[go: up one dir, main page]

WO2010046328A1 - Verzweigte polyarylenether und diese enthaltende thermoplastische formmassen - Google Patents

Verzweigte polyarylenether und diese enthaltende thermoplastische formmassen Download PDF

Info

Publication number
WO2010046328A1
WO2010046328A1 PCT/EP2009/063635 EP2009063635W WO2010046328A1 WO 2010046328 A1 WO2010046328 A1 WO 2010046328A1 EP 2009063635 W EP2009063635 W EP 2009063635W WO 2010046328 A1 WO2010046328 A1 WO 2010046328A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyarylene ether
molding compositions
independently
thermoplastic molding
polyarylene
Prior art date
Application number
PCT/EP2009/063635
Other languages
English (en)
French (fr)
Inventor
Martin Weber
Alexander Khvorost
Bernd Bruchmann
Original Assignee
Basf Se
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Basf Se filed Critical Basf Se
Priority to EP09736950A priority Critical patent/EP2340273A1/de
Priority to JP2011532602A priority patent/JP2012506466A/ja
Priority to US13/125,898 priority patent/US20110201747A1/en
Priority to BRPI0920638A priority patent/BRPI0920638A2/pt
Priority to CN200980152362.XA priority patent/CN102264798B/zh
Publication of WO2010046328A1 publication Critical patent/WO2010046328A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/34Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives
    • C08G65/38Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives derived from phenols
    • C08G65/40Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives derived from phenols from phenols (I) and other compounds (II), e.g. OH-Ar-OH + X-Ar-X, where X is halogen atom, i.e. leaving group
    • C08G65/4012Other compound (II) containing a ketone group, e.g. X-Ar-C(=O)-Ar-X for polyetherketones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/34Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives
    • C08G65/38Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives derived from phenols
    • C08G65/40Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives derived from phenols from phenols (I) and other compounds (II), e.g. OH-Ar-OH + X-Ar-X, where X is halogen atom, i.e. leaving group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G75/00Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen, or carbon in the main chain of the macromolecule
    • C08G75/20Polysulfones
    • C08G75/23Polyethersulfones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • C08L71/08Polyethers derived from hydroxy compounds or from their metallic derivatives
    • C08L71/10Polyethers derived from hydroxy compounds or from their metallic derivatives from phenols
    • C08L71/12Polyphenylene oxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L81/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur with or without nitrogen, oxygen or carbon only; Compositions of polysulfones; Compositions of derivatives of such polymers
    • C08L81/06Polysulfones; Polyethersulfones

Definitions

  • the present invention relates to branched polyarylene ethers (A) containing branching points of the formula (I):
  • the present invention relates to a process for preparing the branched polyarylene ethers (A) and thermoplastic molding compositions containing the branched polyarylene ethers (A) and other thermoplastic polymers (B).
  • the present invention relates to the use of the thermoplastic molding compositions for the production of moldings and moldings obtainable from the aforementioned thermoplastic molding compositions.
  • Polyarylene ethers belong to the group of high-performance thermoplastics and are used in highly stressed applications because of their high heat resistance and chemical resistance. See G. Blinne, M. Knoll, D. Müller, K. Schlichting, Kunststoffe 75, 219 (1985), EM Koch, H .-M. Walter, Kunststoffe 80, 1146 (1990) and D. Döring, Kunststoffe 80, 1149 (1990).
  • the polyarylene ethers Due to the high glass transition temperature, the polyarylene ethers have comparatively high melt viscosity, which is why very high processing temperatures are required for the thermoplastic processing of this class of substance (for example by injection molding, extrusion). In order to fill complicated tools, it is often necessary to choose temperatures in which side reactions such as molecular weight build-up or crosslinking gain in importance.
  • Lubricants such as, for example, stearates or oligomeric fatty acid esters are usually used to improve the flowability (R. Gumbleter, H. Müller, Kunststoff-Additive, S.443 ff, 3rd edition, Hanser Verlag Kunststoff 1989). Due to the high thermal load, however, such additives lead to discoloration of the finished products.
  • German Offenlegungsschrift DE-A 2305413 discloses branched polyarylene ether sulfones which have less susceptibility to stress corrosion cracking than the linear polyarylene ether sulfones, improved resistance to unsaturated polyester resins and reduced flammability.
  • the stress cracking resistance of mixtures of thermoplastic polymers, in particular linear polyarylene ether sulfones with said branched polyarylene ether sulfones is not sufficient for many applications.
  • An object of the present invention was to provide improved over the prior art branched polyarylene ethers, which lead in admixture with thermoplastic molding compositions to improve the flowability.
  • the object of the present invention was also to provide polyarylene ether sulfones having improved flowability, which at the same time have high chemical stability.
  • the polyarylene ether sulfones of the present invention should have high stress crack resistance.
  • the mechanical properties should not be adversely affected compared to the use of known branched polyarylene ether.
  • the polyarylene ether sulfones should have a high toughness.
  • polyarylene ethers (A) according to the invention contain branch points according to the formula (I):
  • Branching point in the context of the present invention is understood to mean a chain building block which is linked via at least three oxygen atoms to further building blocks of the polymer. Accordingly, the branching point according to formula (I) links three chain segments of the polyarylene ether (A), the branching point being linked via an oxygen atom to the chain segments of the polyarylene ether (A). Depending on the proportion of the branching points according to the invention, the result is, on average, partially, mono or multiply branched polyarylene ethers (A).
  • polyarylene ethers are polymers which have at least one chain building block with at least one arylene unit incorporated into the polymer chain via an oxygen atom.
  • the polyarylene ethers (A) of the present invention are polyarylene ether sulfones.
  • polyarylene ether sulfones are likewise known per se to a person skilled in the art.
  • polyarylene ether sulfones are understood as meaning polymers which contain at least one chain constituent which is at least a built-in via an oxygen atom in the polymer chain arylene unit and at least one built-in an -S ⁇ 2 group in the polymer chain arylene unit.
  • Polyarylene ethers (A) which are preferred in the context of the present invention are polyarylene ether sulfones containing
  • t, q independently of one another 0, 1, 2 or 3
  • Ar, Ar 1 independently of one another C 6 -C 18 -arylene group,
  • Q, T and Y in formula (II) are independently selected from -O- and -SO 2 -, with the proviso that at least one selected from the group consisting of Q, T and Y is -SO 2 -.
  • R a and R b are each independently a hydrogen atom or a C 1 -C 12 alkyl, C 1 -C 12 alkoxy or C 6 -C 18 -aryl group.
  • C 1 -C 12 alkyl groups include linear and branched, saturated alkyl groups having from 1 to 12 carbon atoms.
  • the following radicals are to C 1 -C 6 -alkyl, such as methyl, ethyl, n-propyl, i-propyl, n-butyl, sec-butyl, 2- or 3-methyl-pentyl and longer-chain radicals such as unbranched heptyl, octyl, nonyl , Decyl, undecyl, lauryl and the mono- or poly-branched analogs thereof.
  • Suitable alkyl radicals in the abovementioned usable C 1 -C 12 -alkoxy groups are the alkyl groups having from 1 to 12 carbon atoms defined above.
  • Preferred cycloalkyl radicals include in particular C 3 -C 12 -CCCl 10 -alkyl radicals, such as, for example, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl, cyclopropylmethyl, cyclopropylethyl, cyclopropylpropyl, cyclobutylmethyl, cyclobutylethyl, cyclpentylethyl, -propyl, -butyl, -pentyl, -hexyl, cyclohexylmethyl, -dimethyl, -trimethyl.
  • Ar and Ar 1 independently of one another denote a C 6 -C 18 -arylene group.
  • Ar is preferably derived from an electron-rich, readily electrophilically attackable aromatic substance, which is preferably selected from the group consisting of hydroquinone, resorcinol, dihydroxynaphthalene, in particular 2,7-dihydroxynaphthalene, and 4,4 '. -Bisphenol is selected.
  • Ar 1 is an unsubstituted C 6 or C 12 arylene group.
  • Phenylene groups such as 1, 2, 1, 3 and 1, 4-phenylene, naphthylene groups, such as, for example, 1, 6, 1, 7, and 2,6, are used as C 6 -C 18 -arylene groups Ar and Ar 1 - And 2,7-naphthylene, and derived from anthracene, phenanthrene and naphthacene arylene groups into consideration.
  • Ar and Ar 1 in the preferred embodiment according to formula (II) are preferably independently selected from the group consisting of 1, 4-phenylene, 1, 3-phenylene, naphthylene, in particular 2, 7-dihydroxynaphthalene, and 4,4'- biphenylene.
  • inventive blocks (A1) are those which contain at least one of the following repeating structural units IIa to No:
  • building blocks IIa to No those building blocks are also preferred in which one or more 1,4-dihydroxyphenyl units are replaced by resorcinol or dihydroxynaphthalene units.
  • Particularly preferred building blocks (A1) are the building blocks IIa, Ng and Nk. It is also particularly preferred if the building block A1 is composed essentially of one kind of building blocks of the general formula II, in particular of one building block selected from IIa, Ng and Nk.
  • the preferred polyarylene ether sulfones (A) have average molecular weights M n (number average) ranging from 5,000 to 60,000 g / mol and relative viscosities from 0.20 to 0.95 dl / g.
  • M n number average
  • relative viscosities are measured either in 1% strength by weight N-methylpyrrolidone solution or in mixtures of phenol and dichlorobenzene at 20 ° C. and 25 ° C., respectively.
  • the polyarylene ethers (A) of the present invention preferably have weight-average molecular weights M w of from 10,000 to 150,000 g / mol, especially from 15,000 to 120,000 g / mol, more preferably from 18,000 to 100,000 g / mol, as determined by gel permeation chromatography in the solvent dimethylformamide against narrow-distribution Polymethylmethacrylate as standard.
  • the polyarylene ether copolymers of the present invention preferably have viscosity numbers, measured in 1% solution in N-methylpyrrolidone at 25 ° C, of 30 to 200 ml / g, in particular from 35 to 190 ml / g, particularly preferably from 40 to 180 ml / g.
  • the polyarylene ethers (A) according to the invention contain branch points according to the formula (I) as well as further branching points which are derived from crosslinkers VN having at least three hydroxyl functionalities.
  • Such crosslinkers VN have a different structure than that according to formula (I).
  • branching points derived from crosslinking agents VN are present, they are preferably present in proportions of from 0.1 to 40% by weight, in particular from 0.1 to 10% by weight, with respect to the polyarylene ether (A).
  • Crosslinkers are added during the polycondensation to prepare the polyaryl ether copolymers and, like the dihydroxy compounds, are incorporated into the main polymer chain. Because the crosslinkers VN still have at least one free hydroxyl function, condensation of a suitable monomer with this at least one hydroxyl function leads to at least one branching of the polymer main chain.
  • the crosslinkers VN can also have four hydroxy functionalities in monomeric form, so that after incorporation into the main polymer chain two hydroxy functions are still available for a branching of the main chain.
  • the said additional crosslinkers VN are in the polyarylene ether (A) of course in polymeric form. If such additional crosslinkers VN are present at all or are used, they preferably have a structure which is explained below:
  • crosslinkers VN are preferably aromatic or partially aromatic compounds.
  • Preferred crosslinkers VN have at least three hydroxyl groups attached to aromatic rings, i. they have at least three phenolic hydroxyl groups.
  • crosslinkers VN in monomeric form may be mentioned in particular:
  • crosslinkers VN are those tri- or more than trihydric phenols which are prepared by reacting p-alkyl-substituted monophenols at unsubstituted o-positions with formaldehyde or formaldehyde-yielding compounds. are adjustable, such as the trisphenol of p-cresol and formaldehyde, the 2- 6-bis (2'-hydroxy-5'-methyl-benzyl) -4-methyl-phenol. Furthermore, 2,6-bis (2'-hydroxy-5'-isopropylbenzyl) -4-isopropenylphenol and bis [2-hydroxy-3- (2'-hydroxy-5'-methylbenzyl) 5-methyl-phenyl] -methane as crosslinker VN into consideration.
  • phenols having at least three hydroxyl functionalities are those which, in addition to the phenolic hydroxyl groups, contain halogen atoms, for example the halogenated trihydroxyaryl ethers of the formula (I-a)
  • Ar 2 is a mononuclear or polynuclear bivalent aromatic radical and Hal is chlorine or bromine. Examples of such compounds are:
  • the crosslinker VN is selected from 1,1,1-tris (4-hydroxyphenyl) ethane (I-b)
  • the crosslinker VN is selected from 1,1,1-tris (4-hydroxyphenyl) ethane (Ib).
  • the process according to the invention for the preparation of the polyarylene ethers according to the invention comprises the reaction of at least one aromatic compound (a1) having two halogen substituents and at least one aromatic compound (a2) having two functional groups which are reactive with the abovementioned halogen substituents, in the presence of at least one trifunctional compound according to the general formula
  • each of the three substituents X is independently selected according to the conditions (i) or (ii):
  • each of the three substituents X is independently selected from O and OH; or
  • each of the three substituents X is independently selected from halogen, preferably F or Cl.
  • X is F.
  • Such compounds of the general formula (III) are known per se to the person skilled in the art or can be prepared by known methods.
  • Aromatic compounds (a1) and (a2) as monomers which are suitable for the preparation of polyarylene ethers are known to the person skilled in the art and are not subject to any fundamental restriction, provided that said substituents are sufficiently reactive in the context of a nucleophilic aromatic substitution. Another requirement is sufficient solubility in the solvent, as explained in more detail below.
  • Suitable compounds (a1) are, in particular, dihalodiphenylsulfones, such as 4,4'-dichlorodiphenylsulfone, 4,4'-difluorodiphenylsulfone, 4,4'-dibromodiphenylsulfone, bis (2-chlorophenyl) sulfones, 2,2'-dichlorodiphenylsulfone and 2,2'-dichloromethane. difluorodiphenylsulphone.
  • dihalodiphenylsulfones such as 4,4'-dichlorodiphenylsulfone, 4,4'-difluorodiphenylsulfone, 4,4'-dibromodiphenylsulfone, bis (2-chlorophenyl) sulfones, 2,2'-dichlorodiphenylsulfone and 2,2'-dichloromethane. difluorodiphen
  • the aromatic compounds having two halogen substituents (a1) are selected from 4,4'-dihalodiphenylsulfones, especially 4,4'-dichlorodiphenylsulfone or 4,4'-difluorodiphenylsulfone.
  • the groups which are reactive with the abovementioned halogen substituents are, in particular, phenolic OH and O groups, the latter functional group being derived from the dihydroxy compounds and being able to be prepared in a known manner from one or produced as an intermediate. Accordingly, preferred compounds (a2) are those having two phenolic hydroxyl groups.
  • Preferred compounds (a2) having two phenolic hydroxyl groups are selected from the following compounds:
  • Dihydroxybenzenes especially hydroquinone and resorcinol
  • Dihydroxynaphthalenes in particular 1,5-dihydroxynaphthalene, 1,6-dihydroxynaphthalene, 1,7-dihydroxynaphthalene, and 2,7-dihydroxynaphthalene;
  • Dihydroxybiphenyls especially 4,4'-biphenol and 2,2'-biphenol;
  • Bisphenyl ethers especially bis (4-hydroxyphenyl) ether and bis (2-hydroxyphenyl) ether;
  • Bis-phenylpropanes especially 2,2-bis (4-hydroxyphenyl) propane, 2,2-bis (3-methyl-4-hydroxyphenyl) propane, and 2,2-bis (3,5-dimethyl-4-hydroxyphenyl) propane;
  • Bisphenylmethanes especially bis (4-hydroxyphenyl) methane
  • Bisphenylsulfones especially bis (4-hydroxyphenyl) sulfone
  • Bisphenyl sulfides especially bis (4-hydroxyphenyl) sulfide; - Bisphenylketone, in particular bis (4-hydroxyphenyl) ketone;
  • Bis-phenylhexafluoropropanes especially 2,2-bis (3,5-dimethyl-4-hydroxyphenyl) hexafluoropropane
  • Bisphenylfluorenes especially 9,9-bis (4-hydroxyphenyl) fluorene.
  • aromatic dihydroxy compounds (a2) it is preferable, starting from the abovementioned aromatic dihydroxy compounds (a2), to prepare their dipotassium or disodium salts and to react with the compound (a1).
  • the aforementioned compounds may be used singly or as a combination of two or more of the aforementioned compounds.
  • Hydroquinone, resorcinol, dihydroxynaphthalene, especially 2,7-dihydroxynaphthalene, 4,4'-dihydroxydiphenylsulfone and 4,4'-bisphenol are as the aromatic compound (a2) with two functional groups which are reactive towards the halogen substituents of the aromatic compound (a1), particularly preferred.
  • the proportions to be used result from the stoichiometry of the elimination polycondensation reaction with arithmetic elimination of hydrogen chloride and are set by the expert in a known manner.
  • parts of the halogen groups from the compound (a1) or parts of the halogen groups reactive groups of the compound (a2) are replaced by a corresponding trifunctional Ie compound according to the general formula (III) as defined above.
  • the molar ratio of monomers having hydroxy functionalities to monomers having halogen functionalities is 0.8 to 1.2 to 1.2 to 0.8, preferably 0.9 to 1.1 to 1.1 to 0.9, more preferably at 1 to 1. If there are different monomers with hydroxy functionalities or with halogen functionalities, the molar amounts are considered in each case.
  • Particularly preferred is the reaction of the monomers in aprotic polar solvents in the presence of anhydrous alkali metal carbonate, in particular sodium, potassium, calcium carbonate or mixtures thereof, with potassium carbonate being particularly preferred, in particular potassium carbonate having a volume-weighted average particle size of less than 100 micrometers , determined with a particle size measuring device in suspension in N-methylpyrrolidone.
  • anhydrous alkali metal carbonate in particular sodium, potassium, calcium carbonate or mixtures thereof
  • potassium carbonate being particularly preferred, in particular potassium carbonate having a volume-weighted average particle size of less than 100 micrometers , determined with a particle size measuring device in suspension in N-methylpyrrolidone.
  • a particularly preferred combination is N-methylpyrrolidone as solvent and potassium carbonate as base.
  • the reaction of the appropriate monomers is carried out at a temperature of 80 to 250 ° C, preferably 100 to 220 ° C. The reaction is carried out for 2 to 12 hours, preferably 3 to 8 hours.
  • a monofunctional alkyl or aryl halide for example C 1 -C 6 -alkyl chloride, bromide or iodide, preferably methyl chloride, or benzyl chloride, bromide or iodide or mixtures thereof can be added to the reaction mixture.
  • the reaction in the melt is also possible.
  • the polycondensation in the melt is carried out at a temperature of 140 to 290 ° C, preferably 150 to 280 ° C.
  • the preparation of such telechelics is known to the person skilled in the art and is preferably carried out starting from the above-described compounds (a1) and (a2) by controlling the use ratio such that one kind of end group, which is to function as an end group, in a molar opposite to the other end group Excess of about 1, 01: 1 to about 1, 15: 1 is present.
  • the reaction of the telechelics with the trifunctional compound of the general formula (III) then takes place.
  • the purification of the polyarylene ether copolymers is carried out by methods known to the person skilled in the art, for example recrystallization or washing with suitable solvents, in which the polyarylene ether copolymers according to the invention are preferably largely insoluble.
  • thermoplastic molding compositions comprising at least one of the polyarylene ethers (A) according to the invention and at least one thermoplastic polymer (B) other than the polyarylene ether (A).
  • thermoplastic molding compositions of the invention can vary over a wide range, in particular since the thermoplastic molding compositions optionally contain other components in addition to the thermoplastic polymer (B) and can be used directly or as a masterbatch.
  • thermoplastic molding compositions comprise from 0.1 to 99% by weight of at least one inventive polyarylene ether (A), from 1 to 99.9% by weight of at least one further thermoplastic polymer (B) and optionally from 0 to 70% by weight. % of at least one fibrous filler (C), the sum of the wt.% of (A), (B) and (C) being 100% by weight.
  • thermoplastic polymer (B) is preferably non-branched, ie composed of linearly linked building blocks.
  • novel thermoplastic molding compositions may optionally contain, in particular, the following further components: (D) at least one impact-modifying rubber and (E) one or more additives.
  • thermoplastic molding compositions of the present invention from 1 to 20 wt .-%, in particular from 3 to 15 wt .-% of at least one polyarylene ether (A) according to the invention, from 39 to 99 wt .-%, in particular from 47 to 97 wt .-% of at least one further thermoplastic polymer (B), from 0 to 70 wt .-%, in particular from 0 to 50 wt .-% of at least one fibrous filler (C), from 0 to 40 wt .-% of at least one impact-modifying rubber (D) and from 0 to 40 wt .-% of at least one additive (E), wherein the sum of the wt .-% of (A), (B), (C), (D) and (E ) 100% by weight results.
  • thermoplastic molding compositions of the present invention preferably comprise as thermoplastic polymer (B) at least one polyarylene ether sulfone, which is preferably not branched.
  • Preferred polyarylene ether sulfones as component (B) thus differ from the corresponding polyarylene ethers (A), preferably in that they are not branched but are composed of linearly linked building blocks.
  • Preferred polyarylene ether sulfones have the building blocks (A1), which have already been described in the context of the branched polyarylene ethers (A).
  • Preferred polyarylene ether sulfones as component (B) thus differ from the corresponding polyarylene ethers (A), preferably in that they are not branched but are composed of linearly linked building blocks.
  • thermoplastic molding compositions which contain as thermoplastic polymer (B) at least one polyarylene ether sulfone based on building blocks of the general formula (IV):
  • t, q independently 0, 1, 2 or 3
  • Ar, Ar 1 independently of one another C 6 -C 18 -arylene.
  • Q, T and Y in formula (IV) are independently selected from -O- and -SO 2 -, wherein at least one of the group consisting of Q, T and Y is -SO 2 -.
  • R a and R b have the meaning described in the context of the polyarylene ethers (A).
  • Ar and Ar 1 independently of one another denote a C 6 -C 18 -arylene group.
  • Ar is preferably derived from an electron-rich, easily electrophilically attackable aromatic substance, preferably from the group consisting of hydroquinone, resorcinol, dihydroxynaphthalene, in particular 2,7-dihydroxynaphthalene, and 4,4'-bisphenol is selected.
  • Ar 1 is an unsubstituted C 6 or C 12 arylene group.
  • Phenylene groups such as 1, 2, 1, 3 and 1, 4-phenylene, naphthylene groups, such as, for example, 1, 6, 1, 7, and 2,6, are used as C 6 -C 18 -arylene groups Ar and Ar 1 - And 2,7-naphthylene, as well as derived from anthracene, phenanthrene and naphthacene derived arylene groups into consideration.
  • Ar and Ar 1 in the preferred embodiment according to formula (II) are preferably selected independently of one another from the group consisting of 1,4-phenylene, 1,3-phenylene, naphthylene, in particular 2,7-dihydroxynaphthylene, and 4,4'- biphenylene.
  • Preferred building blocks according to the formula (IV) are those which are based on at least one of the recurring structural units IIa to No described in the context of component (A1).
  • building blocks IIa to No those building blocks are also preferred in which one or more 1,4-dihydroxyphenyl units are replaced by resorcinol or dihydroxynaphthalene units.
  • the building blocks IIa, Ng and Nk are particularly preferred.
  • the thermoplastic polymer is (B) built from building blocks selected from IIa, Ng and Nk. Homopolymers of polyarylene ether sulfones are particularly preferred.
  • component (B) preferably has a weight-average molecular weight M w of from 10,000 to 150,000 g / mol, in particular from 15,000 to 120,000 g / mol, particularly preferably from 18,000 to 100,000 g / mol as determined by gel permeation chromatography in solvent dimethylformamide against narrow polymethyl methacrylate as standard.
  • the polyarylene ethers preferred as thermoplastic polymer (B) preferably have viscosity numbers, measured in 1% strength solution in N-methylpyrrolidone at 25 ° C., of 30 to 200 ml / g, in particular from 35 to 190 ml / g, particularly preferably 40 up to 180 ml / g.
  • the polyarylene ether sulfones preferred as thermoplastic polymer (B) have average molecular weights Mn (number average) in the range from 5000 to 60000 g / mol and relative viscosities from 0.20 to 0.95 dl / g.
  • Mn number average
  • the relative viscosities are measured either in 1% strength by weight N-methylpyrrolidone solution or in mixtures of phenol and dichlorobenzene at 20 ° C. and 25 ° C., respectively.
  • thermoplastic polymers (B) and their preparation are known to the person skilled in the art.
  • the molding compositions according to the invention may contain fibrous additives.
  • the molding compositions according to the invention contain fibrous additives, in particular glass fibers.
  • thermoplastic molding compositions preferably contain from 1 to 59% by weight of at least one polyarylene ether (A) comprising components (II) as defined in component (A), from 40 to 98% by weight of at least one thermoplastic polymer (B and from 1 to 59% by weight of fibrous fillers, wherein the thermoplastic polymer (B) is a polyarylene ether sulfone containing building blocks (IV) as defined above, provided that the building blocks (IV) and (II) are the same or different ,
  • Preferred fibrous fillers or reinforcing materials are carbon fibers, potassium tantanate whiskers, aramid fibers and particularly preferably glass fibers.
  • glass fibers When using of glass fibers, they can be equipped with a size, preferably a polyurethane size and a bonding agent for better compatibility with the matrix material.
  • the carbon and glass fibers used have a diameter in the range of 6 to 20 microns.
  • the incorporation of the glass fibers can take place both in the form of short glass fibers and in the form of endless strands (rovings).
  • the average length of the glass fibers is preferably in the range of 0.08 to 0.5 mm.
  • Carbon or glass fibers can also be used in the form of woven fabrics, mats or glass rovings.
  • Suitable particulate fillers are amorphous silicic acid, carbonates such as magnesium carbonate (chalk), powdered quartz, mica, various silicates such as clays, muscovite, biotite, suzorite, cinnamon, talc, chlorite, phlogophite, feldspar, cesium silicates such as wollastonite or aluminum silicates like kaolin, especially calcined kaolin.
  • carbonates such as magnesium carbonate (chalk), powdered quartz, mica, various silicates such as clays, muscovite, biotite, suzorite, cinnamon, talc, chlorite, phlogophite, feldspar, cesium silicates such as wollastonite or aluminum silicates like kaolin, especially calcined kaolin.
  • particulate fillers are used, of which at least 95% by weight, preferably at least 98% by weight of the particles have a diameter (largest dimension), determined on the finished product, of less than 45 ⁇ m, preferably less than 40 ⁇ m and whose so-called aspect ratio is in the range from 1 to 25, preferably in the range from 2 to 20, determined on the finished product.
  • the particle diameter can be z. B. be determined by taking electron micrographs of thin sections of the polymer mixture and at least 25, preferably at least 50 filler particles are used for the evaluation. Likewise, the determination of the particle diameter can be made by sedimentation analysis, according to Transactions of ASAE, page 491 (1983). The weight fraction of the fillers, which is less than 40 ⁇ m, can also be measured by sieve analysis. The aspect ratio is the ratio of particle diameter to thickness (largest dimension to smallest dimension).
  • Particularly preferred particulate fillers are talc, kaolin, such as calcined kaolin or wollastonite, or mixtures of two or all of these fillers.
  • talc with a proportion of at least 95 wt .-% of particles having a diameter of less than 40 microns and an aspect ratio of 1, 5 to 25, each determined on the finished product, particularly preferred.
  • Kaolin preferably has a content of at least 95% by weight of particles with a diameter of less than 20 ⁇ m and an aspect ratio of 1.2 to 20, in each case determined on the finished product.
  • the molding compositions according to the invention contain no fibrous additives.
  • thermoplastic molding compositions contain from 1 to 60% by weight of at least one polyarylene ether (A) comprising building blocks (II) as defined in component (A), from 40 to 98% by weight of at least one thermoplastic polymer (B), but not fibrous fillers, wherein the thermoplastic polymer (B) is a polyarylene ether sulfone containing building blocks (IV) as defined above, provided that the aforementioned building blocks (IV) and (II) are the same.
  • thermoplastic molding compositions may contain at least one rubber to increase the toughness.
  • rubber is understood as meaning a crosslinked polymeric compound which has rubber-elastic properties.
  • the proportion of component (D) in the thermoplastic molding compositions according to the invention can vary within wide limits.
  • Preferred novel molding compositions comprise component D in amounts of from 0 to 30, in particular from 0 to 20,% by weight, based on the total weight of components (A) to (F).
  • Particularly preferred molding compositions contain from 0 to 17.5 wt .-%, based on the total weight of components (A) to (F).
  • component D it is also possible to use mixtures of two or more different rubbers.
  • preferred rubbers which increase the toughness of the molding compositions have two essential features: they contain an elastomeric fraction which has a glass transition temperature of less than -10 ° C, preferably less than -30 ° C, and contain at least one functional group which is denoted by component (A) and / or component (B) can interact.
  • Suitable functional groups are, in particular, carboxylic acid, carboxylic acid anhydride, carboxylic acid ester, carboxamide, carboxylic acid imide, amino, hydroxyl, epoxide, urethane or oxazoline groups.
  • At least one functionalized rubber is used as component D.
  • Preferred functionalized rubbers include functionalized polyolefin rubbers composed of the following monomer components: ⁇ "l) 40 to 99 wt .-% of at least one alpha-olefin having 2 to 8 carbon atoms;
  • alpha-olefins as monomer component d1) may include ethylene, propylene, 1-butylene, 1-pentylene, 1-hexylene, 1-heptylene, 1-octylene, 2-methylpropylene, 3-methyl-1-butylene and 3-ethyl-1-butylene, ethylene and propylene are preferred.
  • Suitable diene monomers d2) are conjugated dienes having 4 to 8 C atoms, such as isoprene and butadiene, nonconjugated dienes having 5 to 25 C atoms, such as penta-1,4-diene, hexa-1,4-diene , Hexa-1, 5-diene, 2,5-dimethylhexa-1,5-diene and octa-1,4-diene, cyclic dienes, such as cyclopentadiene, cyclohexadienes, cyclooctadienes and dicyclopentadiene, as well as alkenylnorbornenes, such as 5-ethylidene 2-norbornene, 5-butylidene-2-norbornene, 2-methallyl-5-norbornene, 2-isopropenyl-5-norbornene and tricyclodienes such as 3-methyltricyclo- (5.2.1.0.2.6) -3,8-deca
  • the diene content is preferably 0.5 to 50, in particular 2 to 20 and particularly preferably 3 to 15 wt .-%, based on the total weight of the monomer components (d1) to (d6).
  • esters as monomer component d3) are, in particular, methyl, ethyl, propyl, n-butyl, isobutyl and 2-ethylhexyl, octyl and decyl acrylates and the corresponding esters of methacrylic acid.
  • methyl, ethyl, propyl, n-butyl and 2-ethylhexyl acrylate or methacrylate are particularly preferred.
  • esters d3) instead of the esters d3) or in addition to them, acid-functional and / or latent acid-functional monomers of ethylenically unsaturated mono- or dicarboxylic acids d4) may also be present in the olefin polymers.
  • Examples of monomers d4) are in particular acrylic acid, methacrylic acid, tertiary alkyl esters of these acids, in particular tert-butyl acrylate and dicarboxylic acids, such as Maleic acid and fumaric acid, or derivatives of these acids and their monoesters called.
  • Latent acid-functional monomers are understood as meaning those compounds which form free acid groups under the polymerization conditions or during the incorporation of the olefin polymers into the molding compositions.
  • Preferred ethylenically unsaturated dicarboxylic acids and anhydrides as monomer component d4) are represented by the following general formulas V and VI:
  • R 2 , R 3 , R 4 and R 5 are independently H or C 1 -C 6 alkyl.
  • Preferred epoxy group-bearing monomers d5) are represented by the following general formulas VII and VIII
  • R 6 , R 7 , R 8 and R 9 are independently H or C 1 -C 6 -alkyl, m is an integer from 0 to 20 and p is an integer from 0 to 10.
  • R 2 to R 9 are hydrogen, m is the value O or 1 and p is the value of 1.
  • Preferred compounds d4) or d5) are maleic acid, fumaric acid and maleic anhydride or alkenyl glycidyl ether and vinyl glycidyl ether.
  • Particularly preferred compounds of the formulas V and VI or VII and VIII are maleic acid and maleic anhydride or epoxy groups-containing esters of acrylic acid and / or methacrylic acid, in particular glycidyl acrylate and glycidyl methacrylate.
  • olefin polymers which comprise from 50 to 98.9, in particular from 60 to 94.85,% by weight of ethylene, and from 1 to 50, in particular from 5 to 40,% by weight of an ester of acrylic or methacrylic acid, from 0.1 to 20 , 0, in particular 0.15 to 15 wt .-% glycidyl acrylate and / or glycidyl methacrylate, acrylic acid and / or maleic anhydride are constructed.
  • Particularly suitable functionalized rubbers B are ethylene-methyl methacrylate-glycidyl methacrylate, ethylene-methyl acrylate-glycidyl methacrylate, ethylene-ethyl acrylate-glycidyl acrylate and ethylene-methyl methacrylate-glycidyl acrylate polymers.
  • the preparation of the polymers described above can be carried out by processes known per se, preferably by random copolymerization under high pressure and elevated temperature.
  • the melt index of component (D) is generally in the range of 1 to 80 g / 10 min (measured at 190 ° C and 2.16 kg load).
  • Suitable rubbers are core-shell grafts. These are graft rubbers made in emulsion, which consist of at least one hard and one soft component.
  • a hard component is usually understood to mean a polymer having a glass transition temperature of at least 25 ° C., and a polymer having a glass transition temperature of at most 0 ° C. under a soft component.
  • These products have a core and at least one shell structure, the structure resulting from the order of monomer addition.
  • the soft constituents are generally derived from butadiene, isoprene, alkyl acrylates, alkyl methacrylates or siloxanes and optionally further comonomers.
  • Suitable siloxane cores can be prepared, for example, starting from cyclic oligomeric octamethyltetrasiloxane or tetravinyltetramethyltetrasiloxane. These can be reacted, for example, with gamma-mercaptopropylmethyldimethoxysilane in a ring-opening cationic polymerization, preferably in the presence of sulfonic acids, to form the soft siloxane cores.
  • the siloxanes can also be crosslinked by z. B.
  • silanes with hydrolyzable groups such as halogen or alkoxy groups such as tetraethoxysilane, methyltrimethoxysilane or phenyl nyltrimethoxysilane is performed.
  • suitable comonomers here z For example, styrene, acrylonitrile and crosslinking or grafting monomers with more than one polymer to callable double bond such as diallyl phthalate, divinylbenzene, butanediol diacrylate or triallyl (iso) cyanurate.
  • the hard constituents are generally derived from styrene, ⁇ -methylstyrene and their copolymers, in which case comonomers are preferably acrylonitrile, methacrylonitrile and methyl methacrylate.
  • Preferred core-shell graft rubbers include a soft core and a hard shell or hard core, a first soft shell and at least one other hard shell.
  • the incorporation of functional groups such as carbonyl, carboxylic acid, acid anhydride, acid amide, acid imide, carboxylic acid ester, amino, hydroxyl, epoxy, oxazoline, urethane, urea, lactam or halobenzyl groups takes place in this case preferably by the addition of suitably functionalized monomers in the polymerization of the last shell.
  • Suitable functionalized monomers are maleic acid, maleic anhydride, mono- or diesters of maleic acid, tert-butyl (meth) acrylate, acrylic acid, glycidyl (meth) acrylate and vinyloxazoline.
  • the proportion of monomers with functional groups is i. a. 0.1 to 25 wt .-%, preferably 0.25 to 15 wt .-%, based on the total weight of the core-shell graft rubber.
  • the weight ratio of soft to hard ingredients is i. a. 1: 9 to 9: 1, preferably 3: 7 to 8: 2.
  • polyester elastomers are understood as meaning segmented copolyester esters which contain long-chain segments which are generally derived from poly (alkylene) ether glycols and short-chain segments which are derived from low molecular weight diols and dicarboxylic acids. Such products are known per se and in the literature, for. For example, in US-A 3,651,014. Also commercially available are corresponding products under the names Hytrel TM (Du Pont), Arnitel TM (Akzo) and Pelprene TM (Toyobo Co. Ltd.).
  • the molding compositions according to the invention may contain as further component E auxiliaries, in particular processing aids, pigments, stabilizers, flame retardants or mixtures of different additives.
  • Conventional additives are, for example, also oxidation inhibitors, agents against heat decomposition and decomposition by ultraviolet light, lubricants and mold release agents, dyes and plasticizers.
  • Their proportion of component (E) in the molding composition according to the invention is in particular from 0 to 30, preferably from 0 to 20 wt .-%, in particular 0 to 15 wt .-%, based on the total weight of components A to E.
  • component E is stabilizer
  • the proportion of these stabilizers is usually up to 2% by weight, preferably 0.01 to 1% by weight, in particular 0.01 to 0.5% by weight. , based on the sum of the wt .-% of components (A) to (E).
  • Pigments and dyes are generally present in amounts from 0 to 6, preferably from 0.05 to 5 and in particular from 0.1 to 3 wt .-%, based on the sum of the wt .-% of components (A) to (E) , contain.
  • the pigments for coloring thermoplastics are well known, see, for example, R. Gumbleter and H. Müller, Taschenbuch der Kunststoffadditive, Carl Hanser Verlag, 1983, pages 494 to 510.
  • white pigments may be mentioned, such as zinc oxide, Zinc sulfide, lead white [2 PbCO3-Pb (OH) 2], lithithopones, antimony white and titanium dioxide.
  • rutile and anatase-type of titanium dioxide, in particular the rutile form is used for the whitening of the molding compositions according to the invention.
  • Black pigments which can be used according to the invention are iron oxide black (Fe3O 4), spinel [Cu (Cr, Fe) 2 O 4], manganese black (mixture of manganese dioxide, silicon dioxide and iron oxide), cobalt black and antimony black and particularly preferably carbon black, which is usually is used in the form of furnace or gas black. See G. Benzing, Pigments for paints, Expert-Verlag (1988), pages 78 ff.
  • inorganic colored pigments such as chromium oxide green or organic colored pigments, such as azo pigments or phthalocyanines, can be used according to the invention.
  • organic colored pigments such as azo pigments or phthalocyanines.
  • Such pigments are generally commercially available.
  • Oxidation inhibitors and heat stabilizers which can be added to the thermoplastic compositions according to the invention are, for example, halides of Group I metals of the periodic table, for example sodium, potassium, lithium halides, for example chlorides, bromides or iodides. Furthermore, zinc fluoride and zinc chloride can be used. Further, sterically hindered phenols, hydroquinones, substituted representatives of this group, secondary aromatic amines, optionally in conjunction with phosphorus-containing acids or their salts, and mixtures of these compounds, preferably in concentrations up to 1 wt .-%, based on the total the wt .-% of components (A) can be used to (E). Examples of UV stabilizers are various substituted resorcinols, salicylates, benzotriazoles and benzophenones, which are generally used in amounts of up to 2% by weight.
  • Lubricants and mold release agents which are generally added in amounts of up to 1% by weight, based on the sum of the weight percent of components (A) to (E), are stearyl alcohol, stearic acid alkyl esters and amides and also esters pentaerythritol with long-chain fatty acids. It is also possible to use dialkyl ketones, for example distearyl ketone.
  • the molding compositions according to the invention comprise from 0.1 to 2, preferably from 0.1 to 1.75, more preferably from 0.1 to 1.5,% by weight and in particular from 0.1 to 0.9% by weight.
  • stearic acid and / or stearates are examples of stearic acid and / or stearates.
  • other stearic acid derivatives such as esters of stearic acid can also be used.
  • Stearic acid is preferably produced by hydrolysis of fats.
  • the products thus obtained are usually mixtures of stearic acid and palmitic acid. Therefore, such products have a wide range of softening, for example from 50 to 70 ° C, depending on the composition of the product. Preference is given to using products having a stearic acid content of more than 20, particularly preferably more than 25,% by weight. Pure stearic acid (> 98%) can also be used.
  • stearates can also be used as component C.
  • Stearates can be prepared either by reaction of corresponding sodium salts with metal salt solutions (for example CaCb, MgCb, aluminum salts%) Or by direct reaction of the fatty acid with metal hydroxide (see, for example, Baerlocher Additives, 2005).
  • metal salt solutions for example CaCb, MgCb, aluminum salts
  • metal hydroxide see, for example, Baerlocher Additives, 2005.
  • aluminum tristearate is used.
  • the molding compositions according to the invention can be prepared by processes known per se, for example extrusion.
  • the molding compositions according to the invention can be prepared, for example, by mixing the starting components in conventional mixing devices such as screw extruders, preferably twin-screw extruders, Brabender mixers or Banbury mixers and kneaders, and then extruding them. After extrusion, the extrudate is cooled and comminuted.
  • the order of mixing the components can be varied so that two or possibly three components can be premixed, but all components can also be mixed together. In order to obtain the most homogeneous possible mixing, intensive mixing is advantageous. For this, average mixing times of 0.2 to 30 minutes at temperatures of 280 to 380 ° C, preferably 290 to 370 ° C, are generally required.
  • the extrudate is usually cooled and comminuted.
  • the molding compositions according to the invention are distinguished by good mechanical properties, improved flowability and improved resistance to stress cracking compared with the prior art.
  • the molding compositions of the invention are characterized by good flowability, improved toughness, especially elongation at break and notched impact strength and by improved surface quality.
  • the molding compositions according to the invention are therefore suitable for the production of moldings for household articles, electrical or electronic components and moldings for the vehicle sector.
  • novel thermoplastic molding compositions can be advantageously used for the production of moldings, fibers, films or films or foams.
  • Another object of the present invention are molded parts which are obtainable from the thermoplastic molding compositions according to the invention. Corresponding shaping methods are known to the person skilled in the art.
  • the viscosity number of the polyarylene ethers was determined in 1% solution of N-methylpyrrolidone at 25 ° C. according to ISO 1628.
  • the heat resistance of the samples was determined by means of the Vicat softening temperature.
  • the Vicat softening temperature was determined according to DIN 53 460, with a force of 49.05 N and a temperature increase of 50 K per hour, on standard small bars.
  • the impact strength (on) of the reinforced products was determined on ISO bars according to ISO 179 1 eU.
  • impact strength (ak) according to ISO 179 1eA was used to characterize the toughness.
  • melt viscosity was determined by means of a capillary rheometer.
  • apparent viscosity at 350 or 380 ° C was determined as a function of the shear rate.
  • the stress cracking resistance was determined according to DIN EN ISO 22088-3 on specimens of thickness of 2 mm. At a bending strain of 1.32%, the test medium was allowed to act for a different period of time and the state of the test specimen was then visually inspected.
  • toluene was allowed to act for one hour.
  • the fuel FAM B was allowed to act for 7 days at 80 ° C.
  • Component B1 When was polyarylene B1 Ultrason ® E 2010 (commercial product
  • Component B2 The polyarylene ether B2 Ultrason ® P 3010 (BASF SE commercial product) was used. This product is characterized by a viscosity number of 75 ml / g, measured in 1% NMP solution at 25 ° C.
  • Component AV Branched polyarylene ether obtained by nucleophilic aromatic polycondensation of 107.22 g of dichlorodiphenylsulfone, 90.06 g of dihydroxydiphenylsulfone, 8.27 g of 1,1,1-tris (4-hydroxyphenyl) ethane under the action of 54.73 g Potassium carbonate in 360 ml NMP. This mixture is kept at 195 ° C for 4 hours. After cooling to 120 ° C, methyl chloride is introduced into the solution for 1 hour. After cooling to room temperature, the solid components are separated by filtration and the polymer is isolated by precipitation in NMP / water 1/9. After thorough washing with water, the product is dried in vacuo at 120 ° C for 12 hours. The viscosity number of the product was 25.6 ml / g, the glass transition temperature was 189 ° C.
  • Component A1 Branched polyarylene ether obtained by nucleophilic aromatic polycondensation of 94.90 g of difluorodiphenylsulfone, 90.06 g of dihydroxydiphenylsulfone, 12.00 g of 1, 3,5-tris (4-fluorophenylcarbonyl) benzene under the action of 54.73 g of potassium - carbonate in 360 ml NMP. This mixture is kept at 180 ° C for 4 hours. To Cooling to 120 ° C is introduced into the solution for 1 hour of methyl chloride. After cooling to room temperature, the solid components are separated by filtration and the polymer is isolated by precipitation in NMP / water 1/9. After thorough washing with water, the product is dried in vacuo at 120 ° C for 12 hours. The viscosity number of the product was 24.6 ml / g, the glass transition temperature at 194 ° C.
  • Component A2 Branched polyarylene ether obtained by nucleophilic aromatic polycondensation of 86.39 g of difluorodiphenylsulfone, 85.06 g of dihydroxydiphenylsulfone, 15.1 g of 1, 3,5-tris (4-fluorophenylcarbonyl) benzene under the action of 51. 69 g Potassium carbonate in 340 ml NMP. This mixture is kept at 180 ° C for 4 hours. After cooling to 120 ° C, methyl chloride is introduced into the solution for 1 hour. After cooling to room temperature, the solid components are separated by filtration and the polymer is isolated by precipitation in NMP / water 1/9. After thorough washing with water, the product is dried in vacuo at 120 ° C for 12 hours. The viscosity number of the product was 26.1 ml / g, the glass transition temperature 192 ° C.
  • Component C1 chopped glass fiber with polyurethane size, fiber diameter 10 ⁇ m.
  • the components were mixed in a twin-screw extruder at a melt temperature of 350 and 370 ° C, respectively.
  • the melt was passed through a water bath and granulated.
  • the polyethersulfone-containing molding materials were processed at 340 ° C.
  • the mold temperature was 140 ° C each.
  • the molding compositions containing PPSU were processed at 370 ° C melt temperature and 140 ° C mold temperature.
  • thermoplastic molding compositions according to the invention have improved flowability. Surprisingly, these products are also characterized by better stress cracking resistance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Polyethers (AREA)
  • Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)

Abstract

Die vorliegende Erfindung betrifft verzweigte Polyarylenether (A) enthaltend Verzweigungsstellen gemäß Formel (I): Darüber hinaus betrifft die vorliegende Erfindung ein Verfahren zur Herstellung der verzweigten Polyarylenether (A) sowie thermoplastische Formmassen enthaltend die verzweigten Polyarylenether (A) und weitere thermoplastische Polymere (B). Schließlich betrifft die vorliegende Erfindung die Verwendung der thermoplastischen Formmassen zur Herstellung von Formteilen sowie aus den vorgenannten thermoplastischen Formmassen erhältliche Formteile.

Description

Verzweigte Polyarylenether und diese enthaltende thermoplastische Formmassen
Beschreibung
Die vorliegende Erfindung betrifft verzweigte Polyarylenether (A) enthaltend Verzweigungsstellen gemäß Formel (I):
Figure imgf000002_0001
Darüber hinaus betrifft die vorliegende Erfindung ein Verfahren zur Herstellung der verzweigten Polyarylenether (A) sowie thermoplastische Formmassen enthaltend die verzweigten Polyarylenether (A) und weitere thermoplastische Polymere (B). Schließlich betrifft die vorliegende Erfindung die Verwendung der thermoplastischen Formmassen zur Herstellung von Formteilen sowie aus den vorgenannten thermoplastischen Formmassen erhältliche Formteile.
Polyarylenether gehören zur Gruppe der Hochleistungsthermoplaste und finden aufgrund ihrer hohen Wärmeform- und Chemikalienbeständigkeit Verwendung in hoch beanspruchten Anwendungen, siehe G. Blinne, M. Knoll, D. Müller, K. Schlichting, Kunststoffe 75, 219 (1985), E. M. Koch, H.-M. Walter, Kunststoffe 80, 1146 (1990) und D. Döring, Kunststoffe 80, 1 149 (1990).
Aufgrund der hohen Glastemperatur weisen die Polyarylenether vergleichsweise hohe Schmelzeviskosität auf, weshalb zur thermoplastischen Verarbeitung dieser Stoffklasse (z.B. durch Spritzguss, Extrusion) sehr hohe Verarbeitungstemperaturen nötig sind. Zum Füllen komplizierter Werkzeuge müssen vielfach Temperaturen gewählt werden, bei denen Nebenreaktionen wie Molekulargewichtsaufbau oder Vernetzung an Bedeutung gewinnen.
Zur Verbesserung der Fließfähigkeit werden üblicherweise Schmiermittel wie bei- spielsweise Stearate oder oligomere Fettsäureester eingesetzt (R. Gächter, H. Müller, Kunststoff-Additive, S.443 ff, 3. Ausgabe, Hanser Verlag München 1989). Aufgrund der hohen thermischen Belastung führen solche Additive jedoch zu Verfärbung der Fertigprodukte.
Um das vorhandene Eigenschaftsspektrum der Polyarylenether zu erweitern wurden verzweigte Polyarylenether entwickelt. So offenbart die deutsche Offenlegungsschrift DE-A 2305413 verzweigte Polyarylenethersulfone, welche gegenüber den linearen Polyarylenethersulfonen eine geringere Anfälligkeit gegenüber Spannungsrisskorrosion, eine verbesserte Beständigkeit gegenüber ungesättigten Polyesterharzen sowie eine verringerte Brennbarkeit aufweisen. Die Spannungsrissbeständigkeit von Mischungen thermoplastischer Polymere, insbesondere linearer Polyarylenethersulfone mit den genannten verzweigten Polyarylenethersulfone ist jedoch für viele Anwendungen nicht ausreichend.
Ein in Macromolecular Symposia 2003, 199, 243-252 erschienener Aufsatz über die Synthese und Charakterisierung von verzweigten Polyarylenethern offenbart, dass der Einsatz verzweigter Polyethersulfone im Allgemeinen die Fließfähigkeiten der Polyarylenethersulfone verbessert, aber mechanische Eigenschaften, wie zum Beispiel die Zähigkeit, verschlechtert.
Aus der EP-A 1 436 344 ist bekannt, dass der Zusatz verzweigter Polyarylenethersulfone mit 1 ,1 ,1-Tris(4-hydroxyphenyl)ethan-Einheiten als Verzweigungsstellen die Fließfähigkeit und Schmelzestabilität von bekannten linearen Polyethersulfonen verbessert. Die so erhaltenen Produkte sind bezüglich der Fließfähigkeit jedoch vielfach noch nicht ausreichend.
Ein weiterer Ansatz zur Verbesserung der Fließfähigkeit von Polyarylenethern ist der Zusatz von LC-Polymeren (G. Kiss, Polym. Eng. & Sei., 27, 410 (1987), K. Engberg, O. Strömberg, J. Martinsson, U.W. Gedde, Polym. Eng. & Sei., 34, 1336 (1994)). Mit der Verbesserung der Fließfähigkeit geht jedoch eine massive Verschlechterung der Zähigkeit entsprechender Produkte einher.
Eine Aufgabe der vorliegenden Erfindung war es, gegenüber dem Stand der Technik verbesserte verzweigte Polyarylenether bereitzustellen, die in Abmischung mit thermo- plastischen Formmassen zu einer Verbesserung der Fließfähigkeit führen. Der vorliegenden Erfindung lag zudem die Aufgabe zugrunde, Polyarylenethersulfone mit verbesserter Fließfähigkeit zur Verfügung zu stellen, die gleichzeitig eine hohe Chemikalienstabilität aufweisen. Insbesondere sollten die Polyarylenethersulfone der vorliegenden Erfindung eine hohe Spannungsrissbeständigkeit aufweisen. Die mechanischen Eigenschaften sollten dabei im Vergleich zur Verwendung bekannter verzweigter Polyarylenethersulfone nicht negativ beeinflusst werden. Insbesondere sollten die Polyarylenethersulfone eine hohe Zähigkeit aufweisen. Die vorgenannten Aufgaben werden gelöst durch die erfindungsgemäßen verzweigten Polyarylenether und deren Mischungen mit weiteren thermoplastischen Polymeren, insbesondere Polyarylenethersulfonen. Bevorzugte Ausführungsformen sind den An- Sprüchen und der nachfolgenden Beschreibung zu entnehmen. Kombinationen bevorzugter Ausführungsformen verlassen den Rahmen der vorliegenden Erfindung nicht.
Die erfindungsgemäßen Polyarylenether (A) enthalten Verzweigungsstellen gemäß der Formel (I):
Figure imgf000004_0001
Unter Verzweigungsstelle wird im Rahmen der vorliegenden Erfindung ein Kettenbaustein verstanden, der über mindestens drei Sauerstoffatome mit weiteren Bausteinen des Polymers verknüpft ist. Demzufolge verknüpft die Verzweigungsstelle gemäß For- mel (I) drei Kettenabschnitte des Polyarylenethers (A), wobei die Verzweigungsstelle über ein Sauerstoffatom mit den Kettenabschnitten des Polyarylenethers (A) verknüpft ist. Je nach Anteil der erfindungsgemäßen Verzweigungsstellen ergeben sich im Mittel teilweise, einfach oder mehrfach verzweigte Polyarylenether (A).
Die Stoffklasse der Polyarylenether ist dem Fachmann an sich bekannt. Unter „Polyarylenether" sind im Rahmen der vorliegenden Erfindung Polymere zu verstehen, die wenigstens einen Kettenbaustein mit wenigstens einer über ein Sauerstoffatom in die Polymerkette eingebauten Aryleneinheit aufweisen.
Vorzugsweise sind die Polyarylenether (A) der vorliegenden Erfindung Polyarylen- ethersulfone.
Die Stoffklasse der Polyarylenethersulfone ist dem Fachmann an sich ebenfalls bekannt. Unter „Polyarylenethersulfone" sind im Rahmen der vorliegenden Erfindung Polymere zu verstehen, die wenigstens einen Kettenbaustein enthalten, der wenigstens eine über ein Sauerstoffatom in die Polymerkette eingebaute Aryleneinheit und wenigstens eine über eine -Sθ2-Gruppe in die Polymerkette eingebaute Aryleneinheit aufweist.
Im Rahmen der vorliegenden Erfindung bevorzugte Polyarylenether (A) sind Polyary- lenethersulfone enthaltend
(A1 ) von 1 bis 99,9 Gew.-% mindestens eines Bausteins der allgemeinen Formel Il
Figure imgf000005_0001
mit folgenden Bedeutungen
t, q: unabhängig voneinander 0, 1 , 2 oder 3, Q, T, Y: unabhängig voneinander jeweils eine chemische Bindung oder Gruppe, ausgewählt aus -O-, -S-, -SO2-, S=O, C=O, -N=N-, -CRaRb-, wobei Ra und Rb unabhängig voneinander jeweils für ein Wasserstoffatom oder eine CT Ci2-Alkyl-, C1-C12-Alkoxy- oder C6-C18-Arylgruppe stehen, wobei wenigstens eines aus Q, T und Y von -O- verschieden ist, und wenigstens eines aus Q, T und Y für -SO2- steht und
Ar, Ar1: unabhängig voneinander C6-C18-Arylengruppe,
und
(A2) von 0,1 bis 99 Gew.-% Verzweigungsstellen gemäß der Formel (I) wie oben defi- niert, wobei die Summe der Gew.-% aus (A1) und (A2) 100 Gew.-% ergibt.
Falls Q, T oder Y unter den oben genannten Voraussetzungen eine chemischen Bindung ist, dann ist darunter zu verstehen, dass die links benachbarte und die rechts benachbarte Gruppe direkt miteinander über eine chemische Bindung verknüpft vorlie- gen.
Vorzugsweise werden Q, T und Y in Formel (II) allerdings unabhängig voneinander ausgewählt aus -O- und -SO2-, mit der Maßgabe, dass wenigstens eines aus der Gruppe bestehend aus Q, T und Y für -SO2- steht.
Sofern Q, T oder Y -CRaRb- sind, stehen Ra und Rb unabhängig voneinander jeweils für ein Wasserstoffatom oder eine C1-C12-Alkyl-, C1-C12-Alkoxy- oder C6-C18-Arylgruppe.
Bevorzugte C1-C12-Alkylgruppen umfassen lineare und verzweigte, gesättigte Alkyl- gruppen mit von 1 bis 12 Kohlenstoffatomen. Insbesondere sind folgende Reste zu nennen: C1-C6-Alkylrest, wie Methyl, Ethyl, n-Propyl, i-Propyl, n-Butyl, sec.-Butyl, 2- oder 3-Methyl-pentyl und längerkettige Reste wie unverzweigtes Heptyl, Octyl, Nonyl, Decyl, Undecyl, Lauryl und die ein- oder mehrfach verzweigten Analoga davon.
Als Alkylreste in den vorgenannten einsetzbaren C1-C12-Alkoxygruppen kommen die weiter oben definierten Alkylgruppen mit von 1 bis 12 Kohlenstoffatomen in Betracht. Vorzugsweise verwendbare Cycloalkylreste umfassen insbesondere C3-C12-CVCI0- alkylreste, wie zum Beispiel Cyclopropyl, Cyclobutyl, Cyclopentyl, Cyclohexyl, Cyclo- heptyl, Cyclooctyl, Cyclopropylmethyl, Cyclopropylethyl, Cyclopropylpropyl, Cyclobu- tylmethyl, Cyclobutylethyl, Cyclpentylethyl, -propyl, -butyl, -pentyl, -hexyl, Cyclohexyl- methyl, -dimethyl, -trimethyl.
Ar und Ar1 bedeuten unabhängig voneinander eine C6-C18-Arylengruppe. Ausgehend von den weiter unten beschriebenen Ausgangsprodukten ist Ar vorzugsweise abgelei- tet von einer elektronenreichen, leicht elektrophil angreifbaren aromatischen Substanz, die bevorzugt aus der Gruppe bestehend aus Hydrochinon, Resorcin, Dihydroxy- naphthalin, insbesondere 2,7-Dihydroxynaphthalin, und 4,4'-Bisphenol ausgewählt wird. Vorzugsweise ist Ar1 eine unsubstituierte C6- oder Ci2-Arylengruppe.
Als C6-C18-Arylengruppen Ar und Ar1 kommen insbesondere Phenylengruppen, wie 1 ,2-, 1 ,3- und 1 ,4-Phenylen, Naphthylengruppen, wie beispielsweise 1 ,6-, 1 ,7-, 2,6- und 2,7-Naphthylen, sowie die von Anthracen, Phenanthren und Naphthacen abgeleiteten Arylengruppen in Betracht.
Vorzugsweise werden Ar und Ar1 in der bevorzugten Ausführungsform gemäß Formel (II) unabhängig voneinander ausgewählt aus der Gruppe bestehend aus 1 ,4-Phenylen, 1 ,3-Phenylen, Naphthylen, insbesondere 2, 7-Dihydroxynaphthalin, und 4,4'- Bisphenylen.
In den erfindungsgemäßen Polyarylenethern (A) vorzugsweise vorliegende Bausteine (A1) sind solche, die mindestens eine der folgenden wiederkehrenden Struktureinheiten IIa bis No enthalten:
Figure imgf000007_0001
Figure imgf000008_0001
Zusätzlich zu den bevorzugt vorliegenden Bausteinen IIa bis No sind auch solche Bausteine bevorzugt, in denen eine oder mehrere 1 ,4-Dihydroxyphenyl-Einheiten durch Resorcin- oder Dihydroxynaphthalin-Einheiten ersetzt sind.
Als Baustein (A1 ) besonders bevorzugt sind die Bausteine IIa, Ng und Nk. Es ist außerdem besonders bevorzugt, wenn der Baustein A1 im Wesentlichen aus einer Sorte Bausteine der allgemeinen Formel II, insbesondere aus einem Baustein ausgewählt aus IIa, Ng und Nk aufgebaut ist.
Im Allgemeinen weisen die bevorzugten Polyarylenethersulfone (A) mittlere Molekulargewichte Mn (Zahlenmittel) im Bereich von 5000 bis 60000 g/mol und relative Viskositäten von 0,20 bis 0,95 dl/g auf. Die relativen Viskositäten werden je nach Löslichkeit der Polyarylenethersulfone entweder in 1 gew.-%iger N-Methylpyrrolidon-Lösung oder in Mischungen aus Phenol und Dichlorbenzol bei jeweils 20ºC bzw. 25°C gemessen.
Die Polyarylenether (A) der vorliegenden Erfindung weisen vorzugsweise gewichtsmittlere Molekulargewichte Mw von 10.000 bis 150.000 g/mol, insbesondere von 15.000 bis 120.000 g/mol, besonders bevorzugt von 18.000 bis 100.000 g/mol auf, bestimmt mittels Gelpermeationschromatographie im Lösungsmittel Dimethylformamid gegen engverteiltes Polymethylmethacrylat als Standard.
Die Polyarylenether-Copolymere der vorliegenden Erfindung weisen vorzugsweise Viskositätszahlen, gemessen in 1 %-iger Lösung in N-Methylpyrrolidon bei 25°C, von 30 bis 200 ml/g, insbesondere von 35 bis 190 ml/g, besonders bevorzugt von 40 bis 180 ml/g auf.
In einer weiteren Ausführungsform enthalten die erfindungsgemäßen Polyarylenether (A) Verzweigungsstellen gemäß der Formel (I) sowie weitere Verzweigungsstellen, welche von Vernetzern VN mit mindestens drei Hydroxyfunktionalitäten abgeleitet sind. Derartige Vernetzer VN haben einen anderen Aufbau als der gemäß Formel (I).
Sofern Verzweigungsstellen abgeleitet von Vernetzern VN vorliegen, dann liegen diese vorzugsweise in Anteilen von 0,1 bis 40 Gew.-%, insbesondere 0,1 bis 10 Gew.-% in Bezug auf das Polyarylenether (A) vor.
Vernetzer werden bei der Polykondensation zur Herstellung der Polyarylether- Copolymere zugesetzt und werden wie die Dihydroxyverbindungen in die Polymer- hauptkette eingebaut. Dadurch, dass die Vernetzer VN noch wenigstens eine freie Hydroxyfunktion aufweisen, kommt es durch Kondensation eines geeigneten Monomers mit dieser wenigstens einen Hydroxyfunktion zu wenigstens einer Verzweigung der Polymerhauptkette. Die Vernetzer VN können in monomerer Form auch vier Hydroxyfunktionalitäten aufweisen, so dass nach Einbau in die Polymerhauptkette noch zwei Hydroxyfunktionen für eine Verzweigung der Hauptkette zur Verfügung stehen.
Die genannten zusätzlichen Vernetzer VN liegen im Polyarylenether (A) selbstverständlich in polymerer Form vor. Sofern derartige zusätzliche Vernetzer VN überhaupt vorliegen bzw. verwendet werden, dann weisen sie vorzugsweise eine Struktur auf, die im Folgenden erläutert wird:
Die Vernetzer VN sind vorzugsweise aromatische oder teilaromatische Verbindungen. Bevorzugte Vernetzer VN weisen mindestens drei an aromatische Ringe geknüpfte Hydroxylgruppen auf, d.h. sie weisen mindestens drei phenolische Hydroxylgruppen auf.
Als Vernetzer VN in monomerer Form seien insbesondere genannt:
Phloroglucin, 4,6-Dimethyl-2,4,6-Tri-(4-hydroxyphenyl)-hepten-2 (= trimeres Isoprope- nylphenol), 4,6-Dimethyl-2,4,6-Tri-(4-hydroxyphenyl)-heptan (= hydriertes primäres Isopropenylphenol), 1 ,3,5-Tri-(4-hydroxyphenyl)-benzol, 1 ,1 ,1-Tri-(4-hydroxy-phenyl)- ethan und -propan, Tetra-(4-hydroxyphenyl)-methan, 1 ,4-bis-[(4',4"-dihydroxy- triphenyl)-methyl]-benzol und 2,2-bis-[4,4'-bis-(4-hydroxyphenyl)-cyclohexyl]-propan.
Als Vernetzer VN besonders bevorzugt sind solche drei- oder mehr als dreiwertigen Phenole, die durch Umsetzung von p-alkylsubstituierten Monophenolen an unsubstitu- ierten o-Stellungen mit Formaldehyd oder Formaldehyd liefernden Verbindungen her- stellbar sind, wie beispielsweise das Trisphenol aus p-Kresol und Formaldehyd, das 2- 6-bis-(2'-hydroxy-5'-methyl-benzyl)-4-methyl-phenol. Ferner kommen 2,6-bis-(2'- hydroxy-5'-isopropyl-benzyl)-4-isopropenyl-phenol und Bis-[2-hydroxy-3-(2'-hydroxy-5'- methyl-benzyl-5-methyl-phenyl]-methan als Vernetzer VN in Betracht.
Als Phenole mit mindestens drei Hydroxyfunktionalitäten kommen außerdem solche in Betracht, die zusätzlich zu den phenolischen Hydroxylgruppen Halogenatome aufweisen, zum Beispiel die halogenhaltigen Trihydroxyarylether der Formel (l-a)
Figure imgf000010_0001
worin Ar2 einen ein- oder mehrkernigen zweiwertigen aromatischen Rest und HaI Chlor oder Brom bedeuten. Beispiele für solche Verbindungen sind:
1 ,3,5-Tris-(4-Hydroxy-Phenoxy)-2,4,6-trichlorbenzol,
1 ,3,5-Tris-[4-(4-hydroxy-phenyl-isopropyl)-phenoxy]-2,4,6-trichlorbenzol, 1 ,3,5-Tris-[4-(4-hydroxy)-biphenoxy]-2,4,6-trichlorbenzol, 1 ,3,5-Tris-[4-(4-hydroxy-phenylsulfonyl)-phenoxy]-2,4,6-trichlorbenzol und 1 ,3,5-Tris-[4-(4-hydroxy-phenyl-isopropyl)-phenoxy]-2,4,6-tribrombenzol.
Die Herstellung der vorgenannten Verbindungen ist in der deutschen Offenlegungs- schrift 1 768 620 beschrieben.
In einer besonders bevorzugten Ausführungsform ist der Vernetzer VN ausgewählt aus 1 ,1 ,1-Tris(4-hydroxyphenyl)ethan (l-b)
Figure imgf000010_0002
und aus (l-b) abgeleitete Verbindungen. Ganz besonders bevorzugt ist der Vernetzer VN ausgewählt aus 1 ,1 ,1-Tris(4-hydroxyphenyl)ethan (l-b).
Das erfindungsgemäße Verfahren zur Herstellung der erfindungsgemäßen Polyarylen- ether umfasst die Umsetzung mindestens einer aromatischen Verbindung (a1 ) mit zwei Halogensubstituenten und mindestens einer aromatischen Verbindung (a2) mit zwei funktionellen Gruppen, die gegenüber vorgenannten Halogensubstituenten reaktiv sind, in Gegenwart mindestens einer trifunktionellen Verbindung gemäß der allgemeinen Formel
Figure imgf000011_0001
Im Rahmen der allgemeinen Formel (III) wird jeder der drei Substituenten X unabhängig voneinander ausgewählt gemäß den Bedingungen (i) oder (ii):
(i) jedes der drei Substituenten X wird unabhängig voneinander ausgewählt aus O und OH; oder
(ii) jedes der drei Substituenten X wird unabhängig voneinander ausgewählt aus Halogen, vorzugsweise F oder Cl.
In einer besonders bevorzugten Ausführungsform ist X = F. Derartige Verbindungen der allgemeinen Formel (III) sind dem Fachmann an sich bekannt oder können nach bekannten Methoden hergestellt werden.
Für die Herstellung von Polyarylenethern geeignete aromatische Verbindungen (a1 ) und (a2) als Monomere sind dem Fachmann bekannt und unterliegen keiner prinzipiellen Einschränkung, sofern die genannten Substituenten im Rahmen einer nucleophilen aromatischen Substitution ausreichend reaktiv sind. Eine weitere Voraussetzung ist eine ausreichende Löslichkeit im Lösungsmittel wie weiter unten näher ausgeführt. Geeignete Verbindungen (a1 ) sind insbesondere Dihalogendiphenylsulfone wie 4,4'- Dichlordiphenylsulfon, 4,4'-Difluordiphenylsulfon, 4,4'-Dibromdiphenylsulfon, bis(2- chlorophenyl)sulfone, 2,2'-Dichlordiphenylsulfon und 2,2'-Difluordiphenylsulfon.
Vorzugsweise sind die aromatischen Verbindungen mit zwei Halogensubstituenten (a1 ) ausgewählt aus 4,4'-Dihalogendiphenylsulfonen, insbesondere 4,4'- Dichlordiphenylsulfon oder 4,4'-Difluordiphenylsulfon.
Die gegenüber den vorgenannten Halogensubstituenten reaktiven Gruppen sind insbe- sondere phenolische OH und O--Gruppen, wobei letztere funktionelle Gruppe sich von den Dihydroxyverbindungen ableitet und in bekannter Weise aus einer solchen hergestellt werden kann oder intermediär entsteht. Bevorzugte Verbindungen (a2) sind demzufolge solche mit zwei phenolischen Hydroxygruppen.
Bevorzugte Verbindungen (a2) mit zwei phenolischen Hydroxygruppen werden aus folgenden Verbindungen ausgewählt:
Dihydroxybenzole, insbesondere Hydrochinon und Resorcin;
Dihydroxynaphthaline, insbesondere 1 ,5-Dihydroxynaphthalin, 1 ,6- Dihydroxy- naphthalin, 1 ,7- Dihydroxynaphthalin, und 2,7- Dihydroxynaphthalin;
Dihydroxybiphenyle, insbesondere 4,4'-Biphenol und 2,2'-Biphenol;
Bisphenylether, insbesondere Bis(4-hydroxyphenyl)ether und Bis(2- hydroxyphenyl)ether;
Bisphenylpropane, insbesondere 2,2-Bis(4-hydroxyphenyl)propan, 2,2-Bis(3- methyl-4-hydroxyphenyl)propan, und 2,2-Bis(3,5-dimethyl-4- hydroxyphenyl)propan;
Bisphenylmethane, insbesondere Bis(4-hydroxyphenyl)methan;
Bisphenylsulfone, insbesondere Bis(4-hydroxyphenyl)sulfon;
Bisphenylsulfide, insbesondere Bis(4-hydroxyphenyl)sulfid; - Bisphenylketone, insbesondere Bis(4-hydroxyphenyl)keton;
Bisphenylhexafluoropropane, insbesondere 2,2-Bis(3,5-dimethyl-4- hydroxyphenyl)hexafluoropropan; und
Bisphenylfluorene, insbesondere 9,9-Bis(4-hydroxyphenyl)fluoren.
Es ist bevorzugt ausgehend von den vorgenannten aromatischen Dihydroxyverbindungen (a2) ihre Dikalium- oder Dinatriumsalze herzustellen und mit der Verbindung (a1 ) zur Reaktion zu bringen. Die vorgenannten Verbindungen können einzeln oder als Kombination zwei oder mehrerer der vorgenannten Verbindungen eingesetzt werden.
Hydrochinon, Resorcin, Dihydroxynaphthalin, insbesondere 2,7- Dihydroxynaphthalin, 4,4'-Dihydroxydiphenylsulfon und 4,4'-Bisphenol sind als aromatische Verbindung (a2) mit zwei funktionellen Gruppen, die gegenüber den Halogensubstituenten der aromatischen Verbindung (a1 ) reaktiv sind, besonders bevorzugt.
Die einzusetzenden Mengenverhältnisse ergeben sich aus der Stöchiometrie der ab- laufenden Polykondensationsreaktion unter rechnerischer Abspaltung von Chlorwasserstoff und werden vom Fachmann in bekannter Weise eingestellt.
Im Rahmen der Durchführung des erfindungsgemäßen Verfahrens werden Teile der Halogengruppen aus der Verbindung (a1 ) oder Teile der gegenüber Halogengruppen reaktiven Gruppen der Verbindung (a2) ersetzt durch eine entsprechende trifunktionel- Ie Verbindung gemäß der allgemeinen Formel (III) wie oben definiert.
Das molare Verhältnis von Monomeren mit Hydroxyfunktionalitäten zu Monomeren mit Halogenfunktionalitäten liegt bei 0,8 zu 1 ,2 bis 1 ,2 zu 0,8, bevorzugt bei 0,9 zu 1 ,1 bis 1 ,1 zu 0,9, besonders bevorzugt bei 1 zu 1. Liegen verschiedene Monomere mit Hydroxyfunktionalitäten oder mit Halogenfunktionalitäten vor, so werden jeweils die molaren Mengen in Summe betrachtet.
Besonders bevorzugt ist die Umsetzung der Monomere in aprotischen polaren Lö- sungsmitteln in Gegenwart von wasserfreiem Alkalicarbonat, insbesondere Natrium-, Kalium-, Calciumcarbonat oder Mischungen davon, wobei Kaliumcarbonat ganz besonders bevorzugt ist, insbesondere Kaliumcarbonat mit einer volumengewichteten mittleren Teilchengröße von weniger als 100 Mikrometer, bestimmt mit einem Partikel- größenmessgerät in einer Suspension in N-Methylpyrrolidon. Eine besonders bevor- zugte Kombination ist N-Methylpyrrolidon als Lösungsmittel und Kaliumcarbonat als Base.
Die Umsetzung der geeigneten Monomere wird bei einer Temperatur von 80 bis 250ºC, bevorzugt 100 bis 220ºC durchgeführt. Die Umsetzung wird für 2 bis 12 h, be- vorzugt 3 bis 8 h durchgeführt. Nach Beendigung der Polykondensationsreaktion kann dem Reaktionsgemisch ein monofunktionelles Alkyl- oder Arylhalogenid, beispielsweise C1-C6-Alkylchlorid, -bromid oder -iodid, bevorzugt Methylchlorid, oder Benzylchlorid, -bromid oder -iodid oder Mischungen davon, zugesetzt werden. Diese Verbindungen reagieren mit den Hydroxygruppen an den Enden der Makromoleküle und bilden somit die Anfangs- bzw. Endstücke der Makromoleküle.
Die Umsetzung in der Schmelze ist ebenfalls möglich. Die Polykondensation in der Schmelze wird bei einer Temperatur von 140 bis 290°C, bevorzugt 150 bis 280ºC durchgeführt.
In einer weiteren, ebenfalls bevorzugten Variante zur Herstellung der erfindungsgemäßen Polyarylenether (A) erfolgt in einem ersten Schritt zunächst die Herstellung von präpolymeren Arylenethern, die reaktive Endgruppen aufweisen (sogenannte Teleche- Ie), die gegenüber der trifunktionellen Verbindung gemäß der allgemeinen Formel (III) reaktiv sind. Die dort beschrieben Varianten (i) und (ii) sind wie folgt mit den reaktiven Endgruppen der Telechele zu kombinieren:
Variante (i): Präpolymer mit Halogenendgruppen, insbesondere -Cl oder -F
Variante (ii): Präpolymer mit OH- oder O- Endgruppen.
Die Herstellung derartiger Telechele ist dem Fachmann bekannt und erfolgt vorzugs- weise ausgehend von den oben beschriebenen Verbindungen (a1 ) und (a2) durch Steuerung des Einsatzverhältnisses dergestalt, dass eine Sorte Endgruppe, die als Endgruppe fungieren soll, gegenüber der anderen Endgruppe in einem molaren Über- schuss von ungefähr 1 ,01 : 1 bis ungefähr 1 ,15 : 1 vorliegt. In einem zweiten Schritt erfolgt anschließend die Umsetzung der Telechele mit der trifunktionellen Verbindung der allgemeinen Formel (III).
Die Reinigung der Polyarylenether-Copolymere erfolgt nach dem Fachmann bekannten Methoden, beispielsweise Umkristallisieren oder Waschen mit geeigneten Lösungsmitteln, in denen die erfindungsgemäßen Polyarylenether-Copolymere bevorzugt größten- teils unlöslich sind.
Thermoplastische Formmassen
Ein weiterer Gegenstand der vorliegenden Erfindung sind thermoplastische Formmas- sen enthaltend mindestens einen der erfindungsgemäßen Polyarylenether (A) sowie mindestens ein thermoplastisches Polymer (B) ungleich dem Polyarylenether (A).
Die Zusammensetzung der erfindungsgemäßen thermoplastischen Formmassen kann über einen weiten Bereich variieren, insbesondere da die thermoplastischen Formmas- sen neben dem thermoplastischen Polymer (B) optional weitere Komponenten enthalten und unmittelbar oder als Masterbatch eingesetzt werden können.
Bevorzugte thermoplastische Formmassen enthalten von 0,1 bis 99 Gew.-% mindestens eines erfindungsgemäßen Polyarylenethers (A), von 1 bis 99,9 Gew.-% mindes- tens eines weiteren thermoplastischen Polymers (B) sowie optional von 0 bis 70 Gew.- % mindestens eines faserförmigen Füllstoffes (C), wobei die Summe der Gew.-% von (A), (B) und (C) 100 Gew.-% ergibt.
Das thermoplastische Polymer (B) ist vorzugsweise nicht verzweigt, d.h. aus linear verknüpften Bausteinen aufgebaut. Die erfindungsgemäßen thermoplastischen Formmassen können optional insbesondere folgende weitere Komponenten enthalten: (D) mindestens einen schlagzähmodifizie- renden Kautschuk und (E) eines oder mehrerer Zusatzstoffe.
In einer bevorzugten Ausführungsform enthalten die thermoplastischen Formmassen der vorliegenden Erfindung von 1 bis 20 Gew.-%, insbesondere von 3 bis 15 Gew.-% mindestens eines erfindungsgemäßen Polyarylenethers (A), von 39 bis 99 Gew.-%, insbesondere von 47 bis 97 Gew.-% mindestens eines weiteren thermoplastischen Polymers (B), von 0 bis 70 Gew.-%, insbesondere von 0 bis 50 Gew.-% mindestens eines faserförmigen Füllstoffes (C), von 0 bis 40 Gew.-% mindestens eines schlag- zähmodifizierenden Kautschuks (D) und von 0 bis 40 Gew.-% mindestens eines Zusatzstoffes (E), wobei die Summe der Gew.-% von (A), (B), (C), (D) und (E) 100 Gew.- % ergibt.
Die einzelnen Komponenten (B) bis (E) werden im Folgenden näher erläutert.
Komponente B
Vorzugsweise enthalten die thermoplastischen Formmassen der vorliegenden Erfin- düng als thermoplastisches Polymer (B) mindestens ein Polyarylenethersulfon, welches vorzugsweise nicht verzweigt ist. Bevorzugte Polyarylenethersulfone als Komponente (B) unterscheiden sich somit von den entsprechenden Polyarylenethern (A) vorzugsweise dadurch, dass sie nicht verzweigt sind, sondern aus linear verknüpften Bausteinen aufgebaut sind.
Bevorzugte Polyarylenethersulfone weisen die Bausteine (A1 ) auf, welche bereits im Rahmen der verzweigten Polyarylenether (A) beschrieben wurden. Bevorzugte Polyarylenethersulfone als Komponente (B) unterscheiden sich somit von den entsprechenden Polyarylenethern (A) vorzugsweise dadurch, dass sie nicht verzweigt sind, sondern aus linear verknüpften Bausteinen aufgebaut sind.
Bevorzugt sind thermoplastische Formmassen, die als thermoplastisches Polymer (B) mindestens ein Polyarylenethersulfon auf Basis von Bausteinen gemäß der allgemeinen Formel (IV) enthalten:
Figure imgf000015_0001
wobei t, q, Q, T, Y, Ar und Ar1 folgende Bedeutungen aufweisen:
t, q: unabhängig voneinander 0, 1 , 2 oder 3, Q, T, Y: unabhängig voneinander jeweils eine chemische Bindung oder Gruppe, ausgewählt aus -O-, -S-, -SO2-, S=O, C=O, -N=N-, -CRaRb-, wobei Ra und Rb unabhängig voneinander jeweils für ein Wasserstoffatom oder eine d- Ci2-Alkyl-, C1-C12-Alkoxy- oder C6-C18-Arylgruppe stehen, wobei wenigs- tens eines aus Q, T und Y von -O- verschieden ist, und wenigstens eines aus Q, T und Y für -SO2- steht und
Ar, Ar1: unabhängig voneinander C6-C18-Arylengruppe.
Vorzugsweise werden Q, T und Y in Formel (IV) unabhängig voneinander ausgewählt aus -O- und -SO2-, wobei wenigstens eines aus der Gruppe bestehend aus Q, T und Y für -SO2- steht.
Ra und Rb besitzen die im Rahmen der Polyarylenether (A) beschriebene Bedeutung.
Ar und Ar1 bedeuten unabhängig voneinander eine C6-C18-Arylengruppe. Ausgehend von den weiter unten beschriebenen Ausgangsprodukten ist Ar vorzugsweise abgeleitet von einer elektronenreichen, leicht elektrophil angreifbaren aromatischen Substanz, die bevorzugt aus der Gruppe bestehend aus Hydrochinon, Resorcin, Dihydroxy- naphthalin, insbesondere 2,7-Dihydroxynaphthalin, und 4,4'-Bisphenol ausgewählt wird. Vorzugsweise ist Ar1 eine unsubstituierte C6- oder Ci2-Arylengruppe.
Als C6-C18-Arylengruppen Ar und Ar1 kommen insbesondere Phenylengruppen, wie 1 ,2-, 1 ,3- und 1 ,4-Phenylen, Naphthylengruppen, wie beispielsweise 1 ,6-, 1 ,7-, 2,6- und 2,7-Naphthylen, sowie die von Anthracen, Phenanthren und Naphthacen abgelei- teten Arylengruppen in Betracht.
Vorzugsweise werden Ar und Ar1 in der bevorzugten Ausführungsform gemäß Formel (II) unabhängig voneinander ausgewählt aus der Gruppe bestehend aus 1 ,4-Phenylen, 1 ,3-Phenylen, Naphthylen, insbesondere 2, 7-Dihydroxynaphthylen, und 4,4'- Bisphenylen.
Bevorzugte Bausteine gemäß der Formel (IV) sind solche, die auf Basis mindestens einer der im Rahmen von Komponente (A1 ) beschriebenen wiederkehrenden Struktureinheiten IIa bis No aufgebaut sind.
Zusätzlich zu den bevorzugt vorliegenden Bausteinen IIa bis No sind auch solche Bausteine bevorzugt, in denen eine oder mehrere 1 ,4-Dihydroxyphenyl-Einheiten durch Resorcin- oder Dihydroxynaphthalin-Einheiten ersetzt sind.
Als Baustein gemäß Formel (IV) besonders bevorzugt sind die Bausteine IIa, Ng und Nk. In einer besonders bevorzugten Ausführungsform ist das thermoplastische Polymer (B) aufgebaut aus Bausteinen, die aus IIa, Ng und Nk ausgewählt werden. Homopoly- mere von Polyarylenethersulfonen sind besonders bevorzugt.
Sofern als thermoplastisches Polymer (B) ein Polyarylenether verwendet wird, weist Komponente (B) vorzugsweise ein gewichtsmittleres Molekulargewicht Mw von 10.000 bis 150.000 g/mol, insbesondere von 15.000 bis 120.000 g/mol, besonders bevorzugt von 18.000 bis 100.000 g/mol auf, bestimmt mittels Gelpermeationschromatographie im Lösungsmittel Dimethylformamid gegen engverteiltes Polymethylmethacrylat als Standard.
Die als thermoplastisches Polymer (B) bevorzugten Polyarylenether weisen vorzugsweise Viskositätszahlen, gemessen in 1 %-iger Lösung in N-Methylpyrrolidon bei 25°C, von 30 bis 200 ml/g, insbesondere von 35 bis 190 ml/g, besonders bevorzugt von 40 bis 180 ml/g auf.
Im Allgemeinen weisen die als thermoplastisches Polymer (B) bevorzugten Polyarylen- ethersulfone mittlere Molekulargewichte Mn (Zahlenmittel) im Bereich von 5000 bis 60000 g/mol und relative Viskositäten von 0,20 bis 0,95 dl/g auf. Die relativen Viskositäten werden je nach Löslichkeit der Polyarylenethersulfone entweder in 1 gew.-%iger N-Methylpyrrolidon-Lösung oder in Mischungen aus Phenol und Dichlorbenzol bei jeweils 20ºC bzw. 25°C gemessen.
Die oben genannten thermoplastischen Polymere (B) und deren Herstellung sind dem Fachmann bekannt.
Komponente C
Die erfindungsgemäßen Formmassen können faserförmige Zusatzstoffe enthalten.
In einer ersten bevorzugten Ausführungsform enthalten die erfindungsgemäßen Formmassen faserförmige Zusatzstoffe, insbesondere Glasfasern.
Vorzugsweise enthalten die thermoplastische Formmassen von 1 bis 59 Gew.-% mindestens eines Polyarylenethers (A) enthaltend Bausteine (II) wie im Rahmen von Kom- ponente (A) definiert, von 40 bis 98 Gew.-% mindestens eines thermoplastischen Polymers (B) und von 1 bis 59 Gew.-% faserförmige Füllstoffe, wobei das thermoplastisches Polymer (B) ein Polyarylenethersulfon enthaltend Bausteine (IV) wie oben definiert ist, unter der Voraussetzung, dass die Bausteine (IV) und (II) gleich oder unterschiedlich sind.
Bevorzugte faserförmige Füll- oder Verstärkungsstoffe sind Kohlenstofffasern, Kaliumti- tanatwhisker, Aramidfasern und besonders bevorzugt Glasfasern. Bei der Verwendung von Glasfasern können diese zur besseren Verträglichkeit mit dem Matrixmaterial mit einer Schlichte, bevorzugt einer Polyurethanschlicht und einem Haftvermittler ausgerüstet sein. Im Allgemeinen haben die verwendeten Kohlenstoff- und Glasfasern einen Durchmesser im Bereich von 6 bis 20 μm.
Die Einarbeitung der Glasfasern kann sowohl in Form von Kurzglasfasern als auch in Form von Endlossträngen (Rovings) erfolgen. Im fertigen Spritzgussteil liegt die mittlere Länge der Glasfasern vorzugsweise im Bereich von 0,08 bis 0,5 mm.
Kohlenstoff- oder Glasfasern können auch in Form von Geweben, Matten oder Glas- seidenrovings eingesetzt werden.
Als teilchenförmige Füllstoffe eignen sich amorphe Kieselsäure, Carbonate wie Mag- nesiumcarbonat (Kreide), gepulverter Quarz, Glimmer, unterschiedlichste Silikate wie Tone, Muskovit, Biotit, Suzorit, Zinnmaletit, Talkum, Chlorit, Phlogophit, Feldspat, CaI- ciumsilikate wie Wollastonit oder Aluminiumsilikate wie Kaolin, besonders kalzinierter Kaolin.
Nach einer besonders bevorzugten Ausführungsform werden teilchenförmige Füllstoffe verwendet, von denen mindestens 95 Gew.-%, bevorzugt mindestens 98 Gew.-% der Teilchen einen Durchmesser (größte Ausdehnung), bestimmt am fertigen Produkt, von weniger als 45 μm, bevorzugt weniger als 40 μm aufweisen und deren so genanntes Aspektverhältnis im Bereich von 1 bis 25, bevorzugt im Bereich von 2 bis 20 liegt, bestimmt am fertigen Produkt.
Die Teilchendurchmesser können dabei z. B. dadurch bestimmt werden, dass elektronenmikroskopische Aufnahmen von Dünnschnitten der Polymermischung aufgenommen und mindestens 25, bevorzugt mindestens 50 Füllstoffteilchen für die Auswertung herangezogen werden. Ebenso kann die Bestimmung der Teilchendurchmesser über Sedimentationsanalyse erfolgen, gemäß Transactions of ASAE, Seite 491 (1983). Der Gewichtsanteil der Füllstoffe, die weniger als 40 μm beträgt kann auch mittels Siebanalyse gemessen werden. Das Aspektverhältnis ist das Verhältnis von Teilchendurchmesser zu Dicke (größter Ausdehnung zu kleinster Ausdehnung).
Besonders bevorzugt werden als teilchenförmige Füllstoffe Talkum, Kaolin, wie kalzinierter Kaolin oder Wollastonit oder Mischungen aus zwei oder allen dieser Füllstoffe. Darunter wird Talkum mit einem Anteil von mindestens 95 Gew.-% an Teilchen mit einem Durchmesser von kleiner als 40 μm und einem Aspektverhältnis von 1 ,5 bis 25, jeweils bestimmt am fertigen Produkt, besonders bevorzugt. Kaolin hat bevorzugt einen Anteil von mindestens 95 Gew.-% an Teilchen mit einem Durchmesser von kleiner als 20 μm und ein Aspektverhältnis von 1 ,2 bis 20, jeweils bestimmt am fertigen Produkt. In einer weiteren bevorzugten Ausführungsform enthalten die erfindungsgemäßen Formmassen keine faserförmigen Zusatzstoffe.
In dieser weiteren bevorzugten Ausführungsform enthalten die thermoplastischen Formmassen von 1 bis 60 Gew.-% mindestens eines Polyarylenethers (A) enthaltend Bausteine (II) wie im Rahmen von Komponente (A) definiert, von 40 bis 98 Gew.-% mindestens eines thermoplastischen Polymers (B), jedoch keine faserförmige Füllstoffe, wobei das thermoplastisches Polymer (B) ein Polyarylenethersulfon enthaltend Bausteine (IV) wie oben definiert ist, unter der Voraussetzung, dass die vorgenannten Bausteine (IV) und (II) gleich sind.
Komponente D
In einer besonders bevorzugten Ausführungsform können die thermoplastischen Formmassen zur Erhöhung der Zähigkeit mindestens einen Kautschuk enthalten.
Unter Kautschuk wird im Rahmen der vorliegenden Erfindung eine vernetzte polymere Verbindung verstanden, welche kautschukelastische Eigenschaften aufweist.
Der Anteil der Komponente (D) in den erfindungsgemäßen thermoplastischen Formmassen kann in weiten Bereichen variieren. Bevorzugte erfindungsgemäße Formmassen enthalten die Komponente D in Mengen von 0 bis 30, insbesondere von 0 bis 20 Gew.-%, bezogen auf das Gesamtgewicht der Komponenten (A) bis (F). Besonders bevorzugte Formmassen enthalten von 0 bis 17,5 Gew.-%, bezogen auf das Gesamt- gewicht der Komponenten (A) bis (F).
Als Komponente D können auch Mischungen aus zwei oder mehreren unterschiedlicher Kautschuke eingesetzt werden.
Bevorzugte Kautschuke, die die Zähigkeit der Formmassen erhöhen, weisen insbesondere zwei wesentliche Merkmale auf: sie enthalten einen elastomeren Anteil, der eine Glasübergangstemperatur von weniger als -10ºC, vorzugsweise von weniger als - 30ºC aufweist, und sie enthalten mindestens eine funktionelle Gruppe, die mit der Komponente (A) und/oder der Komponente (B) wechselwirken kann. Geeignete funkti- onelle Gruppen sind insbesondere Carbonsäure-, Carbonsäureanhydrid-, Carbonsäureester-, Carbonsäureamid-, Carbonsäureimid-, Amino-, Hydroxyl-, Epoxid-, Urethan- oder Oxazolingruppen.
Bevorzugt wird als Komponente D mindestens ein funktionalisierter Kautschuk ver- wendet. Zu den bevorzugten funktionalisierten Kautschuken zählen funktionalisierte Polyolefinkautschuke, die aus folgenden Monomerkomponenten aufgebaut sind: α"l ) 40 bis 99 Gew.-% mindestens eines alpha -Olefins mit 2 bis 8 C- Atomen;
d2) 0 bis 50 Gew.-% eines Diens;
d3) 0 bis 45 Gew.-% eines C1-C12-Alkylesters der Acrylsäure oder Methacrylsäure oder Mischungen derartiger Ester;
d4) 0 bis 40 Gew.-% einer ethylenisch ungesättigten C2-C2o-Mono- oder Dicarbon- säure oder einem funktionellen Derivat einer solchen Säure;
d5) 1 bis 40 Gew.-% eines Epoxygruppen enthaltenden Monomeren; und
d6) 0 bis 5 Gew.-% sonstiger radikalisch polymerisierbarer Monomerer.
Als Beispiele für geeignete alpha-Olefine als Monomerkomponente d1 ) können Ethy- len, Propylen, 1-Butylen, 1-Pentylen, 1-Hexylen, 1-Heptylen, 1-Octylen, 2- Methylpropylen, 3-Methyl-1-butylen und 3-Ethyl-1-butylen genannt werden, wobei Ethy- len und Propylen bevorzugt sind.
Als geeignete Dien-Monomere d2) seien beispielsweise konjugierte Diene mit 4 bis 8 C-Atomen, wie Isopren und Butadien, nichtkonjugierte Diene mit 5 bis 25 C-Atomen, wie Penta-1 ,4-dien, Hexa-1 ,4-dien, Hexa-1 ,5-dien, 2,5-Dimethylhexa-1 ,5-dien und Oc- ta-1 ,4-dien, cyclische Diene, wie Cyclopentadien, Cyclohexadiene, Cyclooctadiene und Dicyclopentadien, sowie Alkenylnorbornene, wie 5-Ethyliden-2-norbornen, 5-Butyliden- 2-norbornen, 2-Methallyl-5-norbornen, 2-lsopropenyl-5-norbornen und Tricyclodiene, wie 3-Methyltricyclo-(5.2.1.0.2.6)-3,8-decadien, oder deren Mischungen genannt. Bevorzugt werden Hexa-1 ,5-dien, 5-Ethyliden-norbornen und Dicyclopentadien. Der Diengehalt beträgt vorzugsweise 0,5 bis 50, insbesondere 2 bis 20 und besonders bevorzugt 3 bis 15 Gew.-%, bezogen auf das Gesamtgewicht der Monomerkomponenten (d1) bis (d6).
Beispiele für geeignete Ester als Monomerkomponente d3) sind insbesondere Methyl-, Ethyl-, Propyl-, n-Butyl, i-Butyl- und 2-Ethylhexyl-, Octyl- und Decylacrylate bzw. die entsprechenden Ester der Methacrylsäure. Von diesen werden Methyl-, Ethyl-, Propyl-, n-Butyl- und 2-Ethylhexylacrylat bzw. -methacrylat besonders bevorzugt.
Anstelle der Ester d3) oder zusätzlich zu diesen können in den Olefinpolymerisaten auch säurefunktionelle und/oder latent säurefunktionelle Monomere ethylenisch ungesättigter Mono- oder Dicarbonsäuren d4) enthalten sein.
Als Beispiele für Monomere d4) seien insbesondere Acrylsäure, Methacrylsäure, tertiäre Alkylester dieser Säuren, insbesondere tert.-Butylacrylat und Dicarbonsäuren, wie Maleinsäure und Fumarsäure, oder Derivate dieser Säuren sowie deren Monoester genannt.
Als latent säurefunktionelle Monomere sollen solche Verbindungen verstanden werden, die unter den Polymerisationsbedingungen bzw. bei der Einarbeitung der Olefinpoly- merisate in die Formmassen freie Säuregruppen bilden. Als Beispiele hierfür seien insbesondere Anhydride von Dicarbonsäuren mit 2 bis 20 C-Atomen, insbesondere Maleinsäureanhydrid und tertiäre C1-C12-Alkylester der vorstehend genannten Säuren, insbesondere tert.-Butylacrylat und tert.-Butylmethacrylat angeführt.
Bevorzugte ethylenisch ungesättigte Dicarbonsäuren und Anhydride als Monomerkom- ponente d4) werden durch folgende allgemeine Formeln V und VI repräsentiert:
Figure imgf000021_0001
worin R2, R3, R4 und R5 unabhängig voneinander für H oder C1-C6-Alkyl stehen.
Bevorzugte Epoxygruppen tragende Monomere d5) werden durch folgende allgemeine Formeln VII und VIII repräsentiert
Figure imgf000021_0002
worin R6, R7, R8 und R9 unabhängig voneinander für H oder C1-C6-Alkyl stehen, m eine ganze Zahl von O bis 20 und p eine ganze Zahl von O bis 10 ist.
Bevorzugt stehen R2 bis R9 für Wasserstoff, m für den Wert O oder 1 und p für den Wert 1.
Bevorzugte Verbindungen d4) bzw. d5) sind Maleinsäure, Fumarsäure und Maleinsäu- reanhydrid bzw. Alkenylglycidylether und Vinylglycidylether. Besonders bevorzugte Verbindungen der Formeln V und VI bzw. VII und VIII sind Maleinsäure und Maleinsäureanhydrid bzw. Epoxygruppen-enthaltende Ester der Acryl- säure und/oder Methacrylsäure, insbesondere Glycidylacrylat und Glycidylmethacrylat.
Besonders bevorzugt sind Olefinpolymerisate, die aus 50 bis 98,9, insbesondere 60 bis 94,85 Gew.-% Ethylen, und 1 bis 50 insbesondere 5 bis 40 Gew.-% eines Esters der Acryl- oder Methacrylsäure, 0,1 bis 20,0, insbesondere 0,15 bis 15 Gew.-% Glycidylacrylat und/oder Glycidylmethacrylat, Acrylsäure und/oder Maleinsäureanhydrid aufgebaut sind.
Besonders geeignete funktionalisierte Kautschuke B sind Ethylen-Methylmethacrylat- Glycidylmethacrylat-, Ethylen-Methylacrylat-Glycidylmethacrylat-, Ethylenethylacrylat- Glycidylacrylat- und Ethylen-Methylmethacrylat-Glycidylacrylat-Polymere.
Als sonstige Monomere d6) kommen z. B. Vinylester und Vinylether in Betracht.
Die Herstellung der vorstehend beschriebenen Polymere kann nach an sich bekannten Verfahren erfolgen, vorzugsweise durch statistische Copolymerisation unter hohem Druck und erhöhter Temperatur.
Der Schmelzindex der Komponente (D) liegt im Allgemeinen im Bereich von 1 bis 80 g/10 min (gemessen bei 190 ºC und 2,16 kg Belastung).
Als weitere Gruppe von geeigneten Kautschuken (D) sind Kern-Schale- Pfropfkau- tschuke zu nennen. Hierbei handelt es sich um in Emulsion hergestellte Pfropfkautschuke, die aus mindestens einem harten und einem weichen Bestandteil bestehen. Unter einem harten Bestandteil versteht man üblicherweise ein Polymerisat mit einer Glasübergangstemperatur von mindestens 25°C, unter einem weichen Bestandteil ein Polymerisat mit einer Glasübergangstemperatur von höchstens 0ºC. Diese Produkte weisen eine Struktur aus einem Kern und mindestens einer Schale auf, wobei sich die Struktur durch die Reihenfolge der Monomerzugabe ergibt. Die weichen Bestandteile leiten sich i. a. von Butadien, Isopren, Alkylacrylaten, Alkylmethacrylaten oder Siloxa- nen und gegebenenfalls weiteren Comonomeren ab. Geeignete Siloxankerne können beispielsweise ausgehend von cyclischen oligomeren Octamethyltetrasiloxan oder Tetravinyltetramethyltetrasiloxan hergestellt werden. Diese können beispielsweise mit gamma -Mercaptopropylmethyldimethoxysilan in einer ringöffnenden kationischen Polymerisation, vorzugsweise in Gegenwart von Sulfonsäuren, zu den weichen Siloxan- kernen umgesetzt werden. Die Siloxane können auch vernetzt werden, indem z. B. die Polymerisationsreaktion in Gegenwart von Silanen mit hydrolysierbaren Gruppen wie Halogen oder Alkoxygruppen wie Tetraethoxysilan, Methyltrimethoxysilan oder Phe- nyltrimethoxysilan durchgeführt wird. Als geeignete Comonomere sind hier z. B. Styrol, Acrylnitril und vernetzende oder pfropfaktive Monomere mit mehr als einer polymeri- sierbaren Doppelbindung wie Diallylphthalat, Divinylbenzol, Butandioldiacrylat oder Triallyl(iso)cyanurat zu nennen. Die harten Bestandteile leiten sich i. a. von Styrol, alpha -Methylstyrol und deren Copolymerisaten ab, wobei hier als Comonomere vorzugsweise Acrylnitril, Methacrylnitril und Methylmethacrylat aufzuführen sind.
Bevorzugte Kern-Schale-Pfropfkautschuke enthalten einen weichen Kern und eine harte Schale oder einen harten Kern, eine erste weiche Schale und mindestens eine weitere harte Schale. Der Einbau von funktionellen Gruppen wie Carbonyl-, Carbonsäure-, Säureanhydrid-, Säureamid-, Säureimid-, Carbonsäureester-, Amino-, Hydro- xyl-, Epoxy-, Oxazolin-, Urethan-, Harnstoff-, Lactam- oder Halogenbenzylgruppen, erfolgt hierbei vorzugsweise durch den Zusatz geeignet funktionalisierter Monomere bei der Polymerisation der letzten Schale. Geeignete funktionalisierte Monomere sind beispielsweise Maleinsäure, Maleinsäureanhydrid, Mono- oder Diester der Maleinsäure, tertiär-Butyl(meth-)acrylat, Acrylsäure, Glycidyl(meth-)acrylat und Vinyloxazolin. Der Anteil an Monomeren mit funktionellen Gruppen beträgt i. a. 0,1 bis 25 Gew.-%, vorzugsweise 0,25 bis 15 Gew.-%, bezogen auf das Gesamtgewicht des Kern-Schale- Pfropfkautschuks. Das Gewichtsverhältnis von weichen zu harten Bestandteilen beträgt i. a. 1 : 9 bis 9 : 1 , bevorzugt 3 : 7 bis 8 : 2.
Derartige Kautschuke sind an sich bekannt und beispielsweise in der EP-A 208 187 beschrieben.
Eine weitere Gruppe von geeigneten Schlagzähmodifiern sind thermoplastische Polyester-Elastomere. Unter Polyesterelastomeren werden dabei segmentierte Copoly- etherester verstanden, die langkettige Segmente, die sich in der Regel von Po- ly(alkylen)etherglycolen und kurzkettige Segmente, die sich von niedermolekularen Diolen und Dicarbonsäuren ableiten, enthalten. Derartige Produkte sind an sich bekannt und in der Literatur, z. B. in der US-A 3 651 014, beschrieben. Auch im Handel sind entsprechende Produkte unter den Bezeichnungen Hytrel™ (Du Pont), Arnitel™ (Akzo) und Pelprene™ (Toyobo Co. Ltd.) erhältlich.
Selbstverständlich können auch Mischungen verschiedener Kautschuke eingesetzt werden.
Komponente E
Die erfindungsgemäßen Formmassen können als weitere Komponente E Hilfsstoffe, insbesondere Verarbeitungshilfsmittel, Pigmente, Stabilisatoren, Flammschutzmittel oder Mischungen unterschiedlicher Additive enthalten. Übliche Zusatzstoffe sind bei- spielsweise auch Oxidationsverzögerer, Mittel gegen Wärmezersetzung und Zersetzung durch ultraviolettes Licht, Gleit- und Entformungsmittel, Farbstoffe und Weichmacher. Deren Anteil der Komponente (E) in der erfindungsgemäßen Formmasse beträgt insbesondere von 0 bis zu 30, vorzugsweise von 0 bis zu 20 Gew.-%, insbesondere 0 bis 15 Gew.-%, bezogen auf das Gesamtgewicht der Komponenten A bis E. Im Fall, dass es sich bei der Komponente E um Stabilisatoren handelt, beträgt der Anteil dieser Stabilisatoren üblicherweise bis zu 2 Gew.-%, vorzugsweise 0,01 bis 1 Gew.-%, insbesondere 0,01 bis 0,5 Gew.-%, bezogen auf die Summe der Gew.-% der Komponenten (A) bis (E).
Pigmente und Farbstoffe sind allgemein in Mengen von 0 bis 6, bevorzugt von 0,05 bis 5 und insbesondere von 0,1 bis 3 Gew.-%, bezogen auf die Summe der Gew.-% der Komponenten (A) bis (E), enthalten.
Die Pigmente zur Einfärbung von Thermoplasten sind allgemein bekannt, siehe zum Beispiel R. Gächter und H. Müller, Taschenbuch der Kunststoffadditive, Carl Hanser Verlag, 1983, Seiten 494 bis 510. Als erste bevorzugte Gruppe von Pigmenten sind Weißpigmente zu nennen, wie Zinkoxid, Zinksulfid, Bleiweiß [2 PbCO3-Pb(OH)2], Llithopone, Antimonweiß und Titandioxid. Von den beiden gebräuchlichsten Kristallmodifikationen (Rutil- und Anatas-Typ) des Titandioxids wird insbesondere die Rutilform zur Weißfärbung der erfindungsgemäßen Formmassen verwendet. Schwarze Farbpigmente, die erfindungsgemäß eingesetzt werden können, sind Eisenoxidschwarz (Fe3O4), Spinellschwarz [Cu(Cr, Fe)2O4], Manganschwarz (Mischung aus Mangandioxid, Siliciumdioxid und Eisenoxid), Kobaltschwarz und Antimonschwarz sowie besonders bevorzugt Ruß, der meist in Form von Furnace- oder Gasruß eingesetzt wird. Siehe hierzu G. Benzing, Pigmente für Anstrichmittel, Expert-Verlag (1988), Seiten 78 ff.
Zur Einstellung bestimmter Farbtöne können anorganische Buntpigmente, wie Chromoxidgrün oder organische Buntpigmente, wie Azopigmente oder Phthalocyanine erfin- dungsgemäß eingesetzt werden. Derartige Pigmente sind allgemein im Handel üblich.
Oxidationsverzögerer und Wärmestabilisatoren, die den thermoplastischen Massen gemäß der Erfindung zugesetzt werden können, sind zum Beispiel Halogenide von Metallen der Gruppe I des Periodensystems, zum Beispiel Natrium-, Kalium-, Lithium- Halogenide, zum Beispiel Chloride, Bromide oder lodide. Weiterhin können Zinkfluorid und Zinkchlorid verwendet werden. Ferner sind sterisch gehinderte Phenole, Hydrochi- none, substituierte Vertreter dieser Gruppe, sekundäre aromatische Amine, gegebenenfalls in Verbindung mit phosphorhaltigen Säuren bzw. deren Salze, und Mischungen dieser Verbindungen, vorzugsweise in Konzentrationen bis zu 1 Gew.-%, bezogen auf die Summe der Gew.-% der Komponenten (A) bis (E) einsetzbar. Beispiele für UV-Stabilisatoren sind verschiedene substituierte Resorcine, Salicylate, Benzotriazole und Benzophenone, die im Allgemeinen in Mengen bis zu 2 Gew.-% eingesetzt werden.
Gleit- und Entformungsmittel, die in der Regel in Mengen bis zu 1 Gew.-% bezogen auf die Summe der Gew.-% der Komponenten (A) bis (E) zugesetzt werden, sind Stearyl- alkohol, Stearinsäurealkylester und-amide sowie Ester des Pentaerythrits mit langketti- gen Fettsäuren. Es können auch Dialkylketone, zum Beispiel Distearylketon, eingesetzt werden.
Als bevorzugten Bestandteil enthalten die erfindungsgemäßen Formmassen von 0,1 bis 2, bevorzugt 0,1 bis 1 ,75, besonders bevorzugt 0,1 bis 1 ,5 Gew.-% und insbesondere von 0,1 bis 0,9 Gew.-% (bezogen auf die Summe der Gew.-% der Komponenten (A) bis (E)) an Stearinsäure und/oder Stearaten. Im Prinzip können auch andere Stea- rinsäurederivate wie Ester der Stearinsäure eingesetzt werden.
Stearinsäure wird bevorzugt durch Hydrolyse von Fetten hergestellt. Die dabei erhaltenen Produkte stellen üblicherweise Mischungen aus Stearinsäure und Palmitinsäure dar. Daher haben solche Produkte einen breiten Erweichungsbereich, zum Beispiel von 50 bis 70 ºC, je nach Zusammensetzung des Produkts. Bevorzugt werden Produkte mit einem Anteil an Stearinsäure von mehr als 20, besonders bevorzugt mehr als 25 Gew.-% verwendet. Es kann auch reine Stearinsäure (> 98 %) verwendet werden.
Des Weiteren können auch Stearate als Komponente C verwendet werden. Stearate können entweder durch Umsetzung entsprechender Natriumsalze mit Metallsalzlösungen (zum Beispiel CaCb, MgCb, Aluminiumsalzen ...) oder durch direkte Umsetzung der Fettsäure mit Metallhydroxid hergestellt werden (siehe zum Beispiel Baerlocher Additives, 2005). Bevorzugt wird Aluminiumtristearat verwendet.
Die Reihenfolge, in der die Komponenten (A) bis (E) gemischt werden ist beliebig.
Die erfindungsgemäßen Formmassen können nach an sich bekannten Verfahren, beispielsweise Extrusion, hergestellt werden. Die erfindungsgemäßen Formmassen können z.B. hergestellt werden, indem man die Ausgangskomponenten in üblichen Misch- Vorrichtungen wie Schneckenextrudern vorzugsweise Zweischneckenextrudern, Bra- bender-Mischer oder Banburry-Mischer sowie Knetern mischt und anschließend extru- diert. Nach der Extrusion wird das Extrudat abgekühlt und zerkleinert. Die Reihenfolge der Mischung der Komponenten kann variiert werden, so können zwei oder ggf. drei Komponenten vorgemischt werden, es können aber auch alle Komponenten gemein- sam gemischt werden. Um eine möglichst homogene Durchmischung zu erhalten, ist eine intensive Durchmischung vorteilhaft. Dazu sind im Allgemeinen mittlere Mischzeiten von 0,2 bis 30 Minuten bei Temperaturen von 280 bis 380ºC, bevorzugt 290 bis 370ºC, erforderlich. Nach der Extrusion wird das Extrudat in der Regel abgekühlt und zerkleinert.
Die erfindungsgemäßen Formmassen zeichnen sich durch gute mechanische Eigenschaften, gegenüber dem Stand der Technik verbesserte Fließfähigkeit und verbesserte Spannungsrissbeständigkeit aus.
Die erfindungsgemäßen Formmassen zeichnen sich durch gute Fließfähigkeit, verbesserte Zähigkeit, vor allem Reißdehnung und Kerbschlagzähigkeit und durch eine verbesserte Oberflächenqualität aus. Die erfindungsgemäßen Formmassen eignen sich daher zur Herstellung von Formteilen für Haushaltsartikel, elektrische oder elektronische Bauteile sowie für Formteile für den Fahrzeugsektor.
Die erfindungsgemäßen thermoplastischen Formmassen können vorteilhaft zur Herstellung von Formteilen, Fasern, Filmen bzw. Folien oder Schäumen verwendet werden.
Ein weiterer Gegenstand der vorliegenden Erfindung sind Formteile, die aus den erfindungsgemäßen thermoplastischen Formmassen erhältlich sind. Entsprechende Formgebungsverfahren sind dem Fachmann bekannt.
Die folgenden Beispiele erläutern die Erfindung näher, ohne sie einzuschränken.
Beispiele
Die Viskositätszahl der Polyarylenether wurde in 1 %-iger Lösung von N- Methylpyrrolidon bei 25°C bestimmt nach ISO 1628.
Herstellung und Prüfung der Formmassen
Die Wärmeformbeständigkeit der Proben wurde mittels der Vicat-Erweichungs- temperatur ermittelt. Die Vicat-Erweichungstemperatur wurde nach DIN 53 460, mit einer Kraft von 49,05 N und einer Temperatursteigerung von 50 K je Stunde, an Normkleinstäben ermittelt.
Die Schlagzähigkeit (an) der verstärkten Produkte wurde an ISO-Stäben nach ISO 179 1 eU bestimmt. Bei unverstärkten Produkten wurde die Kerbschlagzähigkeit (ak) nach ISO 179 1eA zur Charakterisierung der Zähigkeit verwendet.
Die Fließfähigkeit wurde anhand der Schmelzeviskosität beurteilt. Die Schmelzestabilität wurde mittels eines Kapillarrheometers bestimmt. Dabei wurde die scheinbare Viskosität bei 350 bzw. 380ºC als Funktion der Scherrate bestimmt.
Die Spannungsrissbeständigkeit wurde nach DIN EN ISO 22088-3 an Probekörpern der Dicke von 2 mm bestimmt. Bei einer Biegedehnung von 1 ,32% wurde das Prüfmedium verschieden lange einwirken lassen und der Zustand des Probekörpers anschließend visuell begutachtet.
Bei der Prüfung der unverstärkten Proben wurde Toluol eine Stunde lang einwirken lassen. Bei den verstärkten Proben wurde der Kraftstoff FAM B 7 Tage bei 80ºC einwirken lassen.
Der Zustand der Proben wurde anschließend visuell begutachtet: +: unverändert
+/-: leichte Trübung, keine erkennbaren Risse
-: starke Trübung, deutlich erkennbare Risse
- -: Bruch der Probe n.b.: nicht bestimmt
Komponente B1 : Als Polyarylenether B1 wurde Ultrason® E 2010 (Handelsprodukt der
BASF SE) verwendet. Dieses Produkt ist charakterisiert durch eine Viskositätszahl von
54 ml/g, gemessen in 1 %-iger NMP-Lösung bei 25°C.
Komponente B2: Als Polyarylenether B2 wurde Ultrason® P 3010 (Handelsprodukt der BASF SE) verwendet. Dieses Produkt ist charakterisiert durch eine Viskositätszahl von 75 ml/g, gemessen in 1 %-iger NMP-Lösung bei 25°C.
Komponente AV: Verzweigter Polyarylenether, erhalten durch nucleophile aromatische Polykondensation von 107,22 g Dichlordiphenylsulfon, 90,06 g Dihydroxydiphenylsul- fon, 8,27 g 1 ,1 ,1-Tris-(4-hdyroxypheny)ethan unter Einwirkung von 54,73 g Kaliumcar- bonat in 360 ml NMP. Diese Mischung wird 4 Stunden bei 195°C gehalten. Nach Abkühlung auf 120ºC wird für 1 Stunde Methylchlorid in die Lösung eingeleitet. Nach erkalten auf Raumtemperatur werden die festen Bestandteile durch Filtration abgetrennt und das Polymere durch Fällung in NMP/Wasser 1/9 isoliert. Nach sorgfältigem Waschen mit Wasser wird das Produkt im Vakuum bei 120ºC für 12 h getrocknet. Die Viskositätszahl des Produkts lag bei 25,6 ml/g, die Glastemperatur bei 189°C.
Komponente A1 : Verzweigter Polyarylenether, erhalten durch nucleophile aromatische Polykondensation von 94,90 g Difluordiphenylsulfon, 90,06 g Dihydroxydiphenylsulfon, 12,00 g 1 ,3,5-Tris-(4-fluorphenylcarbonyl)benzol unter Einwirkung von 54,73 g Kalium- carbonat in 360 ml NMP. Diese Mischung wird 4 Stunden bei 180ºC gehalten. Nach Abkühlung auf 120ºC wird für 1 Stunde Methylchlorid in die Lösung eingeleitet. Nach erkalten auf Raumtemperatur werden die festen Bestandteile durch Filtration abgetrennt und das Polymere durch Fällung in NMP/Wasser 1/9 isoliert. Nach sorgfältigem Waschen mit Wasser wird das Produkt im Vakuum bei 120ºC für 12 h getrocknet. Die Viskositätszahl des Produkts lag bei 24,6 ml/g, die Glastemperatur bei 194°C.
Komponente A2: Verzweigter Polyarylenether, erhalten durch nucleophile aromatische Polykondensation von 86,39 g Difluordiphenylsulfon, 85,06 g Dihydroxydiphenylsulfon, 15,1 1 g 1 ,3,5-Tris-(4-fluorphenylcarbonyl)benzol unter Einwirkung von 51 ,69 g Kalium- carbonat in 340 ml NMP. Diese Mischung wird 4 Stunden bei 180ºC gehalten. Nach Abkühlung auf 120ºC wird für 1 Stunde Methylchlorid in die Lösung eingeleitet. Nach erkalten auf Raumtemperatur werden die festen Bestandteile durch Filtration abgetrennt und das Polymere durch Fällung in NMP/Wasser 1/9 isoliert. Nach sorgfältigem Waschen mit Wasser wird das Produkt im Vakuum bei 120ºC für 12 h getrocknet. Die Viskositätszahl des Produkts lag bei 26,1 ml/g, die Glastemperatur bei 192°C.
Komponente C1 : Schnittglasfaser mit Polyurethanschlichte, Faserdurchmesser 10μm.
Die Komponenten wurden in einem Zweiwellenextruder bei einer Massetemperatur von 350 bzw. 370°C gemischt. Die Schmelze wurde durch ein Wasserbad geleitet und granuliert.
Die Polyethersulfon enthaltenden Formmassen wurden bei 340°C verarbeitet. Die Formtemperatur war jeweils 140ºC. Die PPSU enthaltenden Formmassen wurden bei 370ºC Massetemperatur und 140ºC Formtemperatur verarbeitet.
Die Ergebnisse der Prüfungen sind in Tabellen 1 aufgeführt.
Figure imgf000029_0001
Die erfindungsgemäßen thermoplastischen Formmassen weisen verbesserte Fließfähigkeit auf. Überraschenderweise zeichnen sich diese Produkte auch durch bessere Spannungsrissbeständigkeit aus.

Claims

Patentansprüche
1. Polyarylenether (A) enthaltend Verzweigungsstellen gemäß Formel (I):
Figure imgf000030_0001
2. Polyarylenether (A) nach Anspruch 1 , wobei der Polyarylenether (A) ein Polyary- lenethersulfon ist.
3. Polyarylenether (A) nach Anspruch 1 oder 2 enthaltend
(A1 ) von 0,1 bis 99,9 Gew.-% mindestens eines Bausteins der allgemeinen Formel Il
Figure imgf000030_0002
mit folgenden Bedeutungen
t, q: unabhängig voneinander 0, 1 , 2 oder 3,
Q, T, Y: unabhängig voneinander jeweils eine chemische Bindung oder Gruppe, ausgewählt aus -O-, -S-, -SO2-, S=O, C=O, -N=N-, - CRaRb-, wobei Ra und Rb unabhängig voneinander jeweils für ein Wasserstoffatom oder eine C1-C12-Alkyl-, C1-C12-Alkoxy- oder C6-C18-Arylgruppe stehen, wobei wenigstens eines aus Q, T und Y von -O- verschieden ist, und wenigstens eines aus Q, T und Y für -SO2- steht und
Ar, Ar1: unabhängig voneinander C6-C18-Arylengruppe, und
(A2) von 0,1 bis 99,9 Gew.-% Verzweigungsstellen gemäß der Formel (I), wobei die Summe der Gew.-% aus (A1) und (A2) 100 Gew.-% ergibt.
4. Polyarylenether nach Anspruch 3, wobei Q, T und Y in Formel (II) unabhängig voneinander ausgewählt sind aus O und SO2 und wenigstens eines aus Q, T und Y für SO2 steht.
5. Polyarylenether nach den Ansprüchen 3 oder 4, wobei Ar und Ar1 in Formel (II) unabhängig voneinander ausgewählt sind aus der Gruppe bestehend aus 1 ,4- Phenylen, 1 ,3-Phenylen, Naphthylen und 4,4'-Bisphenylen.
6. Verfahren zur Herstellung von Polyarylenethern gemäß den Ansprüchen 1 bis 5 durch Umsetzung mindestens einer aromatischen Verbindung mit zwei Halogen- substituenten und mindestens einer aromatischen Verbindung mit zwei funktionellen Gruppen, die gegenüber vorgenannten Halogensubstituenten reaktiv sind, dadurch gekennzeichnet, dass zusätzlich mindestens eine trifunktionelle Verbindung gemäß der allgemeinen Formel (III) eingesetzt wird:
Figure imgf000031_0001
wobei jeder der drei Substituenten X unabhängig voneinander ausgewählt wird gemäß den Bedingungen (i) oder (ii):
(i) jeder der drei Substituenten X wird unabhängig voneinander ausgewählt aus O und OH; oder (ii) jeder der drei Substituenten X wird unabhängig voneinander ausgewählt aus Halogen, vorzugsweise F oder Cl.
Verfahren zur Herstellung von Polyarylenethern nach Anspruch 6, dadurch gekennzeichnet, dass die aromatischen Verbindungen mit zwei funktionellen Grup- pen, die gegenüber vorgenannten Halogensubstituenten reaktiv sind, ausgewählt werden aus Hydrochinon, Resorcin, Dihydroxynaphthalin, 4,4'- Dihydroxydiphenylsulfon und 4,4'-Bisphenol.
8. Verfahren zur Herstellung von Polyarylenethern nach den Ansprüchen 6 oder 7, dadurch gekennzeichnet, dass die aromatischen Verbindungen mit zwei Halogensubstituenten ausgewählt werden aus Dihalogendiphenylsulfonen.
9. Thermoplastische Formmassen enthaltend mindestens einen Polyarylenether (A) gemäß den Ansprüchen 1 bis 5.
10. Thermoplastische Formmassen nach Anspruch 9 enthaltend von 0,1 bis 99 Gew.-% mindestens eines Polyarylenethers (A), von 0,1 bis 99 Gew.-% mindestens eines thermoplastischen Polymers (B) ungleich (A) sowie optional von 0 bis 70 Gew.-% mindestens eines faserförmigen Füllstoffes (C), wobei die Summe der Gew.-% von (A), (B) und (C) 100 Gew.-% ergibt.
1 1. Thermoplastische Formmassen nach Anspruch 10, wobei als faserförmiger Füllstoff von 0 bis 70 Gew.-% Glasfasern enthalten sind.
12. Thermoplastische Formmassen nach den Ansprüchen 9 bis 11 enthaltend als thermoplastisches Polymer (B) mindestens ein Polyarylenethersulfon.
13. Thermoplastische Formmassen nach den Ansprüchen 9 bis 12 enthaltend als thermoplastisches Polymer (B) mindestens ein Polyarylenethersulfon auf Basis von Bausteinen gemäß der allgemeinen Formel (IV):
Figure imgf000032_0001
mit folgenden Bedeutungen
t, q: unabhängig voneinander 0, 1 , 2 oder 3,
Q, T, Y: unabhängig voneinander jeweils eine chemische Bindung oder Grup- pe, ausgewählt aus -O-, -S-, -SO2-, S=O, C=O, -N=N-, -CRaRb-, wobei Ra und Rb unabhängig voneinander jeweils für ein Wasserstoffatom oder eine C1-C12-Alkyl-, C1-C12-Alkoxy- oder C6-C18-Arylgruppe stehen, wobei wenigstens eines aus Q, T und Y von -O- verschieden ist, und wenigstens eines aus Q, T und Y für -SO2- steht und Ar, Ar1: unabhängig voneinander C6-C18-Arylengruppe.
14. Thermoplastische Formmassen nach Anspruch 13, wobei Q, T und Y in Formel (IV) unabhängig voneinander O oder SO2 bedeutet und wenigstens eines aus Q, T und Y für SO2 steht.
15. Thermoplastische Formmassen nach den Ansprüchen 9 bis 14, wobei Ar und Ar1 in Formel (IV) unabhängig voneinander ausgewählt sind aus der Gruppe bestehend aus 1 ,4-Phenylen, 1 ,3-Phenylen, Naphthylen und 4,4'-Bisphenylen.
16. Thermoplastische Formmassen nach den Ansprüchen 9 bis 15, enthaltend von 1 bis 59 Gew.-% mindestens eines Polyarylenethers (A) enthaltend Bausteine (II) wie in den Ansprüchen 3 bis 5 definiert, von 40 bis 98 Gew.-% mindestens eines thermoplastischen Polymers (B) und von 1 bis 59 Gew.-% faserförmige Füllstoffe, dadurch gekennzeichnet, dass das thermoplastische Polymer (B) ein Polyary- lenethersulfon enthaltend Bausteine (IV) wie in den Ansprüchen 13 bis 15 defi- niert ist, unter der Voraussetzung, dass die Bausteine (IV) und (II) gleich oder unterschiedlich sind.
17. Thermoplastische Formmassen nach den Ansprüchen 9 bis 15, enthaltend von 1 bis 60 Gew.-% mindestens eines Polyarylenethers (A) enthaltend Bausteine (II) wie in den Ansprüchen 3 bis 5 definiert, von 40 bis 99 Gew.-% mindestens eines thermoplastischen Polymers (B), jedoch keine faserförmige Füllstoffe, dadurch gekennzeichnet, dass das thermoplastische Polymer (B) ein Polyarylenethersul- fon enthaltend Bausteine (IV) wie in den Ansprüchen 13 bis 15 definiert ist, unter der Voraussetzung, dass die vorgenannten Bausteine (IV) und (II) gleich sind.
18. Verwendung der thermoplastischen Formmassen gemäß den Ansprüchen 9 bis 17 zur Herstellung von Formteilen.
19. Formteile erhältlich aus den thermoplastischen Formmassen gemäß den Ansprü- chen 9 bis 17.
PCT/EP2009/063635 2008-10-23 2009-10-19 Verzweigte polyarylenether und diese enthaltende thermoplastische formmassen WO2010046328A1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP09736950A EP2340273A1 (de) 2008-10-23 2009-10-19 Verzweigte polyarylenether und diese enthaltende thermoplastische formmassen
JP2011532602A JP2012506466A (ja) 2008-10-23 2009-10-19 分岐状ポリアリーレンエーテル及びこれを含む熱可塑性成形材料
US13/125,898 US20110201747A1 (en) 2008-10-23 2009-10-19 Branched polyarylene ethers and thermoplastic molding compounds containing said ethers
BRPI0920638A BRPI0920638A2 (pt) 2008-10-23 2009-10-19 composto, processo para preparar compostos, material de moldagem termoplastico, uso dos materias de moldagem termoplasticos, e, corpo moldado
CN200980152362.XA CN102264798B (zh) 2008-10-23 2009-10-19 支化聚芳醚和含所述醚的热塑性模塑材料

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP08167413.7 2008-10-23
EP08167413 2008-10-23

Publications (1)

Publication Number Publication Date
WO2010046328A1 true WO2010046328A1 (de) 2010-04-29

Family

ID=41565988

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2009/063635 WO2010046328A1 (de) 2008-10-23 2009-10-19 Verzweigte polyarylenether und diese enthaltende thermoplastische formmassen

Country Status (7)

Country Link
US (1) US20110201747A1 (de)
EP (1) EP2340273A1 (de)
JP (1) JP2012506466A (de)
KR (1) KR20110089284A (de)
CN (1) CN102264798B (de)
BR (1) BRPI0920638A2 (de)
WO (1) WO2010046328A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011246681A (ja) * 2010-05-31 2011-12-08 Iwate Univ 星形ポリフェニレンエーテルおよびその製造方法
US8524853B2 (en) 2009-06-08 2013-09-03 Basf Se Segmented polyarylene ether block copolymers

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009000741A1 (de) 2007-06-22 2008-12-31 Basf Se Formmassen enthaltend polyarylether mit verbesserter oberflächenqualität
MY147889A (en) * 2007-06-28 2013-01-31 Basf Se Thermoplastic molding materials comprising organic black pigments
US20110196098A1 (en) * 2007-08-15 2011-08-11 Basf Se Polyester mixture with improved flowability and good mechanical properties
KR101821534B1 (ko) 2009-04-03 2018-01-23 바스프 에스이 염소 저함유 폴리비페닐 술폰 중합체의 제조 방법
EP2251377B1 (de) 2009-05-11 2011-07-20 Basf Se Verstärkte Styrolcopolymere
MY152811A (en) 2009-06-08 2014-11-28 Basf Se Method for producing poly(arylene ether) block copolymers
DE102009025537A1 (de) 2009-06-19 2010-12-30 Basf Se Copolyamide
EP2451621B1 (de) 2009-07-08 2013-05-29 Basf Se Verfahren zur herstellung von faserverstärkten verbundwerkstoffen aus polyamid 6 und copolyamiden aus polyamid 6 und polyamid 12
WO2011020823A1 (de) 2009-08-20 2011-02-24 Basf Se Verfahren zur herstellung von halogenarmen polybiphenylsulfon-polymeren
US9056961B2 (en) 2009-11-20 2015-06-16 Basf Se Melamine-resin foams comprising hollow microbeads
EP2336220A1 (de) 2009-12-17 2011-06-22 Basf Se Verbesserte Blends aus Polyarylenethern und Polyarylensulfiden
US20110218294A1 (en) * 2010-03-05 2011-09-08 Basf Se blends of polyarylene ethers and polyarylene sulfides
US8703862B2 (en) 2010-05-26 2014-04-22 Basf Se Reinforced thermoplastic molding compositions based on polyarylene ethers
KR20130025767A (ko) 2011-09-02 2013-03-12 엘지디스플레이 주식회사 배리어 패널 및 이를 포함하는 입체영상 표시장치
CN110857267B (zh) * 2018-08-22 2022-12-09 昱镭光电科技股份有限公司 芳香酮化合物及其有机发光器件
WO2020053079A1 (en) * 2018-09-11 2020-03-19 Basf Se Polyarylene ether
JP7198657B2 (ja) 2018-12-25 2023-01-04 住友化学株式会社 芳香族ポリスルホン樹脂、エポキシ樹脂組成物、プリプレグ及び成形体
CN113637167B (zh) * 2021-07-13 2024-03-01 天津师范大学 支链型聚芳香醚及其制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10149871A1 (de) * 2001-10-10 2003-04-17 Basf Ag Thermoplastische Formmassen mit verbesserter Schmelzstabilität auf Basis von Polyarylenethersulfonen
WO2009127614A1 (de) * 2008-04-16 2009-10-22 Basf Se Einsatz hyperverzweigter polymere in brennstoffzellenanwendungen

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3651014A (en) * 1969-07-18 1972-03-21 Du Pont Segmented thermoplastic copolyester elastomers
DE2305413C2 (de) * 1973-02-03 1982-05-13 Bayer Ag, 5090 Leverkusen Verzweigte aromatische Polyaryläthersulfone
DE3524234A1 (de) * 1985-07-06 1987-01-08 Bayer Ag Neue pfropfpolymerisate und deren abmischungen mit polyamiden
DE10155157A1 (de) * 2001-11-12 2003-05-22 Basf Ag Modifizierte Epoxidharze
KR100657740B1 (ko) * 2004-12-22 2006-12-14 주식회사 엘지화학 브랜치된 술폰화 멀티 블록 공중합체 및 이를 이용한전해질막
DK2343320T3 (da) * 2005-03-25 2018-01-29 Gitr Inc Anti-gitr-antistoffer og anvendelser deraf
WO2009000741A1 (de) * 2007-06-22 2008-12-31 Basf Se Formmassen enthaltend polyarylether mit verbesserter oberflächenqualität
MY147889A (en) * 2007-06-28 2013-01-31 Basf Se Thermoplastic molding materials comprising organic black pigments
US20110196098A1 (en) * 2007-08-15 2011-08-11 Basf Se Polyester mixture with improved flowability and good mechanical properties
JP5464143B2 (ja) * 2007-09-06 2014-04-09 ビーエーエスエフ ソシエタス・ヨーロピア 分枝状ポリアリールエーテルと、親水性ポリマーとから成るブレンド
JP5490011B2 (ja) * 2007-11-13 2014-05-14 ビーエーエスエフ ソシエタス・ヨーロピア ポリアリールエーテルの製造方法
CN101903469B (zh) * 2007-12-18 2014-08-20 巴斯夫欧洲公司 含有聚醚胺的热塑性聚酰胺
ATE545676T1 (de) * 2008-09-08 2012-03-15 Basf Se Verfahren zur herstellung flächiger formkörper oder folien
WO2010057822A1 (de) * 2008-11-20 2010-05-27 Basf Se Reaktive polyarylenether und verfahren zu deren herstellung
EP2379642B1 (de) * 2008-12-17 2014-03-26 Basf Se Blends aus polyvyrylenethern und polyarylensulfiden enthaltend carbonsäureanhydride
KR20110118657A (ko) * 2009-02-06 2011-10-31 바스프 에스이 스티렌 공중합체 및 폴리아미드를 함유하는 열가소성 성형 조성물
US20110029106A1 (en) * 2009-07-30 2011-02-03 Sony Ericsson Mobile Communications Ab Method and arrangement in a mobile terminal
US20110218294A1 (en) * 2010-03-05 2011-09-08 Basf Se blends of polyarylene ethers and polyarylene sulfides
US20110237694A1 (en) * 2010-03-23 2011-09-29 Basf Se Polyarylene ethers with improved flowability
US20110237693A1 (en) * 2010-03-23 2011-09-29 Basf Se Blends made of polyarylene ethers and of polyarylene sulfides
US20110244743A1 (en) * 2010-04-01 2011-10-06 Basf Se Process for producing fiber-reinforced composite materials using polyamides as binders
US8703862B2 (en) * 2010-05-26 2014-04-22 Basf Se Reinforced thermoplastic molding compositions based on polyarylene ethers

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10149871A1 (de) * 2001-10-10 2003-04-17 Basf Ag Thermoplastische Formmassen mit verbesserter Schmelzstabilität auf Basis von Polyarylenethersulfonen
WO2009127614A1 (de) * 2008-04-16 2009-10-22 Basf Se Einsatz hyperverzweigter polymere in brennstoffzellenanwendungen

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
D. DÖRING, KUNSTSTOFFE, vol. 80, 1990, pages 1149
E. M. KOCH; H.-M. WALTER, KUNSTSTOFFE, vol. 80, 1990, pages 1146
G. BLINNE; M. KNOLL; D. MÜLLER; K. SCHLICHTING, KUNSTSTOFFE, vol. 75, 1985, pages 219
HANS R. KRICHELDORF, RADKA HOBZOVA, LALI VAKHTANGISHVILI, GERT SCHWARZ: "Multicyclic Poly(ether ketone)s by polycondensation of 1,3,5-Tris(4-fluorobenzoyl)benzene with various diphenols", MACROMOLECULAR CHEMISTRY AND PHYSICS, vol. 206, no. 21, 21 October 2005 (2005-10-21), pages 2133 - 2142, XP002565808 *
MARIO SMET, YU FU, XI ZHANG, ETIENNE SCHACHT, WIM DEHAEN: "A convenient A2+B3 approach to hyperbranched poly(arylene oxindole)s", MACROMOLECULAR RAPID COMMUNICATIONS, vol. 26, no. 18, 5 September 2005 (2005-09-05), pages 1458 - 1463, XP002565807 *
SEUNG-YEOP KWAK, DAE UP AHN: "Processability of hyperbranched Poly(ether ketone)s with different degrees of branching.", MACROMOLECULES, vol. 33, no. 20, 11 February 2000 (2000-02-11), pages 7557 - 7563, XP002565806 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8524853B2 (en) 2009-06-08 2013-09-03 Basf Se Segmented polyarylene ether block copolymers
JP2011246681A (ja) * 2010-05-31 2011-12-08 Iwate Univ 星形ポリフェニレンエーテルおよびその製造方法

Also Published As

Publication number Publication date
EP2340273A1 (de) 2011-07-06
CN102264798B (zh) 2014-01-15
KR20110089284A (ko) 2011-08-05
JP2012506466A (ja) 2012-03-15
CN102264798A (zh) 2011-11-30
US20110201747A1 (en) 2011-08-18
BRPI0920638A2 (pt) 2016-01-12

Similar Documents

Publication Publication Date Title
WO2010046328A1 (de) Verzweigte polyarylenether und diese enthaltende thermoplastische formmassen
EP2513191B1 (de) Verbesserte blends aus polyarylenethern und polyarylensulfiden
EP2513193B1 (de) Verbesserte blends aus polyarylenethern und polyarylensulfiden
EP2379642B1 (de) Blends aus polyvyrylenethern und polyarylensulfiden enthaltend carbonsäureanhydride
EP1436344B1 (de) Thermoplastische formmassen mit verbesserter schmelzestabilität auf basis von polyarylenethersulfonen
EP2467415B1 (de) Verfahren zur herstellung von halogenarmen polybiphenylsulfon-polymeren
EP2414430B2 (de) Verfahren zur herstellung von chlorarmen polybiphenylsulfon-polymeren
EP2160440B1 (de) Formmassen enthaltend polyarylether mit verbesserter oberflächenqualität
EP1276816B1 (de) Polyarylethersulfon/polyamid-blends mit verbesserter zähigkeit und fliessfähigkeit
EP2576676B1 (de) Verstärkte thermoplastische formmassen auf basis von polyarylenethern
EP2542623B1 (de) Verbesserte blends aus polyarylenethern und polyarylensulfiden
DE19702588A1 (de) Thermoplastische Formmassen mit reduzierter Wasseraufnahme
EP2760916B1 (de) Hochfeste blends auf basis von polyarylenethern
EP0903376A2 (de) Polyarylenether und Polyarylensulfide enthaltende Formmassen mit verbesserter Kerbschlagzähigkeit
DE19702587A1 (de) Thermoplastische Formmassen mit verbesserter Chemikalienresistenz
EP1105437B1 (de) Formmassen auf der basis von polyarylenethersulfonen und aliphatischen polyamiden
DE10149870A1 (de) Thermoplastische Formmassen auf Basis von Polyarylenethersulfonen und Polyamiden
EP0905193A2 (de) Polyarylenether, Styrolcopolymerisate und funktionalisierte Polymere enthaltende Formmassen
EP0658600A2 (de) Formmassen auf der Basis von Polyarylenether und Polycarbonaten
DE19503815A1 (de) Formmassen aus Polyarylenethern und Fluortensiden

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980152362.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09736950

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13125898

Country of ref document: US

Ref document number: 2011532602

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009736950

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 3365/CHENP/2011

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 20117011530

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: PI0920638

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20110420