[go: up one dir, main page]

WO2010023751A1 - Method for adjusting electron beam plotting device and method for adjusting control device for controlling electron beam plotting device - Google Patents

Method for adjusting electron beam plotting device and method for adjusting control device for controlling electron beam plotting device Download PDF

Info

Publication number
WO2010023751A1
WO2010023751A1 PCT/JP2008/065506 JP2008065506W WO2010023751A1 WO 2010023751 A1 WO2010023751 A1 WO 2010023751A1 JP 2008065506 W JP2008065506 W JP 2008065506W WO 2010023751 A1 WO2010023751 A1 WO 2010023751A1
Authority
WO
WIPO (PCT)
Prior art keywords
electron beam
test pattern
substrate
line
signal
Prior art date
Application number
PCT/JP2008/065506
Other languages
French (fr)
Japanese (ja)
Inventor
寛顕 鈴木
章雄 福島
孝幸 糟谷
聡 杉浦
Original Assignee
パイオニア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パイオニア株式会社 filed Critical パイオニア株式会社
Priority to PCT/JP2008/065506 priority Critical patent/WO2010023751A1/en
Publication of WO2010023751A1 publication Critical patent/WO2010023751A1/en

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/74Record carriers characterised by the form, e.g. sheet shaped to wrap around a drum
    • G11B5/82Disk carriers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/74Record carriers characterised by the form, e.g. sheet shaped to wrap around a drum
    • G11B5/743Patterned record carriers, wherein the magnetic recording layer is patterned into magnetic isolated data islands, e.g. discrete tracks
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/84Processes or apparatus specially adapted for manufacturing record carriers
    • G11B5/855Coating only part of a support with a magnetic layer

