WO2010054509A1 - 泛光装置 - Google Patents
泛光装置 Download PDFInfo
- Publication number
- WO2010054509A1 WO2010054509A1 PCT/CN2008/073014 CN2008073014W WO2010054509A1 WO 2010054509 A1 WO2010054509 A1 WO 2010054509A1 CN 2008073014 W CN2008073014 W CN 2008073014W WO 2010054509 A1 WO2010054509 A1 WO 2010054509A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- light source
- reflecting surface
- light
- lamp housing
- fixing
- Prior art date
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21V—FUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
- F21V7/00—Reflectors for light sources
- F21V7/04—Optical design
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21V—FUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
- F21V7/00—Reflectors for light sources
- F21V7/0008—Reflectors for light sources providing for indirect lighting
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21Y—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
- F21Y2115/00—Light-generating elements of semiconductor light sources
- F21Y2115/10—Light-emitting diodes [LED]
Definitions
- the present invention relates to a luminaire assembly, and more particularly to a floodlight device.
- LED its light source is almost a point.
- High-power LED floodlights follow the structure of the above-mentioned conventional luminaires, causing many defects, especially in the three problems of angle, range controllable projection, heat dissipation and glare pollution.
- the luminous volume of the point source is reduced to a point or a point, and the luminous power and power consumption must be maintained at the original level.
- the work will inevitably generate and accumulate a large amount of heat. If it is not quickly exported, it cannot be connected normally.
- high-power LEDs with their inherent semiconductor physical structure, must not withstand higher operating temperatures, and it is a low-voltage, high-current electronic device that inevitably generates a large amount of heat under operating conditions. Therefore, in the existing lamp structure, in order to enable the high-power LED to dissipate heat better, the high-power LED can only be fixed close to the root of the reflecting surface, which limits the design and manufacture of the floodlighting lamp.
- the more serious problem is: Compared with the size of the light-emitting part of the traditional surface light source, the high-power LED can be regarded as a point light source, if its area ratio is a thousand times, in other words, the same Compared with the same amount of emitted light flux, if the conventional direct mounting structure is still used, the point light source emits light a thousand times higher than the conventional light source, and its glare intensity is much more harmful to the visual source than the conventional light source. . Unless the lighting device is designed for special occasions that produce intense glare.
- the technical problem to be solved by the present invention is to provide a floodlight device capable of achieving a good floodlight effect in view of the above-mentioned defects of the conventional floodlight device and the point light source floodlight device of the conventional structure. And anti-glare effect.
- the technical solution adopted by the present invention to solve the technical problem is: constructing a floodlight device, comprising a lamp housing, a reflecting surface located in the lamp housing with an opening, and being disposed in the lamp housing
- the point light source, the reflecting surface includes a curved surface, and the light source is offset from the focal point of the curved surface and faces the reflecting surface, so that all emitted light is reflected and scattered by the reflecting surface.
- the light source exit angle of the point light source is ⁇
- the angle of the opening cross section of the reflective surface about its axis of symmetry along the opening direction is ⁇ , then ⁇ > ⁇ .
- the curved surface is a circular arc, an ellipse, or a parabolic rotating surface or a part of the aligned surface.
- the floodlighting device further includes a fixing base disposed at a bottom of the lamp housing, the fixing base including a light source fixing surface and a light shielding convex portion,
- the point light source is disposed on the light source fixing surface
- the light shielding convex portion is disposed beside the light source fixing surface for blocking light rays directly from the point light source to the reflecting surface.
- the bottom of the lamp housing is provided with a straight hole
- the fixed base is column-shaped and fixed in the straight hole
- the fixing surface of the light source is the fixing The chamfered surface at the top of the base.
- the bottom of the lamp housing is provided with a slanted hole, and the fixed base is columnar And being fixed in the inclined hole, the light source fixing surface is a concave surface of the top of the fixed base, and the light shielding convex portion is an annular side wall surrounding the fixing surface of the light source.
- the opening of the lamp housing is circular, and includes two symmetrical portions, each of which is provided with a reflecting surface; the fixing base is disposed on the two Between the parts, the light source mounting portion and the light shielding convex portion are provided, and the point light sources corresponding to the reflecting surface are disposed on the light shielding convex portion.
- the lamp housing is provided with a plurality of reflecting surfaces, and the point light source and the fixing base are respectively disposed in the reflecting surfaces.
- the bottom of the lamp housing is further provided with a heat dissipating device, and the fixing base is in close contact with the heat dissipating device.
- the light source exit angle of the point light source is less than 180°, and a central axis of the outgoing light beam of the point light source intersects with a symmetric axis of the reflective surface along the opening direction, and Form an angle of 80 ° ⁇ 150 °.
- the floodlight device embodying the invention has the following beneficial effects:
- the light emitted by the strong light source is projected onto the reflecting surface, and the light-shielding protrusion is arranged to block the direct light. Compared with the light of the conventional point source, the light is reflected by the reflecting surface and is emitted. It is equivalent to expanding the area of light emission, so that the light can be evenly and gently emitted into the floodlight device, avoiding the strong stimulation of vision and visual damage caused by glare.
- the heat sink can be placed close to the point source, so that the fixed base can derive heat in the shortest way, reduce the thermal gradient, improve the heat dissipation effect, meet the requirements of the point source, and ensure its service life.
- the floodlighting device of the invention has no difficulty in the production, but the space of the reflecting surface can be reduced, the volume can be reduced, the cost can be reduced, and the design is more flexible and changeable;
- [25] 6 using the principle of the present invention, not only can make a single light source independent floodlight device, but also can be combined or deformed by a plurality of such floodlight devices to make two or more light source flooding device To suit Should be larger projection distance, the need for greater projection power.
- FIG. 1A is a schematic view showing a beam exit angle of a point source according to a first embodiment of a reflecting surface according to the present invention
- 1B is a schematic view showing the angle between the central axis of the beam of the point source and the axis of symmetry of the reflecting surface along the opening direction in accordance with the first embodiment of the reflecting surface of the present invention
- 1C is a schematic view showing a projection area of a light beam of a point source on a reflecting surface according to a first embodiment of a reflecting surface according to the present invention
- FIG. 2A is a schematic view showing a section of a working area of a reflecting surface in an opening direction according to a first embodiment of a reflecting surface according to the present invention
- Figure 2B is a left side view of Figure 2A;
- Figure 2C is a plan view of Figure 2A
- FIG. 3A is a schematic view of a beam exit angle of a point source according to a second embodiment of a reflecting surface according to the present invention
- FIG. 3B is a second embodiment of a reflecting surface according to the present invention, in a beam of a point source a schematic view of the angle between the axis and the axis of symmetry of the reflecting surface along the opening direction;
- 3C is a schematic view showing a projection area of a light beam of a point source on a reflecting surface according to a second embodiment of the reflecting surface of the present invention
- FIG. 4A is a schematic view showing a cutting range of a working area of a reflecting surface in an opening direction according to a second embodiment of a reflecting surface according to the present invention
- Figure 4B is a left side view of Figure 4A;
- Figure 4C is a plan view of Figure 4A
- FIG. 5A is a schematic view showing a beam exit angle of a point source according to a third embodiment of a reflecting surface according to the present invention
- FIG. 5B is a third embodiment of a reflecting surface according to the present invention, in a light beam of a point source a schematic view of the angle between the axis and the axis of symmetry of the reflecting surface along the opening direction;
- Figure 5C is a schematic view showing a projection area of a light beam of a point source on a reflecting surface according to a third embodiment of the reflecting surface of the present invention.
