WO2010009287A2 - Morselizer - Google Patents
Morselizer Download PDFInfo
- Publication number
- WO2010009287A2 WO2010009287A2 PCT/US2009/050791 US2009050791W WO2010009287A2 WO 2010009287 A2 WO2010009287 A2 WO 2010009287A2 US 2009050791 W US2009050791 W US 2009050791W WO 2010009287 A2 WO2010009287 A2 WO 2010009287A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- rod
- cannulated member
- bone
- morcelizing
- distal end
- Prior art date
Links
- 210000000988 bone and bone Anatomy 0.000 claims abstract description 56
- 238000000034 method Methods 0.000 claims description 19
- 229910001285 shape-memory alloy Inorganic materials 0.000 claims description 6
- 210000001519 tissue Anatomy 0.000 description 8
- 239000000463 material Substances 0.000 description 5
- 229910001000 nickel titanium Inorganic materials 0.000 description 5
- 230000008901 benefit Effects 0.000 description 4
- HLXZNVUGXRDIFK-UHFFFAOYSA-N nickel titanium Chemical compound [Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni] HLXZNVUGXRDIFK-UHFFFAOYSA-N 0.000 description 4
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000002639 bone cement Substances 0.000 description 2
- 239000000945 filler Substances 0.000 description 2
- 239000007943 implant Substances 0.000 description 2
- 230000000149 penetrating effect Effects 0.000 description 2
- 239000012781 shape memory material Substances 0.000 description 2
- 230000000087 stabilizing effect Effects 0.000 description 2
- 208000001132 Osteoporosis Diseases 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- HZEWFHLRYVTOIW-UHFFFAOYSA-N [Ti].[Ni] Chemical compound [Ti].[Ni] HZEWFHLRYVTOIW-UHFFFAOYSA-N 0.000 description 1
- 238000001574 biopsy Methods 0.000 description 1
- 210000000746 body region Anatomy 0.000 description 1
- 239000004568 cement Substances 0.000 description 1
- 238000005056 compaction Methods 0.000 description 1
- 238000002594 fluoroscopy Methods 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 208000014674 injury Diseases 0.000 description 1
- 230000000452 restraining effect Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 230000008733 trauma Effects 0.000 description 1
- 238000012800 visualization Methods 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods
- A61B17/56—Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
- A61B17/58—Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws or setting implements
- A61B17/88—Osteosynthesis instruments; Methods or means for implanting or extracting internal or external fixation devices
- A61B17/885—Tools for expanding or compacting bones or discs or cavities therein
- A61B17/8852—Tools for expanding or compacting bones or discs or cavities therein capable of being assembled or enlarged, or changing shape, inside the bone or disc
- A61B17/8858—Tools for expanding or compacting bones or discs or cavities therein capable of being assembled or enlarged, or changing shape, inside the bone or disc laterally or radially expansible
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods
- A61B17/16—Instruments for performing osteoclasis; Drills or chisels for bones; Trepans
- A61B17/1613—Component parts
- A61B17/1615—Drill bits, i.e. rotating tools extending from a handpiece to contact the worked material
- A61B17/1617—Drill bits, i.e. rotating tools extending from a handpiece to contact the worked material with mobile or detachable parts
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/04—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
- A61B18/12—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
- A61B18/14—Probes or electrodes therefor
- A61B18/1482—Probes or electrodes therefor having a long rigid shaft for accessing the inner body transcutaneously in minimal invasive surgery, e.g. laparoscopy
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods
- A61B2017/00831—Material properties
- A61B2017/00867—Material properties shape memory effect
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00571—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for achieving a particular surgical effect
- A61B2018/00601—Cutting
Definitions
- Described herein are systems, devices, and methods for treating bone within a skeletal structure.
- the invention also relates to systems, devices, and methods for forming cavities in cancellous bone, including cancellous bone within vertebral bodies. These devices, systems, and methods may be used to treat vertebral bodies affected by osteoporosis.
- Systems and methods for forming, supporting, fusing and expanding bone cavities may include any of the devices described herein, as well as devices and methods adapted for the use with a bone implant, a bone cement and/or a bone filler. For example, at least some of the devices described in US Patent Application Serial No.
- 12/025,537 titled “METHODS AND DEVICES FOR STABILIZING BONE COMPATIBLE FOR USE WITH BONE SCREWS", filed February 4, 2008 may be inserted into a cavity formed in a bone using a morcelizer as described herein.
- the bone cavity may then be expanded, and then filled with bone cements of any appropriate type.
- the formation of a bone cavity is often difficult, due to the size constraints, as well as the stresses placed on the devices used to form the cavities in bone.
- cancellous bone may be accessed through a narrow gap or opening, as described below.
- the bone compaction/cutting device e.g., morcelizers
- the bone compaction/cutting device includes a moving distal end that is hinged.
- Such hinges or hinge points often result in weak regions that may be broken off during use. Breaking of the morcelizer is likely to result in trauma and undesirable outcomes.
- the handle and grip regions of currently available devices may be difficult to operate.
- the tip region of the morcelizer may be insufficient, and may lack orientation.
- a bone cavity particularly in cancellous bone
- an implant and/or bone filler, cement or other fluent material may be applied.
- Described herein are devices, systems and methods for forming cavities in bone, including bone morcelizers that are extendable from an outer sleeve to assume a curved shape, rotatable, and/or include one or more pre-formed regions for helping compress the bone.
- bone morcelizers for forming cavities in bone, particularly cancellous bone.
- these devices include an outer cannulated member coupled to a proximal handle.
- An inner member may be extended and rotate relative to the outer member in a controlled manner, by operating one or more controls on the handle or on a proximal handle attached to the inner rod.
- the inner member may assume a curved shape relative to the outer member when it is extended.
- the inner member may be formed of a pre- shaped shape memory material (e.g., a shape memory alloy such as Nitinol).
- the distal end of the inner member may be formed in a predetermined shape, such as a flattened, spatulate or shovel-shape.
- the proximal end of the inner member may be coupled to (or may itself form) an inner-rod handle or control knob.
- the control knob may be configured to be rotated and/or extended from the outer member.
- the distal end of the outer member may include one or more markings that may be visualized using imaging techniques (e.g. fluoroscopy, etc.).
- the device may also include a lock for locking the position of the inner member relative to the outer member.
- the outer cannulated member includes one or more self- expanding cutting struts that may be held in a collapsed form by the inner rod.
- the struts may include one or more cutting surfaces.
- bone morcelizer devices for forming a cavity in bone, that include: an outer cannulated member having a proximal and a distal end; a handle at the proximal end of the outer cannulated member; an inner morcelizing rod movably positioned within the outer cannulated member, wherein the inner morcelizing rod is configured to assume a curved shape upon exiting the distal end of the outer cannulated member; a cutting surface at the distal end of the inner morcelizing rod; and a lock on the handle configured to lock the inner morcelizing rod relative to the outer cannulated member.
- the inner cannulated member may be formed of a shape memory alloy (e.g.,
- the inner cannulated member may have a wedge- shaped tip.
- the inner cannulated member may include a blade edge.
- the inner cannulated member is configured to rotate within the outer cannulated member.
- the inner cannulated member may include a handle at the proximal end configured to allow manipulation of the inner rod.
- the handle may include a grip (e.g., a finger grip) and may be a knob, lever, etc.
- This proximal handle on the inner rod may be rotatable and/or extendable.
- the control for the proximal handle may be threaded, allowing controlled advancement/retraction of the inner rod.
- the curved shape of the inner cannulated member is configured to be at a right angle to the outer cannulated member.
- bone morcelizer devices for forming a cavity in bone that include: an outer cannulated member having a proximal and a distal end; a plurality of struts at the distal end region of the outer cannula configured to self-expand into a bow shape for cutting; a handle at the proximal end of the outer cannulated member; an inner rod movably positioned within the outer cannulated member and coupled to the distal end region of the outer cannulated member, distal to the struts, wherein the inner rod is configured to apply force to maintain the struts in a collapsed configuration; and a lock on the handle configured to lock the inner rod relative to the outer cannulated member.
