WO2010009653A1 - 无线自回传的方法、装置和系统 - Google Patents
无线自回传的方法、装置和系统 Download PDFInfo
- Publication number
- WO2010009653A1 WO2010009653A1 PCT/CN2009/072696 CN2009072696W WO2010009653A1 WO 2010009653 A1 WO2010009653 A1 WO 2010009653A1 CN 2009072696 W CN2009072696 W CN 2009072696W WO 2010009653 A1 WO2010009653 A1 WO 2010009653A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- base station
- control node
- bearer network
- atm
- uplink data
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W92/00—Interfaces specially adapted for wireless communication networks
- H04W92/04—Interfaces between hierarchically different network devices
- H04W92/12—Interfaces between hierarchically different network devices between access points and access point controllers
Definitions
- the present invention relates to the field of wireless communications, and in particular, to a method, apparatus, and system for wireless self-backhaul. Background technique
- WCDMA Wideband Code Division Multiple Access
- wireless backhaul avoids the problems of high cost and difficulty in wiring, it is increasingly valued by operators.
- the inventors have found that there is no mature wireless self-backhaul scheme in the prior art, and the idle carrier is not fully utilized to implement data transmission on the lub interface, which wastes wireless resources to some extent. .
- the embodiments of the present invention provide a method, an apparatus, and a system for wireless self-return, which make it possible to flexibly adopt a bearer network and expand the use range of the wireless self-backhaul.
- An embodiment of the present invention provides a wireless self-backhaul method in a communication system, where the system includes a target base station, a user equipment UE convergence node, a relay base station, and a base station control node, where the relay base station and the base station control node There is a bearer network between them.
- the method includes: the relay base station receives uplink data sent by the UE aggregation node via the air interface, where the uplink data includes uplink data that the target base station needs to send to the base station control node; and the relay base station parses the received uplink data, and the parsed
- the uplink data is sent to the transmission interface of the relay base station and the base station control node.
- the parsed uplink data is processed into a cell that can be directly carried on the bearer network, and sent to the base station control node on the bearer network.
- the wireless communication device includes: a first receiving unit, configured to receive uplink data sent by the UE aggregation node via an air interface, where the uplink data includes uplink data that the target base station needs to send to the base station control node; and the first processing unit is configured to receive the uplink data.
- the uplink data is parsed, and the parsed uplink data is sent to the transmission interface of the wireless communication device and the base station control node; the interface processing unit is configured to process the parsed uplink data into a signal that can be directly carried on the bearer network on the transmission interface.
- the element is sent to the base station control node on the bearer network.
- a further embodiment of the present invention provides a base station control node, which is applied to a wireless self-backhaul system, where the system includes a target base station, a user equipment UE convergence node, and a relay base station, and the base station control node and the relay base station There is a bearer network.
- the base station control node includes: a receiving unit, configured to receive a cell carrying uplink data from a bearer network between the base station control node and the relay base station, where the uplink data is processed by the relay base station into a signal that can be directly carried on the bearer network
- the processing unit is configured to restore the received cell carrying the uplink data to the uplink data by using a protocol conversion function.
- the relay base station receives the uplink data sent by the UE aggregation node via the air interface, parses the received uplink data, and sends the uplink data to the relay base station and the base station.
- the transmission interface of the control node is processed, and the uplink data is processed into a cell that can be directly carried on the bearer network, and is sent to the base station control node on the bearer network.
- FIG. 1 is a schematic structural diagram of a system for wireless self-backhaul according to an embodiment of the present invention
- FIG. 2 is a schematic diagram of a protocol stack of each device for wireless self-backhaul according to an embodiment of the present invention
- a flow chart of a wireless self-backhaul method is provided;
- FIG. 4 is a schematic diagram of a protocol stack of each device in a wireless self-backhaul method according to an embodiment of the present invention
- FIG. 5 is a schematic structural diagram of a wireless communication device according to an embodiment of the present disclosure.
- FIG. 6 is a schematic structural diagram of a wireless communication device according to an embodiment of the present disclosure.
- FIG. 7 is a schematic structural diagram of a base station control node according to an embodiment of the present invention. detailed description
- the present invention provides a wireless self-backhaul solution for fully utilizing the radio resources of the base station itself to implement wireless self-backhaul for the situation that the idle carrier frequency exists in some areas of the current network and the wired transmission resources are not rich enough.
- the wireless communication system includes a user equipment (User Equipment, UE), a target base station (NodeB target), a UE aggregation node UE-Hub, a relay base station NodeB-Hub, and an RNC.
- UE User Equipment
- NodeB target target base station
- RNC Radio Network Controller
- the transmission process of the NodeB wireless self-backhaul in this embodiment is as follows: The data of the UE is sent to the NodeB target through the air interface Uul, and the NodeB target sends the data to the UE-Hub (the UE-Hub and the NodeB target wired connection).
- the UE-Hub needs to send the data of the acquired NodeB target (including the data of the UE, and may also include the data generated by the NodeB target itself) to the RNC.
- the data may be referred to as “Iub interface data. " .
- the UE-Hub since there is no direct bearer network between the RNC and the NodeB target, the UE-Hub first sends the above "Iub interface data" to the NodeB-Hub through the wireless air interface Uu2 interface, and the NodeB-Hub passes the received data through its own Iub. The interface forwards to the bearer network, and the above data is sent to the RNC through the bearer network.
- the “Iub interface data” may be the data of the UE (that is, the UE data that the NodeB target receives from the UE and needs to be sent to the RNC). It may be data generated by the NodeB target itself that needs to be sent to the RNC, such as: related control and maintenance data that the NodeB target needs to transmit with the RNC, or other data that needs to be transmitted between the NodeB target and the RNC.
- the uplink refers to the direction of the NodeB Hub to the RNC through the NodeB Hub
- the downlink refers to the direction of the RNC through the NodeB Hub to the NodeB target.
- the downlink direction is the reverse process in the uplink direction.
- the "Iub interface data" may be the data that the RNC needs to send to the UE, and the data that the RNC itself needs to send to the NodeB target, for example: the NodeB target and the RNC need Relevant control and maintenance data for transmission, or other data that needs to be transmitted between the NodeB target and the RNC.
- the air interface technologies that can be used for air interface transmission between the NodeB target and the NodeB-Hub include: High Speed Downlink Packet Access (HSDPA), High Speed Uplink Packet Access (HSUPA), and high speed packet connection.
- HSDPA High Speed Downlink Packet Access
- HSUPA High Speed Uplink Packet Access
- High Speed Packet Access HSUPA
- High Speed Packet Access HSUPA
- High Speed Packet Access Into enhanced HSPA+ (including HSDPA+/HSUPA+) or dedicated channel DCH (Dedicated Channel) technology.
- HSDPA High Speed Downlink Packet Access
- HSUPA High Speed Uplink Packet Access
- HSPA+ High Speed Uplink Packet Access
- HSPA+ High Speed Uplink Packet Access
- DCH dedicated Channel
- the bandwidth of one carrier is 5 MHz.