- FIG. 6A is a schematic view showing a cutting range of a working area of a reflecting surface in an opening direction according to a third embodiment of a reflecting surface according to the present invention
- Figure 6B is a left side view of Figure 6A;
- Figure 6C is a plan view of Figure 6A
- Figure 7A is a schematic view showing the structure of a first embodiment of a fixing base according to the present invention.
- Figure 7B is a left side view of Figure 7A;
- Figure 7C is a plan view of Figure 7A
- FIG. 7D is a schematic view showing the assembly of the fixed base and the point light source in FIG. 7A;
- Figure 7E is a cross-sectional view of a first embodiment of a floodlighting device in accordance with the present invention.
- Figure 8A is a schematic view showing the structure of a second embodiment of a fixing base according to the present invention.
- Figure 8B is a plan view of Figure 8A
- FIG. 8C is a schematic view showing the assembly of the fixed base and the point light source in FIG. 8A;
- Figure 8D is a cross-sectional view of a second embodiment of a floodlighting device in accordance with the present invention.
- FIG. 9A is a schematic structural view of a third embodiment of a fixed base according to the present invention.
- Figure 9B is a left side view of Figure 9A;
- Figure 9C is a plan view of Figure 9A;
- Figure 9D is a cross-sectional view showing a third embodiment of the floodlighting device of the present invention.
- Figure 9E is a right side view of Figure 9D;
- Figure 10A is a schematic illustration of a fourth embodiment of a floodlighting device showing one aspect of a combined application of a floodlighting device
- Figure 10B is a schematic view of a fifth embodiment of a floodlight device showing another aspect of the combined application of the floodlight device;
- FIG. 10C is a schematic view of a sixth embodiment of the floodlight device, showing another case of the combined application of the floodlight device;
- Figure 10D is a schematic illustration of a seventh embodiment of a floodlight device showing another aspect of the combined application of the floodlight device;
- FIG. 10E is a schematic illustration of an eighth embodiment of a floodlight device showing another aspect of the combined application of the floodlight device;
- FIG. 10F is a schematic view of a ninth embodiment of a floodlight device, showing another case of a combination application of a floodlight device;
- FIG. 10G is a schematic view of a tenth embodiment of a floodlight device, showing another case of a combination application of a floodlight device;
- Figure 10H is a schematic illustration of an eleventh embodiment of a floodlight device showing another aspect of a combined application of a floodlight device.
- the floodlight device 100 includes a lamp housing 104, a reflective surface 101 located within the lamp housing 104, and a point light source 102 disposed within the lamp housing 104.
- the point light source 102 is disposed in the reflecting surface 101 through the fixed base 103, and the light emitting direction is directed toward the reflecting surface 101. The emitted light is reflected by the reflecting surface 101 and then emitted from the opening of the reflecting surface 101.
- the shaded portion shown in Figs. 1A-1C is the area where the point source 102 is projected on the reflecting surface 101.
- the point source 102 of appropriate power is selected according to the size of the floodlight device 100 and the flood projection requirements, and the reflecting surface 101 is designed accordingly.
- the point source 102 may be an LED or an LE D module composed of a plurality of LEDs.
- the beam exit angle ⁇ of the point source 102 is less than or equal to 180° of the spherical surface, generally 110 to 130°
- the angle ⁇ of the opening section of the reflecting surface 101 in FIG. 2A is greater than ⁇ around the axis OA. All of the light emitted by the point source 102 is projected onto the reflecting surface 101, and is reflected by the reflecting surface 101 to be emitted.
- the ⁇ is preferably 180°. In the first embodiment of the reflecting surface 101 shown in FIGS.
- the reflecting surface 101 is a part of the rotating surface, and its cross section is a part of a circle, an ellipse, a parabola or the like, and the point source 102 is offset from the focus of the rotating surface.
- the meaning of the off-focus is that, for a shape such as a paraboloid, the point light source 102 is out of focus to form scattering to avoid concentrating; for example, a part of a circular revolution surface, a part of an elliptical rotation surface, or the like Since there is no focus of concentrating, it can be placed at any position on the axis OA to achieve scattering.
- the light source exiting direction of the point source 102 is directed toward the reflecting surface 101.
- the reflecting surface 101 In order to prevent the reflecting surface 101 from intercepting and reflecting the light beam from the point source 102 as much as possible, the light of the edge is prevented or reduced from being reflected from the point source 102 without being reflected. Similarly, the point source 102 and the fixed base are avoided as much as possible.
- the obstruction of the reflected light avoids or reduces the attenuation of the multiple refraction.
- the angle ⁇ between the central axis CB of the exiting beam of the point source 102 and the axis of symmetry OA of the reflecting surface 101 in the opening direction is preferably 80° to 150°. , preferably 110°.
- the point source 102 is emitted.
- the emitted light can all be projected onto the reflecting surface 101, and after being scattered, it is emitted without being directly projected.
- the shape of the reflecting surface 101 determined accordingly is as shown in Figs. 2A-2C.
- the reflecting surface 101 is a curved surface which is half of the rotating surface.
- the reflecting surface 101 is a non-fully symmetric reflecting surface.
- the reflecting surface 101 is not symmetrical about the axis OA, and in Fig. 2C, the reflecting surface 101 is symmetrical about the axis OA.
- the reflecting surface 101 is located on the inner surface of the lamp housing 104, and the lamp housing 104 is made of a metal or non-metal material having a certain strength and withstanding a certain temperature, for example, steel, aluminum, glass, plastic. Etc., by cutting, stamping, forging, melting, hot pressing or injection molding.
- the reflective surface 101 is surface treated to enhance light reflectivity. The shape, material and processing of the reflective surface 101 can be varied depending on the design requirements of the different luminaires.
- 3A-3C are schematic views of a beam exit angle of a point source 102 according to a second embodiment of the reflective surface 101 of the present invention; wherein the shaded portion is projected on the reflective surface 101 of the rectangular opening by the point source 102. The area formed. A portion similar to the first embodiment of the reflecting surface 101 is no longer described.
- the angle of the opening of the reflecting surface 101 around the axis OA is larger than ⁇ , so that all the light emitted by the point source 102 is projected onto the reflecting surface 101 and reflected by the reflecting surface 101.
- ⁇ is preferably 180°.
- the angle ⁇ between the central axis CB of the outgoing beam of the point source 102 and the axis OA of the reflecting surface 101 is preferably 80° to 150°, preferably 110°.
- the shape of the reflecting surface 101 determined accordingly is as shown in Figs. 4A-4C.
- the opening of the reflecting surface 101 is rectangular, wherein the two opposite sides 101a, 101b are rectangular, and the portion between the two sides 101a, 101b is a curved surface 101c, which is a curved surface 101c Arranged faces that are arranged side by side by curves, such as arcs, ellipses, parabolas, and so on.
- the curved surface 101c of the reflecting surface 101 is an asymmetrical reflecting surface.
- the reflecting surface 101 is not symmetrical about the axis OA
- Fig. 4C the reflecting surface 101 is symmetrical about the axis OA.
- 5A-5C are schematic views of a beam exit angle of a point source 102 according to a third embodiment of the reflecting surface 101 of the present invention; wherein the shaded portion is an area formed by the point source 102 projected on the reflecting surface 101. .
