0922058A2 (zh)
CA (1) CA2744111A1 (zh)
WO (1) WO2010057425A1 (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102361467B (zh) * 2011-07-22 2014-06-18 西安电子科技大学 无阻塞的光片上网络结构及其通信方法
EP2834990A1 (en) * 2012-04-04 2015-02-11 Telefonaktiebolaget L M Ericsson (Publ) Apparatus and method for switching information transported using a hierarchical data structure
GB201305801D0 (en) * 2013-03-28 2013-05-15 British Telecomm Optical switch
GB201305985D0 (en) * 2013-04-03 2013-05-15 British Telecomm Optical switch
CN104734799B (zh) * 2013-12-19 2017-12-15 华为技术有限公司 光交换架构
CN106063169B (zh) * 2014-03-06 2019-05-07 华为技术有限公司 一种数据处理方法及装置
CN103888857B (zh) * 2014-03-11 2018-06-19 北京邮电大学 软定义弹性光交换网络中有共享调制复用能力的节点装置
US9749723B2 (en) * 2015-03-05 2017-08-29 Huawei Technologies Co., Ltd. System and method for optical network
WO2016165053A1 (zh) 2015-04-13 2016-10-20 华为技术有限公司 光交叉互连节点和光信号交换的方法
US11316593B2 (en) 2018-01-09 2022-04-26 British Telecommunications Public Limited Company Optical DWDM data and QKD transmission system
EP4436075A3 (en) * 2021-08-30 2024-12-11 Ciena Corporation Crosspoint switch with ýled io ports and imaging fiber cables

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1529191A (zh) * 2003-10-16 2004-09-15 上海交通大学 基于双面镜光开关的动态可重构光分插复用模块
CN1819706A (zh) * 2006-03-15 2006-08-16 重庆邮电学院 基于可调滤波器的光波带交换网络节点结构
CN101093264A (zh) * 2006-06-23 2007-12-26 北京大学 用平行光纤解决obs中竞争的链路结构及波长分配方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3744343B2 (ja) * 2000-11-08 2006-02-08 日本電気株式会社 光クロスコネクト装置
US6574386B1 (en) * 2001-04-20 2003-06-03 Transparent Networks, Inc. Dynamically reconfigurable optical switching system
US7340175B2 (en) * 2002-01-18 2008-03-04 Nec Corporation Non-uniform optical waveband aggregator and deaggregator and hierarchical hybrid optical cross-connect system
JP4530821B2 (ja) * 2004-08-16 2010-08-25 富士通株式会社 光分岐挿入装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1529191A (zh) * 2003-10-16 2004-09-15 上海交通大学 基于双面镜光开关的动态可重构光分插复用模块
CN1819706A (zh) * 2006-03-15 2006-08-16 重庆邮电学院 基于可调滤波器的光波带交换网络节点结构
CN101093264A (zh) * 2006-06-23 2007-12-26 北京大学 用平行光纤解决obs中竞争的链路结构及波长分配方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2357739A4 *

Also Published As

Publication number Publication date
JP2012509627A (ja) 2012-04-19
CN101742363A (zh) 2010-06-16
CA2744111A1 (en) 2010-05-27
US20110217038A1 (en) 2011-09-08
EP2357739A1 (en) 2011-08-17
EP2357739A4 (en) 2012-04-04
BRPI0922058A2 (pt) 2015-12-15

Similar Documents

Publication Publication Date Title
WO2010057425A1 (zh) 一种光交换的方法和装置
CN103797737B (zh) 使用用于数据中心网络交换的多光纤配置的光学架构和信道计划
CN1183720C (zh) 光通信网络、在其中使用的节点以及操作该节点的方法
JP2001016625A (ja) 光クロスコネクト装置および光ネットワーク
US20160057514A1 (en) Optical switch
WO2015090073A1 (zh) 光交换架构
WO2020045179A1 (ja) 光ネットワーク、光伝送システムおよびこれに含まれる光ノード
US7764882B2 (en) Optical packet tray router
US7206509B2 (en) Method and apparatus for temporally shifting one or more packets using wavelength selective delays
CN100428660C (zh) 一种具有内部加速的光突发交换节点
CN103236924B (zh) 全时全通型量子网络路由器及扩展量子保密通信网络的方法
CN1330120C (zh) 具有组播功能可扩展的全光交换结构
CN1209647C (zh) 光交叉连接系统
JP2003009195A (ja) クロスコネクトスイッチ
CN101931488B (zh) 全时全通型量子网络路由器及扩展量子保密通信网络的方法
WO2016165053A1 (zh) 光交叉互连节点和光信号交换的方法
CN116528091B (zh) 一种光交换架构
CN202385242U (zh) 基于光分组交换的异步多波长网状网自适应节点装置
CN101079680B (zh) 基于多级缓存共享的全光串行组播模块及其组播方法
CN116325568B (zh) 高维度光交叉连接云集群节点架构
WO2023093580A1 (zh) 光交叉装置和光交叉设备
WO2023002619A1 (ja) 光ゲートウェイ装置
CN201846454U (zh) 用于光突发交换网络核心节点的多粒度光交叉连接装置
Pedro et al. Towards fully flexible optical node architectures: Impact on blocking performance of dwdm transport networks
JP3819324B2 (ja) 光ネットワーク

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09827174

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2744111

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011536732

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2009827174

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2238/KOLNP/2011

Country of ref document: IN

ENP Entry into the national phase

Ref document number: PI0922058

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20110519