- a mobile operator can obtain multiple carriers. When a mobile operator conducts services, it may only use part of the carrier, and another part of the carrier is idle.
- the idle carrier can be used to transmit data between the target base station and the RNC through the air interface, thereby realizing the wireless self-backhaul of the base station, and fully utilizing the wireless resources.
- FIG. 2 shows a schematic diagram of a processing protocol stack of each device in the foregoing embodiment. As shown in FIG.
- the Packet Data Convergence Protocol (PDCP) of Layer 2 between the UE-Hub and the NodeB-Hub can only carry IP services.
- the bearer network between the NodeB-Hub and the RNC uses a non-IP bearer network, such as an ATM bearer network. Since the IP packet cannot be directly carried on the non-IP network, the above-mentioned wireless self-backhaul solution cannot directly use the ATM bearer network, which inevitably puts forward higher requirements on the bearer network, and the requirement for the bearer network improves the bearer. The cost of the network makes the application of wireless self-backhaul limited.
- Another embodiment of the present invention provides a method for wireless self-backhaul, which is based on the technical solution of the previous embodiment, and further technical design is performed.
- the overall scheme is as follows:
- the relay base station receives uplink data that is sent by the UE aggregation node via the air interface, and the uplink data includes uplink data that the target base station needs to send to the base station control node; the relay base station parses the received uplink data, and the parsed
- the uplink data is sent to the transmission interface of the relay base station and the base station control node; on the transmission interface, the uplink data is processed into a cell that can be directly carried on the bearer network, and is sent to the base station control node on the bearer network.
- 3 is a flow chart of a wireless self-backhaul method, and the WCDMA system is taken as an example. It is assumed that the bearer network between the NodeB-Hub and the RNC is an ATM bearer network, and the technical solution of the uplink direction is specifically described with reference to FIG. as follows:
- Step 301 The UE sends the uplink data of the UE to the NodeB Target through the air interface.
- the uplink data of the UE may be high speed upload service data or other service data.
- Step 302 The NodeB Target encapsulates the uplink data into uplink IP packet data.
- the uplink data may include data generated by the NodeB target itself, in addition to the UE uplink data.
- the NodeB Target can encapsulate the above data into uplink IP packet data.
- Step 303 The NodeB Target sends the uplink IP packet data to the UE-Hub through the direct connection.
- the wireless air interface is sent to the NodeB-Hub;
- Step 305 After receiving the data sent by the UE-Hub, the NodeB-Hub parses and restores the uplink IP packet data that needs to be routed to the RNC.
- Step 306 The NodeB-Hub sends the uplink IP packet data to be routed to the RNC to the ATM interface. It is worth noting that, from the perspective of the UMTS network, the interface between the NodeB-Hub and the RNC is the Iub interface, and from the perspective of the transmission interface, the transmission interface refers to the ATM interface.
- Step 307 The ATM interface of the NodeB-Hub carries the uplink IP packet in the ATM cell by means of IPoA (IP over ATM, ATM-based IP transmission);
- IPoA IP over ATM, ATM-based IP transmission
- PVC can be pre-established between NodeB-Hub and RNC (Permanent Virtual
- NodeB-Hub and RNC each complete the binding of IP address and ATM address. Since the IP address of the uplink IP packet is the IP address of the RNC, the NodeB-Hub only needs to bind the uplink IP packet to the ATM address of the RNC, and then use the NodeB-Hub to connect to the PVC of the RNC to transmit the IP packet carried by the ATM cell to RNC.
- Step 308 The NodeB-Hub sends an ATM cell carrying the IP packet to the ATM network through the ATM interface.
- Step 309 The RNC receives an ATM cell carrying an IP packet from the ATM network.
- Step 310 The RNC restores the received ATM cell carrying the IP packet into IP packet data. Specifically, the RNC recovers the IP Iub interface data of the NodeB target through the IPoA protocol.
- the NodeB-Hub and the RNC need to support the IPoA, and the interface between the NodeB-Hub and the RNC can complete the function of the L2/L1 by using the IPoA manner.
- the IPoA protocol and the ATM protocol may be added to the transmission interface between the NodeB-Hub and the RNC.
- FIG. 4 is a schematic diagram of a processing protocol stack of each device of a wireless self-backhaul according to an embodiment of the present invention.
- IPoA, ATM adaptation layer (AAL5), ATM, and physical layer (PHY) can be configured on the NodeB-Hub and the RNC, that is, the specific protocol used may include IPoA, AAL5, ATM, and PHY, such as top-down, can be IPoA/AAL5/ATM/PHY.
- the sending direction carries the IP packet to be sent in the ATM cell through the IPoA mode, and sends the ATM cell to the ATM network through the ATM interface.
- the ATM cell carrying the IP packet is received from the ATM network, and the ATM cell carrying the IP packet is restored to the IP packet by the IPoA method.
- different types of bearer networks can be flexibly adopted, thereby reducing the requirements on the bearer network, reducing the cost of the bearer network, and expanding the use range of the transmission backhaul.
- the IPoA protocol and the ATM protocol are added to the transmission interface between the NodeB-Hub and the RNC, the ATM network can be directly used to carry IP packet data, thereby eliminating the need to replace the ATM network in the existing network and protecting the operator's investment.
- the protocol stack above the IP layer may be different depending on the wireless technology and the implementation of each manufacturer.
- OM/TCP/IP bearer is used, but it can be understood that other bearer modes can also be used, such as OM UDP/IP bearer.
- the method of the protocol stack above the IP layer does not affect the implementation of the technical solution of the embodiment of the present invention.
- the above describes the uplink data transmission of the wireless self-backhaul.
- the downlink data transmission is the reverse process.
- the process of the general data transmission is as follows: The base station control node processes the downlink data that needs to be sent to the target base station on the transmission interface into a cell that can be directly carried on the bearer network, and sends it to the bearer network; The base station receives the cell from the bearer network, and after the cell is restored to the downlink data, is sent to the UE sink node through the air interface; the UE sink node parses the received downlink data, and sends the parsed downlink data. Go to the target base station.
- the method may further include: the target base station transmitting the downlink data to the UE. A more detailed process is not described in detail.
- the 7-carrier network is the ATM network, and the service protocol type carried by the layer 2 between the NodeB target and the NodeB-Hub is IP.
- the bearer network may also be an IP bearer network, a DTM network, or an Ethernet network.
- the above embodiment is described by taking a WCDMA system as an example. It can be understood that the technical solutions provided by the embodiments of the present invention can also be applied to other systems, such as GSM, TD-SCDMA, CDMA2000, WIMAX, LTE, and the like.
- the name of the base station is different, for example, BTS (Base Transceiver Station) in GSM, NodeB in WCDMA and TD-SCDMA, and evolved base station eNodeB in LTE.
- a base station directly connected to a base station control node and having a bearer network acts as a "relay base station” (or “aggregation base station”), performs data transmission with the UE through an air interface, and has a wired connection with the UE aggregation node.