- a portion similar to the first embodiment of the reflecting surface 101 is not described.
- the angle ⁇ of the symmetry axis OA of the opening surface of the reflecting surface 101 around the opening direction is greater than ⁇ , so that all the light emitted by the point source 102 can be projected onto the reflecting surface 101 and reflected by the reflecting surface 101 to be emitted.
- ⁇ is preferably 180°.
- the angle ⁇ between the central axis CB of the outgoing beam of the point source 102 and the axis of symmetry OA of the opening direction of the reflecting surface 101 is preferably 80°-15 0°, preferably 110°.
- the shape of the reflecting surface 101 determined accordingly is as shown in Figs. 6A-6C.
- the opening of the reflecting surface 101 is an elliptical half, and the outer contour of the longitudinal section of the axis of symmetry OA passing through the opening direction is curved.
- the outer contour of the transverse section through the axis of symmetry OA of the opening direction is also curved.
- the curved surface of the reflecting surface 101 is a non-fully symmetric reflecting surface.
- the reflecting surface 101 is not symmetrical about the axis of symmetry OA of the opening direction.
- the axis of symmetry of the reflecting surface 101 with respect to the opening direction is 0 A. symmetry.
- a fixed base 103 is used to secure the point source 102 such that the point source 102 is disposed within the reflective surface 101 at a predetermined angle.
- the fixed base 103 is made of a material having a certain mechanical strength and good thermal conductivity, such as silver, copper, aluminum, graphite, etc., and has a cylindrical shape, for example, a cylinder, an elliptical cylinder, or a polygonal column.
- a light source fixing surface 1031 is provided at the top of the fixed base 103. The light source fixing surface 1031 is inclined at an angle with respect to the axis OA of the reflecting surface 101.
- the light source fixing surface 1031 is at an acute angle to the extending direction of the fixed base 103.
- the light source fixing surface 1031 is a chamfered surface of the fixed base 103.
- a light-shielding projection 1032 is provided beside the light source fixing surface 1031 toward the opening direction of the reflecting surface 101 for blocking a small amount of direct light which may be directly emitted from the flooding device.
- the height of the light-shielding projection 1032 is preferably such that the direct light is blocked, but the reflected light is not interfered as much as possible.
- the fixed base 103 not only sets the point light source 102 within the reflecting surface 101 at a predetermined angle and deviates from the focus, but also intersects the central axis CB of the outgoing beam with the axis of symmetry OA of the reflecting surface 101 in the opening direction. To the effect of the electrical connection, the wires connected to the point source 102 can pass therethrough. Further, since the fixed base 103 is made of a material having good heat conductivity and is in close contact with the point light source 102, the heat of the point light source 102 can be conducted.
- a straight hole 1041 is provided at the bottom of the lamp housing 104, and the fixed base 103 is fixed in the straight hole 1041, and the extending base 103 extends in a direction perpendicular to the axis of symmetry OA of the reflecting surface 101 in the opening direction.
- the lower portion of the lamp housing 104 is also fixedly provided with a heat dissipating device 106.
- the fixing base 103 passes through the straight hole 1041 of the lamp housing 104 and is in close contact with the heat dissipating device 106. In operation, the heat generated by the point source 102 can be conducted to the heat sink 106 to avoid heat buildup.
- the lamp housing 104 and the heat sink 106 are integral and fixed.
- the susceptor 103 is a separate component. In other cases, they may be three independent components, or two or two combined processes, or a combination of the three to form a floodlight device.
- the fixed base 203 is cylindrical
- the light source fixing surface 2031 is a concave surface at the top of the fixed base 203.
- the light-shielding projection 2032 is an annular side wall surrounding the light source fixing surface 2031.
- the light source fixing surface 2031 is perpendicular to the extending direction of the fixed base 203, and the depth of the light source fixing surface 2031 is recessed to block direct light, but it is preferable to not interfere with the reflected light as much as possible.
- an inclined hole 2042 is provided at the bottom of the lamp housing 204.
- the fixing base 203 is fixed in the inclined hole 2042, and the extending direction of the fixing base 203 is at an acute angle with the axis of symmetry OA of the reflecting surface 201.
- the point light source 202 is fixed on the light source fixing surface 2031, and the surrounding light shielding protrusions 2032 block the light which may directly exit the lamp housing 204, thereby avoiding glare.
- the opening of the lamp housing 304 is circular, and includes two symmetrical portions.
- the first portion 3043 is internally provided with a reflecting surface 3011, and the second portion 3044 is internally provided with a reflecting surface 3. 012, the symmetry axis of the two is OC.
- a hole 3041 is provided between the first portion 3043 and the second portion 3044 of the lamp housing 304, and the center line of the hole 3041 coincides with OC.
- the fixed base 303 is disposed in the hole 3041.
- the fixed base 303 includes a fixing portion 3033 that cooperates with the hole 3041, a light source mounting portion 3034, and a light shielding convex portion 3032.
- the fixing portion 3033 is cylindrical, and the light source mounting portion 3034 In the shape of a truncated cone, the small diameter end is connected to the fixing portion 3033, and the large diameter end is connected to the light shielding convex portion 3032.
- Two light source fixing faces 3031, 3035 are provided on the circumferential surface of the light source mounting portion 3034. To facilitate the fixing of the point light source 102, the light source fixing faces 3031, 3035 can be recessed inward.
- the light source fixing faces 3031, 3035 may be parallel to the surface contour of the portion corresponding to the light source mounting portion 3034.
- the light source fixing surfaces 3031 and 3035 are respectively located in the reflecting surfaces 3011 and 3012, and the inclination angle thereof causes the light rays emitted from the light sources 3011 and 3022 to be projected onto the corresponding reflecting surface and scattered.
- the light-shielding projection 3032 is provided at a large diameter end of the light source mounting portion 3034 and has a flange shape.
- the height of the protrusion is such that it blocks the direct light, but does not interfere with the reflected light as much as possible.
- an external heat sink can be provided, and heat is dissipated.
- the third embodiment of the floodlighting device makes two reflecting surfaces and two spotting lights The sources are combined with each other, and the two point sources are fixed on the same fixed base, which provides more convenience and wider use space.
- FIG. 10A in the fourth embodiment, the lamp housing 404 is circular in the opening direction, and includes three independent reflecting surfaces 4011, 4012, and 4013, respectively, in which fixed bases for fixing the point light source are disposed. Block 4 031, 4032, 4033. These fixed bases are disposed in the surrounding area inside the lamp housing 404 as seen from the opening direction of the lamp housing 404. Light is emitted from the surrounding area inside the lamp housing 404 toward the center and then reflected.
- the lamp housing 504 is circular in the opening direction, and includes three independent reflecting surfaces 5011, 5012, and 5013, respectively, which are respectively provided for
- the fixed bases 5031, 5032, 5033 of the fixed point light source are viewed from the opening direction of the lamp housing 404, and the fixed bases 5031, 5032, 5033 are disposed in the central area, and the light is emitted from the central area in the lamp housing 404 to the surroundings, and then reflection.
- the fixed bases 5031, 5032, 5033 can be provided in one piece.
- the lamp housing 604 is circular in the opening direction, and includes six independent reflecting surfaces 6011, 6012, 6013, 6014, 6015, 6016.
- Fixed bases 6031, 6032, 6033, 6034, 6035, 6036 for fixing point light sources are respectively disposed therein.
