[go: up one dir, main page]

WO2010044298A1 - 消火器、消火剤貯蔵容器、及び消火剤貯蔵容器のプリフォーム - Google Patents

消火器、消火剤貯蔵容器、及び消火剤貯蔵容器のプリフォーム Download PDF

Info

Publication number
WO2010044298A1
WO2010044298A1 PCT/JP2009/063061 JP2009063061W WO2010044298A1 WO 2010044298 A1 WO2010044298 A1 WO 2010044298A1 JP 2009063061 W JP2009063061 W JP 2009063061W WO 2010044298 A1 WO2010044298 A1 WO 2010044298A1
Authority
WO
WIPO (PCT)
Prior art keywords
storage container
fire extinguisher
circumferential direction
less
extinguishing agent
Prior art date
Application number
PCT/JP2009/063061
Other languages
English (en)
French (fr)
Inventor
土田 英雄
中山 博
Original Assignee
株式会社初田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社初田製作所 filed Critical 株式会社初田製作所
Priority to JP2010533849A priority Critical patent/JPWO2010044298A1/ja
Priority to CN200980136318.XA priority patent/CN102159286B/zh
Priority to EP09820476.1A priority patent/EP2351601B1/en
Priority to US13/124,375 priority patent/US8815355B2/en
Publication of WO2010044298A1 publication Critical patent/WO2010044298A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62CFIRE-FIGHTING
    • A62C13/00Portable extinguishers which are permanently pressurised or pressurised immediately before use
    • A62C13/62Portable extinguishers which are permanently pressurised or pressurised immediately before use with a single permanently pressurised container
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C1/00Pressure vessels, e.g. gas cylinder, gas tank, replaceable cartridge
    • F17C1/16Pressure vessels, e.g. gas cylinder, gas tank, replaceable cartridge constructed of plastics materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/13Hollow or container type article [e.g., tube, vase, etc.]
    • Y10T428/1352Polymer or resin containing [i.e., natural or synthetic]

Definitions

  • the present invention relates to a fire extinguisher, a fire extinguisher storage container, and a preform for the fire extinguisher storage container.
  • fire extinguishing agent storage containers used for fire extinguishers are manufactured from metals such as iron, stainless steel, and aluminum.
  • iron fire extinguishing agent storage containers are sturdy and hard to break, and the manufacturing cost is low, so iron is used for about 90% of fire extinguishers on the market. is there.
  • Patent Document 1 discloses a fire extinguisher in which the filling pressure is lowered as much as possible so as to maintain even the low pressure resistance which was a weak point of a resin fire extinguisher storage container.
  • Patent Document 2 discloses a fire extinguisher using a thin polyethylene terephthalate (PET) waste product used for soft drinks or alcoholic beverages.
  • PET polyethylene terephthalate
  • the iron extinguishing agent storage container that is widely used in general is very heavy, causing problems of inconvenience to carry and poor operability especially for women, children, and elderly people.
  • the weight of the metal fire extinguisher is damaged, and there is a problem that the transportation cost for collecting and recycling the fire extinguisher increases.
  • the iron fire extinguisher storage container cannot easily see the remaining state of the extinguishing agent because the internal situation cannot be seen from the outside.
  • the remaining amount of extinguishing media is usually checked regularly by a designated qualified person.
  • the frequency is generally not high, extinguishing media remains in the fire extinguisher for some reason. Even if it stops, it must be said that it is extremely difficult for ordinary people to notice.
  • the pressure in these containers is approximately the same as the guaranteed pressure resistance of a fire extinguisher equipped with a metal container (for example, about Increasing to 2.0 MPa) creates the risk of deformation or rupture of those containers.
  • the thickness of the container may be increased so as to satisfy the standard value of pressure resistance applied to a general metal fire extinguisher in Japan. It's not easy.
  • the present invention greatly contributes to the realization of a fire extinguisher that is lightweight and has high pressure resistance by eliminating the above-mentioned problems of the prior art.
  • One fire extinguisher of the present invention has a fire extinguisher storage container.
  • the above-mentioned fire extinguishing agent storage container has a mouth portion, a shoulder portion, a cylindrical trunk portion, and a bottom portion as an opening, and is molded from a seamless resin, and the thickness of the trunk portion Is not less than 1 mm and not more than 5 mm, and the crystallization ratio of the resin excluding the mouth and the bottom thereof is not less than 13% and not more than 30%.
  • the fire extinguisher storage container is made of resin, weight reduction is achieved and there is no rusting. Specifically, the weight of the entire fire extinguisher can be reduced to about 70% compared to a conventional iron fire extinguisher. Moreover, although the detailed mechanism is not yet clear, since the crystallization rate of the resin in the container is 13% or more and 30% or less, the strength or pressure resistance of the fire extinguisher storage container can be improved by crystallization of the resin. Further, from the viewpoint of obtaining sufficient pressure resistance or strength, it is considered that there is little need to obtain a resin crystallization ratio exceeding 30%.
  • the strength or pressure resistance of a container comparable to a conventional fire extinguisher is increased, and the goodness of a fire extinguisher storage container using a resin is drawn out.
  • this fire extinguisher storage container has no seam and the thickness of its trunk is not less than 1 mm and not more than 5 mm, it is possible to realize a fire extinguisher having a light weight and high strength extinguishing agent storage container.
  • another fire extinguisher of the present invention has a fire extinguisher storage container.
  • the above-described fire extinguisher storage container is formed by stretch blow molding using a resin, and has a mouth portion, a shoulder portion, a cylindrical trunk portion, and a bottom portion that become openings.
  • the stretching ratio in the circumferential direction of the body portion is 1.05 to 1.4 times the stretching ratio in the direction perpendicular to the circumferential direction of the body portion.
  • This fire extinguishing agent storage container achieves weight reduction and does not rust. Specifically, the weight can be reduced to about 33% compared to a conventional iron fire extinguisher storage container. Moreover, it has a high pressure-resistant fire extinguishing agent storage container by making the draw ratio in the circumferential direction of the trunk part 1.05 times to 1.4 times the draw ratio in the direction perpendicular to the circumferential direction. A fire extinguisher is obtained.
  • the “direction perpendicular to the circumferential direction” means a vertical direction different from the thickness direction of the body portion of the extinguishing agent storage container. In other words, the “direction perpendicular to the circumferential direction” usually means a vertical direction when the fire extinguisher is erected.
  • the same description is omitted.
  • another fire extinguisher of the present invention has a fire extinguisher storage container.
  • the above-mentioned fire extinguisher storage container has a mouth, a shoulder, a cylindrical body, and a bottom as an opening, and has a seamless total light transmission of 5% to 75%.
  • the thickness of the body portion is 1 mm or more and 5 mm or less.
  • the fire extinguisher storage container is made of resin, weight reduction is achieved and there is no rusting. Specifically, the weight of the entire fire extinguisher can be reduced to about 70% compared to a conventional iron fire extinguisher. When attention is paid only to the resin-made fire extinguisher storage container, its weight is about 33% of the conventional iron fire extinguisher storage container. Moreover, the residual state of a fire extinguisher can be easily known because the total light transmittance of the resin is 5% or more and 75% or less. More specifically, since the container is formed so that the total light transmittance is 75% or less, there is a great advantage in applying to the actual society that the contents are not visible too much.
  • one fire extinguisher storage container of the present invention has a mouth portion, a shoulder portion, a cylindrical body portion, and a bottom portion that become an opening portion, and is molded from a seamless resin.
  • the thickness of the body portion is 1 mm or more and 5 mm or less
  • the crystallization ratio of the resin excluding the mouth portion and the bottom portion is 13% or more and 30% or less.
  • this fire extinguisher storage container is made of resin, weight reduction is achieved and it does not rust. Specifically, the weight can be reduced to about 70% compared to a conventional iron fire extinguisher storage container. When attention is paid only to the resin-made fire extinguisher storage container, its weight is about 33% of the conventional iron fire extinguisher storage container.
  • the crystallization rate of the resin in the container is 13% or more and 30% or less, the strength or pressure resistance of the fire extinguisher storage container can be improved by crystallization of the resin. Further, from the viewpoint of obtaining sufficient pressure resistance or strength, it is considered that there is little need to obtain a resin crystallization ratio exceeding 30%.
  • the strength or pressure resistance of a container comparable to a conventional fire extinguisher is increased, and the goodness of a fire extinguisher storage container using a resin is drawn out.
  • this fire extinguisher storage container has no seam and the thickness of the trunk portion is not less than 1 mm and not more than 5 mm, the high strength of the fire extinguisher storage container is realized.
  • Another fire extinguisher storage container of the present invention is formed by stretch blow molding using a resin, and has a mouth part, a shoulder part, a cylindrical body part, and a bottom part to be an opening part. ing.
  • the stretching ratio in the circumferential direction of the body portion is 1.05 to 1.4 times the stretching ratio in the direction perpendicular to the circumferential direction of the body portion.
  • This fire extinguishing agent storage container achieves weight reduction and does not rust. Specifically, the weight can be reduced to about 33% compared to a conventional iron fire extinguisher storage container.
  • the extinction ratio of the extinguishing agent storage container can be increased by setting the stretching ratio in the circumferential direction of the body portion to 1.05 to 1.4 times the stretching ratio in the direction perpendicular to the circumferential direction. Realized.
  • the preform of one fire extinguisher storage container of the present invention is molded from a resin having a total light transmittance of 5% or more and 75% or less without any seam, and has a wall thickness of 4 mm or more and 30 mm or less.
  • the preform for this fire extinguishing agent storage container is a preform used in the stretch blow molding method.
  • the total light transmittance of the resin is 5% or more and 75% or less at the preform stage.
  • the wall thickness is 1 mm or more and 5 mm or less without seams.
  • a high-strength fire extinguisher storage container is realized.
  • One fire extinguisher of the present invention achieves weight reduction and does not rust. Moreover, this fire extinguisher can be provided with high intensity
  • the preform of one fire extinguisher storage container according to the present invention not only provides moderate transparency that harmonizes practicality and aesthetic appearance even after stretch blow molding, but also has high strength. Can be provided.
  • FIG. 1 is an overall external view of a fire extinguisher 100 according to the present embodiment.
  • FIG. 2 is a front view of the extinguishing agent storage container 10
  • FIG. 3 is a front sectional view of the extinguishing agent storage container 10.
  • a broken line and a solid line are provided for explaining the site of the extinguishing agent storage container 10.
  • an arrow for indicating the thickness of the extinguishing agent storage container 10 and a broken line for extending the cross-sectional shape of the mouth portion 91 are provided in order to display the thickness of the mouth portion 91.
  • the fire extinguisher 100 is fitted with a fire extinguisher storage container 10 filled with a fire extinguisher 60 (for example, a powder fire extinguisher) and a bottom 94 of the fire extinguisher storage container 10.
  • a fire extinguisher hose 40 that is connected to the siphon pipe 70 so as to be circulated by operating the fire extinguisher hand lever 30.
  • the fire extinguisher hand lever 30 includes a lid 31, a fixing lever 32, an activation lever 33, a raising / lowering rod 34, and a safety plug 35.
  • the activation lever 33 when the safety stopper 35 is engaged with the raising and lowering bar 34, the activation lever 33 is fixed in a non-rotatable state with respect to the fixing lever 32.
  • the safety plug 35 when the safety plug 35 is released from the engaged state with the raising / lowering rod 34, the activation lever 33 becomes rotatable with respect to the fixed lever 32.
  • the fire extinguisher storage container 10 in the present embodiment includes a fire extinguisher storage portion 11 and a male screw portion 12 formed in an opening located above the fire extinguisher storage portion 11.
  • the extinguishing agent storage container 10 and the fire extinguisher hand lever 30 are fixed by screwing the male screw portion 12 and the fire extinguisher hand lever 30 together.
  • the fixing means between the extinguishing agent storage container 10 and the fire extinguisher hand lever 30 is not limited to screwing, and known joining means can be applied.
  • the fire extinguisher 100 of this embodiment includes a fire extinguisher storage container 10 formed of polyethylene naphthalate (PEN).
  • the thickness (T1) of the mouth portion 91 of the extinguishing agent storage container 10 of the present embodiment is 2 mm or more and 5 mm or less
  • the thickness (T2) of the shoulder portion 92 having a curved surface is 1.2 mm or more and 12 mm or less.
  • drum 93 is 1.3 mm or more and 1.7 mm or less
  • the thickness (T4) of the bottom part 94 with a curved surface is 1.2 mm or more and 12 mm or less.
  • the total light transmittance of the fire extinguisher storage container 10 of this embodiment is about 50%. Except for impurities in the manufacturing process, the fire extinguisher storage container 10 of the present embodiment is formed only of polyethylene naphthalate (PEN). In addition, as shown in FIGS. 1 to 3, the fire extinguisher storage container 10 of the present embodiment is not formed with a seam like a metal fire extinguisher storage container.
  • PEN polyethylene naphthalate
  • the resin crystallization rate of each part of the fire extinguisher storage container 10 of the present embodiment was measured.
  • the crystallization rate of the resin of the present embodiment was determined by calculating based on the measurement of energy (J / g) required for transition according to JIS K 7122 (Plastic transition heat measurement method).
  • the crystallization rate of the resin in the mouth portion 91 was approximately 0%, and the crystallization rate of the resin in the shoulder portion 92 was 13% or more and 23% or less.
  • the crystallization rate of the resin in the body portion 93 was 14% or more and 27% or less, and the crystallization rate of the resin in the bottom portion 94 was 10% or more and 20% or less.
  • the resin crystallization rate of the body portion 93 of the fire extinguisher storage container 10 is 13% or more and 30% or less, so the detailed mechanism is not yet clear, but the fire extinguisher storage container by resin crystallization is not yet clear. Improvement in strength or withstand pressure is achieved.
  • voltage resistance of the container 10 improve by raising the crystallization rate of resin, the high durability calculated
  • the resin crystallization rate of the trunk portion 93 of the extinguishing agent storage container 10 of the present embodiment is 14% or more, sufficient strength and / or pressure resistance as a fire extinguisher can be obtained. At this stage, since sufficient pressure resistance or strength has already been secured, it is considered that there is little need to obtain a resin crystallization ratio of the trunk portion 93 exceeding 30%.
  • drum 93 of the fire extinguisher storage container 10 of this embodiment is 1 mm or more and 5 mm or less. This is because if the thickness of the resin is less than 1 mm, the strength required for a fire extinguishing agent storage container (for example, about 2.0 MPa) may not be achieved. This is because it is not preferable and there is a high possibility that it will be difficult to achieve transparency that can visually recognize the extinguishing agent as the contents. According to the above viewpoint, the thickness (T3) of the trunk portion 93 is more preferably 1 mm or greater and 3 mm or less.
  • the fire extinguisher storage container 10 made of polyethylene naphthalate (PEN) of the present embodiment can be manufactured by a conventionally known resin molding method such as stretch blow molding or melt shaping.
  • stretch blow molding is preferable in that there is no seam, the molded state is good, and a container having an appropriate thickness is obtained.
  • PEN polyethylene naphthalate
  • PEN polyethylene naphthalate
  • the resin is injected or extruded into an injection mold so that the wall thickness is about 15 mm and the total light transmittance is about
  • a 5% preform (hereinafter referred to as a preform) is formed.
  • the fire extinguisher storage container The fire extinguishing agent storage container 10 is formed so that the thickness of the side surface of 10 is 1 mm or more and 5 mm or less.
  • the resin can be crystallized with a high degree of strength or pressure resistance and appropriate transparency.
  • these parts are Strength or pressure resistance required as a fire extinguisher is ensured by making the thickness of the container thicker than the thickness of other parts.
  • the thickness (T3) of the trunk portion 93 is 1 mm or more and 5 mm or less. Therefore, the thickness of the preform of the fire extinguisher storage container 10 in the present embodiment is preferably 4 mm or more and 30 mm or less.
  • the product of the scalar amount of the draw ratio in the circumferential direction of the body portion 93 and the scalar quantity of the draw ratio in the direction perpendicular to the circumferential direction is preferably 12 or more.
  • the fire extinguisher 200 of the present embodiment is the same as that of the first embodiment except that the material of the fire extinguisher storage container 210 is polyethylene terephthalate (PET) and the thickness of the preform and the stretch blow ratio in the manufacturing process. It is a configuration. Therefore, the description which overlaps with 1st Embodiment is abbreviate
  • PET polyethylene terephthalate
  • the fire extinguisher 200 of the present embodiment includes a fire extinguisher storage container 210 formed of polyethylene terephthalate (PET).
  • the thickness (T1) of the mouth portion 291 of the extinguishing agent storage container 210 of the present embodiment is 2 mm or more and 5 mm or less, and the thickness (T2) of the shoulder portion 292 is 2 mm or more and 12 mm or less.
  • drum 293 is 2 mm or more and 3 mm or less, and the thickness (T4) of the bottom part 294 is 2 mm or more and 12 mm or less.
  • the total light transmittance of the fire extinguisher storage container 210 in the present embodiment is about 50%.
  • the fire extinguisher storage container 210 of the present embodiment is formed only of polyethylene terephthalate (PET).
  • PET polyethylene terephthalate
  • the fire extinguisher storage container 210 of the present embodiment is not formed with a seam like a metal fire extinguisher storage container.
  • the mouth portion 291, the shoulder portion 292, the trunk portion 293, and the bottom portion 294 are measured.
  • the resin crystallization ratios were in the same numerical range as that of the first embodiment.
  • drum 293 of the fire extinguisher storage container 210 of this embodiment is also 1 mm or more and 5 mm or less from the reason similar to 1st Embodiment.
  • the thickness (T3) of the body 293 is more preferably 2 mm or more and 3 mm or less.
  • PET polyethylene terephthalate
  • the fire extinguisher storage container 210 is formed so that the thickness (T3) of the body portion 293 of 210 is 2 mm or more and 3 mm or less.
  • the thickness of the preform of the fire extinguisher storage container 210 of this embodiment is 5 mm or more and 15 mm or less.
  • the fire extinguisher 300 of this embodiment has the same configuration as the fire extinguisher 100 of the first embodiment, except that the fire extinguisher storage container 310 is provided instead of the fire extinguisher storage container 10 of the first embodiment. Therefore, the description which overlaps with 1st Embodiment is abbreviate
  • the fire extinguisher storage container 310 of the present embodiment is formed of only polyethylene naphthalate (PEN) except for impurities in the manufacturing process.
  • PEN polyethylene naphthalate
  • the fire extinguishing agent storage container 310 is manufactured by stretch blow molding. For this reason, it is possible to obtain a container having no seam, a good molded state, and an appropriate thickness. Moreover, since it is a stretch blow molding method, since the stretching process is included, the polymer chains of the resin are oriented in approximately one direction. For this reason, transparency, intensity
  • the fire extinguisher storage container 310 of the present embodiment is molded so that the thickness (T3) of the body portion 393 is 1.8 mm ⁇ 0.4 mm.
  • the pressure resistance for example, about 2.0 MPa
  • PEN polyethylene naphthalate
  • the stretching ratio in the circumferential direction of the body portion 393 is 1.05 to 1.4 times the stretching ratio in the direction perpendicular to the circumferential direction, and the stretching ratio in the circumferential direction and The final molded product is formed so that the product of the draw ratio in the direction perpendicular to the circumferential direction is 12 or more and 13 or less.
  • required as a fire extinguisher storage container is securable.
  • the stretching ratio in the circumferential direction of the body portion 393 is 1.05 to 1.4 times the stretching ratio in the direction perpendicular to the circumferential direction
  • a fire extinguishing agent is considered to contribute to the improvement of pressure resistance by forming the product of the scalar quantity of the draw ratio in the circumferential direction and the scalar quantity of the draw ratio in the direction perpendicular to the circumferential direction as 12 or more and 13 or less.
  • the storage container 310 will be described as a representative example.
  • Tables 1 to 6 show measurement results of permanent distortion when pressure is uniformly applied to the inside of the extinguishing agent storage container 310.
  • the measurement of the permanent strain in this embodiment was performed by measuring before and after applying each pressure of 1 MPa, 1.6 MPa, 2.0 MPa, 2.4 MPa, and 3.0 MPa. More specifically, the permanent set in the circumferential direction of the body 393 at the points A, B, and C shown in FIG. 3 before and after applying the pressure, and the permanent set in the direction perpendicular to the circumferential direction. was measured.
  • a nitrogen cylinder was adopted as a pressure source, and the pressure was measured with a pressure regulator (model YR-5062) manufactured by Yamato Sangyo Co., Ltd. and a pressure gauge (model S41 or GLT41) manufactured by Right Bottom Seiki Co., Ltd.
  • Table 1 shows that the thickness of the preform corresponding to the body portion 393 of the final molded product is 15 mm ⁇ 0.4 mm, the stretching ratio in the circumferential direction of the body portion 393 is 3.5 times, and the circle
  • Table 1 shows that the thickness of the preform corresponding to the body portion 393 of the final molded product is 15 mm ⁇ 0.4 mm, the stretching ratio in the circumferential direction of the body portion 393 is 3.5 times, and the circle
  • the results of experiments using a fire extinguisher storage container 210 in which the draw ratio in the direction perpendicular to the circumferential direction is 3.5 times are shown. That is, the ratio of the draw ratio (3.5 times) in the direction perpendicular to the circumferential direction to the draw ratio (3.5 times) in the circumferential direction of the body 393 of the extinguishing agent storage container 210 is 1 time. is there.
  • each of the draw ratios is a scalar quantity
  • Table 2 shows that the thickness of the preform corresponding to the body portion 393 of the final molded product is 15 mm ⁇ 0.4 mm, the stretching ratio in the circumferential direction of the body portion 393 is 3.6 times, and The results of experiments using a fire extinguisher storage container 310 with a draw ratio in the direction perpendicular to the circumferential direction of 3.4 times are shown. That is, the ratio of the draw ratio (3.4 times) in the direction perpendicular to the circumferential direction to the draw ratio (3.6 times) in the circumferential direction of the body 393 of the extinguishing agent storage container 310 is 1.06. Is double. When each of the draw ratios is a scalar quantity, the product of the scalar quantity of the draw ratio in the circumferential direction and the scalar quantity of the draw ratio in the direction perpendicular to the circumferential direction is 12.24.
  • Table 3 shows that the thickness of the preform corresponding to the body portion 393 of the final molded product is 15 mm ⁇ 0.4 mm, the stretching ratio in the circumferential direction of the body portion 393 is 3.7 times, and The result of having conducted an experiment using the extinguishing agent storage container 310 in which the draw ratio in the direction perpendicular to the circumferential direction is 3.3 times is shown. That is, the ratio of the draw ratio (3.3 times) in the direction perpendicular to the circumferential direction to the draw ratio (3.7 times) in the circumferential direction of the body 393 of the extinguishing agent storage container 310 is 1.12. Is double.
  • each of the draw ratios is a scalar quantity
  • the product of the scalar quantity of the draw ratio in the circumferential direction and the scalar quantity of the draw ratio in the direction perpendicular to the circumferential direction is 12.21.
  • Table 4 shows that the thickness of the preform corresponding to the body portion 393 of the final molded product is 15 mm ⁇ 0.4 mm, the stretching ratio in the circumferential direction of the body portion 393 is 3.8 times, and
  • the product of the scalar quantity of the draw ratio in the circumferential direction and the scalar quantity of the draw ratio in the direction perpendicular to the circumferential direction is 12.16.
  • Table 5 shows that the thickness of the preform corresponding to the body portion 393 of the final molded product is 15 mm ⁇ 0.4 mm, the stretching ratio in the circumferential direction of the body portion 393 is 3.9 times, and The results of experiments using a fire extinguisher storage container 310 having a draw ratio of 3.1 times in the direction perpendicular to the circumferential direction are shown. That is, the ratio of the draw ratio (3.1 times) in the direction perpendicular to the circumferential direction to the draw ratio (3.9 times) in the circumferential direction of the body 393 of the extinguishing agent storage container 310 is 1.26. Is double. When each of the draw ratios is a scalar quantity, the product of the scalar quantity of the draw ratio in the circumferential direction and the scalar quantity of the draw ratio in the direction perpendicular to the circumferential direction is 12.09.
  • Table 6 shows that the thickness of the preform corresponding to the body portion 393 of the final molded product is 15 mm ⁇ 0.4 mm, the stretching ratio in the circumferential direction of the body portion 393 is 4.0 times, and The result of having conducted an experiment using the extinguishing agent storage container 310 in which the draw ratio in the direction perpendicular to the circumferential direction is 3.0 times is shown. That is, the ratio of the draw ratio (3.0 times) in the direction perpendicular to the circumferential direction to the draw ratio (4.0 times) in the circumferential direction of the body 393 of the extinguishing agent storage container 310 is 1.33. Is double. Further, when each of the draw ratios is a scalar quantity, the product of the scalar quantity of the draw ratio in the circumferential direction and the scalar quantity of the draw ratio in the direction perpendicular to the circumferential direction is 12.
  • Table 7 shows that the thickness of the preform corresponding to the body portion 393 of the final molded product is 15 mm ⁇ 0.4 mm, the stretching ratio in the circumferential direction of the body portion 393 is 4.1 times, and The result of having conducted experiment using the extinguishing agent storage container 310 which made the draw ratio of the direction perpendicular
  • each of the draw ratios is a scalar quantity
  • the product of the scalar quantity of the draw ratio in the circumferential direction and the scalar quantity of the draw ratio in the direction perpendicular to the circumferential direction is 11.89.
  • the extinguishing agent storage container 310 of Table 1 has a permanent set in the circumferential direction of 0.15% or less at point A and 0% at point B even after a pressure of 1.0 MPa to 2.0 MPa is applied.
  • C point is 0.15% or less
  • the permanent set in the direction perpendicular to the circumferential direction is 0%.
  • the circumferential permanent deformation is 0.45% at point A, 0.30% at point B, and 0.45% at point C.
  • the permanent set in the direction perpendicular to the direction is 0%.
  • the permanent set in the circumferential direction increases to 0.98% at point A, but it is less than 1%.
  • the permanent distortion at points B and C in the circumferential direction is 0.76%.
  • the permanent set in the direction perpendicular to the circumferential direction is still 0%. Therefore, at any pressure, the permanent set in the circumferential direction and the permanent set in the direction perpendicular to the circumferential direction are less than 1%. That is, it turns out that the extinguishing agent storage container 310 of Table 1 has obtained sufficient pressure resistance required as a extinguishing agent storage container.
  • the extinguishing agent storage container 310 of Table 2 has a permanent set in the circumferential direction of 0.14% or less at point A and 0% at point B even after a pressure of 1.0 MPa to 2.0 MPa is applied.
  • C point is 0.14% or less
  • the permanent set in the direction perpendicular to the circumferential direction is 0%.
  • the permanent set in the circumferential direction is 0.41% at point A, 0.28% at point B, and 0.41% at point C.
  • the permanent set in the direction perpendicular to the direction is 0%.
  • the permanent set in the circumferential direction remains at 0.89% at point A, and 0.69% at points B and C, which is perpendicular to the circumferential direction.
  • the directional permanent set is still 0%. Accordingly, at any pressure, the permanent set in the circumferential direction and the permanent set in the direction perpendicular to the circumferential direction are less than 1%, and 0.9% or less is achieved. That is, it turns out that the fire extinguisher storage container 310 of Table 2 has obtained sufficient pressure resistance required as a fire extinguisher storage container.
  • the extinguishing agent storage container 310 of Table 3 has a permanent set in the circumferential direction of 0.12% or less at point A and 0% at point B even after a pressure of 1.0 MPa to 2.0 MPa is applied. C point is 0.13% or less, and the permanent set in the direction perpendicular to the circumferential direction is 0%. In addition, after applying a pressure of 2.4 MPa, the permanent set in the circumferential direction is 0.37% at point A, 0.25% at point B, and 0.38% at point C. The permanent set in the direction perpendicular to the direction is 0.02%.
  • the permanent set in the circumferential direction remains at 0.79% at the point A, and 0.63% at the points B and C, and is perpendicular to the circumferential direction.
  • the direction permanent set is only 0.1%. Accordingly, at any pressure, the permanent set in the circumferential direction and the permanent set in the direction perpendicular to the circumferential direction are less than 1%, and 0.8% or less is achieved. That is, it can be seen that the extinguishing agent storage container 310 in Table 3 has a higher level of pressure resistance than that of the extinguishing agent storage container 310 in Table 2.
  • the maximum difference in permanent distortion at each measurement point of the extinguishing agent storage container 310 of Table 3 is 0.69% (difference between the circumferential direction at point A and the direction perpendicular to the circumferential direction). Therefore, the maximum difference in permanent distortion of the extinguishing agent storage container 310 in Table 3 is smaller than the maximum difference in permanent distortion of the extinguishing agent storage container 310 in Tables 1 and 2. Therefore, it can be seen that the extinguishing agent storage container 10 of Table 3 has less variation in permanent distortion than the extinguishing agent storage container 310 of Tables 1 and 2.
  • the extinguishing agent storage container 310 of Table 4 has a permanent deformation in the circumferential direction of 0.1% or less at point A and 0% at point B even after a pressure of 1.0 MPa to 2.0 MPa is applied.
  • C point is 0.11% or less
  • the permanent set in the direction perpendicular to the circumferential direction is 0.1% or less.
  • the circumferential distortion is 0.3% at point A, 0.23% at point B, and 0.34% at point C.
  • the permanent set in the direction perpendicular to the direction is 0.19%.
  • the permanent set in the circumferential direction remains at 0.65% at the point A and 0.56% at the points B and C, which is perpendicular to the circumferential direction.
  • Directional permanent set remains at 0.49%. Therefore, at any pressure, the permanent set in the circumferential direction and the permanent set in the direction perpendicular to the circumferential direction are less than 1%, and 0.7% or less is achieved. That is, it can be seen that the extinguishing agent storage container 310 of Table 4 has a higher level of pressure resistance than the pressure resistance of the extinguishing agent storage container 310 of Table 2.
  • the maximum difference in permanent strain at each measurement point of the extinguishing agent storage container 310 in Table 4 is 0.16% (difference between the circumferential direction at point A and the direction perpendicular to the circumferential direction). Therefore, the maximum difference in permanent distortion of the extinguishing agent storage container 310 in Table 4 is significantly smaller than the maximum difference in permanent distortion of the extinguishing agent storage container 310 in Tables 1 and 2. Therefore, it can be seen that the extinguishing agent storage container 310 of Table 4 has less variation in permanent distortion than the extinguishing agent storage container 310 of Tables 1 and 2.
  • the extinguishing agent storage container 310 in Table 5 has a permanent set in the circumferential direction of 0.08% or less at point A and 0% at point B even after a pressure of 1.0 MPa to 2.0 MPa is applied.
  • C point is 0.1% or less
  • the permanent set in the direction perpendicular to the circumferential direction is 0.19% or less.
  • the circumferential permanent deformation is 0.24% at point A, 0.2% at point B, and 0.3% at point C.
  • the permanent set in the direction perpendicular to the direction is 0.38%.
  • the permanent set in the circumferential direction remains at 0.52% at the point A, and is 0.51% at the points B and C, which is perpendicular to the circumferential direction.
  • Directional permanent set remains at 0.79%. Accordingly, at any pressure, the permanent set in the circumferential direction and the permanent set in the direction perpendicular to the circumferential direction are less than 1%, and 0.8% or less is achieved. That is, it can be seen that the extinguishing agent storage container 310 in Table 5 has a higher level of pressure resistance than that of the extinguishing agent storage container 310 in Table 2.
  • the maximum difference in permanent distortion at each measurement point of the extinguishing agent storage container 310 of Table 5 is 0.28% (difference between the circumferential direction at the point B or C and the direction perpendicular to the circumferential direction). . Therefore, the maximum difference in permanent distortion of the extinguishing agent storage container 310 in Table 5 is significantly smaller than the maximum difference in permanent distortion of the extinguishing agent storage container 310 in Tables 1 and 2. Therefore, it can be seen that the extinguishing agent storage container 310 of Table 5 has less variation in permanent distortion than the extinguishing agent storage container 310 of Tables 1 and 2.
  • the extinguishing agent storage container 310 of Table 6 has a permanent set in the circumferential direction of 0.06% or less at point A and 0% at point B even after a pressure of 1.0 MPa to 2.0 MPa is applied.
  • the point C is 0.09% or less, and the permanent set in the direction perpendicular to the circumferential direction is 0.19% or less.
  • the permanent set in the circumferential direction is 0.19% at point A, 0.18% at point B, and 0.27% at point C.
  • the permanent set in the direction perpendicular to the direction is 0.57%.
  • the permanent set in the circumferential direction remains 0.42% at the point A and 0.46% at the points B and C, and is in a direction perpendicular to the circumferential direction.
  • the permanent set was 0.88%. Accordingly, at any pressure, the permanent set in the circumferential direction and the permanent set in the direction perpendicular to the circumferential direction are less than 1%, and 0.9% or less is achieved. That is, it turns out that the fire extinguisher storage container 310 of Table 6 has obtained sufficient pressure resistance required as a fire extinguisher storage container.
  • the maximum difference in permanent distortion at each measurement point of the extinguishing agent storage container 310 of Table 6 is 0.46% (difference between the circumferential direction at point A and the direction perpendicular to the circumferential direction). Therefore, the maximum difference in permanent distortion of the extinguishing agent storage container 310 in Table 6 is smaller than the maximum difference in permanent distortion of the extinguishing agent storage container 310 in Tables 1 and 2. Therefore, it can be seen that the extinguishing agent storage container 310 of Table 6 has less variation in permanent distortion than the extinguishing agent storage container 310 of Tables 1 and 2.
  • the extinguishing agent storage container 310 of Table 7 has a permanent set in the circumferential direction of 0.05% or less at point A and 0% at point B even after a pressure of 1.0 MPa to 2.0 MPa is applied.
  • C point is 0.09% or less
  • the permanent set in the direction perpendicular to the circumferential direction is 0.23% or less.
  • the permanent set in the circumferential direction is 0.15% at point A, 0.14% at point B, and 0.21% at point C.
  • the permanent set in the direction perpendicular to the direction is 0.68%.
  • the permanent set in the direction perpendicular to the circumferential direction increases to 1.01%.
  • the thickness of the preform corresponding to the body part 393 of the final molded product is 15 mm ⁇ 0.4 mm
  • the stretching ratio in the circumferential direction of the body part 393 is
  • the extinguishing agent storage container 310 having a stretching ratio in the direction perpendicular to the circumferential direction of 1.05 times or more and 1.4 times or less has an absolute value of permanent strain of less than 1% even when a pressure of 3 MPa is applied. It can be said that the pressure resistance required as a fire extinguisher storage container can be sufficiently secured.
  • vertical to the circumferential direction shall be 12 or more and 13 or less.
  • the extinguishing agent storage container 210 in which the stretching ratio in the circumferential direction of the body portion 393 is 1.12 times or more and 1.26 times or less of the stretching ratio in the direction perpendicular to the circumferential direction is the absolute distortion of the permanent set. Since the value is 0.8% or less and the variation in permanent distortion is small, this is a preferred embodiment from the viewpoint of providing a higher level of pressure resistance.
  • the product of the stretching ratio in the circumferential direction and the stretching ratio in the direction perpendicular to the circumferential direction is preferably 12.09 or more and 12.21 or less from the viewpoint of obtaining higher pressure resistance.
  • the fire extinguisher 400 of this embodiment has the same configuration as that of the third embodiment except that the fire extinguisher storage container 310 of the third embodiment is changed to a fire extinguisher storage container 410. Therefore, the description which overlaps with 3rd Embodiment may be abbreviate
  • the fire extinguisher storage container 410 of the present embodiment is preferably molded so that the thickness (T3) of the body portion 493 is 1.6 mm ⁇ 0.4 mm. With this thickness, the pressure resistance required for the extinguishing agent storage container (for example, about 2.0 MPa) and the appropriate visibility of the extinguishing agent as the contents can be realized. Moreover, the fire extinguisher 400 of this embodiment is excellent in that it can be formed with fewer raw materials than the fire extinguisher storage container 310 in the third embodiment. That is, the fire extinguisher 400 of this embodiment can reduce manufacturing cost compared with the fire extinguisher 300 of this embodiment of 3rd Embodiment.
  • the extinguishing agent storage container 310 of the third embodiment is The pressure resistance is superior to the fire extinguisher storage container 410 of the embodiment.
  • the extinguishing agent storage container 410 has a stretching ratio in the circumferential direction of the body portion 493 of 1.05 times or more and 1.4 times the stretching ratio in the direction perpendicular to the circumferential direction.
  • the final molded product is formed so that the product of the stretching ratio in the circumferential direction of the body 493 and the stretching ratio in the direction perpendicular to the circumferential direction is 12 or more and 13 or less.
  • the stretching ratio in the circumferential direction of the body portion 493 is 1.05 to 1.4 times the stretching ratio in the direction perpendicular to the circumferential direction, and the stretching ratio in the circumferential direction and A fire extinguisher storage container 410 will be described as a representative example that the pressure resistance is improved when the product of the draw ratio in the direction perpendicular to the circumferential direction is 12 or more and 13 or less.
  • Table 8 to Table 14 show the measurement results of permanent distortion when pressure is uniformly applied to the inside of the extinguishing agent storage container 410.
  • the experimental results shown in Tables 8 to 14 were measured by the same measurement method as the experimental methods in Tables 1 to 7 in the third embodiment.
  • Table 8 shows that the thickness of the preform corresponding to the body portion 493 of the final molded product is 13 mm ⁇ 0.4 mm, the stretching ratio in the circumferential direction of the body portion 493 is 3.5 times, and the circle
  • Table 8 shows that the thickness of the preform corresponding to the body portion 493 of the final molded product is 13 mm ⁇ 0.4 mm, the stretching ratio in the circumferential direction of the body portion 493 is 3.5 times, and the circle
  • Table 9 shows that the thickness of the preform corresponding to the body portion 493 of the final molded product is 13 mm ⁇ 0.4 mm, the stretching ratio in the circumferential direction of the body portion 493 is 3.6 times, and The result of having conducted experiment using the extinguishing agent storage container 410 which made the draw ratio of the direction perpendicular
  • the product of the scalar quantity of the draw ratio in the circumferential direction and the scalar quantity of the draw ratio in the direction perpendicular to the circumferential direction is 12.24.
  • Table 10 shows that the thickness of the preform corresponding to the body portion 493 of the final molded product is 13 mm ⁇ 0.4 mm, the stretching ratio in the circumferential direction of the body portion 493 is 3.7 times, and The results of experiments using a fire extinguisher storage container 410 having a stretching ratio in the direction perpendicular to the circumferential direction of 3.3 times are shown. That is, the ratio of the draw ratio (3.3 times) in the direction perpendicular to the circumferential direction to the draw ratio (3.7 times) in the circumferential direction of the body 493 of the extinguishing agent storage container 410 in Table 10 is 1. .12 times.
  • each of the draw ratios is a scalar quantity
  • the product of the scalar quantity of the draw ratio in the circumferential direction and the scalar quantity of the draw ratio in the direction perpendicular to the circumferential direction is 12.21.
  • Table 11 shows that the thickness of the preform corresponding to the body portion 493 of the final molded product is 13 mm ⁇ 0.4 mm, the stretching ratio in the circumferential direction of the body portion 493 is 3.8 times, and The result of having conducted an experiment using the extinguishing agent storage container 410 in which the draw ratio in the direction perpendicular to the circumferential direction is 3.2 times is shown. That is, the ratio of the draw ratio (3.2 times) in the direction perpendicular to the circumferential direction to the draw ratio (3.8 times) in the circumferential direction of the body 493 of the extinguishing agent storage container 410 in Table 11 is 1. 19 times.
  • the product of the scalar quantity of the draw ratio in the circumferential direction and the scalar quantity of the draw ratio in the direction perpendicular to the circumferential direction is 12.16.
  • Table 12 shows that the thickness of the preform corresponding to the body portion 493 of the final molded product is 13 mm ⁇ 0.4 mm, the stretching ratio in the circumferential direction of the body portion 493 is 3.9 times, and The result of having conducted an experiment using the extinguishing agent storage container 410 in which the draw ratio in the direction perpendicular to the circumferential direction is 3.1 times is shown. That is, the ratio of the draw ratio (3.1 times) in the direction perpendicular to the circumferential direction to the draw ratio (3.9 times) in the circumferential direction of the body 493 of the extinguishing agent storage container 410 in Table 12 is 1. .26 times.
  • the product of the scalar quantity of the draw ratio in the circumferential direction and the scalar quantity of the draw ratio in the direction perpendicular to the circumferential direction is 12.09.
  • Table 13 shows that the thickness of the preform corresponding to the body part 493 of the final molded product is 13 mm ⁇ 0.4 mm, the stretching ratio in the circumferential direction of the body part 493 is 4.0 times, and The result of having conducted an experiment using the extinguishing agent storage container 410 in which the draw ratio in the direction perpendicular to the circumferential direction is 3.0 times is shown. That is, the ratio of the draw ratio (3.0 times) in the direction perpendicular to the circumferential direction to the draw ratio (4.0 times) in the circumferential direction of the body 493 of the extinguishing agent storage container 410 in Table 13 is 1. .33 times. Further, when each of the draw ratios is a scalar quantity, the product of the scalar quantity of the draw ratio in the circumferential direction and the scalar quantity of the draw ratio in the direction perpendicular to the circumferential direction is 12.
  • Table 14 shows that the thickness of the preform corresponding to the body portion 493 of the final molded product is 13 mm ⁇ 0.4 mm, the stretching ratio in the circumferential direction of the body portion 493 is 4.1 times, and The result of having performed experiment using the extinguishing agent storage container 410 which made the draw ratio of the direction perpendicular
  • each of the draw ratios is a scalar quantity
  • the product of the scalar quantity of the draw ratio in the circumferential direction and the scalar quantity of the draw ratio in the direction perpendicular to the circumferential direction is 11.89.
  • the extinguishing agent storage container 410 in Table 8 has a permanent set in the circumferential direction of 0.16% or less at point A and 0% at point B even after a pressure of 1.0 MPa to 2.0 MPa is applied.
  • C point is 0.16% or less
  • the permanent set in the direction perpendicular to the circumferential direction is 0%.
  • the permanent set in the circumferential direction is 0.48% at point A, 0.32% at point B, and 0.48% at point C.
  • the permanent set in the direction perpendicular to the direction is 0%.
  • the circumferential permanent distortion increases to 1.03% at point A.
  • the extinguishing agent storage container 410 of Table 9 has a permanent set in the circumferential direction of 0.14% or less at point A and 0% at point B even after a pressure of 1.0 MPa to 2.0 MPa is applied. , C point is 0.15% or less, and the permanent set in the direction perpendicular to the circumferential direction is 0%. In addition, after applying a pressure of 2.4 MPa, the circumferential permanent deformation was 0.43% at point A, 0.29% at point B, and 0.44% at point C. The permanent set in the direction perpendicular to the direction is 0%.
  • the circumferential permanent deformation is 0.94% at point A, 0.72% at point B, and 0.73% at point C.
  • the permanent set in the direction perpendicular to the circumferential direction is still 0%. Therefore, at any pressure, the permanent set in the circumferential direction and the permanent set in the direction perpendicular to the circumferential direction are less than 1%. That is, it turns out that the fire extinguisher storage container 410 of Table 9 has sufficient pressure resistance required as a fire extinguisher storage container.
  • the extinguishing agent storage container 410 of Table 10 has a permanent set in the circumferential direction of 0.13% or less at point A and 0% at point B even after a pressure of 1.0 MPa to 2.0 MPa is applied.
  • C point is 0.13% or less, and the permanent set in the direction perpendicular to the circumferential direction is 0%.
  • the circumferential permanent deformation is 0.39% at point A, 0.26% at point B, and 0.40% at point C.
  • the permanent set in the direction perpendicular to the direction is 0.02%.
  • the permanent set in the circumferential direction remains at 0.79% at point A, and 0.66% at points B and C, which is perpendicular to the circumferential direction.
  • the direction permanent set is only 0.1%. Accordingly, at any pressure, the permanent set in the circumferential direction and the permanent set in the direction perpendicular to the circumferential direction are less than 1%, and 0.8% or less is achieved. That is, it can be seen that the extinguishing agent storage container 410 in Table 10 has a higher level of pressure resistance than the pressure resistance of the extinguishing agent storage container 410 in Table 9.
  • the maximum difference in permanent distortion at each measurement point of the extinguishing agent storage container 410 in Table 10 is 0.69% (difference between the circumferential direction at point A and the direction perpendicular to the circumferential direction). Therefore, the maximum difference in permanent distortion of the extinguishing agent storage container 410 in Table 10 is smaller than the maximum difference in permanent distortion of the extinguishing agent storage container 410 in Tables 8 and 9. For this reason, it can be seen that the extinguishing agent storage container 410 in Table 10 has less variation in permanent distortion than the extinguishing agent storage container 410 in Tables 8 and 9.
  • the extinguishing agent storage container 410 in Table 11 has a circumferential permanent deformation of 0.11% or less at point A and 0% at point B even after a pressure of 1.0 MPa to 2.0 MPa is applied. , C point is 0.12% or less, and the permanent set in the direction perpendicular to the circumferential direction is 0.1% or less. In addition, after applying a pressure of 2.4 MPa, the circumferential permanent deformation is 0.32% at point A, 0.24% at point B, and 0.36% at point C. The permanent set in the direction perpendicular to the direction is 0.2%.
  • the permanent set in the circumferential direction remains at 0.68% at the point A, and 0.59% at the points B and C, which is perpendicular to the circumferential direction.
  • Directional permanent set remains at 0.52%. Therefore, at any pressure, the permanent set in the circumferential direction and the permanent set in the direction perpendicular to the circumferential direction are less than 1%, and 0.7% or less is achieved. That is, it can be seen that the extinguishing agent storage container 410 in Table 11 has a higher level of pressure resistance than that of the extinguishing agent storage container 410 in Table 9.
  • the maximum difference in permanent distortion at each measurement point of the extinguishing agent storage container 410 in Table 11 is 0.16% (difference between the circumferential direction at point A and the direction perpendicular to the circumferential direction). Therefore, the maximum difference in permanent distortion of the extinguishing agent storage container 410 in Table 11 is significantly smaller than the maximum difference in permanent distortion of the extinguishing agent storage container 410 in Tables 8 and 9. For this reason, it can be seen that the extinguishing agent storage container 410 of Table 11 has less variation in permanent distortion than the extinguishing agent storage container 410 of Tables 8 and 9.
  • the extinguishing agent storage container 410 of Table 12 has a permanent set in the circumferential direction of 0.08% or less at point A and 0% at point B even after a pressure of 1.0 MPa to 2.0 MPa is applied.
  • the point C is 0.11% or less, and the permanent set in the direction perpendicular to the circumferential direction is 0.2% or less.
  • the permanent set in the circumferential direction is 0.25% at point A, 0.21% at point B, and 0.32% at point C.
  • the permanent set in the direction perpendicular to the direction is 0.4%.
  • the permanent set in the circumferential direction remains at 0.55% at the point A, and is 0.53% at the points B and C, which is perpendicular to the circumferential direction.
  • the directional permanent set remains at 0.83%. Accordingly, at any pressure, the permanent set in the circumferential direction and the permanent set in the direction perpendicular to the circumferential direction are less than 1%, and 0.8% or less is achieved. That is, it can be seen that the extinguishing agent storage container 410 in Table 12 has a higher level of pressure resistance than the pressure resistance of the extinguishing agent storage container 410 in Table 9.
  • the maximum difference in permanent distortion at each measurement point of the extinguishing agent storage container 410 in Table 12 is 0.3% (difference between the circumferential direction at the point B or C and the direction perpendicular to the circumferential direction). . Therefore, the maximum difference in permanent distortion of the extinguishing agent storage container 410 in Table 12 is significantly smaller than the maximum difference in permanent distortion of the extinguishing agent storage container 410 in Tables 8 to 10. Therefore, it can be seen that the extinguishing agent storage container 410 of Table 12 has less variation in permanent distortion than the extinguishing agent storage container 410 of Tables 8 and 9.
  • the extinguishing agent storage container 410 of Table 13 has a permanent set in the circumferential direction of 0.07% or less at point A and 0% at point B even after a pressure of 1.0 MPa to 2.0 MPa is applied.
  • C point is 0.1% or less
  • the permanent set in the direction perpendicular to the circumferential direction is 0.2% or less.
  • the permanent set in the circumferential direction is 0.2% at point A, 0.19% at point B, and 0.29% at point C.
  • the permanent set in the direction perpendicular to the direction is 0.6%.
  • the permanent set in the circumferential direction remains 0.44% at the point A, and 0.48% at the points B and C, in the direction perpendicular to the circumferential direction.
  • the permanent set was 0.93%. Therefore, at any pressure, the permanent set in the circumferential direction and the permanent set in the direction perpendicular to the circumferential direction are less than 1%. That is, it turns out that the fire extinguisher storage container 410 of Table 13 has obtained sufficient pressure resistance required as a fire extinguisher storage container.
  • the extinguishing agent storage container 410 of Table 14 has a permanent set in the circumferential direction of 0.07% or less at point A and 0% at point B even after a pressure of 1.0 MPa to 2.0 MPa is applied.
  • C point is 0.11% or less
  • the permanent set in the direction perpendicular to the circumferential direction is 0.22% or less.
  • the permanent set in the circumferential direction is 0.22% at point A, 0.21% at point B, and 0.32% at point C.
  • the permanent set in the direction perpendicular to the direction is 0.66%.
  • the circumferential permanent deformation is 0.48% at point A.
  • the permanent distortion at points B and C in the circumferential direction is 0.53%.
  • the permanent set in the direction perpendicular to the circumferential direction increases to 1.03%.
  • the thickness of the preform corresponding to the body part 493 of the final molded product is 13 mm ⁇ 0.4 mm
  • the stretching ratio in the circumferential direction of the body part 493 is
  • the extinguishing agent storage container 410 having a stretching ratio in the direction perpendicular to the circumferential direction of 1.05 times or more and 1.4 times or less has an absolute value of permanent strain of less than 1% even when a pressure of 3 MPa is applied. It can be said that the pressure resistance required as a fire extinguisher storage container can be sufficiently secured.
  • vertical to the circumferential direction shall be 12 or more and 13 or less.
  • the extinguishing agent storage container 410 in which the stretching ratio in the circumferential direction of the body portion 493 is 1.12 times or more and 1.26 times or less of the stretching ratio in the direction perpendicular to the circumferential direction is an absolute permanent deformation. Since the value is 0.8% or less and the variation in permanent distortion is small, this is a preferred embodiment from the viewpoint of providing a higher level of pressure resistance.
  • the product of the stretching ratio in the circumferential direction and the stretching ratio in the direction perpendicular to the circumferential direction is preferably 12.09 or more and 12.21 or less from the viewpoint of obtaining higher pressure resistance.
  • the fire extinguisher 500 of this embodiment has the same configuration as that of the third embodiment except that the fire extinguisher storage container 310 of the third embodiment is changed to a fire extinguisher storage container 510. Therefore, the description which overlaps with 3rd Embodiment may be abbreviate
  • the fire extinguishing agent storage container 510 of the present embodiment is preferably molded so that the thickness (T3) of the body portion 593 is 2.4 mm ⁇ 0.4 mm. With this thickness, the pressure resistance required for the extinguishing agent storage container (for example, about 2.0 MPa) and the appropriate visibility of the extinguishing agent as the contents can be realized.
  • the extinguishing agent storage container 510 is similar to the third embodiment in that the stretching ratio in the circumferential direction of the body portion 593 is 1.05 times or more and 1.4 times the stretching ratio in the direction perpendicular to the circumferential direction.
  • the final molded product is formed so that the product of the stretching ratio in the circumferential direction of the body portion 593 and the stretching ratio in the direction perpendicular to the circumferential direction is 12 or more and 13 or less.
  • the stretching ratio in the circumferential direction of the body portion 593 is 1.05 to 1.4 times the stretching ratio in the direction perpendicular to the circumferential direction
  • the stretching ratio in the circumferential direction and A fire extinguishing agent storage container 510 will be described as a representative example that the pressure resistance is improved by setting the product of the draw ratio in the direction perpendicular to the circumferential direction to 12 or more and 13 or less.
  • Table 15 shows that the thickness of the preform corresponding to the body portion 593 of the final molded product is 19 mm ⁇ 0.4 mm, the stretching ratio in the circumferential direction of the body portion 593 is 3.5 times, and the circle
  • the results of experiments using a fire extinguisher storage container 510 in which the draw ratio in the direction perpendicular to the circumferential direction is 3.5 times are shown. That is, the ratio of the draw ratio (3.5 times) in the direction perpendicular to the circumferential direction to the draw ratio (3.5 times) in the circumferential direction of the body 593 of the extinguishing agent storage container 510 in Table 15 is 1. Is double.
  • the product of the scalar quantity of the draw ratio in the circumferential direction and the scalar quantity of the draw ratio in the direction perpendicular to the circumferential direction is 12.25.
  • Table 16 shows that the thickness of the preform corresponding to the body portion 593 of the final molded product is 19 mm ⁇ 0.4 mm, the stretching ratio in the circumferential direction of the body portion 593 is 3.6 times, and The results of experiments using a fire extinguisher storage container 510 in which the draw ratio in the direction perpendicular to the circumferential direction is 3.4 times are shown. That is, the ratio of the draw ratio (3.4 times) in the direction perpendicular to the circumferential direction to the draw ratio (3.6 times) in the circumferential direction of the body portion 593 of the extinguishing agent storage container 510 in Table 16 is 1. .06 times.
  • the product of the scalar quantity of the draw ratio in the circumferential direction and the scalar quantity of the draw ratio in the direction perpendicular to the circumferential direction is 12.24.
  • Table 17 shows that the thickness of the preform corresponding to the body portion 593 of the final molded product is 19 mm ⁇ 0.4 mm, the stretching ratio in the circumferential direction of the body portion 593 is 3.7 times, and The results of experiments using a fire extinguisher storage container 510 in which the draw ratio in the direction perpendicular to the circumferential direction is 3.3 times are shown. That is, the ratio of the draw ratio (3.3 times) in the direction perpendicular to the circumferential direction to the draw ratio (3.7 times) in the circumferential direction of the trunk 593 of the extinguishing agent storage container 510 in Table 17 is 1. .12 times.
  • each of the draw ratios is a scalar quantity
  • the product of the scalar quantity of the draw ratio in the circumferential direction and the scalar quantity of the draw ratio in the direction perpendicular to the circumferential direction is 12.21.
  • Table 18 shows that the thickness of the preform corresponding to the body portion 593 of the final molded product is 19 mm ⁇ 0.4 mm, the stretching ratio in the circumferential direction of the body portion 593 is 3.8 times, and The results of experiments using a fire extinguisher storage container 510 in which the draw ratio in the direction perpendicular to the circumferential direction is 3.2 times are shown. That is, the ratio of the draw ratio (3.2 times) in the direction perpendicular to the circumferential direction to the draw ratio (3.8 times) in the circumferential direction of the body 593 of the extinguishing agent storage container 510 in Table 18 is 1. 19 times.
  • the product of the scalar quantity of the draw ratio in the circumferential direction and the scalar quantity of the draw ratio in the direction perpendicular to the circumferential direction is 12.16.
  • Table 19 shows that the thickness of the preform corresponding to the body portion 593 of the final molded product is 19 mm ⁇ 0.4 mm, the stretching ratio in the circumferential direction of the body portion 593 is 3.9 times, and The results of experiments using a fire extinguisher storage container 510 in which the draw ratio in the direction perpendicular to the circumferential direction is 3.1 times are shown. That is, the ratio of the draw ratio (3.1 times) in the direction perpendicular to the circumferential direction to the draw ratio (3.9 times) in the circumferential direction of the body 593 of the extinguishing agent storage container 510 in Table 19 is 1. .26 times.
  • the product of the scalar quantity of the draw ratio in the circumferential direction and the scalar quantity of the draw ratio in the direction perpendicular to the circumferential direction is 12.09.
  • Table 20 shows that the thickness of the preform corresponding to the body portion 593 of the final molded product is 19 mm ⁇ 0.4 mm, the stretching ratio in the circumferential direction of the body portion 593 is 4.0 times, and The results of experiments using a fire extinguisher storage container 510 in which the draw ratio in the direction perpendicular to the circumferential direction is 3.0 times are shown. That is, the ratio of the draw ratio (3.0 times) in the direction perpendicular to the circumferential direction to the draw ratio (4.0 times) in the circumferential direction of the body 593 of the extinguishing agent storage container 510 in Table 20 is 1. .33 times. Further, when each of the draw ratios is a scalar quantity, the product of the scalar quantity of the draw ratio in the circumferential direction and the scalar quantity of the draw ratio in the direction perpendicular to the circumferential direction is 12.
  • Table 21 shows that the thickness of the preform corresponding to the body portion 593 of the final molded product is 19 mm ⁇ 0.4 mm, the stretching ratio in the circumferential direction of the body portion 593 is 4.1 times, and The results of experiments using a fire extinguisher storage container 510 with a draw ratio in the direction perpendicular to the circumferential direction of 2.9 times are shown. That is, the ratio of the draw ratio (2.9 times) in the direction perpendicular to the circumferential direction to the draw ratio (4.1 times) in the circumferential direction of the body 593 of the extinguishing agent storage container 510 in Table 21 is 1. .41 times.
  • each of the draw ratios is a scalar quantity
  • the product of the scalar quantity of the draw ratio in the circumferential direction and the scalar quantity of the draw ratio in the direction perpendicular to the circumferential direction is 11.89.
  • the extinguishing agent storage container 510 in Table 15 has a permanent set in the circumferential direction of 0.11% or less at point A and 0% at point B even after a pressure of 1.0 MPa to 2.0 MPa is applied.
  • C is 0.11% or less
  • the permanent set in the direction perpendicular to the circumferential direction is 0%.
  • the permanent set in the circumferential direction is 0.33% at point A, 0.22% at point B, and 0.34% at point C.
  • the permanent set in the direction perpendicular to the direction is 0%.
  • the circumferential permanent set increases to 0.72% at point A, but is less than 1%.
  • the permanent distortion at points B and C in the circumferential direction is 0.56%.
  • the permanent set in the direction perpendicular to the circumferential direction is still 0%. Therefore, at any pressure, the permanent set in the circumferential direction and the permanent set in the direction perpendicular to the circumferential direction are less than 1%. That is, it turns out that the fire extinguisher storage container 510 of Table 15 has sufficient pressure resistance required as a fire extinguisher storage container.
  • the extinguishing agent storage container 510 in Table 16 has a permanent set in the circumferential direction of 0.10% or less at point A and 0% at point B even after a pressure of 1.0 MPa to 2.0 MPa is applied.
  • C is 0.11% or less
  • the permanent set in the direction perpendicular to the circumferential direction is 0%.
  • the circumferential permanent deformation is 0.30% at point A, 0.20% at point B, and 0.30% at point C.
  • the permanent set in the direction perpendicular to the direction is 0%.
  • the circumferential permanent deformation is 0.66% at point A, 0.51% at point B, and 0.51% at point C.
  • the permanent set in the direction perpendicular to the circumferential direction is still 0%. Therefore, at any pressure, the permanent set in the circumferential direction and the permanent set in the direction perpendicular to the circumferential direction are less than 1%. That is, it turns out that the fire extinguisher storage container 510 of Table 16 has sufficient pressure resistance required as a fire extinguisher storage container.
  • the extinguishing agent storage container 510 of Table 17 has a permanent set in the circumferential direction of 0.09% or less at point A and 0% at point B even after a pressure of 1.0 MPa to 2.0 MPa is applied. , C point is 0.09% or less, and the permanent set in the direction perpendicular to the circumferential direction is 0%. In addition, after applying a pressure of 2.4 MPa, the permanent set in the circumferential direction is 0.28% at point A, 0.18% at point B, and 0.28% at point C. The permanent set in the direction perpendicular to the direction is 0.02%.
  • the permanent set in the circumferential direction remains at 0.55% at the point A, and is 0.46% at the points B and C, which is perpendicular to the circumferential direction.
  • Directional permanent set is only 0.07%. Therefore, at any pressure, the permanent set in the circumferential direction and the permanent set in the direction perpendicular to the circumferential direction are less than 1%, and 0.6% or less is achieved. That is, it can be seen that the extinguishing agent storage container 510 in Table 17 has a higher level of pressure resistance than the pressure resistance of the extinguishing agent storage container 510 in Table 16.
  • the maximum difference in permanent distortion at each measurement point of the extinguishing agent storage container 510 in Table 17 is 0.48% (difference between the circumferential direction at point A and the direction perpendicular to the circumferential direction). Therefore, the maximum difference in permanent distortion of the extinguishing agent storage container 510 shown in Table 17 is smaller than the maximum difference in permanent distortion of the extinguishing agent storage container 510 shown in Tables 15 and 16. For this reason, it can be seen that the extinguishing agent storage container 510 of Table 17 has less variation in permanent distortion than the extinguishing agent storage containers 510 of Table 15 and Table 16.
  • the extinguishing agent storage container 510 of Table 18 has a permanent set in the circumferential direction of 0.07% or less at point A and 0% at point B even after a pressure of 1.0 MPa to 2.0 MPa is applied.
  • the point C is 0.08% or less, and the permanent set in the direction perpendicular to the circumferential direction is 0.1% or less.
  • the permanent set in the circumferential direction is 0.22% at point A, 0.17% at point B, and 0.25% at point C.
  • the permanent set in the direction perpendicular to the direction is 0.14%.
  • the permanent set in the circumferential direction remains at 0.48% at point A, 0.41 at point B, and 0.42% at point C.
  • the permanent set in the direction perpendicular to the direction remains at 0.36%. Therefore, at any pressure, the permanent set in the circumferential direction and the permanent set in the direction perpendicular to the circumferential direction are less than 1% and 0.5% or less is achieved. That is, it can be seen that the extinguishing agent storage container 510 in Table 18 has a higher level of pressure resistance than the pressure resistance of the extinguishing agent storage container 510 in Table 17.
  • the maximum difference in permanent distortion at each measurement point of the extinguishing agent storage container 510 in Table 18 is 0.12% (difference between the circumferential direction at point A and the direction perpendicular to the circumferential direction). Therefore, the maximum difference in permanent distortion of the extinguishing agent storage container 510 in Table 18 is significantly smaller than the maximum difference in permanent distortion of the extinguishing agent storage container 510 in Table 15 or Table 16. For this reason, it can be seen that the extinguishing agent storage container 510 of Table 18 has a much smaller variation in permanent distortion than the extinguishing agent storage containers 510 of Table 15 and Table 16.
  • the extinguishing agent storage container 510 of Table 19 has a permanent set in the circumferential direction of 0.06% or less at point A and 0% at point B even after a pressure of 1.0 MPa to 2.0 MPa is applied.
  • the point C is 0.07% or less, and the permanent set in the direction perpendicular to the circumferential direction is 0.14% or less.
  • the permanent set in the circumferential direction is 0.18% at point A, 0.15% at point B, and 0.22% at point C.
  • the permanent set in the direction perpendicular to the direction is 0.28%.
  • the permanent set in the circumferential direction remains at 0.38% at point A, and is 0.37% at points B and C, which is perpendicular to the circumferential direction.
  • Directional permanent set remains at 0.58%. Therefore, at any pressure, the permanent set in the circumferential direction and the permanent set in the direction perpendicular to the circumferential direction are less than 1%, and 0.6% or less is achieved. That is, it can be seen that the extinguishing agent storage container 510 in Table 19 has a higher level of pressure resistance than that of the extinguishing agent storage container 510 in Table 16.
  • the maximum difference in permanent strain at each measurement point of the extinguishing agent storage container 510 of Table 19 is 0.21% (difference between the circumferential direction at the point B or C and the direction perpendicular to the circumferential direction). . Therefore, the maximum difference in permanent distortion of the extinguishing agent storage container 510 in Table 19 is significantly smaller than the maximum difference in permanent distortion of the extinguishing agent storage container 510 in Table 15 or Table 16. For this reason, it can be seen that the extinguishing agent storage container 510 of Table 19 has a much smaller variation in permanent distortion than the extinguishing agent storage containers 510 of Table 15 and Table 16.
  • the extinguishing agent storage container 510 of Table 20 has a permanent set in the circumferential direction of 0.05% or less at point A and 0% at point B even after a pressure of 1.0 MPa to 2.0 MPa is applied.
  • the point C is 0.07% or less, and the permanent set in the direction perpendicular to the circumferential direction is 0.14% or less.
  • the circumferential distortion is 0.14% at point A, 0.13% at point B, and 0.20% at point C.
  • the permanent set in the direction perpendicular to the direction is 0.42%.
  • the permanent set in the circumferential direction remains 0.31% at the point A and 0.34% at the points B and C, and is in a direction perpendicular to the circumferential direction.
  • the permanent set was 0.65%. Therefore, at any pressure, the permanent set in the circumferential direction and the permanent set in the direction perpendicular to the circumferential direction are less than 0.7%. That is, it turns out that the fire extinguisher storage container 510 of Table 20 has obtained sufficient pressure resistance required as a fire extinguisher storage container.
  • the maximum difference in permanent strain at each measurement point of the extinguishing agent storage container 510 in Table 20 is 0.34% (difference between the circumferential direction at point A and the direction perpendicular to the circumferential direction). Therefore, the maximum difference in permanent distortion of the extinguishing agent storage container 510 shown in Table 20 is significantly smaller than the maximum difference in permanent distortion of the extinguishing agent storage container 510 shown in Tables 15 and 16. For this reason, it can be seen that the extinguishing agent storage container 510 of Table 20 has a much smaller variation in permanent distortion than the extinguishing agent storage containers 510 of Table 15 and Table 16.
  • the extinguishing agent storage container 510 of Table 21 has a permanent set in the circumferential direction of 0.05% or less at point A and 0% at point B even after a pressure of 1.0 MPa to 2.0 MPa is applied.
  • the point C is 0.07% or less, and the permanent set in the direction perpendicular to the circumferential direction is 0.15% or less.
  • the permanent set in the circumferential direction is 0.16% at point A, 0.15% at point B, and 0.22% at point C.
  • the permanent set in the direction perpendicular to the direction is 0.46%.
  • the circumferential permanent deformation is 0.34% at point A.
  • the permanent distortion at points B and C in the circumferential direction is 0.37%. Further, the permanent set in the direction perpendicular to the circumferential direction increases to 0.68%, but is less than 0.7%. Therefore, at any pressure, the permanent set in the circumferential direction and the permanent set in the direction perpendicular to the circumferential direction are less than 0.7%. That is, it turns out that the fire extinguisher storage container 510 of Table 21 has sufficient pressure resistance required as a fire extinguisher storage container.
  • the thickness of the preform corresponding to the body portion 593 of the final molded product is 19 mm ⁇ 0.4 mm
  • the stretching ratio in the circumferential direction of the body portion 593 is
  • the extinguishing agent storage container 510 having a draw ratio of 1.05 to 1.4 times the draw ratio in the direction perpendicular to the circumferential direction has an absolute value of permanent strain of less than 1% even when 3 MPa is applied. It can be said that the pressure resistance required as a fire extinguisher storage container can be sufficiently secured.
  • vertical to the circumferential direction shall be 11 or more and 13 or less.
  • the extinguishing agent storage container 510 in which the stretching ratio in the circumferential direction of the body portion 593 is 1.12 times or more and 1.26 times or less of the stretching ratio in the direction perpendicular to the circumferential direction is the absolute limit of permanent distortion. Since the value is 0.8% or less and the variation of the permanent distortion is very small, this is a preferable embodiment from the viewpoint that a higher level of pressure resistance can be provided.
  • the product of the draw ratio in the circumferential direction and the draw ratio in the direction perpendicular to the circumferential direction is preferably 11.89 or more and 12.21 or less from the viewpoint of obtaining higher pressure resistance.
  • the fire extinguisher 500 of this embodiment must be formed with more raw materials than the fire extinguisher storage container 310 in 3rd Embodiment, it is excellent in pressure resistance.
  • the fire extinguishing agent storage container 310 in the third embodiment is the same as the extinguishing agent storage container 310 of the third embodiment and the extinguishing agent storage container 510 of the present embodiment when compared with the same stretch ratio. Since it can form with less raw materials than the fire extinguisher storage container 510 of embodiment, it is excellent at the point which can reduce manufacturing cost.
  • the fire extinguisher 600 of the present embodiment has the same configuration as the fire extinguisher 100 of the first embodiment, except that the fire extinguisher storage container 610 is provided instead of the fire extinguisher storage container 10 of the first embodiment. Therefore, the description which overlaps with 1st Embodiment is abbreviate
  • the thickness (T1) of the mouth portion 691 of the extinguishing agent storage container 610 of the present embodiment is 2 mm or more and 5 mm or less
  • the thickness (T2) of the shoulder portion 692 is 1.2 mm or more and 12 mm or less
  • drum 693 is 1.3 mm or more and 1.7 mm or less
  • the thickness (T4) of the bottom part 694 is 1.2 mm or more and 12 mm or less.
  • the total light transmittance of the fire extinguisher storage container 610 in the present embodiment is about 50%.
  • the fire extinguisher storage container 610 of the present embodiment is formed only of polyethylene naphthalate (PEN). (Hereafter, delete)
  • the total light transmittance of the fire extinguisher storage container 610 of this embodiment is 5% or more and 75% or less. If the total light transmittance of the fire extinguisher storage container 610 exceeds 75%, the attached extinguishing agent on the wall surface appears to be a dirt of the fire extinguisher. Will detract from the beauty of the On the other hand, when the total light transmittance is less than 5%, it becomes difficult to check the remaining amount of the extinguishing agent in an emergency, so that the practicality is inferior. Therefore, maintaining moderate transparency in the above-described range harmonizes practicality and aesthetic appearance. Further, the total light transmittance of the fire extinguisher storage container 610 is more preferably 20% or more and 70% or less. Within this range, it is possible to further harmonize with the surrounding aesthetics.
  • drum 693 of the fire extinguisher storage container 610 of this embodiment is 1 mm or more and 5 mm or less. This is because if the thickness of the resin is less than 1 mm, the strength required for a fire extinguishing agent storage container (for example, about 2.0 MPa) may not be achieved. This is because it is not preferable and there is a high possibility that it will be difficult to achieve transparency that can visually recognize the extinguishing agent as the contents. According to the above viewpoint, the thickness (T3) of the body portion 693 is more preferably 1 mm or more and 3 mm or less.
  • a fire extinguisher storage container 610 made of polyethylene naphthalate (PEN) can be manufactured by a conventionally known resin molding method such as stretch blow molding, melt shaping, etc. Among them, there is no seam and the molding state is good, In addition, stretch blow molding is preferable in that a container having an appropriate thickness can be obtained.
  • the product of the scalar quantity of the draw ratio in the circumferential direction of the body portion 693 and the scalar quantity of the draw ratio in the direction perpendicular to the circumferential direction should be 12 or more. Is preferred. In this case, the total light transmittance of the preform of the fire extinguisher storage container 610 is preferably 5% or more and 75% or less.
  • the thickness of the preform of the extinguishing agent storage container 10 is 4 mm or more and 30 mm or less (most preferably 15 mm) so that the final thickness (T3) of the body portion 693 is 1 mm or more and 5 mm or less. It is preferable.
  • the polymer chain of the resin is oriented in approximately one direction by performing stretch blow molding including a stretching step, the transparency, strength, and rigidity of the resin are increased. Therefore, when stretch blow molding is employed, the transparency and pressure resistance of the fire extinguisher storage container 610 of this embodiment can be efficiently increased.
  • the shape of the bottom surface of the fire extinguishing agent storage container 610 is spherical and the stretch ratio of the bottom surface is substantially equal.
  • the fire extinguisher 700 of this embodiment is the same as that of the sixth embodiment except that the material of the fire extinguisher storage container 710 is polyethylene terephthalate (PET), and the thickness of the preform and the stretch blow ratio in the manufacturing process. It is a configuration. Therefore, the description which overlaps with 6th Embodiment is abbreviate
  • PET polyethylene terephthalate
  • the fire extinguisher 700 includes a fire extinguisher storage container 710 formed of polyethylene terephthalate (PET).
  • the thickness (T1) of the mouth 791 of the fire extinguishing agent storage container 710 of this embodiment is 2 mm or more and 5 mm or less, and the thickness (T2) of the shoulder 792 is 2 mm or more and 12 mm or less.
  • drum 793 is 2 mm or more and 3 mm or less, and the thickness (T4) of the bottom part 794 is 2 mm or more and 12 mm or less.
  • the total light transmittance of the fire extinguisher storage container 710 in this embodiment is about 50%.
  • the fire extinguisher storage container 710 of this embodiment is formed only of polyethylene terephthalate (PET). (Hereafter, delete)
  • the total light transmittance of the fire extinguisher storage container 710 of this embodiment is 5% or more and 75% or less.
  • the total light transmittance of the fire extinguisher storage container 710 of the present embodiment exceeds 75%, the extinguishant adhering to the wall surface of the fire extinguisher stored in the fire extinguisher storage container 610 of the sixth embodiment is extinguished.
  • the appearance of the fire extinguisher 700 is detracted from the appearance of the surrounding area.
  • the total light transmittance is less than 5%, it becomes difficult to check the remaining amount of the extinguishing agent in an emergency, so the practicality is inferior.
  • the total light transmittance of the fire extinguisher storage container 710 is more preferably 20% or more and 70% or less. Within this range, it is possible to further harmonize with the surrounding aesthetics.
  • drum 793 of the fire extinguisher storage container 710 of this embodiment is 1 mm or more and 5 mm or less. This is because if the thickness of the resin is less than 1 mm, the strength required for a fire extinguishing agent storage container (for example, about 2.0 MPa) may not be achieved. This is because it is not preferable and there is a high possibility that it will be difficult to achieve transparency that can visually recognize the extinguishing agent as the contents. According to the above viewpoint, the thickness (T3) of the body portion 793 is more preferably 2 mm or more and 3 mm or less.
  • the fire extinguisher storage container 710 made of polyethylene terephthalate (PET) can be manufactured by a conventionally known resin molding method such as stretch blow molding, melt shaping, etc. Among them, there is no seam, the molding state is good, and Stretch blow molding is preferred in that a moderately thick container can be obtained.
  • the product of the scalar amount of the draw ratio in the circumferential direction of the body 793 and the scalar amount of the draw ratio in the direction perpendicular to the circumferential direction is 6 or more (most preferably Is preferably 6.5).
  • the total light transmittance of the preform of the fire extinguisher storage container 710 is preferably 5% or more and 75% or less.
  • the thickness of the preform of the extinguishing agent storage container 10 is 5 mm or more and 15 mm or less (most preferably 10 mm) in order to make the final thickness (T3) of the body 793 1 mm or more and 5 mm or less. It is preferable.
  • the fire extinguisher 800 of this embodiment has the same configuration as the fire extinguisher 100 of the first embodiment, except that the fire extinguisher storage container 810 is provided instead of the fire extinguisher storage container 10 of the first embodiment. Therefore, the description which overlaps with 1st Embodiment is abbreviate
  • the fire extinguisher storage container 810 of the present embodiment is made of only polyethylene naphthalate (PEN), except for impurities in the manufacturing process.
  • PEN polyethylene naphthalate
  • the fire extinguisher storage container 810 is manufactured by stretch blow molding. For this reason, it is possible to obtain a container having no seam, a good molded state, and an appropriate thickness. Moreover, since it is a stretch blow molding method, since the stretching process is included, the polymer chains of the resin are oriented in approximately one direction. For this reason, transparency, intensity
  • the extinguishing agent storage container 810 of the present embodiment is formed so that the thickness (T3) of the body portion 893 is 1.8 mm ⁇ 0.4 mm. With this thickness, pressure resistance (for example, about 2.0 MPa) required for a fire extinguisher storage container, economic efficiency, and appropriate visibility of the fire extinguisher as the contents are realized.
  • the crystallization rate of the resin in the mouth portion 891 is approximately 0%
  • the crystallization rate of the resin in the shoulder portion 892 is 13% or more and 23% or less.
  • the crystallization rate of the resin in the body portion 893 was 14% or more and 27% or less
  • the crystallization rate of the resin in the bottom portion 894 was 10% or more and 20% or less.
  • the resin crystallization rate of the body 893 of the fire extinguisher storage container 810 is 13% or more and 30% or less, the detailed mechanism is not yet clear, but the fire extinguisher storage container by resin crystallization is not yet clear. Improvement in strength or withstand pressure is achieved.
  • strength and / or pressure resistance of the container 810 improve by raising the crystallization rate of resin, the high durability calculated
  • PEN polyethylene naphthalate
  • the resin is injected or extruded into an injection mold so that the wall thickness is 15 mm ⁇ 0.4 mm.
  • a preform having a total light transmittance of about 5% is formed.
  • the stretching ratio in the circumferential direction of the body portion 893 is 1.05 to 1.4 times the stretching ratio in the direction perpendicular to the circumferential direction, and the stretching ratio in the circumferential direction and
  • the final molded product is formed so that the product of the draw ratio in the direction perpendicular to the circumferential direction is 12 or more and 13 or less.
  • the thickness of the preform is 15 mm ⁇ 0.4 mm
  • the thickness (T3) of the trunk portion 893 of the extinguishing agent storage container 810 as the final molded product is 1.8 mm ⁇ 0.4 mm
  • the thickness of the preform is 13 mm ⁇ 0.4 mm
  • the thickness (T3) of the body 893 of the extinguishing agent storage container 810 as the final molded product is 1.6 mm ⁇ 0.4 mm.
  • some effects of the present invention are exhibited.
  • the thickness of the preform is 19 mm ⁇ 0.4 mm
  • the thickness (T3) of the trunk portion 893 of the extinguishing agent storage container 810 as the final molded product is 2.4 mm ⁇ 0. Even if it is 4 mm, at least a part of the effects of the present invention are exhibited.
  • the fire extinguisher storage container 810 formed only from polyethylene naphthalate (PEN) is employed.
  • PEN polyethylene naphthalate
  • PET polyethylene terephthalate
  • the fire extinguisher 900 of the present embodiment has the same configuration as the fire extinguisher 100 of the first embodiment, except that the fire extinguisher storage container 910 is provided instead of the fire extinguisher storage container 10 of the first embodiment. Therefore, the description which overlaps with 1st Embodiment is abbreviate
  • the total light transmittance of the fire extinguisher storage container 910 of this embodiment is 5% or more and 75% or less. If the total light transmittance of the extinguishing agent storage container 910 of this embodiment exceeds 75%, the adhering to the wall surface of the extinguishing agent contained in the extinguisher appears to be a fire extinguisher as in the sixth embodiment. As a result, the beauty of the surroundings of the place where the fire extinguisher 900 is installed is impaired. On the other hand, if the total light transmittance is less than 5%, it becomes difficult to check the remaining amount of the extinguishing agent in an emergency, so the practicality is inferior.
  • the more preferable extinguishing agent storage container 910 has a total light transmittance of 20% or more and 70% or less. Within this range, it is possible to further harmonize with the surrounding aesthetics.
  • the total light transmittance of the preform of the extinguishing agent storage container 910 is preferably 5% or more and 75% or less.
  • the total light transmittance of the preform of the extinguishing agent storage container 910 exceeds 75%, the adhesion of the extinguishing agent contained in the extinguishing agent storage container 910 after stretch blow appears as dirt on the extinguisher. As a result, the beauty around the place where the fire extinguisher 900 is installed is impaired.
  • the total light transmittance of the preform is less than 5%, it is difficult to check the remaining amount of the extinguishing agent in the extinguished extinguishing agent storage container 910 in an emergency. . Therefore, maintaining the transparency in the above-mentioned range for the preform of the fire extinguisher storage container 910 also harmonizes the practicality of the fire extinguisher storage container 910 after stretch blow and the aesthetic appearance.
  • the thickness of the preform of the fire extinguisher storage container 910 in the present embodiment is preferably 4 mm or more and 30 mm or less.
  • the fire extinguisher 1000 of this embodiment has the same configuration as the fire extinguisher 200 of the second embodiment, except that the fire extinguisher storage container 1010 is provided instead of the fire extinguisher storage container 210 of the second embodiment. Therefore, the description which overlaps with 2nd Embodiment is abbreviate
  • the total light transmittance of the fire extinguishing agent storage container 1010 of this embodiment is 5% or more and 75% or less. If the total light transmittance of the extinguishing agent storage container 1010 of this embodiment exceeds 75%, the adhering to the wall surface of the extinguishing agent contained in the extinguisher appears to be a fire extinguisher as in the seventh embodiment. As a result, the beauty of the surroundings of the place where the fire extinguisher 1000 is installed is impaired. On the other hand, if the total light transmittance is less than 5%, it becomes difficult to check the remaining amount of the extinguishing agent in an emergency, so the practicality is inferior.
  • the more preferable extinguishing agent storage container 1010 has a total light transmittance of 20% or more and 70% or less. Within this range, it is possible to further harmonize with the surrounding aesthetics.
  • the thickness of the preform of the fire extinguishing agent storage container 1010 of the present embodiment is 5 mm or more and 15 mm or less.
  • the amount of scalar in the stretching ratio in the circumferential direction of the body portion 1093 The extinction agent storage container 1010 after stretch blow molding has a total light transmittance of 20% or more and 70% or less after the product of the scalar quantity of the draw ratio in the direction perpendicular to the circumferential direction is about 6.5. Sex is secured.
  • the fire extinguisher 1100 of this embodiment has the same configuration as the fire extinguisher 300 of the third embodiment, except that the fire extinguisher storage container 1110 is provided instead of the fire extinguisher storage container 310 of the third embodiment. Therefore, the description which overlaps with 3rd Embodiment is abbreviate
  • the total light transmittance of the extinguishing agent storage container 1110 of this embodiment is 5% or more and 75% or less. If the total light transmittance of the extinguishing agent storage container 1110 of this embodiment exceeds 75%, the adhering to the wall surface of the extinguishing agent contained in the extinguisher appears to be a fire extinguisher as in the sixth embodiment. As a result, the beauty of the surroundings of the place where the fire extinguisher 1100 is installed is impaired. On the other hand, if the total light transmittance is less than 5%, it becomes difficult to check the remaining amount of the extinguishing agent in an emergency, so the practicality is inferior.
  • the more preferable extinguishing agent storage container 1110 has a total light transmittance of 20% or more and 70% or less. Within this range, it is possible to further harmonize with the surrounding aesthetics.
  • the total light transmittance of the preform of the extinguishing agent storage container 1110 is preferably 5% or more and 75% or less.
  • the total light transmittance of the preform of the fire extinguisher storage container 1110 exceeds 75%, the adhesion of the fire extinguisher stored in the fire extinguisher storage container 1110 after stretch blow appears to be a dirt of the fire extinguisher. As a result, the beauty around the place where the fire extinguisher 900 is installed is impaired.
  • the thickness of the preform of the fire extinguisher storage container 1110 in this embodiment is 15 mm ⁇ 0.4 mm. Further, the total light transmittance of the preform of the fire extinguisher storage container 1110 in this embodiment is set to about 5%.
  • the stretching ratio in the circumferential direction of the body portion 1193 is 1.05 to 1.4 times the stretching ratio in the direction perpendicular to the circumferential direction, and the stretching ratio in the circumferential direction and the The final molded product is formed so that the product of the draw ratio in the direction perpendicular to the circumferential direction is 12 or more and 13 or less. By setting it as such a draw ratio, the pressure
  • the thickness of the preform is 15 mm ⁇ 0.4 mm
  • the thickness (T3) of the body portion 1193 of the extinguishing agent storage container 1110 as the final molded product is 1.8 mm ⁇ 0.4 mm
  • the thickness of the preform is 13 mm ⁇ 0.4 mm
  • the thickness (T3) of the body portion 1193 of the extinguishing agent storage container 1110 as the final molded product is 1.6 mm ⁇ 0.4 mm.
  • the thickness of the preform is 19 mm ⁇ 0.4 mm
  • the thickness (T3) of the trunk portion 1193 of the extinguishing agent storage container 1110 as the final molded product is 2.4 mm ⁇ 0. Even if it is 4 mm, at least a part of the effects of the present invention are exhibited.
  • the fire extinguisher storage container 1110 formed only from polyethylene naphthalate (PEN) is employed, but as in the seventh embodiment, a fire extinguisher formed from polyethylene terephthalate (PET). Even if the agent storage container is employed, at least a part of the effects of the present invention can be obtained.
  • PEN polyethylene naphthalate
  • PET polyethylene terephthalate
  • the fire extinguisher 1200 of the present embodiment has the same configuration as the fire extinguisher 800 of the eighth embodiment except that a fire extinguisher storage container 1210 is provided instead of the fire extinguisher storage container 810 of the eighth embodiment. Therefore, the description which overlaps with 8th Embodiment is abbreviate
  • the total light transmittance of the fire extinguisher storage container 1210 of this embodiment is 5% or more and 75% or less.
  • the total light transmittance of the extinguishing agent storage container 1210 of this embodiment exceeds 75%, the adhering to the wall surface of the extinguishing agent contained in the extinguisher appears to be a fire extinguisher as in the sixth embodiment.
  • the beauty of the surroundings of the place where the fire extinguisher 1200 is installed is impaired.
  • the total light transmittance is less than 5%, it becomes difficult to check the remaining amount of the extinguishing agent in an emergency, so the practicality is inferior.
  • the more preferable extinguishing agent storage container 1210 has a total light transmittance of 20% or more and 70% or less. Within this range, it is possible to further harmonize with the surrounding aesthetics.
  • the total light transmittance of the preform of the extinguishing agent storage container 1210 is preferably 5% or more and 75% or less.
  • the total light transmittance of the preform of the fire extinguisher storage container 1210 exceeds 75%, the adhesion of the fire extinguisher contained in the fire extinguisher storage container 1210 after stretch blow appears as dirt on the fire extinguisher. As a result, the beauty around the place where the fire extinguisher 1200 is installed is impaired.
  • the total light transmittance of the preform is less than 5%, it becomes difficult to check the remaining amount of the extinguishing agent in the stretched blown extinguishing agent storage container 1210 in an emergency. . Therefore, maintaining the transparency in the above-described range for the preform of the extinguishing agent storage container 1210 also harmonizes the practicality of the extinguishing agent storage container 1210 after stretch blow and the aesthetic appearance.
  • the thickness of the preform is 15 mm ⁇ 0.4 mm
  • the thickness (T3) of the trunk portion 1293 of the extinguishing agent storage container 1210 which is the final molded product is 1.8 mm ⁇ 0.4 mm
  • the thickness of the preform is 13 mm ⁇ 0.4 mm
  • the thickness (T3) of the trunk portion 1293 of the extinguishing agent storage container 1210 as the final molded product is 1.6 mm ⁇ 0.4 mm.
  • the thickness of the preform is 19 mm ⁇ 0.4 mm
  • the thickness (T3) of the trunk portion 1293 of the extinguishing agent storage container 1210 as the final molded product is 2.4 mm ⁇ 0. Even if it is 4 mm, at least a part of the effects of the present invention are exhibited.
  • the fire extinguisher storage container 1210 formed only from polyethylene naphthalate (PEN) is adopted.
  • PEN polyethylene naphthalate
  • PET polyethylene terephthalate
  • Table 22 shows a result of an experiment for measuring the pressure resistance of the extinguishing agent storage container of the fire extinguisher manufactured in the first and second embodiments.
  • a nitrogen cylinder is adopted as a pressure source for the pressure resistance due to air
  • a pressure adjuster model YR-5062
  • a pressure gauge model S41 or GLT41
  • a method was adopted in which the presence or absence of changes in the extinguishing agent storage container was adopted while maintaining the pressure of the gas (nitrogen) supplied from the pressure source to be constant with a pressure gauge.
  • the polyethylene naphthalate (PEN) fire extinguisher storage container and the polyethylene terephthalate (PET) fire extinguisher storage container of each of the above-described embodiments are cracked when a pressure of at least 2.6 MPa is applied. Or it turns out not to destroy. That is, it can be seen that the strength of the extinguishing agent storage container of the first and second embodiments described above is significantly higher than the strength of commercially available resin bottles. In addition, although the destruction situation of each commercially available bottle was ductile fracture, the destruction of the extinguishing agent storage container of the above-described first and second embodiments was brittle fracture. A water pressure test was also conducted.
  • a manual test pump (model T-300N) manufactured by Kyowa Co., Ltd. was used as the water pressure source, and the pressure was measured using a pressure gauge (model S41 or GLT41) manufactured by Right Bottom Seiki Co., Ltd.
  • a pressure gauge model S41 or GLT41
  • the fire extinguisher storage container does not crack or break even if any of the above-described resins is employed.
  • PEN polyethylene naphthalate
  • polyethylene naphthalate and polyethylene terephthalate were adopted independently as resin which constitutes a fire extinguisher storage container, it is not limited to this.
  • a polyester resin obtained by polycondensation using mainly naphthalenedicarboxylic acid or terephthalic acid as a dicarboxylic acid component and mainly ethylene glycol or butanediol as a diol component, or a material mainly containing these polyester resins is a fire extinguisher. Even if it is adopted as a material for the storage container, it is considered that at least a part of the effect of the present invention is exhibited. In other words, it is considered that at least a part of the effects of the present invention can be achieved with a copolyester resin.
  • examples of other materials that can be used include polyolefins such as polyethylene and polypropylene, polyphenylene sulfide, polystyrene, and polycarbonate.
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • PET polyethylene naphthalate
  • PEN polyethylene naphthalate
  • PET polyethylene naphthalate
  • PET polyethylene naphthalate
  • PEN polyethylene naphthalate
  • PET polyethylene naphthalate
  • PET polyethylene naphthalate
  • PEN polyethylene naphthalate
  • PET polyethylene naphthalate
  • PET polyethylene naphthalate
  • PEN polyethylene naphthalate
  • PEN polyethylene naphthalate
  • PEN polyethylene naphthalate
  • PEN polyethylene naphthalate
  • the type of fire extinguisher filled in the fire extinguisher storage container of the fire extinguisher of each embodiment described above is not particularly limited. Any known extinguishing agent can be employed as long as it does not affect the resin constituting the extinguishing agent container. For example, it can be used as a powder fire extinguisher. Moreover, what was proposed conventionally can be employ
  • each of the above-described embodiments is a pressure-accumulating fire extinguisher, and it is worthy to note that it can be applied to a high-pressure fire extinguisher equivalent to or higher than that of a conventional fire extinguisher.
  • the resin constituting the fire extinguisher storage container can be appropriately blended with known additives such as a light stabilizer, an ultraviolet absorber and an anti-aging agent in order to prevent discoloration and improve weather resistance.
  • the preform corresponding to the trunk portion 393, 493, 593, 893, 1193, 1293 of the final molded product is used.
  • a fire extinguisher storage container having a wall thickness of 13 mm ⁇ 0.4 mm, 15 mm ⁇ 0.4 mm, or 19 mm ⁇ 0.4 mm is employed, but is not limited thereto. Even if the thickness of the preform corresponding to the trunk portion 393,493,593,893,1193,1293 of the final molded product is less than 13 mm ⁇ 0.4 mm or more than 19 mm ⁇ 0.4 mm It is considered that good pressure resistance may be obtained as in the above embodiments. Also.
  • the thickness (T3) of the barrel 393, 493, 593, 893, 1193, 1293 of the final molded product is less than 1.2 mm or more than 2.8 mm, it is the same as the above-described embodiments. It is considered that good pressure resistance may be obtained.
  • the stretching ratio in the circumferential direction of the body portions 393, 493, 593, 893, 1193, 1293 is 1.05 to 1.4 times the stretching ratio in the direction perpendicular to the circumferential direction, and If a fire extinguisher storage container in which the product of the stretching ratio in the circumferential direction and the stretching ratio in the direction perpendicular to the circumferential direction is 12 or more and 13 or less is used, it is considered that good pressure resistance can be obtained.
  • the stretching ratio in the circumferential direction of the body portions 393, 493, 593, 893, 1193, and 1293 is 1.1 to 1.2 times the stretching ratio in the direction perpendicular to the circumferential direction
  • a fire extinguisher storage container in which the product of the stretching ratio in the circumferential direction of the body portions 393, 493, 593, 893, 1193, and 1293 and the stretching ratio in the direction perpendicular to the circumferential direction is 12.1 to 12.3 It is considered that better pressure resistance can be obtained by adopting.
  • the thickness of the preform is preferably 13 mm ⁇ 0.4 mm to 15 mm ⁇ 0.4 mm.
  • the fire extinguisher of the present invention is extremely useful in the fire extinguisher industry because a resin fire extinguisher storage container is employed.
  • Fire extinguisher storage container 11 Fire extinguisher storage part 12
  • Fire extinguisher storage part 12 Male screw part 30
  • Fire extinguisher hand lever 31 Lid 32
  • Fixing lever 33 Start lever 34
  • Safety stopper 40 Fire extinguisher hose 50
  • Support base 60 Fire extinguisher 70 Siphon tube 91,291,691,791,891 Mouth 92,292,692,792,892 Shoulder 93,293,393,493 593, 693, 793, 893, 993, 1093, 1193, 1293 trunk 94, 294, 694, 794, 894 bottom 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000, 1100, 1200 Fire extinguisher

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Containers Having Bodies Formed In One Piece (AREA)
  • Blow-Moulding Or Thermoforming Of Plastics Or The Like (AREA)

Abstract

本発明の1つの消火器(100)は、消火剤貯蔵容器(10)が、開口部となる口部、肩部、円筒形状の胴部、及び底部とを有するとともに継ぎ目のない樹脂によって成形されている。加えて、その消火剤貯蔵容器(10)の胴部の肉厚が1mm以上5mm以下であるとともに、前述の口部及び底部を除く樹脂の結晶化率が13%以上30%以下である。従って、本発明の1つの消火器(100)は、軽量化が達成されるとともに錆びることがない。加えて、本発明の1つの消火器(100)は、高い強度乃至高い耐圧性を備えることができる。

Description

消火器、消火剤貯蔵容器、及び消火剤貯蔵容器のプリフォーム
 本発明は、消火器、消火剤貯蔵容器、及び消火剤貯蔵容器のプリフォームに関するものである。
 従来、消火器に使用される消火剤貯蔵容器は、鉄、ステンレス、アルミニウムなどの金属から製造されている。その中でも鉄製の消火剤貯蔵容器は、頑丈で破損しにくく、製造コストが安価であるため、市場に出される消火器数の約9割に対して鉄製のものが使用されているのが現状である。
 他方、樹脂製の消火剤貯蔵容器を備えた消火器の例が開示されている。1つの文献には、樹脂製の消火剤貯蔵容器の弱点であった低い耐圧性能であっても保持されるように、充填圧力が可能なかぎり低下された消火器が開示されている(特許文献1)。また、他の1つの文献には、清涼飲料水やアルコール飲料などに用いられる薄肉のポリエチレンテレフタレート(PET)の廃品を利用した消火器が開示されている(特許文献2)。
実開昭56-160560号公報 特開平9-313634号公報
 上述の通り、一般的に広く利用されている鉄製の消火剤貯蔵容器は非常に重いため、特に女性や子供、あるいは年配者にとって、持ち運びの不便さや操作性の悪さの問題を生じさせていた。また、金属製消火器の重さが災いし、消火器の回収やリサイクルの際の輸送コストが高くなるといった問題も発生する。
 また、鉄製の消火剤貯蔵容器は、内部の状況を外部から視認できないため、消火剤の残存状況を容易に知ることができない。消火剤の残量については、通常、所定の有資格者による定期的な点検が行われているが、一般的にその頻度が多くないため、何らかの理由でその間に消火剤が消火器内に残存しなくなったとしても一般人が気付くことは極めて困難であると言わざるを得ない。
 さらに、鉄製の場合、廉価な消火器ではあるが腐食性があるため、その容器の表面を塗装して防錆処理を施すことが必要となる。実際に、この処理には手間と時間が掛かるため、結果として、消火器1台の単価からすれば無視できない製造コストの上昇につながる。また、リサイクルのためには防錆剤を鉄から分離することが必要である。しかし、この塗装面の分離工程にも相当の手間が掛かるため、鉄に代表される金属製の消火剤貯蔵容器のリサイクル作業を著しく煩雑化するとともに、そのコストも上昇する。
 鉄に代表される金属であるが故の上述の各技術的課題は、一見すると、樹脂製の消火剤貯蔵容器を採用することによって解決されるように見える。しかしながら、現実には、一般的に採用されている金属製の消火器のように、耐用年数として数年(例えば、8年)以上が要求される消火剤貯蔵容器を、貯蔵されている消火剤の視認性や容器全体としての軽量さを維持しつつ、樹脂のみによって形成することは容易ではない。例えば、特許文献1及び特許文献2の樹脂製の消火剤貯蔵容器を採用した場合、それらの容器内の圧力を金属製の容器を備えた消火器の保証された耐圧と同程度(例えば、約2.0MPa)まで高めることは、それらの容器の変形乃至破裂の危険性を生じさせる。
 また、樹脂を用いて消火剤貯蔵容器を形成する場合、例えば日本国の一般的な金属製の消火器に適用される耐圧の規格値を満足するようにその容器の肉厚を増加させることも容易ではない。
 本発明は、上述の従来技術の問題点を解消することにより、軽量で、高い耐圧性を備える消火器の実現に大きく貢献するものである。
 発明者は、さまざまな視点から現存の金属製消火器に代替し得る樹脂製の消火剤貯蔵容器の開発を鋭意行った結果、上述の各技術課題を解決し得る消火剤貯蔵容器の構成を見出すことに成功した。
 本発明の1つの消火器は、消火剤貯蔵容器を有している。その上で、前述の消火剤貯蔵容器が、開口部となる口部、肩部、円筒形状の胴部、及び底部とを有するとともに継ぎ目のない樹脂によって成形され、かつ、その胴部の肉厚が1mm以上5mm以下であるとともに、その口部及びその底部を除く前述の樹脂の結晶化率が13%以上30%以下である。
 この消火器によれば、消火剤貯蔵容器が樹脂製であるため、軽量化が達成されるとともに錆びることがない。具体的には、従来の鉄製の消火器と比べて消火器全体の重量を約70%に減少させることができる。また、詳細なメカニズムは未だ明らかではないが、その容器の樹脂の結晶化率が13%以上30%以下であるため、樹脂の結晶化による消火剤貯蔵容器の強度乃至耐圧の向上が図られる。また、十分な耐圧性乃至強度を得る観点から言えば、30%を越える樹脂の結晶化率を得る必要性は乏しいと考えられる。従って、上記構成を採用することにより、従来の消火器に匹敵する容器の強度乃至耐圧を高めるとともに、樹脂を用いた消火剤貯蔵容器の良さを引き出すことになる。加えて、この消火剤貯蔵容器は、継ぎ目がなく、その胴部の肉厚が1mm以上5mm以下であることからも、軽量で、高い強度の消火剤貯蔵容器を備える消火器が実現できる。
 また、本発明の他の1つの消火器は、消火剤貯蔵容器を有している。その上で、前述の消火剤貯蔵容器が、樹脂を用いて延伸ブロー成形により形成され、かつ、開口部となる口部、肩部、円筒形状の胴部、及び底部とを有している。加えて、前述の胴部の円周方向の延伸倍率が、前述の胴部の円周方向に垂直な方向の延伸倍率の1.05倍以上1.4倍以下である。
 この消火剤貯蔵容器によれば、軽量化が達成されるとともに錆びることがない。具体的には、従来の鉄製の消火剤貯蔵容器と比べて重量を約33%にまで減少させることができる。また、胴部の円周方向の延伸倍率が、その円周方向に垂直な方向の延伸倍率の1.05倍以上1.4倍以下とすることにより、高い耐圧性の消火剤貯蔵容器を有する消火器が得られる。なお、本出願において、「円周方向に垂直な方向」とは、上述の消火剤貯蔵容器の胴部の厚み方向とは異なる垂直方向を意味する。換言すれば、「円周方向に垂直な方向」とは、通常、消火器を立設させる際の鉛直方向を意味する。以下、同じ説明は省略される。
 また、本発明の他の1つの消火器は、消火剤貯蔵容器を有している。その上で、前述の消火剤貯蔵容器が、開口部となる口部、肩部、円筒形状の胴部、及び底部とを有し、かつ、継ぎ目のない5%以上75%以下の全光透過率を有する樹脂で成形されるとともに、その胴部の肉厚が1mm以上5mm以下である。
 この消火器によれば、消火剤貯蔵容器が樹脂製であるため、軽量化が達成されるとともに錆びることがない。具体的には、従来の鉄製の消火器と比べて消火器全体の重量を約70%に減少させることができる。また、樹脂製の消火剤貯蔵容器のみに着目すると、その重量は、従来の鉄製の消火剤貯蔵容器の約33%である。また、その樹脂の全光線透過率が5%以上75%以下であることにより、消火剤の残存状況を容易に知ることができる。より具体的には、その容器の全光線透過率が75%以下になるように形成されているため、内容物が見え過ぎないという、実際の社会に適用する際に極めて大きな利点が生じる。つまり、全光線透過率が余りにも高すぎると、収められている消火剤の壁面への付着が外観からは消火器の汚れと認識され得ることから、周囲の美観を損なうことになる。他方、全光線透過率が5%未満になれば、緊急時に消火剤の残量が確認しづらくなる。従って、適度な透明性を維持することが、実用性と外観上の美観とを調和させることになる。加えて、この消火剤貯蔵容器は、継ぎ目がなく、肉厚が1mm以上5mm以下であることから、この厚肉の容器を形成することによって、高強度が実現される。従って、この消火器によれば、適度な透明性を維持しつつ高強度の消火剤貯蔵容器を有する消火器が得られる。
 また、本発明の1つの消火剤貯蔵容器は、開口部となる口部、肩部、円筒形状の胴部、及び底部とを有するとともに継ぎ目のない樹脂によって成形されている。その上で、前述の胴部の肉厚が1mm以上5mm以下であるとともに、前述の口部及び前述の底部を除く前述の樹脂の結晶化率が13%以上30%以下である。
 この消火剤貯蔵容器は樹脂製であるため、軽量化が達成されるとともに錆びることがない。具体的には、従来の鉄製の消火剤貯蔵容器と比べて、重量を約70%に減少させることができる。また、樹脂製の消火剤貯蔵容器のみに着目すると、その重量は、従来の鉄製の消火剤貯蔵容器の約33%である。他方、詳細なメカニズムは未だ明らかではないが、その容器の樹脂の結晶化率が13%以上30%以下であるため、樹脂の結晶化による消火剤貯蔵容器の強度乃至耐圧の向上が図られる。また、十分な耐圧性乃至強度を得る観点から言えば、30%を越える樹脂の結晶化率を得る必要性は乏しいと考えられる。従って、上記構成を採用することにより、従来の消火器に匹敵する容器の強度乃至耐圧を高めるとともに、樹脂を用いた消火剤貯蔵容器の良さを引き出すことになる。加えて、この消火剤貯蔵容器は、継ぎ目がなく、その胴部の肉厚が1mm以上5mm以下であることからも、この消火剤貯蔵容器の高強度が実現される。
 また、本発明の他の1つの消火剤貯蔵容器は、樹脂を用いて延伸ブロー成形により形成され、かつ、開口部となる口部、肩部、円筒形状の胴部、及び底部とを有している。その上で、前述の胴部の円周方向の延伸倍率が、前述の胴部の円周方向に垂直な方向の延伸倍率の1.05倍以上1.4倍以下である。
 この消火剤貯蔵容器によれば、軽量化が達成されるとともに錆びることがない。具体的には、従来の鉄製の消火剤貯蔵容器と比べて重量を約33%にまで減少させることができる。また、胴部の円周方向の延伸倍率が、その円周方向に垂直な方向の延伸倍率の1.05倍以上1.4倍以下とすることにより、この消火剤貯蔵容器の高い耐圧性が実現される。
 また、本発明の1つの消火剤貯蔵容器のプリフォームは、継ぎ目のない5%以上75%以下の全光線透過率を有する樹脂で成形されるとともに肉厚が4mm以上30mm以下である。
 この消火剤貯蔵容器のプリフォームは、延伸ブロー成形法に用いられるプリフォームである。この消火剤貯蔵容器のプリフォームによれば、プリフォームの段階で、その樹脂の全光線透過率が5%以上75%以下であるから、延伸ブロー成形後であっても、実用性と外観上の美観とを調和させた適度な透明性が得られる。加えて、プリフォームの段階で継ぎ目がなく、肉厚が4mm以上30mm以下の樹脂であるから、延伸ブロー成形後であっても、継ぎ目なしで肉厚が1mm以上5mm以下の実用性のある、高強度な消火剤貯蔵容器が実現される。
 本発明の1つの消火器は、軽量化が達成されるとともに錆びることがない。また、この消火器は、高い強度乃至高い耐圧性を備えることができる。また、さらに本発明のもう1つの消火器は、適度な透明性を維持しつつ高い強度が実現されるため、実用性と外観上の美観とを調和させることができる。
 また、本発明の1つの消火剤貯蔵容器のプリフォームは、延伸ブロー成形後であっても、実用性と外観上の美観とを調和させた適度な透明性が得られるだけでなく、高い強度を備えることができる。
本発明の1つの実施形態における消火器を示す全体外観図である。 本発明の1つの実施形態における消火剤貯蔵容器の正面図である。 本発明の1つの実施形態における消火剤貯蔵容器の正面断面図である。
 つぎに、本発明の実施形態を、添付する図面に基づいて詳細に述べる。尚、この説明に際し、全図にわたり、特に言及がない限り、共通する部分には共通する参照符号が付されている。また、図中、本実施形態の要素は必ずしもスケールどおりに示されていない。また、各図面を見やすくするために、一部の符号が省略され得る。
<第1の実施形態>
 図1は、本実施形態の消火器100の全体外観図である。図2は、消火剤貯蔵容器10の正面図であり、図3は、消火剤貯蔵容器10の正面断面図である。なお、図2において、便宜上、消火剤貯蔵容器10の部位を説明するための破線と実線が設けられている。また、図3において、便宜上、消火剤貯蔵容器10の肉厚を示すための矢印と、口部91の肉厚を表示するために、口部91の断面形状を延長するための破線が設けられている。加えて、図3に示すA点は、口部91を除く消火剤貯蔵容器10の上端から下端までの高さを4等分した際の上端から1/4下方の点を示し、B点は、消火剤貯蔵容器10の上端から1/2下方の点を示し、C点は、消火剤貯蔵容器10の上端から3/4下方の点を示している。また、前述のA点乃至C点は、いずれも胴部93の一部である。
 図1に示すように、本実施形態の消火器100は、消火剤60(例えば、粉末消火剤)が充填された消火剤貯蔵容器10と、消火剤貯蔵容器10の底部94と嵌合して消火剤60を支持するための支持台50と、消火剤貯蔵容器10の上方に配設される消火器用ハンドレバー30と、消火剤貯蔵容器10内に貯蔵される消火剤60を消火器用ハンドレバー30に導くためのサイホン管70と、消火器用ハンドレバー30を操作することによりサイホン管70と流通可能に接続される消火剤ホース40とを備える。
 また、消火器用ハンドレバー30は、蓋体31、固定レバー32、起動レバー33、起倒杆34、及び安全栓35を備えている。本実施形態では、安全栓35が起倒杆34と係合することにより、起動レバー33が固定レバー32に対して回動不可能な状態に固定される。また、安全栓35が起倒杆34との係合状態から解放されると、起動レバー33が固定レバー32に対して回動可能な状態になる。
 加えて、本実施形態における消火剤貯蔵容器10は、消火剤貯蔵部11と、消火剤貯蔵部11の上部に位置する開口部に形成される雄ネジ部12とで構成される。この雄ネジ部12と消火器用ハンドレバー30とが螺合することにより、消火剤貯蔵容器10と消火器用ハンドレバー30とが固定される。尚、消火剤貯蔵容器10と消火器用ハンドレバー30との固定手段は、螺合に限られず、公知の接合手段が適用され得る。
 ここで、本実施形態の消火器100は、ポリエチレンナフタレート(PEN)によって形成された消火剤貯蔵容器10を備えている。本実施形態の消火剤貯蔵容器10の口部91の肉厚(T1)は、2mm以上5mm以下であり、曲面を持つ肩部92の肉厚(T2)は、1.2mm以上12mm以下である。また、円筒状の胴部93の肉厚(T3)は、1.3mm以上1.7mm以下であり、曲面を持つ底部94の肉厚(T4)は、1.2mm以上12mm以下である。また、本実施形態の消火剤貯蔵容器10の全光線透過率が約50%である。なお、製造過程の不純物を除けば、本実施形態の消火剤貯蔵容器10は、ポリエチレンナフタレート(PEN)のみで形成されている。また、本実施形態の消火剤貯蔵容器10は、図1乃至図3に示すように、金属製の消火剤貯蔵容器のような継ぎ目が形成されていない。
 また、本実施形態の消火剤貯蔵容器10の各部位の樹脂の結晶化率の測定が行われた。本実施形態の樹脂の結晶化率は、JIS K 7122(プラスチックの転移熱測定方法)による転移に要するエネルギー(J/g)の測定に基づいて算定することにより求められた。
 その結果、口部91の樹脂の結晶化率は、略0%であり、肩部92の樹脂の結晶化率は、13%以上23%以下であった。加えて、胴部93の樹脂の結晶化率は、14%以上27%以下であり、底部94の樹脂の結晶化率は、10%以上20%以下であった。
 上述のとおり、消火剤貯蔵容器10の胴部93の樹脂の結晶化率が13%以上30%以下であることから、詳細なメカニズムは未だ明らかではないが、樹脂の結晶化による消火剤貯蔵容器の強度乃至耐圧の向上が達成される。なお、樹脂の結晶化率を高めることによって、その容器10の強度及び/又は耐圧性が向上するため、比較的薄肉であっても消火器100に求められる高い耐久性を満足しうる。例えば、本実施形態の消火剤貯蔵容器10の胴部93の樹脂の結晶化率は14%以上であるため、消火器としての十分な強度及び/又は耐圧性が得られる。なお、現段階において、既に十分な耐圧性乃至強度が確保されているため、30%を越える胴部93の樹脂の結晶化率を得る必要性は乏しいと考えられる。
 また、本実施形態の消火剤貯蔵容器10の胴部93の肉厚(T3)は、1mm以上5mm以下であることが好ましい。これは、樹脂の肉厚が1mmよりも薄いと、消火剤の貯蔵容器として求められる強度(例えば、約2.0MPa)を達成できなくなるおそれが高まる一方、5mmよりも厚ければ、経済的に好ましくないとともに内容物たる消火剤を視認し得る透明性の達成が困難になるおそれが高まるためである。上述の観点によれば、胴部93の肉厚(T3)は、1mm以上3mm以下であることが更に好ましい。
 なお、本実施形態のポリエチレンナフタレート(PEN)製の消火剤貯蔵容器10は、延伸ブロー成形、溶融整形などの従来公知の樹脂成形方法により製造することができる。但し、この中でも、継ぎ目がなく、成形状態が良好で、かつ適度な肉厚の容器が得られる点で、延伸ブロー成形が好ましい。
 次に、本実施形態の消火剤貯蔵容器10が延伸ブロー成形により製造される場合の、消火剤貯蔵容器10の製造方法について説明する。
 まず、消火剤貯蔵容器10の材料となるポリエチレンナフタレート(PEN)を溶融し、射出金型内にその樹脂を射出又は押出することによって肉厚が約15mmであって、全光線透過率が約5%の予備成形品(以下、プリフォームという。)を形成する。次に、胴部93の円周方向の延伸倍率のスカラー量とその円周方向に垂直な方向の延伸倍率のスカラー量との積が12倍を超えて延伸された上で、消火剤貯蔵容器10の側面の肉厚が1mm以上5mm以下になるように、消火剤貯蔵容器10が形成される。
 上述のとおり、延伸ブローによって消火剤貯蔵容器10を成形することにより、強度又は耐圧が高められるとともに、適度な透明性が得られる樹脂の結晶化率が得られる。なお、口部91及び肩部92の一部及び底部94の一部は、延伸ブロー成形を採用すれば、樹脂の結晶化率が高まらない箇所が不可避的に存在するため、それらの箇所は、容器の肉厚を他の部位の肉厚よりも厚くすることによって消火器として要求される強度又は耐圧が確保される。
 また、最終的な消火剤貯蔵容器10の十分な耐圧を確保するために、特に胴部93の肉厚(T3)を1mm以上5mm以下にすることが好ましい。従って、本実施形態における消火剤貯蔵容器10のプリフォームの肉厚は、4mm以上30mm以下であることが好ましい。加えて、胴部93の円周方向の延伸倍率のスカラー量とその円周方向に垂直な方向の延伸倍率のスカラー量との積が12以上とすることが好ましい。
<第2の実施形態>
 本実施形態の消火器200は、消火剤貯蔵容器210の材質がポリエチレンテレフタレート(PET)であること、並びに製造過程におけるプリフォームの肉厚及び延伸ブローの倍率を除き、第1の実施形態と同じ構成である。従って、第1の実施形態と重複する説明は省略される。
 本実施形態の消火器200は、ポリエチレンテレフタレート(PET)によって形成された消火剤貯蔵容器210を備えている。本実施形態の消火剤貯蔵容器210の口部291の肉厚(T1)は、2mm以上5mm以下であり、肩部292の肉厚(T2)は、2mm以上12mm以下である。また、胴部293の肉厚(T3)は、2mm以上3mm以下であり、底部294の肉厚(T4)は、2mm以上12mm以下である。また、本実施形態における消火剤貯蔵容器210の全光線透過率が約50%である。なお、製造過程の不純物を除けば、本実施形態の消火剤貯蔵容器210は、ポリエチレンテレフタレート(PET)のみで形成されている。また、本実施形態の消火剤貯蔵容器210は、図1乃至図3に示すように、金属製の消火剤貯蔵容器のような継ぎ目が形成されていない。
 また、本実施形態の消火剤貯蔵容器210の各部位の樹脂の結晶化率を第1の実施形態と同様の測定方法によって測定すると、口部291、肩部292、胴部293、及び底部294の樹脂の結晶化率は、それぞれ第1の実施形態のそれと同等の数値範囲であった。
 また、本実施形態の消火剤貯蔵容器210の胴部293の肉厚(T3)も、第1の実施形態と同様の理由から、1mm以上5mm以下であることが好ましい。上述の観点によれば、胴部293の肉厚(T3)は、2mm以上3mm以下であることが更に好ましい。
 本実施形態でも、まず、消火剤貯蔵容器210の材料となるポリエチレンテレフタレート(PET)を溶融し、射出金型内にその樹脂を射出又は押出することによって肉厚が約10mmであって、全光線透過率が約5%のプリフォームを形成する。次に、胴部293の円周方向の延伸倍率のスカラー量とその円周方向に垂直な方向の延伸倍率のスカラー量との積が6倍を超えて延伸された上で、消火剤貯蔵容器210の胴部293の肉厚(T3)が2mm以上3mm以下になるように、消火剤貯蔵容器210が形成される。なお、本実施形態の消火剤貯蔵容器210のプリフォームの肉厚は、5mm以上15mm以下であることが好ましい。
<第3の実施形態>
 本実施形態の消火器300は、第1の実施形態の消火剤貯蔵容器10の代わりに消火剤貯蔵容器310を備える点以外は、第1の実施形態の消火器100と同じ構成を備える。従って、第1の実施形態と重複する説明は省略される。
 本実施形態の消火剤貯蔵容器310は、製造過程の不純物を除けば、ポリエチレンナフタレート(PEN)のみで形成されている。また、消火剤貯蔵容器310は、延伸ブロー成形により製造されている。このため、継ぎ目がなく、成形状態が良好で、かつ適度な肉厚の容器を得ることができる。また、延伸ブロー成形方法であれば、延伸行程を含むため、樹脂の高分子鎖が略一方向に配向する。このため、樹脂の透明性や強度及び剛性が増大する。
 また、本実施形態の消火剤貯蔵容器310は、胴部393の肉厚(T3)が1.8mm±0.4mmとなるように成形されることが好ましい。この肉厚により、消火剤貯蔵容器として求められる耐圧性(例えば、約2.0MPa)、経済的効率、及び内容物たる消火剤の適度な視認性が実現され得る。
 次に、本実施形態の消火剤貯蔵容器310の製造方法について説明する。本実施形態では、まず、消火剤貯蔵容器310の材料となるポリエチレンナフタレート(PEN)を溶融し、射出金型内にその樹脂を射出又は押出することによって肉厚が15mm±0.4mmであって、全光線透過率が約5%のプリフォームを形成する。次に、胴部393の円周方向の延伸倍率がその円周方向に垂直な方向の延伸倍率の1.05倍以上1.4倍以下であり、かつ、その円周方向の延伸倍率とその円周方向に垂直な方向の延伸倍率との積が12以上13以下となるように、最終成形品を形成する。このような延伸倍率にすることにより、消火剤貯蔵容器として求められる耐圧性を確保することができる。
 次に、本実施形態の消火剤貯蔵容器310を胴部393の円周方向の延伸倍率が、その円周方向に垂直な方向の延伸倍率の1.05倍以上1.4倍以下であり、かつ、その円周方向の延伸倍率のスカラー量とその円周方向に垂直な方向の延伸倍率のスカラー量との積が12以上13以下として形成することによる耐圧性向上への貢献について、消火剤貯蔵容器310を代表例として説明する。
 表1乃至表6は、消火剤貯蔵容器310の内部に均一に圧力を加えた際の永久歪みの測定結果を示している。なお、本実施形態における永久歪みの測定は、1MPa、1.6MPa、2.0MPa、2.4MPa、3.0MPaのそれぞれの圧力を加える前後を測定することにより行われた。より具体的には、前述の圧力を加える前後の図3に示すA点、B点、及びC点における胴部393の円周方向の永久歪みと、その円周方向に垂直な方向の永久歪みが測定された。また、圧力源として窒素ボンベが採用され、ヤマト産業株式会社製の圧力調整器(型式YR-5062)と右下精機株式会社製の圧力計(型式S41又はGLT41)によって測定された。
 表1は、最終成形品の胴部393に対応する部分のプリフォームの肉厚を15mm±0.4mmとし、胴部393の円周方向の延伸倍率を3.5倍で、かつ、その円周方向に垂直な方向の延伸倍率を3.5倍とした消火剤貯蔵容器210を用いて実験を行った結果が示されている。つまり、この消火剤貯蔵容器210の胴部393の円周方向の延伸倍率(3.5倍)に対する、その円周方向に垂直な方向の延伸倍率(3.5倍)の比は1倍である。また、延伸倍率の各々をスカラー量とした場合に、その円周方向の延伸倍率のスカラー量とその円周方向に垂直な方向の延伸倍率のスカラー量との積が12.25である。
 また、表2は、最終成形品の胴部393に対応する部分のプリフォームの肉厚を15mm±0.4mmとし、胴部393の円周方向の延伸倍率を3.6倍で、かつ、その円周方向に垂直な方向の延伸倍率を3.4倍とした消火剤貯蔵容器310を用いて実験を行った結果が示されている。つまり、この消火剤貯蔵容器310の胴部393の円周方向の延伸倍率(3.6倍)に対する、その円周方向に垂直な方向の延伸倍率(3.4倍)の比は1.06倍である。また、延伸倍率の各々をスカラー量とした場合に、その円周方向の延伸倍率のスカラー量とその円周方向に垂直な方向の延伸倍率のスカラー量との積が12.24である。
 また、表3は、最終成形品の胴部393に対応する部分のプリフォームの肉厚を15mm±0.4mmとし、胴部393の円周方向の延伸倍率を3.7倍で、かつ、その円周方向に垂直な方向の延伸倍率を3.3倍とした消火剤貯蔵容器310を用いて実験を行った結果が示されている。つまり、この消火剤貯蔵容器310の胴部393の円周方向の延伸倍率(3.7倍)に対する、その円周方向に垂直な方向の延伸倍率(3.3倍)の比は1.12倍である。また、延伸倍率の各々をスカラー量とした場合に、その円周方向の延伸倍率のスカラー量とその円周方向に垂直な方向の延伸倍率のスカラー量との積が12.21である。
 また、表4は、最終成形品の胴部393に対応する部分のプリフォームの肉厚を15mm±0.4mmとし、胴部393の円周方向の延伸倍率を3.8倍で、かつ、その円周方向に垂直な方向の延伸倍率を3.2倍とした消火剤貯蔵容器310を用いて実験を行った結果が示されている。つまり、この消火剤貯蔵容器310の胴部393の円周方向の延伸倍率(3.8倍)に対する、その円周方向に垂直な方向の延伸倍率(3.2倍)の比は1.19倍である。また、延伸倍率の各々をスカラー量とした場合に、その円周方向の延伸倍率のスカラー量とその円周方向に垂直な方向の延伸倍率のスカラー量との積が12.16である。
 また、表5は、最終成形品の胴部393に対応する部分のプリフォームの肉厚を15mm±0.4mmとし、胴部393の円周方向の延伸倍率を3.9倍で、かつ、その円周方向に垂直な方向の延伸倍率を3.1倍とした消火剤貯蔵容器310を用いて実験を行った結果が示されている。つまり、この消火剤貯蔵容器310の胴部393の円周方向の延伸倍率(3.9倍)に対する、その円周方向に垂直な方向の延伸倍率(3.1倍)の比は1.26倍である。また、延伸倍率の各々をスカラー量とした場合に、その円周方向の延伸倍率のスカラー量とその円周方向に垂直な方向の延伸倍率のスカラー量との積が12.09である。
 また、表6は、最終成形品の胴部393に対応する部分のプリフォームの肉厚を15mm±0.4mmとし、胴部393の円周方向の延伸倍率を4.0倍で、かつ、その円周方向に垂直な方向の延伸倍率を3.0倍とした消火剤貯蔵容器310を用いて実験を行った結果が示されている。つまり、この消火剤貯蔵容器310の胴部393の円周方向の延伸倍率(4.0倍)に対する、その円周方向に垂直な方向の延伸倍率(3.0倍)の比は1.33倍である。また、延伸倍率の各々をスカラー量とした場合に、その円周方向の延伸倍率のスカラー量とその円周方向に垂直な方向の延伸倍率のスカラー量との積が12である。
 また、表7は、最終成形品の胴部393に対応する部分のプリフォームの肉厚を15mm±0.4mmとし、胴部393の円周方向の延伸倍率を4.1倍で、かつ、その円周方向に垂直な方向の延伸倍率を2.9倍とした消火剤貯蔵容器310を用いて実験を行った結果が示されている。つまり、この消火剤貯蔵容器310の胴部393の円周方向の延伸倍率(4.1倍)に対する、その円周方向に垂直な方向の延伸倍率(2.9倍)の比は1.41倍である。また、延伸倍率の各々をスカラー量とした場合に、その円周方向の延伸倍率のスカラー量とその円周方向に垂直な方向の延伸倍率のスカラー量との積が11.89である。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
 表1の消火剤貯蔵容器310は、1.0MPa乃至2.0MPaの圧力を加えた後であっても、その円周方向の永久歪みがA点で0.15%以下、B点で0%、C点で0.15%以下であり、その円周方向に垂直な方向の永久歪みはいずれも0%である。また、2.4MPaの圧力を加えた後では、その円周方向の永久歪みがA点で0.45%、B点で0.30%、C点で0.45%であり、その円周方向に垂直な方向の永久歪みは0%である。しかしながら、3.0MPaの圧力を加えると、その円周方向の永久歪みがA点で0.98%にまで上昇するが、1%未満である。また、その円周方向のB点及びC点での永久歪み0.76%である。また、その円周方向に垂直な方向の永久歪みは依然として0%である。従って、いずれの圧力においても、その円周方向の永久歪み及びその円周方向に垂直な方向の永久歪みは1%未満が達成されている。すなわち、表1の消火剤貯蔵容器310は、消火剤貯蔵容器として求められる十分な耐圧性を得ていることが分かる。
 表2の消火剤貯蔵容器310は、1.0MPa乃至2.0MPaの圧力を加えた後であっても、その円周方向の永久歪みがA点で0.14%以下、B点で0%、C点で0.14%以下であり、その円周方向に垂直な方向の永久歪みはいずれも0%である。また、2.4MPaの圧力を加えた後では、その円周方向の永久歪みがA点で0.41%、B点で0.28%、C点で0.41%であり、その円周方向に垂直な方向の永久歪みは0%である。さらに、3.0MPaの圧力を加えると、その円周方向の永久歪みが、A点で0.89%に留まり、B点及びC点でも0.69%であり、その円周方向に垂直な方向の永久歪みは依然として0%である。従って、いずれの圧力においても、その円周方向の永久歪み及びその円周方向に垂直な方向の永久歪みは1%未満であり、かつ0.9%以下が達成されている。すなわち、表2の消火剤貯蔵容器310は、消火剤貯蔵容器として求められる十分な耐圧性を得ていることが分かる。
 表3の消火剤貯蔵容器310は、1.0MPa乃至2.0MPaの圧力を加えた後であっても、その円周方向の永久歪みがA点で0.12%以下、B点で0%、C点で0.13%以下であり、その円周方向に垂直な方向の永久歪みはいずれも0%である。また、2.4MPaの圧力を加えた後では、その円周方向の永久歪みがA点で0.37%、B点で0.25%、C点で0.38%であり、その円周方向に垂直な方向の永久歪みは0.02%である。さらに、3.0MPaの圧力を加えると、その円周方向の永久歪みが、A点で0.79%に留まり、B点及びC点でも0.63%であり、その円周方向に垂直な方向の永久歪みは0.1%に過ぎない。従って、いずれの圧力においても、その円周方向の永久歪み及びその円周方向に垂直な方向の永久歪みは1%未満であり、かつ0.8%以下が達成されている。すなわち、表3の消火剤貯蔵容器310は、表2の消火剤貯蔵容器310の耐圧性よりも更に高いレベルの耐圧性を得ていることが分かる。
 また、表3の消火剤貯蔵容器310のそれぞれの測定点における永久歪みの最大差が0.69%(A点における円周方向と円周方向に垂直な方向との差)である。従って、表3の消火剤貯蔵容器310の永久歪みの最大差は、表1や表2の消火剤貯蔵容器310の永久歪みの最大差よりも小さい。従って、表3の消火剤貯蔵容器10は、表1や表2の消火剤貯蔵容器310よりも永久歪みのバラつきが小さいことが分かる。
 表4の消火剤貯蔵容器310は、1.0MPa乃至2.0MPaの圧力を加えた後であっても、その円周方向の永久歪みがA点で0.1%以下、B点で0%、C点で0.11%以下であり、その円周方向に垂直な方向の永久歪みはいずれも0.1%以下である。また、2.4MPaの圧力を加えた後では、その円周方向の永久歪みがA点で0.3%、B点で0.23%、C点で0.34%であり、その円周方向に垂直な方向の永久歪みは0.19%である。さらに、3.0MPaの圧力を加えると、その円周方向の永久歪みが、A点で0.65%に留まり、B点及びC点でも0.56%であり、その円周方向に垂直な方向の永久歪みは0.49%に留まる。従って、いずれの圧力においても、その円周方向の永久歪み及びその円周方向に垂直な方向の永久歪みは1%未満であり、かつ0.7%以下が達成されている。すなわち、表4の消火剤貯蔵容器310は、表2の消火剤貯蔵容器310の耐圧性よりも更に高いレベルの耐圧性を得ていることが分かる。
 また、表4の消火剤貯蔵容器310のそれぞれの測定点における永久歪の最大差が0.16%(A点における円周方向と円周方向に垂直な方向との差)である。従って、表4の消火剤貯蔵容器310の永久歪みの最大差は、表1や表2の消火剤貯蔵容器310の永久歪みの最大差よりも大幅に小さい。従って、表4の消火剤貯蔵容器310は、表1や表2の消火剤貯蔵容器310よりも永久歪ものバラつきが小さいことが分かる。
 表5の消火剤貯蔵容器310は、1.0MPa乃至2.0MPaの圧力を加えた後であっても、その円周方向の永久歪みがA点で0.08%以下、B点で0%、C点で0.1%以下であり、その円周方向に垂直な方向の永久歪みはいずれも0.19%以下である。また、2.4MPaの圧力を加えた後では、その円周方向の永久歪みがA点で0.24%、B点で0.2%、C点で0.3%であり、その円周方向に垂直な方向の永久歪みは0.38%である。さらに、3.0MPaの圧力を加えると、その円周方向の永久歪みが、A点で0.52%に留まり、B点及びC点でも0.51%であり、その円周方向に垂直な方向の永久歪みは0.79%に留まる。従って、いずれの圧力においても、その円周方向の永久歪み及びその円周方向に垂直な方向の永久歪みは1%未満であり、かつ0.8%以下が達成されている。すなわち、表5の消火剤貯蔵容器310は、表2の消火剤貯蔵容器310の耐圧性よりも更に高いレベルの耐圧性を得ていることが分かる。
 また、表5の消火剤貯蔵容器310のそれぞれの測定点における永久歪みの最大差が0.28%(B点又はC点における円周方向と円周方向に垂直な方向との差)である。従って、表5の消火剤貯蔵容器310の永久歪みの最大差は、表1や表2の消火剤貯蔵容器310の永久歪みの最大差よりも大幅に小さい。従って、表5の消火剤貯蔵容器310は、表1や表2の消火剤貯蔵容器310よりも永久歪みのバラつきが小さいことが分かる。
 表6の消火剤貯蔵容器310は、1.0MPa乃至2.0MPaの圧力を加えた後であっても、その円周方向の永久歪みがA点で0.06%以下、B点で0%、C点で0.09%以下であり、その円周方向に垂直な方向の永久歪みはいずれも0.19%以下である。また、2.4MPaの圧力を加えた後では、その円周方向の永久歪みがA点で0.19%、B点で0.18%、C点で0.27%であり、その円周方向に垂直な方向の永久歪みは0.57%である。さらに、3.0MPaの圧力を加えると、その円周方向の永久歪みが、A点で0.42%、B点及びC点で0.46%に留まり、その円周方向に垂直な方向の永久歪みは0.88%であった。従って、いずれの圧力においても、その円周方向の永久歪み及びその円周方向に垂直な方向の永久歪みは1%未満であり、かつ0.9%以下が達成されている。すなわち、表6の消火剤貯蔵容器310は、消火剤貯蔵容器として求められる十分な耐圧性を得ていることが分かる。
 また、表6の消火剤貯蔵容器310のそれぞれの測定点における永久歪みの最大差が0.46%(A点における円周方向と円周方向に垂直な方向との差)である。従って、表6の消火剤貯蔵容器310の永久歪みの最大差は、表1や表2の消火剤貯蔵容器310の永久歪みの最大差よりも小さい。従って、表6の消火剤貯蔵容器310は、表1や表2の消火剤貯蔵容器310よりも永久歪のバラつきが小さいことが分かる。
 表7の消火剤貯蔵容器310は、1.0MPa乃至2.0MPaの圧力を加えた後であっても、その円周方向の永久歪みがA点で0.05%以下、B点で0%、C点で0.09%以下であり、その円周方向に垂直な方向の永久歪みはいずれも0.23%以下である。また、2.4MPaの圧力を加えた後では、その円周方向の永久歪みがA点で0.15%、B点で0.14%、C点で0.21%であり、その円周方向に垂直な方向の永久歪みは0.68%である。しかしながら、3.0MPaの圧力を加えると、その円周方向に垂直な方向の永久歪みは1.01%にまで上昇する。
 上述のとおり、表1乃至表7によれば、最終成形品の胴部393に対応する部分のプリフォームの肉厚を15mm±0.4mmとし、胴部393の円周方向の延伸倍率がその円周方向に垂直な方向の延伸倍率の1.05倍以上1.4倍以下となる消火剤貯蔵容器310は、3MPaの加圧を加えても永久歪みの絶対値が1%未満であるため、消火剤貯蔵容器として求められる耐圧性を十分に確保することができるといえる。なお、その円周方向の延伸倍率のスカラー量とその円周方向に垂直な方向の延伸倍率のスカラー量との積が12以上13以下とすることは、高い耐圧性を得る観点から好ましい。
 また、特に、胴部393の円周方向の延伸倍率がその円周方向に垂直な方向の延伸倍率の1.12倍以上1.26倍以下である消火剤貯蔵容器210は、永久歪みの絶対値が0.8%以下であるとともに、永久歪みのバラつきが小さいため、更に高いレベルの耐圧性を備えることができる観点から好ましい一態様である。この場合、その円周方向の延伸倍率とその円周方向に垂直な方向の延伸倍率との積が12.09以上12.21以下とすることは、より高い耐圧性を得る観点から好ましい。
<第4の実施形態>
 本実施形態の消火器400は、第3の実施形態の消火剤貯蔵容器310が消火剤貯蔵容器410に変更されている点以外は、第3の実施形態と同じ構成を備えている。従って、第3の実施形態と重複する説明は省略され得る。
 本実施形態の消火剤貯蔵容器410は、胴部493の肉厚(T3)が1.6mm±0.4mmとなるように成形されることが好ましい。この肉厚により、消火剤貯蔵容器として求められる耐圧性(例えば、約2.0MPa)及び内容物たる消火剤の適度な視認性が実現され得る。また、本実施形態の消火器400は、第3の実施形態における消火剤貯蔵容器310よりも少ない原材料により形成することができる点が優れている。すなわち、本実施形態の消火器400は、第3の実施形態の本実施形態の消火器300よりも製造コストを低減することができる。但し、第3の実施形態の消火剤貯蔵容器310と本実施形態の消火剤貯蔵容器410の同一の延伸倍率の場合と比較した場合に、第3の実施形態における消火剤貯蔵容器310は、本実施形態の消火剤貯蔵容器410よりも耐圧性は優れている。
 また、この消火剤貯蔵容器410は、第3の実施形態と同様、胴部493の円周方向の延伸倍率がその円周方向に垂直な方向の延伸倍率の1.05倍以上1.4倍以下であるとともに、胴部493の円周方向の延伸倍率とその円周方向に垂直な方向の延伸倍率との積が12以上13以下となるように、最終成形品が形成される。
 次に、胴部493の円周方向の延伸倍率がその円周方向に垂直な方向の延伸倍率の1.05倍以上1.4倍以下であり、かつ、その円周方向の延伸倍率とその円周方向に垂直な方向の延伸倍率との積が12以上13以下とすることにより耐圧性が向上することを、消火剤貯蔵容器410を代表例として説明する。
 表8乃至表14は、消火剤貯蔵容器410の内部に均一に圧力を加えた際の永久歪みの測定結果を示している。なお、表8乃至表14において示される実験結果は、第3の実施形態における表1乃至表7と同様の実験方法で同様の測定方法により測定されたものである。
 表8は、最終成形品の胴部493に対応する部分のプリフォームの肉厚を13mm±0.4mmとし、胴部493の円周方向の延伸倍率を3.5倍で、かつ、その円周方向に垂直な方向の延伸倍率を3.5倍とした消火剤貯蔵容器410を用いて実験を行った結果が示されている。つまり、表8の消火剤貯蔵容器410の胴部493の円周方向の延伸倍率(3.5倍)に対する、その円周方向に垂直な方向の延伸倍率(3.5倍)の比は1倍である。また、延伸倍率の各々をスカラー量とした場合に、その円周方向の延伸倍率のスカラー量とその円周方向に垂直な方向の延伸倍率のスカラー量との積が12.25である。
 また、表9は、最終成形品の胴部493に対応する部分のプリフォームの肉厚を13mm±0.4mmとし、胴部493の円周方向の延伸倍率を3.6倍で、かつ、その円周方向に垂直な方向の延伸倍率を3.4倍とした消火剤貯蔵容器410を用いて実験を行った結果が示されている。つまり、表9の消火剤貯蔵容器410の胴部493の円周方向の延伸倍率(3.6倍)に対する、その円周方向に垂直な方向の延伸倍率(3.4倍)の比は1.06倍である。また、延伸倍率の各々をスカラー量とした場合に、その円周方向の延伸倍率のスカラー量とその円周方向に垂直な方向の延伸倍率のスカラー量との積が12.24である。
 また、表10は、最終成形品の胴部493に対応する部分のプリフォームの肉厚を13mm±0.4mmとし、胴部493の円周方向の延伸倍率を3.7倍で、かつ、その円周方向に垂直な方向の延伸倍率を3.3倍とした消火剤貯蔵容器410を用いて実験を行った結果が示されている。つまり、表10の消火剤貯蔵容器410の胴部493の円周方向の延伸倍率(3.7倍)に対する、その円周方向に垂直な方向の延伸倍率(3.3倍)の比は1.12倍である。また、延伸倍率の各々をスカラー量とした場合に、その円周方向の延伸倍率のスカラー量とその円周方向に垂直な方向の延伸倍率のスカラー量との積が12.21である。
 また、表11は、最終成形品の胴部493に対応する部分のプリフォームの肉厚を13mm±0.4mmとし、胴部493の円周方向の延伸倍率を3.8倍で、かつ、その円周方向に垂直な方向の延伸倍率を3.2倍とした消火剤貯蔵容器410を用いて実験を行った結果が示されている。つまり、表11の消火剤貯蔵容器410の胴部493の円周方向の延伸倍率(3.8倍)に対する、その円周方向に垂直な方向の延伸倍率(3.2倍)の比は1.19倍である。また、延伸倍率の各々をスカラー量とした場合に、その円周方向の延伸倍率のスカラー量とその円周方向に垂直な方向の延伸倍率のスカラー量との積が12.16である。
 また、表12は、最終成形品の胴部493に対応する部分のプリフォームの肉厚を13mm±0.4mmとし、胴部493の円周方向の延伸倍率を3.9倍で、かつ、その円周方向に垂直な方向の延伸倍率を3.1倍とした消火剤貯蔵容器410を用いて実験を行った結果が示されている。つまり、表12の消火剤貯蔵容器410の胴部493の円周方向の延伸倍率(3.9倍)に対する、その円周方向に垂直な方向の延伸倍率(3.1倍)の比は1.26倍である。また、延伸倍率の各々をスカラー量とした場合に、その円周方向の延伸倍率のスカラー量とその円周方向に垂直な方向の延伸倍率のスカラー量との積が12.09である。
 また、表13は、最終成形品の胴部493に対応する部分のプリフォームの肉厚を13mm±0.4mmとし、胴部493の円周方向の延伸倍率を4.0倍で、かつ、その円周方向に垂直な方向の延伸倍率を3.0倍とした消火剤貯蔵容器410を用いて実験を行った結果が示されている。つまり、表13の消火剤貯蔵容器410の胴部493の円周方向の延伸倍率(4.0倍)に対する、その円周方向に垂直な方向の延伸倍率(3.0倍)の比は1.33倍である。また、延伸倍率の各々をスカラー量とした場合に、その円周方向の延伸倍率のスカラー量とその円周方向に垂直な方向の延伸倍率のスカラー量との積が12である。
 また、表14は、最終成形品の胴部493に対応する部分のプリフォームの肉厚を13mm±0.4mmとし、胴部493の円周方向の延伸倍率を4.1倍で、かつ、その円周方向に垂直な方向の延伸倍率を2.9倍とした消火剤貯蔵容器410を用いて実験を行った結果が示されている。つまり、表14の消火剤貯蔵容器410の胴部493の円周方向の延伸倍率(4.1倍)に対する、その円周方向に垂直な方向の延伸倍率(2.9倍)の比は1.41倍である。また、延伸倍率の各々をスカラー量とした場合に、その円周方向の延伸倍率のスカラー量とその円周方向に垂直な方向の延伸倍率のスカラー量との積が11.89である。
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
 表8の消火剤貯蔵容器410は、1.0MPa乃至2.0MPaの圧力を加えた後であっても、その円周方向の永久歪みがA点で0.16%以下、B点で0%、C点で0.16%以下であり、その円周方向に垂直な方向の永久歪みはいずれも0%である。また、2.4MPaの圧力を加えた後では、その円周方向の永久歪みがA点で0.48%、B点で0.32%、C点で0.48%であり、その円周方向に垂直な方向の永久歪みは0%である。しかしながら、3.0MPaの圧力を加えると、その円周方向の永久歪みがA点で1.03%にまで上昇する。
 表9の消火剤貯蔵容器410は、1.0MPa乃至2.0MPaの圧力を加えた後であっても、その円周方向の永久歪みがA点で0.14%以下、B点で0%、C点で0.15%以下であり、その円周方向に垂直な方向の永久歪みはいずれも0%である。また、2.4MPaの圧力を加えた後では、その円周方向の永久歪みがA点で0.43%、B点で0.29%、C点で0.44%であり、その円周方向に垂直な方向の永久歪みは0%である。さらに、3.0MPaの圧力を加えると、その円周方向の永久歪みが、A点で0.94%であり、B点で0.72%であり、C点で0.73%である。また、その円周方向に垂直な方向の永久歪みは依然として0%である。従って、いずれの圧力においても、その円周方向の永久歪み及びその円周方向に垂直な方向の永久歪みは1%未満が達成されている。すなわち、表9の消火剤貯蔵容器410は、消火剤貯蔵容器として求められる十分な耐圧性を得ていることが分かる。
 表10の消火剤貯蔵容器410は、1.0MPa乃至2.0MPaの圧力を加えた後であっても、その円周方向の永久歪みがA点で0.13%以下、B点で0%、C点で0.13%以下であり、その円周方向に垂直な方向の永久歪みはいずれも0%である。また、2.4MPaの圧力を加えた後では、その円周方向の永久歪みがA点で0.39%、B点で0.26%、C点で0.40%であり、その円周方向に垂直な方向の永久歪みは0.02%である。さらに、3.0MPaの圧力を加えると、その円周方向の永久歪みが、A点で0.79%に留まり、B点及びC点でも0.66%であり、その円周方向に垂直な方向の永久歪みは0.1%に過ぎない。従って、いずれの圧力においても、その円周方向の永久歪み及びその円周方向に垂直な方向の永久歪みは1%未満であり、かつ0.8%以下が達成されている。すなわち、表10の消火剤貯蔵容器410は、表9の消火剤貯蔵容器410の耐圧性よりも更に高いレベルの耐圧性を得ていることが分かる。
 また、表10の消火剤貯蔵容器410のそれぞれの測定点における永久歪みの最大差が0.69%(A点における円周方向と円周方向に垂直な方向との差)である。従って、表10の消火剤貯蔵容器410の永久歪みの最大差は、表8や表9の消火剤貯蔵容器410の永久歪みの最大差よりも小さい。このため、表10の消火剤貯蔵容器410は、表8や表9の消火剤貯蔵容器410よりも永久歪みのバラつきが小さいことが分かる。
 表11の消火剤貯蔵容器410は、1.0MPa乃至2.0MPaの圧力を加えた後であっても、その円周方向の永久歪みがA点で0.11%以下、B点で0%、C点で0.12%以下であり、その円周方向に垂直な方向の永久歪みはいずれも0.1%以下である。また、2.4MPaの圧力を加えた後では、その円周方向の永久歪みがA点で0.32%、B点で0.24%、C点で0.36%であり、その円周方向に垂直な方向の永久歪みは0.2%である。さらに、3.0MPaの圧力を加えると、その円周方向の永久歪みが、A点で0.68%に留まり、B点及びC点でも0.59%であり、その円周方向に垂直な方向の永久歪みは0.52%に留まる。従って、いずれの圧力においても、その円周方向の永久歪み及びその円周方向に垂直な方向の永久歪みは1%未満であり、かつ0.7%以下が達成されている。すなわち、表11の消火剤貯蔵容器410は、表9の消火剤貯蔵容器410の耐圧性よりも更に高いレベルの耐圧性を得ていることが分かる。
 また、表11の消火剤貯蔵容器410のそれぞれの測定点における永久歪みの最大差が0.16%(A点における円周方向と円周方向に垂直な方向との差)である。従って、表11の消火剤貯蔵容器410の永久歪みの最大差は、表8や表9の消火剤貯蔵容器410の永久歪みの最大差よりも大幅に小さい。このため、表11の消火剤貯蔵容器410は、表8や表9の消火剤貯蔵容器410よりも永久歪みのバラつきが小さいことが分かる。
 表12の消火剤貯蔵容器410は、1.0MPa乃至2.0MPaの圧力を加えた後であっても、その円周方向の永久歪みがA点で0.08%以下、B点で0%、C点で0.11%以下であり、その円周方向に垂直な方向の永久歪みはいずれも0.2%以下である。また、2.4MPaの圧力を加えた後では、その円周方向の永久歪みがA点で0.25%、B点で0.21%、C点で0.32%であり、その円周方向に垂直な方向の永久歪みは0.4%である。さらに、3.0MPaの圧力を加えると、その円周方向の永久歪みが、A点で0.55%に留まり、B点及びC点でも0.53%であり、その円周方向に垂直な方向の永久歪みは0.83%に留まる。従って、いずれの圧力においても、その円周方向の永久歪み及びその円周方向に垂直な方向の永久歪みは1%未満であり、かつ0.8%以下が達成されている。すなわち、表12の消火剤貯蔵容器410は、表9の消火剤貯蔵容器410の耐圧性よりも更に高いレベルの耐圧性を得ていることが分かる。
 また、表12の消火剤貯蔵容器410のそれぞれの測定点における永久歪みの最大差が0.3%(B点又はC点における円周方向と円周方向に垂直な方向との差)である。従って、表12の消火剤貯蔵容器410の永久歪みの最大差は、表8乃至表10の消火剤貯蔵容器410の永久歪の最大差よりも大幅に小さい。このため、表12の消火剤貯蔵容器410は、表8や表9の消火剤貯蔵容器410よりも永久歪みのバラつきが小さいことが分かる。
 表13の消火剤貯蔵容器410は、1.0MPa乃至2.0MPaの圧力を加えた後であっても、その円周方向の永久歪みがA点で0.07%以下、B点で0%、C点で0.1%以下であり、その円周方向に垂直な方向の永久歪みはいずれも0.2%以下である。また、2.4MPaの圧力を加えた後では、その円周方向の永久歪みがA点で0.2%、B点で0.19%、C点で0.29%であり、その円周方向に垂直な方向の永久歪みは0.6%である。さらに、3.0MPaの圧力を加えると、その円周方向の永久歪みが、A点で0.44%、B点及びC点で0.48%に留まり、その円周方向に垂直な方向の永久歪みは0.93%であった。従って、いずれの圧力においても、その円周方向の永久歪み及びその円周方向に垂直な方向の永久歪みは1%未満が達成されている。すなわち、表13の消火剤貯蔵容器410は、消火剤貯蔵容器として求められる十分な耐圧性を得ていることが分かる。
 表14の消火剤貯蔵容器410は、1.0MPa乃至2.0MPaの圧力を加えた後であっても、その円周方向の永久歪みがA点で0.07%以下、B点で0%、C点で0.11%以下であり、その円周方向に垂直な方向の永久歪みは0.22%以下である。また、2.4MPaの圧力を加えた後では、その円周方向の永久歪みがA点で0.22%、B点で0.21%、C点で0.32%であり、その円周方向に垂直な方向の永久歪みは0.66%である。しかしながら、3.0MPaの圧力を加えると、その円周方向の永久歪みがA点で0.48%である。また、その円周方向のB点及びC点での永久歪み0.53%である。また、その円周方向に垂直な方向の永久歪は1.03%にまで上昇する。
 上述のとおり、表8乃至表14によれば、最終成形品の胴部493に対応する部分のプリフォームの肉厚を13mm±0.4mmとし、胴部493の円周方向の延伸倍率がその円周方向に垂直な方向の延伸倍率の1.05倍以上1.4倍以下となる消火剤貯蔵容器410は、3MPaの加圧を加えても永久歪みの絶対値が1%未満であるため、消火剤貯蔵容器として求められる耐圧性を十分に確保することができるといえる。なお、その円周方向の延伸倍率のスカラー量とその円周方向に垂直な方向の延伸倍率のスカラー量との積が12以上13以下とすることは、高い耐圧性を得る観点から好ましい。
 また、特に、胴部493の円周方向の延伸倍率がその円周方向に垂直な方向の延伸倍率の1.12倍以上1.26倍以下である消火剤貯蔵容器410は、永久歪みの絶対値が0.8%以下であるとともに、永久歪みのバラつきが小さいため、更に高いレベルの耐圧性を備えることができる観点から好ましい一態様である。この場合、その円周方向の延伸倍率とその円周方向に垂直な方向の延伸倍率との積が12.09以上12.21以下とすることは、より高い耐圧性を得る観点から好ましい。
<第5の実施形態>
 本実施形態の消火器500は、第3の実施形態の消火剤貯蔵容器310が消火剤貯蔵容器510に変更されている点以外は、第3の実施形態と同じ構成を備えている。従って、第3の実施形態と重複する説明は省略され得る。
 本実施形態の消火剤貯蔵容器510は、胴部593の肉厚(T3)が2.4mm±0.4mmとなるように成形されることが好ましい。この肉厚により、消火剤貯蔵容器として求められる耐圧性(例えば、約2.0MPa)及び内容物たる消火剤の適度な視認性が実現され得る。
 また、この消火剤貯蔵容器510は、第3の実施形態と同様、胴部593の円周方向の延伸倍率がその円周方向に垂直な方向の延伸倍率の1.05倍以上1.4倍以下であるとともに、胴部593の円周方向の延伸倍率とその円周方向に垂直な方向の延伸倍率との積が12以上13以下となるように、最終成形品が形成される。
 次に、胴部593の円周方向の延伸倍率がその円周方向に垂直な方向の延伸倍率の1.05倍以上1.4倍以下であり、かつ、その円周方向の延伸倍率とその円周方向に垂直な方向の延伸倍率との積が12以上13以下とすることにより耐圧性が向上することを、消火剤貯蔵容器510を代表例として説明する。
 表15は、最終成形品の胴部593に対応する部分のプリフォームの肉厚を19mm±0.4mmとし、胴部593の円周方向の延伸倍率を3.5倍で、かつ、その円周方向に垂直な方向の延伸倍率を3.5倍とした消火剤貯蔵容器510を用いて実験を行った結果が示されている。つまり、表15の消火剤貯蔵容器510の胴部593の円周方向の延伸倍率(3.5倍)に対する、その円周方向に垂直な方向の延伸倍率(3.5倍)の比は1倍である。また、延伸倍率の各々をスカラー量とした場合に、その円周方向の延伸倍率のスカラー量とその円周方向に垂直な方向の延伸倍率のスカラー量との積が12.25である。
 また、表16は最終成形品の胴部593に対応する部分のプリフォームの肉厚を19mm±0.4mmとし、胴部593の円周方向の延伸倍率を3.6倍で、かつ、その円周方向に垂直な方向の延伸倍率を3.4倍とした消火剤貯蔵容器510を用いて実験を行った結果が示されている。つまり、表16の消火剤貯蔵容器510の胴部593の円周方向の延伸倍率(3.6倍)に対する、その円周方向に垂直な方向の延伸倍率(3.4倍)の比は1.06倍である。また、延伸倍率の各々をスカラー量とした場合に、その円周方向の延伸倍率のスカラー量とその円周方向に垂直な方向の延伸倍率のスカラー量との積が12.24である。
 また、表17は、最終成形品の胴部593に対応する部分のプリフォームの肉厚を19mm±0.4mmとし、胴部593の円周方向の延伸倍率を3.7倍で、かつ、その円周方向に垂直な方向の延伸倍率を3.3倍とした消火剤貯蔵容器510を用いて実験を行った結果が示されている。つまり、表17の消火剤貯蔵容器510の胴部593の円周方向の延伸倍率(3.7倍)に対する、その円周方向に垂直な方向の延伸倍率(3.3倍)の比は1.12倍である。また、延伸倍率の各々をスカラー量とした場合に、その円周方向の延伸倍率のスカラー量とその円周方向に垂直な方向の延伸倍率のスカラー量との積が12.21である。
 また、表18は、最終成形品の胴部593に対応する部分のプリフォームの肉厚を19mm±0.4mmとし、胴部593の円周方向の延伸倍率を3.8倍で、かつ、その円周方向に垂直な方向の延伸倍率を3.2倍とした消火剤貯蔵容器510を用いて実験を行った結果が示されている。つまり、表18の消火剤貯蔵容器510の胴部593の円周方向の延伸倍率(3.8倍)に対する、その円周方向に垂直な方向の延伸倍率(3.2倍)の比は1.19倍である。また、延伸倍率の各々をスカラー量とした場合に、その円周方向の延伸倍率のスカラー量とその円周方向に垂直な方向の延伸倍率のスカラー量との積が12.16である。
 また、表19は、最終成形品の胴部593に対応する部分のプリフォームの肉厚を19mm±0.4mmとし、胴部593の円周方向の延伸倍率を3.9倍で、かつ、その円周方向に垂直な方向の延伸倍率を3.1倍とした消火剤貯蔵容器510を用いて実験を行った結果が示されている。つまり、表19の消火剤貯蔵容器510の胴部593の円周方向の延伸倍率(3.9倍)に対する、その円周方向に垂直な方向の延伸倍率(3.1倍)の比は1.26倍である。また、延伸倍率の各々をスカラー量とした場合に、その円周方向の延伸倍率のスカラー量とその円周方向に垂直な方向の延伸倍率のスカラー量との積が12.09である。
 また、表20は、最終成形品の胴部593に対応する部分のプリフォームの肉厚を19mm±0.4mmとし、胴部593の円周方向の延伸倍率を4.0倍で、かつ、その円周方向に垂直な方向の延伸倍率を3.0倍とした消火剤貯蔵容器510を用いて実験を行った結果が示されている。つまり、表20の消火剤貯蔵容器510の胴部593の円周方向の延伸倍率(4.0倍)に対する、その円周方向に垂直な方向の延伸倍率(3.0倍)の比は1.33倍である。また、延伸倍率の各々をスカラー量とした場合に、その円周方向の延伸倍率のスカラー量とその円周方向に垂直な方向の延伸倍率のスカラー量との積が12である。
 また、表21は最終成形品の胴部593に対応する部分のプリフォームの肉厚を19mm±0.4mmとし、胴部593の円周方向の延伸倍率を4.1倍で、かつ、その円周方向に垂直な方向の延伸倍率を2.9倍とした消火剤貯蔵容器510を用いて実験を行った結果が示されている。つまり、表21の消火剤貯蔵容器510の胴部593の円周方向の延伸倍率(4.1倍)に対する、その円周方向に垂直な方向の延伸倍率(2.9倍)の比は1.41倍である。また、延伸倍率の各々をスカラー量とした場合に、その円周方向の延伸倍率のスカラー量とその円周方向に垂直な方向の延伸倍率のスカラー量との積が11.89である。
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000021
 表15の消火剤貯蔵容器510は、1.0MPa乃至2.0MPaの圧力を加えた後であっても、その円周方向の永久歪みがA点で0.11%以下、B点で0%、C点で0.11%以下であり、その円周方向に垂直な方向の永久歪みはいずれも0%である。また、2.4MPaの圧力を加えた後では、その円周方向の永久歪みがA点で0.33%、B点で0.22%、C点で0.34%であり、その円周方向に垂直な方向の永久歪みは0%である。しかしながら、3.0MPaの圧力を加えると、その円周方向の永久歪みがA点で0.72%にまで上昇するが、1%未満である。また、その円周方向のB点及びC点での永久歪み0.56%である。また、その円周方向に垂直な方向の永久歪みは依然として0%である。従って、いずれの圧力においても、その円周方向の永久歪み及びその円周方向に垂直な方向の永久歪みは1%未満が達成されている。すなわち、表15の消火剤貯蔵容器510は、消火剤貯蔵容器として求められる十分な耐圧性を得ていることが分かる。
 表16の消火剤貯蔵容器510は、1.0MPa乃至2.0MPaの圧力を加えた後であっても、その円周方向の永久歪みがA点で0.10%以下、B点で0%、C点で0.11%以下であり、その円周方向に垂直な方向の永久歪みはいずれも0%である。また、2.4MPaの圧力を加えた後では、その円周方向の永久歪みがA点で0.30%、B点で0.20%、C点で0.30%であり、その円周方向に垂直な方向の永久歪みは0%である。さらに、3.0MPaの圧力を加えると、その円周方向の永久歪みが、A点で0.66%であり、B点で0.51%であり、C点で0.51%である。また、その円周方向に垂直な方向の永久歪みは依然として0%である。従って、いずれの圧力においても、その円周方向の永久歪み及びその円周方向に垂直な方向の永久歪みは1%未満が達成されている。すなわち、表16の消火剤貯蔵容器510は、消火剤貯蔵容器として求められる十分な耐圧性を得ていることが分かる。
 表17の消火剤貯蔵容器510は、1.0MPa乃至2.0MPaの圧力を加えた後であっても、その円周方向の永久歪みがA点で0.09%以下、B点で0%、C点で0.09%以下であり、その円周方向に垂直な方向の永久歪みはいずれも0%である。また、2.4MPaの圧力を加えた後では、その円周方向の永久歪みがA点で0.28%、B点で0.18%、C点で0.28%であり、その円周方向に垂直な方向の永久歪みは0.02%である。さらに、3.0MPaの圧力を加えると、その円周方向の永久歪みが、A点で0.55%に留まり、B点及びC点でも0.46%であり、その円周方向に垂直な方向の永久歪みは0.07%に過ぎない。従って、いずれの圧力においても、その円周方向の永久歪み及びその円周方向に垂直な方向の永久歪みは1%未満であり、かつ0.6%以下が達成されている。すなわち、表17の消火剤貯蔵容器510は、表16の消火剤貯蔵容器510の耐圧性よりも更に高いレベルの耐圧性を得ていることが分かる。
 また、表17の消火剤貯蔵容器510のそれぞれの測定点における永久歪みの最大差が0.48%(A点における円周方向と円周方向に垂直な方向との差)である。従って、表17の消火剤貯蔵容器510の永久歪みの最大差は、表15や表16の消火剤貯蔵容器510の永久歪の最大差よりも小さい。このため、表17の消火剤貯蔵容器510は、表15や表16の消火剤貯蔵容器510よりも永久歪みのバラつきが小さいことが分かる。
 表18の消火剤貯蔵容器510は、1.0MPa乃至2.0MPaの圧力を加えた後であっても、その円周方向の永久歪みがA点で0.07%以下、B点で0%、C点で0.08%以下であり、その円周方向に垂直な方向の永久歪みはいずれも0.1%以下である。また、2.4MPaの圧力を加えた後では、その円周方向の永久歪みがA点で0.22%、B点で0.17%、C点で0.25%であり、その円周方向に垂直な方向の永久歪みは0.14%である。さらに、3.0MPaの圧力を加えると、その円周方向の永久歪みが、A点で0.48%に留まり、B点で0.41、C点でも0.42%であり、その円周方向に垂直な方向の永久歪みは0.36%に留まる。従って、いずれの圧力においても、その円周方向の永久歪み及びその円周方向に垂直な方向の永久歪みは1%未満であり、かつ0.5%以下が達成されている。すなわち、表18の消火剤貯蔵容器510は、表17の消火剤貯蔵容器510の耐圧性よりも更に高いレベルの耐圧性を得ていることが分かる。
 また、表18の消火剤貯蔵容器510のそれぞれの測定点における永久歪みの最大差が0.12%(A点における円周方向と円周方向に垂直な方向との差)である。従って、表18の消火剤貯蔵容器510の永久歪みの最大差は、表15や表16の消火剤貯蔵容器510の永久歪みの最大差よりも大幅に小さい。このため、表18の消火剤貯蔵容器510は、表15や表16の消火剤貯蔵容器510よりも永久歪のバラつきが非常に小さいことが分かる。
 表19の消火剤貯蔵容器510は、1.0MPa乃至2.0MPaの圧力を加えた後であっても、その円周方向の永久歪みがA点で0.06%以下、B点で0%、C点で0.07%以下であり、その円周方向に垂直な方向の永久歪みはいずれも0.14%以下である。また、2.4MPaの圧力を加えた後では、その円周方向の永久歪みがA点で0.18%、B点で0.15%、C点で0.22%であり、その円周方向に垂直な方向の永久歪みは0.28%である。さらに、3.0MPaの圧力を加えると、その円周方向の永久歪みが、A点で0.38%に留まり、B点及びC点でも0.37%であり、その円周方向に垂直な方向の永久歪みは0.58%に留まる。従って、いずれの圧力においても、その円周方向の永久歪み及びその円周方向に垂直な方向の永久歪みは1%未満であり、かつ0.6%以下が達成されている。すなわち、表19の消火剤貯蔵容器510は、表16の消火剤貯蔵容器510の耐圧性よりも更に高いレベルの耐圧性を得ていることが分かる。
 また、表19の消火剤貯蔵容器510のそれぞれの測定点における永久歪の最大差が0.21%(B点又はC点における円周方向と円周方向に垂直な方向との差)である。従って、表19の消火剤貯蔵容器510の永久歪の最大差は、表15や表16の消火剤貯蔵容器510の永久歪の最大差よりも大幅に小さい。このため、表19の消火剤貯蔵容器510は、表15や表16の消火剤貯蔵容器510よりも永久歪のバラつきが非常に小さいことが分かる。
 表20の消火剤貯蔵容器510は、1.0MPa乃至2.0MPaの圧力を加えた後であっても、その円周方向の永久歪みがA点で0.05%以下、B点で0%、C点で0.07%以下であり、その円周方向に垂直な方向の永久歪みはいずれも0.14%以下である。また、2.4MPaの圧力を加えた後では、その円周方向の永久歪みがA点で0.14%、B点で0.13%、C点で0.20%であり、その円周方向に垂直な方向の永久歪みは0.42%である。さらに、3.0MPaの圧力を加えると、その円周方向の永久歪みが、A点で0.31%、B点及びC点で0.34%に留まり、その円周方向に垂直な方向の永久歪みは0.65%であった。従って、いずれの圧力においても、その円周方向の永久歪み及びその円周方向に垂直な方向の永久歪みは0.7%未満が達成されている。すなわち、表20の消火剤貯蔵容器510は、消火剤貯蔵容器として求められる十分な耐圧性を得ていることが分かる。
 また、表20の消火剤貯蔵容器510のそれぞれの測定点における永久歪の最大差が0.34%(A点における円周方向と円周方向に垂直な方向との差)である。従って、表20の消火剤貯蔵容器510の永久歪の最大差は、表15や表16の消火剤貯蔵容器510の永久歪みの最大差よりも大幅に小さい。このため、表20の消火剤貯蔵容器510は、表15や表16の消火剤貯蔵容器510よりも永久歪のバラつきが非常に小さいことが分かる。
 表21の消火剤貯蔵容器510は、1.0MPa乃至2.0MPaの圧力を加えた後であっても、その円周方向の永久歪みがA点で0.05%以下、B点で0%、C点で0.07%以下であり、その円周方向に垂直な方向の永久歪みは0.15%以下である。また、2.4MPaの圧力を加えた後では、その円周方向の永久歪みがA点で0.16%、B点で0.15%、C点で0.22%であり、その円周方向に垂直な方向の永久歪みは0.46%である。しかしながら、3.0MPaの圧力を加えると、その円周方向の永久歪みがA点で0.34%である。また、その円周方向のB点及びC点での永久歪み0.37%である。また、その円周方向に垂直な方向の永久歪みは0.68%にまで上昇するが、0.7%未満である。従って、いずれの圧力においても、その円周方向の永久歪み及びその円周方向に垂直な方向の永久歪みは0.7%未満が達成されている。すなわち、表21の消火剤貯蔵容器510は、消火剤貯蔵容器として求められる十分な耐圧性を得ていることが分かる。
 上述のとおり、表15乃至表21によれば、最終成形品の胴部593に対応する部分のプリフォームの肉厚を19mm±0.4mmとし、胴部593の円周方向の延伸倍率がその円周方向に垂直な方向の延伸倍率の1.05倍以上1.4倍以下となる消火剤貯蔵容器510は、3MPaの加圧を加えても永久歪みの絶対値が1%未満であるため、消火剤貯蔵容器として求められる耐圧性を十分に確保することができるといえる。なお、その円周方向の延伸倍率のスカラー量とその円周方向に垂直な方向の延伸倍率のスカラー量との積が11以上13以下とすることは、高い耐圧性を得る観点から好ましい。
 また、特に、胴部593の円周方向の延伸倍率がその円周方向に垂直な方向の延伸倍率の1.12倍以上1.26倍以下である消火剤貯蔵容器510は、永久歪みの絶対値が0.8%以下であるとともに、永久歪みのバラつきが非常に小さいため、更に高いレベルの耐圧性を備えることができる観点から好ましい一態様である。この場合、その円周方向の延伸倍率とその円周方向に垂直な方向の延伸倍率との積が11.89以上12.21以下とすることは、より高い耐圧性を得る観点から好ましい。
 なお、本実施形態の消火器500は、第3の実施形態における消火剤貯蔵容器310よりも多い原材料により形成しなければならないが、耐圧性においては優れている。但し、第3の実施形態の消火剤貯蔵容器310と本実施形態の消火剤貯蔵容器510の同一の延伸倍率の場合と比較した場合に、第3の実施形態における消火剤貯蔵容器310は、本実施形態の消火剤貯蔵容器510よりも少ない原材料により形成できるので、製造コストを低減できる点では優れている。
<第6の実施形態>
 本実施形態の消火器600は、第1の実施形態の消火剤貯蔵容器10の代わりに消火剤貯蔵容器610を備える点以外は、第1の実施形態の消火器100と同じ構成を備える。従って、第1の実施形態と重複する説明は省略される。
 本実施形態の消火剤貯蔵容器610の口部691の肉厚(T1)は、2mm以上5mm以下であり、肩部692の肉厚(T2)は、1.2mm以上12mm以下である。また、胴部693の肉厚(T3)は、1.3mm以上1.7mm以下であり、底部694の肉厚(T4)は、1.2mm以上12mm以下である。また、本実施形態における消火剤貯蔵容器610の全光線透過率が約50%である。なお、製造過程の不純物を除けば、本実施形態の消火剤貯蔵容器610は、ポリエチレンナフタレート(PEN)のみで形成されている。(以下、削除)
 ところで、本実施形態の消火剤貯蔵容器610の全光線透過率は、5%以上75%以下である。消火剤貯蔵容器610の全光線透過率が75%を越えると、収められている消火剤の壁面への付着が消火器の汚れに見えてしまうことにより、消火器100が設置される場所の周囲の美観を損なうことになる。他方、全光線透過率が5%未満になると、緊急時に消火剤の残量が確認しづらくなるため実用性が劣ることになる。従って、前述の範囲の適度な透明性を維持することが、実用性と外観上の美観とを調和することになる。なお、さらに好ましい消火剤貯蔵容器610の全光線透過率は、20%以上70%以下である。この範囲であれば、さらに、周囲の美観との調和が取れる。
 また、本実施形態の消火剤貯蔵容器610の胴部693の肉厚(T3)は、1mm以上5mm以下であることが好ましい。これは、樹脂の肉厚が1mmよりも薄いと、消火剤の貯蔵容器として求められる強度(例えば、約2.0MPa)を達成できなくなるおそれが高まる一方、5mmよりも厚ければ、経済的に好ましくないとともに内容物たる消火剤を視認し得る透明性の達成が困難になるおそれが高まるためである。上述の観点によれば、胴部693の肉厚(T3)は、1mm以上3mm以下であることが更に好ましい。
 ポリエチレンナフタレート(PEN)製の消火剤貯蔵容器610は、延伸ブロー成形、溶融整形などの従来公知の樹脂成形方法により製造することができるが、この中でも、継ぎ目がなく、成形状態が良好で、かつ適度な肉厚の容器が得られる点で、延伸ブロー成形が好ましい。なお、延伸ブロー成形により製造される場合には、胴部693の円周方向の延伸倍率のスカラー量とその円周方向に垂直な方向の延伸倍率のスカラー量との積が12以上とすることが好ましい。また、この場合に、消火剤貯蔵容器610のプリフォームの全光線透過率は、5%以上75%以下であることが好ましい。加えて、最終的な胴部693の肉厚(T3)を1mm以上5mm以下とするために、消火剤貯蔵容器10のプリフォームの肉厚は、4mm以上30mm以下(最も好ましくは15mm)であることが好ましい。
 消火剤貯蔵容器610のプリフォームの全光線透過率が75%を越えると、延伸ブロー後の消火剤貯蔵容器610内に収められている消火剤の壁面への付着が消火器の汚れに見えてしまうことにより、消火器600が設置される場所の周囲の美観を損なうことになる。他方、前述のプリフォームの全光線透過率が5%未満になると、緊急時に、延伸ブローされた消火剤貯蔵容器610内の消火剤の残量が確認しづらくなるため実用性が劣ることになる。従って、消火剤貯蔵容器610のプリフォームについても、前述の範囲の透明性を維持することが、延伸ブロー後の消火剤貯蔵容器610の実用性と外観上の美観とを調和させることになる。一方、前述のプリフォームを余りに分厚くしても、延伸ブロー後の消火剤貯蔵容器610の透明性が悪化するという問題が生じる。
 上述のとおり、延伸工程が含まれる延伸ブロー成形を行うことによって樹脂の高分子鎖が略一方向に配向するため、樹脂の透明性や強度及び剛性が増大する。従って、延伸ブロー成形を採用すると、本実施形態の消火剤貯蔵容器610の透明性と耐圧を効率的に高めることができる。なお、消火剤貯蔵容器610の底面の形状を球面状にして、底面の延伸倍率を略同等にすることは、他の好ましい一態様である。
<第7の実施形態>
 本実施形態の消火器700は、消火剤貯蔵容器710の材質がポリエチレンテレフタレート(PET)であること、並びに製造過程におけるプリフォームの肉厚及び延伸ブローの倍率を除き、第6の実施形態と同じ構成である。従って、第6の実施形態と重複する説明は省略される。
 本実施形態の消火器700は、ポリエチレンテレフタレート(PET)によって形成された消火剤貯蔵容器710を備えている。本実施形態の消火剤貯蔵容器710の口部791の肉厚(T1)は、2mm以上5mm以下であり、肩部792の肉厚(T2)は、2mm以上12mm以下である。また、胴部793の肉厚(T3)は、2mm以上3mm以下であり、底部794の肉厚(T4)は、2mm以上12mm以下である。また、本実施形態における消火剤貯蔵容器710の全光線透過率が約50%である。なお、製造過程の不純物を除けば、本実施形態の消火剤貯蔵容器710は、ポリエチレンテレフタレート(PET)のみで形成されている。(以下、削除)
 ところで、本実施形態の消火剤貯蔵容器710の全光線透過率は、5%以上75%以下である。本実施形態の消火剤貯蔵容器710の全光線透過率が75%を越えると、第6の実施形態の消火剤貯蔵容器610と同様に、収められている消火剤の壁面への付着が消火器の汚れに見えてしまうことにより、消火器700が設置される場所の周囲の美観を損なうことになる。また、全光線透過率が5%未満になると、緊急時に消火剤の残量が確認しづらくなるため実用性が劣ることになる。従って、前述の範囲の適度な透明性を維持することが、実用性と外観上の美観とを調和することになる。なお、さらに好ましい消火剤貯蔵容器710の全光線透過率は、20%以上70%以下である。この範囲であれば、さらに、周囲の美観との調和が取れる。
 また、本実施形態の消火剤貯蔵容器710の胴部793の肉厚(T3)は、1mm以上5mm以下であることが好ましい。これは、樹脂の肉厚が1mmよりも薄いと、消火剤の貯蔵容器として求められる強度(例えば、約2.0MPa)を達成できなくなるおそれが高まる一方、5mmよりも厚ければ、経済的に好ましくないとともに内容物たる消火剤を視認し得る透明性の達成が困難になるおそれが高まるためである。上述の観点によれば、胴部793の肉厚(T3)は、2mm以上3mm以下であることが更に好ましい。
 ポリエチレンテレフタレート(PET)製の消火剤貯蔵容器710は、延伸ブロー成形、溶融整形などの従来公知の樹脂成形方法により製造することができるが、この中でも、継ぎ目がなく、成形状態が良好で、かつ適度な肉厚の容器が得られる点で、延伸ブロー成形が好ましい。なお、延伸ブロー成形により製造される場合には、胴部793の円周方向の延伸倍率のスカラー量とその円周方向に垂直な方向の延伸倍率のスカラー量との積が6以上(最も好ましくは6.5)とすることが好ましい。また、この場合に、消火剤貯蔵容器710のプリフォームの全光線透過率は、5%以上75%以下であることが好ましい。加えて、最終的な胴部793の肉厚(T3)を1mm以上5mm以下とするために、消火剤貯蔵容器10のプリフォームの肉厚は、5mm以上15mm以下(最も好ましくは10mm)であることが好ましい。
<第8の実施形態>
 本実施形態の消火器800は、第1の実施形態の消火剤貯蔵容器10の代わりに消火剤貯蔵容器810を備える点以外は、第1の実施形態の消火器100と同じ構成を備える。従って、第1の実施形態と重複する説明は省略される。
 本実施形態の消火剤貯蔵容器810は、製造過程の不純物を除けば、ポリエチレンナフタレート(PEN)のみで形成されている。また、消火剤貯蔵容器810は、延伸ブロー成形により製造されている。このため、継ぎ目がなく、成形状態が良好で、かつ適度な肉厚の容器を得ることができる。また、延伸ブロー成形方法であれば、延伸行程を含むため、樹脂の高分子鎖が略一方向に配向する。このため、樹脂の透明性や強度及び剛性が増大する。
 本実施形態の消火剤貯蔵容器810は、胴部893の肉厚(T3)が1.8mm±0.4mmとなるように成形したものである。この肉厚により、消火剤貯蔵容器として求められる耐圧性(例えば、約2.0MPa)、経済的効率、及び内容物たる消火剤の適度な視認性が実現される。
 本実施形態の消火剤貯蔵容器810の各部位の樹脂の結晶化率を測定した結果、口部891の樹脂の結晶化率は、略0%であり、肩部892の樹脂の結晶化率は、13%以上23%以下であった。加えて、胴部893の樹脂の結晶化率は、14%以上27%以下であり、底部894の樹脂の結晶化率は、10%以上20%以下であった。
 上述のとおり、消火剤貯蔵容器810の胴部893の樹脂の結晶化率が13%以上30%以下であることから、詳細なメカニズムは未だ明らかではないが、樹脂の結晶化による消火剤貯蔵容器の強度乃至耐圧の向上が達成される。なお、樹脂の結晶化率を高めることによって、その容器810の強度及び/又は耐圧性が向上するため、比較的薄肉であっても消火器800に求められる高い耐久性を満足しうる。なお、現段階において、既に十分な耐圧性乃至強度が確保されているため、30%を越える胴部893の樹脂の結晶化率を得る必要性は乏しいと考えられる。
 本実施形態では、まず、消火剤貯蔵容器810の材料となるポリエチレンナフタレート(PEN)を溶融し、射出金型内にその樹脂を射出又は押出することによって肉厚が15mm±0.4mmであって、全光線透過率が約5%のプリフォームを形成する。次に、胴部893の円周方向の延伸倍率がその円周方向に垂直な方向の延伸倍率の1.05倍以上1.4倍以下であり、かつ、その円周方向の延伸倍率とその円周方向に垂直な方向の延伸倍率との積が12以上13以下となるように、最終成形品を形成する。このような延伸倍率にすることにより、消火剤貯蔵容器として求められる耐圧性を確保することができる。
 ところで、本実施形態においては、プリフォームの肉厚を15mm±0.4mm、最終成形品たる消火剤貯蔵容器810の胴部893の肉厚(T3)を1.8mm±0.4mmとしているが、第4の実施形態のように、プリフォームの肉厚を13mm±0.4mm、最終成形品たる消火剤貯蔵容器810の胴部893の肉厚(T3)を1.6mm±0.4mmとしても、本発明の一部の効果が奏される。同様に、第5の実施形態のように、プリフォームの肉厚を19mm±0.4mm、最終成形品たる消火剤貯蔵容器810の胴部893の肉厚(T3)を2.4mm±0.4mmとしても、本発明の少なくとも一部の効果が奏される。
 また、本実施形態においては、ポリエチレンナフタレート(PEN)のみで形成される消火剤貯蔵容器810が採用されているが、第2の実施形態のように、ポリエチレンテレフタレート(PET)によって形成される消火剤貯蔵容器が採用されても、本発明の少なくとも一部の効果が奏される。
<第9の実施形態>
 本実施形態の消火器900は、第1の実施形態の消火剤貯蔵容器10の代わりに消火剤貯蔵容器910を備える点以外は、第1の実施形態の消火器100と同じ構成を備える。従って、第1の実施形態と重複する説明は省略される。
 本実施形態の消火剤貯蔵容器910の全光線透過率は、5%以上75%以下である。本実施形態の消火剤貯蔵容器910の全光線透過率が75%を越えると、第6の実施形態と同様に、収められている消火剤の壁面への付着が消火器の汚れに見えてしまうことにより、消火器900が設置される場所の周囲の美観を損なうことになる。また、全光線透過率が5%未満になると、緊急時に消火剤の残量が確認しづらくなるため実用性が劣ることになる。従って、前述の範囲の適度な透明性を維持することが、実用性と外観上の美観とを調和することになる。なお、さらに好ましい消火剤貯蔵容器910の全光線透過率は、20%以上70%以下である。この範囲であれば、さらに、周囲の美観との調和が取れる。
 また、延伸ブロー成形により消火剤貯蔵容器910を製造する場合には、消火剤貯蔵容器910のプリフォームの全光線透過率は、5%以上75%以下であることが好ましい。消火剤貯蔵容器910のプリフォームの全光線透過率が75%を越えると、延伸ブロー後の消火剤貯蔵容器910内に収められている消火剤の壁面への付着が消火器の汚れに見えてしまうことにより、消火器900が設置される場所の周囲の美観を損なうことになる。他方、前述のプリフォームの全光線透過率が5%未満になると、緊急時に、延伸ブローされた消火剤貯蔵容器910内の消火剤の残量が確認しづらくなるため実用性が劣ることになる。従って、消火剤貯蔵容器910のプリフォームについても、前述の範囲の透明性を維持することが、延伸ブロー後の消火剤貯蔵容器910の実用性と外観上の美観とを調和させることになる。
 また、本実施形態における消火剤貯蔵容器910のプリフォームの肉厚は、4mm以上30mm以下であることが好ましい。前述の各範囲に収まるように、かつ、消火剤貯蔵容器910のプリフォームの全光線透過率を5%以上75%以下に収まるようにプリフォームを形成することにより、胴部993の円周方向の延伸倍率のスカラー量とその円周方向に垂直な方向の延伸倍率のスカラー量との積が約6.5である延伸ブロー成形後の消火剤貯蔵容器910の全光線透過率が20%以上70%以下となる透明性が確保される。
<第10の実施形態>
 本実施形態の消火器1000は、第2の実施形態の消火剤貯蔵容器210の代わりに消火剤貯蔵容器1010を備える点以外は、第2の実施形態の消火器200と同じ構成を備える。従って、第2の実施形態と重複する説明は省略される。
 本実施形態の消火剤貯蔵容器1010の全光線透過率は、5%以上75%以下である。本実施形態の消火剤貯蔵容器1010の全光線透過率が75%を越えると、第7の実施形態と同様に、収められている消火剤の壁面への付着が消火器の汚れに見えてしまうことにより、消火器1000が設置される場所の周囲の美観を損なうことになる。また、全光線透過率が5%未満になると、緊急時に消火剤の残量が確認しづらくなるため実用性が劣ることになる。従って、前述の範囲の適度な透明性を維持することが、実用性と外観上の美観とを調和することになる。なお、さらに好ましい消火剤貯蔵容器1010の全光線透過率は、20%以上70%以下である。この範囲であれば、さらに、周囲の美観との調和が取れる。
 ところで、本実施形態の消火剤貯蔵容器1010のプリフォームの肉厚は、5mm以上15mm以下であることが好ましい。前述の各範囲に収まるように、かつ、プリフォームの全光線透過率を20%以上70%以下に収まるようにプリフォームを形成することにより、胴部1093の円周方向の延伸倍率のスカラー量とその円周方向に垂直な方向の延伸倍率のスカラー量との積が約6.5である延伸ブロー成形後の消火剤貯蔵容器1010の全光線透過率が20%以上70%以下となる透明性が確保される。
<第11の実施形態>
 本実施形態の消火器1100は、第3の実施形態の消火剤貯蔵容器310の代わりに消火剤貯蔵容器1110を備える点以外は、第3の実施形態の消火器300と同じ構成を備える。従って、第3の実施形態と重複する説明は省略される。
 本実施形態の消火剤貯蔵容器1110の全光線透過率は、5%以上75%以下である。本実施形態の消火剤貯蔵容器1110の全光線透過率が75%を越えると、第6の実施形態と同様に、収められている消火剤の壁面への付着が消火器の汚れに見えてしまうことにより、消火器1100が設置される場所の周囲の美観を損なうことになる。また、全光線透過率が5%未満になると、緊急時に消火剤の残量が確認しづらくなるため実用性が劣ることになる。従って、前述の範囲の適度な透明性を維持することが、実用性と外観上の美観とを調和することになる。なお、さらに好ましい消火剤貯蔵容器1110の全光線透過率は、20%以上70%以下である。この範囲であれば、さらに、周囲の美観との調和が取れる。
 また、消火剤貯蔵容器1110のプリフォームの全光線透過率は、5%以上75%以下であることが好ましい。消火剤貯蔵容器1110のプリフォームの全光線透過率が75%を越えると、延伸ブロー後の消火剤貯蔵容器1110内に収められている消火剤の壁面への付着が消火器の汚れに見えてしまうことにより、消火器900が設置される場所の周囲の美観を損なうことになる。他方、前述のプリフォームの全光線透過率が5%未満になると、緊急時に、延伸ブローされた消火剤貯蔵容器1110内の消火剤の残量が確認しづらくなるため実用性が劣ることになる。従って、消火剤貯蔵容器1110のプリフォームについても、前述の範囲の透明性を維持することが、延伸ブロー後の消火剤貯蔵容器1110の実用性と外観上の美観とを調和させることになる。
 また、本実施形態における消火剤貯蔵容器1110のプリフォームの肉厚は、15mm±0.4mmとしている。また、本実施形態における消火剤貯蔵容器1110のプリフォームの全光線透過率を約5%としている。加えて、胴部1193の円周方向の延伸倍率がその円周方向に垂直な方向の延伸倍率の1.05倍以上1.4倍以下であり、かつ、その円周方向の延伸倍率とその円周方向に垂直な方向の延伸倍率との積が12以上13以下となるように、最終成形品が形成されている。このような延伸倍率にすることにより、消火剤貯蔵容器として求められる耐圧性を確保することができる。
 ところで、本実施形態において、プリフォームの肉厚を15mm±0.4mm、最終成形品たる消火剤貯蔵容器1110の胴部1193の肉厚(T3)を1.8mm±0.4mmとしているが、第4の実施形態のように、プリフォームの肉厚を13mm±0.4mm、最終成形品たる消火剤貯蔵容器1110の胴部1193の肉厚(T3)を1.6mm±0.4mmとしても、本発明の一部の効果が奏される。同様に、第5の実施形態のように、プリフォームの肉厚を19mm±0.4mm、最終成形品たる消火剤貯蔵容器1110の胴部1193の肉厚(T3)を2.4mm±0.4mmとしても、本発明の少なくとも一部の効果が奏される。
 また、本実施形態においては、ポリエチレンナフタレート(PEN)のみで形成される消火剤貯蔵容器1110が採用されているが、第7の実施形態のように、ポリエチレンテレフタレート(PET)によって形成される消火剤貯蔵容器が採用されても、本発明の少なくとも一部の効果が奏される。
<第12の実施形態>
 本実施形態の消火器1200は、第8の実施形態の消火剤貯蔵容器810の代わりに消火剤貯蔵容器1210を備える点以外は、第8の実施形態の消火器800と同じ構成を備える。従って、第8の実施形態と重複する説明は省略される。
 本実施形態の消火剤貯蔵容器1210の全光線透過率は、5%以上75%以下である。本実施形態の消火剤貯蔵容器1210の全光線透過率が75%を越えると、第6の実施形態と同様に、収められている消火剤の壁面への付着が消火器の汚れに見えてしまうことにより、消火器1200が設置される場所の周囲の美観を損なうことになる。また、全光線透過率が5%未満になると、緊急時に消火剤の残量が確認しづらくなるため実用性が劣ることになる。従って、前述の範囲の適度な透明性を維持することが、実用性と外観上の美観とを調和することになる。なお、さらに好ましい消火剤貯蔵容器1210の全光線透過率は、20%以上70%以下である。この範囲であれば、さらに、周囲の美観との調和が取れる。
 また、消火剤貯蔵容器1210のプリフォームの全光線透過率は、5%以上75%以下であることが好ましい。消火剤貯蔵容器1210のプリフォームの全光線透過率が75%を越えると、延伸ブロー後の消火剤貯蔵容器1210内に収められている消火剤の壁面への付着が消火器の汚れに見えてしまうことにより、消火器1200が設置される場所の周囲の美観を損なうことになる。他方、前述のプリフォームの全光線透過率が5%未満になると、緊急時に、延伸ブローされた消火剤貯蔵容器1210内の消火剤の残量が確認しづらくなるため実用性が劣ることになる。従って、消火剤貯蔵容器1210のプリフォームについても、前述の範囲の透明性を維持することが、延伸ブロー後の消火剤貯蔵容器1210の実用性と外観上の美観とを調和させることになる。
 ところで、本実施形態において、プリフォームの肉厚を15mm±0.4mm、最終成形品たる消火剤貯蔵容器1210の胴部1293の肉厚(T3)を1.8mm±0.4mmとしているが、第4の実施形態のように、プリフォームの肉厚を13mm±0.4mm、最終成形品たる消火剤貯蔵容器1210の胴部1293の肉厚(T3)を1.6mm±0.4mmとしても、本発明の一部の効果が奏される。同様に、第5の実施形態のように、プリフォームの肉厚を19mm±0.4mm、最終成形品たる消火剤貯蔵容器1210の胴部1293の肉厚(T3)を2.4mm±0.4mmとしても、本発明の少なくとも一部の効果が奏される。
 また、本実施形態においては、ポリエチレンナフタレート(PEN)のみで形成される消火剤貯蔵容器1210が採用されているが、第7の実施形態のように、ポリエチレンテレフタレート(PET)によって形成される消火剤貯蔵容器が採用されても、本発明の少なくとも一部の効果が奏される。
<実施例>
 表22は、上述の第1及び第2の実施形態において製造された消火器の消火剤貯蔵容器の耐圧を測定する実験を行った結果を示している。なお、本実験では、空気よる耐圧は、圧力源として窒素ボンベが採用され、ヤマト産業株式会社製の圧力調製器(型式YR-5062)と右下精機株式会社製の圧力計(型式S41又はGLT41)によって測定された。実際の測定の際、圧力源から供給された気体(窒素)の圧力が、圧力計で一定となるように維持させた状態で消火剤貯蔵容器の変化の有無を確認する方法が採用された。他方、比較例として、ポリエチレンナフタレート(PEN)製の市販のビール用ボトル(比較例1)と、ポリエチレンテレフタレート(PET)製の市販の清涼飲料用ボトル(比較例2)についても、上記の第1及び第2の実施形態の消火剤貯蔵容器と同様の測定が行われた。
Figure JPOXMLDOC01-appb-T000022
 表22に示すとおり、上述の各実施形態のポリエチレンナフタレート(PEN)製の消火剤貯蔵容器及びポリエチレンテレフタレート(PET)製の消火剤貯蔵容器は、少なくとも2.6MPaの圧力を加えたときに亀裂又は破壊しないことが分かる。すなわち、上述の第1及び第2の実施形態の消火剤貯蔵容器の強度が、市販の樹脂製ボトルの強度に比べて格段に高められたことが分かる。なお、市販の各ボトルの破壊状況は延性破壊であったが、上述の第1及び第2の実施形態の消火剤貯蔵容器の破壊は脆性破壊であった。また、水圧による試験も行われた。具体的には、水圧力源として、株式会社キョーワ製の手動テストポンプ(型式T-300N)が用いられ、右下精機株式会社製の圧力計(型式S41又はGLT41)を用いて測定された。その結果、前述のいずれの樹脂が採用されても、消火剤貯蔵容器に対して2.6MPaの水圧力を加えたときに、その消火剤貯蔵容器が亀裂又は破壊しないことが確認されている。また、特にポリエチレンナフタレート(PEN)製の消火剤貯蔵容器については、3.0MPaの水圧力が加えられても、その消火剤貯蔵容器が亀裂又は破壊しないことが確認されている。
 ところで、上述の各実施形態では、消火剤貯蔵容器を構成する樹脂としてポリエチレンナフタレートとポリエチレンテレフタレートが単独で採用されていたが、これに限定されない。例えば、ジカルボン酸成分として主にナフタレンジカルボン酸またはテレフタル酸、ジオール成分として主にエチレングリコール又はブタンジオールを用いて重縮合させて得られたポリエステル樹脂又はこれらのポリエステル樹脂を主とする材料が消火剤貯蔵容器の材料として採用されても、本発明の少なくとも一部の効果が奏されると考えられる。換言すれば共重合ポリエステル樹脂であれば、本発明の少なくとも一部の効果が奏されると考えられる。
 また、他の採用し得る材料の一例として、ポリエチレンやポリプロピレンなどのポリオレフィン、ポリフェニレンスルファイド、ポリスチレン、又はポリカーボネートが挙げられる。但し、上述の全ての材料の中でも、ポリエチレンテレフタレート(PET)やポリエチレンナフタレート(PEN)を採用することが、強度の観点から好ましい。また、透明性を高めるためには、ポリエチレンナフタレート(PEN)を単独で、又はポリエチレンナフタレート(PEN)を主とし、ポリエチレンテレフタレート(PET)を従とするブレンド材料が採用されることが好ましい。さらに、透明性、強度、及びガスバリア性の観点から、ポリエチレンナフタレート(PEN)が単独で採用されることが最も好ましい。すなわち、ポリエチレンナフタレート(PEN)を採用することにより、適度な透明性を維持しつつ高強度の消火剤貯蔵容器がより確度高く得られる。
 上述の各実施形態の消火器の消火剤貯蔵容器に充填される消火剤の種類は特に限定されない。消火剤容器を構成する樹脂への影響がない限り、公知のいかなる消火剤も採用することできる。例えば、粉末消火器としても使用することができる。また、消火剤の充填方法、及びホースやノズルなどの構成部品の材質と形状等については、従来から提案されているものを適宜採用することができる。
 また、消火剤の放射方式として、加圧式又は蓄圧式のどちらも採用され得る。但し、上述の各実施形態は蓄圧式の消火器であり、従来の消火器と同等以上の高圧の消火剤にも対応しうる点は特筆に値する。さらに、消火剤貯蔵容器を構成する樹脂は、変色の防止や耐候性の向上のために、光安定剤、紫外線吸収剤、老化防止剤などの公知の添加剤を適宜配合することができる。
 ところで、上述した第3乃至第5、第8、第11、及び第12の実施形態においては、最終成形品の胴部393,493,593,893,1193,1293に対応する部分のプリフォームの肉厚が13mm±0.4mm、15mm±0.4mm、又は19mm±0.4mmの消火剤貯蔵容器が採用されているが、これに限定されない。最終成形品の胴部393,493,593,893,1193,1293に対応する部分のプリフォームの肉厚が13mm±0.4mm未満であっても、あるいは、19mm±0.4mmを超えても、上述の各実施形態と同様に良好な耐圧性が得られる場合があると考えられる。また。最終成形品の胴部393,493,593,893,1193,1293の肉厚(T3)が1.2mm未満であっても、また、2.8mmを超えても、上述の各実施形態と同様に良好な耐圧性が得られる場合があると考えられる。例えば、胴部393,493,593,893,1193,1293の円周方向の延伸倍率がその円周方向に垂直な方向の延伸倍率の1.05倍以上1.4倍以下であり、かつ、その円周方向の延伸倍率とその円周方向に垂直な方向の延伸倍率との積が12以上13以下となる消火剤貯蔵容器を採用すれば、良好な耐圧性が得られると考えられる。また、胴部393,493,593,893,1193,1293の円周方向の延伸倍率がその円周方向に垂直な方向の延伸倍率の1.1倍以上1.2倍以下であり、かつ、胴部393,493,593,893,1193,1293の円周方向の延伸倍率とその円周方向に垂直な方向の延伸倍率との積が12.1以上12.3以下となる消火剤貯蔵容器を採用すれば、さらに良好な耐圧性を得ることができると考えられる。但し、環境を配慮した材料削減の観点、成形時間や冷却時間の低減(製造コスト)の観点、及び、成形の容易さの観点から言えば、最終成形品の胴部393,493,593,893,1193,1293に対応する部分のプリフォームの肉厚が、13mm±0.4mm乃至15mm±0.4mmであることが好ましい。
 以上、述べたとおり、各実施形態の他の組み合わせを含む本発明の範囲内に存在する変形例もまた、特許請求の範囲に含まれるものである。
 本発明の消火器は、樹脂製の消火剤貯蔵容器が採用されているため、消火器産業において極めて有用である。
 10,210,310,410,510,610,710,810,910,1010,1110,1210  消火剤貯蔵容器
 11  消火剤貯蔵部
 12  雄ネジ部
 30  消火器用ハンドレバー
 31  蓋体
 32  固定レバー
 33  起動レバー
 34  起倒杆
 35  安全栓
 40  消火剤ホース
 50  支持台
 60  消火剤
 70  サイホン管
 91,291,691,791,891  口部
 92,292,692,792,892  肩部
 93,293,393,493,593,693,793,893,993,1093,1193,1293  胴部
 94,294,694,794,894  底部
 100,200,300,400,500,600,700,800,900,1000,1100,1200  消火器
 

Claims (24)

  1.  消火剤貯蔵容器を有する消火器において、
     前記消火剤貯蔵容器が、開口部となる口部、肩部、円筒形状の胴部、及び底部とを有するとともに継ぎ目のない樹脂によって成形され、
     前記胴部の肉厚が1mm以上5mm以下であるとともに、前記口部及び前記底部を除く前記樹脂の結晶化率が13%以上30%以下である
     消火器。
  2.  前記消火剤貯蔵容器が、延伸ブロー成形により形成され、
     前記胴部の円周方向の延伸倍率が、前記胴部の前記円周方向に垂直な方向の延伸倍率の1.05倍以上1.4倍以下である
     請求項1に記載の消火器。
  3.  前記消火剤貯蔵容器が、延伸ブロー成形により形成され、
     前記胴部の円周方向の延伸倍率が、前記胴部の前記円周方向に垂直な方向の延伸倍率の1.12倍以上1.26倍以下である
     請求項1に記載の消火器。
  4.  前記消火剤貯蔵容器が、5%以上75%以下の全光線透過率を有する樹脂で成形される
     請求項1に記載の消火器。
  5.  前記消火剤貯蔵容器が、5%以上75%以下の全光線透過率を有する樹脂で成形される
     請求項2に記載の消火器。
  6.  前記消火剤貯蔵容器が、5%以上75%以下の全光線透過率を有する樹脂で成形される
     請求項3に記載の消火器。
  7.  前記胴部の肉厚が1mm以上3mm以下であるとともに、前記胴部の前記樹脂の結晶化率が14%以上27%以下である
     請求項1乃至請求項6のいずれかに記載の消火器。
  8.  前記消火剤貯蔵容器に対して2.6MPaの圧力を加えたときに、前記消火剤貯蔵容器が亀裂又は破壊しない
     請求項1乃至請求項6のいずれかに記載の消火器。
  9.  前記樹脂が、ポリエチレンナフタレート及びポリエチレンテレフタレートの群から選ばれる少なくとも1種類の樹脂である
     請求項1乃至請求項6のいずれかに記載の消火器。
  10.  前記消火剤貯蔵容器の内部に3MPaの圧力を加えた後に生じる前記胴部の永久歪みが、1%未満である
     請求項2、請求項3、請求項5、又は請求項6に記載の消火器。
  11.  前記消火剤貯蔵容器の内部に3MPaの圧力を加えた後に生じる前記胴部の永久歪みが、0.8%未満である
     請求項2、請求項3、請求項5、又は請求項6に記載の消火器。
  12.  前記消火剤貯蔵容器が、延伸ブロー成形によって形成され、かつ、
     前記延伸ブロー成形前のプリフォームの全光線透過率が5%以上75%以下であるとともに前記プリフォームの肉厚が4mm以上30mm以下である
     請求項4乃至請求項6のいずれかに記載の消火器。
  13.  消火剤貯蔵容器を有する消火器において、
     前記消火剤貯蔵容器が、樹脂を用いて延伸ブロー成形により形成され、かつ、開口部となる口部、肩部、円筒形状の胴部、及び底部とを有し、
     前記胴部の円周方向の延伸倍率が、前記胴部の前記円周方向に垂直な方向の延伸倍率の1.05倍以上1.4倍以下である
     消火器。
  14.  消火剤貯蔵容器を有する消火器において、
     前記消火剤貯蔵容器が、樹脂を用いて延伸ブロー成形により形成され、かつ、開口部となる口部、肩部、円筒形状の胴部、及び底部とを有し、
     前記胴部の円周方向の延伸倍率が、前記胴部の前記円周方向に垂直な方向の延伸倍率の1.12倍以上1.26倍以下である
     消火器。
  15.  前記消火剤貯蔵容器の内部に3MPaの圧力を加えた後に生じる前記胴部の永久歪みが、1%未満である
     請求項13に記載の消火器。
  16.  前記消火剤貯蔵容器の内部に3MPaの圧力を加えた後に生じる前記胴部の永久歪みが、0.8%未満である
     請求項14に記載の消火器。
  17.  前記消火剤貯蔵容器が、ポリエチレンナフタレート、及びポリエチレンテレフタレートの群から選ばれる少なくとも1種類の樹脂により形成される
     請求項13又は請求項14に記載の消火器。
  18.  消火剤貯蔵容器を有する消火器において、
     前記消火剤貯蔵容器が、開口部となる口部、肩部、円筒形状の胴部、及び底部とを有し、かつ、継ぎ目のない5%以上75%以下の全光線透過率を有する樹脂で成形されるとともに、前記胴部の肉厚が1mm以上5mm以下である
     消火器。
  19.  前記消火剤貯蔵容器が、延伸ブロー成形によって形成され、かつ、
     前記延伸ブロー成形前のプリフォームの全光線透過率が5%以上75%以下であるとともに前記プリフォームの肉厚が4mm以上30mm以下である
     請求項18に記載の消火器。
  20.  前記消火剤貯蔵容器に対して2.6MPaの圧力を加えたときに、前記消火剤貯蔵容器が亀裂又は破壊しない
     請求項18に記載の消火器。
  21.  前記樹脂が、ポリエチレンナフタレート及びポリエチレンテレフタレートの群から選ばれる少なくとも1種類の樹脂である
     請求項18に記載の消火器。
  22.  開口部となる口部、肩部、円筒形状の胴部、及び底部とを有するとともに継ぎ目のない樹脂によって成形され、
     前記胴部の肉厚が1mm以上5mm以下であるとともに、前記口部及び前記底部を除く前記樹脂の結晶化率が13%以上30%以下である
     消火剤貯蔵容器。
  23.  樹脂を用いて延伸ブロー成形により形成され、かつ、開口部となる口部、肩部、円筒形状の胴部、及び底部とを有し、前記胴部の円周方向の延伸倍率が、前記胴部の前記円周方向に垂直な方向の延伸倍率の1.05倍以上1.4倍以下である
     消火剤貯蔵容器。
  24.  継ぎ目のない5%以上75%以下の全光線透過率を有する樹脂で成形されるとともに肉厚が4mm以上30mm以下である
     消火剤貯蔵容器のプリフォーム。
PCT/JP2009/063061 2008-10-16 2009-07-21 消火器、消火剤貯蔵容器、及び消火剤貯蔵容器のプリフォーム WO2010044298A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2010533849A JPWO2010044298A1 (ja) 2008-10-16 2009-07-21 消火器、消火剤貯蔵容器、及び消火剤貯蔵容器のプリフォーム
CN200980136318.XA CN102159286B (zh) 2008-10-16 2009-07-21 灭火器及灭火剂储藏容器
EP09820476.1A EP2351601B1 (en) 2008-10-16 2009-07-21 Fire extinguisher, storage container for fire-extinguishing agent, and preform of storage container for fire-extinguishing agent
US13/124,375 US8815355B2 (en) 2008-10-16 2009-07-21 Fire extinguisher, fire extinguisher cylinder, and preform of fire extinguisher cylinder

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2008268024 2008-10-16
JP2008-268023 2008-10-16
JP2008-268024 2008-10-16
JP2008268022 2008-10-16
JP2008-268022 2008-10-16
JP2008268023 2008-10-16

Publications (1)

Publication Number Publication Date
WO2010044298A1 true WO2010044298A1 (ja) 2010-04-22

Family

ID=42106465

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/063061 WO2010044298A1 (ja) 2008-10-16 2009-07-21 消火器、消火剤貯蔵容器、及び消火剤貯蔵容器のプリフォーム

Country Status (5)

Country Link
US (1) US8815355B2 (ja)
EP (1) EP2351601B1 (ja)
JP (3) JPWO2010044298A1 (ja)
CN (2) CN102159286B (ja)
WO (1) WO2010044298A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2010044298A1 (ja) * 2008-10-16 2012-03-15 株式会社初田製作所 消火器、消火剤貯蔵容器、及び消火剤貯蔵容器のプリフォーム

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130213675A1 (en) * 2012-02-21 2013-08-22 Randy Rousseau Self servicing fire extinguisher with internal mixing and external co2 chamber
JP6353726B2 (ja) * 2014-07-24 2018-07-04 帝人株式会社 消火に用いる耐圧性容器
JP7386496B2 (ja) * 2018-11-01 2023-11-27 ヤマトプロテック株式会社 消火器及びその製造方法
JP6505936B1 (ja) 2018-11-13 2019-04-24 住友精化株式会社 高分子組成物
USD953874S1 (en) * 2020-09-23 2022-06-07 Msrf, Inc. Bottle
KR102558448B1 (ko) * 2022-06-16 2023-07-24 주식회사 한솔케미칼 분리막용 공중합체 및 이를 포함하는 이차전지
USD1051507S1 (en) 2024-03-01 2024-11-12 X-Sense Usa Llc Fire extinguisher

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56160560U (ja) * 1980-05-02 1981-11-30
JPH0298536A (ja) * 1988-09-29 1990-04-10 Toyo Seikan Kaisha Ltd 耐圧耐熱容器及びその製造方法
JPH02106317A (ja) * 1988-10-14 1990-04-18 Toyo Seikan Kaisha Ltd 耐熱耐圧容器及びその製造方法
JPH04142275A (ja) * 1990-09-26 1992-05-15 Mitsui Toatsu Chem Inc 耐熱性エアゾール容器
JP3031761U (ja) * 1996-02-22 1996-12-03 株式会社サンケイワーク 家庭用簡易消火器具
JPH09313634A (ja) * 1996-05-30 1997-12-09 Nohmi Bosai Ltd 蓄圧貯水装置
JPH1143132A (ja) * 1997-05-29 1999-02-16 Unitika Ltd エアゾール用容器及びその製造方法
JPH11321837A (ja) * 1998-05-20 1999-11-24 Ueno Hiroshi 透明エアゾール容器
JP2002067129A (ja) * 2000-08-25 2002-03-05 Toyo Seikan Kaisha Ltd 二軸延伸ポリエステルボトル及びその製造方法

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2731093A (en) * 1955-06-20 1956-01-17 Graphicolor Inc Fire extinguisher device
US2865458A (en) * 1957-04-17 1958-12-23 Simoncini Manlio Emergency fire extinguisher
US3733309A (en) * 1970-11-30 1973-05-15 Du Pont Biaxially oriented poly(ethylene terephthalate)bottle
US3948404A (en) * 1974-11-14 1976-04-06 E. I. Du Pont De Nemours And Company Composite package for containing pressurized fluids
US4144298A (en) * 1977-08-04 1979-03-13 Owens-Illinois, Inc. Method of forming strain crystallized thermoplastic articles
US4233022A (en) * 1978-07-10 1980-11-11 Owens-Illinois, Inc. Apparatus for forming heat treated blown thermoplastic articles
JPS56160560A (en) 1980-05-15 1981-12-10 Mitsubishi Electric Corp Cooler
AU8277982A (en) * 1981-04-06 1982-10-19 Rilett, J.W. Fluid containers
US4650004A (en) * 1984-10-29 1987-03-17 The Goodyear Tire & Rubber Company Portable dry chemical fire extinguisher
JPS62145647A (ja) 1985-12-19 1987-06-29 Matsushita Electric Ind Co Ltd 密閉電池の製造法
JPS62145647U (ja) * 1986-03-08 1987-09-14
JP2692276B2 (ja) 1989-06-29 1997-12-17 株式会社島津製作所 ブランクチェック機構を有する全有機炭素計
JP3839066B2 (ja) * 1993-12-22 2006-11-01 凸版印刷株式会社 多層樹脂容器
JPH1016934A (ja) * 1996-06-26 1998-01-20 Mitsui Petrochem Ind Ltd 飽和ポリエステル組成物製ボトルおよびその製造方法
AU7937898A (en) 1997-07-04 1999-01-25 Mitsubishi Plastics Inc. Polyester resin composition and bottle produced from the resin composition
JP2004196926A (ja) * 2002-12-18 2004-07-15 Toray Ind Inc 熱可塑性樹脂製耐圧容器および高圧体封入容器
FR2850875B1 (fr) * 2003-02-07 2005-04-15 Eurofeu Sa Extincteur d'incendie comportant un reservoir en matiere plastique
US20040166266A1 (en) * 2003-02-26 2004-08-26 General Electric Company Pressurized containers and method for making thereof
JP4765338B2 (ja) * 2005-02-22 2011-09-07 東洋製罐株式会社 包装材料
GB2436350A (en) * 2006-03-22 2007-09-26 Shield Medicare Ltd Multi compartment dispenser with gas cartridge activator and dispensing inhibitor
JP4935293B2 (ja) * 2006-10-17 2012-05-23 東洋製罐株式会社 延伸成形容器及びその製造方法
BRPI0702725B1 (pt) * 2007-03-29 2018-05-08 Augusto De Jesus Delgado Junior extintor de incêndio com recipiente plástico descartável
WO2008133176A1 (ja) * 2007-04-17 2008-11-06 Hatsuta Seisakusho Co., Ltd. 消火器
EP2017602B1 (en) * 2007-07-19 2014-02-26 Consejo Superior de Investigaciones Cientificas Interferometer and sensor based on bimodal optical waveguide and sensing method
CN102159286B (zh) * 2008-10-16 2013-03-20 株式会社初田制作所 灭火器及灭火剂储藏容器

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56160560U (ja) * 1980-05-02 1981-11-30
JPH0298536A (ja) * 1988-09-29 1990-04-10 Toyo Seikan Kaisha Ltd 耐圧耐熱容器及びその製造方法
JPH02106317A (ja) * 1988-10-14 1990-04-18 Toyo Seikan Kaisha Ltd 耐熱耐圧容器及びその製造方法
JPH04142275A (ja) * 1990-09-26 1992-05-15 Mitsui Toatsu Chem Inc 耐熱性エアゾール容器
JP3031761U (ja) * 1996-02-22 1996-12-03 株式会社サンケイワーク 家庭用簡易消火器具
JPH09313634A (ja) * 1996-05-30 1997-12-09 Nohmi Bosai Ltd 蓄圧貯水装置
JPH1143132A (ja) * 1997-05-29 1999-02-16 Unitika Ltd エアゾール用容器及びその製造方法
JPH11321837A (ja) * 1998-05-20 1999-11-24 Ueno Hiroshi 透明エアゾール容器
JP2002067129A (ja) * 2000-08-25 2002-03-05 Toyo Seikan Kaisha Ltd 二軸延伸ポリエステルボトル及びその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2351601A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2010044298A1 (ja) * 2008-10-16 2012-03-15 株式会社初田製作所 消火器、消火剤貯蔵容器、及び消火剤貯蔵容器のプリフォーム

Also Published As

Publication number Publication date
EP2351601A4 (en) 2015-03-04
CN102772863A (zh) 2012-11-14
JPWO2010044298A1 (ja) 2012-03-15
JP5873919B2 (ja) 2016-03-01
US8815355B2 (en) 2014-08-26
EP2351601B1 (en) 2016-05-25
JP2015051302A (ja) 2015-03-19
JP2013154196A (ja) 2013-08-15
EP2351601A1 (en) 2011-08-03
US20110226496A1 (en) 2011-09-22
CN102159286B (zh) 2013-03-20
CN102772863B (zh) 2015-05-06
CN102159286A (zh) 2011-08-17

Similar Documents

Publication Publication Date Title
JP5873919B2 (ja) 消火器及び消火剤貯蔵容器
WO2012051093A3 (en) Substantially rigid collapsible liner, container and/or liner for replacing glass bottles, and enhanced flexible liners
WO2011006146A3 (en) Substantially rigid collapsible liner and flexible gusseted or non-gusseted liners and methods of manufacturing the same and methods for limiting choke-off in liners
US10988306B2 (en) Dispenser comprising pressure control device, method of manufacturing dispenser parts and method of assembly
US20110017753A1 (en) Hot-fillable and Retortable Plastic Container
US20060113274A1 (en) Vacuum panel base
JP5160479B2 (ja) 消火器及び消火剤貯蔵容器
BE1019794A5 (nl) Werkwijze ter vervaardiging van drukbestendige gas en/of vloeistofdichte recipienten.
JP2010200815A (ja) 消火剤貯蔵容器の支持台及び消火器
JP2010105677A (ja) 耐座屈性を有する樹脂製容器及びそれを用いた飲料製品
JP5689594B2 (ja) 消火剤貯蔵容器及び消火器
JP5793371B2 (ja) 消火剤貯蔵容器及びそれを備えた消火器
JP2010221005A (ja) 蓄圧式消火器
JP5956654B2 (ja) 消火剤貯蔵容器及びそれを備えた消火器
JP2015044099A (ja) 消火剤貯蔵容器及び消火器
JP2011050516A (ja) 消火器およびその製造方法
JP2010162267A (ja) 消火器用被覆部材及び消火器
CN2463668Y (zh) 食品用二氧化碳铝瓶
JPH0376651B2 (ja)
JP4022091B2 (ja) 耐衝撃性に優れた多層ブロー成形容器
JP5464912B2 (ja) 消火器用容器及び消火器
JP2013000427A (ja) サイフォン管継ぎ手及び消火器
CN2177679Y (zh) 塑料三缩颈易拉罐复合底
KR20100002475U (ko) 주차금지 표시콘
MY164035A (en) Substantially rigid collapsible liner and flexible gusseted or non-gusseted liners and methods of manufacturing the same and methods for limiting choke-off in liners

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980136318.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09820476

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010533849

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2833/MUMNP/2011

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2009820476

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13124375

Country of ref document: US