- the connected base station acts as a "target base station”.
- BSC Base Station Controller, Base Station Controller
- RNC Radio Network Controller
- WCDMA Wideband Code Division Multiple Access
- TD-SCDMA Time Division Multiple Access
- base station control nodes are still network nodes that control the base station, such as aGW (gateway, gateway) and the like. Therefore, network nodes having the function of controlling the base station can be collectively referred to as "base station control nodes".
- the technical solution provided by the embodiment of the present invention focuses on how to transmit data on the bearer network between the base station and the network element having the direct bearer network connection with the base station, and the system system exists differently. Some of the changes (such as the difference of the air interface transmission protocol) are not the focus of the embodiments of the present invention, and do not affect the implementation of the solution of the embodiment of the present invention.
- the solution of load sharing or primary and backup can further alleviate the transmission pressure and improve the transmission efficiency while utilizing the idle carrier resources.
- Embodiments of the present invention also provide a device and system for wireless self-backhaul. Embodiments of the apparatus and system will be described below in conjunction with the drawings.
- FIG. 5 is a schematic structural diagram of a wireless communication device according to an embodiment of the present invention, where the device is applied in a wireless self-backhaul system.
- the system includes a target base station, a user equipment UE aggregation node, and a base station control node, and a bearer network exists between the wireless communication device and the base station control node.
- the wireless communication device includes: a first receiving unit 501, configured to receive uplink data sent by the UE sink node via an air interface, where the uplink data includes the target base station needs to be sent to the base station control node.
- the first processing unit 502 is configured to parse the received uplink data, and send the parsed uplink data to a transmission interface of the wireless communication device and the base station control node; the interface processing unit 503, And processing, on the transmission interface, the uplink data into a cell that can be directly carried on the bearer network, and sending the signal to the base station control node on the bearer network.
- the uplink data may be uplink IP packet data
- the bearer network may be an ATM bearer network.
- the transport interface is an ATM interface.
- FIG. 6 is a schematic structural diagram of a wireless communication device according to an embodiment of the present invention.
- the interface processing unit 503 can further implement its functions by the following two subunits: a carrying subunit 531 and a transmitting subunit 532.
- the bearer subunit 531 is configured to carry the uplink IP packet data in an ATM cell by using an IPoA manner
- the sending subunit 532 is configured to send the ATM cell processed by the bearer subunit to the ATM.
- the network is sent to the base station control node.
- the protocol used by the transmission interface between the wireless communication device and the base station control node may be: IPoA/AAL5/ATM/PH Y.
- the wireless communication device For the downlink, the wireless communication device also has the functions of receiving (for the base station control node) and transmitting (for the target base station or the UE sink node): receiving the downlink data carried by the base station control node via the bearer network
- the cell for the protocol conversion, recovers the downlink data.
- After the downlink data Send to the direction of the UE aggregation node or the target base station.
- the wireless communication device can be a relay base station as described in the method embodiments.
- FIG. 7 is a schematic structural diagram of a base station control node according to an embodiment of the present invention.
- the device is applied to a wireless self-backhaul system, where the system includes a target base station, a user equipment UE aggregation node, and a relay base station, where the base station controls A bearer network exists between the node and the relay base station.
- the base station control node includes: a receiving unit 601, configured to receive a cell carrying uplink data from a bearer network between the base station control node and the relay base station, where the uplink data is processed by the relay base station The cell that can be directly carried in the bearer network; the processing unit 602 is configured to restore the received cell carrying the uplink data to the uplink data by using the protocol conversion function.
- the uplink data may be uplink IP packet data
- the bearer network may be an ATM bearer network
- the transport interface is an ATM interface.
- the processing unit is configured to restore the received ATM cell to uplink IP packet data by using the IPoA protocol.
- the protocol used by the transmission interface between the base station control node and the relay base station can be IPoA/AAL5/ATM/PHY.
- the base station control node has the functions of receiving (for the relay base station) and transmitting (for the core network): receiving the cell carrying the uplink data sent by the relay base station via the bearer network, The protocol is converted to recover the uplink data. The uplink data is then sent to the core network.
- Yet another embodiment of the present invention provides a wireless self-backhaul system including a target base station, a UE sink node, and the aforementioned wireless communication device, and the aforementioned base station control node.
- receiving in the embodiment of the present invention may be understood as being actively acquired from other modules, or may be receiving information sent by other modules.
- each functional unit in each embodiment of the present invention may be integrated into one processing module, or each unit may exist physically separately, or two or more units may be integrated into one module.
- the above integrated modules can be implemented in the form of hardware or software. Can be implemented in the form of a module.
- the integrated modules, if implemented in the form of software functional modules and sold or used as separate products, may also be stored in a computer readable storage medium.
- the above-mentioned storage medium may be a read only memory, a magnetic disk or an optical disk or the like.
- the technical solution provided by the specific embodiments of the present invention has the advantages of reducing the requirements on the bearer network, reducing the cost of the bearer network, and expanding the use range of the transmission backhaul.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Mobile Radio Communication Systems (AREA)
Description
无线自回传的方法、 装置和系统 本申请要求于 2008 年 7 月 21 日提交中国专利局、 申请号为 200810142548.4、 发明名称为 "无线自回传的方法、 装置和系统" 的中国专 利申请的优先权, 其全部内容通过引用结合在本申请中。 技术领域
本发明涉及无线通信领域, 尤其涉及一种无线自回传的方法、 装置和系 统。 背景技术
随着通信技术的发展, 宽带码分多址( Wideband Code Division Multiple Access , WCDMA )移动通信系统在近几年得到了迅速的发展, 为了无论何 时何地都能实现通信, 到目前为止, 全球已经部署了数百个 WCDMA网络。
然而对于运营商来说, 可能会出现这样的情况: 一方面, 在广大的农村 或者郊区, 购买了多个 3G ( third generation, 第三代)载频, 但是实际上由 于业务量较少, 可能只使用了其中的部分载频, 还有一些是闲置的; 另一方 面, 在广大的农村或者郊区, 其有线传输资源可能不够丰富, 无法部署足够 的基站。 因此, 如何利用空闲载波来实现基站到无线网络控制器 (Radio Network Control, RNC )间 lub接口数据的传输成为运营商非常关注的研究课 题。
由于无线回传避免了有线布网的高成本、 布线困难等问题, 因此越来越 受到运营商的重视。 但在实现本发明的过程中, 发明人发现现有技术中, 还 没有比较成熟的无线自回传方案, 未能充分的利用空闲载波来实现 lub接口 的数据传输, 一定程度上浪费了无线资源。
以上现有技术以及缺陷的描述, 仅以 WCDMA系统为例进行说明。 可以 理解的是, 在其他系统, 比如全球移动通信系统( Global System For Mobile Communications, GSM ) 、 时分-同步码分多址 (Time Division- Synchronous Code Division Multiple Access, TD-SCDMA)、 码分多址 CDMA2000、 全球微 波互联接入 ( Worldwide Interoperability for Microwave Access, WIMAX )和
长期演进系统( Long Term Evolution , LTE )等系统中, 同样存在类似的问 题需要解决。 发明内容
鉴于上述现有技术所存在的问题, 本发明实施方式提供了一种无线自回 传的方法、 装置和系统, 使得可以灵活采用承载网, 扩大了无线自回传的使 用范围。
本发明的一个实施例提供了一种通信系统中的无线自回传方法, 该系统 中包括目标基站、 用户设备 UE汇聚节点、 中继基站和基站控制节点, 其中, 中继基站和基站控制节点之间存在承载网。 该方法包括: 中继基站接收 UE 汇聚节点经空口发送的上行数据, 该上行数据包括目标基站需要发送给基站 控制节点的上行数据; 中继基站对接收到的上行数据进行解析, 将解析后的 上行数据发送到中继基站和基站控制节点的传输接口; 在传输接口, 将解析 后的上行数据处理成能直接承载在承载网的信元, 并在承载网上向基站控制 节点发送。
本发明的另一个实施例提供了一种无线通信设备,应用于无线自回传系 统中, 该系统包括目标基站、 用户设备 UE汇聚节点和基站控制节点, 该无 线通信设备与基站控制节点之间存在承载网。 该无线通信设备包括: 第一接 收单元, 用于接收 UE汇聚节点经空口发送的上行数据, 该上行数据包括目 标基站需要发送给基站控制节点的上行数据; 第一处理单元, 用于对接收到 的上行数据进行解析,将解析后的上行数据发送到无线通信设备和基站控制 节点的传输接口; 接口处理单元, 用于在传输接口将解析后的上行数据处理 成能直接承载在承载网的信元, 并在承载网上向基站控制节点发送。
本发明的再一个实施例提供了一种基站控制节点,应用于无线自回传系 统中, 该系统包括目标基站、 用户设备 UE汇聚节点和中继基站, 该基站控 制节点与中继基站之间存在承载网。 该基站控制节点包括: 接收单元, 用于 从基站控制节点与中继基站之间的承载网上接收承载了上行数据的信元, 该 上行数据由中继基站处理成能直接承载在承载网的信元; 处理单元, 用于通 过协议转化功能, 将接收到的承载了上行数据的信元恢复成上行数据。
本发明的又一个实施例提供了一种无线自回传系统,该系统包括目标基 站、 UE汇聚节点、 前述的无线通信设备、 以及前述的基站控制节点。
由上述所提供的技术方案可以看出, 本发明实施例的技术方案中, 中继 基站接收 UE汇聚节点经空口发送的上行数据, 对接收到的上行数据进行解 析后发送到中继基站和基站控制节点的传输接口, 并将上行数据处理成能直 接承载在承载网的信元, 在承载网上向基站控制节点发送。 通过这样的技术 方案, 使得中继基站和基站控制节点之间的承载网应用更加灵活, 降低了对 承载网的要求, 扩大了无线自回传的使用范围。 附图说明
图 1为本发明实施例提供的一种无线自回传的系统架构示意图; 图 2为本发明实施例提供的一种无线自回传的各设备的协议栈示意图; 图 3为本发明实施例提供的一种无线自回传方法的流程图;
图 4为本发明实施例提供的一种无线自回传方法中各设备的协议栈示意 图;
图 5为本发明实施例提供的一种无线通信设备的结构示意图;
图 6为本发明实施例提供的一种无线通信设备的结构示意图;
图 7为本发明实施例提供的一种基站控制节点的结构示意图。 具体实施方式
为使本发明的目的、 技术方案和优点更加清楚, 下面将结合附图对本发 明作进一步地详细描述。
针对目前现网中部分地区存在闲置载频, 以及有线传输资源不够丰富的 情况, 本发明实施例提供了无线自回传的解决方案, 以充分利用基站本身的 无线资源实现无线自回传。
以 WCDMA系统为例, 本发明实施例提供了一种无线通信系统中的无线 自回传方案, 该系统的整体架构示意图如图 1所示。 该无线通信系统中, 包 括用户设备( User Equipment , UE ) 、 目标基站( NodeB target ) 、 UE汇聚 节点 UE-Hub、 中继基站 NodeB-Hub和 RNC。 其中, RNC和 NodeB-Hub之间存 在承载网络,如异步传输模式( Asynchronous Transfer Mode, ATM )承载网、 IP7 载网、 动态同步传送模式( Dynamic Synchronous Transfer Mode , DTM ) 网络或以太网络等; RNC和 NodeB target之间可能没有直接的承载网络。
以上行为例, 本实施例 NodeB无线自回传的传输过程如下: UE的数据 通过空口 Uul发送到 NodeB target , NodeB target将数据发送到 UE-Hub ( UE-Hub和 NodeB target有线连接)。该 UE-Hub需要将获取到的 NodeB target 的数据 (包括 UE的数据, 还可能同时包括 NodeB target自身产生的数据)发 送给 RNC, 本发明实施例中, 可以将该数据称为 "Iub接口数据" 。 但是由 于 RNC和 NodeB target之间没有直接的承载网, 所以, UE-Hub先通过无线空 口 Uu2接口将上述 "Iub接口数据" 发送到 NodeB-Hub, NodeB-Hub将收到的 数据通过自身的 Iub接口转发到承载网, 通过承载网将上述数据发送到 RNC。 值得说明的是, 上述以发送 UE的上行数据为例进行说明, 相应的, "Iub接 口数据" 可以是 UE的数据(即 NodeB target从 UE接收到的、 需要发送到 RNC 的 UE数据) , 也可以是 NodeB target自身产生的需要发送到 RNC的数据, 比 如: NodeB target与 RNC需要传输的相关的控制和维护数据,或其他在 NodeB target和 RNC之间需要传输的数据。
一般而言,上行是指 NodeB target经过 NodeB Hub到 RNC的方向, 下行是 指 RNC经过 NodeB Hub到 NodeB target的方向。 而下行方向是上行方向的逆 过程, 就下行而言, "Iub接口数据" 可以是 RNC需要发送到 UE的数据, 以 及 RNC自身产生的需要发送到 NodeB target的数据, 比如: NodeB target与 RNC需要传输的相关的控制和维护数据, 或其他在 NodeB target和 RNC之间 需要传输的数据。
NodeB target和 NodeB-Hub之间空口传输可以采用的空口技术包括:高速 下行分组接入(High Speed Downlink Packet Access, HSDPA )、 高速上行分 组接入 ( High Speed Uplink Packet Access, HSUPA ) 、 高速分组接入增强 HSPA+ (包括了 HSDPA+/HSUPA+ )或专用信道 DCH ( Dedicated Channel ) 技术等。 当然, 如果需要提供比较大的带宽, 在 NodeB target和 NodeB-Hub 之间可以优先使用 HSDPA、 HSUPA或 HSPA+技术进行传输。
以 UMTS为例, 一个载波的带宽是 5MHz, —般情况下, 一个移动运营 商可以获得多个载波, 移动运营商开展业务时, 可能只用了部分载波, 而另 外一部分的载波处于空闲状态。 通过上述实施例提供的技术方案, 可以利用 空闲载波,通过空口传输目标基站和 RNC之间的数据,实现基站无线自回传, 充分的利用了无线资源。
具体的, 图 2示出了上述实施例中各设备的一种处理协议栈示意图。 如 图 2所示, 在实现上述实施例的方案时, 可能存在如下情况: UE-Hub和 NodeB-Hub之间层 2的包数据集中协议(Packet Data Convergence Protocol, PDCP )只能承载 IP业务, 但是, NodeB-Hub和 RNC之间的承载网采用了非 IP 承载网, 比如 ATM承载网。 由于 IP包不能直接在非 IP网络上承载, 所以, 上 述无线自回传方案不能直接使用 ATM承载网,从而必然对承载网提出更高的 要求, 而这种对承载网的要求, 提高了承载网的成本, 使得无线自回传的应 用受到一定的限制。
据此, 本发明另一个实施例提供了一种无线自回传的方法, 其基于前一 个实施例的技术方案, 进行了进一步的技术设计。 整体方案如下: 中继基站 接收 UE汇聚节点经空口发送的上行数据, 该上行数据包括目标基站需要发 送给基站控制节点的上行数据; 中继基站对接收到的上行数据进行解析, 将 解析后的上行数据发送到中继基站和基站控制节点的传输接口; 在传输接 口, 将上行数据处理成能直接承载在承载网的信元, 并在承载网上向基站控 制节点发送。
下面将以具体实施例的形式进行详细描述。 图 3为一种无线自回传方法 的流程图, 仍以 WCDMA系统为例, 假设 NodeB-Hub和 RNC之间的承载网为 ATM承载网, 结合附图 3 , 对上行方向的技术方案具体描述如下:
步骤 301: UE通过空口将 UE上行数据发送给 NodeB Target;
本步骤中, 该 UE上行数据可以是高速上传业务数据, 或者其他业务数 据。
步骤 302: NodeB Target将上行数据封装成上行 IP包数据;
本步骤中, 上行数据除了 UE上行数据之外, 还可以包括 NodeB target自 身产生的数据。 NodeB Target可以将上述数据都封装成上行 IP包数据。
步骤 303: NodeB Target将上行 IP包数据通过直接连接发送给 UE-Hub; 步骤 304: UE-Hub将接收到的上行 IP包数据, 以 IP包转发的方式, 通过 其与 NodeB-Hub之间的无线空口发送到 NodeB-Hub;
步骤 305: NodeB-Hub接收到 UE-Hub发送的数据后, 解析恢复出需路由 到 RNC的上行 IP包数据;
步骤 306: NodeB-Hub将需路由到 RNC的上行 IP包数据发送给 ATM接口;
值得说明的是, 从 UMTS网络的角度来说, NodeB-Hub和 RNC之间的接 口是 Iub接口, 而从传输接口的角度来说, 传输接口指的是 ATM接口。
步骤 307: NodeB-Hub的 ATM接口通过 IPoA ( IP over ATM, 基于 ATM 的 IP传输)方式, 将上行 IP包承载在 ATM信元内;
该步骤中, NodeB-Hub与 RNC之间可以预先建立 PVC ( Permanent Virtual
Channel, 久虚通路) , NodeB-Hub与 RNC各自完成 IP地址与 ATM地址的 绑定。 由于上行 IP包的 IP地址是 RNC的 IP地址, NodeB-Hub只需将上行 IP包 绑定到 RNC的 ATM地址, 进而利用 NodeB-Hub连接到 RNC的 PVC将 ATM信 元承载的 IP包传送到 RNC。
步骤 308、 NodeB-Hub通过 ATM接口向 ATM网络发送承载有 IP包的 ATM 信元;
步骤 309、 RNC从 ATM网络接收承载有 IP包的 ATM信元;
步骤 310、 RNC将接收到的承载有 IP包的 ATM信元恢复成 IP包数据。 具体的, RNC通过 IPoA协议, 恢复出 NodeB target的 IP Iub接口数据。 可以理解的是, 为了实现本发明实施例的技术方案, NodeB-Hub和 RNC 需要支持 IPoA , NodeB-Hub与 RNC之间的接口可以采用 IPoA的方式完成 L2/L1的功能。 具体的, 可以在 NodeB-Hub和 RNC之间的传输接口增加 IPoA 协议和 ATM协议。
图 4是本发明实施例提供的无线自回传各设备的处理协议栈示意图。 如 图 4所示:可以在 NodeB-Hub和 RNC上配置 IPoA、 ATM适配层( ATM adapation layer 5, AAL5 ) 、 ATM和物理层( Physical layer, PHY ) , 即采用的具体协 议可以 包括 IPoA、 AAL5、 ATM和 PHY , 比如从上到下可以是 IPoA/AAL5/ATM/PHY。 这样, 发送方向通过 IPoA方式将待发送的 IP包承载 在 ATM信元内, 并通过 ATM接口向 ATM网络发送 ATM信元。 在接收方向, 从 ATM网络接收承载有 IP包的 ATM信元, 并通过 IPoA方式将承载有 IP包的 ATM信元恢复成 IP包。 通过该无线自回传的技术方案, 可以灵活采用不同类 型的承载网, 从而降低对承载网的要求, 降低承载网的成本, 扩大了传输回 程的使用范围。当在 NodeB-Hub和 RNC之间的传输接口增加 IPoA协议和 ATM 协议时, 可以直接采用 ATM网络承载 IP包数据, 从而不需要更换现网中的 ATM网络, 保护了运营商的投资。
另外值得说明的是, 根据无线技术与各厂家的实现的不同情况, IP层以 上的协议栈有可能不同。 图 4的示例中, 采用的是 OM/TCP/IP承载, 但可以 理解的是, 也完全可以采用其他承载方式, 比如采用 OM UDP/IP承载。 而 IP 层以上的协议栈采用何种方式, 不影响本发明实施例技术方案的实现。
以上对无线自回传的上行数据传输进行了举例描述。 而下行数据传输是 其逆过程, 大体数据传输的过程为: 基站控制节点在传输接口将需要发送到 目标基站的下行数据处理成能直接承载在承载网的信元, 发送到承载网上; 中继基站从该承载网上接收所述信元, 并对所述信元恢复成下行数据后, 经 空口发送到 UE汇聚节点; UE汇聚节点对接收到的下行数据进行解析, 将解 析后的下行数据发送到所述目标基站。 还可以包括: 目标基站将下行数据发 送到 UE。 更加详细的过程不再具体描述。
另外,本实施例仅以 7 载网为 ATM?|载网,而 NodeB target和 NodeB-Hub 之间层 2所承载的业务协议类型为 IP为例进行说明。 但本发明实施例的方案 不限于此, 如前所述, 承载网还可能是 IP承载网、 DTM网络或以太网络等。
值得说明的是, 上述实施例以 WCDMA系统为例进行说明。 可以理解的 是, 在其他系统, 比如 GSM、 TD-SCDMA、 CDMA2000、 WIMAX, LTE等 系统中, 同样可以应用本发明实施例提供的技术方案。 在上述各个系统中, 基站的名称表述有所不同, 比如 GSM中为 BTS ( Base Transceiver Station, 基 站收发信台) , WCDMA和 TD-SCDMA中为 NodeB, 在 LTE中为演进型基站 eNodeB, 故而可统称为 "基站" , 其中, 与基站控制节点直接相连、 存在承 载网的基站作为 "中继基站" (或称 "汇聚基站" ) , 与 UE通过空口进行 数据传输、 且与 UE汇聚节点具有有线连接的基站作为 "目标基站" 。 另夕卜, 在上述各个系统中, 具有控制基站功能的网络节点的名称表述有所不同, 比 如 GSM中为 BSC ( Base Station Controller , 基站控制器) , WCDMA和 TD-SCDMA中为 RNC, 值得说明的是, 虽然 LTE中采用了扁平架构, 但仍然 存在控制基站的网络节点, 比如 aGW ( gateway, 网关)等。 故而具有控制 基站功能的网络节点可统称为 "基站控制节点" 。
换句话说, 本发明实施例提供的技术方案, 所重点关注的是如何在基站 和与基站具有直接承载网连接的网元之间的承载网上传输数据的问题, 而由 于系统制式的不同所存在的一些变化(比如空口传输协议的不同) , 不是本 发明实施例所关注的重点, 不影响本发明实施例方案的实现。
还存在另外一种情况: 目标基站和基站控制节点之间同样存在承载网, 则从目标基站到基站控制节点之间就存在两条传输线路, 一条是无线自回传 的传输线路, 一条是通过目标基站和基站控制节点之间的承载网的传输线 传输。 采用负荷分担或主备用的方案, 可以在利用空闲载波资源的情况下, 进一步緩解传输压力, 提高传输效率。
本发明实施例还提供了无线自回传的装置和系统。 以下将结合附图, 对 装置和系统的实施例进行描述。
图 5为本发明实施例提供的一种无线通信设备的结构示意图, 该设备应 用在无线自回传系统中。 该系统包括目标基站、 用户设备 UE汇聚节点和基 站控制节点, 无线通信设备与所述基站控制节点之间存在承载网。 如图 5所 示, 该无线通信设备包括: 第一接收单元 501 , 用于接收所述 UE汇聚节点经 空口发送的上行数据,所述上行数据包括所述目标基站需要发送给所述基站 控制节点的上行数据; 第一处理单元 502, 用于对接收到的上行数据进行解 析,将解析后的上行数据发送到所述无线通信设备和所述基站控制节点的传 输接口; 接口处理单元 503 , 用于在所述传输接口将所述上行数据处理成能 直接承载在所述承载网的信元, 并在所述承载网上向所述基站控制节点发 送。
进一步的, 上行数据可以为上行 IP包数据, 承载网可以为 ATM承载网, 相应的, 传输接口为 ATM接口。 图 6为本发明实施例提供的一种无线通信设 备的结构示意图。 在此情况下, 接口处理单元 503可以进一步由以下两个子 单元实现其功能: 承载子单元 531和发送子单元 532。 其中, 承载子单元 531 , 用于将所述上行 IP包数据通过 IPoA方式承载在 ATM信元内,发送子单元 532, 用于将所述承载子单元处理得到的 ATM信元发送到所述 ATM网络, 向所述 基站控制节点发送。
具体的, 该无线通信设备与基站控制节点之间的传输接口采用的协议可 以为: IPoA/AAL5/ATM/PH Y。
上述对无线通信设备的描述, 主要从上行数据发送的角度出发。 对下行 而言, 该无线通信设备同样具有接收(对基站控制节点而言)和发送(对目 标基站或 UE汇聚节点而言) 的功能: 接收基站控制节点经承载网发送的承 载了下行数据的信元, 对进行协议转换, 恢复出下行数据。 之后将下行数据
向 UE汇聚节点或目标基站的方向发送。 该无线通信设备可以是方法实施例 中描述的中继基站。
图 7为本发明实施例提供的一种基站控制节点的结构示意图, 该设备应 用在无线自回传系统中, 该系统包括目标基站、 用户设备 UE汇聚节点和中 继基站, 其中, 该基站控制节点与所述中继基站之间存在承载网。 该基站控 制节点包括: 接收单元 601 , 用于从所述基站控制节点与所述中继基站之间 的承载网上接收承载了上行数据的信元, 所述上行数据由所述中继基站处理 成能直接承载在所述承载网的信元; 处理单元 602,用于通过协议转化功能, 将接收到的承载了上行数据的信元恢复成上行数据。
进一步的, 上行数据可以为上行 IP包数据, 承载网可以为 ATM承载网, 相应的, 传输接口为 ATM接口。 在此情况下, 上述处理单元, 用于通过 IPoA 协议, 将接收到的 ATM信元恢复成上行 IP包数据。
如前所述,基站控制节点与所述中继基站之间的传输接口采用的协议可 以为 IPoA/AAL5/ATM/PHY。
对上行而言, 该基站控制节点具有接收(对中继基站而言)和发送(对 核心网而言)的功能:接收中继基站经承载网发送的承载了上行数据的信元, 对进行协议转换, 恢复出上行数据。 之后将上行数据向核心网方向发送。
本发明的又一个实施例提供了一种无线自回传系统,该系统包括目标基 站、 UE汇聚节点, 以及前述的无线通信设备, 和前述的基站控制节点。
由于对实施例技术方案所能带来的技术效果在方法实施例中已经做了 比较详细的描述, 此处不再赘述。
本发明实施例中的 "接收" 一词可以理解为主动从其他模块获取, 也可 以是接收其他模块发送来的信息。
本领域技术人员可以理解附图只是一个优选实施例的示意图, 附图中的 模块或流程并不一定是实施本发明所必须的。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分步 骤可以通过程序来指令相关的硬件完成, 所述的程序可以存储于一种计算机 可读存储介质中, 该程序在执行时, 包括方法实施例的步骤之一或其组合。
另外, 在本发明各个实施例中的各功能单元可以集成在一个处理模块 中, 也可以是各个单元单独物理存在, 也可以两个或两个以上单元集成在一 个模块中。 上述集成的模块既可以采用硬件的形式实现, 也可以采用软件功
能模块的形式实现。所述集成的模块如果以软件功能模块的形式实现并作为 独立的产品销售或使用时, 也可以存储在一个计算机可读取存储介质中。
上述提到的存储介质可以是只读存储器, 磁盘或光盘等。
综上所述, 本发明具体实施方式提供的技术方案, 具有降低对承载网的 要求, 降低承载网的成本, 扩大了传输回程的使用范围的优点。
以上所述, 仅为本发明较佳的具体实施方式, 但本发明的保护范围并不 局限于此,任何熟悉本技术领域的技术人员在本发明实施例揭露的技术范围 内, 可轻易想到的变化或替换, 都应涵盖在本发明的保护范围之内。 因此, 本发明的保护范围应该以权利要求的保护范围为准。
Claims
1、 一种通信系统中的无线自回传方法, 所述系统中包括目标基站、 用 户设备 UE汇聚节点、 中继基站和基站控制节点, 所述中继基站和基站控制 节点之间存在承载网, 其特征在于, 包括:
所述中继基站接收所述 UE汇聚节点经空口发送的上行数据, 所述上行 数据包括所述目标基站需要发送给所述基站控制节点的上行数据;
所述中继基站对接收到的所述上行数据进行解析,将解析后的上行数据 发送到所述中继基站和所述基站控制节点的传输接口;
在所述传输接口将所述解析后的上行数据处理成能直接承载在所述承 载网的信元, 并在所述承载网上向所述基站控制节点发送。
2、 如权利要求 1所述的方法, 其特征在于, 所述中继基站解析出的数据 为上行 IP包数据, 所述承载网为非 n |载网。
3、 如权利要求 2所述的方法, 其特征在于, 所述承载网为异步传输模式 ATM承载网, 所述传输接口为 ATM接口;
所述在所述传输接口将所述解析后的上行数据处理成能直接承载在所 述承载网的信元, 并在所述承载网上向所述基站控制节点发送包括:
在所述 ATM接口, 将所述上行 IP包数据通过 IPoA方式承载在 ATM信元 内, 将所述 ATM信元发送到所述 ATM承载网, 向所述基站控制节点发送。
4、 如权利要求 3所述的方法, 其特征在于, 所述传输接口采用的协议包 括 IPoA、 AAL5、 ATM和 PHY。
5、 如权利要求 4所述的方法, 其特征在于, 所述方法还包括:
所述基站控制节点从所述 ATM承载网接收承载有上行 IP包数据的 ATM 信元, 通过 IPoA协议, 将接收到的 ATM信元恢复成所述上行 IP包数据。
6、 如权利要求 1至 5任一项所述的方法, 其特征在于, 所述目标基站需 要发送给所述基站控制节点的上行数据包括:
所述目标基站从 UE接收到的需要发送到所述基站控制节点的 UE上行数 据, 和 /或,
所述目标基站自身产生的需要发送到所述基站控制节点的上行数据。
7、 如权利要求 1至 5任一项所述的方法, 其特征在于, 所述方法还包括:
所述基站控制节点在所述传输接口将需要发送到目标基站的下行数据 处理成能直接承载在所述承载网的信元, 发送到所述承载网上;
所述中继基站从所述承载网上接收所述信元, 并将所述信元恢复成下行 数据后, 将所述下行数据经空口发送到所述 UE汇聚节点;
所述 UE汇聚节点对接收到的下行数据进行解析, 将解析后的下行数据 发送到所述目标基站。
8、 如权利要求 1至 5任一项所述的方法, 其特征在于, 若所述目标基站 和所述基站控制节点之间存在承载网, 则: 在所述目标基站和基站控制节点 之间的承载网的传输线路, 以及无线自回传的传输线路之间, 采用负荷分担 的方式或主备方式进行数据传输。
9、 一种无线通信设备, 应用于无线自回传系统中, 所述系统包括目标 基站、 用户设备 UE汇聚节点和基站控制节点, 其特征在于, 所述无线通信 设备与所述基站控制节点之间存在承载网, 所述无线通信设备包括:
第一接收单元, 用于接收所述 UE汇聚节点经空口发送的上行数据, 所 述上行数据包括所述目标基站需要发送给所述基站控制节点的上行数据; 第一处理单元, 用于对接收到的所述上行数据进行解析, 将解析后的上 行数据发送到所述无线通信设备和所述基站控制节点的传输接口;
接口处理单元, 用于在所述传输接口将所述解析后的上行数据处理成能 直接承载在所述承载网的信元, 并在所述承载网上向所述基站控制节点发 送。
10、 如权利要求 9所述的设备, 其特征在于, 所述上行数据为上行 IP包 数据, 所述承载网为 ATM承载网, 所述传输接口为 ATM接口,
所述接口处理单元包括承载子单元和发送子单元,
所述承载子单元,用于将所述上行 IP包数据通过 IPoA方式承载在 ATM信 元内,
所述发送子单元,用于将所述承载子单元处理得到的 ATM信元发送到所 述 ATM承载网, 向所述基站控制节点发送。
11、 权利要求 10所述的设备, 其特征在于, 所述传输接口采用的协议包 括 IPoA、 AAL5、 ATM和 PHY。
12、 一种基站控制节点, 应用于无线自回传系统中, 所述系统包括目标 基站、 用户设备 UE汇聚节点和中继基站, 其特征在于, 所述基站控制节点 与所述中继基站之间存在承载网, 所述基站控制节点包括:
接收单元, 用于从所述基站控制节点与所述中继基站之间的承载网上接 收承载了上行数据的信元, 所述上行数据由所述中继基站处理成能直接承载 在所述承载网的信元;
处理单元, 用于通过协议转化功能, 将接收到的承载了上行数据的所述 信元恢复成上行数据。
13、 如权利要求 12所述的基站控制节点, 其特征在于, 所述上行数据为 上行 IP包数据, 所述承载网为 ATM承载网, 所述传输接口为 ATM接口, 所 述信元为 ATM信元,
所述处理单元,用于通过 IPoA协议,将接收到的 ATM信元恢复成上行 IP 包数据。
14、 如权利要求 12或 13所述的基站控制节点, 其特征在于, 所述传输接 口采用的协议包括 IPoA、 AAL5、 ATM和 PHY。
15、 一种无线自回传系统, 其特征在于, 包括目标基站、 用户设备 UE 汇聚节点, 以及如权利要求 9至 11任一项所述的无线通信设备, 以及如权利 要求 12至 14任一项所述的基站控制节点。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP09799968A EP2296426A4 (en) | 2008-07-21 | 2009-07-09 | METHOD, DEVICE AND SYSTEM FOR AUTOMATIC WIRELESS RETURN |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 200810142548 CN101335715B (zh) | 2008-07-21 | 2008-07-21 | 无线自回传的方法、装置和系统 |
CN200810142548.4 | 2008-07-21 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010009653A1 true WO2010009653A1 (zh) | 2010-01-28 |
Family
ID=40198030
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2009/072696 WO2010009653A1 (zh) | 2008-07-21 | 2009-07-09 | 无线自回传的方法、装置和系统 |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP2296426A4 (zh) |
CN (1) | CN101335715B (zh) |
WO (1) | WO2010009653A1 (zh) |
Families Citing this family (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101335715B (zh) * | 2008-07-21 | 2011-11-02 | 华为技术有限公司 | 无线自回传的方法、装置和系统 |
CN102369765B (zh) * | 2009-02-03 | 2014-02-19 | 华为技术有限公司 | 一种中继传输的方法、中继节点和基站 |
WO2010088804A1 (zh) * | 2009-02-03 | 2010-08-12 | 华为技术有限公司 | 一种中继传输的方法、中继节点和基站 |
CN101932124B (zh) * | 2009-06-23 | 2014-10-15 | 财团法人资讯工业策进会 | 基站、中继台及其后端控制通讯方法 |
CN101616439A (zh) * | 2009-07-28 | 2009-12-30 | 华为技术有限公司 | 演进网络中的无线自回传方法、装置及系统 |
CN101742695B (zh) * | 2009-12-25 | 2013-01-09 | 华为技术有限公司 | 数据传输方法、基站和数据传输系统 |
CN102149071B (zh) | 2010-02-08 | 2014-12-10 | 中兴通讯股份有限公司 | 一种对本地ip连接的建立进行控制的方法 |
CN102158874B (zh) * | 2010-02-12 | 2014-04-30 | 华为技术有限公司 | 信道测量的方法和装置 |
WO2011123971A1 (zh) * | 2010-04-06 | 2011-10-13 | 上海贝尔股份有限公司 | Lte中继回程的上行链路控制方法和设备 |
CN102625489B (zh) * | 2012-04-05 | 2015-11-25 | 中国联合网络通信集团有限公司 | 一种基站、通信系统及数据处理方法 |
WO2014205701A1 (zh) * | 2013-06-26 | 2014-12-31 | 华为技术有限公司 | 一种网络连接的方法和装置 |
KR101926001B1 (ko) * | 2014-02-26 | 2019-02-26 | 후아웨이 테크놀러지 컴퍼니 리미티드 | 네트워크 기기와 데이터 백홀 구현 시스템 및 방법 |
US9699154B2 (en) | 2015-01-19 | 2017-07-04 | Intel IP Corporation | Systems, methods and devices for direct communication using a PC5 protocol |
CN110475267B (zh) * | 2018-05-11 | 2021-09-17 | 华为技术有限公司 | 一种配置方法、数据传输方法和装置 |
US10827547B2 (en) | 2018-05-11 | 2020-11-03 | At&T Intellectual Property I, L.P. | Radio resource configuration and measurements for integrated access backhaul for 5G or other next generation network |
CN111106908B (zh) * | 2018-10-26 | 2022-02-25 | 华为技术有限公司 | 一种数据传输方法及装置 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1445947A (zh) * | 2002-05-13 | 2003-10-01 | 大唐移动通信设备有限公司 | 3g基站实现特定操作维护通道的自动建立方法 |
CN1467946A (zh) * | 2002-07-09 | 2004-01-14 | 株式会社日立制作所 | 无线通信限制装置、无线通信中继站和无线通信基站 |
WO2007075474A1 (en) * | 2005-12-22 | 2007-07-05 | Interdigital Technology Corporation | Method and apparatus for data security and automatic repeat request implementation in a wireless communication system |
CN101335715A (zh) * | 2008-07-21 | 2008-12-31 | 华为技术有限公司 | 无线自回传的方法、装置和系统 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060198336A1 (en) * | 2005-03-03 | 2006-09-07 | Nokia Corporation | Deployment of different physical layer protocols in a radio access network |
US20080076406A1 (en) * | 2006-09-22 | 2008-03-27 | Vanu, Inc. | Wireless Backhaul |
-
2008
- 2008-07-21 CN CN 200810142548 patent/CN101335715B/zh not_active Expired - Fee Related
-
2009
- 2009-07-09 EP EP09799968A patent/EP2296426A4/en not_active Withdrawn
- 2009-07-09 WO PCT/CN2009/072696 patent/WO2010009653A1/zh active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1445947A (zh) * | 2002-05-13 | 2003-10-01 | 大唐移动通信设备有限公司 | 3g基站实现特定操作维护通道的自动建立方法 |
CN1467946A (zh) * | 2002-07-09 | 2004-01-14 | 株式会社日立制作所 | 无线通信限制装置、无线通信中继站和无线通信基站 |
WO2007075474A1 (en) * | 2005-12-22 | 2007-07-05 | Interdigital Technology Corporation | Method and apparatus for data security and automatic repeat request implementation in a wireless communication system |
CN101335715A (zh) * | 2008-07-21 | 2008-12-31 | 华为技术有限公司 | 无线自回传的方法、装置和系统 |
Non-Patent Citations (1)
Title |
---|
See also references of EP2296426A4 * |
Also Published As
Publication number | Publication date |
---|---|
EP2296426A1 (en) | 2011-03-16 |
CN101335715A (zh) | 2008-12-31 |
EP2296426A4 (en) | 2011-12-21 |
CN101335715B (zh) | 2011-11-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2010009653A1 (zh) | 无线自回传的方法、装置和系统 | |
JP7637200B2 (ja) | 無線通信方法及び機器 | |
EP2519043B1 (en) | Methods, apparatuses and computer program for providing source connection identifier for a requested connection | |
US9942748B2 (en) | Service provisioning system and method, and mobile edge application server and support node | |
EP1560381B1 (en) | Method of detecting protocol support in wireless communication systems | |
WO2011012049A1 (zh) | 自回传方法、装置及系统 | |
JP3587202B2 (ja) | 移動通信システム並びにその動作制御方法 | |
WO2008067720A1 (fr) | Procédé, dispositif et système pour effectuer une transmission de façon séparée dans un réseau sans fil multimodal | |
JP6461053B2 (ja) | 複数の同時無線アクセス技術によるデータ伝送のためのネットワークノードおよび方法 | |
CN101730279B (zh) | 基于ap转发机制的无线局域网与3g蜂窝网络协同工作方法 | |
CN101686578B (zh) | 家庭演进基站系统及无线设备的接入方法 | |
WO2014067343A1 (zh) | 基站、网络系统和通信方法 | |
WO2015032043A1 (zh) | 传输数据的方法、装置和系统 | |
CN113016205B (zh) | 通信装置、通信方法、程序和通信系统 | |
JP6045689B2 (ja) | コンバージェンスネットワークのデータ伝送を実現する方法、ue及び3gppアクセスネットワーク装置 | |
CN103444227A (zh) | 用于下行链路本地ip接入(lipa)分组的按顺序传送的方法和设备 | |
WO2014158273A1 (en) | Techniques to facilitate dual connectivity | |
WO2019061110A1 (zh) | 一种接入链路的管理方法、设备、存储介质及系统 | |
CN110769500A (zh) | 一种通信方法及装置 | |
WO2009012666A1 (fr) | Procédé et système pour transmettre un message de couche de non-accès durant un transfert et station de base associée | |
CN101431812B (zh) | 一种电路交换域业务处理方法、系统及设备 | |
WO2015078021A1 (zh) | 数据传输设备、通信系统及通信方法 | |
WO2009152782A1 (zh) | 基站和无线网络控制器之间的数据传输的方法、系统及设备 | |
EP3641468B1 (en) | Control methods, nodes and computer storage media | |
WO2006032213A1 (en) | A wireless network structure and a data transmission implementing method by applying the wireless network structure |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09799968 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2009799968 Country of ref document: EP |