WO2010017553A1 - Triallyl phosphate enabled grafting of compatible monomers to chain scissionable polyolefins - Google Patents
Triallyl phosphate enabled grafting of compatible monomers to chain scissionable polyolefins Download PDFInfo
- Publication number
- WO2010017553A1 WO2010017553A1 PCT/US2009/053294 US2009053294W WO2010017553A1 WO 2010017553 A1 WO2010017553 A1 WO 2010017553A1 US 2009053294 W US2009053294 W US 2009053294W WO 2010017553 A1 WO2010017553 A1 WO 2010017553A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- free
- chain
- weight percent
- radical
- scissionable
- Prior art date
Links
- 229920000098 polyolefin Polymers 0.000 title claims abstract description 13
- XHGIFBQQEGRTPB-UHFFFAOYSA-N tris(prop-2-enyl) phosphate Chemical compound C=CCOP(=O)(OCC=C)OCC=C XHGIFBQQEGRTPB-UHFFFAOYSA-N 0.000 title claims abstract description 13
- 239000000178 monomer Substances 0.000 title claims abstract description 12
- 239000000203 mixture Substances 0.000 claims abstract description 14
- 229920013730 reactive polymer Polymers 0.000 claims abstract description 3
- 239000004743 Polypropylene Substances 0.000 claims description 17
- 229920001155 polypropylene Polymers 0.000 claims description 17
- FPYJFEHAWHCUMM-UHFFFAOYSA-N maleic anhydride Chemical group O=C1OC(=O)C=C1 FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 claims description 11
- 229920001577 copolymer Polymers 0.000 claims description 7
- -1 polypropylene Polymers 0.000 claims description 7
- 230000001939 inductive effect Effects 0.000 claims description 4
- XMNIXWIUMCBBBL-UHFFFAOYSA-N 2-(2-phenylpropan-2-ylperoxy)propan-2-ylbenzene Chemical compound C=1C=CC=CC=1C(C)(C)OOC(C)(C)C1=CC=CC=C1 XMNIXWIUMCBBBL-UHFFFAOYSA-N 0.000 description 9
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 6
- VOSUIKFOFHZNED-UHFFFAOYSA-N tris(prop-2-enyl) benzene-1,3,5-tricarboxylate Chemical group C=CCOC(=O)C1=CC(C(=O)OCC=C)=CC(C(=O)OCC=C)=C1 VOSUIKFOFHZNED-UHFFFAOYSA-N 0.000 description 6
- 238000006243 chemical reaction Methods 0.000 description 4
- 150000001451 organic peroxides Chemical class 0.000 description 4
- 150000002978 peroxides Chemical class 0.000 description 4
- 229920000642 polymer Polymers 0.000 description 4
- 150000003254 radicals Chemical class 0.000 description 4
- 239000003153 chemical reaction reagent Substances 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 2
- 239000005977 Ethylene Substances 0.000 description 2
- 238000012668 chain scission Methods 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- NNBZCPXTIHJBJL-UHFFFAOYSA-N decalin Chemical compound C1CCCC2CCCCC21 NNBZCPXTIHJBJL-UHFFFAOYSA-N 0.000 description 2
- 229910003460 diamond Inorganic materials 0.000 description 2
- 239000010432 diamond Substances 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 229920001519 homopolymer Polymers 0.000 description 2
- 238000011068 loading method Methods 0.000 description 2
- 230000001404 mediated effect Effects 0.000 description 2
- 230000003534 oscillatory effect Effects 0.000 description 2
- 229920005606 polypropylene copolymer Polymers 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 2
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 238000000518 rheometry Methods 0.000 description 2
- 239000007858 starting material Substances 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- RELMFMZEBKVZJC-UHFFFAOYSA-N 1,2,3-trichlorobenzene Chemical compound ClC1=CC=CC(Cl)=C1Cl RELMFMZEBKVZJC-UHFFFAOYSA-N 0.000 description 1
- 238000005033 Fourier transform infrared spectroscopy Methods 0.000 description 1
- 230000001154 acute effect Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 239000011203 carbon fibre reinforced carbon Substances 0.000 description 1
- 230000002860 competitive effect Effects 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000000113 differential scanning calorimetry Methods 0.000 description 1
- HBGGXOJOCNVPFY-UHFFFAOYSA-N diisononyl phthalate Chemical class CC(C)CCCCCCOC(=O)C1=CC=CC=C1C(=O)OCCCCCCC(C)C HBGGXOJOCNVPFY-UHFFFAOYSA-N 0.000 description 1