- a morcelizer device may also include one or more cutting surfaces on the struts.
- a strut may include a cutting surface that is oriented radially outward from the outer cannulated member, to the side of the outer cannulated member, and/or radially inward from the outer cannulated member.
- a cutting surface includes a sharp surface such as a blade/knife-edged surface, a surface including an electrosurgical cutting element (e.g., an electrode configured to apply RF or thermal energy for cutting), or the like.
- the morcelizer device may also include a handle on the proximal end of the inner rod.
- the lock may also be located on the proximal handle of either the outer cannula or the inner rod.
- the morcelizer devices also include a tissue-penetrating distal end.
- the inner rod may include a tissue-penetrating distal end
- the outer cannulated member may include a tissue penetrating distal end.
- the distal end is configured so that it does not penetrate tissue (e.g., it is blunt or substantially atraumatic).
- methods of forming or expanding a cavity in a bone including the steps of: inserting a bone morcelizing device having an outer cannulated member and an inner morcelizing rod into a bone; extending the inner morcelizing rod from the distal end of the outer cannulated member so that the inner morcelizing rod assumes a curved shape; and rotating the inner morcelizing rod to cut or compress bone .
- the methods may also include the step of locking the inner rod relative to the outer member.
- the step of rotating the inner morcelizing rod comprises locking the inner rod to the outer member and grasping a handle connected to the proximal end of the outer member.
- FIG. 1 shows one variation of a morcelizer in which the inner member (inner shape memory rod) is retracted proximally into the outer member.
- FIGS. 2-6 illustrate extension of the inner member relative to the outer member for a morcelizer such as the morcelizer shown in FIG. 1.
- FIGS. 7-9 illustrate rotation of the inner member relative to the outer member for a morcelizer such as the morcelizer shown in FIG. 1.
- FIGS. 1OA and 1OB illustrate another variation of the distal end of a morcelizer.
- FIGS. 1 IA-11 C illustrate variations of self-expanding morcelizers having cutting edges.
- FIG. 12A shows another variation of a morcelizer as described herein, having a distal morcelizing region as shown in FIGS. 1OA and 1OB.
- FIG. 12B shows the distal end of the morcelize of FIG. 12A in the collapsed configuration.
- FIG. 1 illustrates one variation of a morcelizer.
- this device includes an outer cannulated member that is connected (rigidly) to a handle, an inner member that is movable and lockable with respect to the inner member. At least the distal region of the inner member may be pre-shaped so that it assumes a curved or bent configuration when exiting the device.
- the device typically also includes one or more locks that may securely lock the inner member in position relative to the outer member.
- the lock is a thumbwheel that can be rotated to lock the inner member in position relative to the outer member.
- the inner member may be configured to extend from the outer member so that it can assume a curved shape.
- the inner member (rod) can be rotated independently of the outer member and handle, or it can be locked so that moving the handle will move the inner member, allowing formation of a cavity.
- FIGS. 1-9 the components illustrated are roughly scaled so that the inner rod is approximately 3.8mm diameter.
- the curvature of the rod when fully extended may be less than that illustrated.
- the inner member may be withdrawn into the outer member (either completely or partially) and the distal end of the device may be inserted into a bone.
- a drill may be used to from an opening into a bone.
- the inner member may be extended to widen or expand the cavity in the bone.
- the extent to which the inner member is extended (and thus the exposed curvature of the bone) may determine the size (e.g., width) of the cavity formed, hi some variations, rather than the rod being extended to cause the cutting action, the tube can be withdrawn. This means may be preferable since the starting point of the cut would be more easily visualized.
- the distal end of the inner member may include one or more cutting surfaces.
- the cutting surface shown is a simple two-face bevel aligned with the longitudinal axis of the rod.
- the surface could have different profiles, for example, multiple cutting facets, curvilinear bevel, cupped (similar to curette), and different orientations, for example, orthogonal to or at another angle to the axis. Cutting surfaces that are available in more than one configuration could make the device more broadly useful.
- the morcelizing rod may be rotated to further enlarge a cavity in bone (especially cancellous bone).
- the cutting rod can be rotated directly (as shown in FIG. 7-9), or indirectly by locking the morcelizing rod and the outer cannulated member with handle, then rotating the handle.
- the rod is a tube, rather than a solid rod.
- the morcelizing rod may be cannulated. This may be used a biopsy or delivery device.
- the morcelizing rod may be a single piece (e.g., of pre-biased shape memory alloy), it could alternatively be composed of more than one section and/or be made from more than one material to benefit handling, performance, and cost.
- the cutting surface at the distal end of the morcelizing rod is replaceable or removable.
- the distal cutting surface could be threaded onto or otherwise connected to the distal end of the rod; thereby making it replaceable.
- the device may include electronic components that allow the device to electrically cut or cauterize tissue.
- the morcelizing device may be configured as an electrocautery device.
- the device may include one or more wires at preferably radial distances from the rod that can be extended into surrounding tissue to stabilize the rod's cutting action.
- FIGS. 1 OA and 1 OB illustrate another variation of a morcelizer configured to expand from a first (e.g., linear) delivery configuration into a cutting configuration.
- the device includes two expandable struts that may be secured at either end to a collar.
- the struts may be expanded from a collapsed configuration into a curved configuration to form a cutting plane, as indicated in FIG. 1OA (shaded area).
- two struts are shown (arranged opposite from each other to form a plane), they may be arranged in any appropriate orientation, and more than two struts may be used.
- the struts form a cutting zone that is determined by the nominal size of the expanded device (indicted in the gray shading in FIG. 10A).
- the device After being inserted (e.g., into cancellous bone), the device may be expanded to cut through the bone as the struts expand.
- FIG. 1OB shows the device in the expanded configuration.
- the struts may be adapted for cutting. In some variations the struts are pre- biased in the expanded shape.
- the struts may be formed of a shape memory material, such as a shape memory alloy (e.g., Nitinol).
- the struts may include a cutting edge or surface, e.g., along the outer edge (toward the direction of expansion), hi some variations, the struts include serrated or sharp edges facing the direction of expansion, hi some variations, the struts include side-cutting edges, that allow cutting should the device be rotated. An inner cutting edge, allowing cutting of the device when collapsing it struts may also be included.
- Expandable morcelizers such as the one shown in FIG. 10 may also be included behind a sharp or cutting distal tip.
- the device may include a sharp distal tip that can be used to drive the device into the tissue, where it can be inserted to position the expandable struts.
- the struts extend from an inner member that is surrounded by an outer member, rather than extending from an outer member with an inner member that can hold the struts collapsed or expanded, as shown in FIGS. 1OA and 1OB.
- the outer member may be a cannula from which an inner rod extends, similar to the embodiment shown and described above.
- the inner rod may include a pre-biased distal end (e.g., formed of a shape memory alloy) that expands outwards as it is extended from the outer cannula, e.g., by pushing it out of the outer cannulated member.
- the struts formed at the distal end of the inner rod of the device may have pre-biased bow shapes (such as the one shown in FIGS. 10 and 11) that can be compressed or collapsed as the inner rod is drawn back into the outer member.
- the morcelizer devices shown in FIGS. 1OA and 1OB include an outer member that includes two bow-shaped struts (e.g., gradually increasing curving upwards, plateauing, then curving downwards, as shown. Other variations may include more than two struts, hi some variations the device is pre-biased so that the struts are self-expanding into the expanded shape (shown in FIGS. 1OA and 10B).
- the device is collapsed (or held in the collapsed state) by applying a force across the struts (e.g., pulling the distal and proximal ends of the struts) to flatten them in the delivery (rod-shaped) configuration.
