[go: up one dir, main page]

WO2010055741A1 - Radio base station, communication method and program - Google Patents

Radio base station, communication method and program Download PDF

Info

Publication number
WO2010055741A1
WO2010055741A1 PCT/JP2009/067648 JP2009067648W WO2010055741A1 WO 2010055741 A1 WO2010055741 A1 WO 2010055741A1 JP 2009067648 W JP2009067648 W JP 2009067648W WO 2010055741 A1 WO2010055741 A1 WO 2010055741A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
base station
radio base
terminals
terminal
Prior art date
Application number
PCT/JP2009/067648
Other languages
French (fr)
Japanese (ja)
Inventor
正司 平部
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Publication of WO2010055741A1 publication Critical patent/WO2010055741A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0602Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using antenna switching
    • H04B7/0608Antenna selection according to transmission parameters
    • H04B7/061Antenna selection according to transmission parameters using feedback from receiving side
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A) or DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices

Definitions

  • the present invention relates to a radio base station, a communication method, and a program that transmit and receive signals using subcarriers, and in particular, orthogonal frequency division multiple access (OFDMA) that performs user separation in two dimensions of time and frequency in divided subcarriers.
  • OFDMA orthogonal frequency division multiple access
  • the present invention relates to a radio base station, communication method, and program using Orthogonal Frequency Division Multiplexing Access).
  • WiMAX Worldwide Interoperability for Microwave Access
  • Band-AMC Adaptive Modulation and Coding
  • This Band-AMC selects a subcarrier in a band having a good SNR (Signal to Noise Ratio) under frequency selective fading, and performs communication using the selected subcarrier. This improves the quality of the received signal.
  • SNR Signal to Noise Ratio
  • Patent Document 1 a technique in which a single communication device is provided with a plurality of antennas has been considered (for example, see Patent Document 1).
  • the transfer function between the antenna of the other station and each antenna of the own station is obtained, and the absolute value of the transfer function for the antenna used by the other station for packet transmission Alternatively, an antenna having a large addition value obtained by calculating and adding a power value of the absolute value is selected.
  • this technique is applied to an orthogonal frequency division multiplexing (OFDM) system.
  • OFDM orthogonal frequency division multiplexing
  • Band-AMC Band-AMC since each user selects a subcarrier, the selected subcarriers may overlap (collision) with each other.
  • FIG. 1 is a diagram showing an example of subcarriers assigned to two users and fading characteristics.
  • User 1 selects a subcarrier that user 1 uses for communication based on the fading characteristics of user 1 indicated by a solid line. Further, the user 2 selects a subcarrier that the user 2 uses for communication based on the fading characteristic of the user 2 indicated by a broken line.
  • FIG. 2 is a diagram schematically showing an example of scheduling processing in the radio base station when a subcarrier collision occurs as shown in FIG.
  • This rearrangement is performed so that subcarriers used by a plurality of users do not collide with each other and the SNR characteristics of each user are good, and complicated scheduling processing is required. End up.
  • Patent Document 1 relates to an OFDM system in which all subcarriers are allocated to one user, and OFDMA is used by a plurality of users by dividing subcarriers as in the WiMAX system. It is not applicable to the system.
  • An object of the present invention is to provide a communication device, a communication method, and a program that solve the above-described problems.
  • the present invention provides: A wireless base station that communicates with a plurality of terminals having a wireless communication function using OFDMA (Orthogonal Frequency Division Multiplexing Access), A plurality of antennas for transmitting and receiving radio signals to and from the terminal; For each of the plurality of terminals, an antenna selection unit that selects one of the plurality of antennas for transmitting a signal to the terminal; Based on the reception quality information transmitted from the terminal, the first antenna among the plurality of antennas from the first antenna selected by the antenna selection unit is selected by the antenna selection unit.
  • OFDMA Orthogonal Frequency Division Multiplexing Access
  • a CQI decoder that instructs the antenna selection unit to switch to a second antenna other than When the CQI decoder instructs the antenna selection unit to switch the antenna selected by the antenna selection unit from the first antenna to the second antenna, the antenna selection unit switches to the second antenna.
  • a connection method for connecting a plurality of terminals communicating with a radio base station using OFDMA Orthogonal Frequency Division Multiplexing Access
  • OFDMA Orthogonal Frequency Division Multiplexing Access
  • a program to be executed by a radio base station that communicates with a plurality of terminals having a radio communication function using OFDMA (Orthogonal Frequency Division Multiplexing Access), For each of the plurality of terminals, a procedure for selecting one antenna for transmitting a signal to the terminal from among a plurality of antennas of the radio base station; Based on reception quality information transmitted from the terminal, the antenna to be selected is switched from the currently selected first antenna to a second antenna other than the first antenna among the plurality of antennas. And execute the procedure.
  • OFDMA Orthogonal Frequency Division Multiplexing Access
  • a plurality of antennas included in a wireless base station that communicates with the terminals using OFDMA Orthogonal Frequency Division Multiplexing Access
  • one antenna for transmitting a signal to the terminal is selected, and based on the reception quality information transmitted from the terminal, the antenna to be selected is selected from the currently selected first antenna to a plurality of antennas. Since it is configured to switch to the second antenna other than the first antenna, collision of subcarriers used by a plurality of users can be avoided without performing complicated scheduling processing.
  • FIG. 2 is a diagram schematically illustrating an example of scheduling processing in a radio base station when a subcarrier collision occurs as illustrated in FIG. 1. It is a figure which shows one Embodiment of the wireless base station of this invention. It is a figure which shows an example of an internal structure of the wireless base station shown in FIG. 5 is a flowchart for explaining a communication method for a terminal in the radio base station shown in FIG. It is a figure which shows typically the subcarrier which distributed the signal transmitted to a user to several antennas. It is a figure which shows the other example of an internal structure of the wireless base station shown in FIG. It is a flowchart for demonstrating the communication method with respect to the terminal in the wireless base station shown in FIG.
  • FIG. 3 is a diagram showing an embodiment of the radio base station of the present invention.
  • the radio base station 100 of the present invention and a plurality of terminals 200-1 to 200-n are connected so as to be capable of radio communication.
  • radio communication is performed using orthogonal frequency division multiple access (OFDMA) (Orthogonal Frequency Division Multiplexing Access).
  • OFDMA orthogonal frequency division multiple access
  • Terminals 200-1 to 200-n are wireless communication terminals having a general wireless communication function.
  • the radio base station 100 is a base station that performs radio communication with the terminals 200-1 to 200-n.
  • FIG. 4 is a diagram illustrating an example of an internal configuration of the radio base station 100 illustrated in FIG.
  • the radio base station 100 shown in FIG. 3 includes antennas 101-1 to 101-2, transmission / reception switching units 102-1 to 102-2, FFTs 103-1 to 103-2, and antennas. Selection sections 104-1 to 104-n, inverse FFTs 105-1 to 105-2, CQI decoder 106, CINR measurement section 107, frequency scheduler 108, and frequency selection section 109 are provided. Further, users 1 to n shown in FIG. 4 are signals (data) transmitted to terminals 200-1 to 200-n, respectively.
  • Antennas 101-1 to 101-2 transmit and receive radio signals to and from terminals 200-1 to 200-n.
  • the antenna 101-1 and the antenna 101-2 have low correlation with each other.
  • the transmission / reception switching units 102-1 to 102-2 are connected to the antennas 101-1 to 101-2, and are switches for switching between transmission and reception according to time.
  • signals output from FFTs 103-1 to 103-2 are transmitted to terminals 200-1 to 200-n via antennas 101-1 to 101-2, respectively.
  • signals received by antennas 101-1 to 101-2 are output to inverse FFTs 105-1 to 105-2, respectively.
  • the FFTs 103-1 to 103-2 perform fast Fourier transform (FFT) on the signals output from the antenna selection units 104-1 to 104-n and send the signals to the transmission / reception switching units 102-1 to 102-2. Output each.
  • FFT fast Fourier transform
  • Antenna selection sections 104-1 to 104-n transmit antennas 101-1 to 101-2 for transmitting signals output from frequency selection section 109 to terminals 200-1 to 200-n, from CQI decoder 106. Each is selected based on the output selection signal. Further, antenna selection sections 104-1 to 104-n output the signal output from frequency selection section 109 to the FFT connected to the selected antenna (transmission / reception switching section). That is, when the antenna 101-1 is selected, the signal output from the frequency selection unit 109 is output to the FFT 103-1 connected to the transmission / reception switching unit 102-1. When the antenna 101-2 is selected, the signal output from the frequency selection unit 109 is output to the FFT 103-2 connected to the transmission / reception switching unit 102-2.
  • the antenna selection units 104-1 to 104-n are provided for each user (terminal).
  • the inverse FFTs 105-1 to 105-2 perform inverse fast Fourier transform on the signals output from the transmission / reception switching units 102-1 to 102-2, and output the signals to the CQI decoder 106 and the CINR measurement unit 107.
  • CQI decoder 106 decodes CQICH (Channel Quality Indication Channel) in the signals output from inverse FFTs 105-1 to 105-2, and the reception quality notified from terminals 200-1 to 200-n therein Is output to the antenna selectors 104-1 to 104-n and the frequency scheduler 108.
  • the carrier power-to-interference + noise power ratio (CINR: Carrier to Interference and Noise power Ratio) is received.
  • selection signals indicating whether or not to switch antennas for transmitting signals to terminals 200-1 to 200-n are output to antenna selection sections 104-1 to 104-n. Whether the antenna is switched is determined depending on whether CINR is a positive (+) value or a negative (-) value. When CINR is a positive (+) value, it is determined that the antenna is not switched from the currently used antenna. When CINR is a negative ( ⁇ ) value, it is determined that the antenna is switched to another antenna.
  • the determination is not based on whether CINR is positive or negative, but may be based on whether CINR is equal to or greater than a preset threshold value. That is, when CINR is equal to or greater than a preset threshold value, it is determined that the antenna is not switched from the currently used antenna. If CINR is less than a preset threshold value, it is determined that the antenna is switched to another antenna.
