WO2010050186A1 - バイオディーゼル燃料の製造方法及びその製造装置、その方法に用いる油脂脱炭酸分解触媒 - Google Patents
バイオディーゼル燃料の製造方法及びその製造装置、その方法に用いる油脂脱炭酸分解触媒 Download PDFInfo
- Publication number
- WO2010050186A1 WO2010050186A1 PCT/JP2009/005669 JP2009005669W WO2010050186A1 WO 2010050186 A1 WO2010050186 A1 WO 2010050186A1 JP 2009005669 W JP2009005669 W JP 2009005669W WO 2010050186 A1 WO2010050186 A1 WO 2010050186A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- catalyst
- oil
- fat
- decarboxylation
- biodiesel fuel
- Prior art date
Links
- 239000003054 catalyst Substances 0.000 title claims abstract description 307
- 239000003925 fat Substances 0.000 title claims abstract description 229
- 238000006114 decarboxylation reaction Methods 0.000 title claims abstract description 117
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 94
- 239000003225 biodiesel Substances 0.000 title claims abstract description 87
- 238000000354 decomposition reaction Methods 0.000 title claims abstract description 85
- 238000000034 method Methods 0.000 title claims abstract description 82
- 239000002994 raw material Substances 0.000 claims abstract description 107
- 239000000571 coke Substances 0.000 claims abstract description 55
- 229930195733 hydrocarbon Natural products 0.000 claims abstract description 28
- -1 C24 hydrocarbons Chemical class 0.000 claims abstract description 9
- 239000003921 oil Substances 0.000 claims description 330
- 238000006243 chemical reaction Methods 0.000 claims description 147
- 239000007789 gas Substances 0.000 claims description 72
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 64
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical class [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 55
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 claims description 44
- 238000010438 heat treatment Methods 0.000 claims description 40
- 239000000203 mixture Substances 0.000 claims description 32
- 239000000377 silicon dioxide Substances 0.000 claims description 31
- 239000000395 magnesium oxide Substances 0.000 claims description 30
- 150000002430 hydrocarbons Chemical class 0.000 claims description 27
- 239000011973 solid acid Substances 0.000 claims description 22
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 20
- 239000002253 acid Substances 0.000 claims description 19
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 claims description 15
- 229910021536 Zeolite Inorganic materials 0.000 claims description 11
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical class O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 claims description 11
- 239000010457 zeolite Substances 0.000 claims description 11
- 239000003513 alkali Substances 0.000 claims description 10
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 10
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 9
- 239000001301 oxygen Substances 0.000 claims description 9
- 229910052760 oxygen Inorganic materials 0.000 claims description 9
- 239000012298 atmosphere Substances 0.000 claims description 8
- 230000002378 acidificating effect Effects 0.000 claims description 7
- 239000002131 composite material Substances 0.000 claims description 7
- 229910052783 alkali metal Inorganic materials 0.000 claims description 5
- 239000002734 clay mineral Substances 0.000 claims description 5
- 150000001875 compounds Chemical class 0.000 claims description 5
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 claims description 4
- 150000001340 alkali metals Chemical group 0.000 claims description 4
- 229910052784 alkaline earth metal Inorganic materials 0.000 claims description 4
- 150000001342 alkaline earth metals Chemical class 0.000 claims description 4
- VTHJTEIRLNZDEV-UHFFFAOYSA-L magnesium dihydroxide Chemical compound [OH-].[OH-].[Mg+2] VTHJTEIRLNZDEV-UHFFFAOYSA-L 0.000 claims description 4
- 239000000347 magnesium hydroxide Substances 0.000 claims description 4
- 229910001862 magnesium hydroxide Inorganic materials 0.000 claims description 4
- 239000005539 carbonized material Substances 0.000 claims 1
- 239000011248 coating agent Substances 0.000 claims 1
- 238000000576 coating method Methods 0.000 claims 1
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 abstract description 43
- 239000000047 product Substances 0.000 abstract description 42
- 235000021588 free fatty acids Nutrition 0.000 abstract description 30
- 235000011187 glycerol Nutrition 0.000 abstract description 21
- 239000006227 byproduct Substances 0.000 abstract description 19
- 239000012535 impurity Substances 0.000 abstract description 19
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 abstract description 13
- 230000009471 action Effects 0.000 abstract description 7
- 230000007420 reactivation Effects 0.000 abstract description 7
- 150000001993 dienes Chemical class 0.000 abstract description 6
- 238000003860 storage Methods 0.000 abstract description 6
- 230000003247 decreasing effect Effects 0.000 abstract description 4
- 230000002159 abnormal effect Effects 0.000 abstract 1
- 150000002148 esters Chemical class 0.000 abstract 1
- 235000019645 odor Nutrition 0.000 abstract 1
- 235000019198 oils Nutrition 0.000 description 317
- 235000019197 fats Nutrition 0.000 description 202
- 230000000052 comparative effect Effects 0.000 description 45
- 230000000694 effects Effects 0.000 description 45
- 238000004231 fluid catalytic cracking Methods 0.000 description 41
- 238000000605 extraction Methods 0.000 description 32
- 235000014113 dietary fatty acids Nutrition 0.000 description 29
- 239000000194 fatty acid Substances 0.000 description 29
- 229930195729 fatty acid Natural products 0.000 description 29
- 239000002699 waste material Substances 0.000 description 25
- 230000007423 decrease Effects 0.000 description 23
- 230000008569 process Effects 0.000 description 22
- 229910052799 carbon Inorganic materials 0.000 description 20
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 18
- 239000002585 base Substances 0.000 description 17
- 150000004665 fatty acids Chemical class 0.000 description 17
- 238000012545 processing Methods 0.000 description 16
- ODINCKMPIJJUCX-UHFFFAOYSA-N Calcium oxide Chemical compound [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 15
- 239000004215 Carbon black (E152) Substances 0.000 description 15
- 239000002480 mineral oil Substances 0.000 description 15
- 235000014593 oils and fats Nutrition 0.000 description 15
- 230000008929 regeneration Effects 0.000 description 15
- 238000011069 regeneration method Methods 0.000 description 15
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 14
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 14
- 239000007788 liquid Substances 0.000 description 14
- 235000010446 mineral oil Nutrition 0.000 description 14
- 150000007524 organic acids Chemical class 0.000 description 13
- 239000000446 fuel Substances 0.000 description 12
- 239000007787 solid Substances 0.000 description 11
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 10
- 238000009826 distribution Methods 0.000 description 10
- 238000005507 spraying Methods 0.000 description 10
- 241000221089 Jatropha Species 0.000 description 9
- 239000001569 carbon dioxide Substances 0.000 description 9
- 229910002092 carbon dioxide Inorganic materials 0.000 description 9
- 238000005516 engineering process Methods 0.000 description 9
- 231100000572 poisoning Toxicity 0.000 description 9
- 230000000607 poisoning effect Effects 0.000 description 9
- 238000003756 stirring Methods 0.000 description 9
- 244000068988 Glycine max Species 0.000 description 8
- 235000010469 Glycine max Nutrition 0.000 description 8
- 150000001336 alkenes Chemical class 0.000 description 8
- 238000005262 decarbonization Methods 0.000 description 8
- 239000011777 magnesium Substances 0.000 description 8
- YIXJRHPUWRPCBB-UHFFFAOYSA-N magnesium nitrate Chemical compound [Mg+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O YIXJRHPUWRPCBB-UHFFFAOYSA-N 0.000 description 8
- 239000000126 substance Substances 0.000 description 8
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 7
- 229910021529 ammonia Inorganic materials 0.000 description 7
- 238000004458 analytical method Methods 0.000 description 7
- 238000005336 cracking Methods 0.000 description 7
- 238000003795 desorption Methods 0.000 description 7
- 238000002474 experimental method Methods 0.000 description 7
- 239000003208 petroleum Substances 0.000 description 7
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 6
- 241000196324 Embryophyta Species 0.000 description 6
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 6
- 238000003776 cleavage reaction Methods 0.000 description 6
- 238000010586 diagram Methods 0.000 description 6
- 229910001873 dinitrogen Inorganic materials 0.000 description 6
- 230000032050 esterification Effects 0.000 description 6
- 238000005886 esterification reaction Methods 0.000 description 6
- IPCSVZSSVZVIGE-UHFFFAOYSA-N hexadecanoic acid Chemical compound CCCCCCCCCCCCCCCC(O)=O IPCSVZSSVZVIGE-UHFFFAOYSA-N 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 150000002978 peroxides Chemical class 0.000 description 6
- 230000007017 scission Effects 0.000 description 6
- 239000002028 Biomass Substances 0.000 description 5
- 240000007594 Oryza sativa Species 0.000 description 5
- 235000007164 Oryza sativa Nutrition 0.000 description 5
- 235000019482 Palm oil Nutrition 0.000 description 5
- 239000007864 aqueous solution Substances 0.000 description 5
- 150000001491 aromatic compounds Chemical class 0.000 description 5
- 125000004432 carbon atom Chemical group C* 0.000 description 5
- 230000003197 catalytic effect Effects 0.000 description 5
- 239000001913 cellulose Substances 0.000 description 5
- 229920002678 cellulose Polymers 0.000 description 5
- 239000001095 magnesium carbonate Substances 0.000 description 5
- 229910000021 magnesium carbonate Inorganic materials 0.000 description 5
- 229910052751 metal Inorganic materials 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- 230000003647 oxidation Effects 0.000 description 5
- 238000007254 oxidation reaction Methods 0.000 description 5
- 239000002540 palm oil Substances 0.000 description 5
- 235000009566 rice Nutrition 0.000 description 5
- 239000011949 solid catalyst Substances 0.000 description 5
- 239000003760 tallow Substances 0.000 description 5
- 241000195493 Cryptophyta Species 0.000 description 4
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 4
- 235000015278 beef Nutrition 0.000 description 4
- BVKZGUZCCUSVTD-UHFFFAOYSA-N carbonic acid Chemical compound OC(O)=O BVKZGUZCCUSVTD-UHFFFAOYSA-N 0.000 description 4
- 238000004523 catalytic cracking Methods 0.000 description 4
- 238000001816 cooling Methods 0.000 description 4
- 230000006866 deterioration Effects 0.000 description 4
- 235000019387 fatty acid methyl ester Nutrition 0.000 description 4
- 238000007710 freezing Methods 0.000 description 4
- 230000008014 freezing Effects 0.000 description 4
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 4
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 4
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 3
- 241001465754 Metazoa Species 0.000 description 3
- 229910004298 SiO 2 Inorganic materials 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 239000003463 adsorbent Substances 0.000 description 3
- 238000005054 agglomeration Methods 0.000 description 3
- 230000002776 aggregation Effects 0.000 description 3
- 125000000217 alkyl group Chemical group 0.000 description 3
- 238000009835 boiling Methods 0.000 description 3
- VTYYLEPIZMXCLO-UHFFFAOYSA-L calcium carbonate Substances [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 3
- 239000011203 carbon fibre reinforced carbon Substances 0.000 description 3
- 229910002091 carbon monoxide Inorganic materials 0.000 description 3
- 150000001735 carboxylic acids Chemical class 0.000 description 3
- 230000015556 catabolic process Effects 0.000 description 3
- 239000000919 ceramic Substances 0.000 description 3
- 238000007796 conventional method Methods 0.000 description 3
- 239000002283 diesel fuel Substances 0.000 description 3
- POULHZVOKOAJMA-UHFFFAOYSA-N dodecanoic acid Chemical compound CCCCCCCCCCCC(O)=O POULHZVOKOAJMA-UHFFFAOYSA-N 0.000 description 3
- 239000008157 edible vegetable oil Substances 0.000 description 3
- 239000003502 gasoline Substances 0.000 description 3
- 239000011261 inert gas Substances 0.000 description 3
- 239000003350 kerosene Substances 0.000 description 3
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 3
- 230000007935 neutral effect Effects 0.000 description 3
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 3
- 235000015277 pork Nutrition 0.000 description 3
- 238000000197 pyrolysis Methods 0.000 description 3
- 238000011084 recovery Methods 0.000 description 3
- 230000000630 rising effect Effects 0.000 description 3
- 239000000344 soap Substances 0.000 description 3
- 239000011780 sodium chloride Substances 0.000 description 3
- WRIDQFICGBMAFQ-UHFFFAOYSA-N (E)-8-Octadecenoic acid Natural products CCCCCCCCCC=CCCCCCCC(O)=O WRIDQFICGBMAFQ-UHFFFAOYSA-N 0.000 description 2
- TWJNQYPJQDRXPH-UHFFFAOYSA-N 2-cyanobenzohydrazide Chemical compound NNC(=O)C1=CC=CC=C1C#N TWJNQYPJQDRXPH-UHFFFAOYSA-N 0.000 description 2
- LQJBNNIYVWPHFW-UHFFFAOYSA-N 20:1omega9c fatty acid Natural products CCCCCCCCCCC=CCCCCCCCC(O)=O LQJBNNIYVWPHFW-UHFFFAOYSA-N 0.000 description 2
- QSBYPNXLFMSGKH-UHFFFAOYSA-N 9-Heptadecensaeure Natural products CCCCCCCC=CCCCCCCCC(O)=O QSBYPNXLFMSGKH-UHFFFAOYSA-N 0.000 description 2
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 2
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 2
- OYHQOLUKZRVURQ-HZJYTTRNSA-N Linoleic acid Chemical compound CCCCC\C=C/C\C=C/CCCCCCCC(O)=O OYHQOLUKZRVURQ-HZJYTTRNSA-N 0.000 description 2
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 2
- 239000005642 Oleic acid Substances 0.000 description 2
- ZQPPMHVWECSIRJ-UHFFFAOYSA-N Oleic acid Natural products CCCCCCCCC=CCCCCCCCC(O)=O ZQPPMHVWECSIRJ-UHFFFAOYSA-N 0.000 description 2
- 235000021314 Palmitic acid Nutrition 0.000 description 2
- 235000019484 Rapeseed oil Nutrition 0.000 description 2
- 244000000231 Sesamum indicum Species 0.000 description 2
- 235000003434 Sesamum indicum Nutrition 0.000 description 2
- 235000021355 Stearic acid Nutrition 0.000 description 2
- 239000003377 acid catalyst Substances 0.000 description 2
- 229910001413 alkali metal ion Inorganic materials 0.000 description 2
- 229910052791 calcium Inorganic materials 0.000 description 2
- 239000011575 calcium Substances 0.000 description 2
- 235000010216 calcium carbonate Nutrition 0.000 description 2
- 239000008162 cooking oil Substances 0.000 description 2
- 239000010779 crude oil Substances 0.000 description 2
- 238000006731 degradation reaction Methods 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 238000005265 energy consumption Methods 0.000 description 2
- 235000021323 fish oil Nutrition 0.000 description 2
- 238000002290 gas chromatography-mass spectrometry Methods 0.000 description 2
- 239000001307 helium Substances 0.000 description 2
- 229910052734 helium Inorganic materials 0.000 description 2
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 2
- 230000007062 hydrolysis Effects 0.000 description 2
- 238000006460 hydrolysis reaction Methods 0.000 description 2
- 238000005470 impregnation Methods 0.000 description 2
- 239000002440 industrial waste Substances 0.000 description 2
- QXJSBBXBKPUZAA-UHFFFAOYSA-N isooleic acid Natural products CCCCCCCC=CCCCCCCCCC(O)=O QXJSBBXBKPUZAA-UHFFFAOYSA-N 0.000 description 2
- 235000020778 linoleic acid Nutrition 0.000 description 2
- OYHQOLUKZRVURQ-IXWMQOLASA-N linoleic acid Natural products CCCCC\C=C/C\C=C\CCCCCCCC(O)=O OYHQOLUKZRVURQ-IXWMQOLASA-N 0.000 description 2
- 229910052749 magnesium Inorganic materials 0.000 description 2
- ZLNQQNXFFQJAID-UHFFFAOYSA-L magnesium carbonate Chemical compound [Mg+2].[O-]C([O-])=O ZLNQQNXFFQJAID-UHFFFAOYSA-L 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- 235000013372 meat Nutrition 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- WQEPLUUGTLDZJY-UHFFFAOYSA-N n-Pentadecanoic acid Natural products CCCCCCCCCCCCCCC(O)=O WQEPLUUGTLDZJY-UHFFFAOYSA-N 0.000 description 2
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 2
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 description 2
- 239000012188 paraffin wax Substances 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 239000003209 petroleum derivative Substances 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 238000002203 pretreatment Methods 0.000 description 2
- 238000003672 processing method Methods 0.000 description 2
- 239000001294 propane Substances 0.000 description 2
- 230000001172 regenerating effect Effects 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 239000003549 soybean oil Substances 0.000 description 2
- 235000012424 soybean oil Nutrition 0.000 description 2
- 239000008117 stearic acid Substances 0.000 description 2
- 150000003626 triacylglycerols Chemical class 0.000 description 2
- 235000021122 unsaturated fatty acids Nutrition 0.000 description 2
- 150000004670 unsaturated fatty acids Chemical class 0.000 description 2
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 1
- 241001519451 Abramis brama Species 0.000 description 1
- 241000251468 Actinopterygii Species 0.000 description 1
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- 240000005528 Arctium lappa Species 0.000 description 1
- 235000003130 Arctium lappa Nutrition 0.000 description 1
- 235000008078 Arctium minus Nutrition 0.000 description 1
- 241000972773 Aulopiformes Species 0.000 description 1
- 240000002791 Brassica napus Species 0.000 description 1
- 235000004977 Brassica sinapistrum Nutrition 0.000 description 1
- 241000251730 Chondrichthyes Species 0.000 description 1
- 244000060011 Cocos nucifera Species 0.000 description 1
- 235000013162 Cocos nucifera Nutrition 0.000 description 1
- 240000003133 Elaeis guineensis Species 0.000 description 1
- 235000001950 Elaeis guineensis Nutrition 0.000 description 1
- OTMSDBZUPAUEDD-UHFFFAOYSA-N Ethane Chemical compound CC OTMSDBZUPAUEDD-UHFFFAOYSA-N 0.000 description 1
- 229930186217 Glycolipid Natural products 0.000 description 1
- 229910021193 La 2 O 3 Inorganic materials 0.000 description 1
- 239000005639 Lauric acid Substances 0.000 description 1
- 239000004367 Lipase Substances 0.000 description 1
- 102000004882 Lipase Human genes 0.000 description 1
- 108090001060 Lipase Proteins 0.000 description 1
- 235000021360 Myristic acid Nutrition 0.000 description 1
- TUNFSRHWOTWDNC-UHFFFAOYSA-N Myristic acid Natural products CCCCCCCCCCCCCC(O)=O TUNFSRHWOTWDNC-UHFFFAOYSA-N 0.000 description 1
- 240000007817 Olea europaea Species 0.000 description 1
- 235000004443 Ricinus communis Nutrition 0.000 description 1
- 229910010413 TiO 2 Inorganic materials 0.000 description 1
- 235000010724 Wisteria floribunda Nutrition 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 229910052768 actinide Inorganic materials 0.000 description 1
- 150000001255 actinides Chemical class 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 125000002252 acyl group Chemical group 0.000 description 1
- 238000005273 aeration Methods 0.000 description 1
- 239000000809 air pollutant Substances 0.000 description 1
- 231100001243 air pollutant Toxicity 0.000 description 1
- 150000001339 alkali metal compounds Chemical class 0.000 description 1
- 150000001341 alkaline earth metal compounds Chemical class 0.000 description 1
- 229910001420 alkaline earth metal ion Inorganic materials 0.000 description 1
- 229910000287 alkaline earth metal oxide Inorganic materials 0.000 description 1
- DTOSIQBPPRVQHS-PDBXOOCHSA-N alpha-linolenic acid Chemical compound CC\C=C/C\C=C/C\C=C/CCCCCCCC(O)=O DTOSIQBPPRVQHS-PDBXOOCHSA-N 0.000 description 1
- 235000020661 alpha-linolenic acid Nutrition 0.000 description 1
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 1
- QVQLCTNNEUAWMS-UHFFFAOYSA-N barium oxide Inorganic materials [Ba]=O QVQLCTNNEUAWMS-UHFFFAOYSA-N 0.000 description 1
- 235000021028 berry Nutrition 0.000 description 1
- 239000001273 butane Substances 0.000 description 1
- NKWPZUCBCARRDP-UHFFFAOYSA-L calcium bicarbonate Chemical compound [Ca+2].OC([O-])=O.OC([O-])=O NKWPZUCBCARRDP-UHFFFAOYSA-L 0.000 description 1
- 229910000020 calcium bicarbonate Inorganic materials 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 239000004359 castor oil Substances 0.000 description 1
- 235000019438 castor oil Nutrition 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 239000008264 cloud Substances 0.000 description 1
- 235000009508 confectionery Nutrition 0.000 description 1
- 235000005687 corn oil Nutrition 0.000 description 1
- 239000002285 corn oil Substances 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000004821 distillation Methods 0.000 description 1
- 239000010459 dolomite Substances 0.000 description 1
- 229910000514 dolomite Inorganic materials 0.000 description 1
- 235000013399 edible fruits Nutrition 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 235000019688 fish Nutrition 0.000 description 1
- 239000000796 flavoring agent Substances 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000000295 fuel oil Substances 0.000 description 1
- 238000000769 gas chromatography-flame ionisation detection Methods 0.000 description 1
- 238000001165 gas chromatography-thermal conductivity detection Methods 0.000 description 1
- ZEMPKEQAKRGZGQ-XOQCFJPHSA-N glycerol triricinoleate Natural products CCCCCC[C@@H](O)CC=CCCCCCCCC(=O)OC[C@@H](COC(=O)CCCCCCCC=CC[C@@H](O)CCCCCC)OC(=O)CCCCCCCC=CC[C@H](O)CCCCCC ZEMPKEQAKRGZGQ-XOQCFJPHSA-N 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 239000005431 greenhouse gas Substances 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 239000011630 iodine Substances 0.000 description 1
- 229910052740 iodine Inorganic materials 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 229910052747 lanthanoid Inorganic materials 0.000 description 1
- 150000002602 lanthanoids Chemical class 0.000 description 1
- 229960004488 linolenic acid Drugs 0.000 description 1
- KQQKGWQCNNTQJW-UHFFFAOYSA-N linolenic acid Natural products CC=CCCC=CCC=CCCCCCCCC(O)=O KQQKGWQCNNTQJW-UHFFFAOYSA-N 0.000 description 1
- 235000019421 lipase Nutrition 0.000 description 1
- 244000144972 livestock Species 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 150000001247 metal acetylides Chemical class 0.000 description 1
- 235000010755 mineral Nutrition 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- IJDNQMDRQITEOD-UHFFFAOYSA-N n-butane Chemical compound CCCC IJDNQMDRQITEOD-UHFFFAOYSA-N 0.000 description 1
- OFBQJSOFQDEBGM-UHFFFAOYSA-N n-pentane Natural products CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 239000004006 olive oil Substances 0.000 description 1
- 235000008390 olive oil Nutrition 0.000 description 1
- 235000005985 organic acids Nutrition 0.000 description 1
- 239000005416 organic matter Substances 0.000 description 1
- 238000010525 oxidative degradation reaction Methods 0.000 description 1
- 239000003346 palm kernel oil Substances 0.000 description 1
- 235000019865 palm kernel oil Nutrition 0.000 description 1
- 238000005504 petroleum refining Methods 0.000 description 1
- 150000003904 phospholipids Chemical class 0.000 description 1
- 239000002574 poison Substances 0.000 description 1
- 231100000614 poison Toxicity 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 239000011541 reaction mixture Substances 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 229910052701 rubidium Inorganic materials 0.000 description 1
- 239000012266 salt solution Substances 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 239000008159 sesame oil Substances 0.000 description 1
- 235000011803 sesame oil Nutrition 0.000 description 1
- 238000007086 side reaction Methods 0.000 description 1
- 229910002027 silica gel Inorganic materials 0.000 description 1
- 239000000741 silica gel Substances 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 235000011121 sodium hydroxide Nutrition 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- IATRAKWUXMZMIY-UHFFFAOYSA-N strontium oxide Inorganic materials [O-2].[Sr+2] IATRAKWUXMZMIY-UHFFFAOYSA-N 0.000 description 1
- 235000007586 terpenes Nutrition 0.000 description 1
- 150000003505 terpenes Chemical class 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 238000005979 thermal decomposition reaction Methods 0.000 description 1
- 238000005809 transesterification reaction Methods 0.000 description 1
- UFTFJSFQGQCHQW-UHFFFAOYSA-N triformin Chemical compound O=COCC(OC=O)COC=O UFTFJSFQGQCHQW-UHFFFAOYSA-N 0.000 description 1
- 235000015112 vegetable and seed oil Nutrition 0.000 description 1
- 239000008158 vegetable oil Substances 0.000 description 1
- 210000001835 viscera Anatomy 0.000 description 1
- 230000004580 weight loss Effects 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G3/00—Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J21/00—Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
- B01J21/06—Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
- B01J21/08—Silica
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J21/00—Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
- B01J21/14—Silica and magnesia
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G3/00—Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids
- C10G3/42—Catalytic treatment
- C10G3/44—Catalytic treatment characterised by the catalyst used
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G3/00—Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids
- C10G3/42—Catalytic treatment
- C10G3/44—Catalytic treatment characterised by the catalyst used
- C10G3/48—Catalytic treatment characterised by the catalyst used further characterised by the catalyst support
- C10G3/49—Catalytic treatment characterised by the catalyst used further characterised by the catalyst support containing crystalline aluminosilicates, e.g. molecular sieves
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L1/00—Liquid carbonaceous fuels
- C10L1/04—Liquid carbonaceous fuels essentially based on blends of hydrocarbons
- C10L1/08—Liquid carbonaceous fuels essentially based on blends of hydrocarbons for compression ignition
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11C—FATTY ACIDS FROM FATS, OILS OR WAXES; CANDLES; FATS, OILS OR FATTY ACIDS BY CHEMICAL MODIFICATION OF FATS, OILS, OR FATTY ACIDS OBTAINED THEREFROM
- C11C3/00—Fats, oils, or fatty acids by chemical modification of fats, oils, or fatty acids obtained therefrom
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J21/00—Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
- B01J21/10—Magnesium; Oxides or hydroxides thereof
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J21/00—Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
- B01J21/18—Carbon
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2300/00—Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
- C10G2300/10—Feedstock materials
- C10G2300/1011—Biomass
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2400/00—Products obtained by processes covered by groups C10G9/00 - C10G69/14
- C10G2400/04—Diesel oil
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E50/00—Technologies for the production of fuel of non-fossil origin
- Y02E50/10—Biofuels, e.g. bio-diesel
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P30/00—Technologies relating to oil refining and petrochemical industry
- Y02P30/20—Technologies relating to oil refining and petrochemical industry using bio-feedstock
Definitions
- the present invention relates to a method for efficiently producing a high-quality biodiesel fuel from fats and oils and a raw material for oil extraction, and a production apparatus therefor.
- the present invention also relates to an oil and fat decarboxylation catalyst having excellent efficiency used in the production method and production apparatus.
- Biodiesel fuel is an extremely important technology for reducing the emissions of greenhouse gases and air pollutants and for building an energy recycling society.
- a fatty acid methyl ester (FAME) method has been widely introduced.
- a diesel engine fuel is obtained by a transesterification reaction between a raw oil and fat and a lower alcohol (subsidiary raw material) (Non-patent Document 1).
- Patent Document 1 discloses “a method for producing a fatty acid alkyl ester by reacting oil and fat with a lower alcohol in the presence of a calcium-based solid catalyst”. Yes.
- Patent Document 2 states that “in the process A and the process A in which the raw oil and fat are reacted with alcohol in the presence of a solid acid catalyst, and the free fatty acid present in the raw oil and fat is converted into a fatty acid alkyl ester.
- Step B for removing moisture from the obtained reaction mixture, and the liquid obtained in Step B and the alcohol are reacted in the presence of a solid base catalyst to transesterify triacylglyceride, which is the main component of the raw oil and fat.
- a process C for converting it into a fatty acid alkyl ester, and a method for producing a biodiesel oil.
- Non-patent Document 1 As another method for producing biodiesel fuel, a hydrotreatment method described in (Non-patent Document 1) is known.
- the hydrotreating method is a method that applies the hydrotreating technology that is a conventional petroleum refining process, and by hydrotreating under high pressure such as 10 MPa, oxygen in the raw material fat is mainly removed as water and lightened. A unsaturated oil-derived unsaturated bond is saturated to obtain a hydrocarbon oil having a boiling point range of light oil.
- Patent Document 3 states that “a fluidized catalytic cracking apparatus having a reaction zone, a separation zone, a stripping zone and a regeneration zone is used, and a feedstock containing biomass is added in a reaction zone having an outlet temperature of 480 to 540 ° C.
- Patent Document 4 states that “a solid acid catalyst is heated to a temperature range of 350 to 450 ° C. in a reaction vessel, and liquid oil is contacted with the solid acid catalyst to remove oxygen-containing components from the oil. And a method for catalytic cracking of fats and oils that synthesizes a hydrocarbon mixture mainly composed of olefins and paraffins having 9 to 24 carbon atoms.
- Non-Patent Document 1 Patent Document 1
- Patent Document 2 requires a large amount of lower alcohol, and thus has a problem of requiring high running costs.
- impurities such as dienes, hydroxyl groups, peroxides, etc.
- impurities in the raw oil and fat are likely to remain in the product oil, so that the product oil is unstable to air and has a problem of lacking storage stability. It was.
- a process of adsorbing impurities such as peroxide by using an adsorbent such as activated clay and removing it from the produced oil is required, which has a problem that the processing process becomes complicated.
- Patent Document 2 discloses a technique for removing free fatty acids from raw material fats and oils by treating the free fatty acids in the presence of a solid acid catalyst as a previous step. Is disclosed. The technique disclosed in Patent Document 2 requires a plurality of steps in order to treat a free fatty acid in the presence of a solid acid catalyst in Step A and then react the alcohol in the presence of a solid base catalyst in Step C. The problem is that the processing steps become complicated. (5) The hydrotreating method described in Non-Patent Document 1 has a problem that the resulting hydrocarbon oil has a high freezing point of + 20 ° C. and poor fluidity.
- Patent Document 3 is a technique for obtaining a gasoline base material or the like from fats and oils using a fluid catalytic cracking apparatus having a reaction zone, a separation zone, a stripping zone and a regeneration zone. In this technology, it is necessary to transport the collected raw material fats and oils to a site where a large-scale fluid catalytic cracking apparatus is present for processing.
- plant-based biomass which is a raw material for fats and oils
- plant-based biomass which is a raw material for fats and oils
- a fluid catalytic cracking device because it is a distributed production resource based on a vast land.
- constructing a large-scale fluid catalytic cracker at the plant biomass production base simply for the purpose of producing biodiesel fuel has problems such as increased running costs. Had.
- Patent Document 4 is a fuel for a diesel engine mainly comprising an olefin having a carbon number of 9 to 24 and paraffin as a main component from oil and fat by contacting the heated solid acid catalyst with oil and fat by catalytic cracking. This is a technique for obtaining a hydrocarbon mixture. Although a solid acid catalyst is used, the reaction temperature is lower by using a reaction temperature lower than that of Patent Document 3, and the carbon-to-carbon cleavage ratio of the alkyl group is low.
- the present invention solves the above-mentioned conventional problems, does not require alcohol (subsidiary raw material), does not by-produce glycerin, and is a product of impurities such as dienes, hydroxyl groups, and peroxides in the raw oil and fat Residual in the interior, low coke production, low pour point, and impurities such as carboxylic acids (free fatty acids) are hardly produced as a by-product.
- impurities such as dienes, hydroxyl groups, and peroxides in the raw oil and fat Residual in the interior, low coke production, low pour point, and impurities such as carboxylic acids (free fatty acids) are hardly produced as a by-product.
- an oil and fat decarboxylation catalyst used in a method for producing biodiesel fuel that can efficiently obtain a good quality biodiesel fuel from fat and oil by advancing the decarboxylation decomposition reaction while suppressing the breakage of the double bond of the oil and fat. For the purpose.
- the biodiesel fuel production method of the present invention has the following configuration.
- the oil / fatty acid decarboxylation / decomposition catalyst is brought into contact with the oil / fatty acid decarboxylation / decomposition catalyst in the reaction vessel at 350 ° C. to 475 ° C. ) To produce mainly C 8 -C 24 hydrocarbons.
- the reaction apparatus can be constructed at a low cost at a plant biomass production base or a required place, and a distributed energy supply system that supplies necessary energy at a required place can be constructed.
- the fat is liquid and hardly evaporates. Therefore, only the product is led out as gas from the reaction vessel.
- fats and oils hardly thermally decompose.
- oils and fats include rapeseed oil, palm oil, palm kernel oil, olive oil, soybean oil, sesame oil, castor oil, jatropha oil, corn oil and other vegetable oils, terpenes, fish oil, pork fat, and beef tallow Oils and fats collected from certain types of algae such as animal fats and the like, and mixtures thereof can be used.
- waste cooking oils such as tempura oil, can also be used. Oils and fats such as lard and beef tallow that solidify at room temperature are melted and liquefied by a heated catalyst or preheating, so that the oils and fats can be either liquid or solid. The fats and oils can be reacted by bringing one or more kinds of mixtures into contact with the catalyst.
- oil / fat can be preheated at a temperature of 475 ° C. or lower before being brought into contact with the catalyst. The reason is to increase the decomposition efficiency by heating quickly after contact with the catalyst.
- Oils and fats are triacylglycerols (three acyl groups esterified to glycerin), but phospholipids, glycolipids, fatty acids, and the like can also be used as the raw material of the present invention.
- the oil and fat decarboxylation catalyst is preferably weakly alkaline, neutral, or weakly acidic.
- at least one of solid catalyst silica, activated carbon, solid base, clay mineral, and alkali-poisoned solid acid is used.
- the activated carbon include carbides such as granular powder and fiber processed at a high temperature of about 1000 ° C. Many ceramics can also be used as catalysts. More specifically, activated carbon (particularly activated at a high temperature of 500 ° C.
- alkaline earth metal oxides such as MgO, CaO, SrO, BaO, La 2 O 3 , Th 2 Lanthanoids such as O 3 , oxides of actinides, metal oxides such as ZrO 2 and TiO 2 , metal carbonates such as alkaline earth metals, composite oxides such as SiO 2 —MgO and SiO 2 —CaO, Rb and Cs Zeolite exchanged with alkali metal ions such as alkali metal ions and alkaline earth metal ions, FCC catalyst and FCC waste catalyst partially or completely poisoned by addition of alkali metal compounds and alkaline earth metal compounds, alkalis such as Na and K Na / MgO the metal is deposited, the metal deposited metal oxides, such as K / MgO, KF / Al 2 O 3, LiCO 3 / SiO 2 or the like alkali metal salts of It can be used.
- alkali metal ions such as MgO, CaO, SrO, BaO, La
- a mixture or a support (for example, a support in which a solid base is supported on silica, coke, or the like) can also be used.
- a mineral such as dolomite that becomes a mixture of MgO and CaO when heated can be suitably used.
- the temperature rise and desorption temperature of ammonia is 50 to 250 ° C. for alumina, 30 to 200 ° C. for silica gel, 200 to 600 ° C. for zeolite, and 0 to 100 ° C. for activated carbon.
- the FCC catalyst poisoned with Na is 30 to 200 ° C
- the silicon oxide supporting magnesium oxide is 0 to 60 ° C
- the activated carbon supporting magnesium oxide is 0 to 70 ° C.
- Ammonia temperature rise and desorption temperature is higher than 400 ° C, which is a very strong acid catalyst, and it is easy to reduce the molecular weight of the product by cleaving the carbon-carbon bond of the alkyl group in the oil and fat, and attacking the carbon-carbon double bond.
- the production of coke increases because more aromatics are produced.
- the yield of the product oil is lowered, and further, the increased coke accelerates the decrease in the activity of the catalyst, the decarboxylation ability is lowered, the production of carboxylic acid is increased, and the quality of the product oil is lowered.
- a catalyst with a temperature rising / leaving temperature of ammonia of 100 ° C. or less such as activated carbon and activated coke
- a mixture of fats and oils and mineral oil can be used as a raw material.
- catalysts such as activated carbon and activated coke hardly reduce the molecular weight of mineral oil.
- Mineral oil includes atmospheric residual oil obtained by distilling crude oil, vacuum gas oil obtained by further distillation of atmospheric residue under reduced pressure, vacuum residue, hydrotreated oil, or pyrolysis oil, and Of the mixture.
- generated by decarboxylation decomposition of fats and oils can also be used. These mineral oils can function as an extractant for the oils and fats remaining in the residue and can further increase efficiency.
- the heating temperature of the oil and fat decarbonation decomposition catalyst is lower than 350 ° C.
- the progress of the decarbonation decomposition reaction is slowed, and the fats and oils are polymerized and solidified, and the hydrocarbon productivity tends to decrease.
- the temperature is higher than 475 ° C.
- the production amount of light gas and coke having 4 or less carbon atoms increases, and the production amount of products mainly composed of olefins and paraffins having 8 to 24 carbon atoms tends to decrease. Therefore, neither is preferable.
- reaction apparatus for producing biodiesel fuel for example, an apparatus equipped with a reaction vessel in which an oil decarboxylation catalyst is accommodated and a heating device for heating the oil decarboxylation decomposition catalyst in the reaction vessel is used.
- a reaction vessel a fixed bed method, a fluidized bed method, a rotary kiln method, a stirring method, or the like can be used. Of these, the stirring method is preferable.
- decomposition products aromatic compounds, etc.
- decomposition products such as fats and oils polymerize and adhere to the surface of the fat decarbonization decomposition catalyst, and a plurality of fat decarbonization decomposition catalysts are combined by the polymer.
- the agglomeration in the reaction vessel may result in the inability to operate, but the agglomeration can be prevented mechanically by stirring to prevent agglomeration.
- the decarbonation process when the fat and oil decarbonization catalyst is heated and the catalyst reaches the reaction temperature, the raw material and fat are introduced into the reaction vessel by spraying, spraying, dripping, spraying, etc., and contacted with the fat and decarbonization catalyst. Let Processing can be performed continuously or batchwise. Oils and fats are decomposed in contact with a heated oil and fat decarboxylation decomposition catalyst, and have a vapor pressure as a combustible gas.
- the generated combustible gas can be discharged out of the system.
- the discharged combustible gas is cooled to become biodiesel fuel oil.
- a water-soluble component can be dissolved in water vapor to obtain a cleaning effect of combustible gas.
- a catalyst such as CaO
- the deactivated fat decarboxylation catalyst can also be regenerated as needed in the reaction vessel or after being extracted from the reaction vessel.
- MgO catalyst
- MgO after decarboxylation repeatedly contributes to the decomposition of fats and oils.
- CaO combines with CO 2 of fats and oils in the presence of moisture to decompose the fats and oils to become calcium hydrogen carbonate. Since calcium carbonate is decomposed and decarboxylated at around 300 ° C., CaO after decarboxylation repeatedly contributes to the decomposition of fats and oils.
- the pressure in the reaction vessel is preferably maintained at atmospheric pressure or positive pressure.
- Combustible gases such as light oil and kerosene are generated by decarboxylation and decomposition of fats and oils, so if the pressure is negative, air may be introduced into the reaction vessel, and the generated combustible gas may ignite and explode. Because.
- the liquid space velocity indicating the input amount (volume) per hour with respect to the fat and oil decarboxylation decomposition catalyst (volume) is 0.05 / h to 2.0 / h, preferably 0.8. 3 / h to 1.0 / h is preferably used. If the liquid space velocity is less than 0.05 / h, the treatment efficiency is low, and the product oil becomes light gas due to secondary decomposition, and the yield of lamp / light oil decreases, which is not preferable. On the other hand, if it exceeds 2.0 / h, the contact time between the catalyst and the oil and fat is shortened and the oil decomposition rate is lowered, which is not preferable.
- Invention of Claim 2 of this invention is a manufacturing method of the biodiesel fuel of Claim 1, Comprising: Either one or both of the said fats and oils decarboxylation decomposition catalyst and the said fats and oils contacts and desorbs. It has a configuration in which it is heated to 350 ° C. to 475 ° C. prior to the carbonic acid reaction. With this configuration, in addition to the operation obtained in the first aspect, the following operation can be obtained.
- Invention of Claim 3 of this invention is a manufacturing method of the biodiesel fuel of Claim 1 or 2, Comprising: It has the structure by which an oil extraction raw material is used instead of the said fats and oils. With this configuration, in addition to the operation obtained in the first or second aspect, the following operation can be obtained. (1) When the oiled raw material comes into contact with the fat and oil decarboxylation and decomposition catalyst at 350 ° C.
- cellulose such as shells in the oiled raw material is carbonized, and the oil and fat component of the oiled raw material is eluted and the oil and fat decarbonation and decomposition catalyst
- the ester bond portion of the oil / fat component is cleaved by contact with the gas, and de-CO 2 or de-CO shown in (Chemical Formula 1) occurs, and a cracked gas (hydrocarbon chain) serving as a biodiesel fuel can be obtained.
- de-CO 2 or de-CO shown in (Chemical Formula 1) occurs, and a cracked gas (hydrocarbon chain) serving as a biodiesel fuel can be obtained.
- the raw materials for oil extraction include oil palm pulp and seeds, coconut endosperm, rapeseed, olive fruits, seeds such as sesame seeds and castor sesame seeds, and berries and seeds of plants before oil extraction, such as seeds of oilseed burdock (Yatrofa) and kohjiju Etc.
- oilseed burdock Yatrofa
- kohjiju Etc kohjiju Etc.
- certain types of algae are known to store oils and fats in cells, and the algae obtained by dehydrating and concentrating the algae can also be used. It is preferable to use the raw material for oil extraction after drying. This is to remove moisture and increase heating efficiency.
- the fat and oil decarboxylation decomposition catalyst it is preferable to use a material that has a large surface area by pulverization or crushing.
- An oil raw material after being oiled by pressing or the like can also be used. It is known that many oils and fats still remain after oil extraction.
- cellulose such as a shell of the raw material for oil extraction, is carbonized and remains in the reaction vessel, the remaining carbide may be extracted from the reaction vessel as necessary.
- a raw material for extraction after thermally extracting with a mineral oil such as hexane can be used. It is known that many oils and fats still remain after oil extraction.
- alkaline oil candy, fish bream, and livestock shark (internal organs) discharged from the oil refining process are rich in oil and fat and can be used as raw materials.
- the fat and oil decarboxylation catalyst can be regenerated by heating to 500 ° C. to 600 ° C. and exposing to an atmosphere containing oxygen.
- the coke adhering to the surface of the fat decarboxylation catalyst is burned out and regenerated simply by aeration while heating the fat decarbonation decomposition catalyst whose activity has been lowered due to adhesion of coke, etc., and is excellent in resource saving.
- the reaction vessel can be used as it is for the regeneration of the fat and oil decarboxylation catalyst.
- the heating temperature for regeneration is preferably 500 ° C. to 600 ° C. If it is less than 500 ° C., regeneration takes time and it is not practical. If the temperature exceeds 600 ° C., the structure of the ceramics may be changed and the fat decarboxylation / decomposition catalyst may be modified and the activity may be lowered.
- the organic acid contained in the raw oil and fat or the raw material for oil extraction has a problem that it becomes a catalyst poison and lowers the activity of the catalyst, but the organic acid is easily decomposed into hydrocarbons and carbon dioxide by the fat and oil decarboxylation decomposition catalyst.
- the problem that the activity of the catalyst decreases is unlikely to occur. For this reason, it is not necessary to use a large amount of catalyst in anticipation of a decrease in activity, and there is no increase in running cost or productivity due to incidental work such as treatment or reactivation of the used catalyst. .
- Invention of Claim 4 of this invention is a manufacturing method of the biodiesel fuel of Claim 3, Comprising:
- disassembly catalyst is carbon dioxide derived from the oil extraction raw material remaining after manufacture of biodiesel fuel. In the atmosphere, it has the structure containing what was made into the activated carbon by heating in the said reaction container. With this configuration, in addition to the operation obtained in the third aspect, the following operation can be obtained. (1) By heating in an oxygen atmosphere, the coke accumulated on the surface of the fat and oil decarboxylation catalyst in the reaction vessel is burned, and the fat and oil decarboxylation decomposition catalyst is regenerated.
- the reaction vessel can be used as it is for the activation of the carbide derived from the oil extraction raw material.
- the heating temperature for regeneration is preferably 500 ° C. to 600 ° C. Below 500 ° C., it takes time to regenerate the catalyst and activate carbon, which is not practical. If the temperature exceeds 600 ° C., the structure of the ceramics may be changed and the fat decarboxylation / decomposition catalyst may be modified and the activity may be lowered.
- Invention of Claim 5 of this invention is a manufacturing method of the biodiesel fuel of any one of Claims 1 thru
- a method for producing biodiesel fuel according to claim 6 of the present invention is the method for producing biodiesel fuel according to any one of claims 1 to 5, wherein the molar ratio in the decarboxylation reaction is 1 /. 10 to 10/1 (H 2 O / oil and fat) water vapor coexists.
- the following actions are obtained. (1) Since steam promotes hydrolysis of ester bonds, the decomposition efficiency of fats and oils is improved.
- a biodiesel fuel production apparatus is a biodiesel fuel production apparatus used in the biodiesel fuel production method according to any one of the first to sixth aspects, wherein the fats and oils are used.
- a first reaction vessel having a decarboxylation decomposition catalyst therein, a heating unit for heating the fat decarboxylation decomposition catalyst or the fat or oiled raw material, and an input unit for charging the oiled raw material or fat into the first reaction vessel; And a first gas deriving unit for deriving the generated gas mixture from the first reaction vessel.
- the first reaction vessel can be provided with a stirring device.
- a stirring device when using an oil-extracted raw material, it is preferable to provide a stirring device so that the catalyst in the reaction vessel and the oil-extracted raw material can sufficiently come into contact with each other.
- the raw material and fat are put into the reaction vessel by spraying, spraying, dripping, spraying, etc., and contacted with the fat and decarboxylation catalyst. Let The fats and oil extraction raw materials can be charged continuously or batchwise.
- Oils and fats are decomposed in contact with a heated oil and fat decarboxylation decomposition catalyst, and have a vapor pressure as a combustible gas.
- an inert gas such as nitrogen gas or helium gas or a flow gas such as water vapor continuously or intermittently, the generated combustible gas can be discharged out of the system.
- the discharged combustible gas is cooled to become biodiesel fuel oil.
- the amount of the oil and fat decarboxylation catalyst is preferably 5% by volume or more, more preferably 20% by volume or more. If the amount of the fat decarboxylation catalyst is less than 5% by volume, the ratio of fats and oils that can come into contact with the catalyst is reduced, and the ratio of fats and oils that are thermally decomposed by heating is increased. Absent. In addition, when the oil extraction raw material is added, if it exceeds 60% by volume, it is not preferable because the raw material to be heated without increasing contact with the catalyst increases when the raw material having a large volume such as the oil extraction raw material is supplied and the discharge frequency of the residue increases. . More preferably, the amount of the oil / fatty acid decarboxylation / decomposition catalyst is 50% by volume or less when the raw material is input.
- oiling raw materials and fats When oiling raw materials and fats are heated and decomposed, when they reach the reaction temperature, the oiling raw materials and fats are put into the reaction vessel by spraying, jetting, dripping, spraying, etc., and brought into contact with the fat decarboxylation and decomposition catalyst . Since the catalyst is heated by the heated oil and fat, continuous processing can be performed. When processing in a batch system, it is preferable to heat the oil extraction raw material and fats or oils in consideration of the amount of heat necessary for heating the catalyst, or to preheat the catalyst.
- the invention according to claim 8 of the present invention is the biodiesel fuel production apparatus according to claim 7, wherein the second reaction is connected to the first gas lead-out part and filled with the fat decarboxylation catalyst.
- a container, a gas introduction part for introducing the product gas mixture of the first reaction vessel into the second reaction vessel, and a gas mixture decarboxylated and decomposed by the oil decarboxylation catalyst of the second reaction vessel The second gas deriving unit is provided.
- the fat decarboxylation catalyst used in the first reaction vessel and the second reaction vessel is not necessarily the same. Further, since the gas mixture led out from the first reaction vessel and introduced into the second reaction vessel is at a high temperature, it is not always necessary to warm the fat decarboxylation decomposition catalyst in the second reaction vessel. However, when the temperature of the fat and oil decarboxylation decomposition catalyst in the second reaction vessel during operation is lower than 350 ° C., a heating device for heating the fat and oil decarboxylation decomposition catalyst in the second reaction vessel is required. As the second reaction vessel, a single tube or a packed bed reactor such as a radial flow type is used.
- the oil and fat decarboxylation decomposition catalyst according to claim 9 of the present invention is the method for producing biodiesel fuel according to any one of claims 1 to 6, or the biodiesel fuel according to claim 7 or 8.
- An oil / fat decarbonation decomposition catalyst used in a production apparatus has a configuration including a solid acid catalyst in which acid sites are poisoned by one or more of an alkali metal and an alkaline earth metal. With this configuration, the following effects can be obtained. (1) Since the acid point has been weakened, the cleavage of the double bond portion in the fat and oil is suppressed, and decarboxylation decomposition occurs efficiently. Moreover, the production
- 50% or more is used for poisoning of acid sites, more preferably 90% or more. If the acid point poisoning is less than 50%, the production of coke and light gas increases, which is not preferable. As the acid sites are poisoned, the temperature rise and desorption temperature of ammonia decreases.
- the ammonia temperature rise and desorption temperature is preferably less than 400 ° C, more preferably less than 200 ° C, and even more preferably less than 100 ° C due to poisoning.
- the temperature is 400 ° C. or higher, the product tends to have a low molecular weight, and a large amount of aromatics is formed to become coke, and the catalytic activity tends to decrease. When the temperature is lower than 100 ° C., the carbon-carbon bond is hardly broken, so that it can be used for raw materials in which mineral oil or the like is mixed.
- the invention described in claim 10 of the present invention is the oil decarboxylation cracking catalyst according to claim 9, wherein the solid acid catalyst includes an FCC catalyst.
- the following operation can be obtained. (1) Since an FCC catalyst widely used in fluid catalytic cracking of petroleum can be used, it is easy to obtain a catalyst.
- the FCC catalyst is a synthetic zeolitic solid acid catalyst that is used in a fluid catalytic cracking process of petroleum and is formed into a granular powder of 40 to 80 ⁇ m.
- Various methods can be used for poisoning the FCC catalyst with an alkali metal.
- a method in which the FCC catalyst is poisoned by immersing the FCC catalyst in an aqueous alkali metal salt solution can be used.
- the FCC waste catalyst currently processed as industrial waste can also be used as an FCC catalyst.
- the FCC waste catalyst is discharged from the fluid catalytic cracking process of petroleum. In the fluid catalytic cracking process of petroleum, coke accumulates on the catalyst surface and the catalytic activity gradually decreases.
- the fluid catalytic cracking process of petroleum has a step of regenerating the catalyst by heating and incinerating the coke, it has a step of adding a new catalyst and a step of extracting the old catalyst in order to keep the catalyst activity constant.
- This extracted old catalyst is an FCC waste catalyst, and many are treated as industrial waste.
- the FCC waste catalyst still has sufficient catalytic activity and can be obtained at a very low cost.
- the invention according to claim 11 of the present invention is used in the method for producing biodiesel fuel according to any one of claims 1 to 6 or the apparatus for producing biodiesel fuel according to claim 7 or 8.
- An oil and fat decarboxylation catalyst comprising activated carbon coated with a weak alkaline compound consisting of one or more of magnesium hydroxide, oxide and carbonate, activated coke, alumina, silica and alkali It has a structure containing any one or more of a modified non-acidic zeolite, a clay mineral, and a mixture thereof. With this configuration, the following effects can be obtained.
- Non-acidic zeolite modified with activated carbon, activated coke, alumina, silica, or alkali coated with a weak alkaline compound consisting of one or more of magnesium hydroxide, oxide and carbonate , Clay minerals, and mixtures of these composites hardly reduce the molecular weight of mineral oil, so using a mixture of fats and oiled raw materials and mineral oil as raw materials increases the extraction efficiency of fats and oils and yields of decomposed oils Can be raised.
- the method for producing biodiesel fuel of the present invention the following advantageous effects can be obtained.
- the invention of claim 1 (1) Unlike the conventional FAME method, since no secondary raw material alcohol is required, the running cost can be greatly reduced, and impurities such as dienes and hydroxyl groups in the raw oil and fat hardly remain in the product. Since the amount of coke produced is small and impurities such as carboxylic acids (free fatty acids) are hardly produced as a by-product, it is stable against air and has excellent storage stability with no blackening or off-flavor, and has a freezing point of around -20 ° C.
- biodiesel fuel from which a biodiesel fuel excellent in fluidity can be obtained.
- glycerin is not produced as a by-product, so it is not necessary to establish glycerin processing technology or processing man-hours, and to adsorb and remove impurities such as peroxide using an adsorbent.
- Production of biodiesel fuel that eliminates the need for a process and that does not cause problems such as reduced catalyst activity due to coke depositing on the surface of the catalyst and that the catalyst binds and agglomerates, enabling stable operation at a high yield. Can provide a method.
- biodiesel fuel that can be used as a raw material simply by drying organic matter containing a large amount of oil and fat.
- oil extraction raw material generates water vapor when heated and decomposed, it is suitable when using an oil decarboxylation and decomposition catalyst that functions well in the presence of moisture such as CaO.
- a method for producing biodiesel fuel with higher efficiency using raw materials can be provided.
- Activated carbon, activated coke, alumina, silica, magnesium oxide, non-acidic zeolite modified with alkali, and mixed oxides of these composites are rarely made of low molecular weight mineral oil.
- mineral oil works as an oil and fat extractant and can provide a highly efficient method for producing biodiesel fuel.
- Biodiesel fuel with low yield of coke, high thermal efficiency, and good yield because decarbonation and decomposition reactions proceed simultaneously with the oil and fat decarboxylation cracking catalyst at 350 ° C to 475 ° C.
- Manufacturing equipment can be provided.
- a second reaction vessel for introducing the gas mixture produced from the first reaction is filled with the oil / fatty acid decarboxylation catalyst, and the organic acid in the gas produced from the first reaction vessel is subjected to the second reaction. Since it is decarboxylated and decomposed by the fat and oil decarboxylation catalyst in the container, it is possible to provide an apparatus for producing biodiesel fuel in which the acid in the product is further reduced and the quality of the product oil is good. (2) Even if the organic acid generated in the first reaction vessel or the organic acid contained in the raw oil / fat is led out together with the gas generated in the first reactor without touching the catalyst through the upper part of the first reactor.
- the widely used FCC catalyst can be used with a simple operation, and therefore it is easy to implement.
- the FCC catalyst can be easily regenerated even if the catalytic function is lowered, a large regenerator is not required.
- the processing method is established even if it processes without reproducing
- the FCC waste catalyst currently processed as waste can also be utilized, the oil-and-fat decarboxylation decomposition catalyst which becomes very cheap in operating cost can be provided.
- Non-acidic zeolite modified with activated carbon, activated coke, alumina, silica, or alkali coated with a weak alkaline compound consisting of one or more of magnesium hydroxide, oxide and carbonate , Clay minerals, and mixed oxides of these composites hardly reduce the molecular weight of mineral oil, so the use of a mixture of fats and oiled raw materials and mineral oil as raw materials increases the extraction efficiency of fats and oils and yields of decomposed oils High fat and oil decarboxylation catalyst.
- Configuration diagram of the reactor according to Embodiment 1 Configuration diagram of reactor of embodiment 2
- Configuration diagram of reactor of embodiment 3 The figure which shows carbon number distribution of the cracked oil obtained in Example 2
- the figure which shows carbon number distribution of the cracked oil obtained in Example 7 The figure which shows carbon number distribution of the cracked oil obtained in Example 8
- the figure which shows carbon number distribution of the cracked oil obtained in Example 9 The figure which shows carbon number distribution of the cracked oil obtained in Example 10
- FIG. 1 is a configuration diagram of the reactor according to the first embodiment.
- 1 is the reaction apparatus of Embodiment 1 used in the examples of the present invention
- 2 is a reaction vessel
- 3 is granular silica contained in the reaction vessel 2
- activated carbon solid base
- Fat decarbonation cracking catalyst such as poisoned FCC catalyst
- 4 is a heater for heating the catalyst 3 contained in the reaction vessel 2 to 350 to 475 ° C
- 5 is spraying, dripping and spraying the fat and oil raw material to the reaction vessel 2
- the raw material input unit 6 is supplied by, for example, a flow gas introduction unit 6 for introducing an inert gas such as nitrogen gas or a flow gas such as water vapor into the reaction vessel 2
- 7 is a stirring device for stirring the catalyst 3
- 8 is the reaction vessel 2.
- a first outlet pipe for letting out the product generated in the flow gas to the outside of the reaction vessel 2 and 9 is connected to the first outlet pipe 8 and has a boiling point of 0 ° C. to the temperature of the reaction vessel.
- a cracked oil reservoir for storing a cracked product (hereinafter referred to as cracked oil) of 0 is a discharge pipe whose one end is connected to the cracked oil reservoir 9, 11 is a cooling pipe which is disposed in the discharge pipe 10 and cools the discharge pipe 10 to 0 ° C.
- a discharge pipe 10 is connected to the other end of the cooling trap device for storing a liquefied decomposition product (hereinafter referred to as light oil) having a boiling point of ⁇ 80 to 0 ° C. It is a connected gas exhaust pipe.
- FIG. 2 is a configuration diagram of the reactor according to the second embodiment.
- 21 is the reaction apparatus of the second embodiment. Portions common to those in FIG. 1 are denoted by the same reference numerals and description thereof is omitted.
- Reference numeral 22 denotes a heating unit that heats the raw oil and fat and the raw material for oil extraction.
- Reference numeral 23 denotes an auxiliary heating unit for heating when the temperature of the catalyst 3 is low, such as at the start of operation.
- FIG. 3 is a block diagram of the reactor according to the third embodiment.
- reference numeral 31 denotes a reactor according to the third embodiment. Portions common to those in FIG. 1 are denoted by the same reference numerals and description thereof is omitted.
- Reference numeral 32 denotes a first reaction vessel according to Embodiment 3, which corresponds to the reaction vessel 2 of FIG. 33 is an oil and fat decarboxylation catalyst A such as granular silica contained in the first reaction vessel 32, and 8 is a product produced in the first reaction vessel 32 accompanied by a flow gas to the outside of the first reaction vessel 32.
- 1 is a first outlet pipe
- 34 is a second reaction vessel
- 35 is an oil decarboxylation cracking catalyst B such as granular silica, activated carbon, solid base, etc. accommodated in the second reaction vessel 34
- Reference numeral 38 denotes a second outlet pipe for leading the gas decarboxylated and decomposed in the second reaction vessel 34.
- the oil and fat decarboxylation / decomposition catalyst (hereinafter abbreviated as catalyst) 3 uses silica for catalyst (manufactured by Fuji Silysia Chemical Co., Ltd., trade name: Caractect Q-15, particle size: 1.18 to 2.36 mm). 50 mL of the catalyst was accommodated in the reaction container 2 having an internal volume of 150 mL, and heated to 420 ° C. while being stirred by the stirring device 7 (50 rpm). The heating temperature of the catalyst 3 was measured by bringing a thermocouple (not shown) placed in the reaction vessel 2 into contact with the catalyst 3.
- a thermocouple not shown
- palm oil oil and fat
- the amount of oil and fat charged was 0.25 mL / min, and the amount of flow gas (nitrogen gas) introduced from the flow gas inlet 6 was 50 mL / min.
- a product was obtained by adding a total of 75 g of fats and oils.
- Component analysis of the cracked oil stored in the cracked oil storage unit 9 and the gas substances (carbon monoxide, carbon dioxide, and light hydrocarbon gas) discharged from the gas discharge pipe 13 was performed. Analysis of cracked oil was performed using GC-MS. Among gas substances, analysis of carbon monoxide and carbon dioxide was performed using GC-TCD, and analysis of light hydrocarbon gas was performed using GC-FID. . Further, the catalyst after the experiment was analyzed by TG-DTA.
- Example 2 The same procedure as in Example 1 was performed except that a catalyst in which MgO was supported on the catalyst silica used in Example 1 was used and the reaction temperature was 410 ° C.
- the catalyst in which MgO is supported on silica is magnesium nitrate (Mg (NO 3 ) 2 ⁇ 6H 2 O) in an amount corresponding to 10% by mass as metal magnesium with respect to the catalyst silica used in Example 1.
- the aqueous solution was impregnated in silica by the Incipient Wetness method, dried at 120 ° C. after the impregnation, and then calcined in the air at 500 ° C. for 3 hours.
- Example 2 The same procedure as in Example 1 was carried out except that active coke (manufactured by Mitsui Mining Co., Ltd., particle size after crushing: 1.18 to 2.36 mm) was used as the fat and oil decarboxylation decomposition catalyst, and the reaction temperature was 400 ° C.
- active coke manufactured by Mitsui Mining Co., Ltd., particle size after crushing: 1.18 to 2.36 mm
- Example 3 The same procedure as in Example 1 was performed except that a catalyst in which MgO was supported on the active coke used in Example 3 was used and the reaction temperature was 400 ° C.
- the catalyst in which MgO is supported on active coke is magnesium nitrate (Mg (NO 3 ) 2 ⁇ 6H 2 O) in an amount corresponding to 10% by mass as metal magnesium with respect to the active coke used in Example 3.
- the aqueous solution was impregnated into activated coke by the Incipient Wetness method, dried at 120 ° C. after impregnation, and then calcined at 350 ° C. for 3 hours in a nitrogen atmosphere.
- Example 1 The same procedure as in Example 1 was conducted, except that an FCC waste catalyst was used as the catalyst and the reaction temperature was 420 ° C.
- the FCC waste catalyst is a regeneration of a synthetic zeolite-based solid acid catalyst that has been granulated into 40-80 ⁇ m granules used in a fluid catalytic cracking (FCC) process of petroleum.
- Table 1 shows the amount of product and the yield of cracked oil in Examples 1 to 4 and Comparative Example 1.
- Examples 1-4 It was found that about 50-60% of paraffins and about 30-40% of olefins were present in the cracked oil, but there were almost no aromatic compounds. From this result, it was surmised that the residue was mainly coke, and the coke was a polymer of an olefin-derived aromatic compound produced by the acid point of the catalyst (FCC waste catalyst). In Examples 1 to 4, since neutral silica or a solid base was used as a catalyst, almost no aromatic compound was produced, and it was assumed that the production of coke was small and the amount of residue produced was small. It was.
- Comparative Example 1 a small amount of alcohol and fatty acid were detected as oxygen-containing substances in the cracked oil, but in Examples 1 to 4, they were not detected, and ketones were mainly produced.
- the cracked oil of Comparative Example 1 had a bad odor and turned black so that it could be visually confirmed when left for about a week.
- the cracked oils of Examples 1 to 4 did not turn black or have a bad odor and were stored. It was found to be excellent in stability. This cause was presumed to be the influence of impurities such as carboxylic acid (fatty acid) contained in the cracked oil of Comparative Example 1.
- FIG. 4 is a graph showing the carbon number distribution of the cracked oil obtained in Example 2.
- the fatty acid composition of the fats and oils (palm oil) used in the experiment is as follows: lauric acid (C12) 0.2%, myristic acid (C14) 1.1%, palmitic acid (C16) 44.0%, stearic acid (C18) ) 4.5%, oleic acid (C18: 1) 39.2%, linoleic acid (C18: 2) 10.1%, linolenic acid (C18: 3) 0.4%. From FIG. 2, it was found that in Example 2, paraffins or olefins having a carbon number corresponding to the fatty acid contained in the oil were mainly produced. The other examples had the same tendency.
- the pour point of the obtained cracked oil was measured based on JIS K2269 (pour point of crude oil and petroleum product and cloud point test method of petroleum product) and found to be -12.5 ° C. Since the pour point of commercially available general light oil is -7 ° C, it was found that cracked oil having a pour point as low as that of general light oil can be produced.
- Table 2 shows amounts of carbon monoxide and carbon dioxide generated in Examples 1 to 4 and Comparative Example 1. When the amount of carbon dioxide was compared, it was found that the amount increased in the order of Comparative Example 1, Example 1, and Examples 2 to 4.
- the catalyst of Comparative Example 1 is a solid acid
- the catalyst of Example 1 is silica (neutral)
- the catalysts of Examples 2 to 4 are solid bases
- the silica or solid base is catalyzed as in Examples 1 to 4.
- CO 2 can be selectively recovered.
- the oil and fat decomposition mechanism is inferred as follows. Glycerin is removed from the oil contacted with the heated oil decarboxylation decomposition catalyst, and fatty acid is produced. In the produced fatty acid, the carboxyl group portion is removed as CO 2 and the remaining carbon chain is recovered as cracked oil.
- the glycerin group is recovered as a light hydrocarbon gas such as propane.
- a waste edible oil (75 g of soybean oil and rapeseed oil) actually used for one week in a university cafeteria is reacted under atmospheric pressure.
- the procedure was the same as in Example 1 except that it was dropped into the container (0.25 mL / min) and He gas (50 mL / min) was used as the flow gas.
- Example 2 Using rice bran discharged from a rice mill as raw oil and fat, an experiment was carried out to produce cracked oil from the raw material. Except for using a catalyst in which MgO is supported on silica for catalyst (the same catalyst as in Example 2), the reaction temperature was set to 410 ° C., and rice bran (500 g) was added little by little with a micro feeder into a reaction vessel under atmospheric pressure. Was the same as in Example 1.
- Jatropha oil fat was dropped from the raw material charging unit 5 into the reaction vessel 2 under atmospheric pressure.
- the amount of oil and fat charged was 1.0 mL / min, and the amount of flow gas (nitrogen gas) introduced from the flow gas inlet 6 was 50 mL / min.
- a product was obtained by adding a total of 75 g of fats and oils.
- Example 4 was the same as Example 4 except that pork fat (500 g) discharged from the meat processing plant as raw oil was heated to 80 ° C. and used in a liquid state.
- Example 4 The same procedure as in Example 4 was conducted except that beef fat (500 g) discharged from a meat processing plant as raw material fat was heated to 80 ° C. and used in a liquid state.
- Table 3 shows the amount of product and the yield of cracked oil in Example 5, Example 6, and Example 8.
- oily components, aqueous components, precipitates, and suspended matters were mixed in the cracked oil. It is considered that the raw material for oil extraction contains abundant components other than fats and oils. Therefore, the cracked oil yield of Example 6 was converted from the ratio of the oily component to the input amount, unlike Examples 1 to 5, in order to exclude the influence of precipitates and the like.
- the gas substance was not analyzed. This is because the influence of components other than fats and oils is great.
- the aqueous content increases in the cracked oil produced as in Example 6. Therefore, in order to use it as a fuel, the water is removed from the raw material or from the cracked oil. A process of removing is necessary.
- Example 5 it was confirmed that cracked oil was obtained from waste edible oil in a yield of 60% or more. This is almost the same result as in Examples 1 to 4 in which palm oil is used as the raw material fat. Although it is considered that waste cooking oil has a higher degree of oxidation than palm oil, it was revealed that cracked oil was obtained in a high yield according to this example. Moreover, as shown in Example 6, it was confirmed that an oil component was obtained with a yield of 5.7% from the raw material for oil extraction (soybean). Since it is said that the content of fats and oils in domestic soybeans is about 10 wt%, the oil component yield of 5.7 wt% can be said to be a considerably high yield.
- FIG. 5 shows the carbon number distribution of the cracked oil obtained from rice bran in Example 7. Production of hydrocarbons with a wide range of carbon numbers from C5 to C34 was observed. In particular, it contained a large amount of C10-C20 lamps and light oil. The cracked oil contained about 20% of C6-C13 aromatic hydrocarbons. Rice bran is rich in lipase and free fatty acids, but has an oxidation degree of 0.35 mg KOH / g and an oxidation stability of 24 h or more, and can be used as a biodiesel fuel.
- Table 3 shows the results obtained from Jatropha oil in Example 8. Jatropha oil is unsaturated with palmitic acid (C16) 14.9%, stearic acid (C18) 6.9%, oleic acid (C18: 1) 41.8%, linoleic acid (C18: 2) 34.8% Although the yield of the pyrolysis method was low due to the high fatty acid ratio, the method of the present invention showed a high cracked oil recovery rate of 63.1%.
- FIG. 6 shows the carbon number distribution of hydrocarbons in the cracked oil obtained. It was shown that the number of carbons is distributed over a wide range but the double bonds are conserved.
- Jatropha oil has a high phosphoric acid content, and when it is converted into fuel by the conventional method, it remains in the fuel oil and damages the engine and the like.
- the phosphoric acid concentration of the cracked oil of Example 8 and the Jatropha oil used as the raw material fat was measured by IPC, it was about 10 mg / L for the raw fat and oil, and 0.9 mg / L for the cracked oil. It was shown that the phosphoric acid in the raw material fats and oils does not migrate to the cracked oil, and a cracked oil with a low phosphoric acid content can be obtained.
- FIG. 7 shows the carbon number distribution of hydrocarbons in cracked oil obtained from pork fat in Example 9
- FIG. 8 shows the carbon number distribution of hydrocarbons in cracked oil obtained from beef tallow in Example 10.
- Hydrocarbons with a wide range of carbon numbers from C5 to C34 from tallow and from C5 to C31 from tallow were produced. Both the kerosene and light oil components in the cracked oil were approximately 65%.
- biodiesel fuel production method of the present invention is extremely useful because it does not require alcohol (a secondary raw material) and does not by-produce glycerin.
- the same procedure as in Comparative Example 1 was performed except that a catalyst obtained by poisoning the FCC waste catalyst used in Comparative Example 1 with NaCl was used.
- the catalyst obtained by poisoning the FCC waste catalyst with NaCl was prepared by adding 1.0 L of 50 g / L NaCl aqueous solution to 50 g FCC waste catalyst and treating at 50 ° C. ⁇ 5 ° C. for 1 hour.
- the acid point of the catalyst obtained by this method was poisoned by approximately 90%.
- the acid point of the catalyst obtained by this method was evaluated by the ammonia temperature rising desorption method, about 90% of the acid point was poisoned.
- Comparative Example 2 The same procedure as in Comparative Example 1 was performed except that silica, which is a solid acid catalyst, was used as the catalyst.
- Comparative Example 1 was the same as that of Comparative Example 1 except that the catalyst used in Comparative Example 2 was poisoned with an aqueous magnesium nitrate solution.
- the catalyst in which silica was poisoned with an aqueous magnesium nitrate solution was prepared by adding 1.0 L of 50 g / L Mg (NO 3 ) 2 aqueous solution to 50 g of silica and treating it at 50 ° C. ⁇ 5 ° C. for 1 hour.
- the acid point of the catalyst obtained by this method was evaluated by the ammonia temperature rising desorption method, about 90% of the acid point was poisoned.
- Example 2 The same procedure as in Comparative Example 1 was conducted except that the FCC waste catalyst used in Example 1 was poisoned with Mg and a catalyst carrying magnesium oxide was used.
- the catalyst in which the FCC waste catalyst was poisoned with Mg and magnesium oxide was supported was added 50 g / L of Mg (NO 3 ) 2 aqueous solution 1.0 L to 50 g of FCC waste catalyst 50 ° C. ⁇ 5 ° C. And processed for 1 hour.
- the term “supported” refers to a state in which magnesium oxide is contained in the catalyst in excess of the acid point poisoning.
- Table 4 shows the results when the acid sites are poisoned.
- the upper part of the table shows the amount of product and the yield of cracked oil in Comparative Example 1, Example 11, Comparative Example 2, Example 12 and Example 13.
- Alkaline poisoning of the solid acid catalyst increases the production of CO 2 and increases the yield of cracked oil. Furthermore, by supporting magnesium oxide, the production of CO 2 increases and the yield of cracked oil increases. The yield increases and the amount of residue decreases. The breakdown of the residue is shown at the bottom of Table 4. It is thought that the amount of coke produced as a by-product was significantly reduced compared with Comparative Examples 1 and 2 and the yield of cracked oil was increased because the cleavage of double bond parts in fats and oils was reduced by alkaline poisoning of the fixed acid catalyst. It is done.
- Example 2 The same procedure as in Example 2 was performed except that the reaction temperature was 350 ° C.
- Example 2 was repeated except that the reaction temperature was 475 ° C. (Comparative Example 3) Example 2 was repeated except that the reaction temperature was 300 ° C. (Comparative Example 4) Example 2 was repeated except that the reaction temperature was 550 ° C.
- Table 5 is a table showing the effect on the yield of cracked oil at each temperature.
- the amount of product and the yield of cracked oil in Comparative Example 3, Example 14, Example 2, Example 15, and Comparative Example 4 are shown. It is shown. From this, it was shown that the reaction temperature range is preferably 350 ° C. to 475 ° C. At 300 ° C. (Comparative Example 3), the reaction is slow and impractical. Moreover, it is considered that the residue amount increased due to the polymerization and solidification of fats and oils, and the productivity of hydrocarbons decreased. At 550 ° C. (Comparative Example 4), the yield of cracked oil is low, and the amount of residue is large. Therefore, it is considered that pyrolysis occurred and the amount of gas and coke produced increased.
- Example 5 If the reaction is repeated many times, the activity of the catalyst gradually decreases. The same procedure as in Example 2 was performed, except that a catalyst with reduced activity was used. The carbon content of the catalyst with reduced activity was measured as a weight loss after heating at 800 ° C. for 1 hour in an air atmosphere and found to be 45% by weight.
- the catalyst was heated and held at 500 ° C. ⁇ 20 ° C. for 6 hours while flowing a mixed gas of 50% air + 50% nitrogen gas at 200 ml / min into the reaction vessel containing the catalyst used in Comparative Example 5. Thereafter, the carbon content was measured in the same manner as in Comparative Example 5. During the regeneration, the stirring blade was rotated at 10 times / min and slowly stirred. Next, the same procedure as in Example 2 was performed except that the regenerated catalyst was used.
- Example 16 The same operation as in Example 16 was performed except that the holding temperature during regeneration was 550 ° C. ⁇ 20 ° C.
- Example 16 The same operation as in Example 16 was performed except that the holding temperature at the time of regeneration was 600 ° C. ⁇ 20 ° C. (Comparative Example 6) The same procedure as in Example 16 was performed except that the heating and holding temperature of the catalyst during regeneration was 450 ° C. ⁇ 20 ° C. (Comparative Example 7) The same operation as in Example 12 was conducted except that the heating and holding temperature of the catalyst during regeneration was 650 ° C. ⁇ 20 ° C.
- Table 6 is a table showing the effects of catalyst regeneration and regeneration temperature, and shows the results of Example 2, Comparative Examples 5 to 7, and Examples 16 to 18. From this, it was shown that the catalyst can be regenerated by maintaining at 500 ° C. to 600 ° C. in an atmosphere containing oxygen. At 450 ° C. (Comparative Example 5), regeneration was slow, carbon remained, and activity was low. In addition, the activity decreased at 650 ° C., which was not preferable. The regenerated one (Examples 16-18) showed a higher recovery of cracked oil than the new catalyst (Example 2). .
- Example 2 The procedure was the same as Example 2 except that the liquid space velocity was 0.05 / h.
- Example 2 The procedure was the same as Example 2 except that the liquid space velocity was 2.0 / h.
- Comparative Example 8 The procedure was the same as Example 2 except that the liquid space velocity was 0.05 / h.
- Comparative Example 9 The same as Example 2 except that the liquid space velocity was 4.0 / h.
- Table 7 is a table showing the effect of liquid space velocity on cracked oil yield, showing the amount of product and cracked oil yield in Comparative Example 8, Example 19, Example 20 and Comparative Example 9. Is. From this, it was shown that the range of the liquid space velocity is preferably 0.05 / h to 2.0 / h. 0.02 / h (Comparative Example 8) is not preferable because the processing speed is slow, the processing efficiency is low, and the product oil is gasified by secondary decomposition, resulting in a decrease in yield. In 4.0 / h (Comparative Example 9), the yield of cracked oil is low, and the amount of residue is large. Therefore, the contact time between the catalyst and the fat / oil is shortened, and the fat / oil decomposition rate is considered to be decreased.
- Table 8 shows the results of Example 21 and Comparative Example 5.
- the oxidation, iodine value, and oxidation stability were measured according to the BDF standard draft of the Agency for Natural Resources and Energy. The installation of the second reactor reduces the acid in the product.
- the present invention does not require alcohol (subsidiary raw material) from fats and oiled raw materials, does not by-produce glycerin, and impurities such as dienes and hydroxyl groups in the raw fats and oils hardly remain in the product, Since the amount of coke produced is small, the pour point of the produced oil is low, and impurities such as carboxylic acids (free fatty acids) are hardly produced as a by-product, so it is stable against air, etc.
- a method for producing biodiesel fuel can be provided.
- pretreatment and the like for removing free fatty acids from raw oils and fats are not necessary, and the reaction can be performed under normal pressure, so that the manufacturing process and the reaction apparatus can be simplified, and at the necessary place.
- biodiesel fuel production apparatus capable of constructing a distributed energy supply system that supplies necessary energy. Furthermore, it is difficult to cause a problem that the activity of the catalyst is reduced due to the free fatty acid produced as a by-product, so that the running cost increases or the productivity decreases due to incidental work such as treatment or reactivation of the used catalyst.
- the decarboxylation decomposition catalyst used for the manufacturing method of the biodiesel fuel which is excellent in production efficiency and productivity can be provided.
Landscapes
- Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Wood Science & Technology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Materials Engineering (AREA)
- Crystallography & Structural Chemistry (AREA)
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
- Liquid Carbonaceous Fuels (AREA)
- Catalysts (AREA)
Abstract
Description
脂肪酸メチルエステル化法に関する技術として、(特許文献1)には、「油脂と低級アルコールとを、カルシウム系固体触媒の存在下で反応させることにより、脂肪酸アルキルエステルを製造する方法」が開示されている。
また、(特許文献2)には、「原料油脂とアルコールとを固体酸触媒の存在下で反応させ、原料油脂中に存在する遊離脂肪酸を脂肪酸アルキルエステルに変換する工程Aと、工程Aにて得られた反応混合物から水分を除去する工程Bと、工程Bにて得られた液とアルコールとを固体塩基触媒の存在下で反応させ、原料油脂の主成分であるトリアシルグリセリドをエステル交換反応させて脂肪酸アルキルエステルに変換する工程Cと、を備えたバイオディーゼル油の製造方法」が開示されている。
また、(特許文献3)には、「反応帯域,分離帯域,ストリッピング帯域及び再生帯域を有する流動接触分解装置を用い、出口温度480~540℃の反応帯域において、バイオマスを含有する原料油を、超安定Y型ゼオライトやシリカアルミナ等の固体酸触媒に1~3秒間接触させ、ガソリン基材やディーゼル燃料基材等を得るバイオマスの処理方法」が開示されている。
さらに(特許文献4)には、「固体酸触媒を反応容器中、350~450℃の温度域に加熱し、該固体酸触媒に液状の油脂を接触させて前記油脂から含酸素成分を除去し、炭素数9~24のオレフィンおよびパラフィンを主成分とする炭化水素混合物を合成するようにした油脂の接触分解方法」が開示されている。
(1)非特許文献1,特許文献1及び特許文献2に開示された脂肪酸メチルエステル化法では、大量の低級アルコールを必要とするため、高額のランニングコストを要すという課題を有していた。また、原料油脂中の不純物(例えばジエン類,水酸基,パーオキサイド等)が生成油中に残留し易いため、生成油は空気等に対して不安定であり貯蔵安定性に欠けるという課題を有していた。この課題を解決するため、活性白土等の吸着剤を用いてパーオキサイド等の不純物を吸着させ生成油から除去する工程が必要となり、処理工程が複雑化するという課題を有していた。
(2)脂肪酸メチルエステル化法では、非特許文献1に記載されているようにアルカリ触媒を使用するために、脂肪酸石鹸が副生するという問題が生ずる。脂肪酸石鹸の副生量が多くなると、脂肪酸エステル層とグリセリン層の分離が困難になり、グリセリン層に脂肪酸エステルが混入し、脂肪酸エステルの収率の低下が起こるからである。また、副生されたグリセリンにはアルカリ触媒(苛性ソーダ等)が溶けているため、この処理が問題となっている。副生物であるグリセリンの処理技術の確立が、脂肪酸メチルエステル化法の技術確立には不可欠だが、未だ有効な処理技術が確立されていない。
(3)特許文献1に記載の脂肪酸メチルエステル化法では、カルシウム系固体触媒の使用により脂肪酸石鹸の副生を低く抑えることができるが、他の問題点として、原料のトリグリセライドに含まれる遊離脂肪酸が固体触媒の活性を低下させるという問題が生ずる。この結果、固体触媒を大量に使用しなければならなくなり、大量の使用済み触媒が発生し、使用済み触媒の再活性化処理も必要となる等、付帯作業が増大しランニングコストを上昇させるとともに生産性が低下するという課題を有していた。
(4)遊離脂肪酸による固体塩基触媒の活性の低下を抑えるため、特許文献2には、前工程として固体酸触媒の存在下で遊離脂肪酸を処理することにより、原料油脂から遊離脂肪酸を除去する技術が開示されている。特許文献2に開示された技術は、工程Aにおいて固体酸触媒の存在下で遊離脂肪酸を処理し、その後、工程Cにおいてアルコールと固体塩基触媒の存在下で反応させるため、複数の工程を要し、処理工程が煩雑化するという課題を有していた。
(5)非特許文献1に記載された水素化処理法では、得られた炭化水素油の凝固点が+20℃と高く流動性が悪いという課題を有していた。また、得られた炭化水素油にグリセリンが混入し、安定性に欠けるという課題を有していた。炭化水素油の凝固点が高いことは、特に寒冷地で使用する場合に問題があり、現在は、軽油に5%以下の条件で混合されて使用されている程度である。
(6)特許文献3に開示された技術は、反応帯域,分離帯域,ストリッピング帯域及び再生帯域を有する流動接触分解装置を用いて、油脂からガソリン基材等を得る技術である。この技術では、集荷した原料油脂を、大規模な流動接触分解装置が存在する拠点まで輸送して処理を行なうことが必要である。しかし、油脂の原料となる植物系バイオマスは、広大な土地を生産拠点とする分散産出型資源のため、集荷及び流動接触分解装置までの輸送に多大なコストを要するという課題を有していた。また、輸送コスト等を削減するため、植物系バイオマスの生産拠点に、バイオディーゼル燃料を製造するだけの目的で大規模な流動接触分解装置を建設するのは、ランニングコストが上昇する等の課題を有していた。また、出口温度480~540℃の反応帯域において原料油脂が固体酸触媒に接触すると、アルキル基の炭素間の結合が開裂し易く生成物が低分子化し、ガソリン燃料基材の製造量が多くなり、ディーゼル燃料基材の製造量が減少するという課題を有していた。また、固体酸触媒の反応では芳香族の生成が多いため、コーク(coke、石油などの炭化水素を処理する触媒上に生成する炭化物、コークスともいう)の生成量が多く、固体酸触媒の表面に析出して、早期に触媒の活性が低下するという問題や、複数の触媒が結合し塊状化するといった問題が生じ、収率の低下や操業が困難になるという課題を有していた。さらに、触媒の活性が低下すると脱炭酸能が低下してカルボン酸(遊離脂肪酸)等の不純物も副生され易く、生成油が黒変したり異臭が生じたりするという課題を有していた。酸が多く芳香族が多くセタン価が低い生成油は実際の使用には適さないという課題があった。
(7)特許文献4に開示された技術は、加熱された固体酸触媒と油脂を接触させて、接触分解により油脂から炭素数9~24のオレフィンおよびパラフィンを主成分とするディーゼルエンジン用の燃料となる炭化水素混合物を得る技術である。固体酸触媒を用いているが特許文献3よりも低い反応温度を用いることでより温和な反応条件となっており、アルキル基の炭素間の切断比率は低い。しかし、やはり固体酸触媒の反応であるので、コークの生成量が多く、灯油・軽油分の収率が低くなることと、触媒の活性が低下しやすいという課題があった。さらに、触媒の活性が低下すると脱炭酸能が低下してカルボン酸(遊離脂肪酸)等の不純物も副生され易く、生成油が黒変したり異臭が生じたりするという課題を有していた。
本発明の請求項1に記載のバイオディーゼル燃料の製造方法は、350℃~475℃において、反応容器内で油脂脱炭酸分解触媒と油脂が接触して、前記油脂脱炭酸分解触媒によって式(1)に示される脱炭酸分解反応でC8~C24の炭化水素を主として生成する構成を有している。
(1)350℃~475℃において、油脂脱炭酸分解触媒と油脂を接触させると、油脂脱炭酸分解触媒の作用によりグリセリンのエステル結合部分が開裂され、(化1)に示す脱炭酸分解が起こり、バイオディーゼル燃料となる分解ガス(炭化水素鎖)を得ることができる。なお、油脂脱炭酸分解触媒の種類によっては、優先的に脱COが起こることも考えられる。(化1)に示す反応から明らかなようにグリセリンを副生しないので、グリセリンの処理技術の確立や処理工数等を必要としない。また、副生物として、プロパン、メタン、エタン、ブタンのガス状化合物が得られるので気体燃料として用いることができ、油脂脱炭酸分解触媒を加熱するための燃料とすることもできる。
(2)この脱炭酸分解は、アルコールが実質的に存在しない条件下で行なわれるため、ランニングコストを大幅に安くでき、また原料油脂中のジエン類やパーオキサイド等の不安定な不純物が油脂脱炭酸分解触媒表面上で容易に分解されるため、生成物中に残留し難く、カルボン酸(遊離脂肪酸)等の不純物も副生され難いため、空気等に対して安定で黒変や異臭が生じ難い貯蔵安定性に優れたバイオディーゼル燃料を得ることができる。また、パーオキサイド等の不純物を、吸着剤を使って吸着・除去する工程も不要となり、経済性に優れる。さらに、コークの生成量が少ないため、コークが触媒の表面に析出することによる油脂脱炭酸分解触媒の活性低下や、油脂脱炭酸分解触媒が結合し塊状化するといった問題も生じ難く、高い収率で安定操業が可能となる。
(3)原料中に遊離脂肪酸が存在するが、油脂等のグリセリンのエステル結合部分が開裂され脱CO2が行なわれることにより、カルボン酸(遊離脂肪酸)等の不純物が副生され難く、反応中に遊離脂肪酸が副生されても容易に炭化水素と炭酸ガスに分解されるため、副生されたカルボン酸(遊離脂肪酸)によって触媒の活性が低下するという問題が生じ難い。このため、活性低下分を見込んで触媒を大量に使用する必要がなく、使用済み触媒の処理や再活性化等の付帯作業によって、ランニングコストが上昇したり生産性が低下したりすることがない。廃油や不飽和結合を多く持つ油脂(ヤトロファ油等)は酸化劣化により多くの遊離脂肪酸を含有するので非常に有効である。
(4)油脂脱炭酸分解触媒を用いた脱炭酸分解でグリセリンの脱CO2若しくは脱COが起こり、残りの炭素鎖を回収することにより、主に炭素数8~24の炭化水素として凝固点が-20℃前後の流動性に優れたバイオディーゼル燃料を得ることができる。
(5)油脂脱炭酸分解触媒の活性の低下を防ぐための原料油脂から遊離脂肪酸を除去する前処理等が不要となり、また接触分解工程は常圧下で行うことができるため、バイオディーゼル燃料の製造工程及び反応装置を簡素化することができ生産性に優れるとともに、バイオディーゼル燃料を低コストで製造できる。このため、反応装置を、植物系バイオマスの生産拠点や必要とされる場所に低コストで建設することができ、必要な場所で必要なエネルギーを供給する分散型のエネルギー供給システムを構築できる。
(6)油脂脱炭酸分解触媒が350~475℃に加熱されているので、脱炭酸分解の反応速度が大きく、高い生産性で炭素数8~24のオレフィン及びパラフィンを主成分とするバイオディーゼル燃料を製造できる。
(7)350~475℃では油脂は液状であり、ほとんど蒸発しない。したがって反応容器から生成物だけがガスとなって導出される。
(8)350~475℃では油脂はほとんど熱分解しない。したがって油脂がほとんど脱炭酸分解されるので、2重結合部分が熱的に切断され低分子化することを防ぐ。
(9)ガスとして生成物を導出するので原料中のリン酸が油脂脱炭酸分解触媒に沈着し分解油にほとんど移行しない。そのためエンジンのリン酸による性能低下や損傷事故が無く、分解油を安心して使用できる。特にリン酸含有量の高いヤトロファや魚滓(或いは魚油)、大豆等を原料とした場合に有効である。
油脂は、一種若しくは複数種の混合物を触媒と接触させて反応させることができる。また、油脂は、触媒に接触させる前に、475℃以下の温度で予熱することもできる。触媒と接触した後、速やかに加熱されるようにして、分解効率を高めるためである。
油脂はトリアシルグリセロール(3つのアシル基がグリセリンにエステル結合したもの)であるが、リン脂質や糖脂質や脂肪酸なども本発明の原料に用いることができる。
より具体的には、活性炭(特に、500℃以上の高温で賦活されたもの)、コークス、活性コークス、MgO,CaO,SrO,BaO等のアルカリ土類金属酸化物、La2O3,Th2O3等のランタノイド,アクチノイドの酸化物、ZrO2やTiO2等の金属酸化物、アルカリ土類金属等の金属炭酸塩、SiO2-MgO,SiO2-CaO等の複合酸化物、RbやCs等のアルカリ金属イオンやアルカリ土類金属イオンで交換したゼオライト、アルカリ金属化合物やアルカリ土類金属化合物を添加し部分的あるいは全面的に被毒したFCC触媒やFCC廃触媒、Na,K等のアルカリ金属が蒸着されたNa/MgO,K/MgO等の金属蒸着金属酸化物、KF/Al2O3,LiCO3/SiO2等のアルカリ金属塩等を用いることができる。これらの混合物や担持物(例えば、シリカ,コークス等に固体塩基を担持させた担持物)等を用いることもできる。また、加熱されるとMgOとCaOの混合物となるドロマイト等の鉱物も好適に用いることができる。
これらのアンモニア昇温離脱温度はアルミナが50~250℃、シリカゲルが30~200℃、ゼオライト200~600℃、活性炭が0~100℃である。Na被毒したFCC触媒が30~200℃、酸化マグネシウムを担持させた酸化ケイ素が0~60℃、酸化マグネシウムを担持させた活性炭が0~70℃である。アンモニア昇温離脱温度が400℃より高いものは、非常に強い酸触媒であり、油脂中のアルキル基の炭素間結合を切断して生成物が低分子化やすく、また炭素間二重結合を攻撃して芳香族を多く生成するためにコークの生成が増える。このため、生成油の収率が下がり、さらに増加したコークにより触媒の活性低下が早まり、脱炭酸能が低下してカルボン酸の生成が多くなり生成油の品質が低下するため好ましくない。アンモニア昇温離脱温度が400℃より高いものを使用すると生成油中の芳香族が多いためセタン価が低い上に、酸が多く品質が低いためディーゼル燃料として実際に使用するには不適である。なお、触媒の内、活性炭、活性コークス等アンモニア昇温離脱温度が100℃以下の触媒を用いる場合には、油脂と鉱物油との混合物を、原料として用いることができる。活性炭、活性コークス等の触媒は鉱物油をほとんど低分子化しないからである。鉱物油としては、原油を蒸留して得られる常圧残油,常圧残油をさらに減圧蒸留して得られる減圧軽油,減圧残油,これらの水素化処理油、または熱分解油、及びそれらの混合物が挙げられる。また油脂の脱炭酸分解で生成した炭化水素も用いることができる。これらの鉱物油が残渣中に残った油脂の抽出剤として機能してさらに効率を上げることができる。
脱炭酸分解工程において、油脂脱炭酸分解触媒を加熱し触媒が反応温度に達したら、搾油原料や油脂を噴霧,噴射,滴下,散布等によって反応容器内に導入し、油脂脱炭酸分解触媒と接触させる。連続式に処理を行なうことができ、バッチ式に処理を行なうこともできる。油脂は、加熱された油脂脱炭酸分解触媒と接触して分解され、可燃性ガスとして蒸気圧をもつようになる。窒素ガス,ヘリウムガス等の不活性ガスや水蒸気等のフローガスを連続的若しくは間欠的に導入することにより、生成された可燃性ガスを系外に排出させることができる。排出された可燃性ガスは冷却されバイオディーゼル燃料油となる。水蒸気をフローガスとして用いることにより、水溶成分を水蒸気に溶解させて可燃性ガスの洗浄効果を得ることができ、CaO等の触媒を用いる場合は、後述するように触媒の活性低下を防止できる。
失活した油脂脱炭酸分解触媒も、必要に応じて反応容器内で若しくは反応容器から抜き出した後、再生することができる。
また、CaO(触媒)は、水分の存在下で油脂のCO2と結合して油脂を分解し、炭酸水素カルシウムとなる。炭酸水素カルシウムは300℃付近で分解して脱炭酸が起こるため、脱炭酸後のCaOは繰り返し油脂の分解に寄与する。
この構成により、請求項1で得られる作用に加え、以下のような作用が得られる。
(1)加熱された油脂脱炭酸分解触媒又は加熱された油脂の一方、あるいは双方が熱媒体となり、油脂脱炭酸分解触媒の表面で油脂と接触した部分の温度が上昇し、油脂脱炭酸分解触媒の作用によりグリセリンのエステル結合部分が開裂される反応が円滑に進行する。
この構成により、請求項1又は2で得られる作用に加え、以下のような作用が得られる。
(1)搾油原料は350℃~475℃で油脂脱炭酸分解触媒に接触すると、搾油原料の内の殻等のセルロースが炭化されるとともに、搾油原料の油脂成分が溶出して油脂脱炭酸分解触媒に接触して油脂成分のエステル結合部分が開裂され、(化1)に示す脱CO2若しくは脱COが起こり、バイオディーゼル燃料となる分解ガス(炭化水素鎖)を得ることができる。
(2)搾油原料は、加熱され分解される際に水蒸気を発生するため、CaO等のように水分の存在下で良好に機能する油脂脱炭酸分解触媒を用いる場合には好適である。
なお、搾油原料の殻等のセルロースは、炭化して反応容器内に残留するため、残留した炭化物は必要に応じて反応容器内から抜き出せば良い。
この他、油脂の精製工程から排出されるアルカリ油滓や魚滓、畜産滓(内臓類)なども油脂や脂質が多く、原料として使用できる。
油脂脱炭酸分解触媒の再生には反応容器をそのまま使用することができる。再生のための加熱の温度は500℃~600℃が好ましい。500℃未満では再生に時間が掛かり実用的でない。600℃を超えるとセラミック類の構造が変わるなど油脂脱炭酸分解触媒の変性が起こり活性の低下が起こる恐れがあり好ましくない。
この構成により、請求項3で得られる作用に加え、以下のような作用が得られる。
(1)酸素雰囲気下で加熱することで、反応容器内の油脂脱炭酸触媒の表面に蓄積していたコークが燃焼され油脂脱炭酸分解触媒が再生される。
(2)搾油原料の殻等のセルロースは、炭化して反応容器内に残留するため、適宜抜き出し廃棄する必要があるが、活性化した炭素に変えるので、触媒として有効利用でき、廃棄する必要がなくなる。
(3)工業化や交通網の整備が進んでいない地域であっても、容易に油脂脱炭酸分解触媒を調達できる。
この構成により、請求項1乃至4で得られる作用に加え、以下のような作用が得られる。
(1)活性炭、活性コークス、アルミナ、シリカ、酸化マグネシウム、アルカリで修飾された非酸性型ゼオライト、及びそれらの複合体の混合物は鉱物油をほとんど低分子化しないので油脂や搾油原料と鉱物油との混合物を、原料として用いると鉱物油が搾油原料や残渣中に残った油脂の抽出剤として働き、さらに効率を上げることができる。
この構成により、請求項1乃至5で得られる作用に加え、以下のような作用が得られる。
(1)エステル結合の加水分解を水蒸気が促進するので油脂の分解効率が向上する。
原料中の水分がモル比で10/1を超えると生成油中に水分が多くなり品質低下をきたすので原料段階あるいは生成油からの水分除去(乾燥)が必要となる。搾油原料や魚滓等を利用した場合がこれに相当する。後述の実施例6の大豆の場合に表3に示したように水成分が多いのはこのためである。ただし、後段に生成油から水成分を除去する工程を加えれば格段の問題は生じない。
この構成により、以下のような作用が得られる。
(1)搾油原料や油脂が加熱された油脂脱炭酸分解触媒によって加熱されると同時に脱炭酸分解反応が進行するので、コークなどの発生が少なく、熱効率がよく、収率のよい燃料製造が行える。
(2)原料油脂又は搾油原料を加熱して投入することで連続運転ができ、反応容器の構造が簡潔となり管理し易くなる。
脱炭酸分解工程において、油脂脱炭酸分解触媒を加熱し触媒が反応温度に達したら、搾油原料や油脂を噴霧,噴射,滴下,散布等によって反応容器内に投入し、油脂脱炭酸分解触媒と接触させる。油脂及び搾油原料の投入は連続式に行なうことができ、バッチ式に行なうこともできる。油脂は、加熱された油脂脱炭酸分解触媒と接触して分解され、可燃性ガスとして蒸気圧をもつようになる。窒素ガス,ヘリウムガス等の不活性ガスや水蒸気等のフローガスを連続的若しくは間欠的に導入することにより、生成された可燃性ガスを系外に排出させることができる。排出された可燃性ガスは冷却されバイオディーゼル燃料油となる。
搾油原料を投入する場合はより好ましくは油脂脱炭酸分解触媒の量は50容量%以下が採用される。
この構成により、請求項7で得られる作用に加え、以下のような作用が得られる。
(1)第1反応容器から生成したガス混合物を導入する第2の反応容器が前記油脂脱炭酸分解触媒を内部に充填しており、第1反応容器から生成したガス中の有機酸が第2反応容器の油脂脱炭酸分解触媒により脱炭酸分解されるので、生成物中の酸がさらに少なくなり品質が上がる。
(2)第1反応容器で生成した有機酸や原料油脂に含まれていた有機酸が第1反応器の上部を通じて、触媒に触れることなく第1反応器内で生成したガスと共に導出されても、第2反応容器によって脱炭酸分解されるので、生成物中の有機酸が少なくなり高品質が維持される。
(3)装置を長時間運転して、触媒の機能が低下してくると、第1反応容器で反応が不完全となり、反応しきれなかった有機酸が生成したガス混合物中に混入して、生成物の品質が下がる。この品質の低下を抑えるので、装置をさらに長時間運転できるようになり、運転効率を上げる。
この構成により、以下のような作用が得られる。
(1)酸点が弱められたことで、油脂中の二重結合部分の切断が抑えられ、効率的に脱炭酸分解が起こる。また脂肪酸の生成も抑えられる。そのため燃料の生成収率が高くなる。
(2)コークの発生が抑えられ、装置のメンテナンスが少なくなり、触媒の劣化が遅くなる。
酸点が被毒されることでアンモニア昇温離脱温度は低下する。アンモニア昇温離脱温度は400℃未満が好ましく、より好ましくは200℃未満、さらに好ましくは100℃未満にまで被毒により下げたものが採用される。400℃以上では生成物を低分子化しやすい上に、芳香族が多く生成してコークとなり触媒活性が低下しやすいからである。100℃未満では炭素間結合をほとんど切断しないので、鉱物油などが混在している原料に対しても使用できる。
この構成により、請求項9で得られる作用に加えて、以下のような作用が得られる。
(1)石油の流動接触分解で広く使用されているFCC触媒を使用できるので、触媒を得ることが容易である。
またFCC触媒として、産廃として処理されているFCC廃触媒も使用できる。FCC廃触媒とは石油の流動接触分解プロセスから排出されるものである。石油の流動接触分解プロセスでは触媒表面にコークが蓄積し触媒活性が徐々に低下する。そのため、このコークを加熱・焼却して触媒を再生する工程を石油の流動接触分解プロセスは有するが、触媒活性を一定に保つために新しい触媒を加える工程と古い触媒を抜き出す工程を有する。この抜き出された古い触媒がFCC廃触媒であり、多くは産業廃棄物として処理されている。FCC廃触媒は未だ触媒活性を十分に有している上に、非常に安価に入手できる。FCC廃触媒表面にコークが蓄積して触媒機能が低下した場合には、酸素雰囲気下で触媒を加熱することで、触媒表面のコークを焼却され触媒を再生することができる。
この構成により、以下のような作用が得られる。
(1)マグネシウムの水酸化物、酸化物、炭酸塩のいずれか1以上からなる弱アルカリ性化合物によってコーティングされた活性化された炭素、活性コークス、アルミナ、シリカ、アルカリで修飾された非酸性型ゼオライト、粘土鉱物、及びそれらの複合体による混合物は、鉱物油をほとんど低分子化しないので油脂や搾油原料と鉱物油との混合物を、原料として用いると油脂の抽出効率が上がり、分解油の収率を上げることができる。
請求項1に記載の発明によれば、
(1)従来のFAME法と違って、副原料のアルコールを必要としないため、ランニングコストを大幅に安くでき、また原料油脂中のジエン類や水酸基等の不純物が生成物中に残留し難く、コークの生成量が少なく、カルボン酸(遊離脂肪酸)等の不純物も副生され難いため、空気等に対して安定で黒変や異臭が生じ難い貯蔵安定性に優れ、凝固点が-20℃前後の流動性にも優れたバイオディーゼル燃料が得られるバイオディーゼル燃料の製造方法を提供できる。
(2)従来のFAME法と違って、グリセリンを副生しないので、グリセリンの処理技術の確立や処理工数等を必要とせず、またパーオキサイド等の不純物を、吸着剤を使って吸着・除去する工程も不要となり、さらにコークが触媒の表面に析出することによる触媒の活性低下や、触媒が結合し塊状化するといった問題も生じ難く、高い収率で安定操業が可能となるバイオディーゼル燃料の製造方法を提供できる。
(3)原料中に遊離脂肪酸が存在するが、油脂等のグリセリンのエステル結合部分が開裂され脱CO2が行なわれることにより、カルボン酸(遊離脂肪酸)等の不純物が副生され難く、反応中に遊離脂肪酸が副生されても容易に炭化水素と炭酸ガスに分解されるため、副生されたカルボン酸(遊離脂肪酸)によって触媒の活性が低下するという問題が生じ難く、活性低下分を見込んで触媒を大量に使用する必要がないため、使用済み触媒の処理や再活性化等の付帯作業によって、ランニングコストが上昇したり生産性が低下したりすることがなく、生産効率及び生産性に優れたバイオディーゼル燃料の製造方法を提供できる。
(4)原料油脂から遊離脂肪酸を除去する前処理等が不要となり、また反応を常圧下で行うことができるため、バイオディーゼル燃料の製造工程及び反応装置を簡素化することができ、生産性に優れるとともにバイオディーゼル燃料を低コストで製造でき、必要な場所で必要なエネルギーを供給する分散型のエネルギー供給システムを構築できるバイオディーゼル燃料の製造方法を提供できる。
(5)熱分解が抑えられるので、収率がよくなるとともに、生成物中の脂肪酸の濃度が下がり、生成物を安心して燃料として使用できるバイオディーゼル燃料の製造方法を提供できる。
(6)触媒が安定に活性を保つので繰り返し使用でき、低原価で良質なバイオディーゼル燃料の製造方法を提供できる。
(1)加熱された油脂脱炭酸分解触媒又は加熱された油脂の一方が熱媒体となり、油脂脱炭酸分解触媒の表面で油脂と接触した部分の温度が上昇し、油脂脱炭酸分解触媒の作用によりグリセリンのエステル結合部分が開裂される反応が円滑に進行するので、加熱のためのエネルギー消費を下げることができるバイオディーゼル燃料の製造方法を提供できる。
(2)運転開始時には油脂脱炭酸分解触媒と油脂の双方を加熱しておくことで、反応容器内の温度が均一に保たれ、円滑に反応が進行するバイオディーゼル燃料の製造方法を提供できる。
(1)搾油原料は350℃~475℃で油脂脱炭酸分解触媒に接触すると、搾油原料の内の殻等のセルロースが炭化されるとともに、搾油原料の油脂成分が溶出して油脂脱炭酸分解触媒に接触して油脂成分のエステル結合部分が開裂され、(化1)に示す脱CO2若しくは脱COが起こり、バイオディーゼル燃料となる分解ガス(炭化水素鎖)を得ることができるので、搾油原料などの油脂分を多く含んだ有機物を乾燥するだけで、原料にできるバイオディーゼル燃料の製造方法を提供できる。
(2)搾油原料は、加熱され分解される際に水蒸気を発生するため、CaO等のように水分の存在下で良好に機能する油脂脱炭酸分解触媒を用いる場合には好適であるので、搾油原料を用いた効率のより高いバイオディーゼル燃料の製造方法を提供できる。
(1)酸素雰囲気下で加熱することで、反応容器内の油脂脱炭酸触媒の表面に蓄積していたコークが燃焼され油脂脱炭酸触媒が再生されるので、触媒を繰り返し使用できるバイオディーゼル燃料の製造方法を提供できる。
(2)搾油原料の殻等のセルロースは、炭化して反応容器内に残留するため、適宜抜き出し廃棄する必要があるが、活性化した炭素に変えるので、触媒として有効利用でき、廃棄部する必要がなくなるので、連続運転が可能なバイオディーゼル燃料の製造方法を提供できる。
(3)工業化の進んでいない地域であっても、連続運転できる油脂脱炭酸分解触媒を調達できるので、地域を選ばずに導入し易いバイオディーゼル燃料の製造方法を提供できる。
(1)活性炭、活性コークス、アルミナ、シリカ、酸化マグネシウム、アルカリで修飾された非酸性型ゼオライト、及びそれらの複合体の混合酸化物は鉱物油ほとんど低分子化しないので油脂や搾油原料と鉱物油との混合物を、原料として用いると鉱物油が油脂の抽出剤として働き、効率の高いバイオディーゼル燃料の製造方法を提供できる。
(1)エステル結合の加水分解を水蒸気が促進するので油脂の分解効率が向上するバイオディーゼル燃料の製造方法を提供できる。
(1)搾油原料や油脂が350℃~475℃で油脂脱炭酸分解触媒と接触すると同時に脱炭酸分解反応が進行するので、コークなどの発生が少なく、熱効率がよく、収率のよいバイオディーゼル燃料の製造装置を提供できる。
(2)原料油脂又は搾油原料を加熱して投入されることで連続運転が容易で熱効率がよく、管理し易いバイオディーゼル燃料の製造装置を提供できる。
(1)第1反応から生成したガス混合物を導入する第2の反応容器が前記油脂脱炭酸分解触媒を内部に充填しており、第1反応容器から生成したガス中の有機酸が第2反応容器の油脂脱炭酸分解触媒により脱炭酸分解されるので、生成物中の酸がさらに少なくなり生成油の品質がよいバイオディーゼル燃料の製造装置を提供できる。
(2)第1反応容器で生成した有機酸や原料油脂に含まれていた有機酸が第1反応器の上部を通じて、触媒に触れることなく第1反応器内で生成したガスと共に導出されても、第2反応器によって脱炭酸分解されるので、生成物中の有機酸が少なくなり生成油の高品質が維持されるバイオディーゼル燃料の製造装置を提供できる。
(3)装置を長時間運転して、触媒の機能が低下してくると、第1反応容器で反応が不完全となり、生成したガス混合物中の有機酸が増加して、生成油の品質が下がる。この品質の低下を抑えるので、装置をさらに長時間運転できるようになり、運転効率が高いバイオディーゼル燃料の製造装置を提供できる。
(1)酸点が弱められたことで、油脂中の二重結合部分の切断が抑えられ、効率的に脱炭酸分解が起こる。また有機酸の生成も抑えられる。そのため燃料の生成収率が高い油脂脱炭酸分解触媒を提供できる。
(2)コークの発生が抑えられ、装置のメンテナンスが少なくなり、触媒の劣化が遅い油脂脱炭酸分解触媒を提供できる。
(1)広く使用されているFCC触媒が簡単な操作で利用できるので、実施することが容易となる。またFCC触媒は触媒機能が低下しても簡単に再生できるので、大掛かりな再生装置が必要ない。また再生せずに処理するとしても処理方法が確立しているために、安心して施設運転ができる油脂脱炭酸分解触媒を提供できる。
(2)廃棄物として処理されているFCC廃触媒も利用できるので、運転コストが非常に安くなる油脂脱炭酸分解触媒を提供できる。
(1)マグネシウムの水酸化物、酸化物、炭酸塩のいずれか1以上からなる弱アルカリ性化合物によってコーティングされた活性化された炭素、活性コークス、アルミナ、シリカ、アルカリで修飾された非酸性型ゼオライト、粘土鉱物、及びそれらの複合による混合酸化物は、鉱物油をほとんど低分子化しないので油脂や搾油原料と鉱物油との混合物を原料として用いると油脂の抽出効率が上がり、分解油の収率の高い油脂脱炭酸分解触媒を提供できる。
(実施の形態1)
まず、実施例1~7及び実施例9~14で使用した反応装置について説明する。
図1は実施の形態1の反応装置の構成図である。
図中、1は本発明の実施例で使用した実施の形態1の反応装置、2は反応容器、3は反応容器2に収容された粉粒状のシリカ,活性化された炭素,固体塩基、被毒されたFCC触媒などの油脂脱炭酸分解触媒、4は反応容器2に収容された触媒3を350~475℃に加熱するヒータ、5は反応容器2に油脂や搾油原料を噴霧,滴下,散布等によって投入する原料投入部、6は反応容器2に窒素ガス等の不活性ガスや水蒸気等のフローガスを導入するフローガス導入部、7は触媒3を撹拌する撹拌装置、8は反応容器2内で生じた生成物をフローガスに同伴させて反応容器2の外へ導出する第一導出管、9は第一導出管8が接続され生成物の内で沸点が0℃~反応容器の温度の分解生成物(以下、分解油という。)を貯留する分解油貯留部、10は一端が分解油貯留部9に接続された排出管、11は排出管10に配設され排出管10を0℃に冷却し生成物のうち分解油を液化させる冷却管、12は排出管10の他端が接続され-80℃に冷却され沸点が-80~0℃の液化した分解生成物(以下、軽質油という。)を貯留する冷却トラップ装置、13は一端が冷却トラップ装置12に接続されたガス排出管である。
次に、実施例8で使用した実施の形態2の反応装置について説明する。
図2はその実施の形態2の反応装置の構成図である。
図中、21は実施の形態2の反応装置である。図1と共通する部分については同一の符号を付し説明を省略する。22は原料油脂や搾油原料を加熱する加熱部である。23は運転開始時など触媒3の温度が低い場合に、加熱するための補助加熱部である。
次に、実施例15で使用した実施の形態3の反応装置について説明する。
図3はその実施の形態3の反応装置の構成図である。
図中、31は実施の形態3の反応装置である。図1と共通する部分については同一の符号を付し説明を省略する。なお32は実施の形態3の第1反応容器であり、図1の反応容器2に相当する。33は第1反応容器32に収容された粉粒状のシリカなどの油脂脱炭酸触媒A、8は第1反応容器32内で生じた生成物をフローガスに同伴させて第1反応容器32の外へ導出する第1導出管、34は第2反応容器、35は第2反応容器34に収容された粉粒状のシリカ,活性化された炭素,固体塩基などの油脂脱炭酸分解触媒Bであり、38は第2反応容器34で脱炭酸分解されたガスを導出する第2導出管である。
触媒3が反応温度の420℃に上昇したのを確認し、原料投入部5からパーム油(油脂)を大気圧下の反応容器2内に滴下して投入した。油脂の投入量は0.25mL/分、フローガス導入部6からのフローガス(窒素ガス)の導入量は50mL/分とした。
油脂を合計75g投入することにより、生成物を得た。分解油貯留部9に貯留した分解油と、ガス排出管13から排出されたガス物質(一酸化炭素,二酸化炭素及び軽質炭化水素ガス)の成分分析を行った。分解油の分析はGC-MSを用いて行い、ガス物質の内、一酸化炭素,二酸化炭素の分析はGC-TCDを用いて行い、軽質炭化水素ガスの分析はGC-FIDを用いて行なった。また、実験後の触媒をTG-DTAで分析した。
なお、シリカにMgOを担持させた触媒は、実施例1で用いた触媒用シリカに対して金属マグネシウムとして10質量%に相当する量の硝酸マグネシウム(Mg(NO3)2・6H2O)の水溶液を、Incipient Wetness法によりシリカに含浸させ、含浸後120℃で乾燥し、その後500℃で3時間、大気中で焼成することにより得た。
なお、活性コークスにMgOを担持させた触媒は、実施例3で用いた活性コークスに対して金属マグネシウムとして10質量%に相当する量の硝酸マグネシウム(Mg(NO3)2・6H2O)の水溶液を、Incipient Wetness法により活性コークスに含浸させ、含浸後120℃で乾燥し、その後350℃で3時間、窒素雰囲気中で焼成することにより得た。
触媒として、FCC廃触媒を用い、反応温度を420℃とした以外は、実施例1と同様にした。
なお、FCC廃触媒は、石油の流動接触分解(FCC:fluid catalyst cracking)プロセスで使用された40~80μmの粒粉状に造粒された合成ゼオライト系の固体酸触媒を再生したものである。
表1は実施例1~4及び比較例1における生成物の量と分解油の収率を示したものである。
実験後の触媒のTG-DTA分析結果から、実施例1~4の触媒にはコークが9%前後残存していたが、比較例1の触媒(FCC廃触媒)にはコークが30%程度も残存していることがわかった。また、分解油のGC-MSによる分析結果から、比較例1の分解油には約50%のパラフィン、約20%のオレフィン、約20%の芳香族化合物が存在するが、実施例1~4の分解油には約50~60%のパラフィン、約30~40%のオレフィンが存在するが、芳香族化合物はほとんど存在しないことがわかった。この結果から、残渣は主にコークであり、コークは触媒(FCC廃触媒)の酸点により生成されたオレフィン由来の芳香族化合物の重合物であると推察された。実施例1~4では、触媒として中性のシリカ又は固体塩基を用いているため、芳香族化合物がほとんど生成されず、このためコークの生成も少なく残渣の生成量が少なくなったものと推察された。
得られた分解油の流動点を、JIS K2269(原油及び石油製品の流動点並びに石油製品曇り点試験方法)に基づき測定したところ、-12.5℃であった。市販されている一般の軽油の流動点は-7℃であるため、一般軽油程度に低い流動点の分解油を製造できることがわかった。
表2は実施例1~4及び比較例1において生成したガス物質の一酸化炭素と二酸化炭素の量を示したものである。
二酸化炭素量を比較すると、比較例1、実施例1、実施例2~4の順に増加していることがわかった。比較例1の触媒は固体酸、実施例1の触媒はシリカ(中性)、実施例2~4の触媒は固体塩基であることから、実施例1~4のようにシリカや固体塩基を触媒とすることにより、選択的にCO2を回収できることが確認できた。
表2及び図3の結果から、油脂の分解メカニズムは以下のように推察される。加熱された油脂脱炭酸分解触媒と接触した油脂はグリセリンが外れ、脂肪酸が生成される。生成された脂肪酸はカルボキシル基の部分がCO2として取り除かれ、残りの炭素鎖が分解油として回収される。グリセリン基は、プロパン等の軽質炭化水素ガスとして回収される。
なお、実施例3において、触媒である活性コークスに代えて活性化した炭素を用いた場合にも、同様の結果が得られた。
油脂脱炭酸分解触媒3は、実施例2と同じ触媒用シリカにMgOを担持させた触媒を用いた。この触媒50mLを、内容積150mLの反応容器2に収容した。原料油脂を加熱部22で450℃まで加熱した。原料油脂の加熱温度は、加熱部22内に入れた図示しない熱電対を原料油脂に接触させて測定した。
原料油脂が反応温度の450℃に上昇したのを確認し、原料投入部5からヤトロファ油(油脂)を大気圧下の反応容器2内に滴下して投入した。油脂の投入量は1.0mL/分、フローガス導入部6からのフローガス(窒素ガス)の導入量は50mL/分とした。
油脂を合計75g投入することにより、生成物を得た。
なお、実施例6では、分解油に油性分、水性分、沈殿物、浮遊物が混在していた。搾油原料は、油脂以外の成分を豊富に含むからであると考えられる。そこで、実施例6の分解油収率は、沈殿物等の影響を除くため、実施例1~5とは異なり、投入量に対する油性分の割合から換算した。また、実施例6ではガス物質の分析を行わなかった。油脂以外の成分の影響が大きいからである。
搾油原料を用いる場合など、原料中に水分が多い場合には実施例6のように生成する分解油中に水性分が多くなるので、燃料として使用するためには原料から又は分解油から水分を除去する工程が必要となる。
また、実施例6に示すように、搾油原料(大豆)からも5.7%の収率で油成分が得られることが確認された。国内産大豆の油脂の含有率は約10wt%といわれているので、油成分の収率5.7wt%は、かなりの高収率であるといえる。
さらにヤトロファ油はリン酸の含有量が高く、それが従来法で燃料化すると、燃料油に残留し、エンジンなどを損傷することが問題となっていた。IPCで実施例8の分解油と原料油脂としたヤトロフア油のリン酸濃度を測定したところ原料油脂では約10mg/Lであったのに対して、分解油では0.9mg/Lであった。原料油脂中のリン酸が分解油に移行せず、リン酸含有量の低い分解油を得られることが示された。
なお、FCC廃触媒をNaClで被毒した触媒はFCC廃触媒50gに対して50g/LのNaCl水溶液1.0Lを加えて50℃±5℃で1時間処理して作成した。この方法で得られた触媒の酸点はおよそ90%被毒していた。この方法で得られた触媒の酸点をアンモニア昇温離脱法で評価したところ、およそ90%の酸点が被毒していた。
触媒として、固体酸触媒であるシリカを用いた以外は、比較例1と同様にした。
なお、シリカを硝酸マグネシウム水溶液で被毒した触媒はシリカ50gに対して50g/LのMg(NO3)2水溶液1.0Lを加えて50℃±5℃で1時間処理して作成した。この方法で得られた触媒の酸点をアンモニア昇温離脱法で評価したところ、およそ90%の酸点が被毒していた。
なお、FCC廃触媒をMgで被毒し、さらに酸化マグネシウムを担持させた触媒はFCC廃触媒50gに対して50g/LのMg(NO3)2水溶液1.0Lを加えて50℃±5℃で1時間処理して作成した。ここで担持とは酸点の被毒以上に酸化マグネシウムが触媒に含まれている状態をいう。
固体酸触媒をアルカリ被毒をすることでCO2の生成が増え、分解油の収率が上がっている。さらに酸化マグネシウムを担持させることでCO2の生成が増え、分解油の収率が上がる。収率が上がるとともに残渣の量が減っている。表4下部にその残渣の内訳を示している。固定酸触媒をアルカリ被毒することで油脂中の二重結合部分の切断が減少したため、比較例1及び2に比べて副成するコークの量が著しく減り、分解油の収率が上がったと考えられる。
(比較例3)
反応温度を300℃とした以外は実施例2と同様にした。
(比較例4)
反応温度を550℃とした以外は実施例2と同様にした。
これより反応の温度範囲は350℃~475℃が好ましいことが示された。300℃(比較例3)では反応が遅く、実用的でない。また油脂の重合固化が起こったため残渣量が増え、炭化水素の生産性が下がったものと考えられる。550℃(比較例4)では分解油の収率が低く、残渣量が多いことから熱分解が起こり、ガスやコークの生成量が増加したものと考えられる。
反応を多く繰り返すと触媒の活性は徐々に低下してくる。この活性が低下した触媒を使用した以外は実施例2と同様にした。この活性が低下した触媒の炭素含有率を空気雰囲気下800℃1時間の加熱減量分として測定したところ45重量%であった。
(比較例6)
再生時の触媒の加熱保持温度を450℃±20℃とした以外は実施例16と同様にした。
(比較例7)
再生時の触媒の加熱保持温度を650℃±20℃とした以外は実施例12と同様にした。
(比較例8)
液空間速度0.05/hとした以外は実施例2と同様にした。
(比較例9)
液空間速度4.0/hとした以外は実施例2と同様にした。
これより液空間速度の範囲は0.05/h~2.0/hが好ましいことが示された。0.02/h(比較例8)では処理速度が遅く、処理効率が低い上に2次的な分解により生成油分がガス化して収率が低下するため好ましくない。4.0/h(比較例9)では分解油の収率が低く、残渣量が多いことから触媒と油脂等との接触時間が短くなり油脂分解率が低下したものと考えられる。
なお、酸化マグネシウムを担持させたシリカは実施例1と同様にして作成した。
Naで被毒したFCC廃触媒は実施例11と同様にして作成した。
第二反応炉が設置されたことで生成物中の酸が減少している。
2 反応容器
3 油脂脱炭酸分解触媒
4 ヒータ
5 原料投入部
6 フローガス導入部
7 撹拌装置
8 第1導出管
9 分解油貯留部
10 排出管
11 冷却管
12 冷却トラップ装置
13 ガス排出管
21 実施の形態2の反応装置
22 原料油脂加熱部
23 補助加熱部
31 実施の形態3の反応装置
32 第1反応容器
33 油脂脱炭酸分解触媒A
34 第2反応容器
35 油脂脱炭酸分解触媒B
38 第2導出管
Claims (11)
- 前記油脂脱炭酸分解触媒と前記油脂の内いずれか1あるいは両方が、接触して脱炭酸反応するよりも前に350℃~475℃に加熱されていることを特徴とする請求項1に記載のバイオディーゼル燃料の製造方法。
- 前記油脂の代わりに搾油原料が用いられることを特徴とする請求項1又は2に記載のバイオディーゼル燃料の製造方法。
- 前記油脂脱炭酸分解触媒がバイオディーゼル燃料の製造後に残った搾油原料由来の炭化物を酸素雰囲気下、前記反応容器内で加熱して活性化された炭素としたものを含有することを特徴とする請求項3に記載のバイオディーゼル燃料の製造方法。
- 前記油脂脱炭酸分解触媒が活性化された炭素、活性コークス、アルミナ、シリカ、酸化マグネシウム、アルカリで修飾された非酸性型ゼオライト、及びそれらの複合体の混合物の内いずれか1以上を含むことを特徴とする請求項1乃至4の内いずれか1に記載のバイオディーゼル燃料の製造方法。
- 前記脱炭酸反応においてモル比で1/10~10/1(H2O/油脂)の水蒸気が共存することを特徴とする請求項1乃至5の内いずれか1に記載のバイオディーゼル燃料の製造方法。
- 請求項1乃至6の内いずれか1に記載のバイディーゼルオ燃料の製造方法に用いるバイオディーゼル燃料の製造装置であって、前記油脂脱炭酸分解触媒を内部に有した第1反応容器と、前記油脂脱炭酸分解触媒又は前記油脂若しくは搾油原料を加熱する加熱部と搾油原料や油脂を前記第1反応容器に投入する投入部と、生成したガス混合物を前記第1反応容器から導出する第1ガス導出部と、を有することを特徴とするバイオディーゼル燃料の製造装置。
- 前記第1ガス導出部に接続され前記油脂脱炭酸分解触媒が充填された第2反応容器と、前記第1反応容器の生成ガス混合物を前記第2反応容器の内部に導入するガス導入部と、前記第2反応容器の前記油脂脱炭酸分解触媒で脱炭酸されたガス混合物を導出する第2ガス導出部を備えていることを特徴とする請求項7に記載のバイオディーゼル燃料の製造装置。
- 請求項1乃至6の内のいずれか1に記載のバイオディーゼル燃料の製造方法、又は請求項7若しくは8に記載のバイオディーゼル燃料の製造装置で使用する油脂脱炭酸分解触媒であって、アルカリ金属とアルカリ土類金属のうち1以上によって酸点が被毒された固体酸触媒を含むことを特徴とする油脂脱炭酸分解触媒。
- 前記固体酸触媒がFCC触媒を含むことを特徴とする請求項9に記載の油脂脱炭酸分解触媒。
- 請求項1乃至6の内のいずれか1に記載のバイオディーゼル燃料の製造方法、又は請求項7若しくは8に記載のバイオディーゼル燃料の製造装置で使用する油脂脱炭酸分解触媒であって、活性化された炭素、活性コークス、アルミナ、シリカ、アルカリで修飾された非酸性型ゼオライト、粘土鉱物、及びそれらの複合体による混合物の内いずれか1以上がマグネシウムの水酸化物、酸化物、炭酸塩のいずれか1以上からなる弱アルカリ性化合物によってコーティングしたものを含むことを特徴とする油脂脱炭酸分解触媒。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020117011091A KR101391221B1 (ko) | 2008-10-31 | 2009-10-27 | 바이오디젤 연료의 제조 방법 및 그 제조 장치, 그리고 그 방법에 사용하는 유지 탈탄산 분해 촉매 |
JP2010535661A JP5353893B2 (ja) | 2008-10-31 | 2009-10-27 | バイオディーゼル燃料の製造方法及びその製造装置、その方法に用いる油脂脱炭酸分解触媒 |
CN200980143059.3A CN102203218B (zh) | 2008-10-31 | 2009-10-27 | 生物柴油燃料的制备方法及其制备装置、用于该方法的油脂脱羧分解催化剂 |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008-282143 | 2008-10-31 | ||
JP2008282143 | 2008-10-31 | ||
JP2009-213768 | 2009-09-15 | ||
JP2009213768 | 2009-09-15 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010050186A1 true WO2010050186A1 (ja) | 2010-05-06 |
Family
ID=42128557
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2009/005669 WO2010050186A1 (ja) | 2008-10-31 | 2009-10-27 | バイオディーゼル燃料の製造方法及びその製造装置、その方法に用いる油脂脱炭酸分解触媒 |
Country Status (5)
Country | Link |
---|---|
JP (2) | JP5353893B2 (ja) |
KR (1) | KR101391221B1 (ja) |
CN (1) | CN102203218B (ja) |
MY (1) | MY155384A (ja) |
WO (1) | WO2010050186A1 (ja) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012077131A (ja) * | 2010-09-30 | 2012-04-19 | Hidenori Kanetsuna | バイオ石油燃料製造方法と、それに使用する触媒および製造システム |
JP2012162649A (ja) * | 2011-02-07 | 2012-08-30 | Takuma Co Ltd | ディーゼル燃料製造システムおよびディーゼル燃料製造方法 |
JP2012188577A (ja) * | 2011-03-11 | 2012-10-04 | Takuma Co Ltd | ディーゼル燃料製造用精製器および精製方法、これを用いたディーゼル燃料製造システムおよび製造方法 |
WO2013069737A1 (ja) * | 2011-11-08 | 2013-05-16 | 公益財団法人北九州産業学術推進機構 | 接触分解触媒及びその製造方法並びにそれを用いて得られたバイオディーゼル燃料 |
JP2016074852A (ja) * | 2014-10-08 | 2016-05-12 | 公益財団法人北九州産業学術推進機構 | 炭化水素油の精製方法 |
CN110041978A (zh) * | 2019-04-30 | 2019-07-23 | 蔡国宇 | 一种透气型高燃烧效率生物质颗粒的制备方法 |
WO2019221287A1 (ja) * | 2018-05-18 | 2019-11-21 | 一般社団法人 HiBD研究所 | バイオジェット燃料の製造方法 |
WO2025068057A1 (en) | 2023-09-25 | 2025-04-03 | Basell Poliolefine Italia S.R.L. | Steam cracker setup for conversion of plastic waste into olefins |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103614155B (zh) * | 2013-09-11 | 2016-08-10 | 浙江工业大学 | 一种藻油生产烃类燃料的制备方法 |
CN103509587B (zh) * | 2013-09-26 | 2014-12-10 | 太原理工大学 | 一种用动植物油脂及废弃油制备煤浮选剂的方法 |
CN103484143B (zh) * | 2013-09-29 | 2015-07-22 | 广西大学 | Fcc废触媒负载酸催化黑松香裂化制备生物柴油的方法 |
JP2021066860A (ja) * | 2019-10-23 | 2021-04-30 | 株式会社Rta | 廃プラスチック熱分解油化方法 |
EP4130202A4 (en) * | 2020-03-25 | 2024-04-03 | Biofuel Technology Research Co., Ltd. | Method for producing biodiesel fuel |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007177193A (ja) * | 2005-11-30 | 2007-07-12 | Nippon Oil Corp | 流動接触分解を用いたバイオマスの処理方法 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ATE490298T1 (de) * | 2005-01-14 | 2010-12-15 | Neste Oil Oyj | Verfahren zur herstellung von kohlenwasserstoffen |
US7491858B2 (en) * | 2005-01-14 | 2009-02-17 | Fortum Oyj | Method for the manufacture of hydrocarbons |
-
2009
- 2009-10-27 WO PCT/JP2009/005669 patent/WO2010050186A1/ja active Application Filing
- 2009-10-27 MY MYPI2011001915A patent/MY155384A/en unknown
- 2009-10-27 JP JP2010535661A patent/JP5353893B2/ja active Active
- 2009-10-27 CN CN200980143059.3A patent/CN102203218B/zh active Active
- 2009-10-27 KR KR1020117011091A patent/KR101391221B1/ko active Active
-
2013
- 2013-07-18 JP JP2013149190A patent/JP5721152B2/ja active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007177193A (ja) * | 2005-11-30 | 2007-07-12 | Nippon Oil Corp | 流動接触分解を用いたバイオマスの処理方法 |
Non-Patent Citations (4)
Title |
---|
KAORU FUJIMOTO ET AL., THE JAPAN INSTITUTE OF ENERGY TAIKAI KOEN YOSHISHU, vol. 17TH, 4 August 2008 (2008-08-04), pages 188 - 189 * |
ROGER FRETY ET AL.: "Applied Catalysis", vol. 5, no. ISS.3, 1983, pages 299 - 308 * |
SUBHASH BHATIA ET AL., FUEL PROCESSING TECHNOLOGY, vol. 84, no. ISS.1-, 2003, pages 105 - 120 * |
SUBHASH BHATIA ET AL., IND. ENG. CHEM. RES., vol. 38, no. 9, 1999, pages 3230 - 3237 * |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012077131A (ja) * | 2010-09-30 | 2012-04-19 | Hidenori Kanetsuna | バイオ石油燃料製造方法と、それに使用する触媒および製造システム |
JP2012162649A (ja) * | 2011-02-07 | 2012-08-30 | Takuma Co Ltd | ディーゼル燃料製造システムおよびディーゼル燃料製造方法 |
JP2012188577A (ja) * | 2011-03-11 | 2012-10-04 | Takuma Co Ltd | ディーゼル燃料製造用精製器および精製方法、これを用いたディーゼル燃料製造システムおよび製造方法 |
WO2013069737A1 (ja) * | 2011-11-08 | 2013-05-16 | 公益財団法人北九州産業学術推進機構 | 接触分解触媒及びその製造方法並びにそれを用いて得られたバイオディーゼル燃料 |
JPWO2013069737A1 (ja) * | 2011-11-08 | 2015-04-02 | 公益財団法人北九州産業学術推進機構 | 接触分解触媒及びそれを用いて得られたバイオディーゼル燃料 |
JP2016074852A (ja) * | 2014-10-08 | 2016-05-12 | 公益財団法人北九州産業学術推進機構 | 炭化水素油の精製方法 |
WO2019221287A1 (ja) * | 2018-05-18 | 2019-11-21 | 一般社団法人 HiBD研究所 | バイオジェット燃料の製造方法 |
JP6635362B1 (ja) * | 2018-05-18 | 2020-01-22 | 一般社団法人HiBD研究所 | バイオジェット燃料の製造方法 |
US11603501B2 (en) | 2018-05-18 | 2023-03-14 | Hibd Laboratory Association | Method for producing bio-jet fuel |
CN110041978A (zh) * | 2019-04-30 | 2019-07-23 | 蔡国宇 | 一种透气型高燃烧效率生物质颗粒的制备方法 |
WO2025068057A1 (en) | 2023-09-25 | 2025-04-03 | Basell Poliolefine Italia S.R.L. | Steam cracker setup for conversion of plastic waste into olefins |
Also Published As
Publication number | Publication date |
---|---|
MY155384A (en) | 2015-10-15 |
CN102203218B (zh) | 2015-03-25 |
KR20110093800A (ko) | 2011-08-18 |
JP2013241612A (ja) | 2013-12-05 |
JP5353893B2 (ja) | 2013-11-27 |
JP5721152B2 (ja) | 2015-05-20 |
CN102203218A (zh) | 2011-09-28 |
KR101391221B1 (ko) | 2014-05-08 |
JPWO2010050186A1 (ja) | 2012-03-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5721152B2 (ja) | バイオディーゼル燃料の製造方法及びその製造装置、その方法に用いる油脂脱炭酸分解触媒 | |
Arumugamurthy et al. | Conversion of a low value industrial waste into biodiesel using a catalyst derived from brewery waste: An activation and deactivation kinetic study | |
Kamel et al. | Smart utilization of jatropha (Jatropha curcas Linnaeus) seeds for biodiesel production: Optimization and mechanism | |
Saba et al. | Biodiesel production from refined sunflower vegetable oil over KOH/ZSM5 catalysts | |
KR101484825B1 (ko) | 천연 지방 및 오일의 복합 혼합물로부터의 바이오-나프타의 제조 방법 | |
KR101424897B1 (ko) | 천연 지방 & 오일의 복합 혼합물로부터의 바이오-나프타의 제조 방법 | |
CA3023946C (en) | Biorenewable kerosene, jet fuel, jet fuel blendstock, and method of manufacturing | |
Ferrero et al. | Towards sustainable biofuel production: design of a new biocatalyst to biodiesel synthesis from waste oil and commercial ethanol | |
KR20150110631A (ko) | 자연 발생 지방 및 오일의 복합 혼합물로부터의 바이오-나프타의 제조 방법 | |
BRPI0811661A2 (pt) | processo de hidrotratamento de uma alimentação líquida e processo para hidrodesoxigenação de um recurso renovável | |
Hosseini et al. | Feasibility of honeycomb monolith supported sugar catalyst to produce biodiesel from palm fatty acid distillate (PFAD) | |
Wong et al. | Synthesis of glycerol‐free fatty acid methyl ester using interesterification reaction based on solid acid carbon catalyst derived from low‐cost biomass wastes | |
Riaz et al. | A review on catalysts of biodiesel (methyl esters) production | |
Girish | Review of various technologies used for biodiesel production | |
JP2010539298A (ja) | 粘結炭の嵩密度を制御するための方法及び組成物 | |
KR20250087700A (ko) | 유동층 지질 변환 | |
JP6004378B2 (ja) | 接触分解触媒 | |
Islam et al. | Advanced technologies in biodiesel: New advances in designed and optimized catalysts | |
Zohmingliana et al. | Functionalized biochar for green and sustainable production of biodiesel | |
JP5896510B2 (ja) | 油脂の接触分解方法及びそれに用いる脱炭酸・水素化接触分解触媒 | |
JP5628713B2 (ja) | ディーゼル燃料製造用精製器および精製方法、これを用いたディーゼル燃料製造システムおよび製造方法 | |
Xu et al. | Catalytic pyrolysis of soybean oil with CaO/Bio-Char based catalyst to produce high quality biofuel | |
KR20110115793A (ko) | 초임계 유체를 이용한 폐식용유로부터의 재생연료 제조방법 | |
Goh et al. | Biomass-based catalyst-assisted biodiesel production | |
de Araújo Sobrinho et al. | Catalytic solid derived from residual bean husk biomass applied to sustainable biodiesel production: preparation, characterization, and regeneration study |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200980143059.3 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09823299 Country of ref document: EP Kind code of ref document: A1 |
|
DPE1 | Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101) | ||
ENP | Entry into the national phase |
Ref document number: 2010535661 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 20117011091 Country of ref document: KR Kind code of ref document: A |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 09823299 Country of ref document: EP Kind code of ref document: A1 |