- the inner rod may be used to apply force.
- the inner rod may extend proximally to distally within the outer member including the struts. Applying force distally relative to the outer member (or applying force proximally relative to the inner rod) may hold the struts in the collapsed configuration.
- Such a pre-biased, self-expanding device may realize significant and unexpected advantages over devices that require the application offeree by the user to expand them.
- a device including the self-expanding struts shown in FIGS. 1OA and 10 B may also include a lock at the proximal end, similar to the lock shown in the variation of FIG. 1.
- the lock is rotatable (though any appropriate actuation mechanism may be used) to secure the inner rod relative to the outer cannulated member.
- the variation of the distal end shown in FIGS. 1OA and 1OB (which may have a proximal control/handle similar to that shown in FIG. 1) may include a lock that locks the inner rod in position, holding the device and preventing further self-expansion or accidental collapse.
- the struts of the morcelizer may include one or more cutting edges.
- FIGS. 1 IA-11C illustrate different cutting edges.
- FIG. 1 IA shows one variation of a strut in the expanded configuration having a cutting surface along the outer (e.g., axially outward facing) edge.
- the cutting edge shown in FIG. 1 IA is a serrated, sharp cutting edge, any appropriate cutting edge may be used.
- the cutting edge may be a blade or knife edge.
- the cutting edge includes one or more electrodes for applying RF energy to cut tissue.
- FIG. 1 IB shows another variation of a strut having a cutting edge along the axially inwardly facing edge.
- FIG. 11C shows a strut having a cutting edge along the side-facing edge of the strut.
- All or a portion (e.g., the central portion) of the strut may include a cutting edge. In some variations more than one edge or face of the strut may include a cutting surface.
- the strut may be configured to cut as it expands, as it collapses, as it is rotated, or some combination thereof.
- FIGS. 12A and 12B illustrate one variation of a morcelizer including a plurality of self-expanding struts.
- the morcelizer includes an outer cannula 1201 that includes a handle 1215 at the proximal end and a pair of self-expanding struts 1203 at the distal end. These struts may include one or more cutting edges (not shown).
- the distal end shown in FIG. 12B illustrates the distal end of the morcelizer shown in FIG. 12A in a collapsed configuration.
- An inner, force-applying rod 1205 passes within the cannulated outer member
- the distal end region and the inner rod may be coupled together by a weld, or by a removable connection.
- the distal end of the device may also be tissue penetrating 1209.
- the distal end of the rod comprises the distal end of the inner rod 1205, which includes a tapered (and may be pointed) end 1209.
- the inner rod is also coupled to a locking mechanism 1211, which may be similar to the locking mechanism previously described. In general, this lock may prevent the inner rod 1205 from sliding axially to allow further expansion of the struts (or to contract the struts).
- the lock may be configured so that it permits rotation of the outer member with struts relative to the inner rod.
- the lock may be controlled (e.g., engaged/disengaged) by a control such as a trigger 1213.
- the inner rod 1205 may also include a proximal handle region 1217 that can be used to rotate and/or advance or withdraw the inner rod, and thereby allow or prevent self-expansion of the struts.
- the device may be configured to allow release of the restraining force applied by the inner rod, so that the struts are allowed to freely self-expand.
- the trigger or control may be configured to release the lock or any inhibition of the inner rod, allowing the self-expansion of the struts.
- the inner rod is coupled to the proximal end of the struts, rather than the distal end.
- the distal end of the struts may be continuous with the rest of the outer cannula). This allows the struts to expand/contract without extending/withdrawing the distal end of the device.
- the distal end of the device may be inserted in position, and held at this distal position while the struts are expanded.
- the distal end does not foreshorten.
- the outer cannula may include a cut-out region into which the struts are positioned, so that the distal end of the struts can be coupled to the distal end region of the outer cannula.
- the self-expanding struts may be formed as part of the outer cannula (e.g., cut-outs of the cannula), or they may be attached or affixed to the outer cannula.
- the outer cannula and/or inner cannula may be made of other materials, and affixed (e.g., welded, crimped, or otherwise attached to) the struts.
- the device may be controlled by a handle that allows one end (e.g., the proximal end) of the expandable struts to be moved distally or proximally so that the device can expand/collapse.
- the device may be hollow (e.g., the central rod or cannula) to allow passage of material, visualization, or the like.
- the device may be delivered over another device (e.g., guidewire).
- the sharp distal end may be secured to a rod or wire that passes through this central passageway.
- the device may be exchangeable over other devices.
- the expandable struts may be activated to expand automatically or manually. As mentioned, the struts may be pre-biased in the expanded shape, or they may be pre-biased in the collapsed shape.
- the morcelizers are adapted to prevent breakage, including breakage from misuse.
- the devices should not be rotated in the expanded configuration, and may include a lock to prevent rotation when expanded.
- the device may include a clutch on the handle of the device that prevents it from being rotated by rotating the handle when expanded.
- the device may include a rotation joint between the expandable struts and the handle that prevents rotation of the handle from translating into rotation of the expanded struts.
- the struts are reinforced to further prevent breakage.
- the struts may expand into a symmetric shape, (as shown ) or an asymmetric shape (e.g., biased towards one side or the other).
- the struts may be formed of any appropriate material, as mentioned, including Nitinol, steel, or other alloys.
- the struts may be expanded to any degree desired.
- the morcelizer device may include a gauge or other indicator that shows how far the expandable device has been expanded.
- the methods described herein outline only one example of the morcelizing devices described herein, and additional variations are within the scope of the invention. While embodiments of the present invention have been shown and described herein, such embodiments are provided by way of example only. Thus, alternatives to the embodiments of the invention described herein may be employed in practicing the invention.
- the exemplary claims that follow help further define the scope of the systems, devices and methods (and equivalents thereof).
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Surgery (AREA)
- Engineering & Computer Science (AREA)
- Animal Behavior & Ethology (AREA)
- Veterinary Medicine (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Orthopedic Medicine & Surgery (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Dentistry (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Physics & Mathematics (AREA)
- Plasma & Fusion (AREA)
- Otolaryngology (AREA)
- Surgical Instruments (AREA)
- Prostheses (AREA)
Abstract
Described herein are bone morcelizers for forming cavities in bone, particularly cancellous bone. In general, these devices include an outer cannulated member coupled to a proximal handle. An inner member may be extended and rotated relative to the outer member in a controlled manner, by operating one or more controls on the handle. The inner member may assume a curved shape relative to the outer member when it is extended.
Description
MORSELIZER
CROSS-REFERENCE TO RELATED APPLICATIONS
[0001] This application claims the benefit of priority to U.S. Provisional Patent
Application Serial No. 61/081,308, titled "MORSELIZER" (filed 7/16/2008) and U.S. Provisional Patent Application Serial No. 61/121,309, titled "MORSELIZER" (filed 12/10/2008), herein incorporated by reference in their entirety.
[0002] This provisional patent application may be related to US Patent Application Serial
No. 12/025,537, titled "METHODS AND DEVICES FOR STABILIZING BONE COMPATIBLE FOR USE WITH BONE SCREWS", filed Feb. 4, 2008. This application may also be related to US Patent Application Serial No. 11/468,759, filed August 30, 2006, which claims the benefit of U.S. Provisional Application No. 60/713,259, filed Aug. 31, 2005, and to US Provisional Patent Application No. 60/916,731, filed May 8, 2007. All of these applications are incorporated herein by reference in their entirety.
INCORPORATION BY REFERENCE
[0003] All publications and patent applications mentioned in this specification are herein incorporated by reference in their entirety as if each individual publication or patent application was specifically and individually indicated to be incorporated by reference.