  • a selection signal may be output to the antenna selection units 104-1 to 104-n.
  • CINR measurement unit 107 measures CINR of signals output from inverse FFTs 105-1 to 105-2. Also, the CINR measurement unit 107 outputs the measured CINR to the frequency scheduler 108.
  • the frequency scheduler 108 uses adjacent subcarrier groups (for each of the terminals 200-1 to 200-n used for communication) (Hereinafter referred to as frequency).
  • the adjacent subcarrier group is a unit composed of a plurality of adjacent subcarriers used in OFDMA and used for transmission and reception. After performing this scheduling, the frequency scheduler 108 outputs frequency information indicating which frequency each of the terminals 200-1 to 200-n uses to the frequency selection unit 109.
  • the frequency selection unit 109 associates the frequency information output from the frequency scheduler 108 with the signals to be transmitted to the corresponding terminals 200-1 to 200-n to the antenna selection units 104-1 to 104-n. Output.
  • a signal to be transmitted to each of terminals 200-1 to 200-n may be output at an output timing corresponding to the frequency indicated by the frequency information output from frequency scheduler 108.
  • the signal transmitted to terminal 200-1 is output to antenna selection section 104-1.
  • the signal transmitted to terminal 200-2 is output to antenna selection section 104-2.
  • a signal to be transmitted to terminal 200-n is output to antenna selection section 104-n. In this way, signals are output to antenna selection sections 104-1 to 104-n corresponding to terminals 200-1 to 200-n that transmit the signals.
  • FIG. 4 shows only the components according to the present invention among the components of the radio base station 100 shown in FIG.
  • FIG. 5 is a flowchart for explaining a communication method for terminals 200-1 to 200-n in radio base station 100 shown in FIG.
  • a signal is transmitted from the radio base station 100 to an arbitrary antenna (for example, the antenna 101-1: first antenna) to the terminals 200-1 to 200-n, and from the terminals 200-1 to 200-n.
  • the CINR of the transmitted signal is measured by the CINR measurement unit 107 in step 1.
  • the CINR measured by the CINR measurement unit 107 is output from the CINR measurement unit 107 to the frequency scheduler 108.
  • the adjacent subcarrier group that maximizes the CINR of each user is allocated in Step 2 from the adjacent subcarrier groups based on the CINR by the frequency scheduler 108.
  • the allocated adjacent subcarrier group is output from the frequency scheduler 108 to the frequency selection unit 109 as frequency information.
  • signals transmitted to terminals 200-1 to 200-n at frequency selection section 109 are sent to antenna selection sections 104-1 to 104-n at a timing according to the frequency information output from frequency scheduler 108. Is output.
  • the current transmission antenna is antenna 101-1, so that the signal is output to FFT 103-1, so that the signal is transmitted from antenna 101-1.
  • the data is transmitted from the antenna 101-1 to the terminals 200-1 to 200-n.
  • the subsequent processing will be described by taking as an example a case where a signal is transmitted from the terminal 200-1 among the terminals 200-1 to 200-n.
  • the signal transmitted from the terminal 200-1 is received by the antenna 101-1, and is input from the transmission / reception switching unit 102-1 to the CQI decoder 106 via the inverse FFT 105-1, the signal is received in step 4. Is determined as CQICH by the CQI decoder 106. If the CQICH is determined to be CQICH, the CQICH is decoded by the CQI decoder 106, and whether the CINR reported therein is a positive (+) value or a negative (-) value is a step. 5 is discriminated by the CQI decoder 106.
  • a selection signal for instructing whether to switch antennas is sent from the CQI decoder 106 to the antenna selection unit 104-1. Is output.
  • the antenna selection unit 104-1 selects the antenna (antenna 101-1) that is currently selected from the antenna (antenna 101-1). -2: second antenna). That is, the signal transmitted from the frequency selection unit 109 and transmitted to the terminal 200-1 is output to the FFT 103-2 so as to be transmitted from the antenna 101-2. Then, a signal is transmitted from FFT 103-2 to terminal 200-1 via transmission / reception switching section 102-2 and antenna 101-2.
  • the antennas are individually switched based on the CINR transmitted from each of the terminals 200-1 to 200-n.
  • FIG. 6 is a diagram schematically showing subcarriers in which a signal to be transmitted to a user is distributed to a plurality of antennas.
  • FIG. 7 is a diagram showing another example of the internal configuration of the radio base station 100 shown in FIG.
  • the radio base station 100 shown in FIG. 3 includes beam selection units 110-1 to 110-n and beam forming units instead of the antenna selection units 104-1 to 104-n shown in FIG. 111-1 to 111-m (m is a natural number).
  • the beam forming units 111-1 to 111-m impart directivity to the radio signals transmitted from the antennas 101-1 to 101-2 so that the radio signals reach only in a predetermined direction.
  • the beam forming units 111-1 to 111-m form beams on the signals output from the beam selecting units 110-1 to 110-n and output them to the FFTs 103-1 to 103-2.
  • Beam selection sections 110-1 to 110-n correspond to terminals 200-1 to 200-n, respectively, and are based on selection signals output from CQI decoder 106, to terminals 200-1 to 200-n.
  • Beam forming units 111-1 to 111-m that form beams of signals to be transmitted are selected. Further, the signal is output to the selected beam forming units 111-1 to 111-m.
  • the CQI decoder 106 in this example with respect to the beam selection units 110-1 to 110-n, beam forming units 111-1 to 111- for transmitting signals to the terminals 200-1 to 200-n.
  • a selection signal indicating whether to switch m is output. Whether or not to switch the beam forming units 111-1 to 111-m is determined depending on whether CINR is a positive (+) value or a negative ( ⁇ ) value. When CINR is a positive (+) value, it is determined that the beam forming unit is not switched from the currently used beam forming unit. If CINR is a negative (-) value, it is determined that the beam forming unit is switched to another beam forming unit. Further, only when it is determined that the beam forming unit is switched to another beam forming unit, a selection signal may be output to the beam selecting units 110-1 to 110-n.
  • FIG. 8 is a flowchart for explaining a communication method for terminals 200-1 to 200-n in radio base station 100 shown in FIG.
  • a signal is transmitted from an arbitrary antenna (for example, antenna 101-1) to terminals 200-1 to 200-n from radio base station 100, while signals are transmitted from terminals 200-1 to 200-n. Then, the CINR of the transmitted signal is measured by the CINR measurement unit 107 in step 11.
  • the beam forming unit used at this time is arbitrary (for example, the beam forming unit 111-1).
  • the CINR measured by the CINR measurement unit 107 is output from the CINR measurement unit 107 to the frequency scheduler 108.
  • an adjacent subcarrier group that maximizes the CINR of each user is allocated in step 12 from the adjacent subcarrier groups based on CINR in frequency scheduler 108.
  • the allocated adjacent subcarrier group is output from the frequency scheduler 108 to the frequency selection unit 109 as frequency information.
  • signals transmitted to terminals 200-1 to 200-n at frequency selection section 109 are sent to beam selection sections 110-1 to 110-n at a timing corresponding to the frequency information output from frequency scheduler 108. Is output.
  • the current transmitting antenna is the antenna 101-1
  • the beam forming unit is the beam forming unit 111-1.
  • the signal is output to the FFT 103-1 via the beam forming unit 111-1 so that the signal is transmitted from the antenna 101-1, and in step 13 from the antenna 101-1 to the terminals 200-1 to 200 -n. Sent.
  • the subsequent processing will be described by taking as an example a case where a signal is transmitted from the terminal 200-1 among the terminals 200-1 to 200-n.
  • a signal transmitted from the terminal 200-1 is received by the antenna 101-1, and input from the transmission / reception switching unit 102-1 to the CQI decoder 106 via the inverse FFT 105-1, the signal is received in step 14. Is determined as CQICH by the CQI decoder 106. If the CQICH is determined to be CQICH, the CQICH is decoded by the CQI decoder 106, and whether the CINR reported therein is a positive (+) value or a negative (-) value is a step. At 15, the determination is made by the CQI decoder 106.
  • a selection signal instructing whether or not to switch the beam forming unit is sent from the CQI decoder 106 to the beam selecting unit 110. To -1.
  • the beam selecting unit 110-1 currently selected by the beam selecting unit 110-1 (the beam forming unit 111-1).
  • the beam forming unit is switched to another beam forming unit (one of the beam forming units 111-2 to 111-m). That is, the signal transmitted from frequency selection section 109 and transmitted to terminal 200-1 is output from beam selection section 110-1 to one of beam forming sections 111-2 to 111-m. Then, signals formed by the beam forming units 111-2 to 111-m are transmitted from the FFT 103-1 to the terminal 200-1 via the transmission / reception switching unit 102-1 and the antenna 101-1.
  • the beam forming unit is individually switched based on the CINR transmitted from each of the terminals 200-1 to 200-n.
  • the above-described processing of the radio base station 100 may be performed by a logic circuit manufactured according to the purpose. Further, a program in which processing contents are described as a procedure is recorded on a recording medium readable by the radio base station 100, and the program recorded on the recording medium is read by the radio base station 100 and executed. good.
  • the recording medium readable by the wireless base station 100 includes a removable recording medium such as a floppy disk (registered trademark), a magneto-optical disk, a DVD, and a CD, a ROM, a RAM, and the like built in the wireless base station 100. Memory, HDD, etc.
  • the program recorded on the recording medium is read by a CPU (not shown) in the radio base station 100, and the same processing as described above is performed under the control of the CPU.
  • the CPU operates as a computer that executes a program read from a recording medium on which the program is recorded.
  • the antenna to be used is switched according to the CINR transmitted from the terminals 200-1 to 200-n, the frequency of starting the scheduler for assigning the frequency is reduced, and the scheduler load is reduced. Therefore, the signal processing time is shortened, and it is possible to cope with the high-speed movement of the terminals 200-1 to 200-n.
  • the present invention is widely applicable to communication using OFDMA, and can be applied to, for example, LTE (Long Term Evolution) in addition to the WiMAX system.
  • LTE Long Term Evolution

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Transmission System (AREA)

Abstract

A radio base station (100), which uses OFDMA to communicate with a plurality of terminals (200-1 to 200-n) each having a wireless communication function, has a plurality of antennas.  The radio base station (100) selects one of the plurality of antennas for transmitting signals to the terminals (200-1 to 200-n).  The radio base station (100) switches an antenna that is to be selected, based on reception quality information received from the terminals (200-1 to 200-n), from the first antenna, which is currently selected, to a second antenna of the plurality of antennas, which is different from the first antenna.