- 230000003467 diminishing effect Effects 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 238000013467 fragmentation Methods 0.000 description 1
- 238000006062 fragmentation reaction Methods 0.000 description 1
- 238000007306 functionalization reaction Methods 0.000 description 1
- 239000003999 initiator Substances 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229920005629 polypropylene homopolymer Polymers 0.000 description 1
- 230000001376 precipitating effect Effects 0.000 description 1
- 229920001384 propylene homopolymer Polymers 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229920001897 terpolymer Polymers 0.000 description 1
- 229920006029 tetra-polymer Polymers 0.000 description 1
- PXXNTAGJWPJAGM-UHFFFAOYSA-N vertaline Natural products C1C2C=3C=C(OC)C(OC)=CC=3OC(C=C3)=CC=C3CCC(=O)OC1CC1N2CCCC1 PXXNTAGJWPJAGM-UHFFFAOYSA-N 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
- 150000003738 xylenes Chemical class 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F8/00—Chemical modification by after-treatment
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F255/00—Macromolecular compounds obtained by polymerising monomers on to polymers of hydrocarbons as defined in group C08F10/00
- C08F255/02—Macromolecular compounds obtained by polymerising monomers on to polymers of hydrocarbons as defined in group C08F10/00 on to polymers of olefins having two or three carbon atoms
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/49—Phosphorus-containing compounds
- C08K5/51—Phosphorus bound to oxygen
- C08K5/52—Phosphorus bound to oxygen only
- C08K5/521—Esters of phosphoric acids, e.g. of H3PO4
Definitions
- Free-radical initiated grafting of maleic anhydride to polyolefins is practiced commercially, typically with peroxides. When propylene polymers are used, chain scission and grafting are competitive reactions. Unfortunately, chain scission is dominant and decreases the molecular weight and viscosity of the grafted resin.
- Co-grafting reagents containing two or more terminal carbon-carbon double bonds or triple bonds can be combined with free -radical generation to mitigate the loss in melt viscosity of polypropylene by coupling of polymer chains.
- An example of such a co-grafting reagent is triallyl trimesate.
- the present invention provides a free-radical reactive polymer composition
- a free-radical reactive polymer composition comprising (a) a free-radical, chain scissionable polyolefin, (b) a graftable, compatible monomer, and (c) a triallyl phosphate coagent.
- the components of the invented composition can be present in a variety of combinations.
- the composition can further comprise a free-radical inducing species used to make a crosslinked copolymer from the composition. Additionally, the composition can further comprise antioxidants and other polymers.
- Polypropylene (PP) is an example of a free-radical, chain scissionable polyolefin suitable for use in the present invention.
- propylene polymers include propylene homopolymers and copolymers of propylene with ethylene or another unsaturated comonomer. Copolymers also include terpolymers, tetrapolymers, etc.
- the polypropylene copolymers comprise units derived from propylene in an amount of at least about 60 weight percent.
- the propylene monomer is at least about 70 weight percent of the copolymer, more preferably at least about 80 weight percent.
- the resulting grafting level is preferably greater than about 0.5 weight percent monomer. More preferably, the grafting level is greater than about 1.0 weight percent monomer. Most preferably, the grafting level is greater than about 1.5 weight percent monomer.
- the triallyl phosphate coagent is present in an amount between about 0.05 weight percent to about 20 weight percent; more preferably, between about 0.1 weight percent to about 10 weight percent; even more preferably, between about 0.2 weight percent to about 10 weight percent; and most preferably, between about 0.3 to about 5 weight percent.