BACKGROUND OF THE INVENTION [0004] Described herein are systems, devices, and methods for treating bone within a skeletal structure. The invention also relates to systems, devices, and methods for forming cavities in cancellous bone, including cancellous bone within vertebral bodies. These devices, systems, and methods may be used to treat vertebral bodies affected by osteoporosis. [0005] Systems and methods for forming, supporting, fusing and expanding bone cavities may include any of the devices described herein, as well as devices and methods adapted for the use with a bone implant, a bone cement and/or a bone filler. For example, at least some of the devices described in US Patent Application Serial No. 12/025,537, titled "METHODS AND DEVICES FOR STABILIZING BONE COMPATIBLE FOR USE WITH BONE SCREWS", filed February 4, 2008 may be inserted into a cavity formed in a bone using a morcelizer as described herein. The bone cavity may then be expanded, and then filled with bone cements of any appropriate type.
[0006] The formation of a bone cavity is often difficult, due to the size constraints, as well as the stresses placed on the devices used to form the cavities in bone. For example, cancellous bone may be accessed through a narrow gap or opening, as described below. However, in order to form a sufficient opening or hole within the cancellous bone, it may be necessary to provide sufficient force (including torque) to compact and/or cut the bone. In many of the devices currently available, the bone compaction/cutting device (e.g., morcelizers) includes a moving distal end that is hinged. Such hinges or hinge points often result in weak regions that may be broken off during use. Breaking of the morcelizer is likely to result in trauma and undesirable outcomes. Furthermore, the handle and grip regions of currently available devices may be difficult to operate. In addition, the tip region of the morcelizer may be insufficient, and may lack orientation.
[0007] Thus, it would be desirable to have devices, methods and/or systems for forming a bone cavity, particularly in cancellous bone, so that an implant and/or bone filler, cement or other fluent material may be applied. [0008] Described herein are devices, systems and methods for forming cavities in bone, including bone morcelizers that are extendable from an outer sleeve to assume a curved shape, rotatable, and/or include one or more pre-formed regions for helping compress the bone.
SUMMARY OF THE INVENTION
[0009] Described herein are bone morcelizers for forming cavities in bone, particularly cancellous bone. In general, these devices include an outer cannulated member coupled to a proximal handle. An inner member may be extended and rotate relative to the outer member in a controlled manner, by operating one or more controls on the handle or on a proximal handle attached to the inner rod. [0010] In some variations, the inner member may assume a curved shape relative to the outer member when it is extended. For example, the inner member may be formed of a pre- shaped shape memory material (e.g., a shape memory alloy such as Nitinol). The distal end of the inner member may be formed in a predetermined shape, such as a flattened, spatulate or shovel-shape. The proximal end of the inner member may be coupled to (or may itself form) an inner-rod handle or control knob. For example, the control knob may be configured to be rotated and/or extended from the outer member. The distal end of the outer member may include one or more markings that may be visualized using imaging techniques (e.g. fluoroscopy, etc.). The
device may also include a lock for locking the position of the inner member relative to the outer member.
[0011] In some variations, the outer cannulated member includes one or more self- expanding cutting struts that may be held in a collapsed form by the inner rod. The struts may include one or more cutting surfaces.
[0012] For example, described herein are bone morcelizer devices for forming a cavity in bone, that include: an outer cannulated member having a proximal and a distal end; a handle at the proximal end of the outer cannulated member; an inner morcelizing rod movably positioned within the outer cannulated member, wherein the inner morcelizing rod is configured to assume a curved shape upon exiting the distal end of the outer cannulated member; a cutting surface at the distal end of the inner morcelizing rod; and a lock on the handle configured to lock the inner morcelizing rod relative to the outer cannulated member.
[0013] The inner cannulated member may be formed of a shape memory alloy (e.g.,
Nitinol, or other nickel-titanium alloys). The inner cannulated member may have a wedge- shaped tip. The inner cannulated member may include a blade edge. In some variations, the inner cannulated member is configured to rotate within the outer cannulated member. [0014] The inner cannulated member may include a handle at the proximal end configured to allow manipulation of the inner rod. The handle may include a grip (e.g., a finger grip) and may be a knob, lever, etc. This proximal handle on the inner rod may be rotatable and/or extendable. For example, the control for the proximal handle may be threaded, allowing controlled advancement/retraction of the inner rod. These threads may also interact with the lock or locking mechanism to prevent it from advancing or withdrawing in an uncontrolled manner. [0015] hi some variations, the curved shape of the inner cannulated member is configured to be at a right angle to the outer cannulated member. [0016] Also described herein are bone morcelizer devices for forming a cavity in bone that include: an outer cannulated member having a proximal and a distal end; a plurality of struts at the distal end region of the outer cannula configured to self-expand into a bow shape for cutting; a handle at the proximal end of the outer cannulated member; an inner rod movably positioned within the outer cannulated member and coupled to the distal end region of the outer cannulated member, distal to the struts, wherein the inner rod is configured to apply force to maintain the struts in a collapsed configuration; and a lock on the handle configured to lock the inner rod relative to the outer cannulated member.
[0017] A morcelizer device may also include one or more cutting surfaces on the struts.
For example, a strut may include a cutting surface that is oriented radially outward from the
outer cannulated member, to the side of the outer cannulated member, and/or radially inward from the outer cannulated member. A cutting surface includes a sharp surface such as a blade/knife-edged surface, a surface including an electrosurgical cutting element (e.g., an electrode configured to apply RF or thermal energy for cutting), or the like. [0018] As mentioned above, the morcelizer device may also include a handle on the proximal end of the inner rod. The lock may also be located on the proximal handle of either the outer cannula or the inner rod.
[0019] In some variations, the morcelizer devices also include a tissue-penetrating distal end. For example, the inner rod may include a tissue-penetrating distal end, and/or the outer cannulated member may include a tissue penetrating distal end. Alternatively, in some variations, the distal end is configured so that it does not penetrate tissue (e.g., it is blunt or substantially atraumatic).
[0020] Also described herein are methods of morcelizing bone and/or other tissues. For example, described herein are methods of forming or expanding a cavity in a bone, the method including the steps of: inserting a bone morcelizing device having an outer cannulated member and an inner morcelizing rod into a bone; extending the inner morcelizing rod from the distal end of the outer cannulated member so that the inner morcelizing rod assumes a curved shape; and rotating the inner morcelizing rod to cut or compress bone . [0021] The methods may also include the step of locking the inner rod relative to the outer member.
[0022] In some variations the step of rotating the inner morcelizing rod comprises locking the inner rod to the outer member and grasping a handle connected to the proximal end of the outer member.
BRIEF DESCRIPTION OF THE DRAWINGS
[0023] FIG. 1 shows one variation of a morcelizer in which the inner member (inner shape memory rod) is retracted proximally into the outer member.
[0024] FIGS. 2-6 illustrate extension of the inner member relative to the outer member for a morcelizer such as the morcelizer shown in FIG. 1. [0025] FIGS. 7-9 illustrate rotation of the inner member relative to the outer member for a morcelizer such as the morcelizer shown in FIG. 1. [0026] FIGS. 1OA and 1OB illustrate another variation of the distal end of a morcelizer.
[0027] FIGS. 1 IA-11 C illustrate variations of self-expanding morcelizers having cutting edges.
[0028] FIG. 12A shows another variation of a morcelizer as described herein, having a distal morcelizing region as shown in FIGS. 1OA and 1OB. FIG. 12B shows the distal end of the morcelize of FIG. 12A in the collapsed configuration.
DETAILED DESCRIPTION OF THE INVENTION
[0029] FIG. 1 illustrates one variation of a morcelizer. hi general, this device includes an outer cannulated member that is connected (rigidly) to a handle, an inner member that is movable and lockable with respect to the inner member. At least the distal region of the inner member may be pre-shaped so that it assumes a curved or bent configuration when exiting the device. The device typically also includes one or more locks that may securely lock the inner member in position relative to the outer member. For example, in FIG. 1, the lock is a thumbwheel that can be rotated to lock the inner member in position relative to the outer member. [0030] The inner member may be configured to extend from the outer member so that it can assume a curved shape. The inner member (rod) can be rotated independently of the outer member and handle, or it can be locked so that moving the handle will move the inner member, allowing formation of a cavity.