Description

無線基地局、通信方法およびプログラムWireless base station, communication method and program
 本発明は、サブキャリアを用いて信号を送受信する無線基地局、通信方法およびプログラムに関し、特に、分割したサブキャリアにおいてユーザの分離を時間および周波数の2次元で行う直交周波数分割多元接続(OFDMA:Orthogonal Frequency Division Multiplexing Access)を用いた無線基地局、通信方法およびプログラムに関する。 The present invention relates to a radio base station, a communication method, and a program that transmit and receive signals using subcarriers, and in particular, orthogonal frequency division multiple access (OFDMA) that performs user separation in two dimensions of time and frequency in divided subcarriers. The present invention relates to a radio base station, communication method, and program using Orthogonal Frequency Division Multiplexing Access).
 近年、無線通信システムの1つとして、WiMAX(Worldwide Interoperability for Microwave Access)システムが注目されてきている。このWiMAXシステムにおいて、無線信号の受信品質を良くするために、Band-AMC(Adaptive Modulation and Coding)と呼ばれる隣接サブキャリア配置の伝送方法が用いられている。 In recent years, a WiMAX (Worldwide Interoperability for Microwave Access) system has attracted attention as one of wireless communication systems. In this WiMAX system, a transmission method of adjacent subcarrier arrangement called Band-AMC (Adaptive Modulation and Coding) is used to improve the reception quality of radio signals.
 このBand-AMCは、周波数選択性フェージング下で、SNR(Signal to Noise Ratio)の良い帯域にあるサブキャリアを選択して、選択したサブキャリアを用いて通信を行う。これにより、受信信号の品質を良くしている。 This Band-AMC selects a subcarrier in a band having a good SNR (Signal to Noise Ratio) under frequency selective fading, and performs communication using the selected subcarrier. This improves the quality of the received signal.
 また、受信信号の品質を良くするために、他の技術として、1つの通信装置に複数のアンテナを具備させる技術が考えられている(例えば、特許文献1参照。)。 Further, in order to improve the quality of the received signal, as another technique, a technique in which a single communication device is provided with a plurality of antennas has been considered (for example, see Patent Document 1).
 例えば、特許文献1に記載された技術においては、他局のアンテナと自局の各アンテナとの間のそれぞれの伝達関数を求め、他局がパケットの送信に用いたアンテナに対する伝達関数の絶対値または絶対値のべき乗値を求めて加算した加算値の大きなアンテナを選択する。また、この技術は、直交周波数分割多重(OFDM:Orthogonal Frequency Division Multiplexing)システムに適用されている。 For example, in the technique described in Patent Document 1, the transfer function between the antenna of the other station and each antenna of the own station is obtained, and the absolute value of the transfer function for the antenna used by the other station for packet transmission Alternatively, an antenna having a large addition value obtained by calculating and adding a power value of the absolute value is selected. In addition, this technique is applied to an orthogonal frequency division multiplexing (OFDM) system.
特開2007-13547号公報JP 2007-13547 A
 しかしながら、Band-AMCを用いた場合、サブキャリアの選択を利用者それぞれが行うため、選択したサブキャリアが利用者間で互いに重なる(衝突する)おそれがある。 However, when Band-AMC is used, since each user selects a subcarrier, the selected subcarriers may overlap (collision) with each other.
 また、その衝突を防ぐためには、無線基地局にて複雑なスケジューリング処理を行わなければならないという問題点がある。 Also, in order to prevent the collision, there is a problem that complicated scheduling processing must be performed in the radio base station.
 図1は、2人のユーザに割り当てられたサブキャリアとフェージング特性との一例を示す図である。 FIG. 1 is a diagram showing an example of subcarriers assigned to two users and fading characteristics.
 ユーザ1は、実線で示したユーザ1のフェージング特性に基づいて、ユーザ1が通信に使用するサブキャリアを選択する。また、ユーザ2は、破線で示したユーザ2のフェージング特性に基づいて、ユーザ2が通信に使用するサブキャリアを選択する。 User 1 selects a subcarrier that user 1 uses for communication based on the fading characteristics of user 1 indicated by a solid line. Further, the user 2 selects a subcarrier that the user 2 uses for communication based on the fading characteristic of the user 2 indicated by a broken line.
 このとき図1に示すように、ユーザ1のフェージング特性とユーザ2のフェージング特性とが重なる周波数のサブキャリアは、ユーザ1およびユーザ2によって選択される可能性があり、その場合、ユーザ1が使用するサブキャリアとユーザ2が使用するサブキャリアとが衝突してしまう。 At this time, as shown in FIG. 1, there is a possibility that the subcarrier of the frequency where the fading characteristic of user 1 and the fading characteristic of user 2 overlap is selected by user 1 and user 2, in which case user 1 uses And the subcarrier used by the user 2 collide with each other.
 図2は、図1に示したようにサブキャリアの衝突が生じた場合の無線基地局におけるスケジューリング処理の一例を模式的に示した図である。 FIG. 2 is a diagram schematically showing an example of scheduling processing in the radio base station when a subcarrier collision occurs as shown in FIG.
 ユーザ間において使用するサブキャリアの衝突が生じた場合、図2に示すように、ユーザの並べ直しが行われる。 When a collision of subcarriers to be used occurs between users, the users are rearranged as shown in FIG.
 この並べ直しは、複数のユーザがそれぞれ使用するサブキャリア同士が衝突しないように、かつユーザそれぞれのSNR特性が良好であるものになるように行うものであり、複雑なスケジューリング処理が必要となってしまう。 This rearrangement is performed so that subcarriers used by a plurality of users do not collide with each other and the SNR characteristics of each user are good, and complicated scheduling processing is required. End up.
 また、特許文献1に記載された技術は、すべてのサブキャリアを1人の利用者に割り当てるOFDMシステムに関するものであり、WiMAXシステムのようにサブキャリアを分割して複数の利用者で使用するOFDMAシステムに適用できるものではない。 The technique described in Patent Document 1 relates to an OFDM system in which all subcarriers are allocated to one user, and OFDMA is used by a plurality of users by dividing subcarriers as in the WiMAX system. It is not applicable to the system.
 本発明は、上述した課題を解決する通信装置、通信方法およびプログラムを提供することを目的とする。 An object of the present invention is to provide a communication device, a communication method, and a program that solve the above-described problems.
 上記目的を達成するために本発明は、
 無線通信機能を有する複数の端末との間でOFDMA(Orthogonal Frequency Division Multiplexing Access)を用いて通信を行う無線基地局であって、
 前記端末との間で無線信号を送受信する複数のアンテナと、
 前記複数の端末それぞれに対して、前記複数のアンテナのうち、前記端末へ信号を送信するためのアンテナを1つ選択するアンテナ選択部と、
 前記端末から送信されてくる受信品質情報に基づいて、前記アンテナ選択部が選択するアンテナを、前記アンテナ選択部が選択している第1のアンテナから前記複数のアンテナのうちの該第1のアンテナ以外の第2のアンテナに切り替えるように前記アンテナ選択部へ指示するCQIデコーダとを有し、
 前記アンテナ選択部は、前記CQIデコーダから、当該アンテナ選択部が選択するアンテナを前記第1のアンテナから前記第2のアンテナに切り替えるように指示された場合、該第2のアンテナに切り替える。
In order to achieve the above object, the present invention provides:
A wireless base station that communicates with a plurality of terminals having a wireless communication function using OFDMA (Orthogonal Frequency Division Multiplexing Access),
A plurality of antennas for transmitting and receiving radio signals to and from the terminal;
For each of the plurality of terminals, an antenna selection unit that selects one of the plurality of antennas for transmitting a signal to the terminal;
Based on the reception quality information transmitted from the terminal, the first antenna among the plurality of antennas from the first antenna selected by the antenna selection unit is selected by the antenna selection unit. A CQI decoder that instructs the antenna selection unit to switch to a second antenna other than
When the CQI decoder instructs the antenna selection unit to switch the antenna selected by the antenna selection unit from the first antenna to the second antenna, the antenna selection unit switches to the second antenna.
 また、OFDMA(Orthogonal Frequency Division Multiplexing Access)を用いて通信を行う複数の端末と無線基地局とを接続する接続方法であって、
 前記複数の端末それぞれに対して、前記無線基地局が有する複数のアンテナのうち、前記端末へ信号を送信するためのアンテナを1つ選択する処理と、
 前記端末から送信されてくる受信品質情報に基づいて、前記選択するアンテナを、現在選択している第1のアンテナから前記複数のアンテナのうちの該第1のアンテナ以外の第2のアンテナに切り替える処理とを有する。
In addition, a connection method for connecting a plurality of terminals communicating with a radio base station using OFDMA (Orthogonal Frequency Division Multiplexing Access),
For each of the plurality of terminals, a process of selecting one antenna for transmitting a signal to the terminal among the plurality of antennas of the radio base station;
Based on reception quality information transmitted from the terminal, the antenna to be selected is switched from the currently selected first antenna to a second antenna other than the first antenna among the plurality of antennas. Processing.
 また、無線通信機能を有する複数の端末との間でOFDMA(Orthogonal Frequency Division Multiplexing Access)を用いて通信を行う無線基地局に実行させるプログラムであって、
 前記複数の端末それぞれに対して、当該無線基地局が有する複数のアンテナのうち、前記端末へ信号を送信するためのアンテナを1つ選択する手順と、
 前記端末から送信されてくる受信品質情報に基づいて、前記選択するアンテナを、現在選択している第1のアンテナから前記複数のアンテナのうちの該第1のアンテナ以外の第2のアンテナに切り替える手順とを実行させる。
In addition, a program to be executed by a radio base station that communicates with a plurality of terminals having a radio communication function using OFDMA (Orthogonal Frequency Division Multiplexing Access),
For each of the plurality of terminals, a procedure for selecting one antenna for transmitting a signal to the terminal from among a plurality of antennas of the radio base station;
Based on reception quality information transmitted from the terminal, the antenna to be selected is switched from the currently selected first antenna to a second antenna other than the first antenna among the plurality of antennas. And execute the procedure.
 以上説明したように本発明においては、無線通信機能を有する複数の端末それぞれに対して、端末との間でOFDMA(Orthogonal Frequency Division Multiplexing Access)を用いて通信を行う無線基地局が有する複数のアンテナのうち、端末へ信号を送信するためのアンテナを1つ選択し、端末から送信されてくる受信品質情報に基づいて、選択するアンテナを、現在選択している第1のアンテナから複数のアンテナのうちの第1のアンテナ以外の第2のアンテナに切り替える構成としたため、複数のユーザがそれぞれ使用するサブキャリアの衝突を、複雑なスケジューリング処理を行わずに避けることができる。 As described above, in the present invention, for each of a plurality of terminals having a wireless communication function, a plurality of antennas included in a wireless base station that communicates with the terminals using OFDMA (Orthogonal Frequency Division Multiplexing Access). Among them, one antenna for transmitting a signal to the terminal is selected, and based on the reception quality information transmitted from the terminal, the antenna to be selected is selected from the currently selected first antenna to a plurality of antennas. Since it is configured to switch to the second antenna other than the first antenna, collision of subcarriers used by a plurality of users can be avoided without performing complicated scheduling processing.