- Free-radicals can be produced for use in the present invention in a variety of ways known to persons skilled in the art.
- Useful free-radical inducing species include organic peroxides, Azo free-radical initiators, and bicumene.
- the free- radical inducing species is an organic peroxide.
- oxygen-rich environments can initiate useful free-radicals.
- Preferable organic peroxides include dicumyl peroxide and Vulcup R. The organic peroxide can be added via direct injection.
- the peroxide is present in the reactive composition in an amount of about 0.005 weight percent to about 20 weight percent, preferably about 0.01 weight percent to about 10 weight percent, more preferably about 0.02 weight percent to about 10 weight percent, and most preferably about 0.03 weight percent to about 5 weight percent.
- the crosslinked copolymer has a gel content, as measured by extraction in trichlorobenzene or decalin, of less than about 30 weight percent; more preferably, less than about 15 weight percent, and even more preferably, less than about 10 weight percent.
- FIG. 1 is a set of three graphs, illustrating dynamic rheology data for unmodified polypropylene and its maleic anhydride/triallyl trimesate co-grafted derivatives with the maleic anhydride at 2 weight percent and the temperature at 180 degrees Celsius.
- FIG. 2 is a set of three graphs, illustrating dynamic rheology data for unmodified polypropylene and its maleic anhydride/triallyl phosphate co-grafted derivatives with the maleic anhydride at 2 weight percent, dicumyl peroxide at 0.2 weight percent, and the temperature at 180 degrees Celsius.
- FIG. 3 is a graph of creep compliance data for unmodified polypropylene and its maleic anhydride/triallyl phosphate co-grafted derivative with the maleic anhydride at 2 weight percent, the triallyl phosphate at 3 weight percent, dicumyl peroxide at 0.2 weight percent, and the temperature at 180 degrees Celsius.
- the filled triangle and diamond indicate when the stress of 10 Pa is applied to the composition.
- the unfilled triangle and diamond indicate when the composition is under recovery and the stress is no longer being applied to the composition.
- DCP Dicumyl peroxide
- MAn Maleic anhydride
- MAn 99%, Sigma- Aldrich
- TAM Triallyl trimesate
- TCI America, Portland, Oregon, USA triallyl phosphate
- PP powder 40 g was coated with an acetone solution containing the desired amount of DCP, coagent and MAn. Acetone was removed by evaporation. The mixture was charged to a Haake Polylab R600 internal batch mixer and processed at a set temperature of 190 degrees Celsius for 10 minutes at 60 rpm.
- Oscillatory elastic (G') and loss (G") moduli were measured under a nitrogen atmosphere using a Reologica ViscoTech controlled stress rheometer equipped with 20 mm diameter parallel plates. The instrument was operated at 180 degrees Celsius with a gap of 1.5 mm over frequencies 0.007-30 Hz. Stress sweeps ensured that all data were acquired within the linear viscoelastic regime. Creep experiments were also conducted using the aforementioned rheometer at 180 degrees Celsius with a stress of 10 Pa for 1000 seconds. The data were analyzed to calculate zero-shear viscosity and recoverable compliance (but only for cases where steady-state had been attained).
- compatibility assessments are based on average graft yields.
- the data presented in Table 1 show that the presence of TAM or TAP had no significant effect on the amount of MAn grafted to PP and that substantial TAM conversions can be achieved in the presence of MAn.
- TAM Triallyl trimesate
- TAP Triallyl phosphate
- Example 7 0.1 2.0 0.7 0.9 N/A 0 700
- Example 8 0.2 2.0 0.7 1.3 N/A 0 730
- FIG. 1 also shows that maleating PP in the absence of coagent produced a reduction in melt viscosity, and altered shear-thinning characteristics in a manner that is generally associated with a narrowing of the molecular weight distribution.
- the addition of about 1 weight percent to about 2 weight percent of TAM to the maleation process reduced viscosity losses, but this coagent could not maintain the starting material properties.
- a closer examination of the dynamic storage modulus (G') at low frequencies reveals a shift away from terminal flow behavior where G' generally scales with ⁇ .