- the reflecting surfaces 6011, 6012 are disposed in the central region in the same manner as the third embodiment (shown in Figs. 9D, 9E).
- the other four reflecting surfaces 6013, 6014, 6015, 6016 are disposed in the surrounding area in a manner similar to that of the fourth embodiment (as shown in Fig. 10B).
- the lamp housing 704 is rectangular in the opening direction, and includes a plurality of reflecting surfaces 7011, 7012 and the like arranged side by side, and is respectively provided for fixing Fixed bases 7031, 7032, etc. of the point source.
- the lamp housing 804 has a rectangular shape in the opening direction, and includes two upper and lower rows of reflecting surfaces, each of which includes a plurality of independent reflecting surfaces 8011. 8012, 8013, 8014, etc., in which fixed bases 8031, 8032, 8033, 8034, etc. for fixing point light sources are respectively disposed.
- the lamp housing 904 has a rectangular shape in the opening direction, and the reflecting surfaces 9011 and 9012 which are divided into a plurality of rectangular openings arranged in the upper and lower rows are used. And 9013 and 9014, respectively, fixed bases 9031, 9032, 9033, 9034 and the like for fixing the point light source. These ones The fixed base is near the center of the lamp housing 904. Light is emitted from the central area inside the lamp envelope 404 to the surroundings and then reflected.
- the lamp housing 1004 has a rectangular shape in the opening direction, and uses a plurality of reflecting surfaces 10011, 10012 divided into a plurality of rectangular openings arranged in the upper and lower rows. , 10013, 10 014, in which fixed bases 10031, 10032, 10033, 10034 and the like for fixing the point light source are respectively disposed. These fixed bases are adjacent to the edge of the lamp housing 1004. Light is emitted from the surrounding area inside the lamp housing 1004 to the center and then reflected.
- the lamp housing 1104 has a rectangular shape in the opening direction, and a plurality of rectangular opening reflection surfaces 11011, 11012 arranged in a single row are used. 11013, 11014, 1 1015. Fixed bases 11031, 11032, 11033, 1034, 11035 for fixing point light sources are respectively disposed therein.
- the floodlight device of the present invention projects most or all of the light onto the reflecting surface to cause the light to exit in parallel, which has the following beneficial effects:
- the light emitted by the strong light source is projected onto the reflecting surface, and the light-shielding protrusion is arranged to block the direct light. Compared with the light of the conventional point source, the light is reflected by the reflecting surface and is emitted. It is equivalent to expanding the area of light emission, so that the light can be evenly and gently emitted into the floodlight device, avoiding the strong stimulation of vision and visual damage caused by glare.
- the heat sink can be placed close to the point source, so that the fixed base can derive heat in the shortest way, reduce the thermal gradient, improve the heat dissipation effect, meet the requirements of the point source, and ensure its service life.
- the floodlighting device of the utility model has no difficulty in making, but saves the space of the reflecting surface, the volume can be reduced, the cost can be reduced, and the design is more flexible and changeable; 6.
- a separate floodlight device of a single light source but also a plurality of such floodlight devices can be combined and deformed to form a floodlight device with two or more light sources, Adapt to the need for larger throw distances and greater projection power.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Non-Portable Lighting Devices Or Systems Thereof (AREA)