2人のユーザに割り当てられたサブキャリアとフェージング特性との一例を示す図である。It is a figure which shows an example of the subcarrier allocated to two users, and a fading characteristic. 図1に示したようにサブキャリアの衝突が生じた場合の無線基地局におけるスケジューリング処理の一例を模式的に示した図である。FIG. 2 is a diagram schematically illustrating an example of scheduling processing in a radio base station when a subcarrier collision occurs as illustrated in FIG. 1. 本発明の無線基地局の実施の一形態を示す図である。It is a figure which shows one Embodiment of the wireless base station of this invention. 図3に示した無線基地局の内部構成の一例を示す図である。It is a figure which shows an example of an internal structure of the wireless base station shown in FIG. 図4に示した無線基地局における端末に対する通信方法を説明するためのフローチャートである。5 is a flowchart for explaining a communication method for a terminal in the radio base station shown in FIG. ユーザへ送信する信号を複数のアンテナに振り分けたサブキャリアを模式的に示す図である。It is a figure which shows typically the subcarrier which distributed the signal transmitted to a user to several antennas. 図3に示した無線基地局の内部構成の他の例を示す図である。It is a figure which shows the other example of an internal structure of the wireless base station shown in FIG. 図7に示した無線基地局における端末に対する通信方法を説明するためのフローチャートである。It is a flowchart for demonstrating the communication method with respect to the terminal in the wireless base station shown in FIG.
 以下に、本発明の実施の形態について図面を参照して説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 図3は、本発明の無線基地局の実施の一形態を示す図である。 FIG. 3 is a diagram showing an embodiment of the radio base station of the present invention.
 本形態は図3に示すように、本発明の無線基地局100と、複数の端末200-1~200-n(nは自然数)とが無線通信可能に接続されている。無線基地局100と端末200-1~200-nとの間では、直交周波数分割多元接続(OFDMA:Orthogonal Frequency Division Multiplexing Access)を用いた無線通信が行われる。 In the present embodiment, as shown in FIG. 3, the radio base station 100 of the present invention and a plurality of terminals 200-1 to 200-n (n is a natural number) are connected so as to be capable of radio communication. Between the radio base station 100 and the terminals 200-1 to 200-n, radio communication is performed using orthogonal frequency division multiple access (OFDMA) (Orthogonal Frequency Division Multiplexing Access).
 端末200-1~200-nは、一般的な無線通信機能を有する無線通信端末である。 Terminals 200-1 to 200-n are wireless communication terminals having a general wireless communication function.
 無線基地局100は、端末200-1~200-nとの間で無線通信を行う基地局である。 The radio base station 100 is a base station that performs radio communication with the terminals 200-1 to 200-n.
 図4は、図3に示した無線基地局100の内部構成の一例を示す図である。 FIG. 4 is a diagram illustrating an example of an internal configuration of the radio base station 100 illustrated in FIG.
 図3に示した無線基地局100には図4に示すように、アンテナ101-1~101-2と、送受信切替部102-1~102-2と、FFT103-1~103-2と、アンテナ選択部104-1~104-nと、逆FFT105-1~105-2と、CQIデコーダ106と、CINR測定部107と、周波数スケジューラ108と、周波数選択部109とが設けられている。また、図4に示したユーザ1~nは、端末200-1~200-nへそれぞれ送信する信号(データ)である。 As shown in FIG. 4, the radio base station 100 shown in FIG. 3 includes antennas 101-1 to 101-2, transmission / reception switching units 102-1 to 102-2, FFTs 103-1 to 103-2, and antennas. Selection sections 104-1 to 104-n, inverse FFTs 105-1 to 105-2, CQI decoder 106, CINR measurement section 107, frequency scheduler 108, and frequency selection section 109 are provided. Further, users 1 to n shown in FIG. 4 are signals (data) transmitted to terminals 200-1 to 200-n, respectively.
 アンテナ101-1~101-2は、端末200-1~端末200-nとの間にて、無線信号の送受信を行う。アンテナ101-1とアンテナ101-2とは、互いに相関性が低いものである。 Antennas 101-1 to 101-2 transmit and receive radio signals to and from terminals 200-1 to 200-n. The antenna 101-1 and the antenna 101-2 have low correlation with each other.
 送受信切替部102-1~102-2は、アンテナ101-1~101-2それぞれと接続されており、時刻に応じて送信と受信とを切り替えるスイッチである。送信に切り替えた場合、FFT103-1~103-2から出力されてきた信号をそれぞれアンテナ101-1~101-2を介して端末200-1~200-nへ送信する。受信に切り替えた場合、アンテナ101-1~101-2にて受信された信号を逆FFT105-1~105-2へそれぞれ出力する。 The transmission / reception switching units 102-1 to 102-2 are connected to the antennas 101-1 to 101-2, and are switches for switching between transmission and reception according to time. When switching to transmission, signals output from FFTs 103-1 to 103-2 are transmitted to terminals 200-1 to 200-n via antennas 101-1 to 101-2, respectively. When switching to reception, signals received by antennas 101-1 to 101-2 are output to inverse FFTs 105-1 to 105-2, respectively.
 FFT103-1~103-2は、アンテナ選択部104-1~104-nから出力されてきた信号を高速フーリエ変換(FFT:Fast Fourier Transform)して、送受信切替部102-1~102-2へそれぞれ出力する。 The FFTs 103-1 to 103-2 perform fast Fourier transform (FFT) on the signals output from the antenna selection units 104-1 to 104-n and send the signals to the transmission / reception switching units 102-1 to 102-2. Output each.
 アンテナ選択部104-1~104-nは、周波数選択部109から出力されてきた信号を端末200-1~200-nへ送信するためのアンテナ101-1~101-2を、CQIデコーダ106から出力されてきた選択信号に基づいてそれぞれ選択する。また、アンテナ選択部104-1~104-nは、周波数選択部109から出力されてきた信号を選択されたアンテナ(送受信切替部)と接続されているFFTへ出力する。つまり、アンテナ101-1が選択された場合、送受信切替部102-1と接続されているFFT103-1へ周波数選択部109から出力されてきた信号を出力する。また、アンテナ101-2が選択された場合、送受信切替部102-2と接続されているFFT103-2へ周波数選択部109から出力されてきた信号を出力する。アンテナ選択部104-1~104-nは、ユーザ(端末)毎に設けられている。 Antenna selection sections 104-1 to 104-n transmit antennas 101-1 to 101-2 for transmitting signals output from frequency selection section 109 to terminals 200-1 to 200-n, from CQI decoder 106. Each is selected based on the output selection signal. Further, antenna selection sections 104-1 to 104-n output the signal output from frequency selection section 109 to the FFT connected to the selected antenna (transmission / reception switching section). That is, when the antenna 101-1 is selected, the signal output from the frequency selection unit 109 is output to the FFT 103-1 connected to the transmission / reception switching unit 102-1. When the antenna 101-2 is selected, the signal output from the frequency selection unit 109 is output to the FFT 103-2 connected to the transmission / reception switching unit 102-2. The antenna selection units 104-1 to 104-n are provided for each user (terminal).
 逆FFT105-1~105-2は、送受信切替部102-1~102-2から出力されてきた信号を逆高速フーリエ変換して、CQIデコーダ106およびCINR測定部107へ出力する。 The inverse FFTs 105-1 to 105-2 perform inverse fast Fourier transform on the signals output from the transmission / reception switching units 102-1 to 102-2, and output the signals to the CQI decoder 106 and the CINR measurement unit 107.
 CQIデコーダ106は、逆FFT105-1~105-2から出力されてきた信号の中のCQICH(Channel Quality Indication Channel)をデコードし、その中で端末200-1~200-nから通知される受信品質を示す受信品質情報である搬送波電力対干渉+雑音電力比(CINR:Carrier to Interference and Noise power Ratio)をアンテナ選択部104-1~104-nおよび周波数スケジューラ108へ出力する。このときアンテナ選択部104-1~104-nに対しては、端末200-1~200-nへ信号を送信するためのアンテナを切り替えるかどうかを示す選択信号を出力する。このアンテナを切り替えるかどうかは、CINRが正(+)の値であるか、または負(-)の値であるかに応じて判別される。CINRが正(+)の値である場合、アンテナを現在使用しているアンテナから切り替えないと判別する。また、CINRが負(-)の値である場合、アンテナを他のアンテナへ切り替えると判別する。 CQI decoder 106 decodes CQICH (Channel Quality Indication Channel) in the signals output from inverse FFTs 105-1 to 105-2, and the reception quality notified from terminals 200-1 to 200-n therein Is output to the antenna selectors 104-1 to 104-n and the frequency scheduler 108. The carrier power-to-interference + noise power ratio (CINR: Carrier to Interference and Noise power Ratio) is received. At this time, selection signals indicating whether or not to switch antennas for transmitting signals to terminals 200-1 to 200-n are output to antenna selection sections 104-1 to 104-n. Whether the antenna is switched is determined depending on whether CINR is a positive (+) value or a negative (-) value. When CINR is a positive (+) value, it is determined that the antenna is not switched from the currently used antenna. When CINR is a negative (−) value, it is determined that the antenna is switched to another antenna.
 また、CINRの正負で判別するものではなく、CINRがあらかじめ設定された閾値以上であるか否かに基づいて判別するものであっても良い。つまり、CINRがあらかじめ設定された閾値以上である場合、アンテナを現在使用しているアンテナから切り替えないと判別する。また、CINRがあらかじめ設定された閾値未満である場合は、アンテナを他のアンテナへ切り替えると判別する。 Further, the determination is not based on whether CINR is positive or negative, but may be based on whether CINR is equal to or greater than a preset threshold value. That is, when CINR is equal to or greater than a preset threshold value, it is determined that the antenna is not switched from the currently used antenna. If CINR is less than a preset threshold value, it is determined that the antenna is switched to another antenna.
 また、アンテナを他のアンテナへ切り替えると判別した場合のみ、アンテナ選択部104-1~104-nへ選択信号を出力するものであっても良い。 Further, only when it is determined that the antenna is switched to another antenna, a selection signal may be output to the antenna selection units 104-1 to 104-n.
 CINR測定部107は、逆FFT105-1~105-2から出力されてきた信号のCINRを測定する。また、CINR測定部107は、測定したCINRを周波数スケジューラ108へ出力する。 CINR measurement unit 107 measures CINR of signals output from inverse FFTs 105-1 to 105-2. Also, the CINR measurement unit 107 outputs the measured CINR to the frequency scheduler 108.