Definitions

  • the present invention relates to adjustment of an electron beam drawing apparatus that performs pattern drawing by irradiating an electron beam.
  • Magnetic disks or hard disks are used in personal computer (PC) storage devices, mobile devices, in-vehicle devices, and the like.
  • PC personal computer
  • the application has been remarkably expanded and the surface recording density has been rapidly improved.
  • An electron beam recording apparatus includes an electron gun that emits electrons, an electron lens that irradiates a substrate coated with a resist with an electron beam that converges the electrons, and blanking and beam deflection driving that control the irradiation position of the electron beam. System. At this time, a latent image is drawn on the resist where the electron beam is irradiated.
  • an adjustment method of an electron beam drawing apparatus that enables drawing to be performed with an original drawing accuracy or drawing ability, and an adjustment method of a control device that controls the electron beam drawing apparatus are provided. With the goal.
  • the method of adjusting an electron beam lithography apparatus is an adjustment method of an electron beam lithography apparatus that performs pattern drawing by irradiating an electron beam onto a resist coated on a surface of a substrate, wherein the electron beam lithography apparatus A test pattern drawing process for drawing a predetermined test pattern, a test pattern drawing image acquisition process for obtaining a test pattern drawing image, and a control amount of a drawing control unit in the electron beam drawing apparatus based on the test pattern drawing image A correction data generation process for generating correction data to be corrected; and a correction process for correcting the control amount of the drawing control unit in the electron beam drawing apparatus based on the correction data.
  • an adjustment method for a control device for controlling an electron beam drawing apparatus which is responsible for drawing control of an electron beam drawing apparatus that performs pattern drawing by irradiating an electron beam onto a resist applied to a surface of a substrate.
  • An adjustment method of a control device for generating a drawing control signal comprising: a step of performing control for causing the electron beam drawing device to draw a predetermined test pattern; and the test pattern drawn by the electron beam drawing device.
  • a control device for controlling an electron beam lithography apparatus is a control device for controlling an electron beam lithography apparatus that performs pattern drawing by irradiating an electron beam onto a resist applied to a surface of a substrate. And means for generating a drawing control signal for drawing a predetermined test pattern, and means for changing a control amount represented by the drawing control signal over a predetermined period.
  • a control method of a control device for controlling an electron beam lithography apparatus is a control device for controlling an electron beam lithography apparatus that performs pattern drawing by irradiating an electron beam onto a resist applied to a surface of a substrate. And a step of generating a drawing control signal for drawing a predetermined test pattern and a step of changing a control amount represented by the drawing control signal over a predetermined period.
  • An electron beam drawing apparatus is an electron beam drawing apparatus for drawing a pattern by irradiating an electron beam onto a resist applied to the surface of a substrate, and drawing a predetermined test pattern to be drawn.
  • a program for a control device for controlling an electron beam lithography apparatus which is responsible for rendering control of an electron beam lithography apparatus that performs pattern rendering by irradiating an electron beam onto a resist applied to a surface of a substrate.
  • a computer-readable program executed by a control device that generates a control signal, wherein the electron beam drawing device performs a process for controlling the electron beam drawing device to draw a predetermined test pattern, and is drawn by the electron beam drawing device. Further, based on the test pattern drawing image representing the test pattern, a process of generating correction data representing a correction amount for the drawing control signal, and the drawing control signal is corrected based on the correction amount represented by the correction data.
  • the adjustment is performed so that the drawing can be performed with the drawing accuracy or drawing ability inherent in the electron beam drawing apparatus.
  • FIG. 4 is a diagram illustrating a drawing sequence performed by the main body unit 10 under the control of the formatter 50.
  • FIG. It is a figure which shows the drawing control of the concentric circle line by the formatter. It is a figure explaining the deflection drive of the electron beam with respect to the translational movement of the board
  • FIG. FIG. 5 is a top view of a substrate 15 and is a diagram for explaining deflection control of a formatter that draws lines LN1 to LN4 using a spiral beam locus (broken line) as a concentric beam locus (solid line).
  • FIG. 3 is a diagram illustrating a drawing sequence of a test pattern of the main body unit 10 by a formatter 50.
  • FIG. It is a figure which shows an example of the drawing form of the connection part of each line on radius line SP in the test pattern shown in FIG.
  • the modulation signal F1 which the formatter 50 sends out to the main-body part 10 during the trace period of the reference
  • FIG. 8 is a diagram showing another example of a modulation signal F1 sent from the formatter 50 to the main body 10 during the trace period of the pit area PA2 shown in FIG.
  • FIG. 8 is a diagram showing a deflection signal F3 employed when drawing the fifth line LN5 to the eighth line LN8 shown in FIG.
  • FIG. 8 is a diagram showing the magnitude relationship of line widths of each of a fifth line LN5 to an eighth line LN8 shown in FIG. It is a figure which shows the modification of the electron beam drawing apparatus shown by FIG.
  • a predetermined test pattern is drawn in the electron beam drawing apparatus to be adjusted, and correction data for correcting the control amount of the drawing control unit in the electron beam drawing apparatus is generated based on an image representing the drawn test pattern. Based on this correction data, the control amount of the drawing control unit in the electron beam drawing apparatus is corrected.
  • FIG. 1 is a diagram showing an overall configuration of an electron beam lithography apparatus that is adjusted in accordance with the method of adjusting an electron beam lithography apparatus according to the present invention.
  • the electron beam drawing apparatus includes a vacuum chamber 11 including a stage driving device that rotates and translates a substrate 15 for a disk master, an electron beam column 20, and the stage driving device and the electron beam column 20.
  • the main unit 10 is an apparatus that creates, for example, a master disk for manufacturing a magnetic disk by an electron beam.
  • the substrate 15 for the master disc is placed on the turntable 16.
  • a resist material that is exposed to an electron beam is applied to a substrate 15 on a glass substrate, a carbon substrate, or a silicon substrate.
  • the turntable 16 is rotationally driven with respect to the vertical axis (Z axis) of the main surface of the disk substrate by a spindle motor 17 which is a rotational drive device that rotationally drives the substrate 15.
  • the spindle motor 17 is provided on a translation stage (hereinafter also simply referred to as a stage) 18.
  • the stage 18 is coupled to a translation motor 19 which is a transfer (translation drive) device, and can move the spindle motor 17 and the turntable 16 in a predetermined direction in a plane parallel to the main surface of the substrate 15. Yes.
  • the substrate 15 is held by suction on the turntable 16.
  • the turntable 16 is made of a dielectric, for example, ceramic, and has an electrostatic chucking mechanism (not shown).
  • Such an electrostatic chucking mechanism includes a turntable 16 and an electrode made of a conductor provided in the turntable 16 for causing electrostatic polarization.
  • a high voltage power source (not shown) is connected to the electrode, and the substrate 15 is held by suction by applying a voltage from the high voltage power source to the electrode.
  • optical elements such as a reflection mirror 35A and an interferometer, which are a part of a laser position measurement system 35 described later, are arranged.
  • the vacuum chamber 11 is installed via an anti-vibration table (not shown) such as an air damper, and vibration transmission from the outside is suppressed.
  • the vacuum chamber 11 is connected to a vacuum pump (not shown), and the interior of the vacuum chamber 11 is set to a vacuum atmosphere at a predetermined pressure by evacuating the chamber.
  • an electron gun (emitter) 21 for emitting an electron beam a converging lens 22, a blanking electrode 23, an aperture 24, a beam deflection coil 25, an alignment coil 26, a deflection electrode 27, a focus lens 28, an objective
  • the lenses 29 are arranged in this order.
  • the electron gun 21 emits an electron beam (EB) accelerated to several tens to 100 KeV by a cathode (not shown) to which a high voltage supplied from an acceleration high voltage power source (not shown) is applied.
  • the converging lens 22 converges the emitted electron beam.
  • the blanking electrode 23 performs on / off switching (ON / OFF) of the electron beam based on the modulation signal from the blanking drive unit 31. That is, by applying a voltage between the blanking electrodes 23 to greatly deflect the passing electron beam, the electron beam is prevented from passing through the aperture 24, and irradiation of the electron beam to the substrate 15 is turned off (non- Irradiation).
  • the alignment coil 26 corrects the position of the electron beam based on the correction signal from the beam position corrector 32.
  • the deflection electrode 27 deflects the electron beam in the radial direction and the tangential direction based on a control signal from the deflection driving unit 33. Further, the deflection electrode 27 may be composed of a plurality of deflection electrodes for controlling the deflection in the radial direction and the tangential direction. By such deflection driving, the position of the electron beam spot formed on the surface of the resist coated on the substrate 15 is adjusted.
  • the focus lens 28 performs focus adjustment on the electron beam based on a focus drive signal (described later) supplied from the focus drive unit 34, and guides the electron beam subjected to the focus adjustment processing to the objective lens 29.
  • the objective lens 29 converges the electron beam supplied from the focus lens 28 and irradiates it on the surface of the resist. At this time, a latent image is formed at a position irradiated with the electron beam on the resist surface.
  • drawing the formation of a latent image on the resist surface by such electron beam irradiation.
  • the vacuum chamber 11 is provided with a light source 36A and a light detector 36B for detecting the height of the main surface of the substrate 15.
  • the photodetector 36B includes, for example, a position sensor, a CCD (Charge Coupled Device), etc., receives a light beam (laser light) emitted from the light source 36A and reflected by the surface of the substrate 15, and increases the received light signal. This is supplied to the thickness detector 36.
  • the height detection unit 36 detects the height of the main surface of the substrate 15 based on the light reception signal, and supplies a height detection signal indicating the height to the focus driving unit 34.
  • the focus drive unit 34 generates a focus drive signal corresponding to the focus adjustment amount in the focus lens 28 according to the height detection signal or the focus adjustment signal FC (described later) and supplies the focus drive signal to the focus lens 28.
  • the laser position measurement system 35 measures the distance to the stage 18 with measurement laser light from a built-in light source (not shown), and supplies the measurement data, that is, position data of the stage 18 to the translation controller 37.
  • the translation controller 37 performs translation control of the X stage in synchronization with a translation clock signal (T-CLK) F4 which is a reference signal supplied from the formatter 50.
  • the translation controller 37 generates a translation error signal based on the stage position data from the laser position measurement system 35 and sends it to the beam position corrector 32.
  • the beam position corrector 32 corrects the position of the electron beam based on the translation error signal.
  • the translation controller 37 generates a control signal for controlling the translation motor 19 and supplies it to the translation motor 19.
  • the rotation controller 38 controls the rotation of the spindle motor 17 in synchronization with a rotation clock signal (R-CLK) F5 which is a reference signal supplied from the formatter 50. More specifically, the spindle motor 17 is provided with a rotary encoder (not shown), and generates a rotation signal when the turntable 16 (that is, the substrate 15) is rotated by the spindle motor 17.
  • the rotation signal includes an origin signal indicating the reference rotation position of the substrate 15 and a pulse signal (rotary encoder signal) for each predetermined rotation angle from the reference rotation position.
  • the rotation signal is supplied to the rotation controller 38.
  • the rotation controller 38 detects a rotation error of the turntable 16 based on the rotary encoder signal, and corrects the rotation of the spindle motor 17 based on the detected rotation error.
  • Various drawing control signals are supplied from the formatter 50 to the EBR interface circuit (EBR I / F) 39. More specifically, the focus adjustment signal FC, the modulation signal F1, and the deflection signal F3 are supplied from the formatter 50.
  • the blanking drive unit 31 turns on / off the electron beam based on the modulation signal F1, and the deflection drive unit 33 deflects the irradiation direction of the electron beam based on the deflection signal F3.
  • the focus drive unit 34 In response to the focus adjustment signal FC, the focus drive unit 34 generates a focus drive signal corresponding to the focus adjustment amount in the focus lens 28 and supplies the focus drive signal to the focus lens 28.
  • FIG. 2 is a diagram showing an internal configuration of the formatter 50 as an EBR control device that controls the main body 10.
  • the formatter 50 includes an EBR control signal generator (processor) 51, a clock signal generator 52, a memory 53, a formatter interface circuit (formatter I / F) 54, an input / output unit 55, and a display unit 56. Consists of.
  • the clock signal generator 52 is, for example, a clock signal corresponding to CLV (Constant Line Velocity) drawing or CAV (Constant Angular Velocity) drawing, or a rotation clock representing the driving amount of the spindle motor 17 and the translation motor 19 as described later. And generating a translation clock signal.
  • CLV Constant Line Velocity
  • CAV Constant Angular Velocity
  • the memory 53 stores setting values and data related to various control signals described later.
  • the memory 53 stores in advance a program for performing various types of drawing including test drawing (described later).
  • the input / output unit 55 accepts input of various operation commands from the user or various setting values used when controlling the main body unit 10, and outputs a signal representing the contents (operation command, setting value) as an EBR control signal. Supply to the generator 51.
  • the display unit 56 displays the operation conditions, operation states, set values, and the like of the main body unit 10 and the formatter 50 according to a display command from the EBR control signal generator 51.
  • the EBR control signal generator 51 reads a program corresponding to an operation command from the input / output unit 55 from the memory 53, generates the following various control signals for controlling the main body unit 10 according to the program, This is supplied to the main body 10 via the interface circuit 54. During this time, the EBR control signal generator 51 receives the following start signal F6 supplied from the main body 10 via the formatter interface circuit 54.
  • ⁇ Modulation signal F1 (F1-Modulation (/ Blanking): A signal output by the formatter to turn on / off the electron beam. For example, when “Low”, the electron beam is blanked and the electron beam is turned off.
  • ⁇ Translation clock signal F4 (F4-Translation-clock): Reference signal to the X stage output by the formatter.
  • the EBR apparatus drives the translation stage (X stage) in synchronization with this signal.
  • the pulse reference unit ( ⁇ X) can be set on the formatter side.
  • Rotation clock signal F5 (F5-Rotation-clock): Reference signal to the rotating spindle output by the formatter.
  • End signal F7 (F7-End): The formatter notifies the end of drawing (signal output) to the EBR device in the “High” state.
  • the end signal F7 is maintained in the “Low” state during the period in which the translation clock signal F4 and the rotation clock signal F5 are valid.
  • the EBR apparatus switches the drawing start signal F6 to “High” and ends the current drawing operation.
  • ⁇ Beam outer periphery direction offset signal F8 (F8-BeamOffsetOut), outer periphery direction offset signal F8, high speed offset (+) signal F8: Signals for offsetting the beam to the outer periphery at high speed.
  • ⁇ Beam inner circumferential offset signal F9 (F9-BeamOffsetOut), inner circumferential offset signal F9, high-speed offset ( ⁇ ) signal F9: signals for offsetting the beam to the inner circumference at high speed.
  • Beam-tangential deflection signal F16 (F16-BeamTangentialDeflection), tangential deflection signal F16: Signals that deflect the beam in the tangential direction or circumferential direction (+ ⁇ , - ⁇ direction) at high speed.
  • the formatter 50 starts sending the translation clock signal F4 and the rotation clock signal F5 to the main body 10 and sends an end signal F7 (F7-End) to be sent to the main body 10 ".
  • the translation clock signal F4 and the rotation clock signal F5 at this time are clock signals having a frequency (Fini) at the start of drawing.
  • the main body 10 operates in synchronization with these clocks, and then the main body 10 becomes “Low” (when the drawing start radius is reached).
  • An active) drawing start signal F6 (F6- / Start) is sent to the formatter 50.
  • the formatter 50 In response to the “Low” (active) start signal F 6, the formatter 50 starts sending the modulation signal F 1 and the deflection signal F 3, which are drawing signals, to the main body 10 as shown in FIG. 3 or FIG. .
  • the substrate 15 translates at a constant speed based on the translation clock (T-CLK) F4 as shown in FIG. More specifically, the substrate 15 extends in the X direction from the position at the start of drawing (indicated by a broken line, the center of the substrate is indicated by O) to the position at the end of one rotation (indicated by a solid line, the center of the substrate is indicated by O ′) Translate.
  • the electron beam EB is deflected so as to follow the substrate 15 by the deflection signal F3. That is, as shown in FIG.
  • the main body 10 draws a concentric line LN1 (shown by a solid line).
  • the electron beam is returned to the deflection position (reference deflection position) at the start of drawing of the line LN1, and the beam spot of the electron beam EB is at the same angular position as the angular position at the end of drawing of the line LN1 with respect to the center of the substrate 15. Returned.
  • the radial position (radial position) of the beam spot on the substrate 15 with respect to the center of the substrate 15 has moved by the translational distance required for drawing the line LN1. At this time, this distance becomes a pitch q (referred to as a line pitch) between lines as shown in FIG.
  • the formatter 50 repeatedly executes the same control as described above, thereby the first concentric circles separated from each other by the line pitch q.
  • Drawing of the line LN1 to the fourth line LN4 is performed (FIG. 6).
  • the line pitch is enlarged for the sake of explanation.
  • test pattern drawing is performed in order to grasp the adjustment location and the adjustment amount that need to be performed among all adjustment locations (not described) in the main body 10.
  • the undrawn substrate 15 coated with a resist is set on the rotary stage 16 of the EBR main body 10.
  • the formatter 50 executes various drawing controls on the main body unit 10 in accordance with a test drawing program stored in the memory 53.
  • test pattern is drawn as an example in which eight concentric lines (LN1 to LN8) are drawn in the sector-like groove areas GA1 to GA3 on the resist surface as shown in FIG. The operation will be described.
  • the formatter 50 switches the end signal F7 sent to the main body 10 from the “High” state to the “Low” state, and starts sending the translation clock signal F4 and the rotation clock signal F5. (FIG. 8, time point Tp).
  • the main body 10 operates in synchronization with these clocks, and then the main body 10 becomes “Low” (when the drawing start radius is reached).
  • An active) drawing start signal F6 (F6- / Start) is sent to the formatter 50.
  • the formatter 50 starts sending the modulation signal F1 and the deflection signal F3, which are drawing signals, to the main body 10 as shown in FIG. 8 in response to the “Low” (active) start signal F6.
  • the deflection signal F3 is a signal in which the level change occurs in a sawtooth shape as shown in FIG. That is, the level of the deflection signal F3 rises linearly from the reference voltage Vref (eg, 0 volts) to the positive peak potential during one rotation of the substrate 15 (eg, between Tini and T1). 15 returns to the reference voltage Vref at the timing of exactly one rotation.
  • the substrate 15 translates at a constant speed based on the translation clock F4. More specifically, as shown in FIG.
  • the substrate 15 is in the X direction from the position on the radial line SP corresponding to the drawing start position for each concentric circle line (indicated by the alternate long and short dash line) until it rotates once.
  • the electron beam EB is deflected so as to follow the substrate 15 by the deflection signal F3.
  • the main body 10 starts irradiating the resist surface of the substrate 15 with the electron beam EB from time Tini as shown in FIG. That is, the operation for drawing each of a plurality of concentric lines is started from the position (position on the radial line SP shown in FIG. 7) where the electron beam EB is first irradiated at the time point Tini.
  • the first line LN1 as shown in FIG. 7 is drawn.
  • a concentric first line LN1 is formed on the radial line SP.
  • the deflection voltage is returned to the reference voltage Vref (0 volts) by the deflection signal F3. That is, the electron beam is returned to the deflection position (reference deflection position) at the start of drawing of the first line LN1, and the beam spot of the electron beam EB is the angular position at the end of drawing of the first line LN1 with respect to the center of the substrate 15. Is returned to the same angular position, that is, on the radial line SP of FIG. On the other hand, at this time, the radial position (radial position) of the beam spot on the substrate 15 with respect to the center of the substrate 15 has moved by the translational distance required for drawing the first line LN1. At this time, the distance becomes a line pitch q between lines as shown in FIG.
  • the formatter 50 repeatedly executes the same control as described above, whereby concentric second lines LN2 separated from each other by the line pitch q.
  • the fourth line LN4 is drawn.
  • concentric first to fourth lines LN2 to LN4 are formed on the radial line SP.
  • the peak potentials of the sawtooth pulses in the deflection signal F3 supplied from the formatter 50 to the main body 10 to draw the first lines LN1 to LN4 are different from each other.
  • the peak potential of the sawtooth pulse KP1 during the drawing period (Tini to T1) of the first line LN1 The peak potential of the sawtooth pulse KP2 in the drawing period (T1 to T2) of the second line LN2,
  • the peak potential of the sawtooth pulse KP3 in the drawing period (T2 to T3) of the third line LN3 The peak potential of the sawtooth pulse KP4 in the drawing period (T3 to T4) of the fourth line LN4, Are different.
  • the slope of the level transition with time of the sawtooth pulse KP in the deflection signal F3 differs for each line.
  • the first line LN1 to the fourth line LN4 each having a different amount of misalignment at the drawing start position (radius line SP), are drawn.
  • the line pitch between adjacent ones of the first line LN1 to the fourth line LN4 is also different.
  • the formatter 50 performs control to cause the main body 10 to perform drawing of various reference patterns as follows.
  • the formatter 50 supplies the main body 10 with a modulation signal F1 having a waveform as shown in FIG. 10.
  • the formatter 50 maintains the “Low” state only during the predetermined pulse width W2 (W2 ⁇ W1), the pulse P1 maintaining the “Low” state only during the predetermined pulse width W1.
  • a modulated signal F1 having a pulse sequence of a pulse P4 that maintains the “Low” state only during the pulses P2 and P3 and the pulse width W1 is supplied to the main body 10.
  • the pulses P1 and P4 both having the pulse width W1 are separated from each other by a predetermined interval T1, and within this interval T1, the pulses P2 and P3 are separated from each other by a predetermined interval T2 (T2 ⁇ T1). ing.
  • the irradiation of the electron beam is interrupted only while the modulation signal F1 is in the “Low” state by the pulses P1 to P4.
  • the pulse width W1 is set at two positions separated from each other by the gap interval GK1 corresponding to the interval T1 for each line (LN1 to LN4).
  • a first gap section g1 in which line drawing is interrupted over the corresponding length ⁇ 1 is formed.
  • the second gap section g2 in which the line drawing is interrupted at the two positions separated from each other by the gap interval GK2 corresponding to the interval T2 over the length ⁇ 2 corresponding to the pulse width W2. are formed respectively.
  • the first gap section g1 is drawn with a section width such that the developed substrate 15 can be discriminated with the naked eye or an optical microscope. This is for quickly specifying a region where an image is taken with an electron microscope when analyzing a drawing test pattern to be described later.
  • a cap having such a section width can be similarly applied to various test areas described below.
  • the formatter 50 supplies the main body 10 with a modulation signal F1 in which pulses P1 to P11 each maintaining a “High” state for a predetermined pulse width Wa are continuous. Further, during this time, the formatter 50 adjusts the focus adjustment amount to K5, K4, K3, K2, K1, K0, -K1, -K2, -K, corresponding to the timing of each of the pulses P1 to P11 as shown in FIG.
  • the electron beam is irradiated on the resist surface only while the modulation signal F1 is in the “High” state by the pulses P1 to P11. Further, during this time, the focus adjustment amount for the electron beam changes in 11 steps such as K5, K4, K3, K2, K1, K0, -K1, -K2, -K3, -K4, -K5 by the focus adjustment signal FC. Go.
  • the focus adjustment amount is changed along the concentric circle line for each line (LN1 to LN4) as shown in FIG. 13 by the electron beams irradiated in different states.
  • a focus test pattern composed of 11 latent image marks QP 1 to QP 11 corresponding to each of ⁇ K5 to K5 is drawn.
  • each of the latent image marks QP 1 to QP 11 in the focus test pattern has a smaller outer shape (area) as it is drawn with a smaller focus error.
  • the latent image mark QP 7 has the smallest outer shape (area) among the latent image marks QP 1 to QP 11 .
  • the formatter 50 repeats the transition from the “Low” state to the High ”state and the“ Low ”state in a predetermined constant cycle WR, and the pulse width in the High state. Is supplied to the main body 10 with a modulation signal F1 composed of pulses P1 to P10 that gradually decrease to W11 to W20 as time elapses.
  • the resist surface is irradiated with the electron beam only while the modulation signal F1 is in the “High” state by the pulses P1 to P10.
  • each of the pulse widths W11 to L11 in FIG. 14 is arranged along the concentric lines (LN1 to LN4) in the pit area PA2.
  • a resolution test pattern composed of ten latent image marks having mark lengths PW11 to PW20 corresponding to each of W20 is drawn. Further, the intervals between the central portions of the latent image marks adjacent to each other on one line are all the interval Wc. That is, when the main body 10 does not have the drawing accuracy that should be originally provided, the mark length of each drawn latent image mark does not coincide with each of the mark lengths PW11 to PW20, or the latent images adjacent to each other. The interval between the center portions of the marks does not coincide with the interval Wc.
  • the formatter 50 may supply the main body 10 with a modulation signal F1 having a waveform as shown in FIG. 16 instead of FIG.
  • the formatter 50 has the same pulse width W20 for maintaining the “High” state, and the interval between the centers of the adjacent pulses gradually decreases. Then, a modulation signal F1 composed of continuous pulses P1 to P10 is supplied to the main body 10.
  • the substrate 15 while the substrate 15 is rotated once (between T4 and T5), the level rises from the reference voltage Vref (for example, 0 volt) to the peak potential VP1 of the positive polarity, and at the timing of just one rotation.
  • the substrate 15 itself translates in response to the sawtooth pulse KP5 (deflection signal F3) having a waveform returning to the reference voltage Vref.
  • the electron beam EB is deflected so as to follow the substrate 15 that translates in accordance with the transition of the potential level caused by the sawtooth pulse KP5.
  • the main body 10 causes the rotation of the substrate 15 during one rotation from the position (position on the radius line SP shown in FIG.
  • the substrate 15 itself translates in response to the sawtooth pulse KP6 (deflection signal F3) having a waveform returning to Vref.
  • the electron beam EB is deflected so as to follow the substrate 15 that translates in accordance with the transition of the potential level caused by the sawtooth pulse KP6.
  • the main body 10 causes the concentric circles corresponding to one rotation to be positioned at the inner circumferential side by the line pitch q from the fifth line LN5 during one rotation of the substrate 15 (T5 to T6). 6 line LN6 is drawn. Then, while the substrate 15 further rotates (T6 to T7), the main body 10 irradiates the electron beam for one rotation so as to trace on the sixth line LN6. That is, the overwriting is performed twice for the sixth line LN6.
  • the deflection voltage based on the deflection signal F3 is returned to the reference voltage Vref, and is directed toward the inner periphery of the disc by half the translation distance required for drawing the sixth line LN6, that is, the line pitch q.
  • the electron beam irradiation position moves.
  • the substrate 15 itself translates in response to the sawtooth pulse KP7 (deflection signal F3) having a waveform returning to Vref.
  • the electron beam EB is deflected so as to follow the substrate 15 that translates in accordance with the transition of the potential level caused by the sawtooth pulse KP7.
  • the main body 10 causes the concentric circles corresponding to one rotation to be positioned at the inner circumferential side by the line pitch q from the sixth line LN6 during one rotation of the substrate 15 (T7 to T8).
  • the deflection voltage based on the deflection signal F3 is returned to the reference voltage Vref, and is 1/3 of the translational distance required for drawing the seventh line LN7, that is, the line pitch q toward the inner periphery of the disk.
  • the irradiation position of the electron beam moves toward.
  • the substrate 15 itself translates in response to the sawtooth pulse KP8 (deflection signal F3) having a waveform returning to Vref.
  • the electron beam EB is deflected so as to follow the substrate 15 that translates in accordance with the transition of the potential level caused by the sawtooth pulse KP8.
  • the main body 10 causes the concentric circles corresponding to one rotation to be positioned at the inner circumferential side by the line pitch q from the seventh line LN7 during one rotation of the substrate 15 (T10 to T11). 8-line LN8 is drawn.
  • the main body 10 irradiates the electron beam for one rotation so as to trace on the eighth line LN8. That is, overwriting is performed twice on the eighth line LN8.
  • the main body unit 10 irradiates the electron beam for one rotation so as to trace on the eighth line LN8. That is, three times overwriting is performed on the eighth line LN8.
  • the main body 10 irradiates the electron beam for one rotation so as to trace on the eighth line LN8. That is, the fourth line LN8 is overwritten four times.
  • each of the fifth line LN5 to the eighth line LN8 becomes thicker as the number of overwriting increases.
  • the correction data generation unit 100 performs various kinds of drawing control signals generated by the formatter 50 by performing the following image processing on the test pattern image data, that is, the modulation signal F1, the deflection signal F3, and the focus adjustment signal. Correction data DOF for correcting the control amount for FC is generated and supplied to the formatter 50.
  • the correction data generation unit 100 based on the test pattern image data representing the joint portions of the first line LN1 to the fourth line LN4, each of the first line LN1 to the fourth line LN4.
  • the one with the smallest amount of deviation at the joint is selected from the inside.
  • the correction data generation unit 100 includes a memory (not shown) in which deflection correction values corresponding to the first line LN1 to the fourth line LN4 are stored in advance.
  • each of the first line LN1 to the fourth line LN4 includes 1st line LN1: “1”, Second line LN2: “0”, Third line LN3: “ ⁇ 1”, Fourth line LN3: “ ⁇ 2”, A deflection correction value is assigned.
  • the correction data generation unit 100 reads out the deflection correction value corresponding to the line having the smallest deviation amount at the joint as described above from the memory. That is, when line drawing for one round is performed, a deflection correction value for correcting a shift at the joint portion (radius line SP) and maintaining a predetermined line pitch q is read from the memory. .
  • the deflection correction value “0” corresponding to the second line LN2 ie, there is no deflection correction. A deflection correction value is obtained.
  • the correction data generation unit 100 is the most among the latent image marks QP 1 to QP 11 arranged along one line based on the test pattern image data representing the focus test pattern.
  • a latent image mark QP having a small outer shape (area) is selected, and a focus adjustment amount K corresponding to the latent image mark QP is obtained as a focus correction value.
  • the focus adjustment amount -K1 corresponding to the latent image mark QP 7 is a focus correction value. That is, the focus at the time of drawing the test pattern may be set to K1, and a value obtained by subtracting the focus value of K1 from the focus value at the time of drawing becomes the focus adjustment value.
  • the correction data generation unit 100 is adjacent to the mark length of each of the 10 latent image marks arranged along one line based on the test pattern image data representing the resolution test pattern. The distance between the center portions of the latent image marks is obtained. Then, the correction data generation unit 100 calculates the difference between the predetermined interval Wc and the interval between the center portions of the latent image marks, the mark length of each of the 10 latent image marks, and the predetermined mark lengths PW11 to PW20. A difference is obtained, and a resolution improvement correction value corresponding to both differences is obtained. That is, when the adjustment is in the optimum state, the main body 10 has a mark length of each of the 10 latent image marks drawn as shown in FIG.
  • All the intervals between the center portions of the image marks have a resolution that matches the predetermined interval Wc.
  • the mark length and interval of each latent image mark as described above will deviate from predetermined values (PW11 to PW20, Wc), and a desired resolution can be obtained. No state. Therefore, the amount of deviation is used as a correction value for improving the resolution.
  • the correction data generation unit 100 has a line width of each of the fifth line LN5 to the eighth line LN8 based on test pattern image data representing a part of each of the fifth line LN5 to the eighth line LN8. Measure. At this time, as the number of times of overwriting increases, the distortion of the lines is averaged to become an appropriate line, but the line width itself increases with an increase in the number of overwriting. Therefore, the correction data generation unit 100 selects a line width that is narrower than the predetermined reference width among the line widths of the fifth line LN5 to the eighth line LN8, and the number of overwriting times corresponding to the line. Is obtained as the optimum overwriting number. Note that the drawing pattern shown in FIG.
  • 19 is a line having a predetermined line width, that is, a pattern having a predetermined width (size) in the disk radial direction or the rotation direction while changing the interval between adjacent ones in a stepwise manner. If it is drawn, but this predetermined width is larger than the expected size, adjacent patterns will come into contact with each other when the interval is narrow, and individual patterns will be recognized. become unable. The cause may be that the focus is not narrowed down. At this time, the correction data generation unit 100 (or the user) generates a focus correction value for adjusting the focus.
  • the correction data generation unit 100 supplies the formatter 50 with correction data DOF indicating each of the optimum overwriting number, resolution improvement correction value, focus correction value, and deflection correction value obtained as described above.
  • the formatter 50 sends, to the main body 10, various processing control signals that are to be drawn by an electron beam, which have been subjected to processing for correcting the control amount by the value indicated by the correction data DOF. To do. For example, the formatter 50 adds (or subtracts) the focus correction value indicated by the correction data DOF to the focus adjustment signal indicating the focus adjustment amount of the electron beam to the main body unit 10 as the final focus adjustment signal FC. Supply. Further, the formatter 50 supplies the main body 10 with a final deflection signal F3 obtained by adding (or subtracting) the deflection correction value indicated by the correction data DOF to the deflection signal indicating the deflection amount of the electron beam.
  • a final deflection signal F3 obtained by adding (or subtracting) the deflection correction value indicated by the correction data DOF to the deflection signal indicating the deflection amount of the electron beam.
  • the formatter 50 draws various drawing control signals (F1, F3, FC) to be sent for drawing control of the main unit 10 to draw test patterns as shown in FIGS. 7, 13, 15, 17, and 19. Adjustment is performed so that the correction value indicated by the correction data DOF obtained based on the result is corrected.
  • the main body 10 irradiates the electron beam with a predetermined drawing accuracy (drawing ability) that is supposed to be, that is, an appropriate focus state, and connects a plurality of concentric circle lines at the joints at a predetermined constant line pitch. It becomes possible to draw without causing a shift in the portion.
  • the correction data generation unit 100 shown in FIG. 1 generates the correction data DOF based on the test pattern drawing result (test pattern image data).
  • the position of the drive unit (blanking drive unit 31, deflection drive unit 33, focus drive unit 34) that requires adjustment as an electron beam drawing apparatus and the correction amount thereof are visually monitored. It becomes possible. Therefore, the operation of the correction data generation unit 100 may be artificially performed.
  • the formatter 50 is provided outside the main body 10.
  • the formatter 50 may be mounted inside the main body 10 as shown in FIG.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing Optical Record Carriers (AREA)
  • Electron Beam Exposure (AREA)

Abstract

An electron beam plotting device to be adjusted is caused to plot a predetermined test pattern. According to an image expressing the plotted test pattern, correction data for correcting a control amount of a plotting control unit is generated in the electron beam plotting device. According to the correction data, the control amount of the plotting control unit is corrected in the electron beam plotting device.

Description

電子ビーム描画装置の調整方法、及び電子ビーム描画装置を制御する制御装置の調整方法Method for adjusting electron beam drawing apparatus and method for adjusting control apparatus for controlling electron beam drawing apparatus
 本発明は、電子ビームを照射することによりパターン描画を行う電子ビーム描画装置の調整に関する。 The present invention relates to adjustment of an electron beam drawing apparatus that performs pattern drawing by irradiating an electron beam.
 磁気ディスク又はハードディスク(HD:Hard Disk)は、パーソナルコンピュータ(PC)の記憶装置、モバイル機器,車載機器等に用いられている。近年、さらにその用途も著しく拡大しているとともに、面記録密度も急速に向上している。 Magnetic disks or hard disks (HD) are used in personal computer (PC) storage devices, mobile devices, in-vehicle devices, and the like. In recent years, the application has been remarkably expanded and the surface recording density has been rapidly improved.
 このような高記録密度なハードディスクを製造すべく、電子ビーム記録装置を用いた電子ビームマスタリング技術が研究されている(例えば、特許文献1参照)。電子ビーム記録装置は、電子を放出する電子銃と、かかる電子を収束した電子ビームをレジストが塗布された基板上に照射する電子レンズと、電子ビームの照射位置を制御するブランキング及びビーム偏向駆動系とを備える。この際、上記レジスト上において、電子ビームが照射された箇所に潜像が描画される。 In order to manufacture such a high recording density hard disk, an electron beam mastering technique using an electron beam recording apparatus has been studied (for example, see Patent Document 1). An electron beam recording apparatus includes an electron gun that emits electrons, an electron lens that irradiates a substrate coated with a resist with an electron beam that converges the electrons, and blanking and beam deflection driving that control the irradiation position of the electron beam. System. At this time, a latent image is drawn on the resist where the electron beam is irradiated.
 ここで、現在、高記録密度なハードディスクとして、ディスクリートトラックメディア(Discrete Track Media:DTM)やビットパターンドメディア(Bit Patterned Media:BPM)などの、溝状のトラックがディスク表面上において同心円状に形成されているものが着目されている。そこで、このような溝状のトラックを有するハードディスクを製造すべく、電子ビーム記録装置では、上記トラックに対応した同心円状の潜像を高精度に描画することが要求されている。更に、電子ビーム記録装置には、様々な形状のピットやマークに対応した潜像を精度良く描画できることが要求されている。
特開2002-367178号公報
Here, as a high-density hard disk, groove tracks such as Discrete Track Media (DTM) and Bit Patterned Media (BPM) are formed concentrically on the disk surface. What has been attracting attention. Therefore, in order to manufacture a hard disk having such a groove-like track, an electron beam recording apparatus is required to draw a concentric latent image corresponding to the track with high accuracy. Furthermore, the electron beam recording apparatus is required to accurately draw latent images corresponding to pits and marks having various shapes.
JP 2002-367178 A
 本発明においては、本来あるべき描画精度或いは描画能力にて描画を行わせることができるようになる電子ビーム描画装置の調整方法、及び電子ビーム描画装置を制御する制御装置の調整方法を提供することを目的とする。 In the present invention, an adjustment method of an electron beam drawing apparatus that enables drawing to be performed with an original drawing accuracy or drawing ability, and an adjustment method of a control device that controls the electron beam drawing apparatus are provided. With the goal.
 請求項1記載による電子ビーム描画装置の調整方法は、基板の表面に塗布されたレジストに電子ビームを照射することによりパターン描画を行う電子ビーム描画装置の調整方法であって、前記電子ビーム描画装置にて所定のテストパターンを描画させるテストパターン描画行程と、テストパターン描画画像を得るテストパターン描画画像取得行程と、前記テストパターン描画画像に基づいて前記電子ビーム描画装置における描画制御部の制御量を補正する補正データを生成する補正データ生成行程と、前記補正データに基づき前記電子ビーム描画装置における前記描画制御部の制御量を補正する補正行程と、を含む。 The method of adjusting an electron beam lithography apparatus according to claim 1 is an adjustment method of an electron beam lithography apparatus that performs pattern drawing by irradiating an electron beam onto a resist coated on a surface of a substrate, wherein the electron beam lithography apparatus A test pattern drawing process for drawing a predetermined test pattern, a test pattern drawing image acquisition process for obtaining a test pattern drawing image, and a control amount of a drawing control unit in the electron beam drawing apparatus based on the test pattern drawing image A correction data generation process for generating correction data to be corrected; and a correction process for correcting the control amount of the drawing control unit in the electron beam drawing apparatus based on the correction data.
 又、請求項7記載による電子ビーム描画装置を制御する制御装置の調整方法は、基板の表面に塗布されたレジストに電子ビームを照射することによりパターン描画を行う電子ビーム描画装置の描画制御を担う描画制御信号を生成する制御装置の調整方法であって、前記電子ビーム描画装置に対して所定のテストパターンを描画させるべき制御を行う行程と、前記電子ビーム描画装置によって描画された前記テストパターンを表すテストパターン描画画像に基づき、前記描画制御信号に対する補正量を表す補正データを生成する行程と、前記補正データによって表される前記補正量に基づいて前記描画制御信号を補正する行程と、を含む。 According to a seventh aspect of the present invention, there is provided an adjustment method for a control device for controlling an electron beam drawing apparatus, which is responsible for drawing control of an electron beam drawing apparatus that performs pattern drawing by irradiating an electron beam onto a resist applied to a surface of a substrate. An adjustment method of a control device for generating a drawing control signal, comprising: a step of performing control for causing the electron beam drawing device to draw a predetermined test pattern; and the test pattern drawn by the electron beam drawing device. A step of generating correction data representing a correction amount for the drawing control signal based on the test pattern drawing image to be represented, and a step of correcting the drawing control signal based on the correction amount represented by the correction data. .
 又、請求項9記載による電子ビーム描画装置を制御する制御装置は、基板の表面に塗布されたレジストに電子ビームを照射することによりパターン描画を行う電子ビーム描画装置を制御する制御装置であって、所定のテストパターンを描画させるべき描画制御信号を生成する手段と、前記描画制御信号によって表される制御量を所定期間に亘り変化させる手段と、を含む。 A control device for controlling an electron beam lithography apparatus according to claim 9 is a control device for controlling an electron beam lithography apparatus that performs pattern drawing by irradiating an electron beam onto a resist applied to a surface of a substrate. And means for generating a drawing control signal for drawing a predetermined test pattern, and means for changing a control amount represented by the drawing control signal over a predetermined period.
 又、請求項10記載による電子ビーム描画装置を制御する制御装置の制御方法は、基板の表面に塗布されたレジストに電子ビームを照射することによりパターン描画を行う電子ビーム描画装置を制御する制御装置の制御方法であって、所定のテストパターンを描画させるべき描画制御信号を生成する行程と、前記描画制御信号によって表される制御量を所定期間に亘り変化させる行程と、を含む。 A control method of a control device for controlling an electron beam lithography apparatus according to claim 10 is a control device for controlling an electron beam lithography apparatus that performs pattern drawing by irradiating an electron beam onto a resist applied to a surface of a substrate. And a step of generating a drawing control signal for drawing a predetermined test pattern and a step of changing a control amount represented by the drawing control signal over a predetermined period.
 又、請求項11記載による電子ビーム描画装置は、基板の表面に塗布されたレジストに電子ビームを照射することによりパターン描画を行う電子ビーム描画装置であって、所定のテストパターンを描画させるべき描画制御信号を生成する手段と、前記描画制御信号によって表される制御量を所定期間に亘り変化させる手段と、前記描画制御信号に応じて、前記レジストに電子ビームを照射することにより前記テストパターンの描画を行う手段と、を含む。 An electron beam drawing apparatus according to claim 11 is an electron beam drawing apparatus for drawing a pattern by irradiating an electron beam onto a resist applied to the surface of a substrate, and drawing a predetermined test pattern to be drawn. Means for generating a control signal; means for changing a control amount represented by the drawing control signal over a predetermined period; and irradiating the resist with an electron beam in accordance with the drawing control signal. And means for performing drawing.
 又、請求項12記載による電子ビーム描画装置を制御する制御装置のプログラムは、基板の表面に塗布されたレジストに電子ビームを照射することによりパターン描画を行う電子ビーム描画装置の描画制御を担う描画制御信号を生成する制御装置によって実行されるコンピュータ読み取り可能なプログラムであって、前記電子ビーム描画装置に対して所定のテストパターンを描画させるべき制御を行う行程と、前記電子ビーム描画装置によって描画された前記テストパターンを表すテストパターン描画画像に基づき、前記描画制御信号に対する補正量を表す補正データを生成する行程と、前記補正データによって表される前記補正量に基づいて前記描画制御信号を補正する行程と、を含む。 According to a twelfth aspect of the present invention, there is provided a program for a control device for controlling an electron beam lithography apparatus, which is responsible for rendering control of an electron beam lithography apparatus that performs pattern rendering by irradiating an electron beam onto a resist applied to a surface of a substrate. A computer-readable program executed by a control device that generates a control signal, wherein the electron beam drawing device performs a process for controlling the electron beam drawing device to draw a predetermined test pattern, and is drawn by the electron beam drawing device. Further, based on the test pattern drawing image representing the test pattern, a process of generating correction data representing a correction amount for the drawing control signal, and the drawing control signal is corrected based on the correction amount represented by the correction data. Process.
 電子ビーム描画装置が本来有する描画精度或いは描画能力にて描画を行えるような調整が為される。 The adjustment is performed so that the drawing can be performed with the drawing accuracy or drawing ability inherent in the electron beam drawing apparatus.
電子ビーム描画装置の全体構成を示す図である。It is a figure which shows the whole structure of an electron beam drawing apparatus. 図1に示すフォーマッタ50の構成を模式的に示すブロック図である。It is a block diagram which shows typically the structure of the formatter 50 shown in FIG. フォーマッタ50の制御によって本体部10が行う描画シーケンスを示す図である。4 is a diagram illustrating a drawing sequence performed by the main body unit 10 under the control of the formatter 50. FIG. フォーマッタ50による同心円ラインの描画制御を示す図である。It is a figure which shows the drawing control of the concentric circle line by the formatter. 基板15の並進移動に対する電子ビームの偏向駆動について説明する図である。It is a figure explaining the deflection drive of the electron beam with respect to the translational movement of the board | substrate 15. FIG. 基板15の上面図であり、スパイラル状のビーム軌跡(破線)を同心円のビーム軌跡(実線)としてラインLN1~LN4を描画するフォーマッタの偏向制御について説明する図である。FIG. 5 is a top view of a substrate 15 and is a diagram for explaining deflection control of a formatter that draws lines LN1 to LN4 using a spiral beam locus (broken line) as a concentric beam locus (solid line). レジスト表面に描画されたテストパターンの領域分布の一例を示す図である。It is a figure which shows an example of area distribution of the test pattern drawn on the resist surface. フォーマッタ50による本体部10のテストパターンの描画シーケンスを示す図である。3 is a diagram illustrating a drawing sequence of a test pattern of the main body unit 10 by a formatter 50. FIG. 図7に示すテストパターンにおける半径ラインSP上での各ラインの繋ぎ部の描画形態の一例を示す図である。It is a figure which shows an example of the drawing form of the connection part of each line on radius line SP in the test pattern shown in FIG. 図7に示される基準領域RAのトレース期間中においてフォーマッタ50が本体部10に送出する変調信号F1を示す図である。It is a figure which shows the modulation signal F1 which the formatter 50 sends out to the main-body part 10 during the trace period of the reference | standard area | region RA shown by FIG. 図7に示される基準領域RA内での描画形態を示す図である。It is a figure which shows the drawing form in the reference | standard area | region RA shown by FIG. 図7に示されるピット領域PA1のトレース期間中においてフォーマッタ50が本体部10に送出する変調信号F1及びフォーカス調整信号FCを示す図である。It is a figure which shows the modulation signal F1 and the focus adjustment signal FC which the formatter 50 sends out to the main-body part 10 during the trace period of the pit area | region PA1 shown by FIG. 図7に示されるピット領域PA1内で描画されるフォーカステストパターンを示す図である。It is a figure which shows the focus test pattern drawn in pit area | region PA1 shown by FIG. 図7に示されるピット領域PA2のトレース期間中においてフォーマッタ50が本体部10に送出する変調信号F1を示す図である。It is a figure which shows the modulation signal F1 which the formatter 50 sends out to the main-body part 10 during the trace period of pit area | region PA2 shown by FIG. 図7に示されるピット領域PA2内で描画される解像度テストパターンの一例を示す図である。It is a figure which shows an example of the resolution test pattern drawn in pit area | region PA2 shown by FIG. 図7に示されるピット領域PA2のトレース期間中においてフォーマッタ50が本体部10に送出する変調信号F1の他の一例を示す図である。FIG. 8 is a diagram showing another example of a modulation signal F1 sent from the formatter 50 to the main body 10 during the trace period of the pit area PA2 shown in FIG. 図7に示されるピット領域PA2内で描画される解像度テストパターンの他の一例を示す図である。It is a figure which shows another example of the resolution test pattern drawn in pit area | region PA2 shown by FIG. 図7に示される第5ラインLN5~第8ラインLN8を描画する際に採用される偏向信号F3を示す図である。FIG. 8 is a diagram showing a deflection signal F3 employed when drawing the fifth line LN5 to the eighth line LN8 shown in FIG. 図7に示される第5ラインLN5~第8ラインLN8各々のライン幅の大小関係を示す図である。FIG. 8 is a diagram showing the magnitude relationship of line widths of each of a fifth line LN5 to an eighth line LN8 shown in FIG. 図1に示される電子ビーム描画装置の変形例を示す図である。It is a figure which shows the modification of the electron beam drawing apparatus shown by FIG.
符号の説明Explanation of symbols
10   本体部
50   フォーマッタ
100  補正データ生成部
10 Main unit 50 Formatter 100 Correction data generation unit
 調整対象となる電子ビーム描画装置において所定のテストパターンを描画させ、この描画されたテストパターンを表す画像に基づいて上記電子ビーム描画装置における描画制御部の制御量を補正させるべき補正データを生成し、この補正データに基づき上記電子ビーム描画装置における描画制御部の制御量を補正する。 A predetermined test pattern is drawn in the electron beam drawing apparatus to be adjusted, and correction data for correcting the control amount of the drawing control unit in the electron beam drawing apparatus is generated based on an image representing the drawn test pattern. Based on this correction data, the control amount of the drawing control unit in the electron beam drawing apparatus is corrected.
 図1は、本発明による電子ビーム描画装置の調整方法に従ってその調整が為される電子ビーム描画装置の全体構成を示す図である。 FIG. 1 is a diagram showing an overall configuration of an electron beam lithography apparatus that is adjusted in accordance with the method of adjusting an electron beam lithography apparatus according to the present invention.
 図1に示すように、電子ビーム描画装置は、ディスク原盤用の基板15を回転、並進移動させるステージ駆動装置を含む真空チャンバ11、電子ビームカラム20、及び当該ステージ駆動装置並びに電子ビームカラム20を駆動する駆動系とを含むブロック10(以下、仮に本体部10と称する)と、本体部10に対する制御を行う電子ビーム描画装置の制御装置としてのフォーマッタ50、及び補正データ生成部100からなる。 As shown in FIG. 1, the electron beam drawing apparatus includes a vacuum chamber 11 including a stage driving device that rotates and translates a substrate 15 for a disk master, an electron beam column 20, and the stage driving device and the electron beam column 20. A block 10 including a drive system for driving (hereinafter, referred to as a main body unit 10), a formatter 50 as a control device of an electron beam drawing apparatus that controls the main body unit 10, and a correction data generation unit 100.
 本体部10は、電子ビームによって、例えば磁気ディスク製造用の原盤を作成する装置である。 The main unit 10 is an apparatus that creates, for example, a master disk for manufacturing a magnetic disk by an electron beam.
 ディスク原盤用の基板15は、ターンテーブル16上に載置されている。なお、基板15は例えばガラス基板、カーボン基板又はシリコン基板の上に、電子ビームによって感光するレジスト材料が塗布されている。ターンテーブル16は、基板15を回転駆動する回転駆動装置であるスピンドルモータ17によってディスク基板主面の垂直軸(Z軸)に関して回転駆動される。スピンドルモータ17は並進ステージ(以下、単にステージとも称する)18上に設けられている。ステージ18は、移送(並進駆動)装置である並進モータ19に結合され、スピンドルモータ17及びターンテーブル16を基板15の主面と平行な面内の所定方向に移動することができるようになっている。 The substrate 15 for the master disc is placed on the turntable 16. For example, a resist material that is exposed to an electron beam is applied to a substrate 15 on a glass substrate, a carbon substrate, or a silicon substrate. The turntable 16 is rotationally driven with respect to the vertical axis (Z axis) of the main surface of the disk substrate by a spindle motor 17 which is a rotational drive device that rotationally drives the substrate 15. The spindle motor 17 is provided on a translation stage (hereinafter also simply referred to as a stage) 18. The stage 18 is coupled to a translation motor 19 which is a transfer (translation drive) device, and can move the spindle motor 17 and the turntable 16 in a predetermined direction in a plane parallel to the main surface of the substrate 15. Yes.
 基板15はターンテーブル16上に吸着保持される。ターンテーブル16は誘電体、例えば、セラミックからなり、静電チャッキング機構(図示しない)を有している。かかる静電チャッキング機構は、ターンテーブル16とターンテーブル16内に設けられ静電分極を生起させるための導体からなる電極とを備えて構成されている。当該電極には高電圧電源(図示しない)が接続されており、高電圧電源から当該電極に電圧が印加されることにより基板15を吸着保持している。 The substrate 15 is held by suction on the turntable 16. The turntable 16 is made of a dielectric, for example, ceramic, and has an electrostatic chucking mechanism (not shown). Such an electrostatic chucking mechanism includes a turntable 16 and an electrode made of a conductor provided in the turntable 16 for causing electrostatic polarization. A high voltage power source (not shown) is connected to the electrode, and the substrate 15 is held by suction by applying a voltage from the high voltage power source to the electrode.
 ステージ18上には、後述するレーザ位置測定システム35の一部である反射鏡35A、干渉計などの光学要素が配されている。 On the stage 18, optical elements such as a reflection mirror 35A and an interferometer, which are a part of a laser position measurement system 35 described later, are arranged.
 真空チャンバ11は、エアーダンパなどの防振台(図示しない)を介して設置され、外部からの振動の伝達が抑制されている。また、真空チャンバ11は、真空ポンプ(図示しない)が接続されており、これによってチャンバ内を排気することによって真空チャンバ11の内部が所定圧力の真空雰囲気となるように設定されている。 The vacuum chamber 11 is installed via an anti-vibration table (not shown) such as an air damper, and vibration transmission from the outside is suppressed. The vacuum chamber 11 is connected to a vacuum pump (not shown), and the interior of the vacuum chamber 11 is set to a vacuum atmosphere at a predetermined pressure by evacuating the chamber.
 電子ビームカラム20内には、電子ビームを射出する電子銃(エミッタ)21、収束レンズ22、ブランキング電極23、アパーチャ24、ビーム偏向コイル25、アライメントコイル26、偏向電極27、フォーカスレンズ28、対物レンズ29がこの順で配置されている。 In the electron beam column 20, an electron gun (emitter) 21 for emitting an electron beam, a converging lens 22, a blanking electrode 23, an aperture 24, a beam deflection coil 25, an alignment coil 26, a deflection electrode 27, a focus lens 28, an objective The lenses 29 are arranged in this order.
 電子銃21は、加速高圧電源(図示しない)から供給される高電圧が印加される陰極(図示しない)により数10~100KeVに加速された電子ビーム(EB)を射出する。収束レンズ22は、射出された電子ビームを収束する。ブランキング電極23は、ブランキング駆動部31からの変調信号に基づいて電子ビームのオン/オフ切換(ON/OFF)を行う。すなわち、ブランキング電極23間に電圧を印加して通過する電子ビームを大きく偏向させることにより、電子ビームがアパーチャ24を通過するのを阻止し、基板15への電子ビームの照射をオフ状態(非照射)とすることができる。 The electron gun 21 emits an electron beam (EB) accelerated to several tens to 100 KeV by a cathode (not shown) to which a high voltage supplied from an acceleration high voltage power source (not shown) is applied. The converging lens 22 converges the emitted electron beam. The blanking electrode 23 performs on / off switching (ON / OFF) of the electron beam based on the modulation signal from the blanking drive unit 31. That is, by applying a voltage between the blanking electrodes 23 to greatly deflect the passing electron beam, the electron beam is prevented from passing through the aperture 24, and irradiation of the electron beam to the substrate 15 is turned off (non- Irradiation).
 アライメントコイル26は、ビーム位置補正器32からの補正信号に基づいて電子ビームの位置補正を行う。偏向電極27は、偏向駆動部33からの制御信号に基づいて電子ビームをラジアル方向及びタンジェンシャル方向に偏向させる。また、偏向電極27としては、ラジアル方向及びタンジェンシャル方向それぞれに偏向を制御する為の複数の偏向電極からなるものであっても良い。かかる偏向駆動により、基板15に塗布されたレジストの表面上に形成される電子ビームスポットの位置が調整される。 The alignment coil 26 corrects the position of the electron beam based on the correction signal from the beam position corrector 32. The deflection electrode 27 deflects the electron beam in the radial direction and the tangential direction based on a control signal from the deflection driving unit 33. Further, the deflection electrode 27 may be composed of a plurality of deflection electrodes for controlling the deflection in the radial direction and the tangential direction. By such deflection driving, the position of the electron beam spot formed on the surface of the resist coated on the substrate 15 is adjusted.
 フォーカスレンズ28は、フォーカス駆動部34から供給されたフォーカス駆動信号(後述する)に基づいて、電子ビームに対するフォーカス調整を行い、そのフォーカス調整処理の施された電子ビームを対物レンズ29に導出する。 The focus lens 28 performs focus adjustment on the electron beam based on a focus drive signal (described later) supplied from the focus drive unit 34, and guides the electron beam subjected to the focus adjustment processing to the objective lens 29.
 対物レンズ29は、フォーカスレンズ28から供給された電子ビームを収束しこれを、上記レジストの表面に照射する。この際、レジスト表面において電子ビームが照射された箇所に潜像が形成される。以降、このような電子ビームの照射によってレジスト表面に潜像を形成させることを、「描画」と称する。 The objective lens 29 converges the electron beam supplied from the focus lens 28 and irradiates it on the surface of the resist. At this time, a latent image is formed at a position irradiated with the electron beam on the resist surface. Hereinafter, the formation of a latent image on the resist surface by such electron beam irradiation is referred to as “drawing”.
 真空チャンバ11には、基板15の主面の高さを検出するための光源36A及び光検出器36Bが設けられている。光検出器36Bは、例えば、ポジションセンサやCCD(Charge Coupled Device)などを含み、光源36Aから射出され、基板15の表面で反射された光ビーム(レーザ光)を受光し、その受光信号を高さ検出部36に供給する。高さ検出部36は、受光信号に基づいて基板15の主面の高さを検出し、その高さを示す高さ検出信号をフォーカス駆動部34に供給する。 The vacuum chamber 11 is provided with a light source 36A and a light detector 36B for detecting the height of the main surface of the substrate 15. The photodetector 36B includes, for example, a position sensor, a CCD (Charge Coupled Device), etc., receives a light beam (laser light) emitted from the light source 36A and reflected by the surface of the substrate 15, and increases the received light signal. This is supplied to the thickness detector 36. The height detection unit 36 detects the height of the main surface of the substrate 15 based on the light reception signal, and supplies a height detection signal indicating the height to the focus driving unit 34.
 フォーカス駆動部34は、上記高さ検出信号又はフォーカス調整信号FC(後述する)に応じて、フォーカスレンズ28におけるフォーカス調整量に対応したフォーカス駆動信号を生成してフォーカスレンズ28に供給する。 The focus drive unit 34 generates a focus drive signal corresponding to the focus adjustment amount in the focus lens 28 according to the height detection signal or the focus adjustment signal FC (described later) and supplies the focus drive signal to the focus lens 28.
 レーザ位置測定システム35は、内蔵する光源(図示せぬ)からの測定用レーザ光によってステージ18までの距離を測定し、その測定データ、すなわちステージ18の位置データを並進コントローラ37に供給する。 The laser position measurement system 35 measures the distance to the stage 18 with measurement laser light from a built-in light source (not shown), and supplies the measurement data, that is, position data of the stage 18 to the translation controller 37.
 並進コントローラ37は、フォーマッタ50から供給されるリファレンス信号である並進クロック信号(T-CLK)F4に同期してXステージの並進制御を行う。また、並進コントローラ37は、レーザ位置測定システム35からのステージ位置データに基づいて並進誤差信号を生成し、ビーム位置補正器32に送出する。上記したように、この並進誤差信号に基づいてビーム位置補正器32は電子ビームの位置補正を行う。また、並進コントローラ37は、並進モータ19の制御を行う制御信号を生成して並進モータ19に供給する。 The translation controller 37 performs translation control of the X stage in synchronization with a translation clock signal (T-CLK) F4 which is a reference signal supplied from the formatter 50. The translation controller 37 generates a translation error signal based on the stage position data from the laser position measurement system 35 and sends it to the beam position corrector 32. As described above, the beam position corrector 32 corrects the position of the electron beam based on the translation error signal. The translation controller 37 generates a control signal for controlling the translation motor 19 and supplies it to the translation motor 19.
 回転コントローラ38は、フォーマッタ50から供給されるリファレンス信号である回転クロック信号(R-CLK)F5に同期してスピンドルモータ17の回転制御を行う。より詳細には、スピンドルモータ17にはロータリエンコーダ(図示しない)が設けられており、スピンドルモータ17によってターンテーブル16(すなわち、基板15)が回転される際に、回転信号を生成する。当該回転信号は、基板15の基準回転位置を表す原点信号及び基準回転位置からの所定回転角ごとのパルス信号(ロータリ・エンコーダ信号)を含んでいる。当該回転信号は、回転コントローラ38に供給される。回転コントローラ38は、当該ロータリ・エンコーダ信号によりターンテーブル16の回転誤差を検出し、該検出された回転誤差に基づいてスピンドルモータ17の回転補正を行う。 The rotation controller 38 controls the rotation of the spindle motor 17 in synchronization with a rotation clock signal (R-CLK) F5 which is a reference signal supplied from the formatter 50. More specifically, the spindle motor 17 is provided with a rotary encoder (not shown), and generates a rotation signal when the turntable 16 (that is, the substrate 15) is rotated by the spindle motor 17. The rotation signal includes an origin signal indicating the reference rotation position of the substrate 15 and a pulse signal (rotary encoder signal) for each predetermined rotation angle from the reference rotation position. The rotation signal is supplied to the rotation controller 38. The rotation controller 38 detects a rotation error of the turntable 16 based on the rotary encoder signal, and corrects the rotation of the spindle motor 17 based on the detected rotation error.
 EBRインターフェース回路(EBR I/F)39には、フォーマッタ50から種々の描画制御信号が供給される。より具体的には、フォーマッタ50からフォーカス調整信号FC、変調信号F1及び偏向信号F3が供給される。ブランキング駆動部31は変調信号F1に基づいて電子ビームのオン/オフを行い、偏向駆動部33は偏向信号F3に基づいて電子ビームの照射方向を偏向させる。フォーカス駆動部34は、かかるフォーカス調整信号FCに応じて、フォーカスレンズ28におけるフォーカス調整量に対応したフォーカス駆動信号を生成してフォーカスレンズ28に供給する。 Various drawing control signals are supplied from the formatter 50 to the EBR interface circuit (EBR I / F) 39. More specifically, the focus adjustment signal FC, the modulation signal F1, and the deflection signal F3 are supplied from the formatter 50. The blanking drive unit 31 turns on / off the electron beam based on the modulation signal F1, and the deflection drive unit 33 deflects the irradiation direction of the electron beam based on the deflection signal F3. In response to the focus adjustment signal FC, the focus drive unit 34 generates a focus drive signal corresponding to the focus adjustment amount in the focus lens 28 and supplies the focus drive signal to the focus lens 28.
 ここで、フォーマッタ50から供給される各種描画制御信号及び当該制御信号に基づくフォーマッタ50の動作について以下に詳述する。 Here, various drawing control signals supplied from the formatter 50 and operations of the formatter 50 based on the control signals will be described in detail below.
 図2は、本体部10を制御するEBR制御装置としてのフォーマッタ50の内部構成を示す図である。 FIG. 2 is a diagram showing an internal configuration of the formatter 50 as an EBR control device that controls the main body 10.
 図2に示すように、フォーマッタ50は、EBR制御信号生成器(プロセッサ)51、クロック信号生成器52、メモリ53、フォーマッタ・インターフェース回路(フォーマッタ I/F)54、入出力部55及び表示部56からなる。 As shown in FIG. 2, the formatter 50 includes an EBR control signal generator (processor) 51, a clock signal generator 52, a memory 53, a formatter interface circuit (formatter I / F) 54, an input / output unit 55, and a display unit 56. Consists of.
  クロック信号生成器52は、例えば、CLV(Constant Line Velocity)描画やCAV(Constant Angular Velocity)描画に応じたクロック信号、或いは、後述するが如きスピンドルモータ17及び並進モータ19の駆動量を表す回転クロック及び並進クロック信号を生成する。 The clock signal generator 52 is, for example, a clock signal corresponding to CLV (Constant Line Velocity) drawing or CAV (Constant Angular Velocity) drawing, or a rotation clock representing the driving amount of the spindle motor 17 and the translation motor 19 as described later. And generating a translation clock signal.
 メモリ53は、後述する種々の制御信号に関する設定値やデータ等が記憶される。又、メモリ53には、テスト描画(後述する)を含む各種描画を行う為のプログラムが予め格納されている。 The memory 53 stores setting values and data related to various control signals described later. The memory 53 stores in advance a program for performing various types of drawing including test drawing (described later).
 入出力部55は、使用者からの各種動作指令、或いは本体部10を制御する際に用いられる各種設定値等の入力を受け付け、その内容(動作指令、設定値)を表す信号をEBR制御信号生成器51に供給する。表示部56は、EBR制御信号生成器51からの表示指令に応じて、本体部10及びフォーマッタ50自身の動作条件、動作状態、設定値などを表示する。 The input / output unit 55 accepts input of various operation commands from the user or various setting values used when controlling the main body unit 10, and outputs a signal representing the contents (operation command, setting value) as an EBR control signal. Supply to the generator 51. The display unit 56 displays the operation conditions, operation states, set values, and the like of the main body unit 10 and the formatter 50 according to a display command from the EBR control signal generator 51.
 EBR制御信号生成器51は、入出力部55からの動作指令に応じたプログラムをメモリ53から読み出し、そのプログラムに従って本体部10を制御するための以下の各種制御信号を生成し、これらをフォーマッタ・インターフェース回路54を介して本体部10に供給する。又、この間、EBR制御信号生成器51は、本体部10から供給された以下の開始信号F6をフォーマッタ・インターフェース回路54を介して受け取る。 The EBR control signal generator 51 reads a program corresponding to an operation command from the input / output unit 55 from the memory 53, generates the following various control signals for controlling the main body unit 10 according to the program, This is supplied to the main body 10 via the interface circuit 54. During this time, the EBR control signal generator 51 receives the following start signal F6 supplied from the main body 10 via the formatter interface circuit 54.
 ・変調信号F1(F1-Modulation(/Blanking)):電子ビームをオン/オフするためにフォーマッタが出力する信号。例えば、”Low”のとき電子ビームはブランキングされ、電子ビームはオフとされる。 ・ Modulation signal F1 (F1-Modulation (/ Blanking)): A signal output by the formatter to turn on / off the electron beam. For example, when “Low”, the electron beam is blanked and the electron beam is turned off.
 ・鋸歯状波偏向信号F3(F3-Saw-Tooth-Deflection-X)、偏向信号F3:スパイラルを同心円とするための偏向信号。Xステージの移動方向によりランプ波の極性反転を伴う信号。 ・ Sawtooth wave deflection signal F3 (F3-Saw-Tooth-Deflection-X), deflection signal F3: deflection signal for concentric spirals. A signal with polarity inversion of the ramp wave depending on the moving direction of the X stage.
 ・並進クロック信号F4(F4-Translation-clock):フォーマッタが出力するXステージのへのリファレンス信号。EBR装置はこの信号に同期して並進ステージ(Xステージ)を駆動する。パルスの基準単位(ΔX)をフォーマッタ側で設定可能とする。 · Translation clock signal F4 (F4-Translation-clock): Reference signal to the X stage output by the formatter. The EBR apparatus drives the translation stage (X stage) in synchronization with this signal. The pulse reference unit (ΔX) can be set on the formatter side.
 ・回転クロック信号F5(F5-Rotation-clock):フォーマッタが出力する回転スピンドルへのリファレンス信号。 Rotation clock signal F5 (F5-Rotation-clock): Reference signal to the rotating spindle output by the formatter.
 ・開始信号F6(F6-/Start):終了信号F7(下記)が”High”状態であり且つ並進クロック信号F4及び回転クロック信号F5が有効になった後に、EBR装置側がこれらのクロックに同期し、描画開始半径になった時点で”Low”状態の描画開始信号F6をフォーマッタに供給する。これにより、フォーマッタが描画(信号出力)を開始する。 -Start signal F6 (F6- / Start): After the end signal F7 (below) is in the "High" state and the translation clock signal F4 and the rotation clock signal F5 become valid, the EBR device side synchronizes with these clocks. When the drawing start radius is reached, the drawing start signal F6 in the “Low” state is supplied to the formatter. As a result, the formatter starts drawing (signal output).
 ・終了信号F7(F7-End):フォーマッタが描画(信号出力)の終了を”High”状態にてEBR装置に通知する。尚、終了信号F7は、並進クロック信号F4及び回転クロック信号F5が有効な期間は”Low”状態に維持される。この信号を受けてEBR装置は描画開始信号F6を”High”に切り替えて、現在の描画動作を終了する。 End signal F7 (F7-End): The formatter notifies the end of drawing (signal output) to the EBR device in the “High” state. The end signal F7 is maintained in the “Low” state during the period in which the translation clock signal F4 and the rotation clock signal F5 are valid. Upon receipt of this signal, the EBR apparatus switches the drawing start signal F6 to “High” and ends the current drawing operation.
 ・ビーム外周方向オフセット信号F8(F8-BeamOffsetOut)、外周方向オフセット信号F8、高速オフセット(+)信号F8:高速でビームを外周へオフセットさせる信号。 ・ Beam outer periphery direction offset signal F8 (F8-BeamOffsetOut), outer periphery direction offset signal F8, high speed offset (+) signal F8: Signals for offsetting the beam to the outer periphery at high speed.
 ・ビーム内周方向オフセット信号F9(F9-BeamOffsetOut)、内周方向オフセット信号F9、高速オフセット(-)信号F9:高速でビームを内周へオフセットさせる信号。 ・ Beam inner circumferential offset signal F9 (F9-BeamOffsetOut), inner circumferential offset signal F9, high-speed offset (−) signal F9: signals for offsetting the beam to the inner circumference at high speed.
 ・ビーム・タンジェンシャル方向偏向信号F16(F16-BeamTangentialDeflection)、タンジェンシャル偏向信号F16:高速でビームをタンジェンシャル方向又は円周方向(+θ,-θ方向)へ偏向する信号。 Beam-tangential deflection signal F16 (F16-BeamTangentialDeflection), tangential deflection signal F16: Signals that deflect the beam in the tangential direction or circumferential direction (+ θ, -θ direction) at high speed.
 次に、上記の如き構成を有する本体部10及びフォーマッタ50による描画動作について、レジストが塗布されたテスト用の基板15に複数の同心円のラインを描く同心円ライン描画動作を一例にとって、図3~図6を参照しつつ説明する。 Next, regarding the drawing operation by the main body 10 and the formatter 50 having the above-described configuration, a concentric line drawing operation for drawing a plurality of concentric lines on the test substrate 15 coated with a resist will be described with reference to FIGS. This will be described with reference to FIG.
  [同心円ライン描画動作]
 基板15をEBR本体部10にセットした後、使用者が、入出力部55によって同心円ラインを描かせるべき同心円ライン描画指令操作を行うと、フォーマッタ50は、メモリ53に格納されている同心円ライン描画プログラムに従った以下の如き制御を順次実行する。
[Concentric line drawing operation]
After the substrate 15 is set in the EBR main body 10, when the user performs a concentric line drawing command operation for drawing a concentric line by the input / output unit 55, the formatter 50 draws the concentric line drawing stored in the memory 53. The following control according to the program is sequentially executed.
 先ず、フォーマッタ50は、図3に示す如く、本体部10に対して並進クロック信号F4及び回転クロック信号F5の送出を開始すると共に、本体部10に送出する終了信号F7(F7-End)を”High”状態から”Low”状態に切り替える(図3、時点Tp)。この際の並進クロック信号F4及び回転クロック信号F5は描画開始時の周波数(Fini)のクロック信号である。これら並進クロック信号F4及び回転クロック信号F5の供給が開始されると、本体部10がこれらのクロックに同期して動作し、その後、描画開始半径になった時点で本体部10が”Low”(アクティブ)の描画開始信号F6(F6-/Start)をフォーマッタ50に送出する。 First, as shown in FIG. 3, the formatter 50 starts sending the translation clock signal F4 and the rotation clock signal F5 to the main body 10 and sends an end signal F7 (F7-End) to be sent to the main body 10 ". Switching from the “High” state to the “Low” state (FIG. 3, time point Tp). The translation clock signal F4 and the rotation clock signal F5 at this time are clock signals having a frequency (Fini) at the start of drawing. When the supply of the translation clock signal F4 and the rotation clock signal F5 is started, the main body 10 operates in synchronization with these clocks, and then the main body 10 becomes “Low” (when the drawing start radius is reached). An active) drawing start signal F6 (F6- / Start) is sent to the formatter 50.
 フォーマッタ50は、”Low”(アクティブ)の開始信号F6に応じて、図3又は図4に示すように、描画信号である変調信号F1及び偏向信号F3各々を本体部10に対して送出開始する。尚、図3又は図4に示すように、偏向信号F3は鋸歯状信号(アナログ電圧信号)であって、基板15が1回転する間(Tini ~T1)に亘り、基準電圧(V=Vref=0volt)からV=VDに到るまで線形にレベルが変化する。時点T1において偏向信号F3は基準電圧Vref(=0volt)に戻され、電子ビームは基準偏向位置(例えば、基板15に対して垂直位置)に戻される。これにより、基板15は、並進クロック(T-CLK)F4に基づく一定速度にて、図5に示す如く並進する。より詳細には、基板15は、描画開始時の位置(破線で示す、基板中心をOで示す)から1回転終了時の位置(実線で示す、基板中心をO’で示す)までX方向に並進する。この際、図5に示すように、電子ビームEBは、偏向信号F3によって基板15を追従するようにビーム偏向がなされる。つまり、図6に示すように、電子ビームEBの偏向(すなわち、射出方向)が固定されている場合には、基板15上でスパイラル状のビーム軌跡(破線で示す)となるが、偏向信号F3により、本体部10は、同心円のラインLN1(実線で示す)を描画する。なお、以下においては、ライン番号j(すなわち、LN=j)の同心円のラインをLNjのように表記して説明する。当該第ラインLN1の描画の終了と同時に(T=T1)、偏向信号F3によって偏向電圧は基準電圧(V=Vref=0volt、図4)に戻される。すなわち、電子ビームはラインLN1の描画開始時の偏向位置(基準偏向位置)に戻され、電子ビームEBのビームスポットは基板15の中心に関してラインLN1の描画終了時の角度位置と同一の角度位置に戻される。一方、この時点において、基板15上のビームスポットの基板15の中心に関する半径位置(ラジアル位置)は、ラインLN1の描画に要した並進距離だけ移動している。この際、かかる距離が図6に示す如きライン間のピッチq(ラインピッチという。)になる。 In response to the “Low” (active) start signal F 6, the formatter 50 starts sending the modulation signal F 1 and the deflection signal F 3, which are drawing signals, to the main body 10 as shown in FIG. 3 or FIG. . As shown in FIG. 3 or FIG. 4, the deflection signal F3 is a sawtooth signal (analog voltage signal), and the reference voltage (V = Vref = T1) during one rotation of the substrate 15 (Tini to T1). The level changes linearly from 0 volt) to V = VD. At time T1, the deflection signal F3 is returned to the reference voltage Vref (= 0 volt), and the electron beam is returned to the reference deflection position (for example, a position perpendicular to the substrate 15). As a result, the substrate 15 translates at a constant speed based on the translation clock (T-CLK) F4 as shown in FIG. More specifically, the substrate 15 extends in the X direction from the position at the start of drawing (indicated by a broken line, the center of the substrate is indicated by O) to the position at the end of one rotation (indicated by a solid line, the center of the substrate is indicated by O ′) Translate. At this time, as shown in FIG. 5, the electron beam EB is deflected so as to follow the substrate 15 by the deflection signal F3. That is, as shown in FIG. 6, when the deflection (that is, the emission direction) of the electron beam EB is fixed, a spiral beam locus (indicated by a broken line) is formed on the substrate 15, but the deflection signal F3. Thus, the main body 10 draws a concentric line LN1 (shown by a solid line). In the following description, a concentric line having a line number j (ie, LN = j) is described as LNj. Simultaneously with the end of drawing of the second line LN1 (T = T1), the deflection voltage is returned to the reference voltage (V = Vref = 0 volt, FIG. 4) by the deflection signal F3. That is, the electron beam is returned to the deflection position (reference deflection position) at the start of drawing of the line LN1, and the beam spot of the electron beam EB is at the same angular position as the angular position at the end of drawing of the line LN1 with respect to the center of the substrate 15. Returned. On the other hand, at this time, the radial position (radial position) of the beam spot on the substrate 15 with respect to the center of the substrate 15 has moved by the translational distance required for drawing the line LN1. At this time, this distance becomes a pitch q (referred to as a line pitch) between lines as shown in FIG.
 そして、基板15の第2回転~第4回転(REV=2~4)において、フォーマッタ50は、上記したのと同様な制御を繰り返し実行することにより、ラインピッチqだけ互いに離れた同心円の第1ラインLN1~第4ラインLN4の描画を行う(図6)。なお、図6においては、図の説明上、ラインピッチを拡大して示している。 Then, in the second to fourth rotations (REV = 2 to 4) of the substrate 15, the formatter 50 repeatedly executes the same control as described above, thereby the first concentric circles separated from each other by the line pitch q. Drawing of the line LN1 to the fourth line LN4 is performed (FIG. 6). In FIG. 6, the line pitch is enlarged for the sake of explanation.
 ここで、レジスト表面上に所望のライン幅を有する同心円のラインを正確に描画させる為には、本体部10の設置時又は定期的に、本体部10自体の各種調整を行う必要がある。 Here, in order to accurately draw a concentric line having a desired line width on the resist surface, it is necessary to perform various adjustments of the main body 10 itself when the main body 10 is installed or periodically.
 基盤15の中心が回転ステージ16の回転中心と一致するように、基板15を精度良く設置したほうがよいことは言うまでもない。 Needless to say, it is better to place the substrate 15 with high precision so that the center of the substrate 15 coincides with the rotation center of the rotary stage 16.
 そこで、本体部10内の全調整箇所(説明せず)の内で、施す必要がある調整の箇所及びその調整量を把握する為に、以下の如きテストパターン描画を実施する。 Therefore, the following test pattern drawing is performed in order to grasp the adjustment location and the adjustment amount that need to be performed among all adjustment locations (not described) in the main body 10.
 [テストパターン描画動作]
 まず、EBR本体10の回転ステージ16にレジストが塗布された未描画の基板15をセットする。そして使用者が、入出力部55によってテストパターンを描画させるべきテスト描画指令操作を行うと、フォーマッタ50は、メモリ53に格納されているテスト描画プログラムに従って本体部10に対する各種描画制御を実行する。
[Test pattern drawing operation]
First, the undrawn substrate 15 coated with a resist is set on the rotary stage 16 of the EBR main body 10. When the user performs a test drawing command operation for drawing a test pattern using the input / output unit 55, the formatter 50 executes various drawing controls on the main body unit 10 in accordance with a test drawing program stored in the memory 53.
 以下に、テストパターンとして、図7に示す如き、レジスト表面上における夫々セクタ状のグルーブ領域GA1~GA3に、8つの同心円ライン(LN1~LN8)を描画する場合を例にとって、このテストパターンの描画動作について説明する。 In the following, the test pattern is drawn as an example in which eight concentric lines (LN1 to LN8) are drawn in the sector-like groove areas GA1 to GA3 on the resist surface as shown in FIG. The operation will be described.
      [グルーブ領域GA1~GA3:LN1~LN4による繋ぎ目誤差パターン]
 先ず、フォーマッタ50は、図8に示すように、本体部10に送出する終了信号F7を”High”状態から”Low”状態に切り替えると共に、並進クロック信号F4及び回転クロック信号F5の送出を開始する(図8、時点Tp)。これら並進クロック信号F4及び回転クロック信号F5の供給が開始されると、本体部10がこれらのクロックに同期して動作し、その後、描画開始半径になった時点で本体部10が”Low”(アクティブ)の描画開始信号F6(F6-/Start)をフォーマッタ50に送出する。
[Groove areas GA1 to GA3: seam error pattern by LN1 to LN4]
First, as shown in FIG. 8, the formatter 50 switches the end signal F7 sent to the main body 10 from the “High” state to the “Low” state, and starts sending the translation clock signal F4 and the rotation clock signal F5. (FIG. 8, time point Tp). When the supply of the translation clock signal F4 and the rotation clock signal F5 is started, the main body 10 operates in synchronization with these clocks, and then the main body 10 becomes “Low” (when the drawing start radius is reached). An active) drawing start signal F6 (F6- / Start) is sent to the formatter 50.
 フォーマッタ50は、”Low”(アクティブ)の開始信号F6に応じて、図8に示すように、描画信号である変調信号F1及び偏向信号F3各々を本体部10に対して送出開始する。この際、偏向信号F3は、基板15の回転周期と同一周期にて図8に示す如く鋸歯状にレベル変化が生じる信号である。つまり、偏向信号F3は、基板15が1回転する間(例えばTini ~T1の間)に、基準電圧Vref(例えば0ボルト)から正極性のピーク電位に到るまで線形にレベルが上昇し、基板15が丁度1回転したタイミングで基準電圧Vrefに戻る。これにより、基板15は、並進クロックF4に基づく一定速度にて並進する。 より詳細には、基板15は、図7に示す如き、各同心円ラインに対する描画開始位置に対応した半径ラインSP上の位置(一点鎖線で示す)から、自身が1回転するまでの間、X方向に並進する。この際、図5に示すように、電子ビームEBは、偏向信号F3によって基板15を追従するようにビーム偏向がなされる。 The formatter 50 starts sending the modulation signal F1 and the deflection signal F3, which are drawing signals, to the main body 10 as shown in FIG. 8 in response to the “Low” (active) start signal F6. At this time, the deflection signal F3 is a signal in which the level change occurs in a sawtooth shape as shown in FIG. That is, the level of the deflection signal F3 rises linearly from the reference voltage Vref (eg, 0 volts) to the positive peak potential during one rotation of the substrate 15 (eg, between Tini and T1). 15 returns to the reference voltage Vref at the timing of exactly one rotation. As a result, the substrate 15 translates at a constant speed based on the translation clock F4. More specifically, as shown in FIG. 7, the substrate 15 is in the X direction from the position on the radial line SP corresponding to the drawing start position for each concentric circle line (indicated by the alternate long and short dash line) until it rotates once. Translate to At this time, as shown in FIG. 5, the electron beam EB is deflected so as to follow the substrate 15 by the deflection signal F3.
 上述した如き一連の制御により、本体部10は、図8に示す如き時点Tiniから、基板15のレジスト表面に対して電子ビームEBの照射を開始する。つまり、時点Tiniにおいて最初に電子ビームEBが照射された位置(図7に示す半径ラインSP上の位置)から、同心円の複数のライン各々を描く為の動作が開始されるのである。例えば、時点Tiniから基板15が1回転して、電子ビームEBが半径ラインSP上の位置に再び差し掛かると、図7に示す如き第1ラインLN1が描画される。この際、半径ラインSP上に、同心円の第1ラインLN1の繋ぎ目ができることになる。第1ラインLN1の描画終了と同時に、偏向信号F3によって偏向電圧は基準電圧Vref(0ボルト)に戻される。すなわち、電子ビームは第1ラインLN1の描画開始時の偏向位置(基準偏向位置)に戻され、電子ビームEBのビームスポットは基板15の中心に対して第1ラインLN1の描画終了時の角度位置と同一の角度位置、つまり図7の半径ラインSP上に戻される。一方、この時点において、基板15上のビームスポットの基板15の中心に対する半径位置(ラジアル位置)は、第1ラインLN1の描画に要した並進距離だけ移動している。この際、かかる距離が図7に示す如きライン間のラインピッチqになる。 By the series of controls as described above, the main body 10 starts irradiating the resist surface of the substrate 15 with the electron beam EB from time Tini as shown in FIG. That is, the operation for drawing each of a plurality of concentric lines is started from the position (position on the radial line SP shown in FIG. 7) where the electron beam EB is first irradiated at the time point Tini. For example, when the substrate 15 rotates once from the time point Tini and the electron beam EB reaches the position on the radius line SP again, the first line LN1 as shown in FIG. 7 is drawn. At this time, a concentric first line LN1 is formed on the radial line SP. Simultaneously with the drawing of the first line LN1, the deflection voltage is returned to the reference voltage Vref (0 volts) by the deflection signal F3. That is, the electron beam is returned to the deflection position (reference deflection position) at the start of drawing of the first line LN1, and the beam spot of the electron beam EB is the angular position at the end of drawing of the first line LN1 with respect to the center of the substrate 15. Is returned to the same angular position, that is, on the radial line SP of FIG. On the other hand, at this time, the radial position (radial position) of the beam spot on the substrate 15 with respect to the center of the substrate 15 has moved by the translational distance required for drawing the first line LN1. At this time, the distance becomes a line pitch q between lines as shown in FIG.
 そして、基板15の第2回転~第4回転(T2~T4)において、フォーマッタ50は、上記したのと同様な制御を繰り返し実行することにより、ラインピッチqだけ互いに離れた同心円の第2ラインLN2~第4ラインLN4各々の描画を行う。この際、半径ラインSP上には、同心円状の第1ラインLN2~第4ラインLN4各々の繋ぎ目ができることになる。 Then, during the second to fourth rotations (T2 to T4) of the substrate 15, the formatter 50 repeatedly executes the same control as described above, whereby concentric second lines LN2 separated from each other by the line pitch q. The fourth line LN4 is drawn. At this time, concentric first to fourth lines LN2 to LN4 are formed on the radial line SP.
 ところで、第1ラインLN1~LN4各々を描画させるべく、フォーマッタ50が本体部10に供給する偏向信号F3における鋸歯状パルス各々のピーク電位は夫々異なっている。 By the way, the peak potentials of the sawtooth pulses in the deflection signal F3 supplied from the formatter 50 to the main body 10 to draw the first lines LN1 to LN4 are different from each other.
 すなわち、図8に示すように、
 第1ラインLN1の描画期間(Tini~T1)での鋸歯状パルスKP1のピーク電位、
 第2ラインLN2の描画期間(T1~T2)での鋸歯状パルスKP2のピーク電位、
 第3ラインLN3の描画期間(T2~T3)での鋸歯状パルスKP3のピーク電位、
 第4ラインLN4の描画期間(T3~T4)での鋸歯状パルスKP4のピーク電位、
 は夫々異なる。
That is, as shown in FIG.
The peak potential of the sawtooth pulse KP1 during the drawing period (Tini to T1) of the first line LN1,
The peak potential of the sawtooth pulse KP2 in the drawing period (T1 to T2) of the second line LN2,
The peak potential of the sawtooth pulse KP3 in the drawing period (T2 to T3) of the third line LN3,
The peak potential of the sawtooth pulse KP4 in the drawing period (T3 to T4) of the fourth line LN4,
Are different.
 つまり、各ライン毎に、偏向信号F3における鋸歯状パルスKPの時間経過に伴うレベル推移の傾きが異なるのである。これにより、例えば図9に示すように、描画開始位置(半径ラインSP)での繋ぎ目のズレ量が夫々異なる第1ラインLN1~第4ラインLN4が描画されることになる。この際、第1ラインLN1~第4ラインLN4各々の隣接するもの同士のラインピッチも夫々異なることになる。 That is, the slope of the level transition with time of the sawtooth pulse KP in the deflection signal F3 differs for each line. As a result, for example, as shown in FIG. 9, the first line LN1 to the fourth line LN4, each having a different amount of misalignment at the drawing start position (radius line SP), are drawn. At this time, the line pitch between adjacent ones of the first line LN1 to the fourth line LN4 is also different.
 一方、図7に示す基準位置領域RA、ピット領域PA1~PA3各々では、フォーマッタ50は、本体部10に対して以下の如き各種基準パターンの描画を実行させるべき制御を行う。 On the other hand, in each of the reference position area RA and the pit areas PA1 to PA3 shown in FIG. 7, the formatter 50 performs control to cause the main body 10 to perform drawing of various reference patterns as follows.
 [基準位置領域RA:基準位置記録]
 先ず、図7に示す基準位置領域RA内での電子ビームのトレース期間中においては、フォーマッタ50は、図10に示す如き波形を有する変調信号F1を本体部10に供給する。
[Reference position area RA: Reference position recording]
First, during the electron beam tracing period in the reference position region RA shown in FIG. 7, the formatter 50 supplies the main body 10 with a modulation signal F1 having a waveform as shown in FIG. 10.
 すなわち、フォーマッタ50は、図10に示す如く、所定のパルス幅W1の間だけ”Low”状態を維持するパルスP1、所定のパルス幅W2(W2<W1)の間だけ”Low”状態を維持するパルスP2及びP3、そして、上記パルス幅W1の間だけ”Low”状態を維持するパルスP4なるパルス系列を有する変調信号F1を本体部10に供給する。この際、共にパルス幅W1を有するパルスP1及びP4は互いに所定の間隔T1だけ離間しており、この間隔T1内において、パルスP2及びP3各々が互いに所定の間隔T2(T2<T1)だけ離間している。 That is, as shown in FIG. 10, the formatter 50 maintains the “Low” state only during the predetermined pulse width W2 (W2 <W1), the pulse P1 maintaining the “Low” state only during the predetermined pulse width W1. A modulated signal F1 having a pulse sequence of a pulse P4 that maintains the “Low” state only during the pulses P2 and P3 and the pulse width W1 is supplied to the main body 10. At this time, the pulses P1 and P4 both having the pulse width W1 are separated from each other by a predetermined interval T1, and within this interval T1, the pulses P2 and P3 are separated from each other by a predetermined interval T2 (T2 <T1). ing.
 図10に示す如き変調信号F1によれば、パルスP1~P4によって変調信号F1が”Low”状態になっている間に限り、電子ビームの照射が中断する。 According to the modulation signal F1 as shown in FIG. 10, the irradiation of the electron beam is interrupted only while the modulation signal F1 is in the “Low” state by the pulses P1 to P4.
 よって、基準位置領域RA内では、図11に示すように、各ライン(LN1~LN4)毎に、上記間隔T1に対応したギャップ間隔GK1だけ互いに離間した2箇所の位置において、上記パルス幅W1に対応した長さθ1に亘りライン描画が中断する第1ギャップ区間g1が夫々形成される。更に、上記ギャップ間隔GK1内において、上記間隔T2に対応したギャップ間隔GK2だけ互いに離間した2箇所の位置に、上記パルス幅W2に対応した長さθ2に亘りライン描画が中断する第2ギャップ区間g2が夫々形成される。この際、第1ギャップ区間g1は、現像処理された基板15を肉眼あるいは光学顕微鏡でみて判別できるような区間幅で描画される。これは後述する描画テストパターンの解析を行うに当たって、電子顕微鏡で画像を撮影する領域をすばやく特定するためである。このような区間幅をもったキャップは、以下に述べる各種のテスト領域でも同様に行うことができる。 Therefore, in the reference position region RA, as shown in FIG. 11, the pulse width W1 is set at two positions separated from each other by the gap interval GK1 corresponding to the interval T1 for each line (LN1 to LN4). A first gap section g1 in which line drawing is interrupted over the corresponding length θ1 is formed. Further, in the gap interval GK1, the second gap section g2 in which the line drawing is interrupted at the two positions separated from each other by the gap interval GK2 corresponding to the interval T2 over the length θ2 corresponding to the pulse width W2. Are formed respectively. At this time, the first gap section g1 is drawn with a section width such that the developed substrate 15 can be discriminated with the naked eye or an optical microscope. This is for quickly specifying a region where an image is taken with an electron microscope when analyzing a drawing test pattern to be described later. A cap having such a section width can be similarly applied to various test areas described below.
 [ピット領域PA1:フォーカステストパターン描画]
 次に、図7に示すピット領域PA1~PA3の内のPA1内での電子ビームのトレース期間中においては、フォーマッタ50は、図12に示す如き波形を有する変調信号F1及びフォーカス調整信号FCを本体部10に供給する。
[Pit area PA1: Focus test pattern drawing]
Next, during the electron beam tracing period in the pit areas PA1 to PA3 shown in FIG. 7, the formatter 50 receives the modulation signal F1 and the focus adjustment signal FC having the waveforms shown in FIG. Supplied to the unit 10.
 すなわち、フォーマッタ50は、図12に示す如く、夫々が所定のパルス幅Waの間だけ”High”状態を維持するパルスP1~P11が連続する変調信号F1を本体部10に供給する。更に、この間、フォーマッタ50は、図12に示す如き、パルスP1~P11各々のタイミングに対応させて、そのフォーカス調整量をK5、K4、K3、K2、K1、K0、-K1、-K2、-K3、-K4、-K5の如く、夫々異なる量で段階的に低下させるべきフォーカス調整信号FCを本体部10に供給する。 That is, as shown in FIG. 12, the formatter 50 supplies the main body 10 with a modulation signal F1 in which pulses P1 to P11 each maintaining a “High” state for a predetermined pulse width Wa are continuous. Further, during this time, the formatter 50 adjusts the focus adjustment amount to K5, K4, K3, K2, K1, K0, -K1, -K2, -K, corresponding to the timing of each of the pulses P1 to P11 as shown in FIG. A focus adjustment signal FC to be lowered step by step by different amounts, such as K3, -K4, and -K5, is supplied to the main body unit 10.
 図12に示す如き変調信号F1によれば、パルスP1~P11によって変調信号F1が”High"状態になっている間だけ電子ビームがレジスト表面に照射される。更に、この間、フォーカス調整信号FCにより、電子ビームに対するフォーカス調整量がK5、K4、K3、K2、K1、K0、-K1、-K2、-K3、-K4、-K5の如く11段階で推移して行く。 According to the modulation signal F1 as shown in FIG. 12, the electron beam is irradiated on the resist surface only while the modulation signal F1 is in the “High” state by the pulses P1 to P11. Further, during this time, the focus adjustment amount for the electron beam changes in 11 steps such as K5, K4, K3, K2, K1, K0, -K1, -K2, -K3, -K4, -K5 by the focus adjustment signal FC. Go.
 よって、ピット領域PA1内では、そのフォーカス調整量が夫々異なる状態で照射された電子ビームにより、図13に示す如く各ライン(LN1~LN4)毎に、その同心円ラインに沿って、上記フォーカス調整量-K5~K5各々に対応した11個の潜像マークQP~QP11からなるフォーカステストパターンが描画される。この際、フォーカステストパターン中の潜像マークQP~QP11各々は、フォーカス誤差が小なる状態で描画されたものほどその外形(面積)が小さくなる。例えば、図13の一例では、潜像マークQP~QP11の内で、潜像マークQPが最もその外形(面積)が小さい。 Therefore, in the pit area PA1, the focus adjustment amount is changed along the concentric circle line for each line (LN1 to LN4) as shown in FIG. 13 by the electron beams irradiated in different states. A focus test pattern composed of 11 latent image marks QP 1 to QP 11 corresponding to each of −K5 to K5 is drawn. At this time, each of the latent image marks QP 1 to QP 11 in the focus test pattern has a smaller outer shape (area) as it is drawn with a smaller focus error. For example, in the example of FIG. 13, the latent image mark QP 7 has the smallest outer shape (area) among the latent image marks QP 1 to QP 11 .
 [ピット領域PA2:解像度テストパターン描画]
 又、図7に示すピット領域PA1~PA3の内のPA2内での電子ビームのトレース期間中においては、フォーマッタ50は、図14に示す如き波形を有する変調信号F1を本体部10に供給する。
[Pit area PA2: Resolution test pattern drawing]
Further, during the electron beam tracing period in the pit areas PA1 to PA3 shown in FIG. 7, the formatter 50 supplies the main body 10 with a modulation signal F1 having a waveform as shown in FIG.
 すなわち、フォーマッタ50は、図14に示す如く、所定の一定周期WRにて、”Low””状態からHigh”状態そして”Low””状態への遷移を繰り返しつつ、そのHigh”状態時のパルス幅が時間経過につれW11~W20へと徐々に小さくなるパルスP1~P10からなる変調信号F1を本体部10に供給する。 That is, as shown in FIG. 14, the formatter 50 repeats the transition from the “Low” state to the High ”state and the“ Low ”state in a predetermined constant cycle WR, and the pulse width in the High state. Is supplied to the main body 10 with a modulation signal F1 composed of pulses P1 to P10 that gradually decrease to W11 to W20 as time elapses.
 図14に示す如き変調信号F1によれば、パルスP1~P10によって変調信号F1が”High"状態になっている間だけ電子ビームがレジスト表面に照射される。 According to the modulation signal F1 as shown in FIG. 14, the resist surface is irradiated with the electron beam only while the modulation signal F1 is in the “High” state by the pulses P1 to P10.
 よって、本体部10が本来あるべき描画精度を有していれば、図15に示す如く、ピット領域PA2内において、各同心円ライン(LN1~LN4)に沿って夫々が図14のパルス幅W11~W20各々に対応したマーク長PW11~PW20を有する10個の潜像マークからなる解像度テストパターンが描画される。更に、1ライン上において互いに隣接する潜像マークの中心部同士の間隔は全て間隔Wcとなる。すなわち、本体部10が本来あるべき描画精度を有していない場合には、描画された潜像マーク各々のマーク長が上記マーク長PW11~PW20各々と一致しなくなる、又は、互いに隣接する潜像マークの中心部同士の間隔が上記間隔Wcと一致しなくなる。 Therefore, if the main body 10 has the drawing accuracy that should be inherent, as shown in FIG. 15, each of the pulse widths W11 to L11 in FIG. 14 is arranged along the concentric lines (LN1 to LN4) in the pit area PA2. A resolution test pattern composed of ten latent image marks having mark lengths PW11 to PW20 corresponding to each of W20 is drawn. Further, the intervals between the central portions of the latent image marks adjacent to each other on one line are all the interval Wc. That is, when the main body 10 does not have the drawing accuracy that should be originally provided, the mark length of each drawn latent image mark does not coincide with each of the mark lengths PW11 to PW20, or the latent images adjacent to each other. The interval between the center portions of the marks does not coincide with the interval Wc.
 尚、フォーマッタ50は、ピット領域PA2内では、図14に代わり図16に示す如き波形を有する変調信号F1を本体部10に供給するようにしても良い。 In the pit area PA2, the formatter 50 may supply the main body 10 with a modulation signal F1 having a waveform as shown in FIG. 16 instead of FIG.
 すなわち、フォーマッタ50は、図16に示す如く、”High”状態を維持するパルス幅が全て同一パルス幅W20であり、且つ互いに隣接するパルス各々の中心部同士の間隔が徐々に狭くなるような間隔で連続するパルスP1~P10からなる変調信号F1を本体部10に供給する。 That is, as shown in FIG. 16, the formatter 50 has the same pulse width W20 for maintaining the “High” state, and the interval between the centers of the adjacent pulses gradually decreases. Then, a modulation signal F1 composed of continuous pulses P1 to P10 is supplied to the main body 10.
 図16に示す如き変調信号F1によれば、ピット領域PA2内では、図17に示すように、各ライン(LN1~LN4)毎に、その同心円ライン上において、隣接するもの同士の間隔が徐々に変化する10個の潜像マークからなる解像度テストパターンが描画される。 According to the modulation signal F1 as shown in FIG. 16, in the pit area PA2, as shown in FIG. 17, for each line (LN1 to LN4), the interval between adjacent ones is gradually increased. A resolution test pattern composed of ten changing latent image marks is drawn.
 [グルーブ領域GA1~GA3:LN5~LN8による重ね描きテストパターン]
 次に、フォーマッタ50は、図8に示される偏向信号F3に代わり図18に示す如き偏向信号F3を本体部10に送出することにより、レジスト表面上における上記第4ラインLN4の内周側に、図7に示す如き第5ラインLN5~第8ラインLN8を順次描画させる。
[Groove areas GA1 to GA3: Overlay test pattern with LN5 to LN8]
Next, the formatter 50 sends a deflection signal F3 as shown in FIG. 18 to the main body 10 instead of the deflection signal F3 shown in FIG. 8, thereby bringing the fourth line LN4 on the resist surface to the inner circumference side. As shown in FIG. 7, the fifth line LN5 to the eighth line LN8 are sequentially drawn.
 すなわち、先ず、基板15が1回転する間(T4 ~T5の間)に、基準電圧Vref(例えば0ボルト)から正極性のピーク電位VP1に到るまでレベルが上昇し、丁度1回転したタイミングで基準電圧Vrefに戻る波形を有する鋸歯状パルスKP5(偏向信号F3)に応じて、基板15自体が並進する。この間、電子ビームEBは、上記鋸歯状パルスKP5による電位レベルの推移に応じて、上記の如く並進する基板15を追従するようにビーム偏向がなされる。かかる動作により、本体部10は、図18に示す如き時点T4において電子ビームEBが照射された位置(図7に示す半径ラインSP上の位置)から、基板15が1回転する間に、図7に示す如き1回転分の第5ラインLN5を描画する。そして、第5ラインLN5の描画終了と同時に、偏向信号F3によって偏向電圧は基準電圧Vrefに戻され、この第5ラインLN5の描画に要した並進距離、つまりラインピッチqの分だけディスク内周側に向けて電子ビームの照射位置が移動する。 That is, first, while the substrate 15 is rotated once (between T4 and T5), the level rises from the reference voltage Vref (for example, 0 volt) to the peak potential VP1 of the positive polarity, and at the timing of just one rotation. The substrate 15 itself translates in response to the sawtooth pulse KP5 (deflection signal F3) having a waveform returning to the reference voltage Vref. During this time, the electron beam EB is deflected so as to follow the substrate 15 that translates in accordance with the transition of the potential level caused by the sawtooth pulse KP5. By such an operation, the main body 10 causes the rotation of the substrate 15 during one rotation from the position (position on the radius line SP shown in FIG. 7) irradiated with the electron beam EB at the time T4 as shown in FIG. A fifth line LN5 for one rotation is drawn as shown in FIG. At the same time as the drawing of the fifth line LN5 is completed, the deflection voltage is returned to the reference voltage Vref by the deflection signal F3. The irradiation position of the electron beam moves toward.
 次に、基板15が2回転する間(T5 ~T7の間)に、基準電圧Vrefから正極性のピーク電位VP2(VP2=2・VP1)までレベルが上昇し、丁度2回転したタイミングで基準電圧Vrefに戻る波形を有する鋸歯状パルスKP6(偏向信号F3)に応じて、基板15自体が並進する。この間、電子ビームEBは、上記鋸歯状パルスKP6による電位レベルの推移に応じて、上記の如く並進する基板15を追従するようにビーム偏向がなされる。かかる動作により、本体部10は、基板15が1回転する間(T5 ~T6)に、上記第5ラインLN5よりもラインピッチqの分だけ内周側の位置に、1回転分の同心円の第6ラインLN6を描画する。そして、更に基板15が1回転する間(T6 ~T7)に、本体部10は、上記第6ラインLN6上をトレースするように電子ビームを1回転分だけ照射する。すなわち、第6ラインLN6に対する2度重ね書きが為されるのである。かかる動作の終了と同時に、偏向信号F3による偏向電圧は基準電圧Vrefに戻され、この第6ラインLN6の描画に要した並進距離の半分、つまりラインピッチqの分だけディスク内周側に向けて、電子ビームの照射位置が移動する。 Next, while the substrate 15 rotates twice (between T5 and T7), the level rises from the reference voltage Vref to the positive peak potential VP2 (VP2 = 2 · VP1), and the reference voltage is just at the timing of two rotations. The substrate 15 itself translates in response to the sawtooth pulse KP6 (deflection signal F3) having a waveform returning to Vref. During this time, the electron beam EB is deflected so as to follow the substrate 15 that translates in accordance with the transition of the potential level caused by the sawtooth pulse KP6. By such an operation, the main body 10 causes the concentric circles corresponding to one rotation to be positioned at the inner circumferential side by the line pitch q from the fifth line LN5 during one rotation of the substrate 15 (T5 to T6). 6 line LN6 is drawn. Then, while the substrate 15 further rotates (T6 to T7), the main body 10 irradiates the electron beam for one rotation so as to trace on the sixth line LN6. That is, the overwriting is performed twice for the sixth line LN6. Simultaneously with the end of the operation, the deflection voltage based on the deflection signal F3 is returned to the reference voltage Vref, and is directed toward the inner periphery of the disc by half the translation distance required for drawing the sixth line LN6, that is, the line pitch q. The electron beam irradiation position moves.
 次に、基板15が3回転する間(T7 ~T10の間)に、基準電圧Vrefから正極性のピーク電位VP3(VP3=3・VP1)までレベルが上昇し、丁度3回転したタイミングで基準電圧Vrefに戻る波形を有する鋸歯状パルスKP7(偏向信号F3)に応じて、基板15自体が並進する。この間、電子ビームEBは、上記鋸歯状パルスKP7による電位レベルの推移に応じて、上記の如く並進する基板15を追従するようにビーム偏向がなされる。かかる動作により、本体部10は、基板15が1回転する間(T7 ~T8)に、上記第6ラインLN6よりもラインピッチqの分だけ内周側の位置に、1回転分の同心円の第7ラインLN7を描画する。次に、更に基板15が1回転する間(T8 ~T9)に、本体部10は、上記第7ラインLN7上をトレースするように電子ビームを1回転分だけ照射する。すなわち、第7ラインLN7に対する2度重ね書きが為されるのである。そして、更に基板15が1回転する間(T9 ~T10)に、本体部10は、上記第7ラインLN7上をトレースするように電子ビームを1回転分だけ照射する。すなわち、第7ラインLN7に対する3度重ね書きが為されるのである。かかる動作の終了と同時に、偏向信号F3による偏向電圧は基準電圧Vrefに戻され、この第7ラインLN7の描画に要した並進距離の1/3、つまりラインピッチqの分だけディスク内周側に向けて、電子ビームの照射位置が移動する。 Next, the level rises from the reference voltage Vref to the positive polarity peak potential VP3 (VP3 = 3 · VP1) while the substrate 15 is rotated three times (between T7 and T10). The substrate 15 itself translates in response to the sawtooth pulse KP7 (deflection signal F3) having a waveform returning to Vref. During this time, the electron beam EB is deflected so as to follow the substrate 15 that translates in accordance with the transition of the potential level caused by the sawtooth pulse KP7. By such an operation, the main body 10 causes the concentric circles corresponding to one rotation to be positioned at the inner circumferential side by the line pitch q from the sixth line LN6 during one rotation of the substrate 15 (T7 to T8). 7 lines LN7 are drawn. Next, while the substrate 15 is further rotated once (T8 to T9), the main body unit 10 irradiates the electron beam for one rotation so as to trace on the seventh line LN7. That is, overwriting is performed twice for the seventh line LN7. Then, while the substrate 15 further rotates (T9 to T10), the main body 10 irradiates the electron beam for one rotation so as to trace on the seventh line LN7. That is, the third line LN7 is overwritten three times. Simultaneously with the end of this operation, the deflection voltage based on the deflection signal F3 is returned to the reference voltage Vref, and is 1/3 of the translational distance required for drawing the seventh line LN7, that is, the line pitch q toward the inner periphery of the disk. The irradiation position of the electron beam moves toward.
 次に、基板15が4回転する間(T10 ~T14の間)に、基準電圧Vrefから正極性のピーク電位VP4(VP4=4・VP1)までレベルが上昇し、丁度4回転したタイミングで基準電圧Vrefに戻る波形を有する鋸歯状パルスKP8(偏向信号F3)に応じて、基板15自体が並進する。この間、電子ビームEBは、上記鋸歯状パルスKP8による電位レベルの推移に応じて、上記の如く並進する基板15を追従するようにビーム偏向がなされる。かかる動作により、本体部10は、基板15が1回転する間(T10 ~T11)に、上記第7ラインLN7よりもラインピッチqの分だけ内周側の位置に、1回転分の同心円の第8ラインLN8を描画する。次に、更に基板15が1回転する間(T11 ~T12)に、本体部10は、上記第8ラインLN8上をトレースするように電子ビームを1回転分だけ照射する。すなわち、第8ラインLN8に対する2度重ね書きが為されるのである。そして、更に基板15が1回転する間(T12 ~T13)に、本体部10は、上記第8ラインLN8上をトレースするように電子ビームを1回転分だけ照射する。すなわち、第8ラインLN8に対する3度重ね書きが為されるのである。そして、更に基板15が1回転する間(T13 ~T14)に、本体部10は、上記第8ラインLN8上をトレースするように電子ビームを1回転分だけ照射する。すなわち、第8ラインLN8に対する4度重ね書きが為されるのである。 Next, while the substrate 15 is rotated four times (between T10 and T14), the level increases from the reference voltage Vref to the positive polarity peak potential VP4 (VP4 = 4 · VP1), and the reference voltage is just at the timing of four rotations. The substrate 15 itself translates in response to the sawtooth pulse KP8 (deflection signal F3) having a waveform returning to Vref. During this time, the electron beam EB is deflected so as to follow the substrate 15 that translates in accordance with the transition of the potential level caused by the sawtooth pulse KP8. By such an operation, the main body 10 causes the concentric circles corresponding to one rotation to be positioned at the inner circumferential side by the line pitch q from the seventh line LN7 during one rotation of the substrate 15 (T10 to T11). 8-line LN8 is drawn. Next, while the substrate 15 is further rotated once (T11 to T12), the main body 10 irradiates the electron beam for one rotation so as to trace on the eighth line LN8. That is, overwriting is performed twice on the eighth line LN8. Then, while the substrate 15 further makes one rotation (T12 to T13), the main body unit 10 irradiates the electron beam for one rotation so as to trace on the eighth line LN8. That is, three times overwriting is performed on the eighth line LN8. Then, while the substrate 15 further rotates (T13 to T14), the main body 10 irradiates the electron beam for one rotation so as to trace on the eighth line LN8. That is, the fourth line LN8 is overwritten four times.
 このように、図18に示す如き変調信号F1によれば、レジスト表面には、
  1周分の電子ビーム照射によって1度書きされた第5ラインLN5、
  2周分の電子ビーム照射によって2度重ね書きされた第6ラインLN6、
  3周分の電子ビーム照射によって3度重ね書きされた第7ラインLN7、
  4周分の電子ビーム照射によって4度重ね書きされた第8ラインLN8、
 なる重ね描きパターンが描画されることになる。
Thus, according to the modulation signal F1 as shown in FIG.
The fifth line LN5 written once by the electron beam irradiation for one turn,
A sixth line LN6 overwritten twice by electron beam irradiation for two rounds,
Seventh line LN7 overwritten three times by electron beam irradiation for three rounds,
An eighth line LN8 overwritten four times by electron beam irradiation for four laps,
The overwriting pattern will be drawn.
 この際、第5ラインLN5~第8ラインLN8各々は、図19に示す如く、その重ね書き回数が多いほどライン幅が太くなる。 At this time, as shown in FIG. 19, each of the fifth line LN5 to the eighth line LN8 becomes thicker as the number of overwriting increases.
 以上の如き動作により、図7に示す如きレジスト表面へのテストパターンの描画が終了すると、このレジスト表面に現像を施して、以下の如きテストパターン解析処理を行う。 When the drawing of the test pattern on the resist surface as shown in FIG. 7 is completed by the above operation, the resist surface is developed and the following test pattern analysis process is performed.
 [描画テストパターンの解析]
 先ず、上述した如く現像処理の施されたレジスト表面中から走査型電子顕微鏡(SEM:Scanning Electron Microscope)によって、以下の部分(A)~(D)の撮影を夫々行う。その撮影された画像を表すテストパターン画像データを図1に示す補正データ生成部100に供給する。
[Drawing test pattern analysis]
First, the following portions (A) to (D) are respectively photographed from the resist surface subjected to the development processing as described above by using a scanning electron microscope (SEM). Test pattern image data representing the photographed image is supplied to the correction data generation unit 100 shown in FIG.
 (A)図7に示す描画開始位置としての半径ラインSP上での第1ラインLN1~第4ラインLN4各々の繋ぎ目部(図9)
 (B)図7に示すピット領域PA1内のフォーカステストパターン(図13)
 (C)図7に示すピット領域PA2内の解像度テストパターン(図15又は図17)
 (D)図7に示す第5ラインLN5~第8ラインLN8各々の一部(図19)
 尚、上記(A)~(D)の撮影を行うにあたり、先ず、図7に示すレジスト表面上から、図11に示す如き形態で各ラインが切断されている箇所、つまり基準位置領域RAを検索し、その位置を基準にして上記(A)~(D)の如き撮影ターゲットを検出する。この検出は肉眼又は光学顕微鏡で検出可能となっている。
(A) Joint portion of each of the first line LN1 to the fourth line LN4 on the radius line SP as the drawing start position shown in FIG. 7 (FIG. 9)
(B) Focus test pattern in the pit area PA1 shown in FIG. 7 (FIG. 13)
(C) Resolution test pattern in the pit area PA2 shown in FIG. 7 (FIG. 15 or FIG. 17)
(D) A part of each of the fifth line LN5 to the eighth line LN8 shown in FIG. 7 (FIG. 19)
In performing the imaging operations (A) to (D) described above, first, from the resist surface shown in FIG. 7, the location where each line is cut in the form as shown in FIG. 11, that is, the reference position region RA is searched. Then, the photographic targets as in the above (A) to (D) are detected on the basis of the position. This detection can be performed with the naked eye or an optical microscope.
 補正データ生成部100は、かかるテストパターン画像データに対して以下の如き画像処理を施すことにより、フォーマッタ50において生成される各種の描画制御信号、すなわち、変調信号F1、偏向信号F3、フォーカス調整信号FCに対する制御量を補正させるべき補正データDOFを生成し、これをフォーマッタ50に供給する。 The correction data generation unit 100 performs various kinds of drawing control signals generated by the formatter 50 by performing the following image processing on the test pattern image data, that is, the modulation signal F1, the deflection signal F3, and the focus adjustment signal. Correction data DOF for correcting the control amount for FC is generated and supplied to the formatter 50.
 例えば、補正データ生成部100は、図9に示す如き、第1ラインLN1~第4ラインLN4各々の繋ぎ目部を表すテストパターン画像データに基づき、これら第1ラインLN1~第4ラインLN4各々の内から、その繋ぎ目部(半径ラインSP)でのズレ量が最も少ないものを選出する。ここで、補正データ生成部100は、第1ラインLN1~第4ラインLN4各々に対応させて、そのラインに対応した偏向補正値が予め記憶されているメモリ(図示せぬ)を備えている。 For example, the correction data generation unit 100, as shown in FIG. 9, based on the test pattern image data representing the joint portions of the first line LN1 to the fourth line LN4, each of the first line LN1 to the fourth line LN4. The one with the smallest amount of deviation at the joint (radius line SP) is selected from the inside. Here, the correction data generation unit 100 includes a memory (not shown) in which deflection correction values corresponding to the first line LN1 to the fourth line LN4 are stored in advance.
 例えば、第1ラインLN1~第4ラインLN4各々には、
  第1ラインLN1:「1」、
  第2ラインLN2:「0」、
  第3ラインLN3:「-1」、
  第4ラインLN3:「-2」、
 なる偏向補正値が割り当てられている。
For example, each of the first line LN1 to the fourth line LN4 includes
1st line LN1: “1”,
Second line LN2: “0”,
Third line LN3: “−1”,
Fourth line LN3: “−2”,
A deflection correction value is assigned.
 補正データ生成部100は、かかるメモリから、上記の如き繋ぎ目部でのズレ量が最も少ないラインに対応した偏向補正値を読み出す。すなわち、1周分のライン描画を行うにあたり、その繋ぎ目部(半径ラインSP)でのズレを補正すると共に所定のラインピッチqを維持させる為の偏向補正値が、上記メモリから読み出されるのである。尚、図9に示す一例では、第2ラインLN2において、繋ぎ目部でのズレ量が最も小さいので、この第2ラインLN2に対応した偏向補正値「0」、つまり偏向補正が無いことを示す偏向補正値が得られる。 The correction data generation unit 100 reads out the deflection correction value corresponding to the line having the smallest deviation amount at the joint as described above from the memory. That is, when line drawing for one round is performed, a deflection correction value for correcting a shift at the joint portion (radius line SP) and maintaining a predetermined line pitch q is read from the memory. . In the example shown in FIG. 9, since the amount of deviation at the joint portion is the smallest in the second line LN2, the deflection correction value “0” corresponding to the second line LN2, ie, there is no deflection correction. A deflection correction value is obtained.
 又、補正データ生成部100は、図13に示す如き、フォーカステストパターンを表すテストパターン画像データに基づき、1ラインに沿って配列されている潜像マークQP~QP11各々の内で最もその外形(面積)が小なる潜像マークQPを選出し、その潜像マークQPに対応したフォーカス調整量Kをフォーカス補正値として得る。この際、図13に示す一例では、潜像マークQPが最もその外形(面積)が小さいので、この潜像マークQPに対応したフォーカス調整量-K1がフォーカス補正値となる。すなわち、テストパターンを描画した時点のフォーカスをK1とすればよく、描画時のフォーカス値からK1のフォーカス値を引いた値が、フォーカス調整値となる。 Further, as shown in FIG. 13, the correction data generation unit 100 is the most among the latent image marks QP 1 to QP 11 arranged along one line based on the test pattern image data representing the focus test pattern. A latent image mark QP having a small outer shape (area) is selected, and a focus adjustment amount K corresponding to the latent image mark QP is obtained as a focus correction value. In this case, in the example shown in FIG. 13, since the latent image mark QP 7 most outer shape (area) is small, the focus adjustment amount -K1 corresponding to the latent image mark QP 7 is a focus correction value. That is, the focus at the time of drawing the test pattern may be set to K1, and a value obtained by subtracting the focus value of K1 from the focus value at the time of drawing becomes the focus adjustment value.
 又、補正データ生成部100は、図15に示す如き、解像度テストパターンを表すテストパターン画像データに基づき、1ラインに沿って配列されている10個の潜像マーク各々のマーク長及び互いに隣接する潜像マークの中心部同士の間隔を求める。そして、補正データ生成部100は、所定の間隔Wcと潜像マークの中心部同士の間隔との差分、並びに、10個の潜像マーク各々のマーク長と所定のマーク長PW11~PW20各々との差分を求め、両差分に対応した解像度向上補正値を得る。つまり、本体部10は、その調整が最適な状態にある場合には、描画された図15に示す如き10個の潜像マーク各々のマーク長は夫々所定のマーク長PW11~PW20となり、且つ潜像マークの中心部同士の間隔は全て所定の間隔Wcと一致するような解像度を有するものとなる。しかしながら、本体部10の調整が最適な状態に無い場合には、上述した如き潜像マーク各々のマーク長及び間隔は所定値(PW11~PW20、Wc)からズレてしまい、所望の解像度が得られない状態になる。そこで、そのズレ量を解像度を向上させる為の補正値とするのである。 Further, as shown in FIG. 15, the correction data generation unit 100 is adjacent to the mark length of each of the 10 latent image marks arranged along one line based on the test pattern image data representing the resolution test pattern. The distance between the center portions of the latent image marks is obtained. Then, the correction data generation unit 100 calculates the difference between the predetermined interval Wc and the interval between the center portions of the latent image marks, the mark length of each of the 10 latent image marks, and the predetermined mark lengths PW11 to PW20. A difference is obtained, and a resolution improvement correction value corresponding to both differences is obtained. That is, when the adjustment is in the optimum state, the main body 10 has a mark length of each of the 10 latent image marks drawn as shown in FIG. All the intervals between the center portions of the image marks have a resolution that matches the predetermined interval Wc. However, if the adjustment of the main body 10 is not optimal, the mark length and interval of each latent image mark as described above will deviate from predetermined values (PW11 to PW20, Wc), and a desired resolution can be obtained. No state. Therefore, the amount of deviation is used as a correction value for improving the resolution.
 又、補正データ生成部100は、図19に示す如き、第5ラインLN5~第8ラインLN8各々の一部を表すテストパターン画像データに基づき、第5ラインLN5~第8ラインLN8各々のライン幅を測定する。この際、重ね書きの回数が多いラインほど、そのラインの歪みが平均化されて適切なラインとなるが、重ね書きの回数増加に伴いライン幅自体も太くなってしまう。そこで、補正データ生成部100は、これら第5ラインLN5~第8ラインLN8各々のライン幅の内で、所定の基準幅よりも狭く且つ最大のものを選出し、そのラインに対応した重ね書き回数を最適重ね書き数として得る。尚、図19に示す描画パターンは、所定のライン幅を有するライン、つまりディスク半径方向又は回転方向において所定の幅(サイズ)を有するパターンを、隣接するもの同士の間隔を段階的に変化させながら描画しているものであるが、この所定の幅が想定しているサイズよりも大きかった場合、間隔が狭くなっている部分については、隣接するパターン同士が接触してしまい、個々のパターンが認識できなくなる。原因としてはフォーカスが絞れていない可能性が考えられるため、この際、補正データ生成部100(又は使用者)としては、フォーカスを調整すべきフォーカス補正値を生成する。 Further, as shown in FIG. 19, the correction data generation unit 100 has a line width of each of the fifth line LN5 to the eighth line LN8 based on test pattern image data representing a part of each of the fifth line LN5 to the eighth line LN8. Measure. At this time, as the number of times of overwriting increases, the distortion of the lines is averaged to become an appropriate line, but the line width itself increases with an increase in the number of overwriting. Therefore, the correction data generation unit 100 selects a line width that is narrower than the predetermined reference width among the line widths of the fifth line LN5 to the eighth line LN8, and the number of overwriting times corresponding to the line. Is obtained as the optimum overwriting number. Note that the drawing pattern shown in FIG. 19 is a line having a predetermined line width, that is, a pattern having a predetermined width (size) in the disk radial direction or the rotation direction while changing the interval between adjacent ones in a stepwise manner. If it is drawn, but this predetermined width is larger than the expected size, adjacent patterns will come into contact with each other when the interval is narrow, and individual patterns will be recognized. become unable. The cause may be that the focus is not narrowed down. At this time, the correction data generation unit 100 (or the user) generates a focus correction value for adjusting the focus.
 そして、補正データ生成部100は、上述した如く求めた、最適重ね書き数、解像度向上補正値、フォーカス補正値、及び偏向補正値の各々を示す補正データDOFをフォーマッタ50に供給するのである。 Then, the correction data generation unit 100 supplies the formatter 50 with correction data DOF indicating each of the optimum overwriting number, resolution improvement correction value, focus correction value, and deflection correction value obtained as described above.
 フォーマッタ50は、電子ビームによる描画を実施させるべき各種描画制御信号に対して、上記補正データDOFにて示される値の分だけその制御量を補正すべき処理を施したものを本体部10に送出する。例えば、フォーマッタ50は、電子ビームのフォーカス調整量を表すフォーカス調整信号に、補正データDOFによって示される上記フォーカス補正値を加算(又は減算)したものを最終的なフォーカス調整信号FCとして本体部10に供給する。又、フォーマッタ50は、電子ビームの偏向量を表す偏向信号に、補正データDOFによって示される上記偏向補正値を加算(又は減算)したものを最終的な偏向信号F3として本体部10に供給する。 The formatter 50 sends, to the main body 10, various processing control signals that are to be drawn by an electron beam, which have been subjected to processing for correcting the control amount by the value indicated by the correction data DOF. To do. For example, the formatter 50 adds (or subtracts) the focus correction value indicated by the correction data DOF to the focus adjustment signal indicating the focus adjustment amount of the electron beam to the main body unit 10 as the final focus adjustment signal FC. Supply. Further, the formatter 50 supplies the main body 10 with a final deflection signal F3 obtained by adding (or subtracting) the deflection correction value indicated by the correction data DOF to the deflection signal indicating the deflection amount of the electron beam.
 すなわち、フォーマッタ50は、本体部10を描画制御すべく送出する各種描画制御信号(F1、F3、FC)を、図7、図13、図15、図17及び図19に示す如きテストパターンの描画結果に基づいて得られた補正データDOFにて示される補正値で補正するという調整を行うのである。 That is, the formatter 50 draws various drawing control signals (F1, F3, FC) to be sent for drawing control of the main unit 10 to draw test patterns as shown in FIGS. 7, 13, 15, 17, and 19. Adjustment is performed so that the correction value indicated by the correction data DOF obtained based on the result is corrected.
 かかる調整により、本体部10は、本来あるべき所定の描画精度(描画能力)、すなわち適切なフォーカス状態で電子ビームを照射しつつ、所定の一定ラインピッチにて複数の同心円ラインをその繋ぎ目の部分でズレを生じさせることなく描画することができるようになる。 By such adjustment, the main body 10 irradiates the electron beam with a predetermined drawing accuracy (drawing ability) that is supposed to be, that is, an appropriate focus state, and connects a plurality of concentric circle lines at the joints at a predetermined constant line pitch. It becomes possible to draw without causing a shift in the portion.
 尚、上記実施例においては、図1に示される補正データ生成部100にて、テストパターンの描画結果(テストパターン画像データ)に基づき補正データDOFを生成するようにしている。ところで、上記テストパターンによれば、電子ビーム描画装置として調整が必要となる駆動部の箇所(ブランキング駆動部31、偏向駆動部33、フォーカス駆動部34)及びその補正量を視覚的にモニタすることが可能となる。そこで、かかる補正データ生成部100の動作を人為的に行うようにしても良い。 In the above embodiment, the correction data generation unit 100 shown in FIG. 1 generates the correction data DOF based on the test pattern drawing result (test pattern image data). By the way, according to the test pattern, the position of the drive unit (blanking drive unit 31, deflection drive unit 33, focus drive unit 34) that requires adjustment as an electron beam drawing apparatus and the correction amount thereof are visually monitored. It becomes possible. Therefore, the operation of the correction data generation unit 100 may be artificially performed.
 又、上記実施例においては、フォーマッタ50を本体部10の外部に設けるようにしているが、図20に示すように、フォーマッタ50を本体部10内部に搭載するようにしても良い。 In the above embodiment, the formatter 50 is provided outside the main body 10. However, the formatter 50 may be mounted inside the main body 10 as shown in FIG.
 電子ビーム描画装置の設置時の初期調整、或いはメンテナンス調整に適用できる。 適用 It can be applied to the initial adjustment at the time of installation of the electron beam lithography system or maintenance adjustment.

Claims (12)

  1. 基板の表面に塗布されたレジストに電子ビームを照射することによりパターン描画を行う電子ビーム描画装置の調整方法であって、
     前記電子ビーム描画装置にて所定のテストパターンを描画させるテストパターン描画行程と、
     テストパターン描画画像を得るテストパターン描画画像取得行程と、
     前記テストパターン描画画像に基づいて前記電子ビーム描画装置における描画制御部の制御量を補正する補正データを生成する補正データ生成行程と、
     前記補正データに基づき前記電子ビーム描画装置における前記描画制御部の制御量を補正する補正行程と、を含むことを特徴とする電子ビーム描画装置の調整方法。
    An adjustment method of an electron beam drawing apparatus that performs pattern drawing by irradiating an electron beam onto a resist applied to a surface of a substrate,
    A test pattern drawing step of drawing a predetermined test pattern in the electron beam drawing apparatus;
    Test pattern drawing image acquisition process for obtaining a test pattern drawing image;
    A correction data generation process for generating correction data for correcting a control amount of a drawing control unit in the electron beam drawing apparatus based on the test pattern drawing image;
    And a correction step of correcting a control amount of the drawing controller in the electron beam drawing apparatus based on the correction data.
  2. 前記テストパターンは、複数の同心円からなるパターン描画を行う際に、各パターンの始点と終点との繋ぎ目、電子ビームのフォーカス状態及び描画解像度の内の少なくとも1をテストすることができるパターンを含むことを特徴とする請求項1記載の電子ビーム描画装置の調整方法。 The test pattern includes a pattern that can test at least one of the joint between the start point and the end point of each pattern, the focus state of the electron beam, and the drawing resolution when drawing a pattern composed of a plurality of concentric circles. The method of adjusting an electron beam lithography apparatus according to claim 1.
  3. 前記テストパターン描画行程は、複数の同心円ラインを描画させるべく前記基板を回転させつつ前記電子ビームの照射方向を偏向する行程と、
     前記同心円ライン各々毎に、前記電子ビームの照射方向の偏向量のピークを異ならせる行程と、を含むことを特徴とする請求項1又は2記載の電子ビーム描画装置の調整方法。
    The test pattern drawing step includes a step of deflecting the irradiation direction of the electron beam while rotating the substrate to draw a plurality of concentric lines.
    The method for adjusting an electron beam lithography apparatus according to claim 1, further comprising a step of varying a peak of a deflection amount in an irradiation direction of the electron beam for each concentric line.
  4. 前記テストパターン描画行程は、前記基板の1回転周期内における所定の第1期間内において前記電子ビームのフォーカス調整量を段階的に変更する行程を含むことを特徴とする請求項1又は2記載の電子ビーム描画装置の調整方法。 3. The test pattern drawing process includes a process of stepwise changing a focus adjustment amount of the electron beam within a predetermined first period within one rotation period of the substrate. Method for adjusting an electron beam drawing apparatus.
  5. 前記テストパターン描画行程は、前記基板の1回転周期内における所定の第2期間内において所定周期毎に前記電子ビームの照射を停止させる期間を設けると共に前記所定周期各々内での前記電子ビームの照射期間を夫々異ならせる行程を含むことを特徴とする請求項1又は2記載の電子ビーム描画装置の調整方法。 In the test pattern drawing process, a period for stopping the irradiation of the electron beam is provided for each predetermined period within a predetermined second period within one rotation period of the substrate, and the irradiation of the electron beam within each predetermined period is performed. The method for adjusting an electron beam lithography apparatus according to claim 1, further comprising a step of varying the periods.
  6. 前記テストパターン描画行程は、前記基板の回転の半径方向において夫々所定幅を有する複数のパターンを、互いに隣接するもの同士の間隔を段階的に変化させながら描画させる行程を含むことを特徴とする請求項1又は2記載の電子ビーム描画装置の調整方法。 The test pattern drawing step includes a step of drawing a plurality of patterns each having a predetermined width in the radial direction of rotation of the substrate while changing the interval between adjacent ones in a stepwise manner. Item 3. The method for adjusting an electron beam lithography apparatus according to Item 1 or 2.
  7. 基板の表面に塗布されたレジストに電子ビームを照射することによりパターン描画を行う電子ビーム描画装置の描画制御を担う描画制御信号を生成する制御装置の調整方法であって、
     前記電子ビーム描画装置に対して所定のテストパターンを描画させるべき制御を行う行程と、
     前記電子ビーム描画装置によって描画された前記テストパターンを表すテストパターン描画画像に基づき、前記描画制御信号に対する補正量を表す補正データを生成する行程と、
     前記補正データによって表される前記補正量に基づいて前記描画制御信号を補正する行程と、を含むことを特徴とする電子ビーム描画装置を制御する制御装置の調整方法。
    An adjustment method of a control device that generates a drawing control signal responsible for drawing control of an electron beam drawing device that performs pattern drawing by irradiating an electron beam to a resist applied to a surface of a substrate,
    A step of performing a control for drawing a predetermined test pattern to the electron beam drawing apparatus;
    A step of generating correction data representing a correction amount for the drawing control signal based on a test pattern drawing image representing the test pattern drawn by the electron beam drawing apparatus;
    And a step of correcting the drawing control signal based on the correction amount represented by the correction data. A method for adjusting a control device for controlling an electron beam drawing apparatus, comprising:
  8. 前記テストパターンは、複数の同心円からなるパターン描画を行う際に、各パターンの繋ぎ目、電子ビームのフォーカス状態及び描画解像度の内の少なくとも1をモニタすることができるパターンを含むことを特徴とする請求項7記載の電子ビーム描画装置を制御する制御装置の調整方法。 The test pattern includes a pattern capable of monitoring at least one of a joint of each pattern, a focus state of an electron beam, and a drawing resolution when drawing a pattern composed of a plurality of concentric circles. A method for adjusting a control device for controlling the electron beam lithography apparatus according to claim 7.
  9. 基板の表面に塗布されたレジストに電子ビームを照射することによりパターン描画を行う電子ビーム描画装置を制御する制御装置であって、
     所定のテストパターンを描画させるべき描画制御信号を生成する手段と、
     前記描画制御信号によって表される制御量を所定期間に亘り変化させる手段と、を含むことを特徴とする電子ビーム描画装置の制御装置。
    A control device for controlling an electron beam drawing apparatus that performs pattern drawing by irradiating an electron beam onto a resist applied to a surface of a substrate,
    Means for generating a drawing control signal for drawing a predetermined test pattern;
    Means for changing a control amount represented by the drawing control signal over a predetermined period of time.
  10. 基板の表面に塗布されたレジストに電子ビームを照射することによりパターン描画を行う電子ビーム描画装置を制御する制御装置の制御方法であって、
     所定のテストパターンを描画させるべき描画制御信号を生成する行程と、
     前記描画制御信号によって表される制御量を所定期間に亘り変化させる行程と、を含むことを特徴とする電子ビーム描画装置における制御装置の制御方法。
    A control method of a control device for controlling an electron beam drawing apparatus that performs pattern drawing by irradiating an electron beam onto a resist applied to a surface of a substrate,
    A step of generating a drawing control signal for drawing a predetermined test pattern;
    And a step of changing a control amount represented by the drawing control signal over a predetermined period.
  11. 基板の表面に塗布されたレジストに電子ビームを照射することによりパターン描画を行う電子ビーム描画装置であって、
     所定のテストパターンを描画させるべき描画制御信号を生成する手段と、
     前記描画制御信号によって表される制御量を所定期間に亘り変化させる手段と、
     前記描画制御信号に応じて、前記レジストに電子ビームを照射することにより前記テストパターンの描画を行う手段と、を含むことを特徴とする電子ビーム描画装置。
    An electron beam drawing apparatus that performs pattern drawing by irradiating an electron beam onto a resist applied to a surface of a substrate,
    Means for generating a drawing control signal for drawing a predetermined test pattern;
    Means for changing a control amount represented by the drawing control signal over a predetermined period;
    Means for irradiating the resist with an electron beam in accordance with the drawing control signal, thereby drawing the test pattern.
  12. 基板の表面に塗布されたレジストに電子ビームを照射することによりパターン描画を行う電子ビーム描画装置の描画制御を担う描画制御信号を生成する制御装置によって実行されるコンピュータ読み取り可能なプログラムであって、
     前記電子ビーム描画装置に対して所定のテストパターンを描画させるべき制御を行う行程と、
     前記電子ビーム描画装置によって描画された前記テストパターンを表すテストパターン描画画像に基づき、前記描画制御信号に対する補正量を表す補正データを生成する行程と、
     前記補正データによって表される前記補正量に基づいて前記描画制御信号を補正する行程と、を含むことを特徴とする電子ビーム描画装置を制御する制御装置のプログラム。
    A computer-readable program executed by a control device that generates a drawing control signal responsible for drawing control of an electron beam drawing device that performs pattern drawing by irradiating an electron beam onto a resist applied to the surface of a substrate,
    A step of performing a control for drawing a predetermined test pattern to the electron beam drawing apparatus;
    A step of generating correction data representing a correction amount for the drawing control signal based on a test pattern drawing image representing the test pattern drawn by the electron beam drawing apparatus;
    And a process of correcting the drawing control signal based on the correction amount represented by the correction data.
PCT/JP2008/065506 2008-08-29 2008-08-29 Method for adjusting electron beam plotting device and method for adjusting control device for controlling electron beam plotting device WO2010023751A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/065506 WO2010023751A1 (en) 2008-08-29 2008-08-29 Method for adjusting electron beam plotting device and method for adjusting control device for controlling electron beam plotting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/065506 WO2010023751A1 (en) 2008-08-29 2008-08-29 Method for adjusting electron beam plotting device and method for adjusting control device for controlling electron beam plotting device

Publications (1)

Publication Number Publication Date
WO2010023751A1 true WO2010023751A1 (en) 2010-03-04

Family

ID=41720940

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/065506 WO2010023751A1 (en) 2008-08-29 2008-08-29 Method for adjusting electron beam plotting device and method for adjusting control device for controlling electron beam plotting device

Country Status (1)

Country Link
WO (1) WO2010023751A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09320945A (en) * 1996-05-24 1997-12-12 Nikon Corp Exposure condition measuring method and aligner
JP2004005872A (en) * 2002-04-09 2004-01-08 Matsushita Electric Ind Co Ltd Method for manufacturing optical disk master, optical disk and method for manufacturing the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09320945A (en) * 1996-05-24 1997-12-12 Nikon Corp Exposure condition measuring method and aligner
JP2004005872A (en) * 2002-04-09 2004-01-08 Matsushita Electric Ind Co Ltd Method for manufacturing optical disk master, optical disk and method for manufacturing the same

Similar Documents

Publication Publication Date Title
JP5191542B2 (en) Electron beam recording apparatus, control apparatus and control method thereof
JP2009134857A (en) Electron beam lithography apparatus and method
JP3984019B2 (en) Electron beam apparatus and electron beam adjusting method
WO2007111260A1 (en) Beam recording device, and beam adjusting method
JP4216313B2 (en) Electron beam position variation measuring method, electron beam position variation measuring apparatus, electron beam recording apparatus
US8653488B2 (en) Electron beam apparatus
JPWO2008056400A1 (en) Disc master production method
JP4350471B2 (en) Electron beam drawing method and drawing apparatus
JP2010072180A (en) Correction system and electron beam drawing apparatus
WO2010023751A1 (en) Method for adjusting electron beam plotting device and method for adjusting control device for controlling electron beam plotting device
JP5166400B2 (en) Beam drawing device
US20100102254A1 (en) Electron beam apparatus
US7965606B2 (en) Information recording method and information recording apparatus
WO2010013348A1 (en) Electron beam recorder, its controller, and control method
JPWO2007111261A1 (en) Electron beam recording apparatus and beam adjustment method
JP5232864B2 (en) Control apparatus, control method, and drawing method for electron beam drawing apparatus
JP2012141249A (en) Rotation control device and rotation control method
JP2004164762A (en) Disc master exposure system
CN1677528A (en) Electron beam recorder, irradiation position detection method, and irradiation position control method
JP2010205326A (en) Electron beam drawing device, method for calculating stage position deviation, and pattern drawing method
WO2010014111A1 (en) Electron beam recording apparatus, and control apparatus and control method for same
US20110188353A1 (en) Electron beam lithography method, electron beam lithography apparatus, method for producing a mold, and method for producing a magnetic disk medium
JP2005302704A (en) Electron beam recording apparatus, electron beam irradiation position detection method, and electron beam irradiation position control method
JP2013025273A (en) Exposure device and control method therefor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08809573

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 08809573

Country of ref document: EP

Kind code of ref document: A1