Description
说明书 泛光装置
技术领域
[1] 本发明涉及一种灯具组件, 更具体地说, 涉及一种泛光装置。
背景技术
[2] 传统的光源, 如白炽灯、 荧光灯、 各种气体放电灯, 均是球面、 或柱面、 或线 条状发光体。 在泛光灯中, 常将这些光源设置在反射面中, 使一部分光线经反 射面反射后, 再投射出去。 由于光源是呈 360°球面或柱面发光, 无论其与反射面 呈何种相对角度安装, 都会有一部分光线直射出去, 而仅有一部分射向反射面 的光线被反射后散射出去, 难以获得预想光线投射范围与照射效果。 并且, 强 光源直射出来的光线会产生耀眼的眩光, 使人的视觉无法适应。
[3] 随着科技的发展, 近年来出现了照明级的点光源, 最具代表性的就是大功率半 导体发光二极管 ( light emitting diode
, 简称 LED) , 其发光源部位几乎为一个点。
[4] 大功率 LED出现后, 虽然使用这种新光源的照明灯具的尺寸进行了一些适应性 调整, 但用于泛光的灯具仍然沿用了传统的光源光线发射方向与反射面的幵口 方向的结构。
大功率 LED泛光装置沿用上述传统灯具的结构, 造成了许多缺陷, 特别是在角度 和范围可控的投射、 散热和眩光污染三个问题上难以解决与兼顾。
[5] 首先, 我们从大功率 LED的固体发光原理和基本结构得知, 光线是从非固体遮 蔽面发出, 它的光线出射角小于或等于球面 180度, 通常都在 110度至 130度之间 。 因而将这种结构的大功率 LED按传统方式装在泛光装置的反射面中, 第一, 它 几乎没有向反射面发出的光线, 因而无反射可言; 第二, 其主要出射光线, 光 束角一般在球面 130度之内, 均经反射面的幵口处直射出灯具, 并沿出射角度继 续直线传播, 而没有经反射。 所以, 沿用这种结构很难得到较好的照射效果。
[6] 其次, 点光源的发光体积缩小为点或近似于点, 而发光功率和功耗又要维持在 原有水平, 工作吋势必产生和聚集大量的热量, 若不迅速导出, 就无法正常连
续工作。 尤其是大功率 LED, 以其固有的半导体物理结构, 绝不能耐受较高的工 作温度, 且它又是一种低电压大电流的电子器件, 在工作状况下必然产生大量 热量。 因此在现有的灯具结构中, 为了使大功率 LED能较好散热, 只能使大功率 LED紧贴反射面的根部固定, 对泛光灯具的设计和制造造成限制。
[7] 再者, 更严重的问题是: 相对传统面光源的发光部位尺寸而言, 大功率 LED可 以视做一个点光源, 如果其面积比是一千倍的话, 换句话说, 以同样的发光功 率或是等量的射出光通量相比, 如果仍沿用传统的直射安装结构, 则点光源发 出的光强要高出传统光源一千倍, 其眩光强度对视觉的损害比传统光源大的多 。 除非照明装置设计的目的就是用于产生强烈眩光的特殊场合。
发明内容
[8] 本发明要解决的技术问题在于, 针对现有技术中传统泛光装置和沿用传统结构 的点光源泛光装置的上述缺陷, 提供一种泛光装置, 能够达到较好的泛光效果 和防眩光效果。
[9] 本发明解决其技术问题所釆用的技术方案是: 构造一种泛光装置, 包括灯壳、 位于所述灯壳内且带有开口的反射面、 以及设置在所述灯壳内的点光源, 所述 反射面包括曲面, 所述光源偏离所述曲面的焦点并朝向所述反射面, 使发出的 全部光线经所述反射面反射后散射。
[10] 在本发明所述的泛光装置中, 所述点光源的光束出射角为 α, 所述反射面的开 口截面绕其沿开口方向的对称轴线的夹角为 β, 则 β>α。
[11] 在本发明所述的泛光装置中, 所述曲面为圆弧、 椭圆、 或抛物线的回转面或者 排列面的一部分。
[12] 在本发明所述的泛光装置中, 所述泛光装置还包括设置在所述灯壳底部的固定 基座, 所述固定基座包括光源固定面和遮光凸出部, 所述点光源设置在所述光 源固定面上, 所述遮光凸出部设置在所述光源固定面旁, 用于阻档从所述点光 源直射出所述反射面的光线。
[13] 在本发明所述的泛光装置中, 所述灯壳底部设置有直孔, 所述固定基座呈柱状 , 且固定在所述直孔内; 所述光源固定面是所述固定基座顶部的斜切面。
[14] 在本发明所述的泛光装置中, 所述灯壳底部设置有斜孔, 所述固定基座成柱状
, 且固定在所述斜孔中, 所述光源固定面是所述固定基座顶部的凹面, 所述遮 光凸出部是围绕所述光源固定面的环形侧壁。
[15] 在本发明所述的泛光装置中, 所述灯壳的开口呈圆形, 且包括对称的两部分, 各部分内均设有反射面; 所述固定基座设置在所述两部分之间, 包括光源安装 部和遮光凸出部, 与所述反射面对应的点光源均设置在所述遮光凸出部上。
[16] 在本发明所述的泛光装置中, 所述灯壳内部设有多个反射面, 各反射面内分别 设置有所述点光源和固定基座。
[17] 在本发明所述的泛光装置中, 所述灯壳底部还设置有散热装置, 所述固定基座 与所述散热装置紧密接触。
[18] 在本发明所述的泛光装置中, 所述点光源的光束出射角小于 180° , 所述点光源 的出射光束的中心轴线与所述反射面沿开口方向的对称轴线相交, 且形成 80° ~ 150 °的夹角。
[19] 实施本发明的泛光装置, 具有以下有益效果:
[20] 1、 光线经散射后射出, 实现较好的泛光范围控制效果。
[21] 2、 强烈的光源所发出的光线投射到反射面上, 并设置了遮光凸出部来遮档直 射光线, 与传统点光源的光线直射出去相比, 光线经反射面反射后射出, 相当 于扩大了光线出射的面积, 使光线能均匀、 柔和地射出泛光装置, 避免了眩光 对视觉的强烈刺激和视力损害。
[22] 3、 可以将散热装置放在最贴近点光源的位置, 使固定基座能以最短途径导出 热量, 降低热梯度, 改善散热效果, 满足点光源的工况要求, 保证其使用寿命
[23] 4、 由于出射光线是通过反射混合后再照射出泛光装置, 大功率 LED器件直射 光线经常出现的光斑、 黄圏、 光束中心与周边的色差等常见缺陷可得到显著改 善。
[24] 5、 相比传统的灯具结构, 本发明的泛光装置的制作并无难度, 反而因节省了 反射面的空间, 体积可以缩小, 成本可以降低, 设计更加灵活多变;
[25] 6、 利用本发明的原理, 不仅可以制作单颗光源的独立泛光装置, 也可以由若 干个这样的泛光装置组合、 变形, 制成两颗或两颗以上光源的泛光装置, 以适
应更大投射距离、 更大投光功率的需要。
附图说明
[26] 下面将结合附图及实施例对本发明作进一步说明, 附图中:
[27] 图 1A是根据本发明中反射面的第一实施例、 点光源的光束出射角的示意图;
[28] 图 1B是根据本发明中反射面的第一实施例、 点光源的光束中心轴线与反射面沿 开口方向的对称轴线的夹角的示意图;
[29] 图 1C是根据本发明中反射面的第一实施例、 点光源的光束在反射面上的投影区 域的示意图;
[30] 图 2A是根据本发明中反射面的第一实施例、 反射面在开口方向的工作区域截取 范围的示意图;
[31] 图 2B是图 2A的左视图;
[32] 图 2C是图 2A的俯视图;
[33] 图 3A是根据本发明中反射面的第二实施例、 点光源的光束出射角的示意图; [34] 图 3B是根据本发明中反射面的第二实施例、 点光源的光束中 、轴线与反射面沿 开口方向的对称轴线的夹角的示意图;
[35] 图 3C是根据本发明中反射面的第二实施例、 点光源的光束在反射面上的投影区 域的示意图;
[36] 图 4A是根据本发明中反射面的第二实施例、 反射面在开口方向的工作区域截取 范围的示意图;
[37] 图 4B是图 4A的左视图;
[38] 图 4C是图 4A的俯视图;
[39] 图 5A是根据本发明中反射面的第三实施例、 点光源的光束出射角的示意图; [40] 图 5B是根据本发明中反射面的第三实施例、 点光源的光束中 、轴线与反射面沿 开口方向的对称轴线的夹角的示意图;
[41] 图 5C是根据本发明中反射面的第三实施例、 点光源的光束在反射面上的投影区 域的示意图;
[42] 图 6A是根据本发明中反射面的第三实施例、 反射面在开口方向的工作区域截取 范围的示意图;
[43] 图 6B是图 6A的左视图;
[44] 图 6C是图 6A的俯视图;
[45] 图 7A是根据本发明、 固定基座的第一实施例的结构示意图;
[46] 图 7B是图 7A的左视图;
[47] 图 7C是图 7A的俯视图;
[48] 图 7D是图 7A中的固定基座与点光源的装配示意图;
[49] 图 7E是根据本发明、 泛光装置的第一实施例的剖视图;
[50] 图 8A是根据本发明、 固定基座的第二实施例的结构示意图;
[51] 图 8B是图 8A的俯视图;
[52] 图 8C是图 8A中的固定基座与点光源的装配示意图;
[53] 图 8D是根据本发明、 泛光装置的第二实施例的剖视图;
[54] 图 9A是根据本发明、 固定基座的第三实施例的结构示意图;
[55] 图 9B是图 9A的左视图;
[56] 图 9C是图 9A的俯视图;
[57] 图 9D是本发明、 泛光装置的第三实施例的剖视图;
[58] 图 9E是图 9D的右视图;
[59] 图 10A是泛光装置的第四实施例的示意图, 示出了泛光装置组合应用的一种情 况;
[60] 图 10B是泛光装置的第五实施例的示意图, 示出了泛光装置组合应用的另一种 情况;
[61] 图 10C是泛光装置的第六实施例的示意图, 示出了泛光装置组合应用的另一种 情况;
[62] 图 10D是泛光装置的第七实施例的示意图, 示出了泛光装置组合应用的另一种 情况;
[63] 图 10E是泛光装置的第八实施例的示意图, 示出了泛光装置组合应用的另一种 情况;
[64] 图 10F是泛光装置的第九实施例的示意图, 示出了泛光装置组合应用的另一种 情况;
[65] 图 10G是泛光装置的第十实施例的示意图, 示出了泛光装置组合应用的另一种 情况;
[66] 图 10H是泛光装置的第十一实施例的示意图, 示出了泛光装置组合应用的另一 种情况。
具体实施方式
[67] 参照图 7E, 在本实用新型中, 泛光装置 100包括灯壳 104、 位于灯壳 104内的反 射面 101、 以及设置在灯壳 104内的点光源 102。 其中点光源 102通过固定基座 103 设置在反射面 101内, 其光线出射方向朝向反射面 101, 发出的光线经反射面 101 反射后, 从反射面 101的开口出射。
[68] 图 1A-1C所示的阴影部分为点光源 102投射在反射面 101上所形成的区域。 在设 计过程中, 是根据泛光装置 100的尺寸和泛光投射要求, 选择适当功率的点光源 102, 并据此设计反射面 101。
[69] 在本实用新型的实施例中, 点光源 102可以是 LED, 或者由多个 LED构成的 LE D模块。 考虑到点光源 102的光束出射角 α小于或等于球面 180° , —般为球面 110~ 130° , 因此, 图 2Α中反射面 101的开口截面绕该轴 OA的夹角 β大于 α, 即可使点 光源 102发出的光线全部投射到反射面 101上, 并经反射面 101反射后出射。 β优 选为 180°。 在图 2A-2C所示的反射面 101的第一实施例,反射面 101为回转面的一部 分, 其截面为圆形、 椭圆形、 抛物线形等的一部分, 点光源 102偏离该回转面的 焦点。 此处, 偏离焦点的含义是, 对于例如抛物面之类的形状, 点光源 102偏离 焦点, 以形成散射而避免聚光; 对于例如圆形回转面的一部分、 椭圆形回转面 的一部分之类的形状, 因没有聚光的焦点, 因此可设置在轴 OA上的任何位置, 实现散射。
[70] 再参照图 2B和图 7E, 点光源 102的光线出射方向朝向反射面 101。 为了使反射 面 101尽可能多地拦截和反射来自点光源 102的光束, 避免或减少边缘的光线未 经反射, 直接从点光源 102投射出去; 同吋, 尽量避开点光源 102以及固定基座 1 03对反射光的阻碍, 避免或降低多次折射的衰减, 点光源 102的出射光束的中心 轴线 CB与反射面 101沿开口方向的对称轴线 OA之间的夹角 Θ优选 80°~150°, 最好 为 110°。 这是结合点光源 101的光束出射角计算得来。 参照图 1C, 点光源 102发
出的光线可全部投射到反射面 101, 经散射后射出, 不会直接投射出去。
[71] 据此确定的反射面 101的形状如图 2A-2C所示。 在如图所示的实施例中, 反射面 101为曲面, 该曲面是回转面的一半。 反射面 101为非全对称反射面。 在图 2A和 2 B中, 反射面 101并非关于轴线 OA对称, 在图 2C中, 反射面 101关于轴线 OA对称
[72] 参照图 7E, 反射面 101位于灯壳 104的内表面, 该灯壳 104由具有一定强度且能 耐受一定温度的金属或者非金属材料制成, 例如, 钢、 铝、 玻璃、 塑料等, 经 切削、 冲压、 锻造、 熔融、 热压或注塑等工艺制作而成。 反射面 101经表面处理 , 以增强光反射能力。 跟据不同灯具的设计要求, 可改变反射面 101的形状、 材 料和加工工艺。
[73] 图 3A-3C是根据本实用新型中反射面 101的第二实施例、 点光源 102的光束出射 角的示意图; 其中的阴影部分为点光源 102投射在矩形开口的反射面 101上所形 成的区域。 与反射面 101的第一实施例类似的部分不再赞述。 图 3A中反射面 101 的开口截面绕该轴 OA的夹角 β大于 α, 即可使点光源 102发出的光线全部投射到 反射面 101上, 并经反射面 101反射后出射。 β优选为 180°。 点光源 102的出射光束 的中心轴线 CB与反射面 101的轴 OA之间的夹角 Θ优选 80°~150°, 最好为 110°。
[74] 据此确定的反射面 101的形状如图 4A-4C所示。 在如图所示的实施例中, 反射面 101的开口为矩形, 其中两个相对的侧面 101a、 101b为矩形, 而这两个侧面 101a 、 101b之间的部分为曲面 101c, 该曲面 101c是由曲线并排排列而成的排列面, 例 如圆弧、 椭圆、 抛物线等等。 并且, 反射面 101的曲面 101c为非对称反射面, 在 图 4A和 4B中, 反射面 101并非关于轴 OA对称, 在图 4C中, 反射面 101关于轴 OA 对称。
[75] 图 5A-5C是根据本实用新型中反射面 101的第三实施例、 点光源 102的光束出射 角的示意图; 其中的阴影部分为点光源 102投射在反射面 101上所形成的区域。 与反射面 101的第一实施例类似的部分不再赞述。 图 5A中反射面 101的开口截面 绕开口方向的对称轴线 OA的夹角 β大于 α, 即可使点光源 102发出的光线全部投 射到反射面 101上, 并经反射面 101反射后出射。 β优选为 180°。 点光源 102的出射 光束的中心轴线 CB与反射面 101开口方向的对称轴线 OA之间的夹角 Θ优选 80°~15
0°, 最好为 110°。
[76] 据此确定的反射面 101的形状如图 6A-6C所示。 在如图所示的实施例中, 反射面 101的开口为椭圆形的一半, 其通过开口方向的对称轴线 OA的纵向截面的外轮廓 为曲线形。 而通过开口方向的对称轴线 OA的横向截面的外轮廓也为曲线形。 并 且, 反射面 101的曲面为非全对称反射面, 在图 6A和 6B中, 反射面 101并非关于 开口方向的对称轴线 OA对称, 在图 6C中, 反射面 101关于开口方向的对称轴线 0 A对称。
[77] 参照图 7A-7E, 固定基座 103用于固定点光源 102, 使点光源 102按照预定的角度 设置在反射面 101内。 固定基座 103由具有一定机械强度且导热性能良好的材料 制成, 例如银、 铜、 铝、 石墨等, 其外形为柱形, 例如, 圆柱、 椭圆柱、 或者 多角柱。 在固定基座 103的顶部设置有光源固定面 1031。 该光源固定面 1031相对 于反射面 101的轴 OA倾斜一定角度。
[78] 在图 7A-7E所示的第一实施例中, 光源固定面 1031与固定基座 103的延伸方向夹 一锐角。 光源固定面 1031是固定基座 103的斜切面。 在光源固定面 1031旁、 朝向 反射面 101的开口方向, 设置有遮光凸出部 1032, 用于阻档可能直射出泛光装置 的少量直射光线。 遮光凸出部 1032的高度以阻档直射光线、 但尽可能不干涉反 射光线为宜。
[79] 固定基座 103除了将点光源 102按照预定的角度设置在反射面 101内并偏离焦点 、 使出射光束的中心轴线 CB与反射面 101的沿开口方向的对称轴线 OA相交外, 还起到电气连接的作用, 与点光源 102连接的导线可从中通过。 此外, 由于固定 基座 103由导热良好的材料制成, 并与点光源 102紧密接触, 可及吋将点光源 102 的热量传导出去。
[80] 在灯壳 104的底部设置有直孔 1041, 该固定基座 103即固定在直孔 1041中, 固定 基座 103的延伸方向与反射面 101沿开口方向的对称轴线 OA垂直。 灯壳 104下部还 固定设置有散热装置 106, 固定基座 103穿过灯壳 104上的直孔 1041后, 与散热装 置 106紧密接触。 工作吋, 可将点光源 102产生的热量传导到散热装置 106, 避免 了热量聚集。
[81] 在该泛光装置 100的第一实施例中, 灯壳 104和散热装置 106是一整体, 而固定
基座 103为单独的组件, 在其他的情况下, 它们可以是三者彼此独立的组件, 或 者两两组合加工、 或者三者一体成型为整体, 构成泛光装置。
[82] 参照图 8A-8D , 在固定基座 203的第二实施例中, 与第一实施例相同的部分不 再赞述。 该实施例的泛光装置 200中, 固定基座 203为圆柱形, 光源固定面 2031 为固定基座 203顶部的凹面。 遮光凸出部 2032就是围绕光源固定面 2031的环形侧 壁。 在该第二实施例中, 光源固定面 2031与固定基座 203的延伸方向垂直, 光源 固定面 2031凹进的深度以阻档直射光线、 但尽可能不干涉反射光线为宜。
[83] 在灯壳 204的底部设置有斜孔 2042, 该固定基座 203固定在斜孔 2042中, 固定基 座 203的延伸方向与反射面 201的对称轴线 OA夹一锐角。 点光源 202固定在光源固 定面 2031上, 周围的遮光凸出部 2032遮档可能直射出灯壳 204的光线, 避免了眩 光。
[84] 参照图 9A-9E, 在固定基座 203的第三实施例中, 与第一实施例相同的部分不再 赞述。 如图 9D和 9E所示, 该实施例中, 灯壳 304的开口呈圆形, 它包括对称的两 部分, 其中第一部分 3043内部设有反射面 3011、 第二部分 3044内部设有反射面 3 012, 两者的对称轴为 OC。 在灯壳 304的第一部分 3043和第二部分 3044之间设置 有孔 3041, 该孔 3041的中心线与 OC重合。 固定基座 303设置在孔 3041中。
[85] 如图 9A-9C所示, 固定基座 303包括与孔 3041配合的固定部 3033、 光源安装部 30 34、 以及遮光凸出部 3032, 其中固定部 3033为圆柱形, 光源安装部 3034为圆台 形, 其小径端与固定部 3033连接, 大径端与遮光凸出部 3032连接。 在光源安装 部 3034的周面上设置有两个光源固定面 3031、 3035 , 为了便于固定点光源 102, 光源固定面 3031、 3035可向内凹进。 在该实施例中, 光源固定面 3031、 3035可 以与光源安装部 3034对应部位的表面轮廓平行。 光源固定面 3031、 3035分别位 于反射面 3011、 3012内, 其倾斜角度使得光源 3021、 3022发出的光线投射到对 应的反射面上, 并发生散射。
[86] 遮光凸出部 3032设置在光源安装部 3034的大径端, 为凸缘状。 其凸出的高度以 阻档直射光线、 但尽可能不干涉反射光线为宜。 在固定基座 303端部, 可设置外 接散热装置, 以及吋散发热量。
[87] 与上述的其它实施例相比, 该泛光装置的第三实施例使两个反射面、 两个点光
源相互组合, 同吋将两个点光源固定在同一个固定基座上, 提供了更多的便利 性和更广泛的使用空间。
[88] 图 10A-10I示出了多个泛光装置组合应用的其它实施例。 其中 10A-10E釆用了图 2A-2C中半圆形开口的反射面, 而图 10F-10I釆用了图 4A-4C中矩形开口的反射面 。 如图 10A所示, 在该第四实施例中, 灯壳 404在开口方向呈圆形, 它包括三个 独立的反射面 4011、 4012、 4013 , 其内分别设置有用于固定点光源的固定基座 4 031、 4032、 4033。 从灯壳 404的开口方向看, 这些固定基座设置在灯壳 404内部 的周围区域。 光线从灯壳 404内部的周围区域向中心发射, 之后被反射。
[89] 如图 10B所示, 在泛光装置的第五实施例中, 灯壳 504在开口方向呈圆形, 它包 括三个独立的反射面 5011、 5012、 5013 , 其内分别设置有用于固定点光源的固 定基座 5031、 5032、 5033ο 从灯壳 404的开口方向看, 这些固定基座 5031、 5032 、 5033设置在中心区域, 光线从灯壳 404内的中心区域向周围发射, 之后被反射 。 在该实施例中, 固定基座 5031、 5032、 5033可设置为一体。
[90] 如图 10C所示, 在泛光装置的第六实施例中, 灯壳 604在开口方向呈圆形, 它包 括六个独立的反射面 6011、 6012、 6013、 6014、 6015、 6016, 其内分别设置有 用于固定点光源的固定基座 6031、 6032、 6033、 6034、 6035、 6036。 其中反射 面 6011、 6012以与第三实施例 (如图 9D、 9E所示) 相同的方式设置在中心区域 。 其它四个反射面 6013、 6014、 6015、 6016设置在周围区域, 其方式与第四实 施例 (如图 10B所示) 类似。
[91] 如图 10D所示, 在泛光装置的第七实施例中, 灯壳 704在开口方向呈矩形, 它包 括多个并排排列的反射面 7011、 7012等, 其内分别设置有用于固定点光源的固 定基座 7031、 7032等。
[92] 如图 10E所示, 在泛光装置的第八实施例中, 灯壳 804在开口方向呈矩形, 它包 括上下两排反射面, 每一排都包括多个独立的反射面 8011、 8012、 8013、 8014 等, 其内分别设置有用于固定点光源的固定基座 8031、 8032、 8033、 8034等。
[93] 如图 10F所示, 在泛光装置的第九实施例中, 灯壳 904在开口方向上呈矩形, 且 釆用了分成上下两排排列的多个矩形开口的反射面 9011、 9012、 9013、 9014, 其内分别设置有用于固定点光源的固定基座 9031、 9032、 9033、 9034等。 这些
固定基座靠近灯壳 904的中心。 光线从灯壳 404内部的中心区域向周围发射, 之 后被反射。
[94] 如图 10G所示, 在泛光装置的第十实施例中, 灯壳 1004在开口方向上呈矩形, 且釆用了分成上下两排排列的多个矩形开口的反射面 10011、 10012、 10013、 10 014, 其内分别设置有用于固定点光源的固定基座 10031、 10032、 10033、 10034 等。 这些固定基座靠近灯壳 1004的边缘。 光线从灯壳 1004内部的周围区域向中 心发射, 之后被反射。
[95] 如图 10H所示, 在泛光装置的第十一实施例中, 灯壳 1104在开口方向上呈矩形 , 且釆用了单排排列的多个矩形开口的反射面 11011、 11012、 11013、 11014, 1 1015。 其内分别设置有用于固定点光源的固定基座 11031、 11032、 11033、 1034 、 11035。
[96] 由于固定基座的设置位置和方式可以根据需要而改变, 因此未在每个实施例中 对其进行详细描述。
[97] 本发明的泛光装置, 将大部分或全部光线投射到反射面上, 使光线平行出射, 具有以下有益效果:
[98] 1、 光线经散射后射出, 实现较好的泛光范围控制效果。
[99] 2、 强烈的光源所发出的光线投射到反射面上, 并设置了遮光凸出部来遮档直 射光线, 与传统点光源的光线直射出去相比, 光线经反射面反射后射出, 相当 于扩大了光线出射的面积, 使光线能均匀、 柔和地射出泛光装置, 避免了眩光 对视觉的强烈刺激和视力损害。
[100] 3、 可以将散热装置放在最贴近点光源的位置, 使固定基座能以最短途径导出 热量, 降低热梯度, 改善散热效果, 满足点光源的工况要求, 保证其使用寿命
[101] 4、 由于出射光线是通过反射混合后再照射出泛光装置, 大功率 LED器件直射 光线经常出现的光斑、 黄圏、 光束中心与周边的色差等常见缺陷可得到显著改 善。
[102] 5、 相比传统的灯具结构, 本实用新型的泛光装置的制作并无难度, 反而因节 省了反射面的空间, 体积可以缩小, 成本可以降低, 设计更加灵活多变;
6、 利用本实用新型的原理, 不仅可以制作单颗光源的独立泛光装置, 也可以 由若干个这样的泛光装置组合、 变形, 制成两颗或两颗以上光源的泛光装置, 以适应更大投射距离、 更大投光功率的需要。
Claims
[1] 一种泛光装置, 包括灯壳、 位于所述灯壳内且带有开口的反射面、 以及设 置在所述灯壳内的点光源, 其特征在于, 所述反射面包括曲面, 所述光源 偏离所述曲面的焦点并朝向所述反射面, 使发出的全部光线经所述反射面 反射后散射。
[2] 根据权利要求 1所述的泛光装置, 其特征在于, 所述点光源的光束出射角为 α, 所述反射面的开口截面绕其沿开口方向的对称轴线的夹角为 β, 则 β>α
[3] 根据权利要求 1所述的泛光装置, 其特征在于, 所述曲面为圆弧、 椭圆、 或 抛物线的回转面或者排列面的一部分。
[4] 根据权利要求 1所述的泛光装置, 其特征在于, 所述泛光装置还包括设置在 所述灯壳底部的固定基座, 所述固定基座包括光源固定面和遮光凸出部, 所述点光源设置在所述光源固定面上, 所述遮光凸出部设置在所述光源固 定面旁, 用于阻档从所述点光源直射出所述反射面的光线。
[5] 根据权利要求 4所述的泛光装置, 其特征在于, 所述灯壳底部设置有直孔, 所述固定基座呈柱状, 且固定在所述直孔内; 所述光源固定面是所述固定 基座顶部的斜切面。
[6] 根据权利要求 4所述的泛光装置, 其特征在于, 所述灯壳底部设置有斜孔, 所述固定基座成柱状, 且固定在所述斜孔中, 所述光源固定面是所述固定 基座顶部的凹面, 所述遮光凸出部是围绕所述光源固定面的环形侧壁。
[7] 根据权利要求 4所述的泛光装置, 其特征在于, 所述灯壳的开口呈圆形, 且 包括对称的两部分, 各部分内均设有反射面; 所述固定基座设置在所述两 部分之间, 包括光源安装部和遮光凸出部, 与所述反射面对应的点光源均 设置在所述遮光凸出部上。
[8] 根据权利要求 4所述的泛光装置, 其特征在于, 所述灯壳内部设有多个反射 面, 各反射面内分别设置有所述点光源和固定基座。
[9] 根据权利要求 1所述的泛光装置, 其特征在于, 所述灯壳底部还设置有散热 装置, 所述固定基座与所述散热装置紧密接触。
[10] 根据权利要求 2所述的泛光装置, 其特征在于, 所述点光源的光束出射角小 于 180°, 所述点光源的出射光束的中心轴线与所述反射面沿开口方向的对 称轴线相交, 且形成 80°~150°的夹角。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2008/073014 WO2010054509A1 (zh) | 2008-11-11 | 2008-11-11 | 泛光装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2008/073014 WO2010054509A1 (zh) | 2008-11-11 | 2008-11-11 | 泛光装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010054509A1 true WO2010054509A1 (zh) | 2010-05-20 |
Family
ID=42169587
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2008/073014 WO2010054509A1 (zh) | 2008-11-11 | 2008-11-11 | 泛光装置 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2010054509A1 (zh) |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003141910A (ja) * | 2001-11-02 | 2003-05-16 | Stanley Electric Co Ltd | 車両用灯具 |
CN2599386Y (zh) * | 2002-10-16 | 2004-01-14 | 林朝堂 | 高亮度省电照明装置 |
CN2699115Y (zh) * | 2004-05-18 | 2005-05-11 | 胡晓松 | Led发光灯头 |
CN2777363Y (zh) * | 2005-03-22 | 2006-05-03 | 苏润泽 | Led多抛物面平行光灯具 |
US20060181873A1 (en) * | 2005-02-17 | 2006-08-17 | Underwater Kinetics, Inc. | Lighting system and method and reflector for use in same |
CN2918977Y (zh) * | 2006-04-17 | 2007-07-04 | 姚苗信 | Led手电筒灯头结构 |
US20070291501A1 (en) * | 2006-06-16 | 2007-12-20 | Koito Manufacturing Co., Ltd. | Vehicular lamp |
CN101097052A (zh) * | 2006-06-27 | 2008-01-02 | 财团法人工业技术研究院 | 照明装置及其组合结构 |
-
2008
- 2008-11-11 WO PCT/CN2008/073014 patent/WO2010054509A1/zh active Application Filing
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003141910A (ja) * | 2001-11-02 | 2003-05-16 | Stanley Electric Co Ltd | 車両用灯具 |
CN2599386Y (zh) * | 2002-10-16 | 2004-01-14 | 林朝堂 | 高亮度省电照明装置 |
CN2699115Y (zh) * | 2004-05-18 | 2005-05-11 | 胡晓松 | Led发光灯头 |
US20060181873A1 (en) * | 2005-02-17 | 2006-08-17 | Underwater Kinetics, Inc. | Lighting system and method and reflector for use in same |
CN2777363Y (zh) * | 2005-03-22 | 2006-05-03 | 苏润泽 | Led多抛物面平行光灯具 |
CN2918977Y (zh) * | 2006-04-17 | 2007-07-04 | 姚苗信 | Led手电筒灯头结构 |
US20070291501A1 (en) * | 2006-06-16 | 2007-12-20 | Koito Manufacturing Co., Ltd. | Vehicular lamp |
CN101097052A (zh) * | 2006-06-27 | 2008-01-02 | 财团法人工业技术研究院 | 照明装置及其组合结构 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8317364B2 (en) | Lighting apparatus | |
US7997769B2 (en) | LED reflector | |
CN102305363B (zh) | 大角度全向照明led灯 | |
EP2330340B1 (en) | Reflector cup and LED lamp comprising the same | |
TWI412706B (zh) | 光源模組 | |
US8931929B2 (en) | Light emitting diode primary optic for beam shaping | |
KR20110008796A (ko) | 엘이디를 이용한 천정용 원형 매립등 | |
KR101312118B1 (ko) | Led 반사구 램프 | |
TWI542814B (zh) | 發光二極體燈泡 | |
WO2014086782A1 (en) | Lens, omnidirectional illuminating device having the lens and retrofit lamp | |
US9255673B2 (en) | LED bulb having an adjustable light-distribution profile | |
TW201339502A (zh) | 燈具結構 | |
JP5977538B2 (ja) | ユニット型ダウンライト | |
CN201288999Y (zh) | 泛光装置 | |
WO2010045763A1 (zh) | 光准直装置 | |
JP5444484B1 (ja) | Led照明装置 | |
CN201281293Y (zh) | 聚光装置 | |
JP6241601B2 (ja) | 照明装置 | |
WO2010054509A1 (zh) | 泛光装置 | |
JP7236695B2 (ja) | 照明装置 | |
TWI524036B (zh) | 燈具 | |
WO2017012367A1 (zh) | 金属嵌合前置式屈光装置以及光源 | |
KR101383864B1 (ko) | 조명용 광엔진 | |
WO2021015058A1 (ja) | 照明装置 | |
CN202266865U (zh) | 高亮度led灯具结构 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 08878069 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 08878069 Country of ref document: EP Kind code of ref document: A1 |