 周波数スケジューラ108は、CQIデコーダ106から出力されてきたCINRと、CINR測定部107から出力されてきたCINRとに基づいて、端末200-1~200-nそれぞれが通信に使用する隣接サブキャリアグループ(以下、周波数と称する)をスケジューリングする。この隣接サブキャリアグループとは、OFDMAで用いられる、送受信に使用する互いに隣接した複数のサブキャリアから構成される単位である。このスケジューリングを行った後、周波数スケジューラ108は、端末200-1~200-nそれぞれがどの周波数を使用するかを示す周波数情報を周波数選択部109へ出力する。 Based on the CINR output from the CQI decoder 106 and the CINR output from the CINR measurement unit 107, the frequency scheduler 108 uses adjacent subcarrier groups (for each of the terminals 200-1 to 200-n used for communication) (Hereinafter referred to as frequency). The adjacent subcarrier group is a unit composed of a plurality of adjacent subcarriers used in OFDMA and used for transmission and reception. After performing this scheduling, the frequency scheduler 108 outputs frequency information indicating which frequency each of the terminals 200-1 to 200-n uses to the frequency selection unit 109.
 周波数選択部109は、周波数スケジューラ108から出力されてきた周波数情報と、それに対応する端末200-1~200-nへそれぞれ送信する信号とを対応付けてアンテナ選択部104-1~104-nへ出力する。また、周波数スケジューラ108から出力されてきた周波数情報が示す周波数に応じた出力タイミングで端末200-1~200-nへそれぞれ送信する信号を出力するものであっても良い。このとき、端末200-1へ送信する信号は、アンテナ選択部104-1へ出力する。また、端末200-2へ送信する信号は、アンテナ選択部104-2へ出力する。また、端末200-nへ送信する信号は、アンテナ選択部104-nへ出力する。このように、当該信号を送信する端末200-1~200-nに応じたアンテナ選択部104-1~104-nへ信号を出力する。 The frequency selection unit 109 associates the frequency information output from the frequency scheduler 108 with the signals to be transmitted to the corresponding terminals 200-1 to 200-n to the antenna selection units 104-1 to 104-n. Output. Alternatively, a signal to be transmitted to each of terminals 200-1 to 200-n may be output at an output timing corresponding to the frequency indicated by the frequency information output from frequency scheduler 108. At this time, the signal transmitted to terminal 200-1 is output to antenna selection section 104-1. Further, the signal transmitted to terminal 200-2 is output to antenna selection section 104-2. Further, a signal to be transmitted to terminal 200-n is output to antenna selection section 104-n. In this way, signals are output to antenna selection sections 104-1 to 104-n corresponding to terminals 200-1 to 200-n that transmit the signals.
 なお、図4には、図3に示した無線基地局100の構成要素のうち、本発明に係る構成要素のみを示した。 FIG. 4 shows only the components according to the present invention among the components of the radio base station 100 shown in FIG.
 以下に、図4に示した形態における通信方法について説明する。 The communication method in the form shown in FIG. 4 will be described below.
 図5は、図4に示した無線基地局100における端末200-1~200-nに対する通信方法を説明するためのフローチャートである。 FIG. 5 is a flowchart for explaining a communication method for terminals 200-1 to 200-n in radio base station 100 shown in FIG.
 まず、無線基地局100から任意のアンテナ(例えば、アンテナ101-1:第1のアンテナ)から端末200-1~200-nへ信号が送信され、それに対して端末200-1~200-nから信号が送信されてくると、送信されてきた信号のCINRがステップ1にてCINR測定部107によって測定される。 First, a signal is transmitted from the radio base station 100 to an arbitrary antenna (for example, the antenna 101-1: first antenna) to the terminals 200-1 to 200-n, and from the terminals 200-1 to 200-n. When a signal is transmitted, the CINR of the transmitted signal is measured by the CINR measurement unit 107 in step 1.
 CINR測定部107にて測定されたCINRは、CINR測定部107から周波数スケジューラ108へ出力される。 The CINR measured by the CINR measurement unit 107 is output from the CINR measurement unit 107 to the frequency scheduler 108.
 すると、周波数スケジューラ108にてCINRに基づいて、隣接サブキャリアグループの中から、各ユーザ(端末)のCINRが最大となる隣接サブキャリアグループがステップ2にて割り当てられる。割り当てられた隣接サブキャリアグループは、周波数情報として周波数スケジューラ108から周波数選択部109へ出力される。 Then, the adjacent subcarrier group that maximizes the CINR of each user (terminal) is allocated in Step 2 from the adjacent subcarrier groups based on the CINR by the frequency scheduler 108. The allocated adjacent subcarrier group is output from the frequency scheduler 108 to the frequency selection unit 109 as frequency information.
 すると、周波数選択部109にて、端末200-1~200-nへ送信される信号が、周波数スケジューラ108から出力されてきた周波数情報に応じたタイミングでアンテナ選択部104-1~104-nへ出力される。 Then, signals transmitted to terminals 200-1 to 200-n at frequency selection section 109 are sent to antenna selection sections 104-1 to 104-n at a timing according to the frequency information output from frequency scheduler 108. Is output.
 アンテナ選択部104-1~104-nにて、現在の送信アンテナはアンテナ101-1になっているため、アンテナ101-1から信号が送信されるように、当該信号がFFT103-1へ出力され、ステップ3にてアンテナ101-1から端末200-1~200-nへ送信される。 In antenna selection sections 104-1 to 104-n, the current transmission antenna is antenna 101-1, so that the signal is output to FFT 103-1, so that the signal is transmitted from antenna 101-1. In step 3, the data is transmitted from the antenna 101-1 to the terminals 200-1 to 200-n.
 その後、端末200-1~200-nのうち端末200-1から信号が送信されてきた場合を例に挙げて、その後の処理を説明する。端末200-1から送信されてきた信号がアンテナ101-1にて受信され、送受信切替部102-1から逆FFT105-1を介してCQIデコーダ106に入力してくると、ステップ4にて当該信号がCQICHであるかどうかがCQIデコーダ106にて判別される。CQICHであると判別された場合、CQICHがCQIデコーダ106にてデコードされ、その中に通知されているCINRが正(+)の値であるか、または負(-)の値であるかがステップ5にてCQIデコーダ106によって判別される。 Thereafter, the subsequent processing will be described by taking as an example a case where a signal is transmitted from the terminal 200-1 among the terminals 200-1 to 200-n. When the signal transmitted from the terminal 200-1 is received by the antenna 101-1, and is input from the transmission / reception switching unit 102-1 to the CQI decoder 106 via the inverse FFT 105-1, the signal is received in step 4. Is determined as CQICH by the CQI decoder 106. If the CQICH is determined to be CQICH, the CQICH is decoded by the CQI decoder 106, and whether the CINR reported therein is a positive (+) value or a negative (-) value is a step. 5 is discriminated by the CQI decoder 106.
 そして、CINRが正(+)の値であるか、または負(-)の値であるかに基づいて、アンテナを切り替えるか否かを指示する選択信号がCQIデコーダ106からアンテナ選択部104-1へ出力される。 Then, based on whether CINR is a positive (+) value or a negative (−) value, a selection signal for instructing whether to switch antennas is sent from the CQI decoder 106 to the antenna selection unit 104-1. Is output.
 CQIデコーダ106から出力されてきた選択信号が、アンテナを切り替える指示である場合、ステップ6にてアンテナ選択部104-1によって現在選択しているアンテナ(アンテナ101-1)から他のアンテナ(アンテナ101-2:第2のアンテナ)へアンテナが切り替えられる。つまり、周波数選択部109から出力されてきた、端末200-1へ送信する信号が、アンテナ101-2から送信されるようにFFT103-2へ出力される。そして、FFT103-2から送受信切替部102-2、アンテナ101-2を介して信号が端末200-1へ送信される。 When the selection signal output from the CQI decoder 106 is an instruction to switch antennas, in step 6, the antenna selection unit 104-1 selects the antenna (antenna 101-1) that is currently selected from the antenna (antenna 101-1). -2: second antenna). That is, the signal transmitted from the frequency selection unit 109 and transmitted to the terminal 200-1 is output to the FFT 103-2 so as to be transmitted from the antenna 101-2. Then, a signal is transmitted from FFT 103-2 to terminal 200-1 via transmission / reception switching section 102-2 and antenna 101-2.
 他の端末200-2~200-nから信号が送信されてきた場合も同様である。つまり、端末200-1~200-nそれぞれから送信されてきたCINRに基づいて、それぞれ個別にアンテナを切り替える。 The same applies when signals are transmitted from other terminals 200-2 to 200-n. That is, the antennas are individually switched based on the CINR transmitted from each of the terminals 200-1 to 200-n.
 図6は、ユーザへ送信する信号を複数のアンテナに振り分けたサブキャリアを模式的に示す図である。 FIG. 6 is a diagram schematically showing subcarriers in which a signal to be transmitted to a user is distributed to a plurality of antennas.
 図6に示すように、アンテナ101-1のみを使用してすべてのユーザ1~nへ信号を送信する場合、当該信号を送信するために割り当てられたサブキャリアが互いに衝突してしまう。しかし、端末200-1~200-nから通知されたCINRに基づいてアンテナをアンテナ101-1~101-2に振り分けることにより、複雑なスケジューリング処理を行うことなく、サブキャリアの互いの衝突を防ぐことができる。 As shown in FIG. 6, when a signal is transmitted to all users 1 to n using only the antenna 101-1, subcarriers assigned to transmit the signal collide with each other. However, by assigning antennas to antennas 101-1 to 101-2 based on CINRs notified from terminals 200-1 to 200-n, subcarriers can be prevented from colliding with each other without performing complicated scheduling processing. be able to.
 図7は、図3に示した無線基地局100の内部構成の他の例を示す図である。 FIG. 7 is a diagram showing another example of the internal configuration of the radio base station 100 shown in FIG.
 この例では、図3に示した無線基地局100には、図4に示したアンテナ選択部104-1~104-nに代えて、ビーム選択部110-1~110-nと、ビーム形成部111-1~111-m(mは自然数)とが設けられている。 In this example, the radio base station 100 shown in FIG. 3 includes beam selection units 110-1 to 110-n and beam forming units instead of the antenna selection units 104-1 to 104-n shown in FIG. 111-1 to 111-m (m is a natural number).
 ビーム形成部111-1~111-mは、アンテナ101-1~101-2から送信される無線信号に、当該無線信号が所定の方向のみに届くように指向性を持たせる。ビーム形成部111-1~111-mは、ビーム選択部110-1~110-nから出力されてきた信号にビームを形成してFFT103-1~103-2へ出力する。 The beam forming units 111-1 to 111-m impart directivity to the radio signals transmitted from the antennas 101-1 to 101-2 so that the radio signals reach only in a predetermined direction. The beam forming units 111-1 to 111-m form beams on the signals output from the beam selecting units 110-1 to 110-n and output them to the FFTs 103-1 to 103-2.
 ビーム選択部110-1~110-nは、端末200-1~200-nとそれぞれ対応しており、CQIデコーダ106から出力されてきた選択信号に基づいて、端末200-1~200-nへ送信する信号のビームを形成するビーム形成部111-1~111-mを選択する。また、選択したビーム形成部111-1~111-mへ当該信号を出力する。 Beam selection sections 110-1 to 110-n correspond to terminals 200-1 to 200-n, respectively, and are based on selection signals output from CQI decoder 106, to terminals 200-1 to 200-n. Beam forming units 111-1 to 111-m that form beams of signals to be transmitted are selected. Further, the signal is output to the selected beam forming units 111-1 to 111-m.
 また、この例でのCQIデコーダ106は、ビーム選択部110-1~110-nに対しては、端末200-1~200-nへ信号を送信するためのビーム形成部111-1~111-mを切り替えるかどうかを示す選択信号を出力する。このビーム形成部111-1~111-mを切り替えるかどうかは、CINRが正(+)の値であるか、または負(-)の値であるかに応じて判別される。CINRが正(+)の値である場合、ビーム形成部を現在使用しているビーム形成部から切り替えないと判別する。また、CINRが負(-)の値である場合、ビーム形成部を他のビーム形成部へ切り替えると判別する。また、ビーム形成部を他のビーム形成部へ切り替えると判別した場合のみ、ビーム選択部110-1~110-nへ選択信号を出力するものであっても良い。 In addition, the CQI decoder 106 in this example, with respect to the beam selection units 110-1 to 110-n, beam forming units 111-1 to 111- for transmitting signals to the terminals 200-1 to 200-n. A selection signal indicating whether to switch m is output. Whether or not to switch the beam forming units 111-1 to 111-m is determined depending on whether CINR is a positive (+) value or a negative (−) value. When CINR is a positive (+) value, it is determined that the beam forming unit is not switched from the currently used beam forming unit. If CINR is a negative (-) value, it is determined that the beam forming unit is switched to another beam forming unit. Further, only when it is determined that the beam forming unit is switched to another beam forming unit, a selection signal may be output to the beam selecting units 110-1 to 110-n.
 以下に、図7に示した形態における通信方法について説明する。 Hereinafter, the communication method in the form shown in FIG. 7 will be described.
 図8は、図7に示した無線基地局100における端末200-1~200-nに対する通信方法を説明するためのフローチャートである。 FIG. 8 is a flowchart for explaining a communication method for terminals 200-1 to 200-n in radio base station 100 shown in FIG.
 まず、無線基地局100から任意のアンテナ(例えば、アンテナ101-1)から端末200-1~200-nへ信号が送信され、それに対して端末200-1~200-nから信号が送信されてくると、送信されてきた信号のCINRがステップ11にてCINR測定部107によって測定される。このとき使用されるビーム形成部は任意(例えば、ビーム形成部111-1)である。 First, a signal is transmitted from an arbitrary antenna (for example, antenna 101-1) to terminals 200-1 to 200-n from radio base station 100, while signals are transmitted from terminals 200-1 to 200-n. Then, the CINR of the transmitted signal is measured by the CINR measurement unit 107 in step 11. The beam forming unit used at this time is arbitrary (for example, the beam forming unit 111-1).
 CINR測定部107にて測定されたCINRは、CINR測定部107から周波数スケジューラ108へ出力される。 The CINR measured by the CINR measurement unit 107 is output from the CINR measurement unit 107 to the frequency scheduler 108.
 すると、周波数スケジューラ108にてCINRに基づいて、隣接サブキャリアグループの中から、各ユーザ(端末)のCINRが最大となる隣接サブキャリアグループがステップ12にて割り当てられる。割り当てられた隣接サブキャリアグループは、周波数情報として周波数スケジューラ108から周波数選択部109へ出力される。 Then, an adjacent subcarrier group that maximizes the CINR of each user (terminal) is allocated in step 12 from the adjacent subcarrier groups based on CINR in frequency scheduler 108. The allocated adjacent subcarrier group is output from the frequency scheduler 108 to the frequency selection unit 109 as frequency information.
 すると、周波数選択部109にて、端末200-1~200-nへ送信される信号が、周波数スケジューラ108から出力されてきた周波数情報に応じたタイミングでビーム選択部110-1~110-nへ出力される。 Then, signals transmitted to terminals 200-1 to 200-n at frequency selection section 109 are sent to beam selection sections 110-1 to 110-n at a timing corresponding to the frequency information output from frequency scheduler 108. Is output.
 ビーム選択部110-1~110-nにて、現在の送信アンテナはアンテナ101-1であり、ビーム形成部はビーム形成部111-1になっているため、ビーム形成部111-1を介してアンテナ101-1から信号が送信されるように、当該信号がビーム形成部111-1を介してFFT103-1へ出力され、ステップ13にてアンテナ101-1から端末200-1~200-nへ送信される。 In the beam selectors 110-1 to 110-n, the current transmitting antenna is the antenna 101-1, and the beam forming unit is the beam forming unit 111-1. The signal is output to the FFT 103-1 via the beam forming unit 111-1 so that the signal is transmitted from the antenna 101-1, and in step 13 from the antenna 101-1 to the terminals 200-1 to 200 -n. Sent.
 その後、端末200-1~200-nのうち端末200-1から信号が送信されてきた場合を例に挙げて、その後の処理を説明する。端末200-1から送信されてきた信号がアンテナ101-1にて受信され、送受信切替部102-1から逆FFT105-1を介してCQIデコーダ106に入力してくると、ステップ14にて当該信号がCQICHであるかどうかがCQIデコーダ106にて判別される。CQICHであると判別された場合、CQICHがCQIデコーダ106にてデコードされ、その中に通知されているCINRが正(+)の値であるか、または負(-)の値であるかがステップ15にてCQIデコーダ106によって判別される。 Thereafter, the subsequent processing will be described by taking as an example a case where a signal is transmitted from the terminal 200-1 among the terminals 200-1 to 200-n. When a signal transmitted from the terminal 200-1 is received by the antenna 101-1, and input from the transmission / reception switching unit 102-1 to the CQI decoder 106 via the inverse FFT 105-1, the signal is received in step 14. Is determined as CQICH by the CQI decoder 106. If the CQICH is determined to be CQICH, the CQICH is decoded by the CQI decoder 106, and whether the CINR reported therein is a positive (+) value or a negative (-) value is a step. At 15, the determination is made by the CQI decoder 106.
 そして、CINRが正(+)の値であるか、または負(-)の値であるかに基づいて、ビーム形成部を切り替えるか否かを指示する選択信号がCQIデコーダ106からビーム選択部110-1へ出力される。 Then, based on whether CINR is a positive (+) value or a negative (−) value, a selection signal instructing whether or not to switch the beam forming unit is sent from the CQI decoder 106 to the beam selecting unit 110. To -1.
 CQIデコーダ106から出力されてきた選択信号が、ビーム形成部を切り替える指示である場合、ステップ16にてビーム選択部110-1によって現在選択しているビーム形成部(ビーム形成部111-1)から他のビーム形成部(ビーム形成部111-2~111-mのうち1つ)へビーム形成部が切り替えられる。つまり、周波数選択部109から出力されてきた、端末200-1へ送信する信号が、ビーム選択部110-1からビーム形成部111-2~111-mのうち1つへ出力される。そして、FFT103-1から送受信切替部102-1、アンテナ101-1を介して、ビーム形成部111-2~111-mにてビーム形成された信号が端末200-1へ送信される。 When the selection signal output from the CQI decoder 106 is an instruction to switch the beam forming unit, in step 16, the beam selecting unit 110-1 currently selected by the beam selecting unit 110-1 (the beam forming unit 111-1). The beam forming unit is switched to another beam forming unit (one of the beam forming units 111-2 to 111-m). That is, the signal transmitted from frequency selection section 109 and transmitted to terminal 200-1 is output from beam selection section 110-1 to one of beam forming sections 111-2 to 111-m. Then, signals formed by the beam forming units 111-2 to 111-m are transmitted from the FFT 103-1 to the terminal 200-1 via the transmission / reception switching unit 102-1 and the antenna 101-1.
 他の端末200-2~200-nから信号が送信されてきた場合も同様である。つまり、端末200-1~200-nそれぞれから送信されてきたCINRに基づいて、それぞれ個別にビーム形成部を切り替える。 The same applies when signals are transmitted from other terminals 200-2 to 200-n. That is, the beam forming unit is individually switched based on the CINR transmitted from each of the terminals 200-1 to 200-n.
 なお、アンテナの本数が2本である場合を例に挙げて説明したが、2本に限らず3本以上であっても同様の処理が行われる。 In addition, although the case where the number of antennas is two has been described as an example, the same processing is performed even when there are three or more antennas without being limited to two.
 また、上述した無線基地局100の処理は、目的に応じて作製された論理回路で行うようにしても良い。また、処理内容を手順として記述したプログラムを無線基地局100にて読取可能な記録媒体に記録し、この記録媒体に記録されたプログラムを無線基地局100に読み込ませ、実行するものであっても良い。無線基地局100にて読取可能な記録媒体とは、フロッピーディスク(登録商標)、光磁気ディスク、DVD、CDなどの移設可能な記録媒体の他、無線基地局100に内蔵されたROM、RAM等のメモリやHDD等を指す。この記録媒体に記録されたプログラムは、無線基地局100内のCPU(不図示)にて読み込まれ、CPUの制御によって、上述したものと同様の処理が行われる。ここで、CPUは、プログラムが記録された記録媒体から読み込まれたプログラムを実行するコンピュータとして動作するものである。 Further, the above-described processing of the radio base station 100 may be performed by a logic circuit manufactured according to the purpose. Further, a program in which processing contents are described as a procedure is recorded on a recording medium readable by the radio base station 100, and the program recorded on the recording medium is read by the radio base station 100 and executed. good. The recording medium readable by the wireless base station 100 includes a removable recording medium such as a floppy disk (registered trademark), a magneto-optical disk, a DVD, and a CD, a ROM, a RAM, and the like built in the wireless base station 100. Memory, HDD, etc. The program recorded on the recording medium is read by a CPU (not shown) in the radio base station 100, and the same processing as described above is performed under the control of the CPU. Here, the CPU operates as a computer that executes a program read from a recording medium on which the program is recorded.
 このように、端末200-1~200-nから送信されてきたCINRに応じて使用するアンテナを切り替えるため、周波数を割り当てるスケジューラの起動頻度が減り、スケジューラ負荷が軽減される。また、そのため、信号処理時間が短縮され、端末200-1~200-nの高速移動にも対応することが可能となる。 Thus, since the antenna to be used is switched according to the CINR transmitted from the terminals 200-1 to 200-n, the frequency of starting the scheduler for assigning the frequency is reduced, and the scheduler load is reduced. Therefore, the signal processing time is shortened, and it is possible to cope with the high-speed movement of the terminals 200-1 to 200-n.
 なお、本発明は、OFDMAを用いた通信に広く適用可能であり、WiMAXシステム以外にも、例えばLTE(Long Term Evolution)などにも適用可能である。 Note that the present invention is widely applicable to communication using OFDMA, and can be applied to, for example, LTE (Long Term Evolution) in addition to the WiMAX system.
 以上、実施の形態を参照して本願発明を説明したが、本願発明は上記実施の形態に限定されるものではない。本願発明の構成や詳細には、本願発明のスコープ内で当業者が理解し得る様々な変更をすることができる。 The present invention has been described above with reference to the embodiments, but the present invention is not limited to the above embodiments. Various changes that can be understood by those skilled in the art can be made to the configuration and details of the present invention within the scope of the present invention.
 この出願は、2008年11月12日に出願された日本出願特願2008-289951を基礎とする優先権を主張し、その開示の全てをここに取り込む。 This application claims priority based on Japanese Patent Application No. 2008-289951 filed on November 12, 2008, the entire disclosure of which is incorporated herein.