[0031] In the example, shown in FIGS. 1-9, the components illustrated are roughly scaled so that the inner rod is approximately 3.8mm diameter. The curvature of the rod when fully extended may be less than that illustrated.
[0032] hi operation, the inner member (morcelizer rod) may be withdrawn into the outer member (either completely or partially) and the distal end of the device may be inserted into a bone. For example, a drill may be used to from an opening into a bone. After the distal end is placed in the bone, the inner member may be extended to widen or expand the cavity in the bone. The extent to which the inner member is extended (and thus the exposed curvature of the bone) may determine the size (e.g., width) of the cavity formed, hi some variations, rather than the rod being extended to cause the cutting action, the tube can be withdrawn. This means may be preferable since the starting point of the cut would be more easily visualized. [0033] The distal end of the inner member (morcelizing rod) may include one or more cutting surfaces. The cutting surface shown is a simple two-face bevel aligned with the longitudinal axis of the rod. The surface could have different profiles, for example, multiple cutting facets, curvilinear bevel, cupped (similar to curette), and different orientations, for
example, orthogonal to or at another angle to the axis. Cutting surfaces that are available in more than one configuration could make the device more broadly useful. [0034] The morcelizing rod may be rotated to further enlarge a cavity in bone (especially cancellous bone). For example, the cutting rod can be rotated directly (as shown in FIG. 7-9), or indirectly by locking the morcelizing rod and the outer cannulated member with handle, then rotating the handle.
[0035] In some variations, the rod is a tube, rather than a solid rod. For example, the morcelizing rod may be cannulated. This may be used a biopsy or delivery device. [0036] Although the morcelizing rod may be a single piece (e.g., of pre-biased shape memory alloy), it could alternatively be composed of more than one section and/or be made from more than one material to benefit handling, performance, and cost.
[0037] In some variations the cutting surface at the distal end of the morcelizing rod is replaceable or removable. For example, the distal cutting surface could be threaded onto or otherwise connected to the distal end of the rod; thereby making it replaceable. [0038] In some variations, the device may include electronic components that allow the device to electrically cut or cauterize tissue. Thus, the morcelizing device may be configured as an electrocautery device.
[0039] In some variations, the device may include one or more wires at preferably radial distances from the rod that can be extended into surrounding tissue to stabilize the rod's cutting action.
Expandable Morcelizer
[0040] FIGS. 1 OA and 1 OB illustrate another variation of a morcelizer configured to expand from a first (e.g., linear) delivery configuration into a cutting configuration. In this variation, the device includes two expandable struts that may be secured at either end to a collar. The struts may be expanded from a collapsed configuration into a curved configuration to form a cutting plane, as indicated in FIG. 1OA (shaded area). Although two struts are shown (arranged opposite from each other to form a plane), they may be arranged in any appropriate orientation, and more than two struts may be used. The struts form a cutting zone that is determined by the nominal size of the expanded device (indicted in the gray shading in FIG. 10A). After being inserted (e.g., into cancellous bone), the device may be expanded to cut through the bone as the struts expand. FIG. 1OB shows the device in the expanded configuration. [0041] The struts may be adapted for cutting. In some variations the struts are pre- biased in the expanded shape. Thus, the struts may be formed of a shape memory material, such as a shape memory alloy (e.g., Nitinol). The struts may include a cutting edge or surface, e.g.,
along the outer edge (toward the direction of expansion), hi some variations, the struts include serrated or sharp edges facing the direction of expansion, hi some variations, the struts include side-cutting edges, that allow cutting should the device be rotated. An inner cutting edge, allowing cutting of the device when collapsing it struts may also be included. [0042] Expandable morcelizers such as the one shown in FIG. 10 may also be included behind a sharp or cutting distal tip. For example, the device may include a sharp distal tip that can be used to drive the device into the tissue, where it can be inserted to position the expandable struts. [0043] In some variations, the struts extend from an inner member that is surrounded by an outer member, rather than extending from an outer member with an inner member that can hold the struts collapsed or expanded, as shown in FIGS. 1OA and 1OB. Thus, in some variations the outer member may be a cannula from which an inner rod extends, similar to the embodiment shown and described above. The inner rod may include a pre-biased distal end (e.g., formed of a shape memory alloy) that expands outwards as it is extended from the outer cannula, e.g., by pushing it out of the outer cannulated member. Thus, the struts formed at the distal end of the inner rod of the device may have pre-biased bow shapes (such as the one shown in FIGS. 10 and 11) that can be compressed or collapsed as the inner rod is drawn back into the outer member. [0044] The morcelizer devices shown in FIGS. 1OA and 1OB include an outer member that includes two bow-shaped struts (e.g., gradually increasing curving upwards, plateauing, then curving downwards, as shown. Other variations may include more than two struts, hi some variations the device is pre-biased so that the struts are self-expanding into the expanded shape (shown in FIGS. 1OA and 10B). The device is collapsed (or held in the collapsed state) by applying a force across the struts (e.g., pulling the distal and proximal ends of the struts) to flatten them in the delivery (rod-shaped) configuration. The inner rod may be used to apply force. For example, the inner rod may extend proximally to distally within the outer member including the struts. Applying force distally relative to the outer member (or applying force proximally relative to the inner rod) may hold the struts in the collapsed configuration. [0045] Such a pre-biased, self-expanding device may realize significant and unexpected advantages over devices that require the application offeree by the user to expand them. SeIf- expansion may allow for a quick and relatively powerful expansion within small body regions. Further, the addition of force applied by the user can help in expanding the device. [0046] A device including the self-expanding struts shown in FIGS. 1OA and 10 B may also include a lock at the proximal end, similar to the lock shown in the variation of FIG. 1. In this example, the lock is rotatable (though any appropriate actuation mechanism may be used) to
secure the inner rod relative to the outer cannulated member. Similarly, the variation of the distal end shown in FIGS. 1OA and 1OB (which may have a proximal control/handle similar to that shown in FIG. 1) may include a lock that locks the inner rod in position, holding the device and preventing further self-expansion or accidental collapse. [0047] As mentioned, the struts of the morcelizer may include one or more cutting edges.
FIGS. 1 IA-11C illustrate different cutting edges. For example, FIG. 1 IA shows one variation of a strut in the expanded configuration having a cutting surface along the outer (e.g., axially outward facing) edge. Although the cutting edge shown in FIG. 1 IA is a serrated, sharp cutting edge, any appropriate cutting edge may be used. For example, the cutting edge may be a blade or knife edge. In some variations the cutting edge includes one or more electrodes for applying RF energy to cut tissue. FIG. 1 IB shows another variation of a strut having a cutting edge along the axially inwardly facing edge. Similarly, FIG. 11C shows a strut having a cutting edge along the side-facing edge of the strut. All or a portion (e.g., the central portion) of the strut may include a cutting edge. In some variations more than one edge or face of the strut may include a cutting surface. Thus, the strut may be configured to cut as it expands, as it collapses, as it is rotated, or some combination thereof.
[0048] FIGS. 12A and 12B illustrate one variation of a morcelizer including a plurality of self-expanding struts. In FIG. 12 A, the morcelizer includes an outer cannula 1201 that includes a handle 1215 at the proximal end and a pair of self-expanding struts 1203 at the distal end. These struts may include one or more cutting edges (not shown). The distal end shown in FIG. 12B illustrates the distal end of the morcelizer shown in FIG. 12A in a collapsed configuration.