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Graft Or Block Polymers (AREA)
Abstract
The present invention is a free-radical reactive polymer composition made from or containing (a) a free-radical, chain scissionable polyolefin, (b) a graftable, compatible monomer, and (c) a triallyl phosphate coagent. By teaching the use of triallyl phosphate coagent as the selected coagent, this invention mitigates the loss in melt viscosity of chain scissionable polyolefins during free-radical-initiated grafting of a comonomer onto the polyolefin.
Description
TRIALLYL PHOSPHATE ENABLED GRAFTING OF COMPATIBLE MONOMERS TO CHAIN SCISSIONABLE POLYOLEFINS
Free-radical initiated grafting of maleic anhydride to polyolefins is practiced commercially, typically with peroxides. When propylene polymers are used, chain scission and grafting are competitive reactions. Unfortunately, chain scission is dominant and decreases the molecular weight and viscosity of the grafted resin.
Co-grafting reagents containing two or more terminal carbon-carbon double bonds or triple bonds can be combined with free -radical generation to mitigate the loss in melt viscosity of polypropylene by coupling of polymer chains. An example of such a co-grafting reagent is triallyl trimesate.
It is desirable to identify other coagents that are more effective than the previously known coagents.
The present invention provides a free-radical reactive polymer composition comprising (a) a free-radical, chain scissionable polyolefin, (b) a graftable, compatible monomer, and (c) a triallyl phosphate coagent. It is contemplated that the components of the invented composition can be present in a variety of combinations. The composition can further comprise a free-radical inducing species used to make a crosslinked copolymer from the composition. Additionally, the composition can further comprise antioxidants and other polymers.
Polypropylene (PP) is an example of a free-radical, chain scissionable polyolefin suitable for use in the present invention. Examples of propylene polymers include propylene homopolymers and copolymers of propylene with ethylene or another unsaturated comonomer. Copolymers also include terpolymers, tetrapolymers, etc. Typically, the polypropylene copolymers comprise units derived from propylene in an amount of at least about 60 weight percent. Preferably, the propylene monomer is at least about 70 weight percent of the copolymer, more preferably at least about 80 weight percent.
An example of useful, graftable, compatible monomers is maleic anhydride. The resulting grafting level is preferably greater than about 0.5 weight percent monomer. More preferably, the grafting level is greater than about 1.0 weight percent monomer. Most preferably, the grafting level is greater than about 1.5 weight percent monomer.
Preferably, the triallyl phosphate coagent is present in an amount between about 0.05 weight percent to about 20 weight percent; more preferably, between about 0.1 weight percent to about 10 weight percent; even more preferably, between about 0.2 weight percent to about 10 weight percent; and most preferably, between about 0.3 to about 5 weight percent.
Free-radicals can be produced for use in the present invention in a variety of ways known to persons skilled in the art. Useful free-radical inducing species include organic peroxides, Azo free-radical initiators, and bicumene. Preferably, the free- radical inducing species is an organic peroxide. Also, oxygen-rich environments can initiate useful free-radicals. Preferable organic peroxides include dicumyl peroxide and Vulcup R. The organic peroxide can be added via direct injection. When a peroxide is used to generate free-radicals, the peroxide is present in the reactive composition in an amount of about 0.005 weight percent to about 20 weight percent, preferably about 0.01 weight percent to about 10 weight percent, more preferably about 0.02 weight percent to about 10 weight percent, and most preferably about 0.03 weight percent to about 5 weight percent.
Other methods of generating free-radicals include electron-beam and gamma radiation.
The crosslinked copolymer has a gel content, as measured by extraction in trichlorobenzene or decalin, of less than about 30 weight percent; more preferably, less than about 15 weight percent, and even more preferably, less than about 10 weight percent.
FIG. 1 is a set of three graphs, illustrating dynamic rheology data for unmodified polypropylene and its maleic anhydride/triallyl trimesate co-grafted derivatives with the maleic anhydride at 2 weight percent and the temperature at 180 degrees Celsius.
FIG. 2 is a set of three graphs, illustrating dynamic rheology data for unmodified polypropylene and its maleic anhydride/triallyl phosphate co-grafted derivatives with the maleic anhydride at 2 weight percent, dicumyl peroxide at 0.2 weight percent, and the temperature at 180 degrees Celsius.
FIG. 3 is a graph of creep compliance data for unmodified polypropylene and its maleic anhydride/triallyl phosphate co-grafted derivative with the maleic anhydride at 2 weight percent, the triallyl phosphate at 3 weight percent, dicumyl peroxide at 0.2 weight percent, and the temperature at 180 degrees Celsius. The filled
triangle and diamond indicate when the stress of 10 Pa is applied to the composition. The unfilled triangle and diamond indicate when the composition is under recovery and the stress is no longer being applied to the composition.
EXAMPLE
The following non-limiting examples illustrate the invention.
Dicumyl peroxide (DCP, 98%, Sigma Aldrich, Oakville, Ontario, Canada), maleic anhydride (MAn, 99%, Sigma- Aldrich), triallyl trimesate (TAM, Monomer Polymer Inc., Feasterville, Pennsylvania, USA), and triallyl phosphate (TAP, 98%, TCI America, Portland, Oregon, USA) were used as received. An additive-free (unstabilized), powder grade of isotactic polypropylene homopolymer (i-PP, Mn= 70,000, polydispersity = 4.9) was used as supplied by The Dow Chemical Company, Midland, Michigan, USA.
For i-PP graft modification, PP powder (40 g) was coated with an acetone solution containing the desired amount of DCP, coagent and MAn. Acetone was removed by evaporation. The mixture was charged to a Haake Polylab R600 internal batch mixer and processed at a set temperature of 190 degrees Celsius for 10 minutes at 60 rpm.
Material for FT-IR and DSC analysis was purified by dissolving 1 g in boiling xylenes (20 ml), precipitating from acetone (100 ml), and then drying under vacuum. Bound maleic anhydride, triallyl trimesate contents were determined from the area derived from the 1818-1755 cm"1 and 1670-1751 cm"1 resonances, respectively, relative to a 422-496 cm"1 internal standard region originating from the resin. Comparison of the ratio of these areas to calibration mixtures provided an estimate of the concentrations of the grafted moieties.
Oscillatory elastic (G') and loss (G") moduli were measured under a nitrogen atmosphere using a Reologica ViscoTech controlled stress rheometer equipped with 20 mm diameter parallel plates. The instrument was operated at 180 degrees Celsius with a gap of 1.5 mm over frequencies 0.007-30 Hz. Stress sweeps ensured that all data were acquired within the linear viscoelastic regime. Creep experiments were also conducted using the aforementioned rheometer at 180 degrees Celsius with a stress of 10 Pa for 1000 seconds. The data were analyzed to calculate zero-shear viscosity and recoverable compliance (but only for cases where steady-state had been attained).
The functionalization of PP by radical-mediated addition of the polyolefin to MAn has been studied extensively, and the accompanying losses of melt viscosity that arise from macroradical fragmentation are well known. Table 1 summarizes baseline information, in which dicumyl peroxide (DCP) is used to initiate MAn grafting in the absence of coagent. The required peroxide loadings are much greater than those demanded by ethylene -rich polymer modifications, despite the fact that the exemplified PP homopolymer contained no stabilizing agents. Nevertheless, MAn conversions ranging from 55 to 75% were readily achieved.
In their simplest form, compatibility assessments are based on average graft yields. The data presented in Table 1 show that the presence of TAM or TAP had no significant effect on the amount of MAn grafted to PP and that substantial TAM conversions can be achieved in the presence of MAn.
Microstructure differences arising from radical-mediated polyolefin modifications are reflected by melt-state rheological properties. As also reported in Table 1, zero-shear viscosities (η0) derived from creep measurements and oscillatory dynamic properties (η*, G', tanδ) permitted assessment of changes in chain length distributions and branching architectures. FIG. 1 shows that the starting homopolymer (Mn = 70,000, polydispersity = 4.9) demonstrated rheological properties that were consistent with its linear structure. When extrapolated to zero frequency, the complex viscosity (η*) agreed with the zero-shear viscosity (ηo), and the storage modulus (G') showed none of the low-frequency complexity commonly reported for materials containing long-chain branching.
Table 1: PP Co-grafting Yields3
Ex. No. Reagent Loadings Graft-modified Product
[DCP] [MAn] [Coagent] Bound Bound Gel ηo
(wt%) (wt%) (wt%) MAn Coagent Content (Pa-s)b
(wt%) (wt%) (wt%)
Comparative Examples: no coagent
Comp. Ex. 1 ... ... ... ... ... 0 11,130
Comp. Ex. 2 0.1 2.0 0.0 1.1 ... 0 350
Comp. Ex. 3 0.2 2.0 0.0 1.5 ... 0 170
Comparative Examples: Triallyl trimesate (TAM)
Comp. Ex. 4 0.1 2.0 1.0 1.2 0.4 0 540
Comp. Ex. 5 0.2 2.0 1.0 1.4 0.5 0 290
Comp. Ex. 6 0.2 2.0 2.0 1.6 0.7 0 298
Examples: Triallyl phosphate (TAP)
Example 7 0.1 2.0 0.7 0.9 N/A 0 700
Example 8 0.2 2.0 0.7 1.3 N/A 0 730
Example 9 0.2 2.0 1.4 1.4 N/A 0 1486
Example 10 0.2 2.0 3.0 1.5 N/A 6 N/A a. T=190 degrees Celsius; 10 minutes; b. From creep analysis at T=180 degrees Celsius, σ=10 Pa.
FIG. 1 also shows that maleating PP in the absence of coagent produced a reduction in melt viscosity, and altered shear-thinning characteristics in a manner that is generally associated with a narrowing of the molecular weight distribution. The addition of about 1 weight percent to about 2 weight percent of TAM to the maleation process reduced viscosity losses, but this coagent could not maintain the starting material properties. A closer examination of the dynamic storage modulus (G') at low frequencies reveals a shift away from terminal flow behavior where G' generally scales with ω .
When used under equivalent reaction conditions, TAP provides a higher crosslink density than does its aromatic ester analogue, TAM. The data illustrated in FIG. 2 demonstrate the use of this higher reactivity to control product viscosities. The co-grafting of 3 weight percent TAP produced a maleated derivative whose η* versus ω profile resembled, at least superficially, that of the starting material. However, a closer examination reveals important differences, particularly at low oscillation frequencies where the branching effects are most acute. The co-grafted material lacks a Newtonian plateau as a result of a storage modulus which shows no signs of diminishing toward a standard terminal flow condition. Indeed, the phase angle declined continuously in this frequency region.
As FIG. 3 illustrates, a creep compliance test did not reach steady-state within 1000 seconds and recovered a substantial fraction of the final compliance after releasing the applied stress. Although ηo could not be determined from the creep compliance test for the derivative co-grafted with TAP at a concentration of 3 weight percent, the data in Figure 2 indicate that ηo would have been substantially greater than that of the unmodified PP. Without being bound to any theory, it is believed that the very high degree of shear-thinning observed with this composition is likely to reflect comparatively higher melt strength of the TAP co-grafted derivative as well as good processability during extrusion or other high-shear mixing processes.
Claims
1. A free-radical reactive polymer composition comprising:
(a) a free-radical, chain scissionable polyolefin,
(b) a graftable, compatible monomer, and
(c) a triallyl phosphate coagent.
2. The crosslinked copolymer of Claim 1 further comprising a free-radical inducing species.
3. The crosslinked copolymer of Claim 1 wherein the free-radical, chain scissionable polyolefin is a polypropylene.
4. The crosslinked copolymer of Claim 1 wherein
(a) the free-radical, chain scissionable polyolefin is a polypropylene,
(b) the graftable, compatible monomer is maleic anhydride, and
(c) the triallyl phosphate coagent is present between about 0.3 to about 5 weight percent.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US8740808P | 2008-08-08 | 2008-08-08 | |
US61/087,408 | 2008-08-08 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010017553A1 true WO2010017553A1 (en) | 2010-02-11 |
Family
ID=41137609
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2009/053294 WO2010017553A1 (en) | 2008-08-08 | 2009-08-10 | Triallyl phosphate enabled grafting of compatible monomers to chain scissionable polyolefins |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2010017553A1 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018160403A1 (en) | 2017-02-28 | 2018-09-07 | Dow Global Technologies Llc | Ethylene-alpha-olefin copolymer-triallyl phosphate composition |
WO2018160402A1 (en) | 2017-02-28 | 2018-09-07 | Dow Global Technologies Llc | Ethylene-alpha-olefin copolymer-triallyl phosphate composition |
CN109575190A (en) * | 2018-10-22 | 2019-04-05 | 佳易容相容剂江苏有限公司 | A kind of phosphorous polyethylene maleic anhydride graft copolymer and preparation method thereof with cooperative flame retardant effect |
CN118271780A (en) * | 2023-10-31 | 2024-07-02 | 浙江南洋华诚科技股份有限公司 | Ultrathin temperature-resistant bi-directional synchronous stretching special material and preparation method thereof |
US12077643B2 (en) | 2017-05-31 | 2024-09-03 | Dow Global Technologies Llc | Non-polar ethylene-based compositions with triallyl phosphate for encapsulant films |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1489138A1 (en) * | 2002-03-27 | 2004-12-22 | Nof Corporation | Olefinic thermoplastic elastomer and moldings thereof |
US20050147824A1 (en) * | 2003-12-30 | 2005-07-07 | Kimberly-Clark Worldwide, Inc. | Surface initiated graft polymerization |
-
2009
- 2009-08-10 WO PCT/US2009/053294 patent/WO2010017553A1/en active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1489138A1 (en) * | 2002-03-27 | 2004-12-22 | Nof Corporation | Olefinic thermoplastic elastomer and moldings thereof |
US20050147824A1 (en) * | 2003-12-30 | 2005-07-07 | Kimberly-Clark Worldwide, Inc. | Surface initiated graft polymerization |
Non-Patent Citations (3)
Title |
---|
PARENT J S ET AL: "Structure-rheology relationships of long-chain branched polypropylene: Comparative analysis of acrylic and allylic coagent chemistry", POLYMER, ELSEVIER SCIENCE PUBLISHERS B.V, GB, vol. 50, no. 1, 24 November 2008 (2008-11-24), pages 85 - 94, XP025866378, ISSN: 0032-3861 * |
SAURAV S. SENGUPTA, J. SCOTT PARENT , J. KEITH MCLEAN: "Radical-mediated modification of polypropylene: Selective grafting via polyallyl coagents", JOURNAL OF POLYMER SCIENCE PART A: POLYMER CHEMISTRY, vol. 43, no. 20, 6 September 2005 (2005-09-06), Wiley Periodicals, Inc., pages 4882 - 4893, XP002550442 * |
SENGUPTA S S ET AL: "Selectivity of allylic coagent-mediated polypropylene maleation", POLYMER ENGINEERING AND SCIENCE OCTOBER 2009 JOHN WILEY AND SONS INC. USA, vol. 49, no. 10, 29 May 2009 (2009-05-29), pages 1945 - 1950, XP002550408 * |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018160403A1 (en) | 2017-02-28 | 2018-09-07 | Dow Global Technologies Llc | Ethylene-alpha-olefin copolymer-triallyl phosphate composition |
WO2018160402A1 (en) | 2017-02-28 | 2018-09-07 | Dow Global Technologies Llc | Ethylene-alpha-olefin copolymer-triallyl phosphate composition |
CN110248994A (en) * | 2017-02-28 | 2019-09-17 | 陶氏环球技术有限责任公司 | Ethene-alpha-olefin copolymer-triallyl phosphate composition |
CN110312757A (en) * | 2017-02-28 | 2019-10-08 | 陶氏环球技术有限责任公司 | Ethene-alpha-olefin copolymer-triallyl phosphate composition |
US10913872B2 (en) | 2017-02-28 | 2021-02-09 | Dow Global Technologies Llc | Ethylene-alpha-olefin copolymer-triallyl phosphate composition |
US11299613B2 (en) | 2017-02-28 | 2022-04-12 | Dow Global Technologies Llc | Ethylene-alpha-olefin copolymer-triallyl phosphate composition |
CN110248994B (en) * | 2017-02-28 | 2022-09-27 | 陶氏环球技术有限责任公司 | Ethylene-alpha-olefin copolymer-triallyl phosphate composition |
CN110312757B (en) * | 2017-02-28 | 2023-11-28 | 陶氏环球技术有限责任公司 | Ethylene-alpha-olefin copolymer-triallyl phosphate composition |
US12077643B2 (en) | 2017-05-31 | 2024-09-03 | Dow Global Technologies Llc | Non-polar ethylene-based compositions with triallyl phosphate for encapsulant films |
CN109575190A (en) * | 2018-10-22 | 2019-04-05 | 佳易容相容剂江苏有限公司 | A kind of phosphorous polyethylene maleic anhydride graft copolymer and preparation method thereof with cooperative flame retardant effect |
CN118271780A (en) * | 2023-10-31 | 2024-07-02 | 浙江南洋华诚科技股份有限公司 | Ultrathin temperature-resistant bi-directional synchronous stretching special material and preparation method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH11505273A (en) | Bimodalization of molecular weight distribution of polymer | |
JP4526603B2 (en) | Polar modified polypropylene wax | |
JP3254227B2 (en) | Blend of graft copolymer of propylene polymer material and graft copolymer of olefin rubber material | |
CA2168820C (en) | Process for producing a composition containing a vinylaromatic polymer and a rubber by polymerization with a free and stable radical | |
TW200535181A (en) | Rree-radical-initiated crosslinking of polymers | |
US6569950B2 (en) | Process for producing acid modified polypropylene resin | |
JPH04224854A (en) | Graft copolymer composition | |
WO2010017553A1 (en) | Triallyl phosphate enabled grafting of compatible monomers to chain scissionable polyolefins | |
MXPA05001730A (en) | Grafted propylene copolymers. | |
US5189108A (en) | Modified polymer rubber and process for preparing the same | |
EP0391744A2 (en) | Method of producing modified polypropylene | |
US20090118430A1 (en) | Polystyrene Blends and a Method of Making Same | |
BRPI0619677A2 (en) | coagent-mediated grafted copolymer, process for preparing a coagent-mediated grafted copolymer and article manufactured | |
FI85587B (en) | FOERFARANDE FOER MODIFIERING AV OLEFINPOLYMERER TILL SAMMANKOPPLINGSMEDEL. | |
EP1389302B1 (en) | Method for producing polypropylenes modified by maleic acid anhydride | |
WO2003014175A1 (en) | Controlling the molecular weight of graft copolymers using polymerizable chain transfer agents | |
JP2767474B2 (en) | Method of using oligomer of aromatic compound substituted with alkenyl group as coagent | |
JP5166893B2 (en) | Modified polypropylene resin and method for producing the same | |
TW552273B (en) | Thermal stability of alpha-substituted acrylate graft copolymers | |
EP1023346B1 (en) | Polypropylene acrylic graft polymers stable to thermal oxidation and process for preparation thereof | |
FR2755969A1 (en) | POLYMERIZATION IN THE PRESENCE OF A FREE STABLE RADICAL AND AN INIFERTER | |
JP4705474B2 (en) | Process for producing modified olefin polymer | |
KR102698726B1 (en) | Graft copolymer composition | |
JP4213099B2 (en) | Modified polypropylene resin | |
JP6357390B2 (en) | Process for producing and purifying modified polyolefin particles |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09791337 Country of ref document: EP Kind code of ref document: A1 |
|
DPE1 | Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101) | ||
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 09791337 Country of ref document: EP Kind code of ref document: A1 |