Claims (13)

  1.  無線通信機能を有する複数の端末との間でOFDMA(Orthogonal Frequency Division Multiplexing Access)を用いて通信を行う無線基地局であって、
     前記端末との間で無線信号を送受信する複数のアンテナと、
     前記複数の端末それぞれに対して、前記複数のアンテナのうち、前記端末へ信号を送信するためのアンテナを1つ選択するアンテナ選択部と、
     前記端末から送信されてくる受信品質情報に基づいて、前記アンテナ選択部が選択するアンテナを、前記アンテナ選択部が選択している第1のアンテナから前記複数のアンテナのうちの該第1のアンテナ以外の第2のアンテナに切り替えるように前記アンテナ選択部へ指示するCQIデコーダとを有し、
     前記アンテナ選択部は、前記CQIデコーダから、当該アンテナ選択部が選択するアンテナを前記第1のアンテナから前記第2のアンテナに切り替えるように指示された場合、該第2のアンテナに切り替える無線基地局。
    A wireless base station that communicates with a plurality of terminals having a wireless communication function using OFDMA (Orthogonal Frequency Division Multiplexing Access),
    A plurality of antennas for transmitting and receiving radio signals to and from the terminal;
    For each of the plurality of terminals, an antenna selection unit that selects one of the plurality of antennas for transmitting a signal to the terminal;
    Based on the reception quality information transmitted from the terminal, the first antenna among the plurality of antennas from the first antenna selected by the antenna selection unit is selected by the antenna selection unit. A CQI decoder that instructs the antenna selection unit to switch to a second antenna other than
    The antenna selection unit, when instructed by the CQI decoder to switch the antenna selected by the antenna selection unit from the first antenna to the second antenna, a radio base station that switches to the second antenna .
  2.  請求項1に記載の無線基地局において、
     前記CQIデコーダは、前記受信品質情報が所定の閾値未満である場合、前記アンテナ選択部が選択するアンテナを、前記第1のアンテナから前記第2のアンテナに切り替えるように前記アンテナ選択部へ指示することを特徴とする無線基地局。
    In the radio base station according to claim 1,
    The CQI decoder instructs the antenna selection unit to switch the antenna selected by the antenna selection unit from the first antenna to the second antenna when the reception quality information is less than a predetermined threshold. A wireless base station characterized by that.
  3.  請求項1に記載の無線基地局において、
     前記CQIデコーダは、前記端末から送信されてくるCINR(Carrier to Interference and Noise power Ratio)に基づいて、前記アンテナ選択部が選択するアンテナを、前記第1のアンテナから前記第2のアンテナに切り替えるように前記アンテナ選択部へ指示することを特徴とする無線基地局。
    In the radio base station according to claim 1,
    The CQI decoder switches the antenna selected by the antenna selection unit from the first antenna to the second antenna based on CINR (Carrier to Interference and Noise power Ratio) transmitted from the terminal. And instructing the antenna selector to a radio base station.
  4.  請求項3に記載の無線基地局において、
     前記CQIデコーダは、前記CINRが負の値である場合、前記アンテナ選択部が選択するアンテナを、前記第1のアンテナから前記第2のアンテナに切り替えるように前記アンテナ選択部へ指示することを特徴とする無線基地局。
    In the radio base station according to claim 3,
    When the CINR is a negative value, the CQI decoder instructs the antenna selection unit to switch the antenna selected by the antenna selection unit from the first antenna to the second antenna. A wireless base station.
  5.  請求項1乃至4のいずれか1項に記載の無線基地局において、
     WiMAX(Worldwide Interoperability for Microwave Access)システムに用いられることを特徴とする無線基地局。
    In the radio base station according to any one of claims 1 to 4,
    A wireless base station used for a WiMAX (Worldwide Interoperability for Microwave Access) system.
  6.  OFDMA(Orthogonal Frequency Division Multiplexing Access)を用いて通信を行う複数の端末と無線基地局とを接続する接続方法であって、
     前記複数の端末それぞれに対して、前記無線基地局が有する複数のアンテナのうち、前記端末へ信号を送信するためのアンテナを1つ選択する処理と、
     前記端末から送信されてくる受信品質情報に基づいて、前記選択するアンテナを、現在選択している第1のアンテナから前記複数のアンテナのうちの該第1のアンテナ以外の第2のアンテナに切り替える処理とを有する接続方法。
    A connection method for connecting a plurality of terminals communicating with a radio base station using OFDMA (Orthogonal Frequency Division Multiplexing Access),
    For each of the plurality of terminals, a process of selecting one antenna for transmitting a signal to the terminal among the plurality of antennas of the radio base station;
    Based on reception quality information transmitted from the terminal, the antenna to be selected is switched from the currently selected first antenna to a second antenna other than the first antenna among the plurality of antennas. And a connection method.
  7.  請求項6に記載の接続方法において、
     前記受信品質情報が所定の閾値未満である場合、前記選択するアンテナを、前記第1のアンテナから前記第2のアンテナに切り替える処理を有することを特徴とする接続方法。
    The connection method according to claim 6, wherein
    A connection method comprising: switching the antenna to be selected from the first antenna to the second antenna when the reception quality information is less than a predetermined threshold.
  8.  請求項6に記載の接続方法において、
     前記端末から送信されてくるCINR(Carrier to Interference and Noise power Ratio)に基づいて、前記選択するアンテナを、前記第1のアンテナから前記第2のアンテナに切り替える処理を有することを特徴とする接続方法。
    The connection method according to claim 6, wherein
    A connection method comprising a process of switching the antenna to be selected from the first antenna to the second antenna based on CINR (Carrier to Interference and Noise power Ratio) transmitted from the terminal .
  9.  請求項8に記載の接続方法において、
     前記CINRが負の値である場合、前記選択するアンテナを、前記第1のアンテナから前記第2のアンテナに切り替える処理を有することを特徴とする接続方法。
    The connection method according to claim 8,
    When the CINR is a negative value, the connection method includes a process of switching the antenna to be selected from the first antenna to the second antenna.
  10.  無線通信機能を有する複数の端末との間でOFDMA(Orthogonal Frequency Division Multiplexing Access)を用いて通信を行う無線基地局に、
     前記複数の端末それぞれに対して、当該無線基地局が有する複数のアンテナのうち、前記端末へ信号を送信するためのアンテナを1つ選択する手順と、
     前記端末から送信されてくる受信品質情報に基づいて、前記選択するアンテナを、現在選択している第1のアンテナから前記複数のアンテナのうちの該第1のアンテナ以外の第2のアンテナに切り替える手順とを実行させるプログラム。
    To a radio base station that communicates with a plurality of terminals having a radio communication function using OFDMA (Orthogonal Frequency Division Multiplexing Access),
    For each of the plurality of terminals, a procedure for selecting one antenna for transmitting a signal to the terminal from among a plurality of antennas of the radio base station;
    Based on reception quality information transmitted from the terminal, the antenna to be selected is switched from the currently selected first antenna to a second antenna other than the first antenna among the plurality of antennas. A program that executes procedures.
  11.  請求項10に記載のプログラムにおいて、
     前記受信品質情報が所定の閾値未満である場合、前記選択するアンテナを、前記第1のアンテナから前記第2のアンテナに切り替える手順を実行させることを特徴とするプログラム。
    The program according to claim 10, wherein
    When the reception quality information is less than a predetermined threshold, a program for executing a procedure for switching the antenna to be selected from the first antenna to the second antenna.
  12.  請求項10に記載のプログラムにおいて、
     前記端末から送信されてくるCINR(Carrier to Interference and Noise power Ratio)に基づいて、前記選択するアンテナを、前記第1のアンテナから前記第2のアンテナに切り替える手順を実行させることを特徴とするプログラム。
    The program according to claim 10, wherein
    A program for executing a procedure of switching the antenna to be selected from the first antenna to the second antenna based on CINR (Carrier to Interference and Noise power Ratio) transmitted from the terminal .
  13.  請求項12に記載のプログラムにおいて、
     前記CINRが負の値である場合、前記選択するアンテナを、前記第1のアンテナから前記第2のアンテナに切り替える手順を実行させることを特徴とするプログラム。
    The program according to claim 12,
    When the CINR is a negative value, a program for executing a procedure of switching the antenna to be selected from the first antenna to the second antenna.
PCT/JP2009/067648 2008-11-12 2009-10-09 Radio base station, communication method and program WO2010055741A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-289951 2008-11-12
JP2008289951 2008-11-12