[0049] An inner, force-applying rod 1205 passes within the cannulated outer member
1201, and is coupled 1207 to the distal end region of the outer cannula. For example, the distal end region and the inner rod may be coupled together by a weld, or by a removable connection. [0050] The distal end of the device may also be tissue penetrating 1209. In this example, the distal end of the rod comprises the distal end of the inner rod 1205, which includes a tapered (and may be pointed) end 1209. The inner rod is also coupled to a locking mechanism 1211, which may be similar to the locking mechanism previously described. In general, this lock may prevent the inner rod 1205 from sliding axially to allow further expansion of the struts (or to contract the struts). The lock may be configured so that it permits rotation of the outer member with struts relative to the inner rod. The lock may be controlled (e.g., engaged/disengaged) by a control such as a trigger 1213. The inner rod 1205 may also include a proximal handle region
1217 that can be used to rotate and/or advance or withdraw the inner rod, and thereby allow or prevent self-expansion of the struts.
[0051] In some variations the device may be configured to allow release of the restraining force applied by the inner rod, so that the struts are allowed to freely self-expand. For example, the trigger or control may be configured to release the lock or any inhibition of the inner rod, allowing the self-expansion of the struts.
[0052] In some variations the inner rod is coupled to the proximal end of the struts, rather than the distal end. The distal end of the struts may be continuous with the rest of the outer cannula). This allows the struts to expand/contract without extending/withdrawing the distal end of the device. Thus, in operation, the distal end of the device may be inserted in position, and held at this distal position while the struts are expanded. Thus, the distal end does not foreshorten. In this variation, the outer cannula may include a cut-out region into which the struts are positioned, so that the distal end of the struts can be coupled to the distal end region of the outer cannula. [0053] In any of these variations, the self-expanding struts may be formed as part of the outer cannula (e.g., cut-outs of the cannula), or they may be attached or affixed to the outer cannula. Thus the outer cannula and/or inner cannula may be made of other materials, and affixed (e.g., welded, crimped, or otherwise attached to) the struts. [0054] In operation the device may be controlled by a handle that allows one end (e.g., the proximal end) of the expandable struts to be moved distally or proximally so that the device can expand/collapse. This may be accomplished by securing the distal end of the expandable struts to a rod or cannula that may concentrically slide within another cannula secured to the proximal end of the expandable struts. The device may be hollow (e.g., the central rod or cannula) to allow passage of material, visualization, or the like. In some variations, the device may be delivered over another device (e.g., guidewire). For example, the sharp distal end may be secured to a rod or wire that passes through this central passageway. Thus, the device may be exchangeable over other devices.
[0055] The expandable struts may be activated to expand automatically or manually. As mentioned, the struts may be pre-biased in the expanded shape, or they may be pre-biased in the collapsed shape.
[0056] hi general, expandable morcelizers such as those described above must be configured so that they do not readily break, particularly when expanded. If this occurs, the device is likely to damage the patient upon being withdrawn. Thus, in some variations the morcelizers are adapted to prevent breakage, including breakage from misuse. For example, the
devices should not be rotated in the expanded configuration, and may include a lock to prevent rotation when expanded. For example, the device may include a clutch on the handle of the device that prevents it from being rotated by rotating the handle when expanded. In some variations, the device may include a rotation joint between the expandable struts and the handle that prevents rotation of the handle from translating into rotation of the expanded struts. In some variations the struts are reinforced to further prevent breakage.
[0057] The struts may expand into a symmetric shape, (as shown ) or an asymmetric shape (e.g., biased towards one side or the other). The struts may be formed of any appropriate material, as mentioned, including Nitinol, steel, or other alloys. The struts may be expanded to any degree desired. In some variations, the morcelizer device may include a gauge or other indicator that shows how far the expandable device has been expanded. [0058] The methods described herein outline only one example of the morcelizing devices described herein, and additional variations are within the scope of the invention. While embodiments of the present invention have been shown and described herein, such embodiments are provided by way of example only. Thus, alternatives to the embodiments of the invention described herein may be employed in practicing the invention. The exemplary claims that follow help further define the scope of the systems, devices and methods (and equivalents thereof).
Claims
1. A bone morcelizer device for forming a cavity in bone, the device comprising: an outer cannulated member having a proximal and a distal end; a handle at the proximal end of the outer cannulated member; an inner morcelizing rod movably positioned within the outer cannulated member, wherein the inner morcelizing rod is configured to assume a curved shape upon exiting the distal end of the outer cannulated member; a cutting surface at the distal end of the inner morcelizing rod; and a lock on the handle configured to lock the inner morcelizing rod relative to the outer cannulated member.
2. The device of claim 1 , wherein the inner cannulated member comprises a shape memory alloy.
3. The device of claim 1 , wherein the inner cannulated member has a wedge-shaped tip.
4. The device of claim 1 , wherein the inner cannulated member is configured to rotate within the outer cannulated member.
5. The device of claim 1 , wherein the inner cannulated member comprises a handle at the proximal end configured to allow manipulation of the inner rod.
6. The device of claim 1 , wherein the curved shape of the inner cannulated member is configured to be at a right angle to the outer cannulated member.
7. A bone morcelizer device for forming a cavity in bone, the device comprising: an outer cannulated member having a proximal and a distal end; a plurality of struts at the distal end region of the outer cannula configured to self- expand into a bow shape for cutting; a handle at the proximal end of the outer cannulated member; an inner rod movably positioned within the outer cannulated member and coupled to the distal end region of the outer cannulated member, distal to the struts, wherein the inner rod is configured to apply force to maintain the struts in a collapsed configuration; and a lock on the handle configured to lock the inner rod relative to the outer cannulated member.
8. The device of claim 7, further comprising one or more cutting surfaces on the plurality of struts.
9. The device of claim 8, wherein the cutting surface is oriented radially outward from the outer cannulated member.
10. The device of claim 8, wherein the cutting surface is oriented to the side of the outer cannulated member.
11. The device of claim 8, wherein the cutting surface is oriented radially inward from the outer cannulated member.
12. The device of claim 8, further comprising a handle on the proximal end of the inner rod.
13. The device of claim 8, further comprising a tissue-penetrating distal end.
14. A method of forming or expanding a cavity in a bone, the method comprising: inserting a bone morcelizing device having an outer cannulated member and an inner morcelizing rod into a bone; extending the inner morcelizing rod from the distal end of the outer cannulated member so that the inner morcelizing rod assumes a curved shape; and rotating the inner morcelizing rod to cut or compress bone .
15. The method of claim 2, further comprising locking the inner rod relative to the outer member.
16. The method of claim 2, wherein the step of rotating the inner morcelizing rod comprises locking the inner rod to the outer member and grasping a handle connected to the proximal end of the outer member.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP09798733.3A EP2313147A4 (en) | 2008-07-16 | 2009-07-16 | Morselizer |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US8130808P | 2008-07-16 | 2008-07-16 | |
US61/081,308 | 2008-07-16 | ||
US12130908P | 2008-12-10 | 2008-12-10 | |
US61/121,309 | 2008-12-10 |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2010009287A2 true WO2010009287A2 (en) | 2010-01-21 |
WO2010009287A3 WO2010009287A3 (en) | 2010-04-22 |
Family
ID=41551009
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2009/050791 WO2010009287A2 (en) | 2008-07-16 | 2009-07-16 | Morselizer |
Country Status (3)
Country | Link |
---|---|
US (1) | US20100168748A1 (en) |
EP (1) | EP2313147A4 (en) |
WO (1) | WO2010009287A2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9849224B2 (en) | 2014-04-15 | 2017-12-26 | Tc1 Llc | Ventricular assist devices |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006034436A2 (en) | 2004-09-21 | 2006-03-30 | Stout Medical Group, L.P. | Expandable support device and method of use |
WO2007131002A2 (en) | 2006-05-01 | 2007-11-15 | Stout Medical Group, L.P. | Expandable support device and method of use |
US9408708B2 (en) | 2008-11-12 | 2016-08-09 | Stout Medical Group, L.P. | Fixation device and method |
US20130165935A1 (en) * | 2011-12-27 | 2013-06-27 | Jerry R. Griffiths | Expandable retrograde drill |
US10045803B2 (en) | 2014-07-03 | 2018-08-14 | Mayo Foundation For Medical Education And Research | Sacroiliac joint fusion screw and method |
US10413332B2 (en) | 2016-04-25 | 2019-09-17 | Imds Llc | Joint fusion implant and methods |
US10751071B2 (en) | 2016-04-25 | 2020-08-25 | Imds Llc | Joint fusion instrumentation and methods |
US11109897B2 (en) * | 2018-08-02 | 2021-09-07 | Loubert S. Suddaby | Expandable facet joint fixation device |
CN111686362B (en) * | 2020-06-11 | 2021-02-09 | 王虹 | Medicine applicator for gynecology |
Family Cites Families (87)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2002A (en) * | 1841-03-12 | Tor and planter for plowing | ||
US817973A (en) * | 1904-06-06 | 1906-04-17 | Caspar Friedrich Hausmann | Uterine dilator. |
US2070346A (en) * | 1933-03-01 | 1937-02-09 | Lcl Corp | Insulated container for container cars |
US3174387A (en) * | 1962-06-04 | 1965-03-23 | Fischer Artur | Expansion bolt |
US3320957A (en) * | 1964-05-21 | 1967-05-23 | Sokolik Edward | Surgical instrument |
US3517128A (en) * | 1968-02-08 | 1970-06-23 | James R Hines | Surgical expanding arm dilator |
BE756717A (en) * | 1969-10-03 | 1971-03-01 | Fischer Arthur | |
DE2250501C3 (en) * | 1972-10-14 | 1975-04-30 | Artur 7241 Tumlingen Fischer | Fixing means for the socket of a hip joint prosthesis |
IL46030A0 (en) * | 1974-11-11 | 1975-02-10 | Rosenberg L | Orthopaedic screw |
US4274324A (en) * | 1978-04-18 | 1981-06-23 | Giannuzzi Louis | Hollow wall screw anchor |
US4394370A (en) * | 1981-09-21 | 1983-07-19 | Jefferies Steven R | Bone graft material for osseous defects and method of making same |
CN1006954B (en) * | 1985-03-11 | 1990-02-28 | 阿图尔·费希尔 | Fastening elements for osteosynthesis |
EP0209685A3 (en) * | 1985-07-12 | 1988-11-09 | Fischerwerke Arthur Fischer GmbH & Co. KG | Fixation element for osteosynthesis |
US4828439A (en) * | 1987-05-15 | 1989-05-09 | Giannuzzi Louis | Screw anchor |
CA1333209C (en) * | 1988-06-28 | 1994-11-29 | Gary Karlin Michelson | Artificial spinal fusion implants |
US4969888A (en) * | 1989-02-09 | 1990-11-13 | Arie Scholten | Surgical protocol for fixation of osteoporotic bone using inflatable device |
IL89297A0 (en) * | 1989-02-15 | 1989-09-10 | Technion Res & Dev Foundation | Auxilary intra-urethral magnetic valve for persons suffering from urinary incontinence |
US5108443A (en) * | 1989-04-25 | 1992-04-28 | Medevelop Ab | Anchoring element for supporting a joint mechanism of a finger or other reconstructed joint |
US5290558A (en) * | 1989-09-21 | 1994-03-01 | Osteotech, Inc. | Flowable demineralized bone powder composition and its use in bone repair |
DE3936703A1 (en) * | 1989-11-03 | 1991-05-08 | Lutz Biedermann | BONE SCREW |
US5236456A (en) * | 1989-11-09 | 1993-08-17 | Osteotech, Inc. | Osteogenic composition and implant containing same |
DE4021153A1 (en) * | 1990-07-03 | 1992-01-16 | Wolf Gmbh Richard | ORGAN MANIPULATOR |
US5314476A (en) * | 1992-02-04 | 1994-05-24 | Osteotech, Inc. | Demineralized bone particles and flowable osteogenic composition containing same |
US5326205A (en) * | 1992-05-27 | 1994-07-05 | Anspach Jr William E | Expandable rivet assembly |
US5501695A (en) * | 1992-05-27 | 1996-03-26 | The Anspach Effort, Inc. | Fastener for attaching objects to bones |
US6635058B2 (en) * | 1992-11-13 | 2003-10-21 | Ams Research Corporation | Bone anchor |
US6406480B1 (en) * | 1992-11-13 | 2002-06-18 | American Med Syst | Bone anchor inserter with retractable shield |
US5972000A (en) * | 1992-11-13 | 1999-10-26 | Influence Medical Technologies, Ltd. | Non-linear anchor inserter device and bone anchors |
US6090115A (en) * | 1995-06-07 | 2000-07-18 | Intratherapeutics, Inc. | Temporary stent system |
US7166121B2 (en) * | 1994-01-26 | 2007-01-23 | Kyphon Inc. | Systems and methods using expandable bodies to push apart cortical bone surfaces |
EP1464293B1 (en) * | 1994-01-26 | 2007-05-02 | Kyphon Inc. | Improved inflatable device for use in surgical methods relating to fixation of bone |
WO1996012436A1 (en) * | 1994-10-20 | 1996-05-02 | Instent, Inc. | Cystoscope delivery system |
US20040049197A1 (en) * | 1994-12-08 | 2004-03-11 | Jose Vicente Barbera Alacreu | Dorsolumbar and lumbosacral vertebral fixation system |
AU6899996A (en) * | 1995-08-25 | 1997-03-19 | R. Thomas Grotz | Stabilizer for human joints |
US5851209A (en) * | 1996-01-16 | 1998-12-22 | Hospital For Joint Diseases | Bone cerclage tool |
US5725541A (en) * | 1996-01-22 | 1998-03-10 | The Anspach Effort, Inc. | Soft tissue fastener device |
US5885258A (en) * | 1996-02-23 | 1999-03-23 | Memory Medical Systems, Inc. | Medical instrument with slotted memory metal tube |
US6334871B1 (en) * | 1996-03-13 | 2002-01-01 | Medtronic, Inc. | Radiopaque stent markers |
US5976139A (en) * | 1996-07-17 | 1999-11-02 | Bramlet; Dale G. | Surgical fastener assembly |
US20050143734A1 (en) * | 1996-11-12 | 2005-06-30 | Cachia Victor V. | Bone fixation system with radially extendable anchor |
US5713904A (en) * | 1997-02-12 | 1998-02-03 | Third Millennium Engineering, Llc | Selectively expandable sacral fixation screw-sleeve device |
IL128261A0 (en) * | 1999-01-27 | 1999-11-30 | Disc O Tech Medical Tech Ltd | Expandable element |
AU748062B2 (en) * | 1997-11-29 | 2002-05-30 | Lockdown Medical Limited | Surgical implant |
US6440138B1 (en) * | 1998-04-06 | 2002-08-27 | Kyphon Inc. | Structures and methods for creating cavities in interior body regions |
FR2777443B1 (en) * | 1998-04-21 | 2000-06-30 | Tornier Sa | ANCILLARY FOR THE PLACEMENT AND REMOVAL OF AN IMPLANT AND MORE PARTICULARLY A SUTURE ANCHOR |
US6382214B1 (en) * | 1998-04-24 | 2002-05-07 | American Medical Systems, Inc. | Methods and apparatus for correction of urinary and gynecological pathologies including treatment of male incontinence and female cystocele |
US6554833B2 (en) * | 1998-10-26 | 2003-04-29 | Expanding Orthopedics, Inc. | Expandable orthopedic device |
ATE304817T1 (en) * | 1998-10-26 | 2005-10-15 | Expanding Orthopedics Inc | EXPANDABLE ORTHOPEDIC DEVICE |
EP1187557A2 (en) * | 1999-01-08 | 2002-03-20 | American Medical Systems International, Inc | Surgical tack |
IL130307A0 (en) * | 1999-06-04 | 2000-06-01 | Influence Med Tech Ltd | Bone suturing device |
US6673094B1 (en) * | 2000-02-23 | 2004-01-06 | Ethicon, Inc. | System and method for attaching soft tissue to bone |
US6740093B2 (en) * | 2000-02-28 | 2004-05-25 | Stephen Hochschuler | Method and apparatus for treating a vertebral body |
US7815649B2 (en) * | 2000-04-07 | 2010-10-19 | Kyphon SÀRL | Insertion devices and method of use |
US6340477B1 (en) * | 2000-04-27 | 2002-01-22 | Lifenet | Bone matrix composition and methods for making and using same |
CN1191042C (en) * | 2000-06-27 | 2005-03-02 | 科丰公司 | Systems and methods for injecting flowable materials into bones |
US6582453B1 (en) * | 2000-07-14 | 2003-06-24 | Opus Medical, Inc. | Method and apparatus for attaching connective tissues to bone using a suture anchoring device |
AU8485701A (en) * | 2000-08-11 | 2002-02-25 | Sdgi Holdings Inc | Surgical instrumentation and method for treatment of the spine |
US6679886B2 (en) * | 2000-09-01 | 2004-01-20 | Synthes (Usa) | Tools and methods for creating cavities in bone |
EP1192908A3 (en) * | 2000-10-02 | 2004-05-26 | Howmedica Osteonics Corp. | System and method for spinal reconstruction |
US6733506B1 (en) * | 2000-11-16 | 2004-05-11 | Ethicon, Inc. | Apparatus and method for attaching soft tissue to bone |
GB0102141D0 (en) * | 2001-01-27 | 2001-03-14 | Davies John B C | Improvements in or relating to expandable bone nails |
EP1399077B1 (en) * | 2001-02-13 | 2006-08-23 | Jeffrey E. Yeung | Intervertebral disc repair compression device and trocar |
US7544196B2 (en) * | 2001-02-20 | 2009-06-09 | Orthovita, Inc. | System and kit for delivery of restorative materials |
US6746451B2 (en) * | 2001-06-01 | 2004-06-08 | Lance M. Middleton | Tissue cavitation device and method |
IL147783A0 (en) * | 2002-01-23 | 2002-08-14 | Disc O Tech Medical Tech Ltd | Locking mechanism for intramedulliary nails |
DE60333344D1 (en) * | 2002-02-25 | 2010-08-26 | Teresa T Yeung | SPREADABLE FASTENING ELEMENT WITH COMPREHENSIVE GRIP ELEMENTS |
WO2003101308A1 (en) * | 2002-06-04 | 2003-12-11 | Office Of Technology Licensing Stanford University | Device and method for rapid aspiration and collection of body tissue from within an enclosed body space |
WO2006011152A2 (en) * | 2004-06-17 | 2006-02-02 | Disc-O-Tech Medical Technologies, Ltd. | Methods for treating bone and other tissue |
US20070032567A1 (en) * | 2003-06-17 | 2007-02-08 | Disc-O-Tech Medical | Bone Cement And Methods Of Use Thereof |
MXPA06002541A (en) * | 2003-09-03 | 2006-06-20 | Kyphon Inc | Devices for creating voids in interior body regions and related methods. |
US7513900B2 (en) * | 2003-09-29 | 2009-04-07 | Boston Scientific Scimed, Inc. | Apparatus and methods for reducing compression bone fractures using high strength ribbed members |
US20050113836A1 (en) * | 2003-11-25 | 2005-05-26 | Lozier Antony J. | Expandable reamer |
EP1748739A1 (en) * | 2004-05-19 | 2007-02-07 | Sintea Biotech S.p.A. | Intravertebral widening device, injection device , and kit and method for kyphoplasty |
EP1773205A2 (en) * | 2004-06-16 | 2007-04-18 | Warsaw Orthopedic, Inc. | Surgical instrumentation for the repair of vertebral bodies |
JP2008504895A (en) * | 2004-06-29 | 2008-02-21 | スパイン・ウェイブ・インコーポレーテッド | Method for treating disc defects and injuries |
WO2006026425A2 (en) * | 2004-08-25 | 2006-03-09 | Spine Wave, Inc. | Expandable interbody fusion device |
US8945152B2 (en) * | 2005-05-20 | 2015-02-03 | Neotract, Inc. | Multi-actuating trigger anchor delivery system |
US20070068329A1 (en) * | 2005-07-11 | 2007-03-29 | Phan Christopher U | Curette system |
US20070032791A1 (en) * | 2005-07-14 | 2007-02-08 | Greenhalgh E S | Expandable support device and method of use |
US20070067034A1 (en) * | 2005-08-31 | 2007-03-22 | Chirico Paul E | Implantable devices and methods for treating micro-architecture deterioration of bone tissue |
US20070088436A1 (en) * | 2005-09-29 | 2007-04-19 | Matthew Parsons | Methods and devices for stenting or tamping a fractured vertebral body |
US20070118131A1 (en) * | 2005-10-17 | 2007-05-24 | Gooch Hubert L | Anchor for Augmentation of Screw Purchase and Improvement of Screw Safety in Pedicle Screw Fixation and Bone Fracture Fixation Systems |
WO2007078692A2 (en) * | 2005-12-23 | 2007-07-12 | The Board Of Trustees Of The Leland Stanford Junior University | Systems and methods for fixation of bone with an expandable device |
US20070198043A1 (en) * | 2006-02-22 | 2007-08-23 | Cox Daniel L | Bone marrow aspiration device |
ATE506904T1 (en) * | 2007-03-02 | 2011-05-15 | Spinealign Medical Inc | FRACTURE FIXATION SYSTEM |
WO2008109870A1 (en) * | 2007-03-07 | 2008-09-12 | Spinealign Medical, Inc. | Transdiscal interbody fusion device and method |
EP2173268B1 (en) * | 2007-06-29 | 2011-09-28 | Spinealign Medical, Inc. | Devices for stabilizing bone compatible for use with bone screws |
-
2009
- 2009-07-16 WO PCT/US2009/050791 patent/WO2010009287A2/en active Application Filing
- 2009-07-16 US US12/504,066 patent/US20100168748A1/en not_active Abandoned
- 2009-07-16 EP EP09798733.3A patent/EP2313147A4/en not_active Withdrawn
Non-Patent Citations (1)
Title |
---|
See references of EP2313147A4 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9849224B2 (en) | 2014-04-15 | 2017-12-26 | Tc1 Llc | Ventricular assist devices |
US10111996B2 (en) | 2014-04-15 | 2018-10-30 | Tc1 Llc | Ventricular assist devices |
Also Published As
Publication number | Publication date |
---|---|
US20100168748A1 (en) | 2010-07-01 |
WO2010009287A3 (en) | 2010-04-22 |
EP2313147A2 (en) | 2011-04-27 |
EP2313147A4 (en) | 2013-05-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20100168748A1 (en) | Morselizer | |
US11284877B2 (en) | Biceps tenodesis implants and delivery tools | |
US11576769B2 (en) | Method for anchoring biceps tenodesis | |
US10869751B2 (en) | Biceps tenodesis implants and delivery tools | |
JP5497032B2 (en) | Instruments that form cavities inside bones | |
US7476226B2 (en) | Tools and methods for creating cavities in bone | |
US10603051B2 (en) | Devices and methods for vertebrostenting | |
US8480675B2 (en) | Betts osteotome | |
US20130165935A1 (en) | Expandable retrograde drill | |
JP2017094109A (en) | Apparatus and method for bone access and cavity preparation | |
US12089858B2 (en) | Surgical instrument | |
CA2882772A1 (en) | Bone fixation device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09798733 Country of ref document: EP Kind code of ref document: A2 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2009798733 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |