WO2010032841A1 - Conductive filler, conductive paste and article having conductive film - Google Patents
Conductive filler, conductive paste and article having conductive film Download PDFInfo
- Publication number
- WO2010032841A1 WO2010032841A1 PCT/JP2009/066420 JP2009066420W WO2010032841A1 WO 2010032841 A1 WO2010032841 A1 WO 2010032841A1 JP 2009066420 W JP2009066420 W JP 2009066420W WO 2010032841 A1 WO2010032841 A1 WO 2010032841A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- copper
- nanoparticles
- filler
- conductive
- carboxylic acid
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B1/00—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
- H01B1/20—Conductive material dispersed in non-conductive organic material
- H01B1/22—Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F9/00—Making metallic powder or suspensions thereof
- B22F9/16—Making metallic powder or suspensions thereof using chemical processes
- B22F9/30—Making metallic powder or suspensions thereof using chemical processes with decomposition of metal compounds, e.g. by pyrolysis
Definitions
- the present invention relates to an article having a conductive filler, a conductive paste, and a conductive film.
- a metal paste containing metallic silver nanoparticles having an average particle diameter of 1 to 100 nm, a metal filler having an average particle diameter of 5 to 20 ⁇ m, and a resin binder Patent Document 1.
- the metal paste of the above (1) realizes a reduction in resistance that could not be realized only with a metal filler by fusing metal fillers together using the surface melting phenomenon of metal silver nanoparticles.
- silver is a metal that easily undergoes ion migration
- copper is used as the material of the metal nanoparticles. preferable.
- metallic copper nanoparticles are very easy to oxidize.
- the present invention relates to a conductive filler excellent in oxidation resistance and easy to sinter, a conductive paste excellent in storage stability in air and capable of forming a conductive film having high conductivity, and a conductive film having high conductivity.
- An article is provided.
- the present invention has the following gist.
- a copper filler having an average aggregate particle diameter of 0.5 to 20 ⁇ m, copper nanoparticles having an average aggregate particle diameter of 50 to 200 nm, and an aliphatic carboxylic acid and the amount of the copper nanoparticles is 5 to 50 parts by mass with respect to 100 parts by mass of the copper filler, and the amount of the aliphatic carboxylic acid is 1 to 15 parts by mass with respect to a total of 100 parts by mass of the copper filler and the copper nanoparticles.
- a copper filler having an average aggregate particle diameter of 0.5 to 20 ⁇ m, copper nanoparticles having an average aggregate particle diameter of 50 to 200 nm, an aliphatic carboxylic acid, and a resin binder Is 5 to 50 parts by mass with respect to 100 parts by mass of the copper filler, and the amount of the aliphatic carboxylic acid is 1 to 100 parts by mass with respect to a total of 100 parts by mass of the copper filler and the copper nanoparticles.
- a conductive paste comprising 15 parts by mass, and the amount of the resin binder is 5 to 50 parts by mass with respect to 100 parts by mass in total of the copper filler and the copper nanoparticles.
- R in the formula (1) represents a hydrocarbon group having 4 to 20 carbon atoms.
- the conductive filler of the present invention is excellent in oxidation resistance and easy to sinter. According to the conductive paste of the present invention, a conductive film having high conductivity can be formed even after storage in air.
- the article of the present invention has a conductive film having high conductivity.
- the compound represented by the formula (1) is also referred to as the compound (1).
- the average aggregate particle diameter in this specification is a number average average aggregate particle diameter.
- the conductive filler of the present invention includes a copper filler having an average aggregate particle diameter of 0.5 to 20 ⁇ m, copper nanoparticles having an average aggregate particle diameter of 50 to 200 nm, and an aliphatic carboxylic acid.
- the average aggregate particle diameter of the copper filler is 0.5 to 20 ⁇ m, preferably 1 to 10 ⁇ m.
- the average aggregate particle diameter of the copper filler is 0.5 to 20 ⁇ m, preferably 1 to 10 ⁇ m.
- the average agglomerated particle diameter of the copper filler in the present invention was determined by measuring the agglomerated particle diameter of 100 copper fillers randomly selected from a scanning electron microscope (hereinafter referred to as SEM) image, and calculating the average. Ask by taking.
- the amount of the copper filler is preferably 60 to 85% by mass, more preferably 80 to 85% by mass, out of 100% by mass of the conductive filler. If the amount of the copper filler is 60% by mass or more, good conductivity can be secured. When the amount of the copper filler is 85% by mass or less, the conductive paste can be easily applied to the substrate.
- the copper nanoparticles are preferably copper hydride nanoparticles or metal copper nanoparticles from the viewpoint that a conductive film having high conductivity can be formed.
- Copper hydride is a compound containing hydrogen in addition to copper as an element. The copper atom exists in a state of being bonded to a hydrogen atom and has a property of decomposing into metallic copper and hydrogen at 60 to 100 ° C.
- the average aggregate particle diameter of the copper nanoparticles is 50 to 200 nm, preferably 70 to 150 nm.
- the average aggregate particle diameter of the copper nanoparticles is 50 to 200 nm, preferably 70 to 150 nm.
- the average agglomerated particle diameter of the copper nanoparticles in the present invention is determined by measuring the agglomerated particle diameter of 100 copper nanoparticles randomly selected from the SEM image and taking the average.
- copper hydride nanoparticles and copper nanoparticles are used as aggregated particles. These agglomerated particles are formed by agglomerating primary particles having an average primary particle diameter of about 10 to 100 nm, preferably 20 to 50 nm.
- the average primary particle size of the nanoparticles is determined by measuring the primary particle size of 100 nanoparticles randomly selected from the TEM image and taking the average.
- the amount of the copper nanoparticles is 5 to 50 parts by mass, preferably 10 to 35 parts by mass with respect to 100 parts by mass of the copper filler. If the amount of copper nanoparticles is 5 parts by mass or more, the number of conductive paths between copper fillers can be increased, and the volume resistivity of the conductive film can be kept low. If the amount of copper nanoparticles is 50 parts by mass or less, a decrease in fluidity of the conductive paste accompanying the addition of copper nanoparticles can be suppressed.
- the copper hydride nanoparticles can be produced through the following steps (a) to (d), and the metal copper nanoparticles obtained by thermally decomposing the copper hydride nanoparticles are further processed in the following steps (e ) Can be manufactured through.
- B A step of adjusting the pH to 3 or less by adding an acid to the aqueous solution.
- C A step of adding a reducing agent to the aqueous solution while stirring the aqueous solution having a pH of 3 or less to reduce copper ions to produce copper hydride nanoparticles having an average aggregate particle size of 10 to 200 nm.
- D The process of refine
- E A step of thermally decomposing the copper hydride nanoparticles to produce metallic copper nanoparticles.
- Examples of the acid used in the step (b) include formic acid, citric acid, maleic acid, malonic acid, acetic acid, propionic acid, sulfuric acid, nitric acid, hydrochloric acid and the like, and formic acid is preferable. These acids are used to adjust the pH of an aqueous solution containing copper ions, but the acid may cover the surface of the copper nanoparticles and may affect the conductivity of the copper nanoparticles. . Since formic acid is an acid having a reducing action, it is considered that using formic acid in the step (b) has an effect of suppressing oxidation of the surface of the obtained copper nanoparticles.
- the copper nanoparticles are particularly preferably copper hydride nanoparticles whose surface is coated with formic acid, or metal copper nanoparticles obtained by firing the copper hydride nanoparticles.
- the surface of the copper hydride nanoparticles covered with formic acid is measured by measuring the IR spectrum of the copper hydride nanoparticles and, as shown in FIG. 1, formic acid that does not interact with the surface of the copper hydride nanoparticles.
- Absorption near 1700 cm ⁇ 1 due to the stretching of C ⁇ O derived from C is not present or small, and 1500-1600 cm ⁇ 1 due to COO ⁇ derived from formic acid interacting with the surface of the copper hydride nanoparticles. It can be confirmed by the presence of absorption.
- the carboxylic acid of formic acid is —COO 2 — . Since the negative charge in —COO 2 — is delocalized on two oxygen atoms, there is no carbonyl group (C ⁇ O) in —COO 2 — .
- the copper hydride nanoparticles and formic acid are simply blended, the above-mentioned interaction does not occur. Therefore, in the blend, there is absorption around 1700 cm ⁇ 1 due to stretching of C ⁇ O, and COO ⁇ There is no absorption of 1500-1600 cm ⁇ 1 .
- the coating amount of formic acid is preferably 1 to 40% by mass, more preferably 5 to 20% by mass, out of 100% by mass of the entire copper hydride nanoparticles (including formic acid).
- the coating amount of formic acid is obtained by thermally decomposing copper hydride nanoparticles using a thermal analyzer and measuring the mass loss between 150 and 500 ° C.
- Copper hydride nanoparticles whose surface is coated with formic acid can be produced through the following steps (a), (b1), (c), and (d), and the copper hydride nanoparticles are pyrolyzed.
- the resulting copper metal nanoparticles can be further manufactured through the following step (e).
- B1 A step of adding formic acid to the aqueous solution to adjust the pH to 3 or less.
- (C) A step of adding a reducing agent to the aqueous solution while stirring the aqueous solution having a pH of 3 or less to reduce copper ions to produce copper hydride nanoparticles having an average aggregate particle size of 10 to 200 nm.
- (D) The process of refine
- (E) A step of thermally decomposing the copper hydride nanoparticles to produce metallic copper nanoparticles.
- the water-soluble copper compound examples include copper sulfate, copper nitrate, copper formate, copper acetate, copper chloride, copper bromide, copper iodide and the like.
- the concentration of the water-soluble copper compound is preferably 0.1 to 30% by mass and more preferably 1 to 20% by mass in 100% by mass of the aqueous solution. If the density
- pH of aqueous solution exceeds 3, there exists a possibility that a metal copper nanoparticle may produce
- the pH of the aqueous solution is preferably 0.5 to 2.0, more preferably 0.7 to 1.5, from the viewpoint that copper hydride nanoparticles can be formed in a short time.
- metal hydride or hypophosphorous acid is preferable because of its large reducing action.
- metal hydrides include lithium aluminum hydride, lithium borohydride, sodium borohydride, lithium hydride, potassium hydride, calcium hydride, and the like. Lithium aluminum hydride, lithium borohydride, borohydride Sodium is preferred.
- the addition amount of the reducing agent is preferably 1.5 to 10 times the number of equivalents to copper ions, more preferably 2 to 5 times the number of equivalents. If the amount of the reducing agent added is 1.5 times the number of equivalents or more of copper ions, the reducing action is sufficient. When the addition amount of the reducing agent is 10 times the number of equivalents or less with respect to copper ions, the amount of impurities (sodium, boron, phosphorus, etc.) contained in the copper hydride nanoparticles can be suppressed.
- the temperature of the aqueous solution when adding the reducing agent is preferably 5 to 60 ° C, more preferably 20 to 50 ° C. If the temperature of aqueous solution is 60 degrees C or less, decomposition
- a mixed dispersion medium of water and methanol or ethanol is preferable.
- water alone the surface tension of water is large, so water cannot enter the pores of the aggregates of copper hydride nanoparticles, and the effect of purification is small.
- methanol alone the dielectric constant of methanol is small, so that the impurity sodium cannot be released into the dispersion medium as ions, and the purification effect is small.
- the proportion of water in the mixed dispersion medium is preferably 40 to 90% by mass, more preferably 50 to 85% by mass with respect to the entire mixed dispersion medium.
- the amount of sodium contained in the copper hydride nanoparticles is preferably 800 ppm or less, and more preferably 100 ppm or less.
- the oxygen concentration in the atmosphere is preferably 1000 ppm or less. When it exceeds 1000 ppm, cuprous oxide will be produced by oxidation.
- the thermal decomposition temperature is preferably 60 to 100 ° C, more preferably 70 to 90 ° C. If the temperature is 60 ° C. or higher, thermal decomposition proceeds smoothly. If this temperature is 100 degrees C or less, the fusion
- the copper hydride nanoparticles are excellent in oxidation resistance and easy to sinter with a copper filler for the following reasons (i) and (ii).
- copper hydride nanoparticles whose surface is coated with formic acid, and metal copper nanoparticles obtained by thermally decomposing the copper hydride nanoparticles are further resistant to acid resistance for the following reasons (iii) to (iv). It is easy to sinter with copper filler. (Iii) Since the surface of the copper hydride nanoparticles coated with formic acid is coated with formic acid having a reducing property (ie, —CHO group), it is coated with other organic acids in the air atmosphere. Compared to copper hydride nanoparticles, it is less oxidized. Therefore, the conductive film formed by firing is excellent in conductivity.
- the conductive paste of the present invention includes a copper filler having an average aggregate particle diameter of 0.5 to 20 ⁇ m, copper nanoparticles having an average aggregate particle diameter of 50 to 200 nm, an aliphatic carboxylic acid, and a resin binder. .
- the conductive paste of the present invention may be prepared by mixing (i) the conductive filler of the present invention and a resin binder, and (ii) a conductive material containing a copper filler and copper nanoparticles. It may be prepared by mixing a filler and a resin binder to which an aliphatic carboxylic acid is added.
- the amount of the aliphatic carboxylic acid is 1 to 15 parts by weight, preferably 3 to 15 parts by weight, and particularly preferably 3 to 10 parts by weight with respect to a total of 100 parts by weight of the copper filler and the copper nanoparticles.
- the amount of the aliphatic carboxylic acid is 1 part by mass or more, the oxide film on the surfaces of the copper nanoparticles and the copper filler can be sufficiently removed. If the amount of the unsaturated carboxylic acid is 15 parts by mass or less, the excessive unsaturated carboxylic acid does not hinder the conductivity and deteriorate the volume resistivity.
- aliphatic carboxylic acid either monocarboxylic acid or polycarboxylic acid can be used.
- polycarboxylic acid dicarboxylic acid is preferable.
- an unsaturated carboxylic acid can be preferably used as the aliphatic carboxylic acid.
- the boiling point or decomposition temperature of the unsaturated carboxylic acid is preferably 250 ° C. or lower, and more preferably 160 ° C. or lower.
- unsaturated carboxylic acid acrylic acid (molecular weight 72.06 g / mol, melting point 12 ° C., boiling point 141 ° C.), propiolic acid (molecular weight 70.05 g / mol, melting point 16 ° C. boiling point 102 ° C.), methacrylic acid (molecular weight 86.
- Unsaturated carboxylic acid may be used individually by 1 type, and may be used in combination of 2 or more type. Since the lower limit of the boiling point or decomposition temperature of the unsaturated carboxylic acid is appropriately selected depending on the performance and properties required for the conductive filler and conductive paste of the present invention, it is not necessarily limited, but is usually about 100 ° C. .
- a compound represented by the following formula (1) can also be preferably used as the aliphatic carboxylic acid.
- R-COOH (1) R in the formula represents a hydrocarbon group having 4 to 20 carbon atoms.
- R in the compound (1) is a hydrocarbon group having 4 to 20 carbon atoms.
- the hydrocarbon group may be an alkyl group, an alkenyl group, or an alkynyl group, and is preferably an alkyl group or an alkenyl group.
- R may be a linear structure or a branched structure. Further, the carbon number of R is preferably 4 to 18, and more preferably 6 to 18.
- Examples of the compound (1) include oleic acid, stearic acid, hexanoic acid, octanoic acid, 2-ethylhexanoic acid, decanoic acid, dodecanoic acid, myristic acid and the like, and oleic acid is particularly preferable.
- the compound represented by the formula (1) one type may be used alone, or two or more types may be used in combination.
- the conductive filler of the present invention described above contains an aliphatic carboxylic acid, it is excellent in oxidation resistance and easily sintered.
- the aliphatic carboxylic acid is considered to decompose and remove the oxide film on the surfaces of the copper nanoparticles and the copper filler by the action of the carboxylic acid.
- the copper salt of aliphatic carboxylic acid is producing
- the copper salt of the aliphatic carboxylic acid is present in the vicinity of the copper nanoparticles or the copper filler (such as the interface between the copper nanoparticles or the copper filler and the binder resin), there is a concern that conductivity may be hindered.
- the copper salt of the aliphatic carboxylic acid is considered to be easily dispersed in the binder resin by having a hydrocarbon group, and it is assumed that this improves the conductivity. This effect is considered to be particularly expected when the number of carbon atoms contained in the hydrocarbon group in the aliphatic carboxylic acid is 4 or more, preferably 6 or more.
- the copper salt of the aliphatic carboxylic acid is decomposed by heating at the time of producing the conductive film described later, and a reducing substance is generated, whereby a copper filler or There seems to be a possibility of suppressing oxidation of copper nanoparticles.
- This effect is considered to be an effect particularly expected when the unsaturated carboxylic acid has an alkenyl group having 4 or less carbon atoms or when the unsaturated carboxylic acid is a dicarboxylic acid.
- a conductive film having a lower volume resistivity than the conventional conductive paste can be formed due to the above effects.
- carboxylic acid may be used also in the step of preparing copper hydride nanoparticles (the step (b)).
- the carboxylic acid used in the step (b) is a conductive material. May also serve as a carboxylic acid used in the preparation of the adhesive paste.
- the carboxylic acid is required to be water-soluble in the step (b), and it is considered that the paste preparation step contributes to the oxidation inhibition of the copper nanoparticles and the copper filler and the improvement of the dispersibility in the resin binder.
- the conductive filler of the present invention containing the carboxylic acid used in step (b) is mixed with a resin binder without mixing another carboxylic acid,
- the conductive paste of the invention may be prepared.
- formic acid having a reducing action is preferably used, and an aliphatic carboxylic acid having a hydrocarbon group having 4 to 20 carbon atoms is preferably used in the paste preparation step.
- resin binder examples include known resin binders (thermosetting resins, thermoplastic resins, etc.) used for conductive pastes, and a resin component that is sufficiently cured at the firing temperature is selected and used. It is preferable.
- Thermosetting resins include phenol resin, epoxy resin, unsaturated polyester, vinyl ester resin, diallyl phthalate resin, oligoester acrylate resin, xylene resin, bismaleidotriazine resin, furan resin, urea resin, polyurethane resin, melamine resin, silicon
- examples thereof include resins, acrylic resins, oxetane resins, and oxazine resins, and pheno resins, epoxy resins, and oxazine resins are preferable.
- the thermoplastic resin include polyamide resin, polyimide resin, acrylic resin, ketone resin, polystyrene resin, and polyester resin.
- polyester resin When a polyester resin is used as the resin binder, a known polyester resin used for conductive paste or the like can be used. In addition, an amorphous polyester resin is preferred because of its excellent solubility in a solvent and good workability when applying the resulting conductive paste.
- the polyester resin preferably has a hydroxyl value of 5 to 20 KOHmg / g, and particularly preferably 5 to 10 KOHmg / g. This is because the compatibility with the copper compound (1) salt is excellent.
- These polyester resins may be selected from commercially available products.
- Byron manufactured by Toyobo Co., Ltd.
- Polyester manufactured by Nippon Synthetic Chemical Co., Ltd.
- Espel manufactured by Hitachi Chemical Co., Ltd.
- Elitel manufactured by Unitika
- the amount of the resin binder in the conductive paste may be appropriately selected according to the ratio between the volume of the copper nanoparticles and the metal copper filler and the space between them, and usually the copper nanoparticles and the metal copper filler. Is 5 to 50 parts by mass, preferably 5 to 20 parts by mass. When the amount of the resin binder is 5 parts by mass or more, the flow characteristics of the paste are good. When the resin binder is 50 parts by mass or less, the volume resistivity of the conductive film can be kept low.
- the conductive paste of the present invention does not impair the effects of the present invention, if necessary, with a solvent, known additives (metal chelating agent, leveling agent, coupling agent, viscosity modifier, antioxidant, etc.) and the like. It may be included in the range.
- the conductive paste of the present invention described above contains the conductive filler of the present invention, it is possible to form a conductive film having a lower volume resistivity and higher oxidation stability than the conventional conductive paste.
- the article of the present invention has a base material and a conductive film formed by applying and baking the conductive paste of the present invention on the base material.
- the base material include glass substrates, plastic substrates (polyimide substrates, polyester substrates, etc.), fiber reinforced composite materials (glass fiber reinforced resin substrates, etc.), and the like.
- coating methods include known methods such as screen printing, roll coating, air knife coating, blade coating, bar coating, gravure coating, die coating, and slide coating.
- the firing method examples include warm air heating and thermal radiation.
- the firing temperature and firing time may be appropriately determined according to the characteristics required for the conductive film.
- the firing temperature is preferably 80 to 150 ° C, more preferably 120 to 150 ° C. If a calcination temperature is 80 degreeC or more, sintering with a metal copper filler and a copper nanoparticle will advance easily. If the firing temperature is 150 ° C. or lower, a plastic base material can be used as the base material for forming the conductive film, so that the degree of freedom in selecting the base material is increased.
- the volume resistivity of the conductive film is preferably 1.0 ⁇ 10 ⁇ 4 ⁇ cm or less. If the volume resistivity exceeds 1.0 ⁇ 10 ⁇ 4 ⁇ cm, it may be difficult to use as a conductor for electronic equipment. In the article of the present invention described above, since the conductive film is formed from the conductive paste of the present invention, the volume resistivity of the conductive film is lower than that of a conventional copper conductive film.
- Examples 1 to 5, 7, and 9 to 17 are examples, and examples 6 and 8 are comparative examples.
- the average agglomerated particle size of copper filler and copper nanoparticles was measured by measuring the agglomerated particle size of 100 particles randomly selected from SEM images obtained by SEM (manufactured by JEOL Ltd., S-4300). And obtained by taking the average. In the case of non-spherical particles, the average value of the major axis and the minor axis was taken as the particle diameter. In the present invention, since the particles are aggregated and used, the value of the average aggregated particle diameter measured by SEM is used. The reason why the SEM is used is that the particles that have been agglomerated are difficult to transmit with an electron beam and are difficult to measure with a TEM. For reference, the primary particle diameter measured by TEM is also described. This is because the primary particle diameter needs to be observed at a high magnification ratio, and it is difficult to cope with the SEM.
- the thickness of the conductive film was measured by using DEKTAK3 (manufactured by Veeco metrology group).
- the volume resistivity of the conductive film was measured using a four-probe type volume resistivity meter (manufactured by Mitsubishi Yuka Co., Ltd., model: lorestaIP MCP-T250).
- Hydroxyl value The hydroxyl value of the polyester resin was measured using a titration method.
- Example 1 In a glass container, 5.2 g of copper (II) acetate hydrate was dissolved in 30 g of distilled water and 3.3 g of formic acid to prepare an aqueous solution containing copper ions. The pH of the aqueous solution was 2.7. While the aqueous solution was vigorously stirred, 23 g of a 4 mass% sodium borohydride aqueous solution was slowly added dropwise to the aqueous solution at 20 ° C. After completion of the dropwise addition, stirring was continued for 10 minutes to obtain a suspension.
- the aggregate in the suspension was precipitated by centrifugation, and the precipitate was separated.
- the precipitate was redispersed in 30 g of 2-propanol, and then the aggregate was precipitated again by centrifugation to separate the precipitate.
- the precipitate after purification was identified by X-ray diffraction, it was confirmed to be copper hydride nanoparticles.
- IR spectrum was measured and it confirmed that the surface of the copper hydride nanoparticle was coat
- the average primary particle diameter of the copper hydride nanoparticles measured by TEM was 30 nm, and the primary particle diameter range was 20 to 45 nm.
- the average aggregate particle diameter of the copper hydride nanoparticles measured by SEM was 100 nm.
- the copper hydride nanoparticles were decomposed into metallic copper nanoparticles, and a conductive filler in which the surface of the copper filler was coated with metallic copper nanoparticles and maleic acid was obtained.
- the average primary particle diameter of the metallic copper nanoparticles measured by TEM was 50 nm, and the primary particle diameter range was 35 to 65 nm.
- the average aggregate particle diameter measured by SEM was 100 nm.
- a resin binder solution of 0.33 g of a conductive filler and 0.135 g of an amorphous polyester resin (Toyobo Co., Ltd., Byron 103) dissolved in 0.315 g of cyclohexanone (Pure Chemical Co., Ltd., special grade) were added.
- the amount of the amorphous polyester resin was 10.1 parts by mass with respect to a total of 100 parts by mass of the copper filler and the metal copper nanoparticles.
- the mixture was mixed in a mortar and then placed under reduced pressure at room temperature to remove cyclohexanone to obtain a conductive paste.
- the conductive paste was applied to a glass substrate and baked at 150 ° C. for 1 hour in a nitrogen gas atmosphere to form a conductive film having a thickness of 100 ⁇ m.
- the volume resistivity of the conductive film was measured. The results are shown in Table 1.
- the volume resistivity of the conductive film was measured. The results are shown in Table 1.
- Example 2 A conductive filler was obtained in the same manner as in Example 1 except that the amount of maleic acid added was changed to 0.6 g.
- the average primary particle diameter of the metal nanoparticles is 50 nm, the primary particle diameter is 35 to 65 nm (average aggregate particle diameter measured by SEM is 100 nm), the average aggregate particle diameter of the copper filler is 7 ⁇ m, and the aggregate particle diameter is The range was 3-10 ⁇ m.
- a conductive film was formed on a glass substrate in the same manner as in Example 1, and the volume resistivity was measured. The results are shown in Table 1.
- Example 3 A conductive filler was obtained in the same manner as in Example 1 except that the amount of maleic acid added was changed to 0.12 g.
- the average primary particle diameter of the metal nanoparticles is 50 nm, the primary particle diameter is 35 to 65 nm (average aggregate particle diameter measured by SEM is 100 nm), the average aggregate particle diameter of the copper filler is 7 ⁇ m, and the aggregate particle diameter is The range was 3-10 ⁇ m.
- a conductive film was formed on a glass substrate in the same manner as in Example 1, and the volume resistivity was measured. The results are shown in Table 1.
- Example 4 1 g of copper hydride nanoparticles prepared in the same manner as in Example 1 and 3 g of copper filler (Mitsui Metal Mining Co., Ltd., 1400 YP, average aggregated particle size: 7 ⁇ m, aggregated particle size range: 3 to 10 ⁇ m) was stirred and a dispersion was obtained. The dispersion was heated to 80 ° C. under a reduced pressure of ⁇ 35 kPa, and 2-propanol was volatilized from the dispersion and gradually removed. At this time, the copper hydride nanoparticles were decomposed into metallic copper nanoparticles, and a conductive filler in which the surface of the copper filler was coated with metallic copper nanoparticles was obtained. The average primary particle diameter of the metal copper nanoparticles was 50 nm, and the primary particle diameter range was 35 to 65 nm. Moreover, the average aggregate particle diameter measured by SEM was 100 nm.
- conductive filler 0.12 g of acrylic acid and 0.135 g of amorphous polyester resin (byron 103, manufactured by Byron 103) are dissolved in 0.315 g of cyclohexanone (made by Junsei Chemical, special grade).
- cyclohexanone made by Junsei Chemical, special grade.
- the amount of the amorphous polyester resin was 10.1 parts by mass with respect to a total of 100 parts by mass of the copper filler and the metal copper nanoparticles.
- the mixture was mixed in a mortar and then placed under reduced pressure at room temperature to remove cyclohexanone to obtain a conductive paste.
- a conductive film was formed on a glass substrate in the same manner as in Example 1, and the volume resistivity was measured. The results are shown in Table 1.
- Example 5 A conductive paste was obtained in the same manner as in Example 2 except that acrylic acid was changed to linolenic acid.
- the average primary particle diameter of the metal copper nanoparticles is 50 nm, the primary particle diameter is 35 to 65 nm (average aggregate particle diameter measured by SEM is 100 nm), the average aggregate particle diameter of the copper filler is 7 ⁇ m, and the aggregate particle diameter The range was 3 to 10 ⁇ m.
- a conductive film was formed on a glass substrate in the same manner as in Example 1, and the volume resistivity was measured. The results are shown in Table 1.
- Example 6 A conductive filler was obtained in the same manner as in Example 1 except that maleic acid was not added.
- the average primary particle diameter of the metal copper nanoparticles is 50 nm, the primary particle diameter is 35 to 65 nm (average aggregate particle diameter measured by SEM is 100 nm), the average aggregate particle diameter of the copper filler is 7 ⁇ m, and the aggregate particle diameter The range was 3 to 10 ⁇ m.
- a conductive paste was obtained in the same manner as in Example 1 except that the conductive filler was used.
- a conductive film was formed on a glass substrate in the same manner as in Example 1, and the volume resistivity was measured. The results are shown in Table 1.
- Example 7 A conductive filler was obtained in the same manner as in Example 1 except that maleic acid was changed to malonic acid.
- the average primary particle diameter of the metal copper nanoparticles is 50 nm, the primary particle diameter is 35 to 65 nm (average aggregate particle diameter measured by SEM is 100 nm), the average aggregate particle diameter of the copper filler is 7 ⁇ m, and the aggregate particle diameter The range was 3 to 10 ⁇ m.
- a conductive paste was obtained in the same manner as in Example 1 except that the conductive filler was used.
- a conductive film was formed on a glass substrate in the same manner as in Example 1, and the volume resistivity was measured. The results are shown in Table 1.
- Example 8 In the same manner as in Example 2, a conductive filler was obtained. The average primary particle diameter of the metal copper nanoparticles was 50 nm, and the primary particle diameter range was 35 to 65 nm. Moreover, the average aggregate particle diameter measured by SEM was 100 nm. A conductive paste was obtained in the same manner as in Example 2 except that acrylic acid was changed to octene. A conductive film was formed on a glass substrate in the same manner as in Example 1, and the volume resistivity was measured. The results are shown in Table 1.
- Example 9 In a glass container, 117 g of copper (II) acetate hydrate was dissolved in 1700 g of distilled water and 30 g of formic acid to prepare an aqueous solution containing copper ions. The pH of the aqueous solution was 2.7. While vigorously stirring the aqueous solution, 180 g of a 50 mass% hypophosphorous acid aqueous solution was added to the aqueous solution at 40 ° C. After completion of the addition, stirring was continued for 30 minutes to obtain a suspension.
- the aggregate in the suspension was precipitated by centrifugation, and the precipitate was separated.
- the precipitate was redispersed in 30 g of 2-propanol, and then the aggregate was precipitated again by centrifugation to separate the precipitate.
- the precipitate after purification was identified by X-ray diffraction, it was confirmed to be copper hydride nanoparticles.
- the average aggregate particle diameter of the copper hydride nanoparticles was 100 nm.
- the conductive paste was applied to a glass substrate and baked at 150 ° C. for 1 hour in a nitrogen gas atmosphere to form a conductive film having a thickness of 30 ⁇ m.
- the volume resistivity of the conductive film was measured. The results are shown in Table 1.
- the volume resistivity of the conductive film was measured. The results are shown in Table 2.
- addition amount (mass part) in Table 2 is the addition amount (mass part) of the compound (1) with respect to a total of 100 mass parts of a copper nanoparticle and a copper filler.
- the hydroxyl value is the hydroxyl value of the amorphous polyester resin.
- Example 10 A conductive paste was obtained in the same manner as in Example 9 except that oleic acid was changed to 0.8 g. A conductive film was formed on a glass substrate in the same manner as in Example 9, and the volume resistivity was measured. The results are shown in Table 2.
- Example 11 A conductive paste was obtained in the same manner as in Example 9 except that oleic acid was changed to 2.0 g. A conductive film was formed on a glass substrate in the same manner as in Example 9, and the volume resistivity was measured. The results are shown in Table 2.
- Example 12 A conductive paste was obtained in the same manner as in Example 9 except that the polyester resin was changed from Byron 103 to Byron 200. A conductive film was formed on a glass substrate in the same manner as in Example 9, and the volume resistivity was measured. The results are shown in Table 2.
- Example 13 A conductive paste was obtained in the same manner as in Example 9 except that the polyester resin was changed from Byron 103 to Byron GK880. A conductive film was formed on a glass substrate in the same manner as in Example 9, and the volume resistivity was measured. The results are shown in Table 2.
- Example 14 A conductive paste was obtained in the same manner as in Example 9 except that oleic acid was changed to stearic acid. A conductive film was formed on a glass substrate in the same manner as in Example 9, and the volume resistivity was measured. The results are shown in Table 2.
- Example 15 A conductive paste was obtained in the same manner as in Example 9 except that oleic acid was changed to decanoic acid. A conductive film was formed on a glass substrate in the same manner as in Example 9, and the volume resistivity was measured. The results are shown in Table 2.
- Example 16 A conductive paste was obtained in the same manner as in Example 9 except that oleic acid was changed to hexanoic acid. A conductive film was formed on a glass substrate in the same manner as in Example 9, and the volume resistivity was measured. The results are shown in Table 2.
- Example 17 A conductive paste was obtained in the same manner as in Example 9 except that the polyester resin was changed from Byron 103 to Byron 226. A conductive film was formed on a glass substrate in the same manner as in Example 9, and the volume resistivity was measured. The results are shown in Table 2.
- the conductive filler and conductive paste of the present invention can be used for various applications. For example, it can be used for applications such as formation and repair of wiring patterns on printed wiring boards, interlayer wiring in semiconductor packages, and bonding between printed wiring boards and electronic components.
Landscapes
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Dispersion Chemistry (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Conductive Materials (AREA)
- Manufacture Of Metal Powder And Suspensions Thereof (AREA)
- Powder Metallurgy (AREA)
- Non-Insulated Conductors (AREA)
Abstract
Disclosed are a conductive filler which has excellent oxidation resistance and can be sintered easily, a conductive paste which has excellent storage stability in the air and is capable of forming a conductive film with high conductivity, and an article having conductive film with high conductivity. The conductive filler is characterized by containing a copper filler having an average aggregate particle diameter of 0.5-20 μm, copper nanoparticles having an average aggregate particle diameter of 50-200 nm and an aliphatic carboxylic acid. The conductive filler is also characterized in that the copper nanoparticles are contained in an amount of 5-50 parts by mass per 100 parts by mass of the copper filler, and the aliphatic carboxylic acid is contained in an amount of 1-15 parts by mass per 100 parts by mass of the total of the copper filler and the copper nanoparticles.
Description
本発明は、導電性フィラー、導電性ペーストおよび導電膜を有する物品に関する。
The present invention relates to an article having a conductive filler, a conductive paste, and a conductive film.
基材上に導電性ペーストを所望の配線パターン状に塗布、焼成して、所望の配線パターンの導電膜を有するプリント基板等を製造する方法が知られている。
該方法に用いられる導電性ペーストとしては、たとえば、下記のものが提案されている。
(1)平均粒子径が1~100nmである金属銀ナノ粒子と、平均粒子径が5~20μmである金属フィラーと、樹脂バインダとを含む金属ペースト(特許文献1)。 There is known a method of manufacturing a printed circuit board or the like having a conductive film having a desired wiring pattern by applying and baking a conductive paste on a substrate in a desired wiring pattern.
As the conductive paste used in the method, for example, the following has been proposed.
(1) A metal paste containing metallic silver nanoparticles having an average particle diameter of 1 to 100 nm, a metal filler having an average particle diameter of 5 to 20 μm, and a resin binder (Patent Document 1).
該方法に用いられる導電性ペーストとしては、たとえば、下記のものが提案されている。
(1)平均粒子径が1~100nmである金属銀ナノ粒子と、平均粒子径が5~20μmである金属フィラーと、樹脂バインダとを含む金属ペースト(特許文献1)。 There is known a method of manufacturing a printed circuit board or the like having a conductive film having a desired wiring pattern by applying and baking a conductive paste on a substrate in a desired wiring pattern.
As the conductive paste used in the method, for example, the following has been proposed.
(1) A metal paste containing metallic silver nanoparticles having an average particle diameter of 1 to 100 nm, a metal filler having an average particle diameter of 5 to 20 μm, and a resin binder (Patent Document 1).
上記(1)の金属ペーストは、金属フィラーのみでは実現できなかった低抵抗化を、金属銀ナノ粒子の有する表面融解現象を利用して金属フィラー同士を融着することによって実現している。しかし、銀はイオンマイグレーションを起こしやすい金属であるため、上記(1)の金属ペーストを用いて製造したプリント基板等の電子部品の信頼性を考慮した場合、金属ナノ粒子の材料としては、銅が好ましい。しかし、金属銅ナノ粒子は、非常に酸化しやすい。
The metal paste of the above (1) realizes a reduction in resistance that could not be realized only with a metal filler by fusing metal fillers together using the surface melting phenomenon of metal silver nanoparticles. However, since silver is a metal that easily undergoes ion migration, when considering the reliability of electronic parts such as a printed circuit board manufactured using the metal paste of (1), copper is used as the material of the metal nanoparticles. preferable. However, metallic copper nanoparticles are very easy to oxidize.
また、耐酸化性に優れた銅を含むナノ粒子としては、下記のものが提案されている。
上記(2)長鎖の有機化合物によって表面が被覆された水素化銅ナノ粒子(特許文献2)。しかし、上記(2)の水素化銅ナノ粒子は、長鎖の有機化合物によって表面が被覆されているため、金属フィラーと焼結しにくく、焼成後の導電膜の導電性が不充分である。 Moreover, the following are proposed as a nanoparticle containing copper excellent in oxidation resistance.
(2) Copper hydride nanoparticles whose surface is coated with a long-chain organic compound (Patent Document 2). However, since the surface of the copper hydride nanoparticles of (2) above is coated with a long-chain organic compound, it is difficult to sinter with the metal filler, and the conductive film after firing is insufficient in conductivity.
上記(2)長鎖の有機化合物によって表面が被覆された水素化銅ナノ粒子(特許文献2)。しかし、上記(2)の水素化銅ナノ粒子は、長鎖の有機化合物によって表面が被覆されているため、金属フィラーと焼結しにくく、焼成後の導電膜の導電性が不充分である。 Moreover, the following are proposed as a nanoparticle containing copper excellent in oxidation resistance.
(2) Copper hydride nanoparticles whose surface is coated with a long-chain organic compound (Patent Document 2). However, since the surface of the copper hydride nanoparticles of (2) above is coated with a long-chain organic compound, it is difficult to sinter with the metal filler, and the conductive film after firing is insufficient in conductivity.
本発明は、耐酸化性に優れ、かつ焼結しやすい導電性フィラー、空気中での保存安定性に優れ、かつ導電性が高い導電膜を形成できる導電性ペースト、および導電性が高い導電膜を有する物品を提供する。
The present invention relates to a conductive filler excellent in oxidation resistance and easy to sinter, a conductive paste excellent in storage stability in air and capable of forming a conductive film having high conductivity, and a conductive film having high conductivity. An article is provided.
本発明は、以下の要旨を有するものである。
[1]平均凝集粒子径が0.5~20μmである銅フィラーと、平均凝集粒子径が50~200nmである銅ナノ粒子と、脂肪族カルボン酸とを含み、上記銅ナノ粒子の量が、上記銅フィラー100質量部に対して、5~50質量部であり、かつ、上記脂肪族カルボン酸の量が、上記銅フィラーおよび上記銅ナノ粒子の合計100質量部に対して、1~15質量部である、ことを特徴とする導電性フィラー。
[2]前記銅ナノ粒子が、ギ酸によって表面が被覆されている水素化銅ナノ粒子、または該水素化銅ナノ粒子を熱分解してなる金属銅ナノ粒子である上記[1]に記載の導電性フィラー。 The present invention has the following gist.
[1] A copper filler having an average aggregate particle diameter of 0.5 to 20 μm, copper nanoparticles having an average aggregate particle diameter of 50 to 200 nm, and an aliphatic carboxylic acid, and the amount of the copper nanoparticles is 5 to 50 parts by mass with respect to 100 parts by mass of the copper filler, and the amount of the aliphatic carboxylic acid is 1 to 15 parts by mass with respect to a total of 100 parts by mass of the copper filler and the copper nanoparticles. A conductive filler characterized by being a part.
[2] The conductivity according to [1], wherein the copper nanoparticles are copper hydride nanoparticles whose surfaces are coated with formic acid, or metal copper nanoparticles obtained by thermally decomposing the copper hydride nanoparticles. Filler.
[1]平均凝集粒子径が0.5~20μmである銅フィラーと、平均凝集粒子径が50~200nmである銅ナノ粒子と、脂肪族カルボン酸とを含み、上記銅ナノ粒子の量が、上記銅フィラー100質量部に対して、5~50質量部であり、かつ、上記脂肪族カルボン酸の量が、上記銅フィラーおよび上記銅ナノ粒子の合計100質量部に対して、1~15質量部である、ことを特徴とする導電性フィラー。
[2]前記銅ナノ粒子が、ギ酸によって表面が被覆されている水素化銅ナノ粒子、または該水素化銅ナノ粒子を熱分解してなる金属銅ナノ粒子である上記[1]に記載の導電性フィラー。 The present invention has the following gist.
[1] A copper filler having an average aggregate particle diameter of 0.5 to 20 μm, copper nanoparticles having an average aggregate particle diameter of 50 to 200 nm, and an aliphatic carboxylic acid, and the amount of the copper nanoparticles is 5 to 50 parts by mass with respect to 100 parts by mass of the copper filler, and the amount of the aliphatic carboxylic acid is 1 to 15 parts by mass with respect to a total of 100 parts by mass of the copper filler and the copper nanoparticles. A conductive filler characterized by being a part.
[2] The conductivity according to [1], wherein the copper nanoparticles are copper hydride nanoparticles whose surfaces are coated with formic acid, or metal copper nanoparticles obtained by thermally decomposing the copper hydride nanoparticles. Filler.
[3]前記脂肪族カルボン酸が不飽和カルボン酸である上記[1]または[2]に記載の導電性フィラー。
[4]前記不飽和カルボン酸の沸点または分解温度が、250℃以下である上記[3]に記載の導電性フィラー。
[5]前記脂肪族カルボン酸が下式(1)で表される化合物である上記[1]または[2]に記載の導電性フィラー。
R-COOH (1)
ただし、式(1)中のRは炭素数4~20の炭化水素基を表す。
[6]平均凝集粒子径が0.5~20μmである銅フィラーと、平均凝集粒子径が50~200nmである銅ナノ粒子と、脂肪族カルボン酸と、樹脂バインダとを含み、上記銅ナノ粒子の量が、上記銅フィラー100質量部に対して、5~50質量部であり、上記脂肪族カルボン酸の量が、上記銅フィラーおよび上記銅ナノ粒子の合計100質量部に対して、1~15質量部であり、かつ、上記樹脂バインダの量が、上記銅フィラーおよび上記銅ナノ粒子の合計100質量部に対して、5~50質量部である、ことを特徴とする導電性ペースト。
[7]前記銅ナノ粒子が、ギ酸によって表面が被覆されている水素化銅ナノ粒子、または該水素化銅ナノ粒子を熱分解してなる金属銅ナノ粒子である、上記[6]に記載の導電性ペースト。
[8]前記脂肪族カルボン酸が不飽和カルボン酸である上記[6]または[7]に記載の導電性ペースト。
[9]前記不飽和カルボン酸の沸点または分解温度が、250℃以下である上記[8]に記載の導電性ペースト。
[10]前記脂肪族カルボン酸が下式(1)で表される化合物である上記[6]または[7]に記載の導電性ペースト。
R-COOH (1)
ただし、式(1)中のRは炭素数4~20の炭化水素基を表す。
[11]前記樹脂バインダがポリエステル樹脂からなるバインダである上記[6]~[10]のいずれかに記載の導電ペースト。
[12]前記ポリエステル樹脂の水酸基価が5~20KOHmg/gである上記[11]に記載の導電性ペースト。
[13]基材と、該基材上に、上記[6]~[12]のいずれかに記載の導電性ペーストを塗布し、焼成して形成された導電膜とを有する、物品。 [3] The conductive filler according to [1] or [2], wherein the aliphatic carboxylic acid is an unsaturated carboxylic acid.
[4] The conductive filler according to [3], wherein the unsaturated carboxylic acid has a boiling point or decomposition temperature of 250 ° C. or lower.
[5] The conductive filler according to [1] or [2], wherein the aliphatic carboxylic acid is a compound represented by the following formula (1).
R-COOH (1)
However, R in the formula (1) represents a hydrocarbon group having 4 to 20 carbon atoms.
[6] A copper filler having an average aggregate particle diameter of 0.5 to 20 μm, copper nanoparticles having an average aggregate particle diameter of 50 to 200 nm, an aliphatic carboxylic acid, and a resin binder, Is 5 to 50 parts by mass with respect to 100 parts by mass of the copper filler, and the amount of the aliphatic carboxylic acid is 1 to 100 parts by mass with respect to a total of 100 parts by mass of the copper filler and the copper nanoparticles. A conductive paste comprising 15 parts by mass, and the amount of the resin binder is 5 to 50 parts by mass with respect to 100 parts by mass in total of the copper filler and the copper nanoparticles.
[7] The above-mentioned [6], wherein the copper nanoparticles are copper hydride nanoparticles whose surfaces are coated with formic acid, or metal copper nanoparticles obtained by thermally decomposing the copper hydride nanoparticles. Conductive paste.
[8] The conductive paste according to [6] or [7], wherein the aliphatic carboxylic acid is an unsaturated carboxylic acid.
[9] The conductive paste according to [8], wherein the unsaturated carboxylic acid has a boiling point or decomposition temperature of 250 ° C. or lower.
[10] The conductive paste according to [6] or [7], wherein the aliphatic carboxylic acid is a compound represented by the following formula (1).
R-COOH (1)
However, R in the formula (1) represents a hydrocarbon group having 4 to 20 carbon atoms.
[11] The conductive paste according to any one of [6] to [10], wherein the resin binder is a binder made of a polyester resin.
[12] The conductive paste according to [11], wherein the polyester resin has a hydroxyl value of 5 to 20 KOH mg / g.
[13] An article having a base material and a conductive film formed by applying and baking the conductive paste according to any one of [6] to [12] on the base material.
[4]前記不飽和カルボン酸の沸点または分解温度が、250℃以下である上記[3]に記載の導電性フィラー。
[5]前記脂肪族カルボン酸が下式(1)で表される化合物である上記[1]または[2]に記載の導電性フィラー。
R-COOH (1)
ただし、式(1)中のRは炭素数4~20の炭化水素基を表す。
[6]平均凝集粒子径が0.5~20μmである銅フィラーと、平均凝集粒子径が50~200nmである銅ナノ粒子と、脂肪族カルボン酸と、樹脂バインダとを含み、上記銅ナノ粒子の量が、上記銅フィラー100質量部に対して、5~50質量部であり、上記脂肪族カルボン酸の量が、上記銅フィラーおよび上記銅ナノ粒子の合計100質量部に対して、1~15質量部であり、かつ、上記樹脂バインダの量が、上記銅フィラーおよび上記銅ナノ粒子の合計100質量部に対して、5~50質量部である、ことを特徴とする導電性ペースト。
[7]前記銅ナノ粒子が、ギ酸によって表面が被覆されている水素化銅ナノ粒子、または該水素化銅ナノ粒子を熱分解してなる金属銅ナノ粒子である、上記[6]に記載の導電性ペースト。
[8]前記脂肪族カルボン酸が不飽和カルボン酸である上記[6]または[7]に記載の導電性ペースト。
[9]前記不飽和カルボン酸の沸点または分解温度が、250℃以下である上記[8]に記載の導電性ペースト。
[10]前記脂肪族カルボン酸が下式(1)で表される化合物である上記[6]または[7]に記載の導電性ペースト。
R-COOH (1)
ただし、式(1)中のRは炭素数4~20の炭化水素基を表す。
[11]前記樹脂バインダがポリエステル樹脂からなるバインダである上記[6]~[10]のいずれかに記載の導電ペースト。
[12]前記ポリエステル樹脂の水酸基価が5~20KOHmg/gである上記[11]に記載の導電性ペースト。
[13]基材と、該基材上に、上記[6]~[12]のいずれかに記載の導電性ペーストを塗布し、焼成して形成された導電膜とを有する、物品。 [3] The conductive filler according to [1] or [2], wherein the aliphatic carboxylic acid is an unsaturated carboxylic acid.
[4] The conductive filler according to [3], wherein the unsaturated carboxylic acid has a boiling point or decomposition temperature of 250 ° C. or lower.
[5] The conductive filler according to [1] or [2], wherein the aliphatic carboxylic acid is a compound represented by the following formula (1).
R-COOH (1)
However, R in the formula (1) represents a hydrocarbon group having 4 to 20 carbon atoms.
[6] A copper filler having an average aggregate particle diameter of 0.5 to 20 μm, copper nanoparticles having an average aggregate particle diameter of 50 to 200 nm, an aliphatic carboxylic acid, and a resin binder, Is 5 to 50 parts by mass with respect to 100 parts by mass of the copper filler, and the amount of the aliphatic carboxylic acid is 1 to 100 parts by mass with respect to a total of 100 parts by mass of the copper filler and the copper nanoparticles. A conductive paste comprising 15 parts by mass, and the amount of the resin binder is 5 to 50 parts by mass with respect to 100 parts by mass in total of the copper filler and the copper nanoparticles.
[7] The above-mentioned [6], wherein the copper nanoparticles are copper hydride nanoparticles whose surfaces are coated with formic acid, or metal copper nanoparticles obtained by thermally decomposing the copper hydride nanoparticles. Conductive paste.
[8] The conductive paste according to [6] or [7], wherein the aliphatic carboxylic acid is an unsaturated carboxylic acid.
[9] The conductive paste according to [8], wherein the unsaturated carboxylic acid has a boiling point or decomposition temperature of 250 ° C. or lower.
[10] The conductive paste according to [6] or [7], wherein the aliphatic carboxylic acid is a compound represented by the following formula (1).
R-COOH (1)
However, R in the formula (1) represents a hydrocarbon group having 4 to 20 carbon atoms.
[11] The conductive paste according to any one of [6] to [10], wherein the resin binder is a binder made of a polyester resin.
[12] The conductive paste according to [11], wherein the polyester resin has a hydroxyl value of 5 to 20 KOH mg / g.
[13] An article having a base material and a conductive film formed by applying and baking the conductive paste according to any one of [6] to [12] on the base material.
本発明の導電性フィラーは、耐酸化性に優れ、かつ焼結しやすい。
本発明の導電性ペーストによれば、空気中での保存後にも導電性が高い導電膜を形成できる。
本発明の物品は、導電性が高い導電膜を有する。 The conductive filler of the present invention is excellent in oxidation resistance and easy to sinter.
According to the conductive paste of the present invention, a conductive film having high conductivity can be formed even after storage in air.
The article of the present invention has a conductive film having high conductivity.
本発明の導電性ペーストによれば、空気中での保存後にも導電性が高い導電膜を形成できる。
本発明の物品は、導電性が高い導電膜を有する。 The conductive filler of the present invention is excellent in oxidation resistance and easy to sinter.
According to the conductive paste of the present invention, a conductive film having high conductivity can be formed even after storage in air.
The article of the present invention has a conductive film having high conductivity.
本明細書においては、式(1)で表される化合物を化合物(1)とも記載する。また、本明細書における平均凝集粒子径は、数平均の平均凝集粒子径である。
In this specification, the compound represented by the formula (1) is also referred to as the compound (1). Moreover, the average aggregate particle diameter in this specification is a number average average aggregate particle diameter.
<導電性フィラー>
本発明の導電性フィラーは、平均凝集粒子径が0.5~20μmである銅フィラーと、平均凝集粒子径が50~200nmである銅ナノ粒子と、脂肪族カルボン酸とを含む。 <Conductive filler>
The conductive filler of the present invention includes a copper filler having an average aggregate particle diameter of 0.5 to 20 μm, copper nanoparticles having an average aggregate particle diameter of 50 to 200 nm, and an aliphatic carboxylic acid.
本発明の導電性フィラーは、平均凝集粒子径が0.5~20μmである銅フィラーと、平均凝集粒子径が50~200nmである銅ナノ粒子と、脂肪族カルボン酸とを含む。 <Conductive filler>
The conductive filler of the present invention includes a copper filler having an average aggregate particle diameter of 0.5 to 20 μm, copper nanoparticles having an average aggregate particle diameter of 50 to 200 nm, and an aliphatic carboxylic acid.
(銅フィラー)
銅フィラーとしては、導電性ペーストに用いられる公知の金属銅粒子が挙げられる。
銅フィラーの平均凝集粒子径は、0.5~20μmであり、1~10μmが好ましい。平均凝集粒子径が0.5μm以上の銅フィラーを含むことにより、導電性ペーストの流動特性が良好となる。平均凝集粒子径が20μm以下の銅フィラーを含むことにより、微細配線が作製しやすくなる。
本発明における銅フィラーの平均凝集粒子径は、走査型電子顕微鏡(以下、SEMと記す。)像の中から無作為に選ばれた100個の銅フィラーの凝集粒子径を測定し、その平均をとることによって求める。 (Copper filler)
As a copper filler, the well-known metal copper particle used for an electrically conductive paste is mentioned.
The average aggregate particle diameter of the copper filler is 0.5 to 20 μm, preferably 1 to 10 μm. By including a copper filler having an average aggregate particle size of 0.5 μm or more, the flow characteristics of the conductive paste are improved. By including a copper filler having an average aggregate particle diameter of 20 μm or less, it becomes easy to produce fine wiring.
The average agglomerated particle diameter of the copper filler in the present invention was determined by measuring the agglomerated particle diameter of 100 copper fillers randomly selected from a scanning electron microscope (hereinafter referred to as SEM) image, and calculating the average. Ask by taking.
銅フィラーとしては、導電性ペーストに用いられる公知の金属銅粒子が挙げられる。
銅フィラーの平均凝集粒子径は、0.5~20μmであり、1~10μmが好ましい。平均凝集粒子径が0.5μm以上の銅フィラーを含むことにより、導電性ペーストの流動特性が良好となる。平均凝集粒子径が20μm以下の銅フィラーを含むことにより、微細配線が作製しやすくなる。
本発明における銅フィラーの平均凝集粒子径は、走査型電子顕微鏡(以下、SEMと記す。)像の中から無作為に選ばれた100個の銅フィラーの凝集粒子径を測定し、その平均をとることによって求める。 (Copper filler)
As a copper filler, the well-known metal copper particle used for an electrically conductive paste is mentioned.
The average aggregate particle diameter of the copper filler is 0.5 to 20 μm, preferably 1 to 10 μm. By including a copper filler having an average aggregate particle size of 0.5 μm or more, the flow characteristics of the conductive paste are improved. By including a copper filler having an average aggregate particle diameter of 20 μm or less, it becomes easy to produce fine wiring.
The average agglomerated particle diameter of the copper filler in the present invention was determined by measuring the agglomerated particle diameter of 100 copper fillers randomly selected from a scanning electron microscope (hereinafter referred to as SEM) image, and calculating the average. Ask by taking.
銅フィラーの量は、導電性フィラー100質量%のうち、60~85質量%が好ましく、80~85質量%がより好ましい。銅フィラーの量が60質量%以上あれば,良好な導電性を確保できる。銅フィラーの量が85質量%以下であれば、導電性ペーストを基材に容易に塗布できる。
The amount of the copper filler is preferably 60 to 85% by mass, more preferably 80 to 85% by mass, out of 100% by mass of the conductive filler. If the amount of the copper filler is 60% by mass or more, good conductivity can be secured. When the amount of the copper filler is 85% by mass or less, the conductive paste can be easily applied to the substrate.
(銅ナノ粒子)
銅ナノ粒子としては、導電性の高い導電膜を形成できる点から、水素化銅ナノ粒子または金属銅ナノ粒子が好ましい。
水素化銅は、元素として銅の他に水素を含む化合物であって、銅原子は水素原子と結合した状態で存在し、60~100℃で金属銅と水素とに分解する性質を有する。 (Copper nanoparticles)
The copper nanoparticles are preferably copper hydride nanoparticles or metal copper nanoparticles from the viewpoint that a conductive film having high conductivity can be formed.
Copper hydride is a compound containing hydrogen in addition to copper as an element. The copper atom exists in a state of being bonded to a hydrogen atom and has a property of decomposing into metallic copper and hydrogen at 60 to 100 ° C.
銅ナノ粒子としては、導電性の高い導電膜を形成できる点から、水素化銅ナノ粒子または金属銅ナノ粒子が好ましい。
水素化銅は、元素として銅の他に水素を含む化合物であって、銅原子は水素原子と結合した状態で存在し、60~100℃で金属銅と水素とに分解する性質を有する。 (Copper nanoparticles)
The copper nanoparticles are preferably copper hydride nanoparticles or metal copper nanoparticles from the viewpoint that a conductive film having high conductivity can be formed.
Copper hydride is a compound containing hydrogen in addition to copper as an element. The copper atom exists in a state of being bonded to a hydrogen atom and has a property of decomposing into metallic copper and hydrogen at 60 to 100 ° C.
銅ナノ粒子の平均凝集粒子径は、50~200nmであり、70~150nmが好ましい。平均凝集粒子径が50nm以上の銅ナノ粒子を含むことにより、銅ナノ粒子の融着・成長に伴う体積収縮により導電膜に生じるクラックが発生しにくい。平均凝集粒子径が200nm以下の銅ナノ粒子を含むことにより、表面融解温度が充分に低下するため、表面融解が起こりやすくなり、また、緻密な導電膜を形成できることから導電性の向上が期待できる。
本発明における銅ナノ粒子の平均凝集粒子径は、SEM像の中から無作為に選ばれた100個の銅ナノ粒子の凝集粒子径を測定し、その平均をとることによって求める。
なお、本発明において、水素化銅ナノ粒子および銅ナノ粒子は凝集粒子として用いられる。これらの凝集粒子は、おおよそ平均一次粒子径が10~100nm、好ましくは20~50nmの一次粒子が凝集してなるものである。ナノ粒子の平均一次粒子径はTEM像の中から無作為に選ばれた100個のナノ粒子の一次粒子径を測定し、その平均をとることにより求める。 The average aggregate particle diameter of the copper nanoparticles is 50 to 200 nm, preferably 70 to 150 nm. By including copper nanoparticles having an average aggregate particle diameter of 50 nm or more, cracks generated in the conductive film due to volume shrinkage accompanying the fusion and growth of copper nanoparticles are unlikely to occur. By including copper nanoparticles having an average aggregate particle size of 200 nm or less, the surface melting temperature is sufficiently lowered, so that surface melting is likely to occur, and a dense conductive film can be formed, so that improvement in conductivity can be expected. .
The average agglomerated particle diameter of the copper nanoparticles in the present invention is determined by measuring the agglomerated particle diameter of 100 copper nanoparticles randomly selected from the SEM image and taking the average.
In the present invention, copper hydride nanoparticles and copper nanoparticles are used as aggregated particles. These agglomerated particles are formed by agglomerating primary particles having an average primary particle diameter of about 10 to 100 nm, preferably 20 to 50 nm. The average primary particle size of the nanoparticles is determined by measuring the primary particle size of 100 nanoparticles randomly selected from the TEM image and taking the average.
本発明における銅ナノ粒子の平均凝集粒子径は、SEM像の中から無作為に選ばれた100個の銅ナノ粒子の凝集粒子径を測定し、その平均をとることによって求める。
なお、本発明において、水素化銅ナノ粒子および銅ナノ粒子は凝集粒子として用いられる。これらの凝集粒子は、おおよそ平均一次粒子径が10~100nm、好ましくは20~50nmの一次粒子が凝集してなるものである。ナノ粒子の平均一次粒子径はTEM像の中から無作為に選ばれた100個のナノ粒子の一次粒子径を測定し、その平均をとることにより求める。 The average aggregate particle diameter of the copper nanoparticles is 50 to 200 nm, preferably 70 to 150 nm. By including copper nanoparticles having an average aggregate particle diameter of 50 nm or more, cracks generated in the conductive film due to volume shrinkage accompanying the fusion and growth of copper nanoparticles are unlikely to occur. By including copper nanoparticles having an average aggregate particle size of 200 nm or less, the surface melting temperature is sufficiently lowered, so that surface melting is likely to occur, and a dense conductive film can be formed, so that improvement in conductivity can be expected. .
The average agglomerated particle diameter of the copper nanoparticles in the present invention is determined by measuring the agglomerated particle diameter of 100 copper nanoparticles randomly selected from the SEM image and taking the average.
In the present invention, copper hydride nanoparticles and copper nanoparticles are used as aggregated particles. These agglomerated particles are formed by agglomerating primary particles having an average primary particle diameter of about 10 to 100 nm, preferably 20 to 50 nm. The average primary particle size of the nanoparticles is determined by measuring the primary particle size of 100 nanoparticles randomly selected from the TEM image and taking the average.
銅ナノ粒子の量は、銅フィラー100質量部に対して、5~50質量部であり、10~35質量部が好ましい。銅ナノ粒子の量が5質量部以上であれば、銅フィラー間の導電パスを増やすことができ、導電膜の体積抵抗率が低く抑えられる。銅ナノ粒子の量が50質量部以下であれば、銅ナノ粒子の添加に伴う導電性ペーストの流動性の低下を抑えることができる。
水素化銅ナノ粒子は、後述するように、下記の工程(a)~(d)を経て製造でき、該水素化銅ナノ粒子を熱分解してなる金属銅ナノ粒子は、さらに下記工程(e)を経て製造できる。
(a)水溶性銅化合物を水に溶解して、銅イオンを含む水溶液を調製する工程。
(b)前記水溶液に酸を加えてpHを3以下に調整する工程。
(c)前記pHが3以下の水溶液を撹拌しながら、該水溶液に還元剤を加えて銅イオンを還元し、平均凝集粒子径が10~200nmである水素化銅ナノ粒子を生成させる工程。
(d)必要に応じて、前記水素化銅ナノ粒子を、水とメタノールとの混合分散媒で精製する工程。
(e)前記水素化銅ナノ粒子を、熱分解させて金属銅ナノ粒子を生成させる工程。 The amount of the copper nanoparticles is 5 to 50 parts by mass, preferably 10 to 35 parts by mass with respect to 100 parts by mass of the copper filler. If the amount of copper nanoparticles is 5 parts by mass or more, the number of conductive paths between copper fillers can be increased, and the volume resistivity of the conductive film can be kept low. If the amount of copper nanoparticles is 50 parts by mass or less, a decrease in fluidity of the conductive paste accompanying the addition of copper nanoparticles can be suppressed.
As will be described later, the copper hydride nanoparticles can be produced through the following steps (a) to (d), and the metal copper nanoparticles obtained by thermally decomposing the copper hydride nanoparticles are further processed in the following steps (e ) Can be manufactured through.
(A) A step of preparing an aqueous solution containing copper ions by dissolving a water-soluble copper compound in water.
(B) A step of adjusting the pH to 3 or less by adding an acid to the aqueous solution.
(C) A step of adding a reducing agent to the aqueous solution while stirring the aqueous solution having a pH of 3 or less to reduce copper ions to produce copper hydride nanoparticles having an average aggregate particle size of 10 to 200 nm.
(D) The process of refine | purifying the said copper hydride nanoparticle with the mixed dispersion medium of water and methanol as needed.
(E) A step of thermally decomposing the copper hydride nanoparticles to produce metallic copper nanoparticles.
水素化銅ナノ粒子は、後述するように、下記の工程(a)~(d)を経て製造でき、該水素化銅ナノ粒子を熱分解してなる金属銅ナノ粒子は、さらに下記工程(e)を経て製造できる。
(a)水溶性銅化合物を水に溶解して、銅イオンを含む水溶液を調製する工程。
(b)前記水溶液に酸を加えてpHを3以下に調整する工程。
(c)前記pHが3以下の水溶液を撹拌しながら、該水溶液に還元剤を加えて銅イオンを還元し、平均凝集粒子径が10~200nmである水素化銅ナノ粒子を生成させる工程。
(d)必要に応じて、前記水素化銅ナノ粒子を、水とメタノールとの混合分散媒で精製する工程。
(e)前記水素化銅ナノ粒子を、熱分解させて金属銅ナノ粒子を生成させる工程。 The amount of the copper nanoparticles is 5 to 50 parts by mass, preferably 10 to 35 parts by mass with respect to 100 parts by mass of the copper filler. If the amount of copper nanoparticles is 5 parts by mass or more, the number of conductive paths between copper fillers can be increased, and the volume resistivity of the conductive film can be kept low. If the amount of copper nanoparticles is 50 parts by mass or less, a decrease in fluidity of the conductive paste accompanying the addition of copper nanoparticles can be suppressed.
As will be described later, the copper hydride nanoparticles can be produced through the following steps (a) to (d), and the metal copper nanoparticles obtained by thermally decomposing the copper hydride nanoparticles are further processed in the following steps (e ) Can be manufactured through.
(A) A step of preparing an aqueous solution containing copper ions by dissolving a water-soluble copper compound in water.
(B) A step of adjusting the pH to 3 or less by adding an acid to the aqueous solution.
(C) A step of adding a reducing agent to the aqueous solution while stirring the aqueous solution having a pH of 3 or less to reduce copper ions to produce copper hydride nanoparticles having an average aggregate particle size of 10 to 200 nm.
(D) The process of refine | purifying the said copper hydride nanoparticle with the mixed dispersion medium of water and methanol as needed.
(E) A step of thermally decomposing the copper hydride nanoparticles to produce metallic copper nanoparticles.
工程(b)において用いられる酸としては、ギ酸、クエン酸、マレイン酸、マロン酸、酢酸、プロピオン酸、硫酸、硝酸、塩酸等が挙げられ、ギ酸が好ましい。これらの酸は、銅イオンを含む水溶液のpHを調整するために用いられるが、該酸は銅ナノ粒子の表面を被覆し、銅ナノ粒子の導電性にも影響を与える場合があると考えられる。
ギ酸は還元作用を有する酸であるため、工程(b)においてギ酸を用いることにより、得られる銅ナノ粒子の表面が酸化されるのを抑制する効果があるものと考えられる。 Examples of the acid used in the step (b) include formic acid, citric acid, maleic acid, malonic acid, acetic acid, propionic acid, sulfuric acid, nitric acid, hydrochloric acid and the like, and formic acid is preferable. These acids are used to adjust the pH of an aqueous solution containing copper ions, but the acid may cover the surface of the copper nanoparticles and may affect the conductivity of the copper nanoparticles. .
Since formic acid is an acid having a reducing action, it is considered that using formic acid in the step (b) has an effect of suppressing oxidation of the surface of the obtained copper nanoparticles.
ギ酸は還元作用を有する酸であるため、工程(b)においてギ酸を用いることにより、得られる銅ナノ粒子の表面が酸化されるのを抑制する効果があるものと考えられる。 Examples of the acid used in the step (b) include formic acid, citric acid, maleic acid, malonic acid, acetic acid, propionic acid, sulfuric acid, nitric acid, hydrochloric acid and the like, and formic acid is preferable. These acids are used to adjust the pH of an aqueous solution containing copper ions, but the acid may cover the surface of the copper nanoparticles and may affect the conductivity of the copper nanoparticles. .
Since formic acid is an acid having a reducing action, it is considered that using formic acid in the step (b) has an effect of suppressing oxidation of the surface of the obtained copper nanoparticles.
銅ナノ粒子としては、ギ酸によって表面が被覆されている水素化銅ナノ粒子、または該水素化銅ナノ粒子を焼成してなる金属銅ナノ粒子が特に好ましい。
水素化銅ナノ粒子がギ酸によって表面が被覆されていることは、水素化銅ナノ粒子のIRスペクトルを測定し、図1に示すように、水素化銅ナノ粒子の表面と相互作用していないギ酸に由来するC=Oの伸縮による1700cm-1付近の吸収が存在しないか、もしくは小さいこと、および水素化銅ナノ粒子の表面と相互作用しているギ酸に由来するCOO-による1500~1600cm-1の吸収が存在することにより確認できる。 The copper nanoparticles are particularly preferably copper hydride nanoparticles whose surface is coated with formic acid, or metal copper nanoparticles obtained by firing the copper hydride nanoparticles.
The surface of the copper hydride nanoparticles covered with formic acid is measured by measuring the IR spectrum of the copper hydride nanoparticles and, as shown in FIG. 1, formic acid that does not interact with the surface of the copper hydride nanoparticles. Absorption near 1700 cm −1 due to the stretching of C═O derived from C is not present or small, and 1500-1600 cm −1 due to COO − derived from formic acid interacting with the surface of the copper hydride nanoparticles. It can be confirmed by the presence of absorption.
水素化銅ナノ粒子がギ酸によって表面が被覆されていることは、水素化銅ナノ粒子のIRスペクトルを測定し、図1に示すように、水素化銅ナノ粒子の表面と相互作用していないギ酸に由来するC=Oの伸縮による1700cm-1付近の吸収が存在しないか、もしくは小さいこと、および水素化銅ナノ粒子の表面と相互作用しているギ酸に由来するCOO-による1500~1600cm-1の吸収が存在することにより確認できる。 The copper nanoparticles are particularly preferably copper hydride nanoparticles whose surface is coated with formic acid, or metal copper nanoparticles obtained by firing the copper hydride nanoparticles.
The surface of the copper hydride nanoparticles covered with formic acid is measured by measuring the IR spectrum of the copper hydride nanoparticles and, as shown in FIG. 1, formic acid that does not interact with the surface of the copper hydride nanoparticles. Absorption near 1700 cm −1 due to the stretching of C═O derived from C is not present or small, and 1500-1600 cm −1 due to COO − derived from formic acid interacting with the surface of the copper hydride nanoparticles. It can be confirmed by the presence of absorption.
ギ酸が水素化銅ナノ粒子の表面と相互作用している場合、ギ酸のカルボン酸は、-COO-となっている。-COO-における負電荷は、2つの酸素原子上に非局在化しているため、-COO-にはカルボニル基(C=O)が存在しない。一方、水素化銅ナノ粒子とギ酸とを単にブレンドしただけでは、前記相互作用が起こらないため、該ブレンド物においては、C=Oの伸縮による1700cm-1付近の吸収が存在し、COO-による1500~1600cm-1の吸収が存在しない。
ギ酸の被覆量は、水素化銅ナノ粒子全体(ギ酸を含む。)100質量%のうち、1~40質量%が好ましく、5~20質量%がより好ましい。
ギ酸の被覆量は、熱分析測定装置を用いて水素化銅ナノ粒子を熱分解させ、150~500℃間の質量減少を測定し、求める。 When formic acid interacts with the surface of the copper hydride nanoparticles, the carboxylic acid of formic acid is —COO 2 — . Since the negative charge in —COO 2 — is delocalized on two oxygen atoms, there is no carbonyl group (C═O) in —COO 2 — . On the other hand, when the copper hydride nanoparticles and formic acid are simply blended, the above-mentioned interaction does not occur. Therefore, in the blend, there is absorption around 1700 cm −1 due to stretching of C═O, and COO − There is no absorption of 1500-1600 cm −1 .
The coating amount of formic acid is preferably 1 to 40% by mass, more preferably 5 to 20% by mass, out of 100% by mass of the entire copper hydride nanoparticles (including formic acid).
The coating amount of formic acid is obtained by thermally decomposing copper hydride nanoparticles using a thermal analyzer and measuring the mass loss between 150 and 500 ° C.
ギ酸の被覆量は、水素化銅ナノ粒子全体(ギ酸を含む。)100質量%のうち、1~40質量%が好ましく、5~20質量%がより好ましい。
ギ酸の被覆量は、熱分析測定装置を用いて水素化銅ナノ粒子を熱分解させ、150~500℃間の質量減少を測定し、求める。 When formic acid interacts with the surface of the copper hydride nanoparticles, the carboxylic acid of formic acid is —COO 2 — . Since the negative charge in —COO 2 — is delocalized on two oxygen atoms, there is no carbonyl group (C═O) in —COO 2 — . On the other hand, when the copper hydride nanoparticles and formic acid are simply blended, the above-mentioned interaction does not occur. Therefore, in the blend, there is absorption around 1700 cm −1 due to stretching of C═O, and COO − There is no absorption of 1500-1600 cm −1 .
The coating amount of formic acid is preferably 1 to 40% by mass, more preferably 5 to 20% by mass, out of 100% by mass of the entire copper hydride nanoparticles (including formic acid).
The coating amount of formic acid is obtained by thermally decomposing copper hydride nanoparticles using a thermal analyzer and measuring the mass loss between 150 and 500 ° C.
以下、工程(b)における酸としてギ酸を用いる場合を例にとって説明するが、前記の酸を用いる場合も同様に操作を行うことができる。
ギ酸によって表面が被覆されている水素化銅ナノ粒子は、下記の工程(a)、(b1)、(c)、および(d)を経て製造でき、該水素化銅ナノ粒子を熱分解してなる金属銅ナノ粒子は、さらに下記工程(e)を経て製造できる。
(a)水溶性銅化合物を水に溶解して、銅イオンを含む水溶液を調製する工程。
(b1)前記水溶液にギ酸を加えてpHを3以下に調整する工程。
(c)前記pHが3以下の水溶液を撹拌しながら、該水溶液に還元剤を加えて銅イオンを還元し、平均凝集粒子径が10~200nmである水素化銅ナノ粒子を生成させる工程。
(d)必要に応じて、前記水素化銅ナノ粒子を、水とメタノールとの混合分散媒で精製する工程。
(e)前記水素化銅ナノ粒子を、熱分解させて金属銅ナノ粒子を生成させる工程。 Hereinafter, the case where formic acid is used as the acid in the step (b) will be described as an example, but the same operation can be performed when the above acid is used.
Copper hydride nanoparticles whose surface is coated with formic acid can be produced through the following steps (a), (b1), (c), and (d), and the copper hydride nanoparticles are pyrolyzed. The resulting copper metal nanoparticles can be further manufactured through the following step (e).
(A) A step of preparing an aqueous solution containing copper ions by dissolving a water-soluble copper compound in water.
(B1) A step of adding formic acid to the aqueous solution to adjust the pH to 3 or less.
(C) A step of adding a reducing agent to the aqueous solution while stirring the aqueous solution having a pH of 3 or less to reduce copper ions to produce copper hydride nanoparticles having an average aggregate particle size of 10 to 200 nm.
(D) The process of refine | purifying the said copper hydride nanoparticle with the mixed dispersion medium of water and methanol as needed.
(E) A step of thermally decomposing the copper hydride nanoparticles to produce metallic copper nanoparticles.
ギ酸によって表面が被覆されている水素化銅ナノ粒子は、下記の工程(a)、(b1)、(c)、および(d)を経て製造でき、該水素化銅ナノ粒子を熱分解してなる金属銅ナノ粒子は、さらに下記工程(e)を経て製造できる。
(a)水溶性銅化合物を水に溶解して、銅イオンを含む水溶液を調製する工程。
(b1)前記水溶液にギ酸を加えてpHを3以下に調整する工程。
(c)前記pHが3以下の水溶液を撹拌しながら、該水溶液に還元剤を加えて銅イオンを還元し、平均凝集粒子径が10~200nmである水素化銅ナノ粒子を生成させる工程。
(d)必要に応じて、前記水素化銅ナノ粒子を、水とメタノールとの混合分散媒で精製する工程。
(e)前記水素化銅ナノ粒子を、熱分解させて金属銅ナノ粒子を生成させる工程。 Hereinafter, the case where formic acid is used as the acid in the step (b) will be described as an example, but the same operation can be performed when the above acid is used.
Copper hydride nanoparticles whose surface is coated with formic acid can be produced through the following steps (a), (b1), (c), and (d), and the copper hydride nanoparticles are pyrolyzed. The resulting copper metal nanoparticles can be further manufactured through the following step (e).
(A) A step of preparing an aqueous solution containing copper ions by dissolving a water-soluble copper compound in water.
(B1) A step of adding formic acid to the aqueous solution to adjust the pH to 3 or less.
(C) A step of adding a reducing agent to the aqueous solution while stirring the aqueous solution having a pH of 3 or less to reduce copper ions to produce copper hydride nanoparticles having an average aggregate particle size of 10 to 200 nm.
(D) The process of refine | purifying the said copper hydride nanoparticle with the mixed dispersion medium of water and methanol as needed.
(E) A step of thermally decomposing the copper hydride nanoparticles to produce metallic copper nanoparticles.
工程(a):
水溶性銅化合物としては、硫酸銅、硝酸銅、ギ酸銅、酢酸銅、塩化銅、臭化銅、ヨウ化銅等が挙げられる。
水溶性銅化合物の濃度は、水溶液100質量%中、0.1~30質量%が好ましく1~20質量%がより好ましい。水溶液中の水溶性銅化合物の濃度が0.1質量%以上であれば、水の量が抑えられ、また、水素化銅ナノ粒子の生産効率が良好となる。水溶液中の水溶性銅化合物の濃度が30質量%以下であれば、水素化銅ナノ粒子の収率の低下が抑えられる。 Step (a):
Examples of the water-soluble copper compound include copper sulfate, copper nitrate, copper formate, copper acetate, copper chloride, copper bromide, copper iodide and the like.
The concentration of the water-soluble copper compound is preferably 0.1 to 30% by mass and more preferably 1 to 20% by mass in 100% by mass of the aqueous solution. If the density | concentration of the water-soluble copper compound in aqueous solution is 0.1 mass% or more, the quantity of water will be restrained and the production efficiency of a copper hydride nanoparticle will become favorable. If the density | concentration of the water-soluble copper compound in aqueous solution is 30 mass% or less, the fall of the yield of a copper hydride nanoparticle will be suppressed.
水溶性銅化合物としては、硫酸銅、硝酸銅、ギ酸銅、酢酸銅、塩化銅、臭化銅、ヨウ化銅等が挙げられる。
水溶性銅化合物の濃度は、水溶液100質量%中、0.1~30質量%が好ましく1~20質量%がより好ましい。水溶液中の水溶性銅化合物の濃度が0.1質量%以上であれば、水の量が抑えられ、また、水素化銅ナノ粒子の生産効率が良好となる。水溶液中の水溶性銅化合物の濃度が30質量%以下であれば、水素化銅ナノ粒子の収率の低下が抑えられる。 Step (a):
Examples of the water-soluble copper compound include copper sulfate, copper nitrate, copper formate, copper acetate, copper chloride, copper bromide, copper iodide and the like.
The concentration of the water-soluble copper compound is preferably 0.1 to 30% by mass and more preferably 1 to 20% by mass in 100% by mass of the aqueous solution. If the density | concentration of the water-soluble copper compound in aqueous solution is 0.1 mass% or more, the quantity of water will be restrained and the production efficiency of a copper hydride nanoparticle will become favorable. If the density | concentration of the water-soluble copper compound in aqueous solution is 30 mass% or less, the fall of the yield of a copper hydride nanoparticle will be suppressed.
工程(b):
水溶液のpHを3以下に調整することにより、水溶液中の銅イオンが還元剤により還元されやすくなり、水素化銅ナノ粒子が生成しやすくなる。水溶液のpHが3を超えると、水素化銅ナノ粒子が生成せずに、金属銅ナノ粒子が生成するおそれがある。水溶液のpHは、水素化銅ナノ粒子を短時間で生成できる点では、0.5~2.0が好ましく、0.7~1.5がより好ましい。
なお、工程(a)と工程(b)は、同時に行ってもよい。 Step (b):
By adjusting the pH of the aqueous solution to 3 or less, copper ions in the aqueous solution are easily reduced by the reducing agent, and copper hydride nanoparticles are easily generated. When pH of aqueous solution exceeds 3, there exists a possibility that a metal copper nanoparticle may produce | generate, without producing | generating a copper hydride nanoparticle. The pH of the aqueous solution is preferably 0.5 to 2.0, more preferably 0.7 to 1.5, from the viewpoint that copper hydride nanoparticles can be formed in a short time.
In addition, you may perform a process (a) and a process (b) simultaneously.
水溶液のpHを3以下に調整することにより、水溶液中の銅イオンが還元剤により還元されやすくなり、水素化銅ナノ粒子が生成しやすくなる。水溶液のpHが3を超えると、水素化銅ナノ粒子が生成せずに、金属銅ナノ粒子が生成するおそれがある。水溶液のpHは、水素化銅ナノ粒子を短時間で生成できる点では、0.5~2.0が好ましく、0.7~1.5がより好ましい。
なお、工程(a)と工程(b)は、同時に行ってもよい。 Step (b):
By adjusting the pH of the aqueous solution to 3 or less, copper ions in the aqueous solution are easily reduced by the reducing agent, and copper hydride nanoparticles are easily generated. When pH of aqueous solution exceeds 3, there exists a possibility that a metal copper nanoparticle may produce | generate, without producing | generating a copper hydride nanoparticle. The pH of the aqueous solution is preferably 0.5 to 2.0, more preferably 0.7 to 1.5, from the viewpoint that copper hydride nanoparticles can be formed in a short time.
In addition, you may perform a process (a) and a process (b) simultaneously.
工程(c):
銅イオンは酸性下で還元剤により還元され、徐々に水素化銅ナノ粒子が成長して、粒子径が10~200nmである水素化銅ナノ粒子が生成する。該水素化銅ナノ粒子は、ただちに共存しているギ酸により表面を覆われ、安定化する。 Step (c):
Copper ions are reduced by a reducing agent under acidic conditions, and copper hydride nanoparticles are gradually grown to produce copper hydride nanoparticles having a particle diameter of 10 to 200 nm. The surface of the copper hydride nanoparticles is immediately covered with the formic acid present together and stabilized.
銅イオンは酸性下で還元剤により還元され、徐々に水素化銅ナノ粒子が成長して、粒子径が10~200nmである水素化銅ナノ粒子が生成する。該水素化銅ナノ粒子は、ただちに共存しているギ酸により表面を覆われ、安定化する。 Step (c):
Copper ions are reduced by a reducing agent under acidic conditions, and copper hydride nanoparticles are gradually grown to produce copper hydride nanoparticles having a particle diameter of 10 to 200 nm. The surface of the copper hydride nanoparticles is immediately covered with the formic acid present together and stabilized.
還元剤としては、大きな還元作用があることから金属水素化物または次亜リン酸が好ましい。金属水素化物としては、水素化リチウムアルミニウム、水素化ホウ素リチウム、水素化ホウ素ナトリウム、水素化リチウム、水素化カリウム、水素化カルシウム等が挙げられ、水素化リチウムアルミニウム、水素化ホウ素リチウム、水素化ホウ素ナトリウムが好ましい。
As the reducing agent, metal hydride or hypophosphorous acid is preferable because of its large reducing action. Examples of metal hydrides include lithium aluminum hydride, lithium borohydride, sodium borohydride, lithium hydride, potassium hydride, calcium hydride, and the like. Lithium aluminum hydride, lithium borohydride, borohydride Sodium is preferred.
還元剤の添加量は、銅イオンに対して1.5~10倍当量数が好まく、2~5倍当量数がより好ましい。還元剤の添加量が銅イオンに対して1.5倍当量数以上であれば、還元作用が充分となる。還元剤の添加量が銅イオンに対して10倍当量数以下であれば、水素化銅ナノ粒子に含まれる不純物(ナトリウム、ホウ素、リン等)の量が抑えられる。
還元剤を加える際の水溶液の温度は、5~60℃が好ましく、20~50℃がより好ましい。水溶液の温度が60℃以下であれば、水素化銅ナノ粒子の分解が抑えられる。 The addition amount of the reducing agent is preferably 1.5 to 10 times the number of equivalents to copper ions, more preferably 2 to 5 times the number of equivalents. If the amount of the reducing agent added is 1.5 times the number of equivalents or more of copper ions, the reducing action is sufficient. When the addition amount of the reducing agent is 10 times the number of equivalents or less with respect to copper ions, the amount of impurities (sodium, boron, phosphorus, etc.) contained in the copper hydride nanoparticles can be suppressed.
The temperature of the aqueous solution when adding the reducing agent is preferably 5 to 60 ° C, more preferably 20 to 50 ° C. If the temperature of aqueous solution is 60 degrees C or less, decomposition | disassembly of a copper hydride nanoparticle will be suppressed.
還元剤を加える際の水溶液の温度は、5~60℃が好ましく、20~50℃がより好ましい。水溶液の温度が60℃以下であれば、水素化銅ナノ粒子の分解が抑えられる。 The addition amount of the reducing agent is preferably 1.5 to 10 times the number of equivalents to copper ions, more preferably 2 to 5 times the number of equivalents. If the amount of the reducing agent added is 1.5 times the number of equivalents or more of copper ions, the reducing action is sufficient. When the addition amount of the reducing agent is 10 times the number of equivalents or less with respect to copper ions, the amount of impurities (sodium, boron, phosphorus, etc.) contained in the copper hydride nanoparticles can be suppressed.
The temperature of the aqueous solution when adding the reducing agent is preferably 5 to 60 ° C, more preferably 20 to 50 ° C. If the temperature of aqueous solution is 60 degrees C or less, decomposition | disassembly of a copper hydride nanoparticle will be suppressed.
工程(d):
水素化銅ナノ粒子を含む懸濁液を静置すると、水素化銅ナノ粒子が凝集して沈殿する。該沈殿物を分離し、ついで分散媒に再分散させた後、水素化銅ナノ粒子を再び凝集させて沈殿させる方法で精製することにより、高純度化した水素化銅ナノ粒子が得られる。 Step (d):
When the suspension containing copper hydride nanoparticles is allowed to stand, the copper hydride nanoparticles aggregate and precipitate. The precipitate is separated and then re-dispersed in a dispersion medium, and then purified by a method in which the copper hydride nanoparticles are agglomerated again and precipitated to obtain highly purified copper hydride nanoparticles.
水素化銅ナノ粒子を含む懸濁液を静置すると、水素化銅ナノ粒子が凝集して沈殿する。該沈殿物を分離し、ついで分散媒に再分散させた後、水素化銅ナノ粒子を再び凝集させて沈殿させる方法で精製することにより、高純度化した水素化銅ナノ粒子が得られる。 Step (d):
When the suspension containing copper hydride nanoparticles is allowed to stand, the copper hydride nanoparticles aggregate and precipitate. The precipitate is separated and then re-dispersed in a dispersion medium, and then purified by a method in which the copper hydride nanoparticles are agglomerated again and precipitated to obtain highly purified copper hydride nanoparticles.
精製に用いる分散媒としては、水とメタノールもしくはエタノールとの混合分散媒が好ましい。水のみでは、水の表面張力が大きいため、水素化銅ナノ粒子の凝集物の細孔に水が入っていくことができず、精製の効果が小さい。一方、メタノールのみでは、メタノールの誘電率が小さいため、不純物のナトリウムをイオンとして分散媒中に遊離できず、精製の効果が小さい。
混合分散媒中の水の割合は、混合分散媒全体に対して、40~90質量%が好ましく、50~85質量%がより好ましい。
水素化銅ナノ粒子に含まれるナトリウムの量は、800ppm以下が好ましく、100ppm以下がより好ましい。 As the dispersion medium used for purification, a mixed dispersion medium of water and methanol or ethanol is preferable. With water alone, the surface tension of water is large, so water cannot enter the pores of the aggregates of copper hydride nanoparticles, and the effect of purification is small. On the other hand, with methanol alone, the dielectric constant of methanol is small, so that the impurity sodium cannot be released into the dispersion medium as ions, and the purification effect is small.
The proportion of water in the mixed dispersion medium is preferably 40 to 90% by mass, more preferably 50 to 85% by mass with respect to the entire mixed dispersion medium.
The amount of sodium contained in the copper hydride nanoparticles is preferably 800 ppm or less, and more preferably 100 ppm or less.
混合分散媒中の水の割合は、混合分散媒全体に対して、40~90質量%が好ましく、50~85質量%がより好ましい。
水素化銅ナノ粒子に含まれるナトリウムの量は、800ppm以下が好ましく、100ppm以下がより好ましい。 As the dispersion medium used for purification, a mixed dispersion medium of water and methanol or ethanol is preferable. With water alone, the surface tension of water is large, so water cannot enter the pores of the aggregates of copper hydride nanoparticles, and the effect of purification is small. On the other hand, with methanol alone, the dielectric constant of methanol is small, so that the impurity sodium cannot be released into the dispersion medium as ions, and the purification effect is small.
The proportion of water in the mixed dispersion medium is preferably 40 to 90% by mass, more preferably 50 to 85% by mass with respect to the entire mixed dispersion medium.
The amount of sodium contained in the copper hydride nanoparticles is preferably 800 ppm or less, and more preferably 100 ppm or less.
工程(e):
熱分解は不活性雰囲気下で行う。雰囲気中の酸素濃度は1000ppm以下が好ましい。1000ppmを超えると、酸化によって亜酸化銅を生じてしまう。
熱分解の温度は、60~100℃が好ましく、70~90℃が好ましい。該温度が60℃以上であれば、熱分解が円滑に進行する。該温度が100℃以下であれば、銅ナノ粒子同士の融着が抑えられる。 Step (e):
Thermal decomposition is performed under an inert atmosphere. The oxygen concentration in the atmosphere is preferably 1000 ppm or less. When it exceeds 1000 ppm, cuprous oxide will be produced by oxidation.
The thermal decomposition temperature is preferably 60 to 100 ° C, more preferably 70 to 90 ° C. If the temperature is 60 ° C. or higher, thermal decomposition proceeds smoothly. If this temperature is 100 degrees C or less, the fusion | melting of copper nanoparticles will be suppressed.
熱分解は不活性雰囲気下で行う。雰囲気中の酸素濃度は1000ppm以下が好ましい。1000ppmを超えると、酸化によって亜酸化銅を生じてしまう。
熱分解の温度は、60~100℃が好ましく、70~90℃が好ましい。該温度が60℃以上であれば、熱分解が円滑に進行する。該温度が100℃以下であれば、銅ナノ粒子同士の融着が抑えられる。 Step (e):
Thermal decomposition is performed under an inert atmosphere. The oxygen concentration in the atmosphere is preferably 1000 ppm or less. When it exceeds 1000 ppm, cuprous oxide will be produced by oxidation.
The thermal decomposition temperature is preferably 60 to 100 ° C, more preferably 70 to 90 ° C. If the temperature is 60 ° C. or higher, thermal decomposition proceeds smoothly. If this temperature is 100 degrees C or less, the fusion | melting of copper nanoparticles will be suppressed.
水素化銅ナノ粒子は、下記の(i)、(ii)の理由から、耐酸化性に優れ、かつ銅フィラーと焼結しやすい。
(i)水素化銅ナノ粒子は、銅原子と水素原子とが結合した状態で存在するため、空気雰囲気中において、金属銅ナノ粒子に比べて酸化されにくく安定であり、保存安定性に優れている。
(ii)水素化銅ナノ粒子は、温度60~100℃において金属銅と水素とに分解する性質を有するため、水素化銅ナノ粒子を基材に塗布し、焼成する際、金属銅ナノ粒子とは異なり、粒子表面に酸化物皮膜が形成されることがほとんどない。したがって、表面溶融現象により銅ナノ粒子が融解し、銅ナノ粒子同士、または銅ナノ粒子と金属フィラーとが焼結して、すみやかに導電膜を形成できる。 The copper hydride nanoparticles are excellent in oxidation resistance and easy to sinter with a copper filler for the following reasons (i) and (ii).
(I) Since the copper hydride nanoparticles exist in a state in which copper atoms and hydrogen atoms are bonded, they are less susceptible to oxidation in metal atmosphere than metal copper nanoparticles, and have excellent storage stability. Yes.
(Ii) Since the copper hydride nanoparticles have the property of decomposing into metallic copper and hydrogen at a temperature of 60 to 100 ° C., when the copper hydride nanoparticles are applied to a substrate and fired, In contrast, an oxide film is hardly formed on the particle surface. Accordingly, the copper nanoparticles are melted by the surface melting phenomenon, and the copper nanoparticles or the copper nanoparticles and the metal filler are sintered, so that the conductive film can be formed promptly.
(i)水素化銅ナノ粒子は、銅原子と水素原子とが結合した状態で存在するため、空気雰囲気中において、金属銅ナノ粒子に比べて酸化されにくく安定であり、保存安定性に優れている。
(ii)水素化銅ナノ粒子は、温度60~100℃において金属銅と水素とに分解する性質を有するため、水素化銅ナノ粒子を基材に塗布し、焼成する際、金属銅ナノ粒子とは異なり、粒子表面に酸化物皮膜が形成されることがほとんどない。したがって、表面溶融現象により銅ナノ粒子が融解し、銅ナノ粒子同士、または銅ナノ粒子と金属フィラーとが焼結して、すみやかに導電膜を形成できる。 The copper hydride nanoparticles are excellent in oxidation resistance and easy to sinter with a copper filler for the following reasons (i) and (ii).
(I) Since the copper hydride nanoparticles exist in a state in which copper atoms and hydrogen atoms are bonded, they are less susceptible to oxidation in metal atmosphere than metal copper nanoparticles, and have excellent storage stability. Yes.
(Ii) Since the copper hydride nanoparticles have the property of decomposing into metallic copper and hydrogen at a temperature of 60 to 100 ° C., when the copper hydride nanoparticles are applied to a substrate and fired, In contrast, an oxide film is hardly formed on the particle surface. Accordingly, the copper nanoparticles are melted by the surface melting phenomenon, and the copper nanoparticles or the copper nanoparticles and the metal filler are sintered, so that the conductive film can be formed promptly.
また、ギ酸によって表面が被覆されている水素化銅ナノ粒子、および該水素化銅ナノ粒子を熱分解してなる金属銅ナノ粒子は、下記の(iii)~(iv)の理由から、さらに耐酸化性に優れ、かつ銅フィラーと焼結しやすい。
(iii)ギ酸によって表面が被覆されている水素化銅ナノ粒子は、還元性(すなわち-CHO基)を有するギ酸によって表面を被覆されているため、空気雰囲気中において、他の有機酸によって被覆された水素化銅ナノ粒子に比べて酸化されにくい。よって、焼成によって形成される導電膜は、導電性に優れている。
(iv)ギ酸によって表面が被覆されている水素化銅ナノ粒子を熱分解して金属銅ナノ粒子を形成する際に、粒子表面に酸化物皮膜が形成されにくい。よって、得られる金属銅ナノ粒子の表面に形成される酸化物皮膜が少ない。 In addition, copper hydride nanoparticles whose surface is coated with formic acid, and metal copper nanoparticles obtained by thermally decomposing the copper hydride nanoparticles are further resistant to acid resistance for the following reasons (iii) to (iv). It is easy to sinter with copper filler.
(Iii) Since the surface of the copper hydride nanoparticles coated with formic acid is coated with formic acid having a reducing property (ie, —CHO group), it is coated with other organic acids in the air atmosphere. Compared to copper hydride nanoparticles, it is less oxidized. Therefore, the conductive film formed by firing is excellent in conductivity.
(Iv) When copper hydride nanoparticles whose surface is coated with formic acid are thermally decomposed to form metal copper nanoparticles, an oxide film is hardly formed on the particle surface. Therefore, there are few oxide films formed on the surface of the obtained metal copper nanoparticles.
(iii)ギ酸によって表面が被覆されている水素化銅ナノ粒子は、還元性(すなわち-CHO基)を有するギ酸によって表面を被覆されているため、空気雰囲気中において、他の有機酸によって被覆された水素化銅ナノ粒子に比べて酸化されにくい。よって、焼成によって形成される導電膜は、導電性に優れている。
(iv)ギ酸によって表面が被覆されている水素化銅ナノ粒子を熱分解して金属銅ナノ粒子を形成する際に、粒子表面に酸化物皮膜が形成されにくい。よって、得られる金属銅ナノ粒子の表面に形成される酸化物皮膜が少ない。 In addition, copper hydride nanoparticles whose surface is coated with formic acid, and metal copper nanoparticles obtained by thermally decomposing the copper hydride nanoparticles are further resistant to acid resistance for the following reasons (iii) to (iv). It is easy to sinter with copper filler.
(Iii) Since the surface of the copper hydride nanoparticles coated with formic acid is coated with formic acid having a reducing property (ie, —CHO group), it is coated with other organic acids in the air atmosphere. Compared to copper hydride nanoparticles, it is less oxidized. Therefore, the conductive film formed by firing is excellent in conductivity.
(Iv) When copper hydride nanoparticles whose surface is coated with formic acid are thermally decomposed to form metal copper nanoparticles, an oxide film is hardly formed on the particle surface. Therefore, there are few oxide films formed on the surface of the obtained metal copper nanoparticles.
<導電性ペースト>
本発明の導電性ペーストは、平均凝集粒子径が0.5~20μmである銅フィラーと、平均凝集粒子径が50~200nmである銅ナノ粒子と、脂肪族カルボン酸と、樹脂バインダとを含む。
本発明の導電性ペーストは、(i)本発明の導電性フィラーと、樹脂バインダとを混合して調製されたものであってもよく、(ii)銅フィラーと銅ナノ粒子とを含む導電性フィラーと、脂肪族カルボン酸を添加した樹脂バインダとを混合して調製されたものであってもよい。 <Conductive paste>
The conductive paste of the present invention includes a copper filler having an average aggregate particle diameter of 0.5 to 20 μm, copper nanoparticles having an average aggregate particle diameter of 50 to 200 nm, an aliphatic carboxylic acid, and a resin binder. .
The conductive paste of the present invention may be prepared by mixing (i) the conductive filler of the present invention and a resin binder, and (ii) a conductive material containing a copper filler and copper nanoparticles. It may be prepared by mixing a filler and a resin binder to which an aliphatic carboxylic acid is added.
本発明の導電性ペーストは、平均凝集粒子径が0.5~20μmである銅フィラーと、平均凝集粒子径が50~200nmである銅ナノ粒子と、脂肪族カルボン酸と、樹脂バインダとを含む。
本発明の導電性ペーストは、(i)本発明の導電性フィラーと、樹脂バインダとを混合して調製されたものであってもよく、(ii)銅フィラーと銅ナノ粒子とを含む導電性フィラーと、脂肪族カルボン酸を添加した樹脂バインダとを混合して調製されたものであってもよい。 <Conductive paste>
The conductive paste of the present invention includes a copper filler having an average aggregate particle diameter of 0.5 to 20 μm, copper nanoparticles having an average aggregate particle diameter of 50 to 200 nm, an aliphatic carboxylic acid, and a resin binder. .
The conductive paste of the present invention may be prepared by mixing (i) the conductive filler of the present invention and a resin binder, and (ii) a conductive material containing a copper filler and copper nanoparticles. It may be prepared by mixing a filler and a resin binder to which an aliphatic carboxylic acid is added.
(脂肪族カルボン酸)
脂肪族カルボン酸の量は、銅フィラーおよび銅ナノ粒子の合計100質量部に対して、1~15質量部であり、3~15質量部が好ましく、3~10質量部が特に好ましい。脂肪族カルボン酸の量が1質量部以上であれば、銅ナノ粒子および銅フィラーの表面の酸化物皮膜を充分に除去できる。不飽和カルボン酸の量が15質量部以下であれば、過剰な不飽和カルボン酸が導電性を阻害して体積抵抗率を悪化させることがない。 (Aliphatic carboxylic acid)
The amount of the aliphatic carboxylic acid is 1 to 15 parts by weight, preferably 3 to 15 parts by weight, and particularly preferably 3 to 10 parts by weight with respect to a total of 100 parts by weight of the copper filler and the copper nanoparticles. When the amount of the aliphatic carboxylic acid is 1 part by mass or more, the oxide film on the surfaces of the copper nanoparticles and the copper filler can be sufficiently removed. If the amount of the unsaturated carboxylic acid is 15 parts by mass or less, the excessive unsaturated carboxylic acid does not hinder the conductivity and deteriorate the volume resistivity.
脂肪族カルボン酸の量は、銅フィラーおよび銅ナノ粒子の合計100質量部に対して、1~15質量部であり、3~15質量部が好ましく、3~10質量部が特に好ましい。脂肪族カルボン酸の量が1質量部以上であれば、銅ナノ粒子および銅フィラーの表面の酸化物皮膜を充分に除去できる。不飽和カルボン酸の量が15質量部以下であれば、過剰な不飽和カルボン酸が導電性を阻害して体積抵抗率を悪化させることがない。 (Aliphatic carboxylic acid)
The amount of the aliphatic carboxylic acid is 1 to 15 parts by weight, preferably 3 to 15 parts by weight, and particularly preferably 3 to 10 parts by weight with respect to a total of 100 parts by weight of the copper filler and the copper nanoparticles. When the amount of the aliphatic carboxylic acid is 1 part by mass or more, the oxide film on the surfaces of the copper nanoparticles and the copper filler can be sufficiently removed. If the amount of the unsaturated carboxylic acid is 15 parts by mass or less, the excessive unsaturated carboxylic acid does not hinder the conductivity and deteriorate the volume resistivity.
脂肪族カルボン酸としては、モノカルボン酸、ポリカルボン酸のいずれも使用できる。ポリカルボン酸としては、ジカルボン酸が好ましい。
As the aliphatic carboxylic acid, either monocarboxylic acid or polycarboxylic acid can be used. As the polycarboxylic acid, dicarboxylic acid is preferable.
脂肪族カルボン酸としては、不飽和カルボン酸が好ましく使用できる。不飽和カルボン酸の沸点または分解温度は、250℃以下が好ましく、160℃以下がより好ましい。
不飽和カルボン酸としては、アクリル酸(分子量72.06g/mol、融点12℃、沸点141℃)、プロピオール酸(分子量70.05g/mol、融点16℃ 沸点102℃)、メタクリル酸(分子量86.09g/mol、融点16℃、沸点163℃)、パルミトレイン酸(分子量254.4/mol、融点0.5℃、沸点162℃)、クロトン酸(分子量86.09g/mol、融点72℃、沸点185℃)、マレイン酸(分子量116.07g/mol、融点134-138℃、分解温度160℃)、リノール酸(分子量280.45g/mol、融点-5℃、沸点230℃)、リノレン酸(分子量298.45g/mol、融点-11℃、沸点231℃)、アラキドン酸(分子量304.5g/mol、融点-49℃、沸点170℃)等が挙げられ、アクリル酸またはマレイン酸が特に好ましい。不飽和カルボン酸は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
不飽和カルボン酸の沸点または分解温度の下限は、本発明の導電フィラーおよび導電ペーストに要求される性能や特性により適宜選ばれるため、必ずしも限定されるものではないが、通常は100℃程度である。 As the aliphatic carboxylic acid, an unsaturated carboxylic acid can be preferably used. The boiling point or decomposition temperature of the unsaturated carboxylic acid is preferably 250 ° C. or lower, and more preferably 160 ° C. or lower.
As unsaturated carboxylic acid, acrylic acid (molecular weight 72.06 g / mol, melting point 12 ° C., boiling point 141 ° C.), propiolic acid (molecular weight 70.05 g / mol, melting point 16 ° C. boiling point 102 ° C.), methacrylic acid (molecular weight 86. 09 g / mol, melting point 16 ° C., boiling point 163 ° C., palmitoleic acid (molecular weight 254.4 / mol, melting point 0.5 ° C., boiling point 162 ° C.), crotonic acid (molecular weight 86.09 g / mol, melting point 72 ° C., boiling point 185) ° C), maleic acid (molecular weight 116.07 g / mol, melting point 134-138 ° C, decomposition temperature 160 ° C), linoleic acid (molecular weight 280.45 g / mol, melting point -5 ° C, boiling point 230 ° C), linolenic acid (molecular weight 298 .45 g / mol, melting point −11 ° C., boiling point 231 ° C.), arachidonic acid (molecular weight 304.5 g / mol, melting point −49 ° C., boiling point 17 0 ° C.) and the like, and acrylic acid or maleic acid is particularly preferable. Unsaturated carboxylic acid may be used individually by 1 type, and may be used in combination of 2 or more type.
Since the lower limit of the boiling point or decomposition temperature of the unsaturated carboxylic acid is appropriately selected depending on the performance and properties required for the conductive filler and conductive paste of the present invention, it is not necessarily limited, but is usually about 100 ° C. .
不飽和カルボン酸としては、アクリル酸(分子量72.06g/mol、融点12℃、沸点141℃)、プロピオール酸(分子量70.05g/mol、融点16℃ 沸点102℃)、メタクリル酸(分子量86.09g/mol、融点16℃、沸点163℃)、パルミトレイン酸(分子量254.4/mol、融点0.5℃、沸点162℃)、クロトン酸(分子量86.09g/mol、融点72℃、沸点185℃)、マレイン酸(分子量116.07g/mol、融点134-138℃、分解温度160℃)、リノール酸(分子量280.45g/mol、融点-5℃、沸点230℃)、リノレン酸(分子量298.45g/mol、融点-11℃、沸点231℃)、アラキドン酸(分子量304.5g/mol、融点-49℃、沸点170℃)等が挙げられ、アクリル酸またはマレイン酸が特に好ましい。不飽和カルボン酸は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
不飽和カルボン酸の沸点または分解温度の下限は、本発明の導電フィラーおよび導電ペーストに要求される性能や特性により適宜選ばれるため、必ずしも限定されるものではないが、通常は100℃程度である。 As the aliphatic carboxylic acid, an unsaturated carboxylic acid can be preferably used. The boiling point or decomposition temperature of the unsaturated carboxylic acid is preferably 250 ° C. or lower, and more preferably 160 ° C. or lower.
As unsaturated carboxylic acid, acrylic acid (molecular weight 72.06 g / mol, melting point 12 ° C., boiling point 141 ° C.), propiolic acid (molecular weight 70.05 g / mol, melting point 16 ° C. boiling point 102 ° C.), methacrylic acid (molecular weight 86. 09 g / mol, melting point 16 ° C., boiling point 163 ° C., palmitoleic acid (molecular weight 254.4 / mol, melting point 0.5 ° C., boiling point 162 ° C.), crotonic acid (molecular weight 86.09 g / mol, melting point 72 ° C., boiling point 185) ° C), maleic acid (molecular weight 116.07 g / mol, melting point 134-138 ° C, decomposition temperature 160 ° C), linoleic acid (molecular weight 280.45 g / mol, melting point -5 ° C, boiling point 230 ° C), linolenic acid (molecular weight 298 .45 g / mol, melting point −11 ° C., boiling point 231 ° C.), arachidonic acid (molecular weight 304.5 g / mol, melting point −49 ° C., boiling point 17 0 ° C.) and the like, and acrylic acid or maleic acid is particularly preferable. Unsaturated carboxylic acid may be used individually by 1 type, and may be used in combination of 2 or more type.
Since the lower limit of the boiling point or decomposition temperature of the unsaturated carboxylic acid is appropriately selected depending on the performance and properties required for the conductive filler and conductive paste of the present invention, it is not necessarily limited, but is usually about 100 ° C. .
また、本発明においては、脂肪族カルボン酸として、下式(1)で表される化合物も好ましく使用できる。
R-COOH (1)
ただし、式中のRは炭素数4~20の炭化水素基を表す。 In the present invention, a compound represented by the following formula (1) can also be preferably used as the aliphatic carboxylic acid.
R-COOH (1)
However, R in the formula represents a hydrocarbon group having 4 to 20 carbon atoms.
R-COOH (1)
ただし、式中のRは炭素数4~20の炭化水素基を表す。 In the present invention, a compound represented by the following formula (1) can also be preferably used as the aliphatic carboxylic acid.
R-COOH (1)
However, R in the formula represents a hydrocarbon group having 4 to 20 carbon atoms.
上記化合物(1)におけるRは炭素数4~20の炭化水素基である。該炭化水素基としては、アルキル基、アルケニル基、アルキニル基のいずれであってもよく、アルキル基またはアルケニル基であることが好ましい。Rは直鎖構造であっても分岐構造であってもよい。
また、Rの炭素数としては、4~18が好ましく、6~18がより好ましい。
上記化合物(1)としては、オレイン酸、ステアリン酸、ヘキサン酸、オクタン酸、2-エチルヘキサン酸、デカン酸、ドデカン酸、ミリスチン酸等が挙げられ、オレイン酸が特に好ましい。
前記式(1)で表される化合物は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。 R in the compound (1) is a hydrocarbon group having 4 to 20 carbon atoms. The hydrocarbon group may be an alkyl group, an alkenyl group, or an alkynyl group, and is preferably an alkyl group or an alkenyl group. R may be a linear structure or a branched structure.
Further, the carbon number of R is preferably 4 to 18, and more preferably 6 to 18.
Examples of the compound (1) include oleic acid, stearic acid, hexanoic acid, octanoic acid, 2-ethylhexanoic acid, decanoic acid, dodecanoic acid, myristic acid and the like, and oleic acid is particularly preferable.
As the compound represented by the formula (1), one type may be used alone, or two or more types may be used in combination.
また、Rの炭素数としては、4~18が好ましく、6~18がより好ましい。
上記化合物(1)としては、オレイン酸、ステアリン酸、ヘキサン酸、オクタン酸、2-エチルヘキサン酸、デカン酸、ドデカン酸、ミリスチン酸等が挙げられ、オレイン酸が特に好ましい。
前記式(1)で表される化合物は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。 R in the compound (1) is a hydrocarbon group having 4 to 20 carbon atoms. The hydrocarbon group may be an alkyl group, an alkenyl group, or an alkynyl group, and is preferably an alkyl group or an alkenyl group. R may be a linear structure or a branched structure.
Further, the carbon number of R is preferably 4 to 18, and more preferably 6 to 18.
Examples of the compound (1) include oleic acid, stearic acid, hexanoic acid, octanoic acid, 2-ethylhexanoic acid, decanoic acid, dodecanoic acid, myristic acid and the like, and oleic acid is particularly preferable.
As the compound represented by the formula (1), one type may be used alone, or two or more types may be used in combination.
以上説明した本発明の導電性フィラーにあっては、脂肪族カルボン酸を含むため、耐酸化性に優れ、かつ焼結しやすい。脂肪族カルボン酸は、カルボン酸の作用によって銅ナノ粒子および銅フィラーの表面の酸化物皮膜を分解・除去するものと考えられる。そして、この過程において脂肪族カルボン酸の銅塩が生成しているものと推測される。
脂肪族カルボン酸の銅塩が銅ナノ粒子や銅フィラーの近傍(銅ナノ粒子や銅フィラーとバインダ樹脂との界面等)に存在すると導通性を阻害する懸念がある。しかし、該脂肪族カルボン酸の銅塩は、炭化水素基を有することによってバインダ樹脂中に分散しやすいと考えられ、これによって導電性が改善されるものと推測される。この効果は、脂肪族カルボン酸中の炭化水素基に含まれる炭素数が4以上、好ましくは6以上の場合に特に期待される効果であると考えられる。 Since the conductive filler of the present invention described above contains an aliphatic carboxylic acid, it is excellent in oxidation resistance and easily sintered. The aliphatic carboxylic acid is considered to decompose and remove the oxide film on the surfaces of the copper nanoparticles and the copper filler by the action of the carboxylic acid. And it is estimated that the copper salt of aliphatic carboxylic acid is producing | generating in this process.
When the copper salt of the aliphatic carboxylic acid is present in the vicinity of the copper nanoparticles or the copper filler (such as the interface between the copper nanoparticles or the copper filler and the binder resin), there is a concern that conductivity may be hindered. However, the copper salt of the aliphatic carboxylic acid is considered to be easily dispersed in the binder resin by having a hydrocarbon group, and it is assumed that this improves the conductivity. This effect is considered to be particularly expected when the number of carbon atoms contained in the hydrocarbon group in the aliphatic carboxylic acid is 4 or more, preferably 6 or more.
脂肪族カルボン酸の銅塩が銅ナノ粒子や銅フィラーの近傍(銅ナノ粒子や銅フィラーとバインダ樹脂との界面等)に存在すると導通性を阻害する懸念がある。しかし、該脂肪族カルボン酸の銅塩は、炭化水素基を有することによってバインダ樹脂中に分散しやすいと考えられ、これによって導電性が改善されるものと推測される。この効果は、脂肪族カルボン酸中の炭化水素基に含まれる炭素数が4以上、好ましくは6以上の場合に特に期待される効果であると考えられる。 Since the conductive filler of the present invention described above contains an aliphatic carboxylic acid, it is excellent in oxidation resistance and easily sintered. The aliphatic carboxylic acid is considered to decompose and remove the oxide film on the surfaces of the copper nanoparticles and the copper filler by the action of the carboxylic acid. And it is estimated that the copper salt of aliphatic carboxylic acid is producing | generating in this process.
When the copper salt of the aliphatic carboxylic acid is present in the vicinity of the copper nanoparticles or the copper filler (such as the interface between the copper nanoparticles or the copper filler and the binder resin), there is a concern that conductivity may be hindered. However, the copper salt of the aliphatic carboxylic acid is considered to be easily dispersed in the binder resin by having a hydrocarbon group, and it is assumed that this improves the conductivity. This effect is considered to be particularly expected when the number of carbon atoms contained in the hydrocarbon group in the aliphatic carboxylic acid is 4 or more, preferably 6 or more.
また、脂肪族カルボン酸が不飽和結合を有する場合には、脂肪族カルボン酸の銅塩が、後述する導電膜の作製時の加熱によって分解し、還元性物質が発生することによって、銅フィラーや銅ナノ粒子の酸化を抑制する可能性もあると思われる。この効果は、不飽和カルボン酸が炭素数4以下のアルケニル基を有する場合や、不飽和カルボン酸がジカルボン酸である場合に特に期待される効果であると考えられる。
本発明の導電性ペーストにあっては、上記の効果によって、従来の導電性ペーストに比べ体積抵抗率の低い導電膜を形成できる。 In addition, when the aliphatic carboxylic acid has an unsaturated bond, the copper salt of the aliphatic carboxylic acid is decomposed by heating at the time of producing the conductive film described later, and a reducing substance is generated, whereby a copper filler or There seems to be a possibility of suppressing oxidation of copper nanoparticles. This effect is considered to be an effect particularly expected when the unsaturated carboxylic acid has an alkenyl group having 4 or less carbon atoms or when the unsaturated carboxylic acid is a dicarboxylic acid.
In the conductive paste of the present invention, a conductive film having a lower volume resistivity than the conventional conductive paste can be formed due to the above effects.
本発明の導電性ペーストにあっては、上記の効果によって、従来の導電性ペーストに比べ体積抵抗率の低い導電膜を形成できる。 In addition, when the aliphatic carboxylic acid has an unsaturated bond, the copper salt of the aliphatic carboxylic acid is decomposed by heating at the time of producing the conductive film described later, and a reducing substance is generated, whereby a copper filler or There seems to be a possibility of suppressing oxidation of copper nanoparticles. This effect is considered to be an effect particularly expected when the unsaturated carboxylic acid has an alkenyl group having 4 or less carbon atoms or when the unsaturated carboxylic acid is a dicarboxylic acid.
In the conductive paste of the present invention, a conductive film having a lower volume resistivity than the conventional conductive paste can be formed due to the above effects.
なお、本発明においては、水素化銅ナノ粒子を調製する工程(前記工程(b))においてもカルボン酸を使用する場合があり、この場合、前記工程(b)で使用するカルボン酸は、導電性ペースト調製の際に使用されるカルボン酸を兼ねてもよい。
カルボン酸は、工程(b)では水溶性であることが求められ、ペースト調製工程では、銅ナノ粒子や銅フィラーの酸化抑制、樹脂バインダ中での分散性改善、に寄与するものと考えられる。この両方の特性を満たすカルボン酸であれば、工程(b)で使用したカルボン酸を含む本発明の導電性フィラーを、改めて他のカルボン酸を混合することなく、樹脂バインダと混合して、本発明の導電性ペーストを調製してもよい。
ただし、一般的には、工程(b)で用いるカルボン酸と導電性ペーストを調製する工程で用いるカルボン酸とは異ならせたほうが好ましい。具体的には、還元作用を有するギ酸を用い、ペースト調製工程では炭素数4~20の炭化水素基を有する脂肪族カルボン酸を用いることが好ましい。 In the present invention, carboxylic acid may be used also in the step of preparing copper hydride nanoparticles (the step (b)). In this case, the carboxylic acid used in the step (b) is a conductive material. May also serve as a carboxylic acid used in the preparation of the adhesive paste.
The carboxylic acid is required to be water-soluble in the step (b), and it is considered that the paste preparation step contributes to the oxidation inhibition of the copper nanoparticles and the copper filler and the improvement of the dispersibility in the resin binder. If the carboxylic acid satisfies both of these characteristics, the conductive filler of the present invention containing the carboxylic acid used in step (b) is mixed with a resin binder without mixing another carboxylic acid, The conductive paste of the invention may be prepared.
However, in general, it is preferable to make the carboxylic acid used in the step (b) different from the carboxylic acid used in the step of preparing the conductive paste. Specifically, formic acid having a reducing action is preferably used, and an aliphatic carboxylic acid having a hydrocarbon group having 4 to 20 carbon atoms is preferably used in the paste preparation step.
カルボン酸は、工程(b)では水溶性であることが求められ、ペースト調製工程では、銅ナノ粒子や銅フィラーの酸化抑制、樹脂バインダ中での分散性改善、に寄与するものと考えられる。この両方の特性を満たすカルボン酸であれば、工程(b)で使用したカルボン酸を含む本発明の導電性フィラーを、改めて他のカルボン酸を混合することなく、樹脂バインダと混合して、本発明の導電性ペーストを調製してもよい。
ただし、一般的には、工程(b)で用いるカルボン酸と導電性ペーストを調製する工程で用いるカルボン酸とは異ならせたほうが好ましい。具体的には、還元作用を有するギ酸を用い、ペースト調製工程では炭素数4~20の炭化水素基を有する脂肪族カルボン酸を用いることが好ましい。 In the present invention, carboxylic acid may be used also in the step of preparing copper hydride nanoparticles (the step (b)). In this case, the carboxylic acid used in the step (b) is a conductive material. May also serve as a carboxylic acid used in the preparation of the adhesive paste.
The carboxylic acid is required to be water-soluble in the step (b), and it is considered that the paste preparation step contributes to the oxidation inhibition of the copper nanoparticles and the copper filler and the improvement of the dispersibility in the resin binder. If the carboxylic acid satisfies both of these characteristics, the conductive filler of the present invention containing the carboxylic acid used in step (b) is mixed with a resin binder without mixing another carboxylic acid, The conductive paste of the invention may be prepared.
However, in general, it is preferable to make the carboxylic acid used in the step (b) different from the carboxylic acid used in the step of preparing the conductive paste. Specifically, formic acid having a reducing action is preferably used, and an aliphatic carboxylic acid having a hydrocarbon group having 4 to 20 carbon atoms is preferably used in the paste preparation step.
(樹脂バインダ)
樹脂バインダとしては、導電性ペーストに用いられる公知の樹脂バインダ(熱硬化性樹脂、熱可塑性樹脂等。)等が挙げられ、焼成時の温度において充分な硬化がなされる樹脂成分を選択して用いることが好ましい。
熱硬化性樹脂としては、フェノール樹脂、エポキシ樹脂、不飽和ポリエステル、ビニルエステル樹脂、ジアリルフタレート樹脂、オリゴエステルアクリレート樹脂、キシレン樹脂、ビスマレイドトリアジン樹脂、フラン樹脂、尿素樹脂、ポリウレタン、メラミン樹脂、シリコン樹脂、アクリル樹脂、オキセタン樹脂、オキサジン樹脂等が挙げられ、フェノー樹脂、エポキシ樹脂、オキサジン樹脂が好ましい。
熱可塑性樹脂としては、ポリアミド樹脂、ポリイミド樹脂、アクリル樹脂、ケトン樹脂、ポリスチレン樹脂、ポリエステル樹脂等が挙げられる。 (Resin binder)
Examples of the resin binder include known resin binders (thermosetting resins, thermoplastic resins, etc.) used for conductive pastes, and a resin component that is sufficiently cured at the firing temperature is selected and used. It is preferable.
Thermosetting resins include phenol resin, epoxy resin, unsaturated polyester, vinyl ester resin, diallyl phthalate resin, oligoester acrylate resin, xylene resin, bismaleidotriazine resin, furan resin, urea resin, polyurethane resin, melamine resin, silicon Examples thereof include resins, acrylic resins, oxetane resins, and oxazine resins, and pheno resins, epoxy resins, and oxazine resins are preferable.
Examples of the thermoplastic resin include polyamide resin, polyimide resin, acrylic resin, ketone resin, polystyrene resin, and polyester resin.
樹脂バインダとしては、導電性ペーストに用いられる公知の樹脂バインダ(熱硬化性樹脂、熱可塑性樹脂等。)等が挙げられ、焼成時の温度において充分な硬化がなされる樹脂成分を選択して用いることが好ましい。
熱硬化性樹脂としては、フェノール樹脂、エポキシ樹脂、不飽和ポリエステル、ビニルエステル樹脂、ジアリルフタレート樹脂、オリゴエステルアクリレート樹脂、キシレン樹脂、ビスマレイドトリアジン樹脂、フラン樹脂、尿素樹脂、ポリウレタン、メラミン樹脂、シリコン樹脂、アクリル樹脂、オキセタン樹脂、オキサジン樹脂等が挙げられ、フェノー樹脂、エポキシ樹脂、オキサジン樹脂が好ましい。
熱可塑性樹脂としては、ポリアミド樹脂、ポリイミド樹脂、アクリル樹脂、ケトン樹脂、ポリスチレン樹脂、ポリエステル樹脂等が挙げられる。 (Resin binder)
Examples of the resin binder include known resin binders (thermosetting resins, thermoplastic resins, etc.) used for conductive pastes, and a resin component that is sufficiently cured at the firing temperature is selected and used. It is preferable.
Thermosetting resins include phenol resin, epoxy resin, unsaturated polyester, vinyl ester resin, diallyl phthalate resin, oligoester acrylate resin, xylene resin, bismaleidotriazine resin, furan resin, urea resin, polyurethane resin, melamine resin, silicon Examples thereof include resins, acrylic resins, oxetane resins, and oxazine resins, and pheno resins, epoxy resins, and oxazine resins are preferable.
Examples of the thermoplastic resin include polyamide resin, polyimide resin, acrylic resin, ketone resin, polystyrene resin, and polyester resin.
樹脂バインダとしてポリエステル樹脂を用いる場合、導電性ペースト等に用いられる公知のポリエステル樹脂を採用できる。また、溶剤への溶解性が優れることや、得られる導電性ペーストを塗布する際の作業性が良好であることから非晶質ポリエステル樹脂が好ましい。
また、ポリエステル樹脂は水酸基価が5~20KOHmg/gであることが好ましく、5~10KOHmg/gであることが特に好ましい。この理由は銅の化合物(1)塩との相溶性が優れるからである。
これらのポリエステル樹脂は市販品から選択されてもよく、具体的にはバイロン(東洋紡績社製)、ポリエスター(日本合成化学社製)、エスペル(日立化成社製)、エリーテル(ユニチカ社製)等が挙げられる。 When a polyester resin is used as the resin binder, a known polyester resin used for conductive paste or the like can be used. In addition, an amorphous polyester resin is preferred because of its excellent solubility in a solvent and good workability when applying the resulting conductive paste.
The polyester resin preferably has a hydroxyl value of 5 to 20 KOHmg / g, and particularly preferably 5 to 10 KOHmg / g. This is because the compatibility with the copper compound (1) salt is excellent.
These polyester resins may be selected from commercially available products. Specifically, Byron (manufactured by Toyobo Co., Ltd.), Polyester (manufactured by Nippon Synthetic Chemical Co., Ltd.), Espel (manufactured by Hitachi Chemical Co., Ltd.), Elitel (manufactured by Unitika) Etc.
また、ポリエステル樹脂は水酸基価が5~20KOHmg/gであることが好ましく、5~10KOHmg/gであることが特に好ましい。この理由は銅の化合物(1)塩との相溶性が優れるからである。
これらのポリエステル樹脂は市販品から選択されてもよく、具体的にはバイロン(東洋紡績社製)、ポリエスター(日本合成化学社製)、エスペル(日立化成社製)、エリーテル(ユニチカ社製)等が挙げられる。 When a polyester resin is used as the resin binder, a known polyester resin used for conductive paste or the like can be used. In addition, an amorphous polyester resin is preferred because of its excellent solubility in a solvent and good workability when applying the resulting conductive paste.
The polyester resin preferably has a hydroxyl value of 5 to 20 KOHmg / g, and particularly preferably 5 to 10 KOHmg / g. This is because the compatibility with the copper compound (1) salt is excellent.
These polyester resins may be selected from commercially available products. Specifically, Byron (manufactured by Toyobo Co., Ltd.), Polyester (manufactured by Nippon Synthetic Chemical Co., Ltd.), Espel (manufactured by Hitachi Chemical Co., Ltd.), Elitel (manufactured by Unitika) Etc.
導電性ペースト中の樹脂バインダの量は、銅ナノ粒子および金属銅フィラーの体積と、これらの間に存在する空隙との比率に応じて適宜選択すればよく、通常、銅ナノ粒子および金属銅フィラーの合計100質量部に対して、5~50質量部であり、5~20質量部が好ましい。樹脂バインダの量が5質量部以上であれば、ペーストの流動特性が良好となる。樹脂バインダが50質量部以下であれば、導電膜の体積抵抗率が低く抑えられる。
本発明の導電性ペーストは、必要に応じて、溶媒、公知の添加剤(金属キレート剤、レベリング剤、カップリング剤、粘度調整剤、酸化防止剤等)等を、本発明の効果を損なわない範囲で含んでいてもよい。 The amount of the resin binder in the conductive paste may be appropriately selected according to the ratio between the volume of the copper nanoparticles and the metal copper filler and the space between them, and usually the copper nanoparticles and the metal copper filler. Is 5 to 50 parts by mass, preferably 5 to 20 parts by mass. When the amount of the resin binder is 5 parts by mass or more, the flow characteristics of the paste are good. When the resin binder is 50 parts by mass or less, the volume resistivity of the conductive film can be kept low.
The conductive paste of the present invention does not impair the effects of the present invention, if necessary, with a solvent, known additives (metal chelating agent, leveling agent, coupling agent, viscosity modifier, antioxidant, etc.) and the like. It may be included in the range.
本発明の導電性ペーストは、必要に応じて、溶媒、公知の添加剤(金属キレート剤、レベリング剤、カップリング剤、粘度調整剤、酸化防止剤等)等を、本発明の効果を損なわない範囲で含んでいてもよい。 The amount of the resin binder in the conductive paste may be appropriately selected according to the ratio between the volume of the copper nanoparticles and the metal copper filler and the space between them, and usually the copper nanoparticles and the metal copper filler. Is 5 to 50 parts by mass, preferably 5 to 20 parts by mass. When the amount of the resin binder is 5 parts by mass or more, the flow characteristics of the paste are good. When the resin binder is 50 parts by mass or less, the volume resistivity of the conductive film can be kept low.
The conductive paste of the present invention does not impair the effects of the present invention, if necessary, with a solvent, known additives (metal chelating agent, leveling agent, coupling agent, viscosity modifier, antioxidant, etc.) and the like. It may be included in the range.
以上説明した本発明の導電性ペーストにあっては、本発明の導電性フィラーを含んでいるため、従来の導電性ペーストに比べ体積抵抗率の低く、酸化安定性の高い導電膜を形成できる。
Since the conductive paste of the present invention described above contains the conductive filler of the present invention, it is possible to form a conductive film having a lower volume resistivity and higher oxidation stability than the conventional conductive paste.
<物品>
本発明の物品は、基材と、該基材上に、本発明の導電性ペーストを塗布、焼成して形成された導電膜とを有するものである。
基材としては、ガラス基板、プラスチック基板(ポリイミド基板、ポリエステル基板等)、繊維強化複合材料(ガラス繊維強化樹脂基板等)等が挙げられる。 <Article>
The article of the present invention has a base material and a conductive film formed by applying and baking the conductive paste of the present invention on the base material.
Examples of the base material include glass substrates, plastic substrates (polyimide substrates, polyester substrates, etc.), fiber reinforced composite materials (glass fiber reinforced resin substrates, etc.), and the like.
本発明の物品は、基材と、該基材上に、本発明の導電性ペーストを塗布、焼成して形成された導電膜とを有するものである。
基材としては、ガラス基板、プラスチック基板(ポリイミド基板、ポリエステル基板等)、繊維強化複合材料(ガラス繊維強化樹脂基板等)等が挙げられる。 <Article>
The article of the present invention has a base material and a conductive film formed by applying and baking the conductive paste of the present invention on the base material.
Examples of the base material include glass substrates, plastic substrates (polyimide substrates, polyester substrates, etc.), fiber reinforced composite materials (glass fiber reinforced resin substrates, etc.), and the like.
塗布方法としては、スクリーン印刷、ロールコート法、エアナイフコート法、ブレードコート法、バーコート法、グラビアコート法、ダイコート法、スライドコート法等の公知の方法が挙げられる。
Examples of coating methods include known methods such as screen printing, roll coating, air knife coating, blade coating, bar coating, gravure coating, die coating, and slide coating.
焼成方法としては、温風加熱、熱輻射等の方法が挙げられる。
焼成温度および焼成時間は、導電膜に求められる特性に応じて適宜決定すればよい。焼成温度は、80~150℃が好ましく、120~150℃がより好ましい。焼成温度が80℃以上であれば、金属銅フィラーと銅ナノ粒子との焼結が進行しやすくなる。焼成温度が150℃以下であれば、導電膜を形成する基材としてプラスチック製の基材を使用できるので、基材選択の自由度が高まる。 Examples of the firing method include warm air heating and thermal radiation.
The firing temperature and firing time may be appropriately determined according to the characteristics required for the conductive film. The firing temperature is preferably 80 to 150 ° C, more preferably 120 to 150 ° C. If a calcination temperature is 80 degreeC or more, sintering with a metal copper filler and a copper nanoparticle will advance easily. If the firing temperature is 150 ° C. or lower, a plastic base material can be used as the base material for forming the conductive film, so that the degree of freedom in selecting the base material is increased.
焼成温度および焼成時間は、導電膜に求められる特性に応じて適宜決定すればよい。焼成温度は、80~150℃が好ましく、120~150℃がより好ましい。焼成温度が80℃以上であれば、金属銅フィラーと銅ナノ粒子との焼結が進行しやすくなる。焼成温度が150℃以下であれば、導電膜を形成する基材としてプラスチック製の基材を使用できるので、基材選択の自由度が高まる。 Examples of the firing method include warm air heating and thermal radiation.
The firing temperature and firing time may be appropriately determined according to the characteristics required for the conductive film. The firing temperature is preferably 80 to 150 ° C, more preferably 120 to 150 ° C. If a calcination temperature is 80 degreeC or more, sintering with a metal copper filler and a copper nanoparticle will advance easily. If the firing temperature is 150 ° C. or lower, a plastic base material can be used as the base material for forming the conductive film, so that the degree of freedom in selecting the base material is increased.
導電膜の体積抵抗率は、1.0×10-4Ωcm以下が好ましい。体積抵抗率が1.0×10-4Ωcmを超えると、電子機器用の導電体としての使用が困難となる場合がある。
以上説明した本発明の物品にあっては、導電膜を本発明の導電性ペーストから形成しているため、従来の銅の導電膜に比べ導電膜の体積抵抗率が低い。 The volume resistivity of the conductive film is preferably 1.0 × 10 −4 Ωcm or less. If the volume resistivity exceeds 1.0 × 10 −4 Ωcm, it may be difficult to use as a conductor for electronic equipment.
In the article of the present invention described above, since the conductive film is formed from the conductive paste of the present invention, the volume resistivity of the conductive film is lower than that of a conventional copper conductive film.
以上説明した本発明の物品にあっては、導電膜を本発明の導電性ペーストから形成しているため、従来の銅の導電膜に比べ導電膜の体積抵抗率が低い。 The volume resistivity of the conductive film is preferably 1.0 × 10 −4 Ωcm or less. If the volume resistivity exceeds 1.0 × 10 −4 Ωcm, it may be difficult to use as a conductor for electronic equipment.
In the article of the present invention described above, since the conductive film is formed from the conductive paste of the present invention, the volume resistivity of the conductive film is lower than that of a conventional copper conductive film.
以下、実施例により本発明をさらに詳しく説明するが、本発明はこれら実施例に限定されない。なお、例1~5、7、9~17は実施例であり、例6、8は比較例である。
Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples. Examples 1 to 5, 7, and 9 to 17 are examples, and examples 6 and 8 are comparative examples.
(粒子径)
銅フィラーおよび銅ナノ粒子の平均凝集粒子径は、SEM(日本電子社製、S-4300)にて得られたSEM像の中から無作為に選ばれた100個の粒子の凝集粒子径を測定し、その平均をとることによって求めた。なお、真球でない粒子の場合は、長径と短径との平均値を粒子径とした。
なお、本発明では、粒子を凝集させて使用するため、SEMで測定した平均凝集粒子径の値を用いている。SEMを使用するのは、凝集が進んだ粒子は電子線が透過しづらく、TEMでの測定が困難なためである。また、参考のため、TEMで測定した一次粒子径も記載する。一次粒子径は、高倍率率での観察が必要であり、SEMでは対応が困難なためである。 (Particle size)
The average agglomerated particle size of copper filler and copper nanoparticles was measured by measuring the agglomerated particle size of 100 particles randomly selected from SEM images obtained by SEM (manufactured by JEOL Ltd., S-4300). And obtained by taking the average. In the case of non-spherical particles, the average value of the major axis and the minor axis was taken as the particle diameter.
In the present invention, since the particles are aggregated and used, the value of the average aggregated particle diameter measured by SEM is used. The reason why the SEM is used is that the particles that have been agglomerated are difficult to transmit with an electron beam and are difficult to measure with a TEM. For reference, the primary particle diameter measured by TEM is also described. This is because the primary particle diameter needs to be observed at a high magnification ratio, and it is difficult to cope with the SEM.
銅フィラーおよび銅ナノ粒子の平均凝集粒子径は、SEM(日本電子社製、S-4300)にて得られたSEM像の中から無作為に選ばれた100個の粒子の凝集粒子径を測定し、その平均をとることによって求めた。なお、真球でない粒子の場合は、長径と短径との平均値を粒子径とした。
なお、本発明では、粒子を凝集させて使用するため、SEMで測定した平均凝集粒子径の値を用いている。SEMを使用するのは、凝集が進んだ粒子は電子線が透過しづらく、TEMでの測定が困難なためである。また、参考のため、TEMで測定した一次粒子径も記載する。一次粒子径は、高倍率率での観察が必要であり、SEMでは対応が困難なためである。 (Particle size)
The average agglomerated particle size of copper filler and copper nanoparticles was measured by measuring the agglomerated particle size of 100 particles randomly selected from SEM images obtained by SEM (manufactured by JEOL Ltd., S-4300). And obtained by taking the average. In the case of non-spherical particles, the average value of the major axis and the minor axis was taken as the particle diameter.
In the present invention, since the particles are aggregated and used, the value of the average aggregated particle diameter measured by SEM is used. The reason why the SEM is used is that the particles that have been agglomerated are difficult to transmit with an electron beam and are difficult to measure with a TEM. For reference, the primary particle diameter measured by TEM is also described. This is because the primary particle diameter needs to be observed at a high magnification ratio, and it is difficult to cope with the SEM.
(導電膜の厚さ)
導電膜の厚さは、DEKTAK3(Veeco metrology Group社製)を用いて測定した。
(導電膜の体積抵抗率)
導電膜の体積抵抗率は、四探針式体積抵抗率計(三菱油化社製、型式:lorestaIP MCP-T250)を用いて測定した。
(水酸基価)
ポリエステル樹脂の水酸基価は滴定法を用いて測定した。 (Thickness of conductive film)
The thickness of the conductive film was measured by using DEKTAK3 (manufactured by Veeco metrology group).
(Volume resistivity of conductive film)
The volume resistivity of the conductive film was measured using a four-probe type volume resistivity meter (manufactured by Mitsubishi Yuka Co., Ltd., model: lorestaIP MCP-T250).
(Hydroxyl value)
The hydroxyl value of the polyester resin was measured using a titration method.
導電膜の厚さは、DEKTAK3(Veeco metrology Group社製)を用いて測定した。
(導電膜の体積抵抗率)
導電膜の体積抵抗率は、四探針式体積抵抗率計(三菱油化社製、型式:lorestaIP MCP-T250)を用いて測定した。
(水酸基価)
ポリエステル樹脂の水酸基価は滴定法を用いて測定した。 (Thickness of conductive film)
The thickness of the conductive film was measured by using DEKTAK3 (manufactured by Veeco metrology group).
(Volume resistivity of conductive film)
The volume resistivity of the conductive film was measured using a four-probe type volume resistivity meter (manufactured by Mitsubishi Yuka Co., Ltd., model: lorestaIP MCP-T250).
(Hydroxyl value)
The hydroxyl value of the polyester resin was measured using a titration method.
〔例1〕
ガラス容器内にて、酢酸銅(II)水和物の5.2gを蒸留水の30gおよびギ酸の3.3gで溶解して、銅イオンを含む水溶液を調製した。該水溶液のpHは2.7であった。
該水溶液を激しく撹拌しながら、20℃で該水溶液に4質量%の水素化ホウ素ナトリウム水溶液の23gをゆっくり滴下した。滴下終了後、10分間そのまま撹拌を続け、懸濁液を得た。 [Example 1]
In a glass container, 5.2 g of copper (II) acetate hydrate was dissolved in 30 g of distilled water and 3.3 g of formic acid to prepare an aqueous solution containing copper ions. The pH of the aqueous solution was 2.7.
While the aqueous solution was vigorously stirred, 23 g of a 4 mass% sodium borohydride aqueous solution was slowly added dropwise to the aqueous solution at 20 ° C. After completion of the dropwise addition, stirring was continued for 10 minutes to obtain a suspension.
ガラス容器内にて、酢酸銅(II)水和物の5.2gを蒸留水の30gおよびギ酸の3.3gで溶解して、銅イオンを含む水溶液を調製した。該水溶液のpHは2.7であった。
該水溶液を激しく撹拌しながら、20℃で該水溶液に4質量%の水素化ホウ素ナトリウム水溶液の23gをゆっくり滴下した。滴下終了後、10分間そのまま撹拌を続け、懸濁液を得た。 [Example 1]
In a glass container, 5.2 g of copper (II) acetate hydrate was dissolved in 30 g of distilled water and 3.3 g of formic acid to prepare an aqueous solution containing copper ions. The pH of the aqueous solution was 2.7.
While the aqueous solution was vigorously stirred, 23 g of a 4 mass% sodium borohydride aqueous solution was slowly added dropwise to the aqueous solution at 20 ° C. After completion of the dropwise addition, stirring was continued for 10 minutes to obtain a suspension.
遠心分離によって懸濁液中の凝集物を沈殿させ、沈殿物を分離した。該沈殿物を2-プロパノールの30gに再分散させた後、再び遠心分離によって凝集物を沈殿させ、沈殿物を分離した。精製後の沈殿物をX線回折で同定したところ、水素化銅ナノ粒子であることが確認された。また、IRスペクトルを測定して、ギ酸によって水素化銅ナノ粒子の表面が被覆されていることを確認した。TEMによって測定された水素化銅ナノ粒子の平均一次粒子径は30nm、一次粒子径の範囲は20~45nmであった。また、SEMによって測定された水素化銅ナノ粒子の平均凝集粒子径は100nmであった。
The aggregate in the suspension was precipitated by centrifugation, and the precipitate was separated. The precipitate was redispersed in 30 g of 2-propanol, and then the aggregate was precipitated again by centrifugation to separate the precipitate. When the precipitate after purification was identified by X-ray diffraction, it was confirmed to be copper hydride nanoparticles. Moreover, IR spectrum was measured and it confirmed that the surface of the copper hydride nanoparticle was coat | covered with formic acid. The average primary particle diameter of the copper hydride nanoparticles measured by TEM was 30 nm, and the primary particle diameter range was 20 to 45 nm. Moreover, the average aggregate particle diameter of the copper hydride nanoparticles measured by SEM was 100 nm.
水素化銅ナノ粒子の1g、銅フィラー(三井金属鉱業社製、1400YP、平均凝集粒子径:7μm、凝集粒子径の範囲:3~10μm)の3gおよびマレイン酸の0.4gを2-プロパノールの20gに加え、撹拌し、分散液を得た。該分散液を-35kPaの減圧下で80℃に加熱し、分散液から2-プロパノールを揮発させて徐々に取り除いた。このとき、水素化銅ナノ粒子は金属銅ナノ粒子へと分解され、銅フィラーの表面が金属銅ナノ粒子およびマレイン酸で被覆された、導電性フィラーを得た。金属銅ナノ粒子のTEMによって測定された平均一次粒子径は50nm、一次粒子径の範囲は35~65nmであった。また、SEMによって測定された平均凝集粒子径は100nmであった。
1 g of copper hydride nanoparticles, 3 g of copper filler (Mitsui Metal Mining Co., Ltd., 1400 YP, average aggregated particle size: 7 μm, aggregated particle size range: 3 to 10 μm) and 0.4 g of maleic acid were mixed with 2-propanol. In addition to 20 g, the mixture was stirred to obtain a dispersion. The dispersion was heated to 80 ° C. under a reduced pressure of −35 kPa, and 2-propanol was volatilized from the dispersion and gradually removed. At this time, the copper hydride nanoparticles were decomposed into metallic copper nanoparticles, and a conductive filler in which the surface of the copper filler was coated with metallic copper nanoparticles and maleic acid was obtained. The average primary particle diameter of the metallic copper nanoparticles measured by TEM was 50 nm, and the primary particle diameter range was 35 to 65 nm. Moreover, the average aggregate particle diameter measured by SEM was 100 nm.
導電性フィラーの1.33gを、非晶質ポリエステル樹脂(東洋紡績社製、バイロン103)の0.135gをシクロヘキサノン(純正化学社製、特級)の0.315gに溶解した樹脂バインダ溶液の0.45gに加えた。非晶質ポリエステル樹脂の量は、銅フィラーおよび金属銅ナノ粒子の合計100質量部に対して、10.1質量部であった。該混合物を乳鉢中で混ぜ合わせた後、室温で減圧下に置き、シクロヘキサノンを除去し、導電性ペーストを得た。
A resin binder solution of 0.33 g of a conductive filler and 0.135 g of an amorphous polyester resin (Toyobo Co., Ltd., Byron 103) dissolved in 0.315 g of cyclohexanone (Pure Chemical Co., Ltd., special grade) were added. To 45 g. The amount of the amorphous polyester resin was 10.1 parts by mass with respect to a total of 100 parts by mass of the copper filler and the metal copper nanoparticles. The mixture was mixed in a mortar and then placed under reduced pressure at room temperature to remove cyclohexanone to obtain a conductive paste.
導電性ペーストをガラス基板に塗布し、窒素ガス雰囲気下、150℃で1時間焼成し、厚さ100μmの導電膜を形成した。導電膜の体積抵抗率を測定した。結果を表1に示す。
導電性ペーストを大気中に5日間保管したのち、ガラス基板に塗布し、窒素ガス雰囲気下、150℃で1時間焼成し、厚さ100μmの導電膜を形成した。導電膜の体積抵抗率を測定した。結果を表1に示す。 The conductive paste was applied to a glass substrate and baked at 150 ° C. for 1 hour in a nitrogen gas atmosphere to form a conductive film having a thickness of 100 μm. The volume resistivity of the conductive film was measured. The results are shown in Table 1.
After storing the conductive paste in the air for 5 days, it was applied to a glass substrate and baked in a nitrogen gas atmosphere at 150 ° C. for 1 hour to form a conductive film having a thickness of 100 μm. The volume resistivity of the conductive film was measured. The results are shown in Table 1.
導電性ペーストを大気中に5日間保管したのち、ガラス基板に塗布し、窒素ガス雰囲気下、150℃で1時間焼成し、厚さ100μmの導電膜を形成した。導電膜の体積抵抗率を測定した。結果を表1に示す。 The conductive paste was applied to a glass substrate and baked at 150 ° C. for 1 hour in a nitrogen gas atmosphere to form a conductive film having a thickness of 100 μm. The volume resistivity of the conductive film was measured. The results are shown in Table 1.
After storing the conductive paste in the air for 5 days, it was applied to a glass substrate and baked in a nitrogen gas atmosphere at 150 ° C. for 1 hour to form a conductive film having a thickness of 100 μm. The volume resistivity of the conductive film was measured. The results are shown in Table 1.
〔例2〕
マレイン酸の添加量を0.6gに変更した以外は例1と同様にして導電性フィラーを得た。金属ナノ粒子の平均一次粒子径は50nm、一次粒子径の範囲は35~65nm(SEMによって測定された平均凝集粒子径は100nm)であり、銅フィラーの平均凝集粒子径は7μm、凝集粒子径の範囲は3~10μmであった。例1と同様にしてガラス基板に導電膜を形成し、体積抵抗率を測定した。結果を表1に示す。 [Example 2]
A conductive filler was obtained in the same manner as in Example 1 except that the amount of maleic acid added was changed to 0.6 g. The average primary particle diameter of the metal nanoparticles is 50 nm, the primary particle diameter is 35 to 65 nm (average aggregate particle diameter measured by SEM is 100 nm), the average aggregate particle diameter of the copper filler is 7 μm, and the aggregate particle diameter is The range was 3-10 μm. A conductive film was formed on a glass substrate in the same manner as in Example 1, and the volume resistivity was measured. The results are shown in Table 1.
マレイン酸の添加量を0.6gに変更した以外は例1と同様にして導電性フィラーを得た。金属ナノ粒子の平均一次粒子径は50nm、一次粒子径の範囲は35~65nm(SEMによって測定された平均凝集粒子径は100nm)であり、銅フィラーの平均凝集粒子径は7μm、凝集粒子径の範囲は3~10μmであった。例1と同様にしてガラス基板に導電膜を形成し、体積抵抗率を測定した。結果を表1に示す。 [Example 2]
A conductive filler was obtained in the same manner as in Example 1 except that the amount of maleic acid added was changed to 0.6 g. The average primary particle diameter of the metal nanoparticles is 50 nm, the primary particle diameter is 35 to 65 nm (average aggregate particle diameter measured by SEM is 100 nm), the average aggregate particle diameter of the copper filler is 7 μm, and the aggregate particle diameter is The range was 3-10 μm. A conductive film was formed on a glass substrate in the same manner as in Example 1, and the volume resistivity was measured. The results are shown in Table 1.
〔例3〕
マレイン酸の添加量を0.12gに変更した以外は例1と同様にして導電性フィラーを得た。金属ナノ粒子の平均一次粒子径は50nm、一次粒子径の範囲は35~65nm(SEMによって測定された平均凝集粒子径は100nm)であり、銅フィラーの平均凝集粒子径は7μm、凝集粒子径の範囲は3~10μmであった。例1と同様にしてガラス基板に導電膜を形成し、体積抵抗率を測定した。結果を表1に示す。 [Example 3]
A conductive filler was obtained in the same manner as in Example 1 except that the amount of maleic acid added was changed to 0.12 g. The average primary particle diameter of the metal nanoparticles is 50 nm, the primary particle diameter is 35 to 65 nm (average aggregate particle diameter measured by SEM is 100 nm), the average aggregate particle diameter of the copper filler is 7 μm, and the aggregate particle diameter is The range was 3-10 μm. A conductive film was formed on a glass substrate in the same manner as in Example 1, and the volume resistivity was measured. The results are shown in Table 1.
マレイン酸の添加量を0.12gに変更した以外は例1と同様にして導電性フィラーを得た。金属ナノ粒子の平均一次粒子径は50nm、一次粒子径の範囲は35~65nm(SEMによって測定された平均凝集粒子径は100nm)であり、銅フィラーの平均凝集粒子径は7μm、凝集粒子径の範囲は3~10μmであった。例1と同様にしてガラス基板に導電膜を形成し、体積抵抗率を測定した。結果を表1に示す。 [Example 3]
A conductive filler was obtained in the same manner as in Example 1 except that the amount of maleic acid added was changed to 0.12 g. The average primary particle diameter of the metal nanoparticles is 50 nm, the primary particle diameter is 35 to 65 nm (average aggregate particle diameter measured by SEM is 100 nm), the average aggregate particle diameter of the copper filler is 7 μm, and the aggregate particle diameter is The range was 3-10 μm. A conductive film was formed on a glass substrate in the same manner as in Example 1, and the volume resistivity was measured. The results are shown in Table 1.
〔例4〕
例1と同様に作製した水素化銅ナノ粒子の1gおよび銅フィラー(三井金属鉱業社製、1400YP、平均凝集粒子径:7μm、凝集粒子径の範囲:3~10μm。)の3gを2-プロパノールの20gに加え、撹拌し、分散液を得た。該分散液を-35kPaの減圧下で80℃に加熱し、分散液から2-プロパノールを揮発させて徐々に取り除いた。このとき、水素化銅ナノ粒子は金属銅ナノ粒子へと分解され、銅フィラーの表面が金属銅ナノ粒子で被覆された導電性フィラーを得た。金属銅ナノ粒子の平均一次粒子径は50nm、一次粒子径の範囲は35~65nmであった。また、SEMによって測定された平均凝集粒子径は100nmであった。 [Example 4]
1 g of copper hydride nanoparticles prepared in the same manner as in Example 1 and 3 g of copper filler (Mitsui Metal Mining Co., Ltd., 1400 YP, average aggregated particle size: 7 μm, aggregated particle size range: 3 to 10 μm) Was stirred and a dispersion was obtained. The dispersion was heated to 80 ° C. under a reduced pressure of −35 kPa, and 2-propanol was volatilized from the dispersion and gradually removed. At this time, the copper hydride nanoparticles were decomposed into metallic copper nanoparticles, and a conductive filler in which the surface of the copper filler was coated with metallic copper nanoparticles was obtained. The average primary particle diameter of the metal copper nanoparticles was 50 nm, and the primary particle diameter range was 35 to 65 nm. Moreover, the average aggregate particle diameter measured by SEM was 100 nm.
例1と同様に作製した水素化銅ナノ粒子の1gおよび銅フィラー(三井金属鉱業社製、1400YP、平均凝集粒子径:7μm、凝集粒子径の範囲:3~10μm。)の3gを2-プロパノールの20gに加え、撹拌し、分散液を得た。該分散液を-35kPaの減圧下で80℃に加熱し、分散液から2-プロパノールを揮発させて徐々に取り除いた。このとき、水素化銅ナノ粒子は金属銅ナノ粒子へと分解され、銅フィラーの表面が金属銅ナノ粒子で被覆された導電性フィラーを得た。金属銅ナノ粒子の平均一次粒子径は50nm、一次粒子径の範囲は35~65nmであった。また、SEMによって測定された平均凝集粒子径は100nmであった。 [Example 4]
1 g of copper hydride nanoparticles prepared in the same manner as in Example 1 and 3 g of copper filler (Mitsui Metal Mining Co., Ltd., 1400 YP, average aggregated particle size: 7 μm, aggregated particle size range: 3 to 10 μm) Was stirred and a dispersion was obtained. The dispersion was heated to 80 ° C. under a reduced pressure of −35 kPa, and 2-propanol was volatilized from the dispersion and gradually removed. At this time, the copper hydride nanoparticles were decomposed into metallic copper nanoparticles, and a conductive filler in which the surface of the copper filler was coated with metallic copper nanoparticles was obtained. The average primary particle diameter of the metal copper nanoparticles was 50 nm, and the primary particle diameter range was 35 to 65 nm. Moreover, the average aggregate particle diameter measured by SEM was 100 nm.
導電性フィラーの1.2gを、アクリル酸の0.12gおよび非晶質ポリエステル樹脂(東洋紡績社製、バイロン103)の0.135gをシクロヘキサノン(純正化学社製、特級)の0.315gに溶解した樹脂バインダ溶液の0.45gに加えた。非晶質ポリエステル樹脂の量は、銅フィラーおよび金属銅ナノ粒子の合計100質量部に対して、10.1質量部であった。該混合物を乳鉢中で混ぜ合わせた後、室温で減圧下に置き、シクロヘキサノンを除去し、導電性ペーストを得た。例1と同様にしてガラス基板に導電膜を形成し、体積抵抗率を測定した。結果を表1に示す。
1.2 g of conductive filler, 0.12 g of acrylic acid and 0.135 g of amorphous polyester resin (byron 103, manufactured by Byron 103) are dissolved in 0.315 g of cyclohexanone (made by Junsei Chemical, special grade). Was added to 0.45 g of the prepared resin binder solution. The amount of the amorphous polyester resin was 10.1 parts by mass with respect to a total of 100 parts by mass of the copper filler and the metal copper nanoparticles. The mixture was mixed in a mortar and then placed under reduced pressure at room temperature to remove cyclohexanone to obtain a conductive paste. A conductive film was formed on a glass substrate in the same manner as in Example 1, and the volume resistivity was measured. The results are shown in Table 1.
〔例5〕
アクリル酸をリノレン酸に変更した以外は例2と同様にして導電性ペーストを得た。金属銅ナノ粒子の平均一次粒子径は50nm、一次粒子径の範囲は35~65nm(SEMによって測定された平均凝集粒子径は100nm)であり、銅フィラーの平均凝集粒子径は7μm、凝集粒子径の範囲は3~10μmであった。例1と同様にしてガラス基板に導電膜を形成し、体積抵抗率を測定した。結果を表1に示す。 [Example 5]
A conductive paste was obtained in the same manner as in Example 2 except that acrylic acid was changed to linolenic acid. The average primary particle diameter of the metal copper nanoparticles is 50 nm, the primary particle diameter is 35 to 65 nm (average aggregate particle diameter measured by SEM is 100 nm), the average aggregate particle diameter of the copper filler is 7 μm, and the aggregate particle diameter The range was 3 to 10 μm. A conductive film was formed on a glass substrate in the same manner as in Example 1, and the volume resistivity was measured. The results are shown in Table 1.
アクリル酸をリノレン酸に変更した以外は例2と同様にして導電性ペーストを得た。金属銅ナノ粒子の平均一次粒子径は50nm、一次粒子径の範囲は35~65nm(SEMによって測定された平均凝集粒子径は100nm)であり、銅フィラーの平均凝集粒子径は7μm、凝集粒子径の範囲は3~10μmであった。例1と同様にしてガラス基板に導電膜を形成し、体積抵抗率を測定した。結果を表1に示す。 [Example 5]
A conductive paste was obtained in the same manner as in Example 2 except that acrylic acid was changed to linolenic acid. The average primary particle diameter of the metal copper nanoparticles is 50 nm, the primary particle diameter is 35 to 65 nm (average aggregate particle diameter measured by SEM is 100 nm), the average aggregate particle diameter of the copper filler is 7 μm, and the aggregate particle diameter The range was 3 to 10 μm. A conductive film was formed on a glass substrate in the same manner as in Example 1, and the volume resistivity was measured. The results are shown in Table 1.
〔例6〕
マレイン酸を加えない以外は、例1と同様にして導電性フィラーを得た。金属銅ナノ粒子の平均一次粒子径は50nm、一次粒子径の範囲は35~65nm(SEMによって測定された平均凝集粒子径は100nm)であり、銅フィラーの平均凝集粒子径は7μm、凝集粒子径の範囲は3~10μmであった。
該導電性フィラーを用いた以外は、例1と同様にして導電性ペーストを得た。例1と同様にしてガラス基板に導電膜を形成し、体積抵抗率を測定した。結果を表1に示す。 [Example 6]
A conductive filler was obtained in the same manner as in Example 1 except that maleic acid was not added. The average primary particle diameter of the metal copper nanoparticles is 50 nm, the primary particle diameter is 35 to 65 nm (average aggregate particle diameter measured by SEM is 100 nm), the average aggregate particle diameter of the copper filler is 7 μm, and the aggregate particle diameter The range was 3 to 10 μm.
A conductive paste was obtained in the same manner as in Example 1 except that the conductive filler was used. A conductive film was formed on a glass substrate in the same manner as in Example 1, and the volume resistivity was measured. The results are shown in Table 1.
マレイン酸を加えない以外は、例1と同様にして導電性フィラーを得た。金属銅ナノ粒子の平均一次粒子径は50nm、一次粒子径の範囲は35~65nm(SEMによって測定された平均凝集粒子径は100nm)であり、銅フィラーの平均凝集粒子径は7μm、凝集粒子径の範囲は3~10μmであった。
該導電性フィラーを用いた以外は、例1と同様にして導電性ペーストを得た。例1と同様にしてガラス基板に導電膜を形成し、体積抵抗率を測定した。結果を表1に示す。 [Example 6]
A conductive filler was obtained in the same manner as in Example 1 except that maleic acid was not added. The average primary particle diameter of the metal copper nanoparticles is 50 nm, the primary particle diameter is 35 to 65 nm (average aggregate particle diameter measured by SEM is 100 nm), the average aggregate particle diameter of the copper filler is 7 μm, and the aggregate particle diameter The range was 3 to 10 μm.
A conductive paste was obtained in the same manner as in Example 1 except that the conductive filler was used. A conductive film was formed on a glass substrate in the same manner as in Example 1, and the volume resistivity was measured. The results are shown in Table 1.
〔例7〕
マレイン酸をマロン酸に変更した以外は、例1と同様にして導電性フィラーを得た。金属銅ナノ粒子の平均一次粒子径は50nm、一次粒子径の範囲は35~65nm(SEMによって測定された平均凝集粒子径は100nm)であり、銅フィラーの平均凝集粒子径は7μm、凝集粒子径の範囲は3~10μmであった。
該導電性フィラーを用いた以外は、例1と同様にして導電性ペーストを得た。例1と同様にしてガラス基板に導電膜を形成し、体積抵抗率を測定した。結果を表1に示す。 [Example 7]
A conductive filler was obtained in the same manner as in Example 1 except that maleic acid was changed to malonic acid. The average primary particle diameter of the metal copper nanoparticles is 50 nm, the primary particle diameter is 35 to 65 nm (average aggregate particle diameter measured by SEM is 100 nm), the average aggregate particle diameter of the copper filler is 7 μm, and the aggregate particle diameter The range was 3 to 10 μm.
A conductive paste was obtained in the same manner as in Example 1 except that the conductive filler was used. A conductive film was formed on a glass substrate in the same manner as in Example 1, and the volume resistivity was measured. The results are shown in Table 1.
マレイン酸をマロン酸に変更した以外は、例1と同様にして導電性フィラーを得た。金属銅ナノ粒子の平均一次粒子径は50nm、一次粒子径の範囲は35~65nm(SEMによって測定された平均凝集粒子径は100nm)であり、銅フィラーの平均凝集粒子径は7μm、凝集粒子径の範囲は3~10μmであった。
該導電性フィラーを用いた以外は、例1と同様にして導電性ペーストを得た。例1と同様にしてガラス基板に導電膜を形成し、体積抵抗率を測定した。結果を表1に示す。 [Example 7]
A conductive filler was obtained in the same manner as in Example 1 except that maleic acid was changed to malonic acid. The average primary particle diameter of the metal copper nanoparticles is 50 nm, the primary particle diameter is 35 to 65 nm (average aggregate particle diameter measured by SEM is 100 nm), the average aggregate particle diameter of the copper filler is 7 μm, and the aggregate particle diameter The range was 3 to 10 μm.
A conductive paste was obtained in the same manner as in Example 1 except that the conductive filler was used. A conductive film was formed on a glass substrate in the same manner as in Example 1, and the volume resistivity was measured. The results are shown in Table 1.
〔例8〕
例2と同様の方法で、導電性フィラーを得た。金属銅ナノ粒子の平均一次粒子径は50nm、一次粒子径の範囲は35~65nmであった。また、SEMによって測定された平均凝集粒子径は100nmであった。
アクリル酸をオクテンに変更した以外は、例2と同様にして導電性ペーストを得た。例1と同様にしてガラス基板に導電膜を形成し、体積抵抗率を測定した。結果を表1に示す。 [Example 8]
In the same manner as in Example 2, a conductive filler was obtained. The average primary particle diameter of the metal copper nanoparticles was 50 nm, and the primary particle diameter range was 35 to 65 nm. Moreover, the average aggregate particle diameter measured by SEM was 100 nm.
A conductive paste was obtained in the same manner as in Example 2 except that acrylic acid was changed to octene. A conductive film was formed on a glass substrate in the same manner as in Example 1, and the volume resistivity was measured. The results are shown in Table 1.
例2と同様の方法で、導電性フィラーを得た。金属銅ナノ粒子の平均一次粒子径は50nm、一次粒子径の範囲は35~65nmであった。また、SEMによって測定された平均凝集粒子径は100nmであった。
アクリル酸をオクテンに変更した以外は、例2と同様にして導電性ペーストを得た。例1と同様にしてガラス基板に導電膜を形成し、体積抵抗率を測定した。結果を表1に示す。 [Example 8]
In the same manner as in Example 2, a conductive filler was obtained. The average primary particle diameter of the metal copper nanoparticles was 50 nm, and the primary particle diameter range was 35 to 65 nm. Moreover, the average aggregate particle diameter measured by SEM was 100 nm.
A conductive paste was obtained in the same manner as in Example 2 except that acrylic acid was changed to octene. A conductive film was formed on a glass substrate in the same manner as in Example 1, and the volume resistivity was measured. The results are shown in Table 1.
〔例9〕
ガラス容器内にて、酢酸銅(II)水和物の117gを、蒸留水の1700gおよびギ酸の30gで溶解して、銅イオンを含む水溶液を調製した。該水溶液のpHは2.7であった。
該水溶液を激しく撹拌しながら、40℃で該水溶液に50質量%の次亜リン酸水溶液の180gを添加した。添加終了後、30分間そのまま撹拌を続け、懸濁液を得た。 [Example 9]
In a glass container, 117 g of copper (II) acetate hydrate was dissolved in 1700 g of distilled water and 30 g of formic acid to prepare an aqueous solution containing copper ions. The pH of the aqueous solution was 2.7.
While vigorously stirring the aqueous solution, 180 g of a 50 mass% hypophosphorous acid aqueous solution was added to the aqueous solution at 40 ° C. After completion of the addition, stirring was continued for 30 minutes to obtain a suspension.
ガラス容器内にて、酢酸銅(II)水和物の117gを、蒸留水の1700gおよびギ酸の30gで溶解して、銅イオンを含む水溶液を調製した。該水溶液のpHは2.7であった。
該水溶液を激しく撹拌しながら、40℃で該水溶液に50質量%の次亜リン酸水溶液の180gを添加した。添加終了後、30分間そのまま撹拌を続け、懸濁液を得た。 [Example 9]
In a glass container, 117 g of copper (II) acetate hydrate was dissolved in 1700 g of distilled water and 30 g of formic acid to prepare an aqueous solution containing copper ions. The pH of the aqueous solution was 2.7.
While vigorously stirring the aqueous solution, 180 g of a 50 mass% hypophosphorous acid aqueous solution was added to the aqueous solution at 40 ° C. After completion of the addition, stirring was continued for 30 minutes to obtain a suspension.
遠心分離によって懸濁液中の凝集物を沈殿させ、沈殿物を分離した。該沈殿物を2-プロパノールの30gに再分散させた後、再び遠心分離によって凝集物を沈殿させ、沈殿物を分離した。精製後の沈殿物をX線回折で同定したところ、水素化銅ナノ粒子であることが確認された。なお、水素化銅ナノ粒子の平均凝集粒子径は100nmであった。
The aggregate in the suspension was precipitated by centrifugation, and the precipitate was separated. The precipitate was redispersed in 30 g of 2-propanol, and then the aggregate was precipitated again by centrifugation to separate the precipitate. When the precipitate after purification was identified by X-ray diffraction, it was confirmed to be copper hydride nanoparticles. In addition, the average aggregate particle diameter of the copper hydride nanoparticles was 100 nm.
水素化銅ナノ粒子の10g、銅フィラー(三井金属鉱業社製、1400YP、平均凝集粒子径:7μm)の30gおよびオレイン酸の1.2gを2-プロパノールの200gに加え、撹拌し、分散液を得た。該分散液を-35kPaの減圧下で80℃に加熱し、分散液から2-プロパノールを揮発させて徐々に取り除いた。このとき、水素化銅ナノ粒子は金属銅ナノ粒子へと分解され、金属銅フィラーの表面が金属銅ナノ粒子およびオレイン酸で被覆されたフィラーが得られた。
Add 10 g of copper hydride nanoparticles, 30 g of copper filler (Mitsui Metal Mining Co., Ltd., 1400 YP, average agglomerated particle size: 7 μm) and 1.2 g of oleic acid to 200 g of 2-propanol, stir, and disperse the dispersion. Obtained. The dispersion was heated to 80 ° C. under a reduced pressure of −35 kPa, and 2-propanol was volatilized from the dispersion and gradually removed. At this time, the copper hydride nanoparticles were decomposed into metallic copper nanoparticles, and a filler in which the surface of the metallic copper filler was coated with metallic copper nanoparticles and oleic acid was obtained.
前記金属銅フィラーの表面が金属銅ナノ粒子およびオレイン酸で被覆されたフィラーの13.3gを、非晶質ポリエステル樹脂(東洋紡績社製、バイロン103)の1.35gをシクロヘキサノン(純正化学社製、特級)の3.15gに溶解した樹脂バインダ溶液の4.50gに加えた。非晶質ポリエステル樹脂の量は、銅フィラーおよび金属銅ナノ粒子の合計100質量部に対して、10.1質量部であった。該混合物を乳鉢中で混ぜ合わせた後、室温で減圧下に置き、シクロヘキサノンを除去し、導電性ペーストを得た。
13.3 g of the filler in which the surface of the metallic copper filler is coated with metallic copper nanoparticles and oleic acid, and 1.35 g of amorphous polyester resin (manufactured by Toyobo Co., Ltd., Byron 103) are cyclohexanone (manufactured by Junsei Chemical Co., Ltd.). , Special grade) was added to 4.50 g of the resin binder solution dissolved in 3.15 g. The amount of the amorphous polyester resin was 10.1 parts by mass with respect to a total of 100 parts by mass of the copper filler and the metal copper nanoparticles. The mixture was mixed in a mortar and then placed under reduced pressure at room temperature to remove cyclohexanone to obtain a conductive paste.
導電性ペーストをガラス基板に塗布し、窒素ガス雰囲気下、150℃で1時間焼成し、厚さ30μmの導電膜を形成した。導電膜の体積抵抗率を測定した。結果を表1に示す。
導電性ペーストを大気中に5日間保管したのち、ガラス基板に塗布し、窒素ガス雰囲気下、150℃で1時間焼成し、厚さ30μmの導電膜を形成した。導電膜の体積抵抗率を測定した。結果を表2に示す。
なお、表2における「添加量(質量部)」は、銅ナノ粒子と銅フィラーの合計100質量部に対する化合物(1)の添加量(質量部)である。また、水酸基価は、非晶質ポリエステル樹脂の水酸基価である。 The conductive paste was applied to a glass substrate and baked at 150 ° C. for 1 hour in a nitrogen gas atmosphere to form a conductive film having a thickness of 30 μm. The volume resistivity of the conductive film was measured. The results are shown in Table 1.
After storing the conductive paste in the air for 5 days, it was applied to a glass substrate and baked at 150 ° C. for 1 hour in a nitrogen gas atmosphere to form a conductive film having a thickness of 30 μm. The volume resistivity of the conductive film was measured. The results are shown in Table 2.
In addition, "addition amount (mass part)" in Table 2 is the addition amount (mass part) of the compound (1) with respect to a total of 100 mass parts of a copper nanoparticle and a copper filler. The hydroxyl value is the hydroxyl value of the amorphous polyester resin.
導電性ペーストを大気中に5日間保管したのち、ガラス基板に塗布し、窒素ガス雰囲気下、150℃で1時間焼成し、厚さ30μmの導電膜を形成した。導電膜の体積抵抗率を測定した。結果を表2に示す。
なお、表2における「添加量(質量部)」は、銅ナノ粒子と銅フィラーの合計100質量部に対する化合物(1)の添加量(質量部)である。また、水酸基価は、非晶質ポリエステル樹脂の水酸基価である。 The conductive paste was applied to a glass substrate and baked at 150 ° C. for 1 hour in a nitrogen gas atmosphere to form a conductive film having a thickness of 30 μm. The volume resistivity of the conductive film was measured. The results are shown in Table 1.
After storing the conductive paste in the air for 5 days, it was applied to a glass substrate and baked at 150 ° C. for 1 hour in a nitrogen gas atmosphere to form a conductive film having a thickness of 30 μm. The volume resistivity of the conductive film was measured. The results are shown in Table 2.
In addition, "addition amount (mass part)" in Table 2 is the addition amount (mass part) of the compound (1) with respect to a total of 100 mass parts of a copper nanoparticle and a copper filler. The hydroxyl value is the hydroxyl value of the amorphous polyester resin.
〔例10〕
オレイン酸を0.8gに変更した以外は例9と同様にして導電性ペーストを得た。例9と同様にしてガラス基板に導電膜を形成し、体積抵抗率を測定した。結果を表2に示す。 [Example 10]
A conductive paste was obtained in the same manner as in Example 9 except that oleic acid was changed to 0.8 g. A conductive film was formed on a glass substrate in the same manner as in Example 9, and the volume resistivity was measured. The results are shown in Table 2.
オレイン酸を0.8gに変更した以外は例9と同様にして導電性ペーストを得た。例9と同様にしてガラス基板に導電膜を形成し、体積抵抗率を測定した。結果を表2に示す。 [Example 10]
A conductive paste was obtained in the same manner as in Example 9 except that oleic acid was changed to 0.8 g. A conductive film was formed on a glass substrate in the same manner as in Example 9, and the volume resistivity was measured. The results are shown in Table 2.
〔例11〕
オレイン酸を2.0gに変更した以外は例9と同様にして導電性ペーストを得た。例9と同様にしてガラス基板に導電膜を形成し、体積抵抗率を測定した。結果を表2に示す。 [Example 11]
A conductive paste was obtained in the same manner as in Example 9 except that oleic acid was changed to 2.0 g. A conductive film was formed on a glass substrate in the same manner as in Example 9, and the volume resistivity was measured. The results are shown in Table 2.
オレイン酸を2.0gに変更した以外は例9と同様にして導電性ペーストを得た。例9と同様にしてガラス基板に導電膜を形成し、体積抵抗率を測定した。結果を表2に示す。 [Example 11]
A conductive paste was obtained in the same manner as in Example 9 except that oleic acid was changed to 2.0 g. A conductive film was formed on a glass substrate in the same manner as in Example 9, and the volume resistivity was measured. The results are shown in Table 2.
〔例12〕
ポリエステル樹脂をバイロン103からバイロン200に変更した以外は例9と同様にして導電性ペーストを得た。例9と同様にしてガラス基板に導電膜を形成し、体積抵抗率を測定した。結果を表2に示す。 [Example 12]
A conductive paste was obtained in the same manner as in Example 9 except that the polyester resin was changed from Byron 103 to Byron 200. A conductive film was formed on a glass substrate in the same manner as in Example 9, and the volume resistivity was measured. The results are shown in Table 2.
ポリエステル樹脂をバイロン103からバイロン200に変更した以外は例9と同様にして導電性ペーストを得た。例9と同様にしてガラス基板に導電膜を形成し、体積抵抗率を測定した。結果を表2に示す。 [Example 12]
A conductive paste was obtained in the same manner as in Example 9 except that the polyester resin was changed from Byron 103 to Byron 200. A conductive film was formed on a glass substrate in the same manner as in Example 9, and the volume resistivity was measured. The results are shown in Table 2.
〔例13〕
ポリエステル樹脂をバイロン103からバイロンGK880に変更した以外は例9と同様にして導電性ペーストを得た。例9と同様にしてガラス基板に導電膜を形成し、体積抵抗率を測定した。結果を表2に示す。 [Example 13]
A conductive paste was obtained in the same manner as in Example 9 except that the polyester resin was changed from Byron 103 to Byron GK880. A conductive film was formed on a glass substrate in the same manner as in Example 9, and the volume resistivity was measured. The results are shown in Table 2.
ポリエステル樹脂をバイロン103からバイロンGK880に変更した以外は例9と同様にして導電性ペーストを得た。例9と同様にしてガラス基板に導電膜を形成し、体積抵抗率を測定した。結果を表2に示す。 [Example 13]
A conductive paste was obtained in the same manner as in Example 9 except that the polyester resin was changed from Byron 103 to Byron GK880. A conductive film was formed on a glass substrate in the same manner as in Example 9, and the volume resistivity was measured. The results are shown in Table 2.
〔例14〕
オレイン酸をステアリン酸に変更した以外は例9と同様にして導電性ペーストを得た。例9と同様にしてガラス基板に導電膜を形成し、体積抵抗率を測定した。結果を表2に示す。 [Example 14]
A conductive paste was obtained in the same manner as in Example 9 except that oleic acid was changed to stearic acid. A conductive film was formed on a glass substrate in the same manner as in Example 9, and the volume resistivity was measured. The results are shown in Table 2.
オレイン酸をステアリン酸に変更した以外は例9と同様にして導電性ペーストを得た。例9と同様にしてガラス基板に導電膜を形成し、体積抵抗率を測定した。結果を表2に示す。 [Example 14]
A conductive paste was obtained in the same manner as in Example 9 except that oleic acid was changed to stearic acid. A conductive film was formed on a glass substrate in the same manner as in Example 9, and the volume resistivity was measured. The results are shown in Table 2.
〔例15〕
オレイン酸をデカン酸に変更した以外は例9と同様にして導電性ペーストを得た。例9と同様にしてガラス基板に導電膜を形成し、体積抵抗率を測定した。結果を表2に示す。 [Example 15]
A conductive paste was obtained in the same manner as in Example 9 except that oleic acid was changed to decanoic acid. A conductive film was formed on a glass substrate in the same manner as in Example 9, and the volume resistivity was measured. The results are shown in Table 2.
オレイン酸をデカン酸に変更した以外は例9と同様にして導電性ペーストを得た。例9と同様にしてガラス基板に導電膜を形成し、体積抵抗率を測定した。結果を表2に示す。 [Example 15]
A conductive paste was obtained in the same manner as in Example 9 except that oleic acid was changed to decanoic acid. A conductive film was formed on a glass substrate in the same manner as in Example 9, and the volume resistivity was measured. The results are shown in Table 2.
〔例16〕
オレイン酸をヘキサン酸に変更した以外は例9と同様にして導電性ペーストを得た。例9と同様にしてガラス基板に導電膜を形成し、体積抵抗率を測定した。結果を表2に示す。 [Example 16]
A conductive paste was obtained in the same manner as in Example 9 except that oleic acid was changed to hexanoic acid. A conductive film was formed on a glass substrate in the same manner as in Example 9, and the volume resistivity was measured. The results are shown in Table 2.
オレイン酸をヘキサン酸に変更した以外は例9と同様にして導電性ペーストを得た。例9と同様にしてガラス基板に導電膜を形成し、体積抵抗率を測定した。結果を表2に示す。 [Example 16]
A conductive paste was obtained in the same manner as in Example 9 except that oleic acid was changed to hexanoic acid. A conductive film was formed on a glass substrate in the same manner as in Example 9, and the volume resistivity was measured. The results are shown in Table 2.
〔例17〕
ポリエステル樹脂をバイロン103からバイロン226に変更した以外は例9と同様にして導電性ペーストを得た。例9と同様にしてガラス基板に導電膜を形成し、体積抵抗率を測定した。結果を表2に示す。 [Example 17]
A conductive paste was obtained in the same manner as in Example 9 except that the polyester resin was changed from Byron 103 to Byron 226. A conductive film was formed on a glass substrate in the same manner as in Example 9, and the volume resistivity was measured. The results are shown in Table 2.
ポリエステル樹脂をバイロン103からバイロン226に変更した以外は例9と同様にして導電性ペーストを得た。例9と同様にしてガラス基板に導電膜を形成し、体積抵抗率を測定した。結果を表2に示す。 [Example 17]
A conductive paste was obtained in the same manner as in Example 9 except that the polyester resin was changed from Byron 103 to Byron 226. A conductive film was formed on a glass substrate in the same manner as in Example 9, and the volume resistivity was measured. The results are shown in Table 2.
本発明の導電性フィラーおよび導電性ペーストは、様々な用途に利用できる。たとえば、プリント配線板等における配線パターンの形成および修復、半導体パッケージ内の層間配線、プリント配線板と電子部品との接合等の用途に利用できる。
なお、2008年9月19日に出願された日本特許出願2008-241073号及び2009年4月3日に出願された日本特許出願2009-91429号の明細書、特許請求の範囲、図面及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。 The conductive filler and conductive paste of the present invention can be used for various applications. For example, it can be used for applications such as formation and repair of wiring patterns on printed wiring boards, interlayer wiring in semiconductor packages, and bonding between printed wiring boards and electronic components.
The specification, claims, drawings and abstract of Japanese Patent Application No. 2008-2441073 filed on September 19, 2008 and Japanese Patent Application No. 2009-91429 filed on April 3, 2009. Is hereby incorporated by reference as a disclosure of the specification of the present invention.
なお、2008年9月19日に出願された日本特許出願2008-241073号及び2009年4月3日に出願された日本特許出願2009-91429号の明細書、特許請求の範囲、図面及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。 The conductive filler and conductive paste of the present invention can be used for various applications. For example, it can be used for applications such as formation and repair of wiring patterns on printed wiring boards, interlayer wiring in semiconductor packages, and bonding between printed wiring boards and electronic components.
The specification, claims, drawings and abstract of Japanese Patent Application No. 2008-2441073 filed on September 19, 2008 and Japanese Patent Application No. 2009-91429 filed on April 3, 2009. Is hereby incorporated by reference as a disclosure of the specification of the present invention.
Claims (13)
- 平均凝集粒子径が0.5~20μmである銅フィラーと、
平均凝集粒子径が50~200nmである銅ナノ粒子と、
脂肪族カルボン酸とを含み、
上記銅ナノ粒子の量が、上記銅フィラー100質量部に対して、5~50質量部であり、
かつ、上記脂肪族カルボン酸の量が、上記銅フィラーおよび上記銅ナノ粒子の合計100質量部に対して、1~15質量部である、ことを特徴とする導電性フィラー。 A copper filler having an average agglomerated particle size of 0.5 to 20 μm;
Copper nanoparticles having an average aggregate particle diameter of 50 to 200 nm,
An aliphatic carboxylic acid,
The amount of the copper nanoparticles is 5 to 50 parts by mass with respect to 100 parts by mass of the copper filler,
In addition, the conductive filler is characterized in that the amount of the aliphatic carboxylic acid is 1 to 15 parts by mass with respect to 100 parts by mass in total of the copper filler and the copper nanoparticles. - 前記銅ナノ粒子が、ギ酸によって表面が被覆されている水素化銅ナノ粒子、または該水素化銅ナノ粒子を熱分解してなる金属銅ナノ粒子である、請求項1に記載の導電性フィラー。 The conductive filler according to claim 1, wherein the copper nanoparticles are copper hydride nanoparticles whose surface is coated with formic acid, or metal copper nanoparticles obtained by thermally decomposing the copper hydride nanoparticles.
- 前記脂肪族カルボン酸が不飽和カルボン酸である、請求項1または2に記載の導電性フィラー。 The conductive filler according to claim 1 or 2, wherein the aliphatic carboxylic acid is an unsaturated carboxylic acid.
- 前記不飽和カルボン酸の沸点または分解温度が、250℃以下である、請求項3に記載の導電性フィラー。 The conductive filler according to claim 3, wherein the boiling point or decomposition temperature of the unsaturated carboxylic acid is 250 ° C or lower.
- 前記脂肪族カルボン酸が下式(1)で表される化合物である請求項1または2に記載の導電性フィラー。
R-COOH (1)
ただし、式(1)中のRは炭素数4~20の炭化水素基を表す。 The conductive filler according to claim 1 or 2, wherein the aliphatic carboxylic acid is a compound represented by the following formula (1).
R-COOH (1)
However, R in the formula (1) represents a hydrocarbon group having 4 to 20 carbon atoms. - 平均凝集粒子径が0.5~20μmである銅フィラーと、
平均凝集粒子径が50~200nmである銅ナノ粒子と、
脂肪族カルボン酸と、
樹脂バインダとを含み、
上記銅ナノ粒子の量が、上記銅フィラー100質量部に対して、5~50質量部であり、
上記脂肪族カルボン酸の量が、上記銅フィラーおよび上記銅ナノ粒子の合計100質量部に対して、1~15質量部であり、かつ、
上記樹脂バインダの量が、上記銅フィラーおよび上記銅ナノ粒子の合計100質量部に対して、5~50質量部である、ことを特徴とする導電性ペースト。 A copper filler having an average agglomerated particle size of 0.5 to 20 μm;
Copper nanoparticles having an average aggregate particle diameter of 50 to 200 nm,
An aliphatic carboxylic acid;
Including a resin binder,
The amount of the copper nanoparticles is 5 to 50 parts by mass with respect to 100 parts by mass of the copper filler,
The amount of the aliphatic carboxylic acid is 1 to 15 parts by mass with respect to a total of 100 parts by mass of the copper filler and the copper nanoparticles, and
The conductive paste is characterized in that the amount of the resin binder is 5 to 50 parts by mass with respect to 100 parts by mass in total of the copper filler and the copper nanoparticles. - 前記銅ナノ粒子が、ギ酸によって表面が被覆されている水素化銅ナノ粒子、または該水素化銅ナノ粒子を熱分解してなる金属銅ナノ粒子である、請求項6に記載の導電性ペースト。 The conductive paste according to claim 6, wherein the copper nanoparticles are copper hydride nanoparticles whose surface is coated with formic acid or metal copper nanoparticles obtained by thermally decomposing the copper hydride nanoparticles.
- 前記脂肪族カルボン酸が不飽和カルボン酸である請求項6または7に記載の導電性ペースト。 The conductive paste according to claim 6 or 7, wherein the aliphatic carboxylic acid is an unsaturated carboxylic acid.
- 前記不飽和カルボン酸の沸点または分解温度が、250℃以下である請求項8に記載の導電性ペースト。 The conductive paste according to claim 8, wherein the unsaturated carboxylic acid has a boiling point or decomposition temperature of 250 ° C or lower.
- 前記脂肪族カルボン酸が下式(1)で表される化合物である請求項6または7に記載の導電性ペースト。
R-COOH (1)
ただし、式(1)中のRは炭素数4~20の炭化水素基を表す。 The conductive paste according to claim 6 or 7, wherein the aliphatic carboxylic acid is a compound represented by the following formula (1).
R-COOH (1)
However, R in the formula (1) represents a hydrocarbon group having 4 to 20 carbon atoms. - 前記樹脂バインダがポリエステル樹脂からなるバインダである請求項6~10のいずれかに記載の導電ペースト。 The conductive paste according to any one of claims 6 to 10, wherein the resin binder is a binder made of a polyester resin.
- 前記ポリエステル樹脂の水酸基価が5~20KOHmg/gである請求項11に記載の導電性ペースト。 The conductive paste according to claim 11, wherein the polyester resin has a hydroxyl value of 5 to 20 KOHmg / g.
- 基材と、該基材上に、請求項6~12のいずれかに記載の導電性ペーストを塗布し、焼成して形成された導電膜とを有する、物品。 An article comprising: a base material; and a conductive film formed by applying and baking the conductive paste according to any one of claims 6 to 12 on the base material.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010529820A JPWO2010032841A1 (en) | 2008-09-19 | 2009-09-18 | Article having conductive filler, conductive paste and conductive film |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008-241073 | 2008-09-19 | ||
JP2008241073 | 2008-09-19 | ||
JP2009091429 | 2009-04-03 | ||
JP2009-091429 | 2009-04-03 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010032841A1 true WO2010032841A1 (en) | 2010-03-25 |
Family
ID=42039661
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2009/066420 WO2010032841A1 (en) | 2008-09-19 | 2009-09-18 | Conductive filler, conductive paste and article having conductive film |
Country Status (3)
Country | Link |
---|---|
JP (1) | JPWO2010032841A1 (en) |
TW (1) | TW201022152A (en) |
WO (1) | WO2010032841A1 (en) |
Cited By (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011210454A (en) * | 2010-03-29 | 2011-10-20 | Shinshu Univ | Electric conductor and method for forming the same |
WO2012053456A1 (en) * | 2010-10-21 | 2012-04-26 | 旭硝子株式会社 | Process for manufacturing copper hydride fine particle dispersion, electroconductive ink, and process for manufaturing substrate equipped with conductor |
WO2012114925A1 (en) * | 2011-02-23 | 2012-08-30 | ナミックス株式会社 | Conductive composition and external electrode using same |
EP2500910A1 (en) * | 2011-02-25 | 2012-09-19 | Samsung Electro-Mechanics Co., Ltd | Copper nano paste, method for forming the copper nano paste, and method for forming electrode using the copper nano paste |
JP2013047365A (en) * | 2011-08-29 | 2013-03-07 | Hitachi Cable Ltd | Copper fine particle dispersion and preparation method therefor, copper fine particle and preparation method therefor, copper paste containing copper fine particle, copper film and preparation method therefor |
JP2013161544A (en) * | 2012-02-01 | 2013-08-19 | Nano Cube Japan Co Ltd | Conductive material and manufacturing method of the same |
WO2014148091A1 (en) * | 2013-03-19 | 2014-09-25 | 富士フイルム株式会社 | Composition for conductive film formation, and method for producing conductive film using same |
WO2014156326A1 (en) * | 2013-03-29 | 2014-10-02 | 富士フイルム株式会社 | Composition for forming conductive film, and conductive film manufacturing method using same |
KR20140131577A (en) * | 2012-07-03 | 2014-11-13 | 이시하라 케미칼 가부시키가이샤 | Method for forming conductive film and sintering promoter |
WO2015068826A1 (en) * | 2013-11-06 | 2015-05-14 | Dowaエレクトロニクス株式会社 | Copper particle dispersion and method for producing conductive film using same |
TWI505298B (en) * | 2012-07-03 | 2015-10-21 | Ishihara Chemical Co Ltd | Conductive film forming method and sintering promoter |
JP2015187259A (en) * | 2014-03-11 | 2015-10-29 | 三井金属鉱業株式会社 | Conductive composition and method for producing conductor using the same |
WO2016031860A1 (en) * | 2014-08-28 | 2016-03-03 | 石原産業株式会社 | Metallic copper particles, and production method therefor |
JP2016156045A (en) * | 2015-02-24 | 2016-09-01 | 古河電気工業株式会社 | Thermal bonding material, bonding structure, and method for producing thermal bonding material and bonding method using the thermal bonding material |
US20160312043A1 (en) * | 2013-12-10 | 2016-10-27 | Dowa Electronics Materials Co., Ltd. | Conductive paste and method for producing conductive film using same |
JP2017123253A (en) * | 2016-01-06 | 2017-07-13 | 日立化成株式会社 | Conductor forming composition, method for producing conductor, conductor and device |
KR101856802B1 (en) * | 2010-11-16 | 2018-05-10 | 아사히 가라스 가부시키가이샤 | Conductive paste and base with conductive film |
JP2020174042A (en) * | 2020-06-03 | 2020-10-22 | 日立化成株式会社 | Conductor forming composition, method for producing conductor, conductor and device |
WO2021199512A1 (en) * | 2020-03-31 | 2021-10-07 | 三井金属鉱業株式会社 | Copper particles and method for producing same |
WO2022185571A1 (en) | 2021-03-04 | 2022-09-09 | 三井金属鉱業株式会社 | Conductive composition for bonding, bonding structure using same, and manufacturing method thereof |
WO2023282229A1 (en) * | 2021-07-06 | 2023-01-12 | 昭和電工マテリアルズ株式会社 | Metal paste for bonding, and bonded body and method for producing same |
DE102021131621B4 (en) * | 2021-01-20 | 2025-05-08 | GM Global Technology Operations LLC | CONNECTING MATERIAL FOR CONNECTING OVERLAPING COMPONENTS OF POWER ELECTRONIC DEVICES |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5576199B2 (en) * | 2010-07-14 | 2014-08-20 | 三井金属鉱業株式会社 | Copper powder for conductive paste and conductive paste |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0693316A (en) * | 1991-04-08 | 1994-04-05 | Mitsubishi Gas Chem Co Inc | Production of extremely fine copper powder |
JP2004111168A (en) * | 2002-09-18 | 2004-04-08 | Sumitomo Electric Ind Ltd | Conductive paste |
JP2004265901A (en) * | 2003-01-23 | 2004-09-24 | Matsushita Electric Ind Co Ltd | Conductive paste, circuit forming substrate using the conductive paste, and method of manufacturing the same |
JP2005183144A (en) * | 2003-12-18 | 2005-07-07 | Alps Electric Co Ltd | Conductive composition and manufacturing method of same |
WO2006109410A1 (en) * | 2005-04-12 | 2006-10-19 | Asahi Glass Company, Limited | Ink composition and metallic material |
JP2007184143A (en) * | 2006-01-06 | 2007-07-19 | Sumitomo Metal Mining Co Ltd | Surface treatment method of conductive powder, and conductive powder and conductive paste |
JP2007258123A (en) * | 2006-03-27 | 2007-10-04 | Sumitomo Metal Mining Co Ltd | Conductive composition and conductive film forming method |
-
2009
- 2009-09-18 TW TW098131558A patent/TW201022152A/en unknown
- 2009-09-18 WO PCT/JP2009/066420 patent/WO2010032841A1/en active Application Filing
- 2009-09-18 JP JP2010529820A patent/JPWO2010032841A1/en active Pending
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0693316A (en) * | 1991-04-08 | 1994-04-05 | Mitsubishi Gas Chem Co Inc | Production of extremely fine copper powder |
JP2004111168A (en) * | 2002-09-18 | 2004-04-08 | Sumitomo Electric Ind Ltd | Conductive paste |
JP2004265901A (en) * | 2003-01-23 | 2004-09-24 | Matsushita Electric Ind Co Ltd | Conductive paste, circuit forming substrate using the conductive paste, and method of manufacturing the same |
JP2005183144A (en) * | 2003-12-18 | 2005-07-07 | Alps Electric Co Ltd | Conductive composition and manufacturing method of same |
WO2006109410A1 (en) * | 2005-04-12 | 2006-10-19 | Asahi Glass Company, Limited | Ink composition and metallic material |
JP2007184143A (en) * | 2006-01-06 | 2007-07-19 | Sumitomo Metal Mining Co Ltd | Surface treatment method of conductive powder, and conductive powder and conductive paste |
JP2007258123A (en) * | 2006-03-27 | 2007-10-04 | Sumitomo Metal Mining Co Ltd | Conductive composition and conductive film forming method |
Cited By (38)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011210454A (en) * | 2010-03-29 | 2011-10-20 | Shinshu Univ | Electric conductor and method for forming the same |
WO2012053456A1 (en) * | 2010-10-21 | 2012-04-26 | 旭硝子株式会社 | Process for manufacturing copper hydride fine particle dispersion, electroconductive ink, and process for manufaturing substrate equipped with conductor |
KR101856802B1 (en) * | 2010-11-16 | 2018-05-10 | 아사히 가라스 가부시키가이샤 | Conductive paste and base with conductive film |
KR101960983B1 (en) * | 2011-02-23 | 2019-03-21 | 나믹스 가부시끼가이샤 | Conductive composition and external electrode using same |
WO2012114925A1 (en) * | 2011-02-23 | 2012-08-30 | ナミックス株式会社 | Conductive composition and external electrode using same |
KR20140027116A (en) * | 2011-02-23 | 2014-03-06 | 나믹스 가부시끼가이샤 | Conductive composition and external electrode using same |
JPWO2012114925A1 (en) * | 2011-02-23 | 2014-07-07 | ナミックス株式会社 | Conductive composition and external electrode using the same |
EP2500910A1 (en) * | 2011-02-25 | 2012-09-19 | Samsung Electro-Mechanics Co., Ltd | Copper nano paste, method for forming the copper nano paste, and method for forming electrode using the copper nano paste |
JP2013047365A (en) * | 2011-08-29 | 2013-03-07 | Hitachi Cable Ltd | Copper fine particle dispersion and preparation method therefor, copper fine particle and preparation method therefor, copper paste containing copper fine particle, copper film and preparation method therefor |
JP2013161544A (en) * | 2012-02-01 | 2013-08-19 | Nano Cube Japan Co Ltd | Conductive material and manufacturing method of the same |
TWI505296B (en) * | 2012-07-03 | 2015-10-21 | Ishihara Chemical Co Ltd | Conductive film forming method and sintering promoter |
US9905339B2 (en) | 2012-07-03 | 2018-02-27 | Ishihara Chemical Co., Ltd. | Conductive film forming method and sintering promoter |
KR20140131577A (en) * | 2012-07-03 | 2014-11-13 | 이시하라 케미칼 가부시키가이샤 | Method for forming conductive film and sintering promoter |
CN104303242A (en) * | 2012-07-03 | 2015-01-21 | 日本石原化学株式会社 | Conductive film forming method and sintering aid |
KR101691272B1 (en) | 2012-07-03 | 2016-12-29 | 이시하라 케미칼 가부시키가이샤 | Method for forming conductive film and sintering promoter |
TWI505298B (en) * | 2012-07-03 | 2015-10-21 | Ishihara Chemical Co Ltd | Conductive film forming method and sintering promoter |
JP2014182913A (en) * | 2013-03-19 | 2014-09-29 | Fujifilm Corp | Composition for conductive film formation, and method for producing conductive film using the same |
WO2014148091A1 (en) * | 2013-03-19 | 2014-09-25 | 富士フイルム株式会社 | Composition for conductive film formation, and method for producing conductive film using same |
JP2014196427A (en) * | 2013-03-29 | 2014-10-16 | 富士フイルム株式会社 | Composition for forming an electroconductive film and method for manufacturing electroconductive film using the same |
WO2014156326A1 (en) * | 2013-03-29 | 2014-10-02 | 富士フイルム株式会社 | Composition for forming conductive film, and conductive film manufacturing method using same |
WO2015068826A1 (en) * | 2013-11-06 | 2015-05-14 | Dowaエレクトロニクス株式会社 | Copper particle dispersion and method for producing conductive film using same |
JP2015111563A (en) * | 2013-11-06 | 2015-06-18 | Dowaエレクトロニクス株式会社 | Copper particle fluid dispersion and method for producing conductive film using the same |
US20160312043A1 (en) * | 2013-12-10 | 2016-10-27 | Dowa Electronics Materials Co., Ltd. | Conductive paste and method for producing conductive film using same |
US9732236B2 (en) * | 2013-12-10 | 2017-08-15 | Dowa Electronics Materials Co., Ltd. | Conductive paste and method for producing conductive film using same |
JP2015187259A (en) * | 2014-03-11 | 2015-10-29 | 三井金属鉱業株式会社 | Conductive composition and method for producing conductor using the same |
CN106715009A (en) * | 2014-08-28 | 2017-05-24 | 石原产业株式会社 | Metallic copper particles, and production method therefor |
JPWO2016031860A1 (en) * | 2014-08-28 | 2017-06-15 | 石原産業株式会社 | Metallic copper particles and method for producing the same |
WO2016031860A1 (en) * | 2014-08-28 | 2016-03-03 | 石原産業株式会社 | Metallic copper particles, and production method therefor |
JP2016156045A (en) * | 2015-02-24 | 2016-09-01 | 古河電気工業株式会社 | Thermal bonding material, bonding structure, and method for producing thermal bonding material and bonding method using the thermal bonding material |
JP2017123253A (en) * | 2016-01-06 | 2017-07-13 | 日立化成株式会社 | Conductor forming composition, method for producing conductor, conductor and device |
WO2021199512A1 (en) * | 2020-03-31 | 2021-10-07 | 三井金属鉱業株式会社 | Copper particles and method for producing same |
JP7482214B2 (en) | 2020-03-31 | 2024-05-13 | 三井金属鉱業株式会社 | Copper particles and method for producing same |
US11980935B2 (en) | 2020-03-31 | 2024-05-14 | Mitsui Mining & Smelting Co., Ltd. | Copper particles and method for producing same |
JP2020174042A (en) * | 2020-06-03 | 2020-10-22 | 日立化成株式会社 | Conductor forming composition, method for producing conductor, conductor and device |
DE102021131621B4 (en) * | 2021-01-20 | 2025-05-08 | GM Global Technology Operations LLC | CONNECTING MATERIAL FOR CONNECTING OVERLAPING COMPONENTS OF POWER ELECTRONIC DEVICES |
WO2022185571A1 (en) | 2021-03-04 | 2022-09-09 | 三井金属鉱業株式会社 | Conductive composition for bonding, bonding structure using same, and manufacturing method thereof |
KR20230151101A (en) | 2021-03-04 | 2023-10-31 | 미쓰이금속광업주식회사 | Conductive composition for bonding, bonding structure using the same, and method for manufacturing the same |
WO2023282229A1 (en) * | 2021-07-06 | 2023-01-12 | 昭和電工マテリアルズ株式会社 | Metal paste for bonding, and bonded body and method for producing same |
Also Published As
Publication number | Publication date |
---|---|
TW201022152A (en) | 2010-06-16 |
JPWO2010032841A1 (en) | 2012-02-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2010032841A1 (en) | Conductive filler, conductive paste and article having conductive film | |
JP2010059469A (en) | Method for producing copper nanoparticle, metal paste and article having metal film | |
JP6241908B2 (en) | Coated fine metal particles and production method thereof | |
TWI501260B (en) | Conductive paste and substrate with conductive film | |
JP6491753B2 (en) | Metal paste excellent in low-temperature sinterability and method for producing the metal paste | |
WO2009116349A1 (en) | Copper nanoparticle-coated copper filler, method for producing the same, copper paste, and article having metal film | |
JP5720693B2 (en) | Method for producing conductive copper particles | |
WO2014084275A1 (en) | Conductive paste and method for producing same | |
WO2007105636A1 (en) | Process for production of ultrafine silver particles and ultrafine silver particles produced by the process | |
JP2022136081A (en) | Copper oxide particle composition, conductive paste and conductive ink | |
CN103262173A (en) | Conductive paste, conductive film-attached base material using the conductive paste, and method for manufacturing conductive film-attached base material | |
WO2012161201A1 (en) | Conductive paste, base having conductive film obtained using same, and method for producing base having conductive film | |
JP5593699B2 (en) | Copper hydride nanoparticles, method for producing the same, metal paste and article | |
WO2016080544A1 (en) | Method for treating metal surface, silver-coated copper treated by said method, and composite metal body | |
JP2021055127A (en) | Copper/copper oxide fine particle paste | |
JP5410850B2 (en) | Method for producing copper composite particles, method for producing composite metal copper particles, method for producing copper paste and metal copper conductor | |
JP5439995B2 (en) | Method for producing surface-modified copper particles, composition for forming conductor, method for producing conductor film and article | |
WO2024071303A1 (en) | Copper powder, copper paste containing same, and method for producing conductive film | |
JP2009127056A (en) | Fine tin particle dispersion liquid and its production method | |
JP6387794B2 (en) | Organic coated metal nanoparticles and method for producing the same | |
JP6627228B2 (en) | Copper-containing particles, conductor-forming composition, method for producing conductor, conductor and device | |
JP2022071739A (en) | Ink mixture and method for producing the same, and method for sintering ink mixture | |
JP2005068508A (en) | Metal powder coated with inorganic superfine particle and its production method | |
JP2018135564A (en) | Tin-coated copper powder, method for manufacturing the same, and conductive paste | |
CN103680679A (en) | Conductive paste and substrate with conductive film |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09814685 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010529820 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 09814685 Country of ref document: EP Kind code of ref document: A1 |