Publications (1)

Publication Number Publication Date
WO2010055741A1 true WO2010055741A1 (en) 2010-05-20

Family

ID=42169877

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/067648 WO2010055741A1 (en) 2008-11-12 2009-10-09 Radio base station, communication method and program

Country Status (2)

Country Link
TW (1) TW201108648A (en)
WO (1) WO2010055741A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002026796A (en) * 1998-04-07 2002-01-25 Matsushita Electric Ind Co Ltd Wireless communication equipment and wireless communication system
JP2008199423A (en) * 2007-02-14 2008-08-28 Ntt Docomo Inc Base station device used for mobile communication system, and user device and method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002026796A (en) * 1998-04-07 2002-01-25 Matsushita Electric Ind Co Ltd Wireless communication equipment and wireless communication system
JP2008199423A (en) * 2007-02-14 2008-08-28 Ntt Docomo Inc Base station device used for mobile communication system, and user device and method

Also Published As

Publication number Publication date
TW201108648A (en) 2011-03-01

Similar Documents

Publication Publication Date Title
US11764929B2 (en) Method and apparatus for information reporting, and method and apparatus for information transmission
US10757696B2 (en) System and method for transmission and reception of control and data channels with group reference signal
CA3092288A1 (en) Methods and apparatuses for transmitting and receiving control signaling, and method for determining information
KR101642311B1 (en) The method for transmitting and receiving CoMP reference signal
CN107888360B (en) Reference signal transmission method, device and system
CN104584452A (en) Reception of downline data for coordinated multi-point transmission in the event of fall-back
KR20110093166A (en) Period / aperiodic transmission switching method of channel estimation reference signal, apparatus and method for transmitting / receiving channel estimation reference signal using same
WO2011129547A2 (en) Method and apparatus for transmitting feedback information of a terminal in a multi-node system
US10374763B2 (en) Parameter transmission method and device for interference coordination, and interference coordination method and device
CN112106317A (en) Customized beam management for beamformed transmissions
CN116017728A (en) Communication method and device
CN111385812B (en) Beam management method and device
CN110913476B (en) Communication method and communication device
CN108242944B (en) Method and device for UE (user equipment) and base station for multi-antenna transmission
WO2010055741A1 (en) Radio base station, communication method and program
CN114175524B (en) Minimizing block error rate (BLER) associated with beam switching
WO2018176328A1 (en) Method and apparatus for multi-antenna transmission used in user equipment and base station
KR101422026B1 (en) A method for transmitting/receiving signal in a Multiple Input Multiple Output system
WO2022012199A1 (en) User equipment-assisted beam broadening
US20240259171A1 (en) Transmission configuration indications for downlink transmissions using multiple transmission and reception points
JP5710991B2 (en) Mobile communication system and base station
CN118104201A (en) Indication method, device, medium and product of transmission multiplexing mode
CN118104199A (en) Uplink waveform indicating method, device, medium and product
JP2012216989A (en) Mobile communication system and base station device
JP2019201403A (en) Radio communication device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09825992

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09825992

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP