[go: up one dir, main page]

WO2010004690A1 - Carbon electrode, electrochemical sensor, and carbon electrode manufacturing method - Google Patents

Carbon electrode, electrochemical sensor, and carbon electrode manufacturing method Download PDF

Info

Publication number
WO2010004690A1
WO2010004690A1 PCT/JP2009/002794 JP2009002794W WO2010004690A1 WO 2010004690 A1 WO2010004690 A1 WO 2010004690A1 JP 2009002794 W JP2009002794 W JP 2009002794W WO 2010004690 A1 WO2010004690 A1 WO 2010004690A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon
layer
electrode
conductive layer
carbon layer
Prior art date
Application number
PCT/JP2009/002794
Other languages
French (fr)
Japanese (ja)
Inventor
田光公康
松本達
上條憲一
津田健一郎
二瓶史行
成田薫
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to JP2010519627A priority Critical patent/JP5120453B2/en
Publication of WO2010004690A1 publication Critical patent/WO2010004690A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/308Electrodes, e.g. test electrodes; Half-cells at least partially made of carbon

Definitions

  • the present invention relates to a carbon electrode, an electrochemical sensor, and a method for producing a carbon electrode.
  • Electrochemical measurement is a technique for analyzing the substance in a solution by controlling the potential and current of an electrode immersed in the solution and measuring them.
  • An apparatus for detecting and quantifying a substance using an electrochemical measurement method is particularly called an electrochemical sensor.
  • the measurement can be performed stably for a long time. 2) High measurement sensitivity. 3) Easy to manufacture.
  • Electrochemical sensor performance varies greatly depending on the electrode material.
  • a conductive material such as a metal such as platinum, gold, silver or mercury, or carbon is generally used.
  • the electrode surface is loaded with a biomolecule such as an enzyme or an antibody, a catalyst, a modifying substance such as an electron transfer mediator, or coated with a molecule-selective membrane or the like.
  • An electrode may be used.
  • an electrode made of a metal material is easy to manufacture and has high sensitivity under relatively low potential measurement conditions.
  • the metal electrode is 1.0 V vs. * Solvent electrolysis and electrode dissolution reactions occur actively under conditions of higher potential than about Ag / AgCl. Then, since the reaction current of the solvent flows in a large amount, it is impossible to detect a weak change in the current value due to the reaction of a trace component, and there is a problem that the sensitivity of the sensor is significantly impaired.
  • an electrode made of a carbon material has an advantage that the solvent is hardly electrolyzed even under a high potential condition, and the electrode itself is hardly oxidized and reduced. Therefore, high detection sensitivity and electrode durability can be obtained even under high potential conditions. Further, since measurement under a high potential condition is possible, there are many detectable substances, and a more versatile sensor can be constructed.
  • Examples of such a carbon electrode include an electrode made by curing a carbon paste (see, for example, Patent Document 1), a glassy carbon electrode made by firing a polymer (see, for example, Patent Document 2), and a gas phase.
  • An electrode for example, Patent Document 3 made by forming a carbon film by a growth method is known.
  • these electrodes have a small surface area, there is a problem that the current density is low and the sensitivity is poor when an electrochemical sensor is used.
  • CNT carbon nanotubes
  • CNT is a carbon material in which a graphite layer has a cylindrical shape and is expected to be applicable to highly sensitive electrodes because of its high conductivity.
  • Patent Document 4 a sensor in which a composition containing a hydrophilic polymer and carbon nanotubes is applied to an electrode is disclosed (Patent Document 4).
  • Patent Document 4 it is described that carbon, a metal, an alloy, and various compounds are used as an electrode material.
  • a conventional electrode using CNT has a problem that stability cannot be obtained when used in a solution.
  • the solution permeates the CNT layer and contacts the metal or alloy. Then, as described above, the reaction of the solvent occurs on the metal or alloy and the sensitivity is lowered. Furthermore, when gas is generated by this reaction, the CNT layer is peeled off, making it difficult to use the electrode.
  • a carbon electrode produced by applying CNT to a specific carbon material such as a diamond film sometimes detaches from the electrode surface during measurement. As this cause, it is considered that the adhesion between the CNT and the diamond film is low.
  • a diamond film synthesized by the vapor phase growth method described in Patent Document 3 is known to have very little solution penetration.
  • the CNT is detached from the electrode surface during measurement. As the electrode surface area changes, the sensor characteristics drift when the measurement time is prolonged.
  • the electrode with CNT coated on the diamond film had a high electrical resistance.
  • the electrical resistance is high, electrons reacted on the electrode surface are not transmitted quickly, resulting in low sensitivity. This may be due to the high contact resistance between the CNT and the diamond film.
  • carbon nanohorns, fullerenes, carbon blacks, and the like are known as carbon materials having a large specific surface area.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a carbon electrode having low electric resistance and capable of performing stable measurement with high measurement sensitivity.
  • An insulating substrate A conductive layer provided on the insulating substrate; A first carbon layer provided on the conductive layer; A second carbon layer provided to cover the first carbon layer; With The first carbon layer includes carbon having an SP2 bond and an SP3 bond and having an amorphous structure; The second carbon layer is provided with a carbon electrode including carbon having an SP2 bond.
  • the present invention provides a carbon electrode having a low electrical resistance and capable of stable measurement with high measurement sensitivity.
  • the carbon electrode 10 of the first embodiment includes an insulating substrate 1, a conductive layer 2 provided on the insulating substrate 1, a first carbon layer provided on the conductive layer 2, A second carbon layer provided to cover the first carbon layer, wherein the first carbon layer includes carbon having an SP2 bond and an SP3 bond and having an amorphous structure, and the second carbon layer includes , Including carbons having an SP2 bond.
  • the carbon film 3 is used as the first carbon layer
  • the water permeable carbon layer 4 is used as the second carbon layer.
  • a main material made of a highly insulating material such as ceramics, glass, quartz, or plastic can be used.
  • a member excellent in water resistance, heat resistance, chemical resistance, and adhesion to the conductive layer 2 is desirable, and glass is particularly desirable.
  • the conductive layer 2 may be provided on the insulating substrate 1, or may have a higher conductivity than the carbon film 3. It is considered that the series resistance of the carbon film 3 can be lowered by providing the conductive layer 2. Thereby, the resistance loss at the time of electrochemical measurement is reduced, and the detection sensitivity of the sensor is improved.
  • the material used for the conductive layer 2 is preferably a material having a low contact resistance with the carbon film 3.
  • a material having a low contact resistance with the carbon film 3. For example, Ti, Cr, Cu, Au, Pt, Ni, Ir, W, Mo, TiN, TaN, Pd, Mg, Al or an alloy of these elements or a conductive film of an alloy of these elements and carbon is used. be able to.
  • the conductive layer 2 may be composed of two or more conductive films.
  • Cr, Ti, W, etc. are formed on the insulating substrate 1.
  • other conductive films may be formed.
  • the conductive layer 2 can be formed by sputtering, ion plating, vacuum deposition, CVD, electrolysis, or the like.
  • the formation method is not limited, but a sputtering method is preferably used. Thereby, not only the adhesiveness with the insulating substrate 1 is good, but accurate patterning is possible, and mass productivity can be improved.
  • the carbon film 3 may be provided so as to cover the conductive layer 2.
  • the carbon film 3 has a dense film structure because it is a film in which SP2 bonds and SP3 bonds are mixed. With this dense film structure, the occurrence of cracks in the carbon film 3 can be suppressed. Therefore, even if it is immersed in the solution for a long time, the solution does not penetrate into the carbon film 3 and the change in the electrode area hardly occurs.
  • the solution is not permeated by being covered with the carbon film 3 having a dense film structure, it is possible to prevent contact between the conductive layer 2 and the solution. Thereby, electrolysis of the solvent on the surface of the conductive layer 2 and dissolution reaction of the conductive layer 2 do not occur, and high detection sensitivity and stability are obtained.
  • the conductive layer 2 When the carbon film 3 is formed so as to cover all surfaces including the side surface of the conductive layer 2, the conductive layer 2 is completely protected. However, the area of the side surface of the conductive layer 2 is the carbon film 3 and the water-permeable layer. The surface area of the conductive carbon layer 4 is negligibly small, and even if an electrochemical reaction occurs on the side surface of the conductive layer 2, the flowing current value is negligibly small.
  • the upper surface of the conductive layer 2 only needs to be covered with the carbon film 3.
  • the conductive layer 2 and the carbon film 3 can be processed at the same time when the patterned carbon electrode 10 is produced.
  • the carbon film 3 has ⁇ electrons due to the SP2 bond. Therefore, the carbon film 3 exhibits conductivity by having ⁇ electrons. Further, when the carbon film 3 has ⁇ electrons, a ⁇ electron and ⁇ - ⁇ interaction of the water permeable carbon layer 4 is formed, thereby improving the adhesion between the carbon film 3 and the water permeable carbon layer 4.
  • the carbon film 3 has chemical resistance, high potential resistance, and high mechanical strength by having the SP3 bond. Therefore, since the tolerance to severe conditions, such as application of a high electric potential and repeated measurement, is high in an acidic solution, even if the carbon film 3 is damaged, the penetration of the solution can be suppressed.
  • the carbon film 3 preferably contains carbon having an amorphous structure.
  • the film structure becomes denser, so that the penetration of the solution into the carbon film 3 is further reduced and the chemical resistance is improved.
  • Examples of carbon having an amorphous structure having such characteristics include diamond-like carbon and amorphous carbon. Whether the carbon film has an amorphous structure can be confirmed by Raman scattering spectroscopy using a visible light laser. For example, it is known that one sharp peak is observed near 1584 cm ⁇ 1 in graphite, while a broad peak is observed near 1584 cm ⁇ 1 in a carbon film having an amorphous structure.
  • the carbon film 3 may contain elements other than carbon. By including an element other than carbon, the conductivity of the carbon film 3 is improved. In addition, hardness and chemical resistance are improved. As these elements, metal elements including all elements generally used for doping can be used. Examples thereof include Cr, Ti, Si, N, B, Ar, Au, Pt, Cu, Ag, Fe, S, P, and H.
  • the ratio of SP2 bond and SP3 bond is not particularly limited, but is preferably 0.01 or more and 100.0 or less, more preferably 0.1 or more and 10.0 or less. The reason is that when the bond ratio is within this range, a sufficiently large ⁇ electron and a dense film structure is formed.
  • the ratio is too low, there are few ⁇ electrons, so that the conductivity and adhesion with the water-permeable carbon layer 4 are insufficient. On the other hand, if the ratio is too high, a dense film structure cannot be obtained, resulting in insufficient water resistance, chemical resistance, high potential resistance, and mechanical strength.
  • the carbon film 3 has the same structure when the SP2 / SP3 value is 0.1 or more and 10.0 or less.
  • the thickness of the carbon film 3 is not particularly limited, but is preferably 0.02 ⁇ m or more and 20 ⁇ m or less. The reason is that the water resistance and electrical conductivity of the carbon film 3 are sufficiently secured when the thickness is within this range. If the film thickness is smaller than 0.02 ⁇ m, pinholes increase in the carbon film 3 and solution penetration tends to occur. On the other hand, if the film thickness is larger than 20 ⁇ m, the carbon film 3 has a high resistance and the measurement sensitivity is lowered.
  • the method for producing the carbon film 3 is not particularly limited, but a vapor phase growth method is preferably used because the film thickness and characteristics are easily controlled.
  • magnetron sputtering radio frequency (RF) sputtering, direct current (DC) sputtering, counter target sputtering, electron cyclotron resonance (ECR) sputtering, ion beam sputtering (IBS), ion plating, ionization deposition
  • RF radio frequency
  • DC direct current
  • ECR electron cyclotron resonance
  • IBS ion beam sputtering
  • IBS ion plating
  • ionization deposition So-called physical vapor deposition
  • so-called chemical vapor deposition (CVD) methods such as plasma chemical vapor deposition (CVD), thermal CVD, and ion beam deposition (IBS) can be used.
  • the sputtering method is preferably used because the ratio of the SP2 bond and the SP3 bond can be easily controlled.
  • the coupling ratio is controlled by adjusting the bias voltage.
  • the coupling ratio between the SP2 bond and the SP3 bond may change stepwise from the insulating substrate 1 without any clear distinction between the films. Since the seam of the film is eliminated, stress concentration at the interface between different materials does not occur, and peeling of the carbon film 3 can be suppressed.
  • the SP2 / SP3 value of the carbon film 3 may be maximized near the interface between the carbon film 3 and the water-permeable carbon layer 4.
  • the vicinity of the interface of the carbon film 3 in contact with the water permeable carbon layer 4 has a high SP2 / SP3 value, so that the adhesion with the water permeable carbon layer 4 can be improved.
  • the carbon film 3 other than the vicinity of the interface may have a low SP2 / SP3 value, whereby the penetration of the solution is prevented and the protective action for the conductive layer 2 can be improved.
  • the water permeable carbon layer 4 is provided so as to cover the carbon layer 3.
  • the water permeable carbon layer 4 is a layer in which powdery carbon having a nanostructure is fixed.
  • the powdery carbon having a nanostructure constituting the water-permeable carbon layer 4 one having SP2 bond is used.
  • the water-permeable carbon layer 4 has ⁇ electrons.
  • powdered carbon having nanostructures can be bonded to each other by ⁇ - ⁇ interaction to form a layer.
  • the water permeable carbon layer 4 is considered to form a ⁇ - ⁇ interaction with the carbon of the carbon film 3. Therefore, the adhesion between the water-permeable carbon layer 4 and the carbon film 3 is improved, and the contact resistance can be reduced.
  • the water-permeable carbon layer 4 can be formed by applying a solution in which powdered carbon having a nanostructure is dispersed to the carbon film 3.
  • the coating method is not particularly limited, and spin coating, dip coating, spray coating, dispensing, screen printing, ink jet, and the like can be used.
  • the spin coat method is preferably used because of its high uniformity and reproducibility.
  • concentration and amount of the solution used for spin coating can be determined by appropriate examination.
  • a solvent if these carbon materials disperse
  • the method for dispersing the carbon material is not particularly limited, and for example, ultrasonic treatment can be used. After the application, a drying step can be added as necessary.
  • the water permeable carbon layer 4 formed by this method can be bonded to the carbon film 3 by forming a layer by physical adsorption such as ⁇ bond or van der Waals force.
  • the water-permeable carbon layer 4 thus formed is composed of powdered carbon having a nanostructure, it is possible to form irregularities on the surface and to form voids in the layer. Thereby, electrochemical measurement can be performed with a large specific surface area, and measurement sensitivity can be improved.
  • the solution penetrates into the water-permeable carbon layer 4, but the penetration of the solution is suppressed by the carbon film 3 existing thereunder as described above. Therefore, the electrode area can be stabilized after the solution has completely penetrated into the water-permeable carbon layer 4. Further, since the carbon film 3 hardly generates gas from the electrode surface even when a high potential of about 1 V is applied, the water-permeable carbon layer 4 is hardly peeled off. Further, since the carbon layer 3 has good chemical resistance and high potential resistance, even if the solution penetrates into the water-permeable carbon layer, the carbon layer 3 is hardly damaged or dissolved during the electrochemical measurement. . Therefore, it is possible to obtain an electrode having high stability even in long-time measurement.
  • the material of the water permeable carbon layer 4 is not particularly limited as long as it is powdery carbon having a nanostructure having an SP2 bond.
  • powdery carbon having a nanostructure having an SP2 bond For example, graphite, amorphous carbon, diamond-like carbon, carbon fiber, carbon black, acetylene black, Examples include ketjen black (registered trademark), carbon nanotubes, carbon nanohorns, and carbon nanofibers. These may be used as a single type or as a mixture of a plurality of types.
  • carbon nanotubes or carbon nanohorns can be particularly preferably used.
  • the reason for this is that since it has a needle-like structure, the contact area with the carbon film 3 is increased, and a large number of ⁇ - ⁇ interactions are formed to obtain high adhesion and low contact resistance. It is possible to obtain a highly stable electrode because of its excellent chemical resistance and high potential resistance.
  • the binding force of the ⁇ - ⁇ interaction may be supplemented as necessary.
  • the fixing force can be increased by modifying and crosslinking the functional groups on the surfaces of the powdered carbon having a nanostructure and the carbon film 3, or adding a fixing agent such as a binder.
  • the water permeable carbon layer 4 may be subjected to a hydrophilic treatment.
  • a hydrophilic treatment When the water-permeable carbon layer 4 becomes hydrophilic, the time required for the penetration of the solution to be accelerated and the electrode to show a stable response is shortened.
  • the method of the hydrophilic treatment is not particularly limited, and for example, a method of mixing and applying a hydrophilic substance to the water permeable carbon layer 4 or a method of exposing to a plasma atmosphere can be used. These treatments may be performed after the permeable carbon layer 4 is formed on the carbon layer 3, or for powdered carbon having a nanostructure as a raw material of the permeable carbon layer 4 and a dispersion thereof. You may do it.
  • gas components for creating a plasma atmosphere examples include oxygen, nitrogen, and argon.
  • Any hydrophilic substance can be used as long as it has hydrophilicity, and there are polymers such as acrylamide, ethylene glycol, ethylene oxide, ethyleneimine, and phospholipid. Of these, the method of applying a hydrophilic material is particularly preferable because it has little influence on the crystal structure of carbon.
  • the solution penetration time into the water permeable carbon layer 4 can be shortened by making the density of the water permeable carbon layer 4 sparse.
  • the density of the water-permeable carbon layer 4 can be adjusted by the concentration and amount of the carbon material dispersion applied to the carbon film 3 when the water-permeable carbon layer 4 is formed.
  • the carbon film 3 and the water-permeable carbon layer 4 are laminated and the contact area between both layers is large, even if the density of the water-permeable carbon layer 4 is sparse, it is possible to obtain a low-resistance electrode.
  • the density of the layer 4 decreases, the surface area decreases and the current value decreases. The optimum density can be appropriately adjusted as necessary.
  • the carbon electrode 10 having the configuration as described above functions as a working electrode of an electrochemical sensor.
  • a reference electrode 11 and a counter electrode 12 are appropriately used.
  • FIG. 4 shows a flowchart of the method for manufacturing the carbon electrode 10 according to the present embodiment.
  • the manufacturing method of the carbon electrode 10 includes a step of forming the conductive layer 2 (step S10), a step of forming the carbon film 3 (step S20), a step of forming the water-permeable carbon layer 4 (step S30), and a step of dicing. (Step S40). The method of each step will be described in detail below.
  • Steps S10 and 11 Formation of Conductive Layer
  • the conductive layer 2 is formed on the insulating substrate 1 by sputtering (step S10).
  • the method for forming the conductive layer 2 is not limited to the sputtering method, and an ion plating method, a vacuum deposition method, a CVD method, an electrolytic method, or the like may be used.
  • the conductive layer 2 is patterned on the insulating substrate 1 as necessary (step S11).
  • an etching method, a lift-off method, a sand blast method, or the like can be used.
  • Step S20 and 21 Formation of Carbon Film
  • the carbon film 3 is formed on the insulating substrate 1 on which the conductive layer 2 is formed (Step S20).
  • the carbon film 3 is formed by a so-called physical vapor deposition method such as a sputtering method or an ion plating method, a plasma chemical vapor deposition (CVD) method, a thermal CVD method, an ion beam deposition (IBS) method, or the like.
  • a so-called chemical vapor deposition (CVD) method can be used.
  • the carbon film 3 forms a dense film structure and covers the surface of the conductive layer 2. Further, the carbon film 3 is patterned as necessary (step S21).
  • a method of forming a mask made of ceramics, photoresist or the like on the carbon film 3 and etching with oxygen plasma or the like, a method of processing by sand blasting using a metal mask, or the like can be used.
  • Steps S30 and 31 Formation of a water-permeable carbon layer On the carbon layer 3, a powdery carbon dispersion having a nanostructure is applied by spin coating, and the solvent volatilizes to form the water-permeable carbon layer 4.
  • Step S30 The water permeable carbon layer 4 is in close contact with the carbon film 3 by ⁇ - ⁇ interaction. Further, the water permeable carbon layer 4 is patterned as necessary (step S31).
  • the patterning method etching using oxygen plasma using a mask, a lift-off method, or the like is used.
  • the coating method is not limited to the spin coating method, and a screen printing method, an ink jet method, or the like may be used. When a method that can be applied onto a pattern, such as a screen printing method or an ink jet method, is used, Step S30 and Step S31 are performed at a time, and the process can be omitted.
  • Step S40 Dicing
  • the substrate is diced according to the patterned shape and cut into a plurality of carbon electrodes 10.
  • Examples of the dicing method include a method using a dicing blade and a scribe device.
  • the carbon electrode 10 is manufactured by the above steps S10 to S40.
  • the produced carbon electrode 10 is used as a working electrode of an electrochemical sensor. That is, it is electrically connected to a current measuring device (not shown) or the like via an external substrate by a method such as wire bonding.
  • the electrochemical sensor 14 is used in combination with the reference electrode 11 and the counter electrode 12.
  • step S11 may be omitted and the carbon film 3 and the conductive layer 2 may be patterned in the process of step S21.
  • the process of forming the mask in step S11 is omitted, and the manufacturing is simplified.
  • the patterning method a single processing method or a combination of two or more processing methods may be used.
  • the carbon film 3 and the conductive layer 2 are patterned at once by sand blasting, or after patterning the carbon film 3 by etching with oxygen plasma, the conductive layer 2 exposed by patterning of the carbon film 3 is patterned by sand blasting or the like. Can do.
  • an appropriate method may be used as appropriate based on the processing characteristics of the film to be used. However, it is preferable that the patterning can be further simplified if it can be produced by a single processing method.
  • step of forming the mask by patterning the carbon film 3 and the conductive layer 2 in the step of patterning the water-permeable carbon layer 4 in step S31 without step S11 and step S21 can be omitted. If the water-permeable carbon layer 4, the carbon film 3, and the conductive layer 2 are patterned in step S31, the process of forming a mask can be further omitted, and the manufacturing is simplified.
  • the carbon film 3 and the water permeable carbon layer 4 may be formed after patterning the conductive layer 2 in step S11, and the carbon film 3 and the water permeable carbon layer 4 may be patterned in the process of step S31. If it does in this way, the pattern of the conductive layer 2 and the carbon film 3 can be made into a different shape. Therefore, since the wall surface of the conductive layer 2 can be made to be completely covered with the carbon film 3, an electrode with very high stability can be obtained.
  • the series resistance can be lowered by forming the conductive layer 2 under the carbon film 3. Further, the contact resistance between the carbon film 3 and the water permeable carbon layer 4 can be reduced by laminating the carbon film 3 and the water permeable carbon layer 4. Therefore, an electrode having low resistance can be obtained, and resistance loss during electrochemical measurement is reduced, so that the detection sensitivity of the sensor can be improved.
  • the specific surface area can be improved by forming the water-permeable carbon layer 4 so as to cover the carbon film 3.
  • electrochemical measurement can be performed in a large area, and the measurement sensitivity is improved.
  • the water-permeable carbon layer 4 is a sparse layer, when the measurement solution is touched, the solution quickly penetrates into the inside. Therefore, it is possible to shorten the time required for the electrode immersed in the solution to show a stable response.
  • the conductive layer 2 is prevented from contacting the solution by being covered with the carbon film 3. Since the carbon film 3 has a dense film structure, it can be configured such that no cracks occur and no solution permeates. Thereby, even if it immerses in a solution for a long time, the change of an electrode area can be suppressed. In addition, electrolysis of the solvent on the surface of the conductive layer 2 and dissolution reaction of the conductive layer 2 do not occur, and high detection sensitivity and stability can be obtained. (Second Embodiment)
  • FIG. 9 is a cross-sectional configuration diagram of the carbon electrode according to the present embodiment.
  • a third carbon layer is added to the carbon electrode 10 according to the first embodiment. Note that the same configuration as that of the first embodiment will be omitted.
  • the carbon electrode 10 of the second embodiment is characterized in that the first carbon layer further includes at least one third carbon layer having an SP2 / SP3 value different from that of the first carbon layer. Further, in the carbon electrode 10 of the second embodiment, the first carbon layer and the second carbon layer are in contact with each other, and the SP2 / SP3 value of the first carbon layer is equal to SP2 / SP3 of the third carbon layer. It may be higher than the value.
  • the carbon film 3 is used as the first carbon layer
  • the water permeable carbon layer 4 is used as the second carbon layer
  • the carbon film 30 is used as the third carbon layer.
  • the carbon film 10 of the second embodiment may use the carbon film 3 described above. Further, two or more carbon films 3 and carbon films 30 having different SP2 / SP3 values may be laminated.
  • the carbon film 3 and the carbon film 30 having both water resistance, chemical resistance, high potential resistance, durability and conductivity can be obtained, the carbon film 3 and the carbon film having two or more different SP2 / SP3 values. It is particularly preferable that 30 is laminated.
  • the order in which the carbon film 3 and the carbon film 30 are stacked is not particularly limited, but when the carbon film 3 is in contact with the water permeable carbon layer 4, the carbon film 3 has a high SP2 / SP3 value, and the carbon film 30 has an SP2 / It is particularly preferable to include at least one layer having a low SP3 value.
  • the carbon film 3 in contact with the water permeable carbon layer 4 has a high SP2 / SP3 value, so that the adhesion with the water permeable carbon layer 4 is improved.
  • the carbon film 30 includes at least one layer having a low SP2 / SP3 value, thereby preventing the solution of the carbon film 30 from penetrating and improving the protective action on the conductive layer 2.
  • the carbon film 3 is formed on an upper surface of the conductive layer 2 provided with an intermediate layer containing at least one selected from Cr, Ti, and W in order to improve adhesion with the conductive layer 2. May be.
  • the intermediate layer can be formed by sputtering or the like.
  • the composition of the conductive layer 2 and the intermediate layer may be mixed near the interface between the conductive layer 2 and the intermediate layer. Furthermore, the composition of the intermediate layer and the carbon film 3 may be mixed in the vicinity of the interface between the intermediate layer and the carbon film 3.
  • the intermediate layer does not have to form a clear interface with the conductive layer 2 and the carbon film 3, and each composition of the conductive layer 2 / intermediate layer / carbon film 3 is stepwise from the substrate surface in the vertical direction.
  • a mixed gradient composition layer that changes to
  • the mixed gradient composition layer can be formed by setting the targets of the conductive layer 2, the intermediate layer, and the carbon film 3 in the same chamber and performing sputtering while rotating the substrate.
  • the sputtering method is preferably used because the control of the ratio of SP2 bonds to SP3 bonds is easy.
  • the coupling ratio is controlled by adjusting the bias voltage. Thereby, it can be set as the structure by which the two or more carbon films 3 and 30 from which SP2 / SP3 value differs were laminated
  • FIG. 3 is a cross-sectional configuration diagram of the modified electrode according to the present embodiment.
  • a modifying substance 9 is added to the carbon electrode 10 according to the first embodiment. Note that the same configuration as that of the first embodiment will be omitted.
  • the carbon electrode 10 of the third embodiment is characterized in that the carbon electrode 10 of the first embodiment further includes a modifier 9 supported on the second carbon layer.
  • the water permeable carbon layer 4 is used as the second carbon layer.
  • the carbon electrode 10 of the third embodiment can be used as a modified electrode.
  • a conductive layer 2 is formed on an insulating substrate 1, and at least the upper surface thereof is covered with a carbon film 3.
  • a water permeable carbon layer 4 is formed so as to cover the surface of the carbon film 3.
  • the modifying substance 9 is supported inside and outside the water-permeable carbon layer 4.
  • the modifying substance 9 is not particularly limited, and a substance generally used for a modifying electrode is used.
  • Examples of the modifying substance 9 include a substance that promotes the oxidation-reduction reaction of the target substance, a substance that mediates transfer of electrons between the target substance and the electrode, a substance that has a molecular recognition function, a substance that regulates substance permeability, and the like Is used.
  • examples of the modifying substance 9 include a catalyst, an enzyme, a metal complex, an electron transfer mediator, an antibody, a nucleic acid, a receptor, a protein, a lipid, a polymer, a cell, a microorganism, and a living tissue.
  • a single substance and a plurality of substances are used.
  • the modifying substance 9 may be supported by applying a substance dispersed in a solvent on the water-permeable carbon layer 4.
  • a substance dispersed in a solvent As the type of the solvent, an aqueous solution such as a buffer solution or an organic solvent such as alcohol in which the modifying substance 9 is dispersed while maintaining the activity is appropriately used.
  • the solvent may be added with a crosslinking agent such as glutaraldehyde or a polymer such as polyethylene glycol or vinyl alcohol in order to firmly support the modifying substance.
  • the modifying substance 9 adheres to the water-permeable carbon layer 4 and is prevented from peeling by the anchor effect. Therefore, a modified electrode with high stability can be obtained.
  • the carbon of the water permeable carbon layer 4 has high conductivity, it functions as an electrode as a whole including the ends of the carbon. Therefore, the electrochemically reactive substance generated by the action of the modifying substance 9 is quickly converted into an electrical signal by the nearby water-permeable carbon layer 4 and the carbon film 3, and there is little outflow from the electrode due to diffusion. Since the action of the modifying substance 9 can be detected efficiently, a highly sensitive modified electrode can be obtained.
  • the water-permeable carbon layer 4 has a large specific surface area, the water-permeable carbon layer 4 can carry a large amount of modifier 9. As a result, the effect of the modifying substance 9 is remarkably exhibited, and a modified electrode with particularly enhanced detection sensitivity and response specificity can be obtained.
  • the modifier 9 is supported on the patterned water-permeable carbon layer 4 before dicing (step S40).
  • the modification substance 9 may be supported by, for example, spin coating a dispersion of the modification substance 9.
  • the modified substance 9 permeates and is carried inside the water-permeable carbon layer 4, whereby a modified electrode with particularly improved detection sensitivity and stability can be obtained.
  • a large amount of the modifying substance 9 is immobilized on the water-permeable carbon layer 4, and a modified electrode with particularly enhanced detection sensitivity and response specificity can be obtained.
  • FIG. 6 shows a cross-sectional view of the electrochemical sensor 14 according to the present embodiment.
  • the electrochemical sensor 14 has an insulating substrate 1, a working electrode 13, a reference electrode 11, and a counter electrode 12.
  • FIG. 5 shows a top view of the electrochemical sensor 14.
  • FIG. 6 shows a structure in which a plurality of electrochemical sensors 14 are formed on the insulating substrate 1.
  • the working electrode 13 is a microelectrode
  • the reference electrode 11 can also serve as the counter electrode 12.
  • the electrochemical sensor 14 includes the working electrode 13 and the reference electrode 11. It's okay.
  • the working electrode 13 includes a conductive layer 2, a carbon film 3, and a water permeable carbon layer 4.
  • the working electrode 13 formed on the insulating substrate 1 can use the carbon electrode 10 described in any of the first to third embodiments, but is not limited to the carbon electrode 10.
  • the reference electrode 11 is preferably a metal layer mainly composed of silver. Of these, the formation of silver / silver chloride is particularly preferred because of the high stability of the redox potential in the measurement solution.
  • silver / silver chloride When forming silver / silver chloride, a layer of Ti, Cr, or the like may be sandwiched between the reference electrode 11 and the insulating substrate 1 in order to improve adhesion to the substrate. Further, silver / silver chloride may be formed so as to cover the surface of an electrical wiring (not shown) formed of a layer such as Pt and Au formed on the insulating substrate 1.
  • Silver / silver chloride can be formed, for example, by anodic polarization in aqueous hydrochloric acid after forming silver by sputtering.
  • the counter electrode 12 is preferably a platinum group element.
  • platinum having particularly excellent chemical resistance is preferable.
  • a layer such as Ti or Cr may be sandwiched between the insulating substrate 1 and the substrate so as to improve adhesion to the substrate.
  • the reference electrode 11 and the counter electrode 12 can be formed on the insulating substrate 1 by a lift-off method.
  • the reference electrode 11 and the counter electrode 12 may be formed before or after the step of forming the conductive layer 2 (step S10).
  • the step of forming the conductive layer 2 Step S ⁇ b> 10
  • the step of forming the counter electrode 12 can be performed simultaneously.
  • the method of forming silver used for the reference electrode 11 is not limited to the sputtering method, and may be formed by, for example, a plating method.
  • a plating method an electric wiring made of Pt, Au or the like can be formed on the insulating substrate 1, and silver can be formed on the surface of the electric wiring by electrolytic plating.
  • Silver may be formed before or after the step of forming the conductive layer 2 (step S10).
  • the electric wiring is made of the same material as the counter electrode 12 or the conductive layer 2, the step of forming the electric wiring and the step of forming the counter electrode 12 or the conductive layer 2 (step S10) can be performed simultaneously.
  • connection portion 8 is added to the carbon electrode 10 according to the first embodiment.
  • the electrochemical sensor of the fifth embodiment further includes a measurement unit (not shown) and a conductive wire 5, the measurement unit and the carbon electrode 10 are electrically connected by the conductive wire 5, and the conductive wire 5 is Through the first carbon layer and in electrical contact with the conductive layer 2, the surface of the conductive wire 5 is covered with an insulating film 6, and the surfaces of the insulating film 6 and the first carbon layer are sealed. It is characterized by being covered with a stopper 7.
  • the carbon film 3 is used as the first carbon layer.
  • a conductive layer 2 is formed on an insulating substrate 1, and at least the upper surface thereof is covered with a carbon film 3.
  • a water permeable carbon layer 4 is provided so as to cover the surface of the carbon film 3.
  • the connection portion 8 includes a conductive wire 5 that penetrates the carbon film 3 and contacts the conductive layer 2, an insulating film 6 that covers the surface of the conductive wire 5, and a sealing material 7 that covers a portion where the conductive wire 5 penetrates the carbon film 3. Consists of.
  • the conducting wire 5 is connected to an electrochemical measurement device (not shown). By bringing the conductive wire 5 into contact with the conductive layer 2, a low resistance electric wiring is formed. Then, the resistance loss is reduced, so that electrochemical measurement can be performed with high sensitivity.
  • the surface of the conductive wire 5 is covered with an insulating film 6, and the penetration portion of the conductive wire 5 formed in the carbon film 3 is covered with a sealing material 7.
  • the conductive wire 5 and the contact portion between the conductive wire 5 and the conductive layer 2 can be protected and a highly waterproof connection portion can be obtained. Thereby, the stability and durability of the electrode can be improved.
  • the conducting wire 5 is conductive.
  • the conducting wire 5 is electrically connected to the conductive layer 2 by being provided so that at least one end penetrates the carbon film 3 and contacts the conductive layer 2.
  • Another end of the conducting wire 5 is connected to an electrochemical measuring device.
  • the electrode potentials of the carbon film 3 and the water permeable carbon layer 4 can be controlled to function as working electrodes in electrochemical measurement.
  • a metal is preferably used as the material of the conducting wire 5.
  • the reason is that the electrical resistance is low and the contact resistance with the conductive layer 2 is low.
  • the type of metal but for example, Pt, Au, Ag, Cu, Al, Fe, Cr, Ni, Zn, In, Pb, Nb, Sn, and alloys based on these can be used.
  • the conducting wire 5 may be comprised from a single material and several types of materials. For example, it is possible to achieve both ease of manufacture and low resistance by using stainless steel having high hardness at the tip portion and using copper having low electrical resistance at other portions.
  • the conducting wire 5 can be brought into contact with the conductive layer 2 through the carbon film 3 by being driven by a puncher or the like. Since the carbon film 3 is a dense film, generation of cracks can be prevented even when the conductive wire 5 is driven. Therefore, the conductive layer 2 is protected from the solution by the carbon film 3 except for the portion where the conducting wire 5 penetrates.
  • the shape of the end of the conductive wire 5 is preferably a tapered shape such as a needle shape or a blade shape. Further, a so-called barb structure that is pointed in the direction opposite to the tip may be formed at the end. In particular, the barb structure is preferably embedded in the conductive layer 2. When there is a barb structure, the lead wire 5 is prevented from falling off, and it is possible to reduce defective electrical contact.
  • the conducting wire 5 has a needle-like shape
  • the shape of the conducting wire 5 is not limited to this.
  • the shape of the cross section of the end portion of the conducting wire 5 is not particularly limited, and may be a circle, a polygon, or a curve. Of these, polygons and curves are particularly preferable.
  • the reason is that the contact area with the conductive layer 2 can be increased and the contact resistance is reduced.
  • the contact resistance decreases, a low-resistance electrode can be obtained, and a sensor with high detection sensitivity can be constructed.
  • tip in the edge part of the conducting wire 5 for example, a sword mountain-like end part provided with two or more needle-like front-end
  • the conducting wire 5 can be made into a clip shape.
  • the conductive wire 5 penetrates the carbon film 3 by forming sharp irregularities inside the clip and sandwiching the substrate with the clip. Thereby, you may make the conducting wire 5 and the conductive layer 2 contact electrically. Since the conductive wire 5 and the conductive layer 2 are always in close contact with each other by the clip, it is possible to reduce electrical contact defects.
  • connection part 8 can be removed, the connection part 8 can be reused by making the substrate disposable. It is not necessary to manufacture the connection portion 8 for each electrode, and the manufacturing of the electrode can be simplified.
  • two or more conductive wires 5 may be connected to the conductive layer 2.
  • the plurality of conductive wires 5 electrically connected to the same conductive layer 2 can act as a single electrode by being connected to the same working electrode connection part of the electrochemical measuring device.
  • By connecting a plurality of conducting wires 5, the contact area with the conductive layer 2 can be increased, and a low resistance electrode can be obtained.
  • the leading end of the conducting wire 5 exists in the conductive layer 2, but the position of the leading end of the conducting wire 5 is not limited to this as long as the conducting wire 5 and the conductive layer 2 are electrically connected.
  • a material having high crack resistance such as plastic for the insulating substrate 1 and the tip of the conductive wire 5 is inserted into the plastic, the conductive wire 5 can be firmly fixed to the substrate and prevented from falling off. is there.
  • the conductive wire 5 is completely covered with the insulating film 6 and the sealing material 7.
  • at least a part of the conductive wire 5 in the portion inserted into the carbon film 3 may be covered with the insulating film 6 and the sealing material 7. .
  • the insulating film 6 uses a water-impermeable electrical insulating film and covers the conductive wire 5. Thereby, since the conducting wire 5 does not contact with the solution, an electrochemical reaction at the time of applying the potential of the conducting wire 5 can be suppressed.
  • the material of the insulating film 6 a material that is in close contact with the conductive wire 5 and the sealing material 7 can be used.
  • the material of the insulating film 6 include plastics, silicon resin, and Teflon (registered trademark) resin.
  • a silicon resin and a Teflon (registered trademark) resin are used, a high chemical resistance is obtained, and a silicon resin is particularly preferable because it has high adhesion to the sealing material 7.
  • These can be used in combination of a single type or a plurality of types. For example, a portion that does not contact the sealing material 7 may be covered with a plastic material such as enamel, and a portion that contacts the sealing material 7 may be covered with a silicon resin.
  • the sealing material 7 is formed so as to completely cover a portion where the conductive wire 5 penetrates the carbon film 3, and is provided so as to be in close contact with the insulating film 6 and the carbon film 3.
  • the sealing material 7 prevents the solution from penetrating into the groove formed in the carbon film 3 due to the penetration of the conductive wire 5, thereby preventing the conductive layer 2 and the conductive wire 5 from contacting the solution.
  • the waterproofness of the electrode is improved, and a highly stable sensor can be constructed.
  • the sealing material 7 is an electrically insulating elastic body.
  • the material of the sealing material 7 is not particularly limited as long as it is an electrically insulating elastic body.
  • synthetic rubber such as nitrile rubber and fluorine rubber, natural rubber, thermoplastic elastomer, silicon resin, and the like can be used. .
  • silicone resins are particularly preferred because of their high chemical resistance.
  • the sealing material 7 can be adhered and adhered to the carbon film 3 and the insulating film 6.
  • the bonded sealing material 7 adheres firmly, preventing penetration of the solution and preventing the lead 5 from falling off. Thereby, a stable electrode can be obtained.
  • Such a structure can be formed by pouring a softened sealing material 7 or a prepolymer of the sealing material 7 into a portion where the conductive wire 5 on which the insulating film 6 is formed is driven into the carbon film 3, and then curing. it can.
  • the sealing material 7 may be adhered and adhered to the insulating film 6 and may be physically pressed and adhered to the carbon film 3. Thereby, even when the surface energy of the carbon film 3 is small and it is difficult to adhere the sealing material 7, it is possible to prevent the penetration of the solution.
  • Such a structure can be formed by adhering the sealing material 7 to the conductive wire 5 on which the insulating film 6 is formed, and driving the conductive wire 5 into the carbon film 3. Further, when the conductive wire 5 whose tip is covered with the sealing material 7 is used, when the carbon film 3 is driven, the sealing material 7 at the tip is peeled off, and the conductive wire 5 is exposed and electrically connected to the conductive layer 2. In addition, the sealing material 7 and the carbon film 3 can be brought into close contact with each other.
  • the connecting portion 8 is formed on the carbon film 3 after dicing (step S40).
  • the connection portion 8 is formed by, for example, driving the conductive wire 5 covered with the insulating film 6 into the carbon film 3 except for the portion to be brought into contact with the conductive layer 2, and softening the sealing material 7 or at the portion where the conductive wire 5 is driven. It can be formed by pouring and curing the prepolymer of the sealing material 7. In the case where the same material is used for the sealing material 7 and the insulating film 6, the insulating film and the sealing material can be formed at the same time.
  • a low resistance electric wiring is formed by bringing the conductive wire 5 into contact with the conductive layer 2.
  • the resistance loss is reduced, and an electrode capable of performing electrochemical measurement with high sensitivity can be obtained.
  • connection part of the conducting wire 5 is protected by the insulating film 6 and the sealing material 7, it becomes possible to make the connection part highly waterproof. Thereby, it is possible to obtain an electrode with improved stability and durability.
  • the conductive layer is patterned (step S11) to form a plurality of conductive layers.
  • the plurality of carbon electrodes 10 are divided into By dicing in units of electrochemical sensors 14, a plurality of electrochemical sensors 14 can be obtained, and an electrochemical sensor excellent in mass productivity can be obtained.
  • Example 1 Example 1
  • Example 1 A method for manufacturing the carbon electrode of Example 1 will be described. First, a 10 mm ⁇ 10 mm (0.515 mm thick) quartz substrate was prepared, washed with acetone, and then washed with a solution containing the same amount of hydrogen peroxide and nitric acid.
  • a 300 nm platinum layer was formed on the quartz substrate by sputtering of platinum.
  • the platinum layer was patterned into the working electrode and counter electrode designs shown in FIG. 5 to obtain a counter electrode.
  • a diamond-like carbon film having an SP2 / SP3 value of 0.01 or more and 100.0 or less and a thickness of 1 ⁇ m by controlling the coupling ratio of SP2 coupling and SP3 coupling by adjusting the bias voltage by ion beam sputtering. Formed.
  • the SP2 / SP3 value of this carbon film was found to be 2.5 from electron energy loss spectrometry. By analyzing the shape of the absorption peak in the vicinity of 284 eV in the allotrope consisting only of carbon by electron energy loss spectrometry, the difference in the binding state is clearly shown. By comparing this difference, the SP2 / SP3 value of the carbon film can be obtained. Further, it was found from the electron microscopic image of the carbon film that the carbon film had the same structure when the SP2 / SP3 value was 0.1 or more and 10.0 or less. In addition, a broad peak was observed near 1584 cm ⁇ 1 by Raman scattering spectroscopy using a visible light laser. Therefore, it was confirmed that the carbon film has an amorphous structure.
  • a photoresist pattern was formed on the substrate, and the carbon nanohorn layer and the carbon film were patterned into the working electrode design shown in FIG. 5 by etching using oxygen plasma to obtain a working electrode.
  • the reference electrode was obtained by patterning into the reference electrode design of FIG. 5 by the lift-off method.
  • Comparative Example 1 a conventional electrochemical sensor using a diamond film was used.
  • the diamond electrode was produced according to the method described in Patent Document 3.
  • Comparative Example 2 an electrochemical sensor produced by applying carbon nanotubes on glassy carbon according to Patent Document 4 was used.
  • the electrode was coated with 8 ⁇ L of a 0.25 W / W% aqueous solution of carboxymethylcellulose containing carbon nanotubes suspended at a content of 0.2 W / W% on commercially available glassy carbon (BAS), 37% dried for 1 hour. And produced.
  • BAS commercially available glassy carbon
  • an electrochemical sensor was fabricated by applying CNTs on a carbon material consisting only of SP3 bonds.
  • a diamond film was used as a carbon material consisting only of SP3 bonds.
  • the same method as in Example 1 was used except for the method of Patent Document 3.
  • the characteristics of the electrochemical sensors of Example 1 and Comparative Examples 1 to 3 were evaluated. Evaluation items are measurement sensitivity, stability, electrode area, and electrical resistance. Measurement sensitivity and stability were evaluated by electrochemical measurement in an aqueous solution. A pH 7 phosphate buffer in which 0.1 M KCl, 0.4 mM ferrocenemethanol and 0.4 mM adenine were dissolved was used as a measurement solution. Immerse the electrochemical sensor in the solution, 0.2-1.8V vs. Cyclic voltammetry measurement was performed under a potential condition of Ag / AgCl.
  • the measurement sensitivity was determined to be better as the current value was higher by comparing the oxidation current values of ferrocene methanol and adenine. Stability was determined by repeating cyclic voltammetry for 50 cycles, and comparing the degree of waveform deformation, the smaller the deformation, the better.
  • the electrode area an electron microscope image on the electrode surface was compared, and the larger the specific surface area, the better.
  • the electric resistance between the surface of the working electrode and the lead wire from the working electrode was measured by a two-terminal method, and the lower the electric resistance, the better.
  • the sensor of Example 1 had good measurement sensitivity, stability, electrode area, and electrical resistance. On the other hand, all of the sensors of Comparative Examples 1 to 3 have a defect in some characteristics.
  • the sensor of Comparative Example 1 had good electrode area stability and electrical resistance, but was inferior in measurement sensitivity and electrode area. In particular, since the electrode surface was smooth in the evaluation of the electrode area, the specific surface area was remarkably small compared to other electrodes.
  • the sensor of Comparative Example 2 had good measurement sensitivity, electrode area, and electrical resistance. However, as the measurement was repeated, the current value gradually changed and the stability was poor.
  • the electrode of Comparative Example 3 had a good electrode area. However, the electrode resistance was large and the electrode sensitivity was inferior. Further, CNT peeling occurred during the measurement, and the current value was not stable.
  • Example 2 As described above, it was confirmed that the electrode of Example 1 had good measurement sensitivity, stability, electrode area, and electrical resistance, and exhibited excellent characteristics as an electrochemical sensor. (Example 2)
  • a method for manufacturing the electrochemical sensor of Example 2 will be described. First, a 10 mm ⁇ 10 mm (0.515 mm thick) quartz substrate was prepared, washed with acetone, and then washed with a solution containing the same amount of hydrogen peroxide and nitric acid.
  • a 300 nm platinum layer was formed on the quartz substrate by sputtering of platinum.
  • the platinum layer was patterned into the working electrode and counter electrode designs shown in FIG. 5 to obtain a counter electrode.
  • a diamond-like carbon film having a thickness of 0.05 ⁇ m and an SP2 / SP3 value of 1.1 was similarly formed by ion beam sputtering.
  • the SP2 / SP3 value of the carbon film was determined by electron energy loss spectrometry.
  • a broad peak was observed near 1584 cm ⁇ 1 by Raman scattering spectroscopy using a visible light laser. Therefore, it was confirmed that the carbon film has an amorphous structure.
  • a photoresist pattern was formed on the substrate, and the carbon nanohorn layer and the carbon film were patterned into the working electrode design shown in FIG. 5 by etching using oxygen plasma to obtain a working electrode.
  • the reference electrode was obtained by patterning into the reference electrode design of FIG. 5 by the lift-off method.
  • the margin of one end was flattened, and a copper wire was soldered to the handle side of the alligator clip having sharp irregularities on the other end.
  • a silicone resin prepolymer was applied to the connection portion of the copper wire and the surface of the clip, and the silicone resin was cured by placing it in an oven at 120 ° C. for 3 hours with the clip open. After cooling in the air, the substrate on which the working electrode was formed was sandwiched so that the sandwiching margin on which sharp irregularities were formed was in contact with the carbon film.
  • the reference electrode and the counter electrode were electrically connected to the flexible substrate by wire bonding and wired so that the current flowing through the working electrode could be measured.
  • waterproofing was applied to the portion connected by wire bonding.
  • a 10 mm ⁇ 10 mm (thickness 0.515 mm) quartz substrate was prepared, washed with acetone, and then washed with a solution containing the same amount of hydrogen peroxide and nitric acid.
  • a 300 nm platinum layer was formed on the quartz substrate by sputtering of platinum.
  • the platinum layer was patterned into a working electrode and counter electrode design shown in FIG. 5 by the lift-off method to obtain a counter electrode.
  • a diamond-like carbon film having a thickness of 2.5 ⁇ m and an SP2 / SP3 value of 5.2 was formed by ion beam sputtering.
  • the SP2 / SP3 value of the carbon film was determined by electron energy loss spectrometry.
  • a broad peak was observed near 1584 cm ⁇ 1 by Raman scattering spectroscopy using a visible light laser. Therefore, it was confirmed that the carbon film has an amorphous structure.
  • a photoresist pattern was formed on the substrate, and the carbon nanohorn layer and the carbon film were patterned into the working electrode design shown in FIG. 5 by etching using oxygen plasma to obtain a working electrode.
  • the reference electrode was obtained by patterning into the reference electrode design of FIG. 5 by the lift-off method.
  • a 22.5 w / v% albumin solution containing 100 mg / 100 ⁇ L (pure water) glucose oxidase and 1 v / v% glutaraldehyde was spin-coated and dried at 4 ° C. for 24 hours in a nitrogen atmosphere. To fix the enzyme.
  • each electrode and the flexible substrate were electrically connected by wire bonding and wired so that the current flowing through the working electrode could be measured.
  • waterproofing was applied to the portion connected by wire bonding. Thereby, an electrochemical sensor using the modified electrode of Example 3 was obtained.
  • the produced electrochemical sensor was immersed in a phosphate buffer at pH 6.5 in which 0.1 M KCl was dissolved, and 0.8 V vs. Amperometric measurement was performed under a potential condition of Ag / AgCl.
  • glucose which is a substrate for glucose oxidase
  • a concentration of 0.1 mM an increase in oxidation current was observed.
  • the current value increased.
  • fructose which is not a substrate for glucose oxidase was added to a concentration of 0.1 mM, the current value did not increase. It was confirmed that the modified electrode of Example 3 functions as an enzyme-modified electrode.
  • Example 4 The manufacturing method of the electrochemical sensor of Example 4 will be described. First, a 4-inch quartz wafer was prepared, washed with acetone, and then washed with a solution containing the same amount of hydrogen peroxide and nitric acid.
  • a 300 nm platinum layer was formed on the quartz substrate by sputtering of platinum.
  • the platinum layer was patterned into the working electrode and counter electrode design shown in FIG. 7 to obtain 48 counter electrodes.
  • a diamond-like carbon film having a thickness of 1 ⁇ m and an SP2 / SP3 value of 2.5 was formed by ion beam sputtering.
  • the SP2 / SP3 value of the carbon film was determined by electron energy loss spectrometry.
  • a broad peak was observed near 1584 cm ⁇ 1 by Raman scattering spectroscopy using a visible light laser. Therefore, it was confirmed that the carbon film has an amorphous structure.
  • a photoresist pattern was formed on the substrate, and the carbon nanohorn layer and the carbon film were patterned into the working electrode design shown in FIG. 7 by etching using oxygen plasma to obtain 48 working electrodes.
  • the 48 working electrodes, the counter electrode, and the reference electrode are arranged so as to form a set one by one. That is, the electrode pairs shown in FIG. 5 are arranged in 6 rows ⁇ 8 columns on the substrate.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

The carbon electrode (10) has an insulating substrate (1), a conductive layer (2) provided on said insulating substrate, a carbon film (3) provided on said conductive layer (2), and a water-permeable carbon layer (4) provided to cover said carbon film (3). Said carbon film (3) contains carbon having SP2 bonds and SP3 bonds. Said water-permeable carbon layer (4) contains carbon having SP2 bonds.

Description

炭素電極、電気化学センサ、および炭素電極の製造方法Carbon electrode, electrochemical sensor, and carbon electrode manufacturing method
 本発明は、炭素電極、電気化学センサ、および炭素電極の製造方法に関する。 The present invention relates to a carbon electrode, an electrochemical sensor, and a method for producing a carbon electrode.
 溶液中の物質を検出する技術は、環境評価、食品分析、医療診断、などの幅広い分野で必要とされている。これまでにクロマトグラフィー法、電気泳動法、水晶振動子法、電気化学法など、さまざまな手法が実用化されている。これらのうち、電気化学法は、検出感度が高く、操作が簡便であり、装置の小型化が容易である点から最も一般的に使われている。 ) Technology for detecting substances in solutions is required in a wide range of fields such as environmental assessment, food analysis, and medical diagnosis. So far, various methods such as chromatography, electrophoresis, quartz crystal method, and electrochemical method have been put into practical use. Among these, the electrochemical method is most commonly used because it has high detection sensitivity, is easy to operate, and is easy to downsize the apparatus.
 電気化学測定法は、溶液中に浸した電極の電位および電流を制御し、また、それらを計測することにより溶液中の物質を分析する手法である。電気化学測定法を利用して、物質の検出および定量をおこなう装置は特に電気化学センサと呼ばれる。 Electrochemical measurement is a technique for analyzing the substance in a solution by controlling the potential and current of an electrode immersed in the solution and measuring them. An apparatus for detecting and quantifying a substance using an electrochemical measurement method is particularly called an electrochemical sensor.
 上記のような電気化学センサに対する要求としては次のようなことがあげられる。1)長時間安定して測定がおこなえること。2)測定感度が高いこと。3)製造が容易であること。 Demands for the above electrochemical sensor include the following. 1) The measurement can be performed stably for a long time. 2) High measurement sensitivity. 3) Easy to manufacture.
 電気化学センサの性能は電極材料によって大きく変わる。電極の材質としては、白金、金、銀、水銀などの金属や炭素などの導電性物質が一般に用いられている。また、測定感度の向上や反応選択性の向上を目的として、電極表面に酵素や抗体等の生体分子および触媒、電子伝達メディエータ等の修飾物質を担持したり、分子選択性膜等で被覆した修飾電極が用いられたりすることがある。 Electrochemical sensor performance varies greatly depending on the electrode material. As a material for the electrode, a conductive material such as a metal such as platinum, gold, silver or mercury, or carbon is generally used. In addition, for the purpose of improving measurement sensitivity and reaction selectivity, the electrode surface is loaded with a biomolecule such as an enzyme or an antibody, a catalyst, a modifying substance such as an electron transfer mediator, or coated with a molecule-selective membrane or the like. An electrode may be used.
 これらのうち、金属材料からなる電極は製造が容易であり、また比較的低電位の測定条件においては高感度であることが知られている。しかし、金属電極は1.0V vs. Ag/AgCl程度よりも高電位の条件においては溶媒の電気分解や電極の溶解反応が活発に起こる。すると、溶媒の反応電流が大量に流れるため、微量成分の反応による微弱な電流値の変化を検出することが不可能になりセンサの感度が著しく損なわれるという問題がある。 Among these, it is known that an electrode made of a metal material is easy to manufacture and has high sensitivity under relatively low potential measurement conditions. However, the metal electrode is 1.0 V vs. * Solvent electrolysis and electrode dissolution reactions occur actively under conditions of higher potential than about Ag / AgCl. Then, since the reaction current of the solvent flows in a large amount, it is impossible to detect a weak change in the current value due to the reaction of a trace component, and there is a problem that the sensitivity of the sensor is significantly impaired.
 これに対し、炭素材料からなる電極は、高電位条件においても溶媒の電気分解が起こりにくく、また、電極自身が酸化還元されにくいという利点がある。そのため、高電位条件においても、高い検出感度と電極の耐久性が得られる。また、高電位条件での測定が可能なため、検出可能な物質が多く、より汎用性の高いセンサを構築することができる。 On the other hand, an electrode made of a carbon material has an advantage that the solvent is hardly electrolyzed even under a high potential condition, and the electrode itself is hardly oxidized and reduced. Therefore, high detection sensitivity and electrode durability can be obtained even under high potential conditions. Further, since measurement under a high potential condition is possible, there are many detectable substances, and a more versatile sensor can be constructed.
 このような炭素電極の例として、カーボンペーストを硬化して作られる電極(例えば、特許文献1参照)、高分子を焼成して作られるガラス状カーボン電極(例えば、特許文献2参照)、気相成長法によって炭素膜を成膜して作られる電極(例えば、特許文献3)が知られている。しかし、これらの電極は表面積が小さいため電流密度が低く電気化学センサとした際に感度が劣るという問題点があった。 Examples of such a carbon electrode include an electrode made by curing a carbon paste (see, for example, Patent Document 1), a glassy carbon electrode made by firing a polymer (see, for example, Patent Document 2), and a gas phase. An electrode (for example, Patent Document 3) made by forming a carbon film by a growth method is known. However, since these electrodes have a small surface area, there is a problem that the current density is low and the sensitivity is poor when an electrochemical sensor is used.
 一方で、比表面積が大きい炭素材料として、カーボンナノチューブ(以下、CNT)が知られている。CNTは、グラファイト層が円筒状の形状をなした炭素物質であり、導電性が高いことから高感度な電極に応用できると期待されている。CNTを利用した電気化学センサとして、親水性ポリマーとカーボンナノチューブを含有する組成物を電極に塗布したセンサが開示されている(特許文献4)。この特許文献において、電極材料としては、炭素、金属、合金、および種々の化合物を用いることが記載されている。特に、炭素材料として、グラファイト、熱分解炭素、グラッシーカーボン、アセチレンブラック、カーボンブラックを使用することが記されている。
特開平1-240849号 特開平5-155610号 特開2007-316038号 特開2006-292495号
On the other hand, carbon nanotubes (hereinafter referred to as CNT) are known as carbon materials having a large specific surface area. CNT is a carbon material in which a graphite layer has a cylindrical shape and is expected to be applicable to highly sensitive electrodes because of its high conductivity. As an electrochemical sensor using CNTs, a sensor in which a composition containing a hydrophilic polymer and carbon nanotubes is applied to an electrode is disclosed (Patent Document 4). In this patent document, it is described that carbon, a metal, an alloy, and various compounds are used as an electrode material. In particular, it is described that graphite, pyrolytic carbon, glassy carbon, acetylene black, or carbon black is used as the carbon material.
Japanese Patent Laid-Open No. 1-240849 JP-A-5-155610 JP 2007-316038 A JP 2006-292495 A
 しかし、従来のCNTを用いた電極は溶液中で使用する際に安定性が得られないという課題がある。例えば、特許文献4に記載のうち、金属、合金の上にCNTを塗布した電極構成の場合は、溶液がCNT層を透過して金属や合金と接する。すると、前述のように金属や合金上で溶媒の反応がおこり感度が低下してしまう。さらに、この反応によって気体が発生するとCNT層の剥離が生じて、電極の使用が困難となる。 However, a conventional electrode using CNT has a problem that stability cannot be obtained when used in a solution. For example, among the descriptions in Patent Document 4, in the case of an electrode configuration in which CNT is applied on a metal or alloy, the solution permeates the CNT layer and contacts the metal or alloy. Then, as described above, the reaction of the solvent occurs on the metal or alloy and the sensitivity is lowered. Furthermore, when gas is generated by this reaction, the CNT layer is peeled off, making it difficult to use the electrode.
 さらに、発明者らの調べたところによれば、CNTをダイヤモンド膜などの特定の炭素材料に塗布して作製した炭素電極は測定中に電極表面からCNTが脱離することがあった。この原因として、CNTとダイヤモンド膜の密着性が低いことが考えられる。例えば、特許文献3に記載の気相成長法で合成したダイヤモンド膜は溶液の浸透が極めて少ないことが知られているが、ダイヤモンド膜の上にCNTを塗布すると測定中に電極表面からCNTが脱離してしまい、電極表面積が変化するため測定時間が長引くとセンサの特性がドリフトしてしまうという課題が生じた。 Furthermore, according to the investigation by the inventors, a carbon electrode produced by applying CNT to a specific carbon material such as a diamond film sometimes detaches from the electrode surface during measurement. As this cause, it is considered that the adhesion between the CNT and the diamond film is low. For example, a diamond film synthesized by the vapor phase growth method described in Patent Document 3 is known to have very little solution penetration. However, when CNT is applied on the diamond film, the CNT is detached from the electrode surface during measurement. As the electrode surface area changes, the sensor characteristics drift when the measurement time is prolonged.
 また、ダイヤモンド膜にCNTを塗布した電極は電気抵抗が高かった。電気抵抗が高いと電極表面で反応した電子が速やかに伝達されないため低感度となる。この原因として、CNTとダイヤモンド膜の接触抵抗が高いことが考えられる。 Also, the electrode with CNT coated on the diamond film had a high electrical resistance. When the electrical resistance is high, electrons reacted on the electrode surface are not transmitted quickly, resulting in low sensitivity. This may be due to the high contact resistance between the CNT and the diamond film.
 したがって、従来は、CNTを塗布する際に高い密着性や低い接触抵抗が得られる炭素材料についての検討は不十分であった。 Therefore, conventionally, studies on carbon materials that provide high adhesion and low contact resistance when CNT is applied have been insufficient.
 CNTの他に比表面積が大きな炭素材料としてカーボンナノホーン、フラーレン、カーボンブラックなどが知られているが、これらについても上記CNTと同様な課題を抱えている。 In addition to CNTs, carbon nanohorns, fullerenes, carbon blacks, and the like are known as carbon materials having a large specific surface area.
 本発明は上記事情に鑑みてなされたものであり、その目的とするところは、電気抵抗が低く、高い測定感度で安定した測定ができる炭素電極を提供することにある。 The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a carbon electrode having low electric resistance and capable of performing stable measurement with high measurement sensitivity.
 本発明によれば、
 絶縁性基板と、
 前記絶縁性基板の上に設けられた導電層と、
 前記導電層の上に設けられた第一炭素層と、
 前記第一炭素層を覆うように設けられた第二炭素層と、
を備え、
 前記第一炭素層は、SP2結合とSP3結合を有し、アモルファス構造を有する炭素を含み、
 前記第二炭素層は、SP2結合を有する炭素を含む炭素電極が提供される。
According to the present invention,
An insulating substrate;
A conductive layer provided on the insulating substrate;
A first carbon layer provided on the conductive layer;
A second carbon layer provided to cover the first carbon layer;
With
The first carbon layer includes carbon having an SP2 bond and an SP3 bond and having an amorphous structure;
The second carbon layer is provided with a carbon electrode including carbon having an SP2 bond.
 本発明は、電気抵抗が低く、高い測定感度で安定した測定ができる炭素電極を提供する。 The present invention provides a carbon electrode having a low electrical resistance and capable of stable measurement with high measurement sensitivity.
 上述した目的、および、その他の目的、特徴および利点は、以下に述べる好適な実施の形態、および、それに付随する以下の図面によって、さらに明らかになる。
本発明の実施形態における炭素電極の断面図である。 本発明の実施の形態における炭素電極の断面図である。 本発明の実施の形態における修飾電極の断面図である。 炭素電極の製造方法のフローチャートである。 電気化学センサのパターニングの様子を示す平面図である。 本発明の実施の形態における電気化学センサの断面図である。 実施例4において、48組の電極の配置を示す図である。 実施例1の実験結果である。 本発明の実施の形態における炭素電極の断面図である。
The above-described object and other objects, features, and advantages will become more apparent from the preferred embodiments described below and the accompanying drawings.
It is sectional drawing of the carbon electrode in embodiment of this invention. It is sectional drawing of the carbon electrode in embodiment of this invention. It is sectional drawing of the modification electrode in embodiment of this invention. It is a flowchart of the manufacturing method of a carbon electrode. It is a top view which shows the mode of the patterning of an electrochemical sensor. It is sectional drawing of the electrochemical sensor in embodiment of this invention. In Example 4, it is a figure which shows arrangement | positioning of 48 sets of electrodes. It is an experimental result of Example 1. It is sectional drawing of the carbon electrode in embodiment of this invention.
(第1の実施の形態)
 以下、本発明の第1の実施の形態について、図面を用いて説明する。尚、全ての図面において、同様な構成要素には同一符号を付し、適宜説明を省略する。第1の実施形態の炭素電極について図1を参照として説明する。
(First embodiment)
Hereinafter, a first embodiment of the present invention will be described with reference to the drawings. In all the drawings, the same components are denoted by the same reference numerals, and description thereof will be omitted as appropriate. The carbon electrode of 1st Embodiment is demonstrated with reference to FIG.
 第1の実施形態の炭素電極10は、絶縁性基板1と、前記絶縁性基板1の上に設けられた導電層2と、前記導電層2の上に設けられた第一炭素層と、前記第一炭素層を覆うように設けられた第二炭素層と、を備え、前記第一炭素層は、SP2結合とSP3結合を有し、アモルファス構造を有する炭素を含み、前記第二炭素層は、SP2結合を有する炭素を含む。
 また、第1の実施の形態は、第一炭素層として炭素膜3を用い、第二炭素層として透水性炭素層4を用いた。
The carbon electrode 10 of the first embodiment includes an insulating substrate 1, a conductive layer 2 provided on the insulating substrate 1, a first carbon layer provided on the conductive layer 2, A second carbon layer provided to cover the first carbon layer, wherein the first carbon layer includes carbon having an SP2 bond and an SP3 bond and having an amorphous structure, and the second carbon layer includes , Including carbons having an SP2 bond.
In the first embodiment, the carbon film 3 is used as the first carbon layer, and the water permeable carbon layer 4 is used as the second carbon layer.
 絶縁性基板1の材料としては、セラミックス、ガラス、石英、プラスチック等の絶縁性の高い材料から主なる物を用いることができる。耐水性、耐熱性、耐薬品性および導電層2との密着性に優れた部材であることが望ましく、特にガラスが望ましい。 As the material of the insulating substrate 1, a main material made of a highly insulating material such as ceramics, glass, quartz, or plastic can be used. A member excellent in water resistance, heat resistance, chemical resistance, and adhesion to the conductive layer 2 is desirable, and glass is particularly desirable.
 導電層2は、絶縁性基板1の上に設けられてもよく、炭素膜3よりも導電性が高いものを用いてもよい。導電層2を設けることで炭素膜3の直列抵抗が下げられると考えられる。これにより、電気化学計測時の抵抗損が減じられ、センサの検出感度が向上する。 The conductive layer 2 may be provided on the insulating substrate 1, or may have a higher conductivity than the carbon film 3. It is considered that the series resistance of the carbon film 3 can be lowered by providing the conductive layer 2. Thereby, the resistance loss at the time of electrochemical measurement is reduced, and the detection sensitivity of the sensor is improved.
 導電層2に用いられる材料は、炭素膜3と接触抵抗が低いものが好ましい。例えば、Ti、Cr、Cu、Au、Pt、Ni、Ir、W、Mo、TiN、TaN、Pd、Mg、Alまたはこれらの元素の合金またはこれらの元素と炭素の合金の導電性皮膜を使用することができる。 The material used for the conductive layer 2 is preferably a material having a low contact resistance with the carbon film 3. For example, Ti, Cr, Cu, Au, Pt, Ni, Ir, W, Mo, TiN, TaN, Pd, Mg, Al or an alloy of these elements or a conductive film of an alloy of these elements and carbon is used. be able to.
 導電層2は2層以上の導電性皮膜から構成されても良く、例えば、導電層2と絶縁性基板1の密着性を上げるために、絶縁性基板1上に、Cr、Ti、およびWなどを形成した上に他の導電性皮膜が形成されていてもよい。 The conductive layer 2 may be composed of two or more conductive films. For example, in order to improve the adhesion between the conductive layer 2 and the insulating substrate 1, Cr, Ti, W, etc. are formed on the insulating substrate 1. In addition, other conductive films may be formed.
 導電層2は、スパッタ法、イオンプレーティング法、真空蒸着法、CVD、および、電解法などにより形成することができる。形成方法に限定はないが、スパッタ法が好ましく用いられる。これにより、絶縁性基板1との密着性が良好なだけでなく、正確なパターニングが可能であり、量産性を高めることができる。 The conductive layer 2 can be formed by sputtering, ion plating, vacuum deposition, CVD, electrolysis, or the like. The formation method is not limited, but a sputtering method is preferably used. Thereby, not only the adhesiveness with the insulating substrate 1 is good, but accurate patterning is possible, and mass productivity can be improved.
 炭素膜3は、導電層2を被覆するように設けられてもよい。炭素膜3として、SP2結合とSP3結合が混在した炭素の被膜が用いられる。 The carbon film 3 may be provided so as to cover the conductive layer 2. As the carbon film 3, a carbon film in which SP2 bonds and SP3 bonds are mixed is used.
 SP2結合とSP3結合が混在した被膜であることにより炭素膜3は緻密な膜構造を有する。この緻密な膜構造とすることにより炭素膜3にクラックの発生を抑制することができる。そのため、溶液に長時間浸しても炭素膜3の内部に溶液の浸透がなく、電極面積の変化がほとんど起こらないと考えられる。 The carbon film 3 has a dense film structure because it is a film in which SP2 bonds and SP3 bonds are mixed. With this dense film structure, the occurrence of cracks in the carbon film 3 can be suppressed. Therefore, even if it is immersed in the solution for a long time, the solution does not penetrate into the carbon film 3 and the change in the electrode area hardly occurs.
 さらに、緻密な膜構造を有する炭素膜3で覆われることにより、溶液の浸透がないため、導電層2と溶液の接触を防ぐことが可能になる。これにより、導電層2の表面での溶媒の電気分解、および導電層2の溶解反応が起こらず、高い検出感度と安定性が得られる。 Furthermore, since the solution is not permeated by being covered with the carbon film 3 having a dense film structure, it is possible to prevent contact between the conductive layer 2 and the solution. Thereby, electrolysis of the solvent on the surface of the conductive layer 2 and dissolution reaction of the conductive layer 2 do not occur, and high detection sensitivity and stability are obtained.
 炭素膜3は、導電層2の側面も含めてすべての面を覆うように形成されていると導電層2が完全に保護されるが、導電層2の側面の面積は炭素膜3、および透水性炭素層4の表面積と比べて無視できるほど小さく、導電層2の側面において電気化学反応が起こったとしても流れる電流値は無視できるほど小さい。 When the carbon film 3 is formed so as to cover all surfaces including the side surface of the conductive layer 2, the conductive layer 2 is completely protected. However, the area of the side surface of the conductive layer 2 is the carbon film 3 and the water-permeable layer. The surface area of the conductive carbon layer 4 is negligibly small, and even if an electrochemical reaction occurs on the side surface of the conductive layer 2, the flowing current value is negligibly small.
 そのため、導電層2は、上面が炭素膜3で被覆されていればよい。導電層2の側面が炭素膜3で被覆されない場合、パターニングされた炭素電極10を作製する際に、導電層2と炭素膜3を同時に加工することができる。 Therefore, the upper surface of the conductive layer 2 only needs to be covered with the carbon film 3. When the side surface of the conductive layer 2 is not covered with the carbon film 3, the conductive layer 2 and the carbon film 3 can be processed at the same time when the patterned carbon electrode 10 is produced.
 また、SP2結合を有することにより炭素膜3はπ電子を有する。そのため、π電子を有することにより、炭素膜3は導電性を示す。また、炭素膜3がπ電子を有すると、透水性炭素層4のπ電子とπ-π相互作用を形成することで、炭素膜3と透水性炭素層4の密着性が向上する。 Moreover, the carbon film 3 has π electrons due to the SP2 bond. Therefore, the carbon film 3 exhibits conductivity by having π electrons. Further, when the carbon film 3 has π electrons, a π electron and π-π interaction of the water permeable carbon layer 4 is formed, thereby improving the adhesion between the carbon film 3 and the water permeable carbon layer 4.
 これにより、溶液中で透水性炭素層4が剥離することが防がれ、安定性の高いセンサの構築が可能である。さらに、π-π相互作用が形成されると炭素膜3と透水性炭素層4の接触抵抗が下げられる。これらにより検出感度が高い炭素電極10の構成が可能である。 This prevents the water-permeable carbon layer 4 from being peeled off in the solution, and a highly stable sensor can be constructed. Further, when the π-π interaction is formed, the contact resistance between the carbon film 3 and the water permeable carbon layer 4 is lowered. Accordingly, it is possible to configure the carbon electrode 10 with high detection sensitivity.
 また、炭素膜3は、SP3結合を有することにより、耐薬品性、耐高電位性、および高い機械強度を有する。これにより、酸性溶液中、高電位の印加、および繰り返し測定等の過酷な条件下への耐性が高いため、炭素膜3が破損しても溶液が浸透することを抑制することができる。 Further, the carbon film 3 has chemical resistance, high potential resistance, and high mechanical strength by having the SP3 bond. Thereby, since the tolerance to severe conditions, such as application of a high electric potential and repeated measurement, is high in an acidic solution, even if the carbon film 3 is damaged, the penetration of the solution can be suppressed.
 炭素膜3は、アモルファス構造を有する炭素を含むことが好ましい。アモルファス構造を有する炭素を含むことにより、更に膜構造が緻密になるため炭素膜3への溶液の浸透が更に減少するとともに耐薬品性が向上する。このような特性を持つアモルファス構造を有する炭素として、ダイヤモンドライクカーボン、アモルファスカーボンが挙げられる。
 炭素膜がアモルファス構造を有することは、可視光レーザーを用いたラマン散乱分光測定によって確かめることができる。例えば、黒鉛では、1584cm-1付近に鋭いピークが1本観測されるのに対し、アモルファス構造を有する炭素膜は、1584cm-1付近にブロードなピークが観測されることが知られている。
The carbon film 3 preferably contains carbon having an amorphous structure. By including carbon having an amorphous structure, the film structure becomes denser, so that the penetration of the solution into the carbon film 3 is further reduced and the chemical resistance is improved. Examples of carbon having an amorphous structure having such characteristics include diamond-like carbon and amorphous carbon.
Whether the carbon film has an amorphous structure can be confirmed by Raman scattering spectroscopy using a visible light laser. For example, it is known that one sharp peak is observed near 1584 cm −1 in graphite, while a broad peak is observed near 1584 cm −1 in a carbon film having an amorphous structure.
 さらに、炭素膜3は、炭素以外の元素を含んでいてもよい。炭素以外の元素を含むことで、炭素膜3の導電性が向上される。また、硬度や耐薬品性が向上する。これらの元素として、一般的にドーピングに用いられるあらゆる元素をはじめ、金属元素を用いることができる。例えば、Cr、Ti、Si、N、B、Ar、Au、Pt、Cu、Ag、Fe、S、P、およびHなどが挙げられる。 Furthermore, the carbon film 3 may contain elements other than carbon. By including an element other than carbon, the conductivity of the carbon film 3 is improved. In addition, hardness and chemical resistance are improved. As these elements, metal elements including all elements generally used for doping can be used. Examples thereof include Cr, Ti, Si, N, B, Ar, Au, Pt, Cu, Ag, Fe, S, P, and H.
 SP2結合とSP3結合の比率(SP2/SP3値)は、特に限定されないが、0.01以上、100.0以下が好ましく、更に好ましくは0.1以上、10.0以下である。その理由は、結合比率がこの範囲にあると、π電子が充分に多く、かつ緻密な膜構造が形成されるためである。 The ratio of SP2 bond and SP3 bond (SP2 / SP3 value) is not particularly limited, but is preferably 0.01 or more and 100.0 or less, more preferably 0.1 or more and 10.0 or less. The reason is that when the bond ratio is within this range, a sufficiently large π electron and a dense film structure is formed.
 比率が低すぎるとπ電子が少ないため、導電性、および透水性炭素層4との密着性が不十分となる。一方、比率が高すぎると緻密な膜構造が得られず、耐水性、耐薬品性、耐高電位性、機械強度が不十分となる。 If the ratio is too low, there are few π electrons, so that the conductivity and adhesion with the water-permeable carbon layer 4 are insufficient. On the other hand, if the ratio is too high, a dense film structure cannot be obtained, resulting in insufficient water resistance, chemical resistance, high potential resistance, and mechanical strength.
 また、本実施形態において、炭素膜3の電子顕微鏡像から、SP2/SP3値が0.1以上、10.0以下において、炭素膜3は同じような構造をしていることが分かった。 Further, in the present embodiment, it was found from the electron microscope image of the carbon film 3 that the carbon film 3 has the same structure when the SP2 / SP3 value is 0.1 or more and 10.0 or less.
 また、炭素膜3の膜厚は、特に限定されないが、0.02μm以上、20μm以下であることが好ましい。その理由は、この範囲にあると炭素膜3の防水性および電気伝導性が充分に確保されるためである。膜厚が0.02μmより小さいと、炭素膜3にピンホールが増え、溶液の浸透が発生しやすくなる。一方、膜厚が20μmより大きいと、炭素膜3が高抵抗となり測定感度が低下する。 The thickness of the carbon film 3 is not particularly limited, but is preferably 0.02 μm or more and 20 μm or less. The reason is that the water resistance and electrical conductivity of the carbon film 3 are sufficiently secured when the thickness is within this range. If the film thickness is smaller than 0.02 μm, pinholes increase in the carbon film 3 and solution penetration tends to occur. On the other hand, if the film thickness is larger than 20 μm, the carbon film 3 has a high resistance and the measurement sensitivity is lowered.
 炭素膜3の製造方法としては特に限定されないが、膜厚や特性の制御がしやすいことから気相成長法が好ましく用いられる。例えば、マグネトロンスパッタ法、高周波(RF)スパッタ法、直流(DC)スパッタ法、対向ターゲットスパッタ法、電子サイクロトロン共鳴(ECR)スパッタ法、イオンビームスパッタ(IBS)法、イオンプレーティング法、イオン化蒸着法等、いわゆる物理気相成長法が利用できる。あるいは、プラズマ化学気相成長(CVD)法、熱CVD法、イオンビーム堆積(IBS)法等、いわゆる化学的気相成長(CVD)法が利用できる。 The method for producing the carbon film 3 is not particularly limited, but a vapor phase growth method is preferably used because the film thickness and characteristics are easily controlled. For example, magnetron sputtering, radio frequency (RF) sputtering, direct current (DC) sputtering, counter target sputtering, electron cyclotron resonance (ECR) sputtering, ion beam sputtering (IBS), ion plating, ionization deposition So-called physical vapor deposition can be used. Alternatively, so-called chemical vapor deposition (CVD) methods such as plasma chemical vapor deposition (CVD), thermal CVD, and ion beam deposition (IBS) can be used.
 これらのうち、SP2結合とSP3結合の比率の制御が容易なことからスパッタ法が好ましく用いられる。スパッタ法において、結合比率はバイアス電圧の調節により制御される。 Of these, the sputtering method is preferably used because the ratio of the SP2 bond and the SP3 bond can be easily controlled. In the sputtering method, the coupling ratio is controlled by adjusting the bias voltage.
 さらに、炭素膜3は、SP2結合とSP3結合の結合比が、絶縁性基板1から垂直方向に明確な膜の区別がなく段階的に変化していてもよい。膜の継ぎ目がなくなることより、異種材料間の界面への応力集中がおこらず炭素膜3の剥離を抑制できる。 Furthermore, in the carbon film 3, the coupling ratio between the SP2 bond and the SP3 bond may change stepwise from the insulating substrate 1 without any clear distinction between the films. Since the seam of the film is eliminated, stress concentration at the interface between different materials does not occur, and peeling of the carbon film 3 can be suppressed.
 好ましくは、炭素膜3のSP2/SP3値が、炭素膜3と透水性炭素層4の界面付近で最大となってもよい。これにより、透水性炭素層4と接する炭素膜3の界面付近はSP2/SP3値が高いことで透水性炭素層4との密着性を向上させることができる。さらに、界面付近以外の炭素膜3は、SP2/SP3値が低くてもよく、これにより溶液の浸透が防がれ導電層2に対する保護作用が向上することができる。 Preferably, the SP2 / SP3 value of the carbon film 3 may be maximized near the interface between the carbon film 3 and the water-permeable carbon layer 4. Thereby, the vicinity of the interface of the carbon film 3 in contact with the water permeable carbon layer 4 has a high SP2 / SP3 value, so that the adhesion with the water permeable carbon layer 4 can be improved. Further, the carbon film 3 other than the vicinity of the interface may have a low SP2 / SP3 value, whereby the penetration of the solution is prevented and the protective action for the conductive layer 2 can be improved.
 透水性炭素層4は、炭素層3を覆うように設けられている。透水性炭素層4は、ナノ構造を有する粉末状の炭素が固定化された層である。 The water permeable carbon layer 4 is provided so as to cover the carbon layer 3. The water permeable carbon layer 4 is a layer in which powdery carbon having a nanostructure is fixed.
 透水性炭素層4を構成するナノ構造を有する粉末状の炭素としては、SP2結合を有するものが用いられる。SP2結合を有することで透水性炭素層4はπ電子を有する。π電子を有することで、ナノ構造を有する粉末状の炭素はπ-π相互作用によって互いに結合して層を形成できる。 As the powdery carbon having a nanostructure constituting the water-permeable carbon layer 4, one having SP2 bond is used. By having the SP2 bond, the water-permeable carbon layer 4 has π electrons. By having π electrons, powdered carbon having nanostructures can be bonded to each other by π-π interaction to form a layer.
 さらに、透水性炭素層4は炭素膜3の炭素ともπ-π相互作用を形成すると考えられる。そのため、透水性炭素層4と炭素膜3の密着性が向上し、また、接触抵抗を少なくすることが可能となる。 Furthermore, the water permeable carbon layer 4 is considered to form a π-π interaction with the carbon of the carbon film 3. Therefore, the adhesion between the water-permeable carbon layer 4 and the carbon film 3 is improved, and the contact resistance can be reduced.
 透水性炭素層4は、ナノ構造を有する粉末状の炭素を分散した溶液を炭素膜3に塗布することによって形成することができる。塗布方法は特に限定されないが、スピンコート法、ディップコート法、スプレーコート法、ディスペンス法、スクリーンプリント法、インクジェット法、等が利用できる。 The water-permeable carbon layer 4 can be formed by applying a solution in which powdered carbon having a nanostructure is dispersed to the carbon film 3. The coating method is not particularly limited, and spin coating, dip coating, spray coating, dispensing, screen printing, ink jet, and the like can be used.
 このうち、均一性と再現性が高いことからスピンコート法が好ましく用いられる。スピンコートに用いられる溶液の濃度及び量については適宜検討によって決定することができる。また、溶媒としては、これらの炭素材料が分散するものであれば特に限定されることなく、水、緩衝液、有機溶媒、およびその混合物を用いることができる。 Of these, the spin coat method is preferably used because of its high uniformity and reproducibility. The concentration and amount of the solution used for spin coating can be determined by appropriate examination. Moreover, as a solvent, if these carbon materials disperse | distribute, it will not specifically limit, Water, a buffer solution, an organic solvent, and its mixture can be used.
 炭素材料を分散させる方法としては、特に限定されないが、例えば、超音波処理を用いることができる。塗布した後には、必要に応じて乾燥工程を加えることができる。この方法で形成された透水性炭素層4は、π結合やファンデルワールス力等の物理吸着によって層を形成し、炭素膜3と結合できる。 The method for dispersing the carbon material is not particularly limited, and for example, ultrasonic treatment can be used. After the application, a drying step can be added as necessary. The water permeable carbon layer 4 formed by this method can be bonded to the carbon film 3 by forming a layer by physical adsorption such as π bond or van der Waals force.
 このようにして形成された透水性炭素層4は、ナノ構造を有する粉末状の炭素で構成されるため、表面に凹凸を形成すること、層内に空隙を形成することができる。これにより、電気化学測定を大きい比表面積でおこなうことができ、測定感度を向上させることができる。 Since the water-permeable carbon layer 4 thus formed is composed of powdered carbon having a nanostructure, it is possible to form irregularities on the surface and to form voids in the layer. Thereby, electrochemical measurement can be performed with a large specific surface area, and measurement sensitivity can be improved.
 透水性炭素層4は内部に溶液が浸透するが、前述のようにその下に存在する炭素膜3により溶液の浸透が抑制される。そのため、透水性炭素層4の内部に溶液が完全に浸透した後は電極面積が安定することができる。さらに、炭素膜3は、1V程度の高電位を印加しても電極表面から気体発生が生じにくいため、透水性炭素層4の剥離が生じにくい。また、炭素層3は、耐薬品性、耐高電位性が良いため、透水性炭素層に溶液が浸透しても電気化学測定中に炭素層3が損壊したり溶解したりすることはほとんどない。そのため、長時間の測定においても安定性が高い電極とすることが可能となる。 The solution penetrates into the water-permeable carbon layer 4, but the penetration of the solution is suppressed by the carbon film 3 existing thereunder as described above. Therefore, the electrode area can be stabilized after the solution has completely penetrated into the water-permeable carbon layer 4. Further, since the carbon film 3 hardly generates gas from the electrode surface even when a high potential of about 1 V is applied, the water-permeable carbon layer 4 is hardly peeled off. Further, since the carbon layer 3 has good chemical resistance and high potential resistance, even if the solution penetrates into the water-permeable carbon layer, the carbon layer 3 is hardly damaged or dissolved during the electrochemical measurement. . Therefore, it is possible to obtain an electrode having high stability even in long-time measurement.
 透水性炭素層4の材料としては、SP2結合を有するナノ構造を有する粉末状の炭素であれば特に限定されないが、例えば、黒鉛、アモルファスカーボン、ダイヤモンドライクカーボン、カーボンファイバー、カーボンブラック、アセチレンブラック、ケッチェンブラック(登録商標)、カーボンナノチューブ、カーボンナノホーン、およびカーボンナノファイバー等が挙げられる。これらは、単一種類で用いてもよいし、複数種類を混合して用いてもよい。 The material of the water permeable carbon layer 4 is not particularly limited as long as it is powdery carbon having a nanostructure having an SP2 bond. For example, graphite, amorphous carbon, diamond-like carbon, carbon fiber, carbon black, acetylene black, Examples include ketjen black (registered trademark), carbon nanotubes, carbon nanohorns, and carbon nanofibers. These may be used as a single type or as a mixture of a plurality of types.
 これらのうち、カーボンナノチューブ、またはカーボンナノホーンが特に好ましく用いることができる。その理由として、針状構造を有するため炭素膜3との接触面積が大きくなりπ-π相互作用が多数形成されて高い密着力と低い接触抵抗が得られること、比表面積が大きいため高い電流密度が得られること、耐薬品性および耐高電位性が優れるため高い安定性の電極とできることが挙げられる。 Of these, carbon nanotubes or carbon nanohorns can be particularly preferably used. The reason for this is that since it has a needle-like structure, the contact area with the carbon film 3 is increased, and a large number of π-π interactions are formed to obtain high adhesion and low contact resistance. It is possible to obtain a highly stable electrode because of its excellent chemical resistance and high potential resistance.
 尚、透水性炭素層4を形成する際は、必要に応じてπ-π相互作用の結合力を補ってもよい。例えば、ナノ構造を有する粉末状の炭素と炭素膜3のそれぞれの表面に官能基を修飾して架橋させたり、バインダーなどの固定化剤を添加したりして、固定力を増すことができる。 When forming the water permeable carbon layer 4, the binding force of the π-π interaction may be supplemented as necessary. For example, the fixing force can be increased by modifying and crosslinking the functional groups on the surfaces of the powdered carbon having a nanostructure and the carbon film 3, or adding a fixing agent such as a binder.
 また、透水性炭素層4は親水化処理がされていてもよい。透水性炭素層4が親水化すると、溶液の浸透が早められて電極が安定した応答を示すまでに要する時間が短縮される。 Further, the water permeable carbon layer 4 may be subjected to a hydrophilic treatment. When the water-permeable carbon layer 4 becomes hydrophilic, the time required for the penetration of the solution to be accelerated and the electrode to show a stable response is shortened.
 親水性化処理の方法は特に限定されないが、例えば、透水性炭素層4に親水性物質を混合および塗布する方法や、プラズマ雰囲気に曝す方法を用いることができる。これらの処理は、炭素層3の上に透水性炭素層4を形成した後におこなってもよいし、透水性炭素層4の原料となるナノ構造を有する粉末状の炭素およびその分散液に対しておこなってもよい。 The method of the hydrophilic treatment is not particularly limited, and for example, a method of mixing and applying a hydrophilic substance to the water permeable carbon layer 4 or a method of exposing to a plasma atmosphere can be used. These treatments may be performed after the permeable carbon layer 4 is formed on the carbon layer 3, or for powdered carbon having a nanostructure as a raw material of the permeable carbon layer 4 and a dispersion thereof. You may do it.
 プラズマ雰囲気を作製するガスの成分としては、例えば、酸素、窒素、アルゴン等がある。また、親水性物質としては親水性を持つものであればいかなるものでも用いることができるが、アクリルアミド、エチレングリコール、エチレンオキサイド、エチレンイミン、リン脂質等の重合体がある。これらのうち、炭素の結晶構造への影響が少ないことから親水性材料を塗布する方法が特に好ましい。 Examples of gas components for creating a plasma atmosphere include oxygen, nitrogen, and argon. Any hydrophilic substance can be used as long as it has hydrophilicity, and there are polymers such as acrylamide, ethylene glycol, ethylene oxide, ethyleneimine, and phospholipid. Of these, the method of applying a hydrophilic material is particularly preferable because it has little influence on the crystal structure of carbon.
 また、透水性炭素層4への溶液の浸透時間は透水性炭素層4の密度を疎にすることによっても短縮できる。透水性炭素層4の密度は、透水性炭素層4を形成する際に炭素膜3に塗布する炭素材料の分散液の濃度や量によって調節することができる。 Also, the solution penetration time into the water permeable carbon layer 4 can be shortened by making the density of the water permeable carbon layer 4 sparse. The density of the water-permeable carbon layer 4 can be adjusted by the concentration and amount of the carbon material dispersion applied to the carbon film 3 when the water-permeable carbon layer 4 is formed.
 炭素膜3と透水性炭素層4が積層され両層間の接触面積が大きいため、透水性炭素層4の密度が疎であっても低抵抗な電極とすることが可能であるが、透水性炭素層4の密度が低下すると表面積が小さくなるため電流値が小さくなる。最適な密度は必要に応じて適宜調節して用いることができる。 Since the carbon film 3 and the water-permeable carbon layer 4 are laminated and the contact area between both layers is large, even if the density of the water-permeable carbon layer 4 is sparse, it is possible to obtain a low-resistance electrode. When the density of the layer 4 decreases, the surface area decreases and the current value decreases. The optimum density can be appropriately adjusted as necessary.
 上述のような構成を有する炭素電極10は、電気化学センサの作用極として機能する。実際に電気化学センサとして使用する際には、他に参照極11ならびに対極12が適宜用いられる。 The carbon electrode 10 having the configuration as described above functions as a working electrode of an electrochemical sensor. When actually used as an electrochemical sensor, a reference electrode 11 and a counter electrode 12 are appropriately used.
 (製造方法)
 続いて、本実施の形態に係る炭素電極10の製造方法について説明する。図4は、本実施の形態に係る炭素電極10の製造方法のフローチャートを示している。炭素電極10の製造方法は、導電層2を形成する工程(ステップS10)、炭素膜3を形成する工程(ステップS20)、透水性炭素層4を形成する工程(ステップS30)、およびダイシングする工程(ステップS40)を備えている。各工程の方法について、以下に詳述する。
(Production method)
Then, the manufacturing method of the carbon electrode 10 which concerns on this Embodiment is demonstrated. FIG. 4 shows a flowchart of the method for manufacturing the carbon electrode 10 according to the present embodiment. The manufacturing method of the carbon electrode 10 includes a step of forming the conductive layer 2 (step S10), a step of forming the carbon film 3 (step S20), a step of forming the water-permeable carbon layer 4 (step S30), and a step of dicing. (Step S40). The method of each step will be described in detail below.
 ステップS10、11;導電層を形成
 まず、絶縁性基板1上に、スパッタ法によって導電層2を形成する(ステップS10)。なお、導電層2を形成する方法はスパッタ法に限定されず、イオンプレーティング法、真空蒸着法、CVD、および、電解法等を用いてもよい。さらに、必要に応じて、導電層2は絶縁性基板1上にパターニングされる(ステップS11)。導電層2のパターニングは、エッチング法、リフトオフ法、サンドブラスト法等を利用することができる。
Steps S10 and 11: Formation of Conductive Layer First, the conductive layer 2 is formed on the insulating substrate 1 by sputtering (step S10). The method for forming the conductive layer 2 is not limited to the sputtering method, and an ion plating method, a vacuum deposition method, a CVD method, an electrolytic method, or the like may be used. Further, the conductive layer 2 is patterned on the insulating substrate 1 as necessary (step S11). For the patterning of the conductive layer 2, an etching method, a lift-off method, a sand blast method, or the like can be used.
 ステップS20、21;炭素膜を形成
 続いて、導電層2が形成された絶縁性基板1の上に炭素膜3が形成される(ステップS20)。炭素膜3の成膜は、スパッタ法、イオンプレーティング法等の、いわゆる物理気相成長法、あるいは、プラズマ化学気相成長(CVD)法、熱CVD法、イオンビーム堆積(IBS)法など、いわゆる化学的気相成長(CVD)法が利用できる。気相成長法で形成されることにより、炭素膜3は、緻密な膜構造を形成し導電層2の表面を被覆する。さらに、必要に応じて、炭素膜3はパターニングされる(ステップS21)。パターニング方法は、炭素膜3の上にセラミックスやフォトレジスト等のマスクを形成して酸素プラズマ等によりエッチングする方法やメタルマスクを用いてサンドブラストで加工する方法等が利用できる。
Steps S20 and 21; Formation of Carbon Film Subsequently, the carbon film 3 is formed on the insulating substrate 1 on which the conductive layer 2 is formed (Step S20). The carbon film 3 is formed by a so-called physical vapor deposition method such as a sputtering method or an ion plating method, a plasma chemical vapor deposition (CVD) method, a thermal CVD method, an ion beam deposition (IBS) method, or the like. A so-called chemical vapor deposition (CVD) method can be used. By being formed by the vapor deposition method, the carbon film 3 forms a dense film structure and covers the surface of the conductive layer 2. Further, the carbon film 3 is patterned as necessary (step S21). As a patterning method, a method of forming a mask made of ceramics, photoresist or the like on the carbon film 3 and etching with oxygen plasma or the like, a method of processing by sand blasting using a metal mask, or the like can be used.
 ステップS30、31;透水性炭素層を形成
 炭素層3の上に、スピンコート法によってナノ構造を有する粉末状の炭素の分散液が塗布され、溶媒が揮発することにより透水性炭素層4が形成される(ステップS30)。透水性炭素層4は、π-π相互作用によって炭素膜3と密着する。さらに、透水性炭素層4は、必要に応じてパターニングされる(ステップS31)。パターニング方法としては、マスクを用いた酸素プラズマによるエッチングや、リフトオフ法等が用いられる。なお、塗布方法は、スピンコート法に限定されず、スクリーンプリント法、およびインクジェット法等を用いてもよい。スクリーンプリント法、およびインクジェット法等、パターン上に塗布できる方法を用いると、ステップS30とステップS31が一度におこなわれ、工程を省略することができる。
Steps S30 and 31: Formation of a water-permeable carbon layer On the carbon layer 3, a powdery carbon dispersion having a nanostructure is applied by spin coating, and the solvent volatilizes to form the water-permeable carbon layer 4. (Step S30). The water permeable carbon layer 4 is in close contact with the carbon film 3 by π-π interaction. Further, the water permeable carbon layer 4 is patterned as necessary (step S31). As the patterning method, etching using oxygen plasma using a mask, a lift-off method, or the like is used. Note that the coating method is not limited to the spin coating method, and a screen printing method, an ink jet method, or the like may be used. When a method that can be applied onto a pattern, such as a screen printing method or an ink jet method, is used, Step S30 and Step S31 are performed at a time, and the process can be omitted.
 ステップS40;ダイシング
 パターニングされた形状に応じて基板がダイシングされ、複数の炭素電極10に切り分けられる。ダイシング方法としては、ダイシングブレード、スクライブ装置を用いる方法が挙げられる。
Step S40: Dicing The substrate is diced according to the patterned shape and cut into a plurality of carbon electrodes 10. Examples of the dicing method include a method using a dicing blade and a scribe device.
 以上のステップS10~40までの工程によって、炭素電極10が作製される。作製された炭素電極10は、電気化学センサの作用極として用いられる。すなわち、ワイヤーボンディングなどの方法により、外部の基板を介して電流測定装置(図示せず)等と電気的に接続される。参照極11や対極12などと組み合わせて電気化学センサ14として用いられる。 The carbon electrode 10 is manufactured by the above steps S10 to S40. The produced carbon electrode 10 is used as a working electrode of an electrochemical sensor. That is, it is electrically connected to a current measuring device (not shown) or the like via an external substrate by a method such as wire bonding. The electrochemical sensor 14 is used in combination with the reference electrode 11 and the counter electrode 12.
 尚、炭素膜3が導電層2の上面にのみ設けられた構造とする場合は、ステップS11を省き、ステップS21の工程で炭素膜3と導電層2をパターニングしてもよい。これによりステップS11でマスクを形成する工程が省略され、製造が簡略化される。パターニング方法は、単一の加工方法、および2種類以上の加工方法を組み合わせて使用してもよい。 In addition, when it is set as the structure where the carbon film 3 was provided only on the upper surface of the conductive layer 2, step S11 may be omitted and the carbon film 3 and the conductive layer 2 may be patterned in the process of step S21. Thereby, the process of forming the mask in step S11 is omitted, and the manufacturing is simplified. As the patterning method, a single processing method or a combination of two or more processing methods may be used.
 例えば、サンドブラストによって炭素膜3と導電層2を一度にパターニングすることや、酸素プラズマによるエッチングによって炭素膜3をパターニングした後に、サンドブラスト等によって炭素膜3のパターニングによって露出した導電層2をパターニングすることができる。パターニングは、使用される膜の加工特性に基づき、適切な方法を適宜用いてよいが、単一の加工方法で作製できるとさらに工程を簡略化することができ好ましい。 For example, the carbon film 3 and the conductive layer 2 are patterned at once by sand blasting, or after patterning the carbon film 3 by etching with oxygen plasma, the conductive layer 2 exposed by patterning of the carbon film 3 is patterned by sand blasting or the like. Can do. For the patterning, an appropriate method may be used as appropriate based on the processing characteristics of the film to be used. However, it is preferable that the patterning can be further simplified if it can be produced by a single processing method.
 同様にして、ステップS11およびステップS21を省いてステップS31の透水性炭素層4をパターニングする工程で炭素膜3と導電層2をパターニングすることでマスクを形成する工程を省略することができる。透水性炭素層4と炭素膜3と導電層2とをステップS31でパターニングすると、マスクを形成する工程をさらに省略することができ製造が簡略化される。 Similarly, the step of forming the mask by patterning the carbon film 3 and the conductive layer 2 in the step of patterning the water-permeable carbon layer 4 in step S31 without step S11 and step S21 can be omitted. If the water-permeable carbon layer 4, the carbon film 3, and the conductive layer 2 are patterned in step S31, the process of forming a mask can be further omitted, and the manufacturing is simplified.
 また、ステップS11で導電層2をパターニングした後に炭素膜3および透水性炭素層4を形成し、ステップS31の工程で炭素膜3および透水性炭素層4をパターニングしてもよい。このようにすると、導電層2と炭素膜3のパターンを異なる形状とすることができる。そのため、導電層2の壁面が炭素膜3で完全に被覆された構造とすることができるため非常に安定性が高い電極とできる。 Alternatively, the carbon film 3 and the water permeable carbon layer 4 may be formed after patterning the conductive layer 2 in step S11, and the carbon film 3 and the water permeable carbon layer 4 may be patterned in the process of step S31. If it does in this way, the pattern of the conductive layer 2 and the carbon film 3 can be made into a different shape. Therefore, since the wall surface of the conductive layer 2 can be made to be completely covered with the carbon film 3, an electrode with very high stability can be obtained.
 本実施の形態によれば、炭素膜3の下に導電層2が形成されることにより、直列抵抗を下げることができる。また、炭素膜3と透水性炭素層4が積層されることにより炭素膜3と透水性炭素層4の接触抵抗を減じることができる。そのため、抵抗が低い電極とすることができ、電気化学計測時の抵抗損が減じられることから、センサの検出感度を向上させることが可能である。 According to the present embodiment, the series resistance can be lowered by forming the conductive layer 2 under the carbon film 3. Further, the contact resistance between the carbon film 3 and the water permeable carbon layer 4 can be reduced by laminating the carbon film 3 and the water permeable carbon layer 4. Therefore, an electrode having low resistance can be obtained, and resistance loss during electrochemical measurement is reduced, so that the detection sensitivity of the sensor can be improved.
 また、炭素膜3を覆うように透水性炭素層4が形成されることにより、比表面積を向上させることができる。比表面積が大きいと、電気化学測定を大面積でおこなうことができ測定感度が向上する。 Further, the specific surface area can be improved by forming the water-permeable carbon layer 4 so as to cover the carbon film 3. When the specific surface area is large, electrochemical measurement can be performed in a large area, and the measurement sensitivity is improved.
 また、透水性炭素層4は、密度が疎な層であるため測定溶液に触れると内部に溶液が速やかに浸透する。そのため、溶液に浸した電極が安定した応答を示すまでに要する時間を短くすることが可能となる。 Further, since the water-permeable carbon layer 4 is a sparse layer, when the measurement solution is touched, the solution quickly penetrates into the inside. Therefore, it is possible to shorten the time required for the electrode immersed in the solution to show a stable response.
 さらに、炭素膜3で覆われることにより、導電層2は溶液の接触が防がれる。炭素膜3は、緻密な膜構造を有するため、クラックの発生がなく溶液の浸透がない構成とすることができる。これにより、溶液に長時間浸しても電極面積の変化を抑制できる。また、導電層2の表面での溶媒の電気分解、および導電層2の溶解反応が起こらず、高い検出感度と安定性が得られる。
(第2の実施の形態)
Furthermore, the conductive layer 2 is prevented from contacting the solution by being covered with the carbon film 3. Since the carbon film 3 has a dense film structure, it can be configured such that no cracks occur and no solution permeates. Thereby, even if it immerses in a solution for a long time, the change of an electrode area can be suppressed. In addition, electrolysis of the solvent on the surface of the conductive layer 2 and dissolution reaction of the conductive layer 2 do not occur, and high detection sensitivity and stability can be obtained.
(Second Embodiment)
 第2の実施の形態について、図9を用いて説明する。図9は、本実施の形態に係る炭素電極の断面構成図である。本実施の形態の炭素電極は、第1の実施形態に係る炭素電極10に対して、第三炭素層が追加されている。尚、第1の実施の形態と同様の構成については、省略して説明する。 The second embodiment will be described with reference to FIG. FIG. 9 is a cross-sectional configuration diagram of the carbon electrode according to the present embodiment. In the carbon electrode of the present embodiment, a third carbon layer is added to the carbon electrode 10 according to the first embodiment. Note that the same configuration as that of the first embodiment will be omitted.
 第2の実施の形態の炭素電極10は、第一炭素層が、第一炭素層と異なるSP2/SP3値を有する少なくとも1つの第三炭素層をさらに含むことを特徴としている。
 また、第2の実施の形態の炭素電極10は、前記第一炭素層と前記第二炭素層が接し、前記第一炭素層の前記SP2/SP3値が、前記第三炭素層のSP2/SP3値より高くなってもよい。
 ここで、第2の実施の形態は、第一炭素層として炭素膜3を用い、第二炭素層として透水性炭素層4を用い、第三炭素層として炭素膜30を用いた。
The carbon electrode 10 of the second embodiment is characterized in that the first carbon layer further includes at least one third carbon layer having an SP2 / SP3 value different from that of the first carbon layer.
Further, in the carbon electrode 10 of the second embodiment, the first carbon layer and the second carbon layer are in contact with each other, and the SP2 / SP3 value of the first carbon layer is equal to SP2 / SP3 of the third carbon layer. It may be higher than the value.
Here, in the second embodiment, the carbon film 3 is used as the first carbon layer, the water permeable carbon layer 4 is used as the second carbon layer, and the carbon film 30 is used as the third carbon layer.
 第2の実施の形態の炭素電極10は、上述の炭素膜3を使用してもよい。また、SP2/SP3値が異なる2以上の、炭素膜3および炭素膜30が積層されて構成されてもよい。 The carbon film 10 of the second embodiment may use the carbon film 3 described above. Further, two or more carbon films 3 and carbon films 30 having different SP2 / SP3 values may be laminated.
 このうち、耐水性、耐薬品性、耐高電位性、耐久性と導電性を両立した炭素膜3および炭素膜30とできることから、SP2/SP3値が異なる2以上の、炭素膜3および炭素膜30が積層されて構成されることが特に好ましい。 Among these, since the carbon film 3 and the carbon film 30 having both water resistance, chemical resistance, high potential resistance, durability and conductivity can be obtained, the carbon film 3 and the carbon film having two or more different SP2 / SP3 values. It is particularly preferable that 30 is laminated.
 炭素膜3および炭素膜30が積層される順序は特に限定されないが、炭素膜3が透水性炭素層4と接するとき、炭素膜3は、SP2/SP3値が高く、炭素膜30は、SP2/SP3値が低い層を少なくとも1層含むことが特に好ましい。 The order in which the carbon film 3 and the carbon film 30 are stacked is not particularly limited, but when the carbon film 3 is in contact with the water permeable carbon layer 4, the carbon film 3 has a high SP2 / SP3 value, and the carbon film 30 has an SP2 / It is particularly preferable to include at least one layer having a low SP3 value.
 その理由としては、透水性炭素層4と接する炭素膜3はSP2/SP3値が高いことで透水性炭素層4との密着性が向上する。さらに、炭素膜30は、SP2/SP3値の低い層を少なくとも1層含むことで炭素膜30の溶液の浸透が防がれ導電層2に対する保護作用が向上するためである。 The reason is that the carbon film 3 in contact with the water permeable carbon layer 4 has a high SP2 / SP3 value, so that the adhesion with the water permeable carbon layer 4 is improved. Further, the carbon film 30 includes at least one layer having a low SP2 / SP3 value, thereby preventing the solution of the carbon film 30 from penetrating and improving the protective action on the conductive layer 2.
 また、炭素膜3は、導電層2との密着性を向上させるために、導電層2の上面にCr、Ti、およびWから選択される少なくとも1種を含む中間層を設けた上に形成されてもよい。中間層はスパッタ法等によって形成することができる。 The carbon film 3 is formed on an upper surface of the conductive layer 2 provided with an intermediate layer containing at least one selected from Cr, Ti, and W in order to improve adhesion with the conductive layer 2. May be. The intermediate layer can be formed by sputtering or the like.
 本実施形態において、導電層2と中間層の界面付近で、導電層2と中間層の組成が混合してもよい。さらに、中間層と炭素膜3の界面付近で、中間層と炭素膜3の組成が混合してもよい。 In this embodiment, the composition of the conductive layer 2 and the intermediate layer may be mixed near the interface between the conductive layer 2 and the intermediate layer. Furthermore, the composition of the intermediate layer and the carbon film 3 may be mixed in the vicinity of the interface between the intermediate layer and the carbon film 3.
 なお、中間層は、導電層2および炭素膜3と明確な界面を形成していなくても良く、基板表面から垂直方向に向かって導電層2/中間層/炭素膜3の各組成が段階的に変化する混合傾斜組成層を形成してもよい。 The intermediate layer does not have to form a clear interface with the conductive layer 2 and the carbon film 3, and each composition of the conductive layer 2 / intermediate layer / carbon film 3 is stepwise from the substrate surface in the vertical direction. Alternatively, a mixed gradient composition layer that changes to
 このように、混合傾斜組成層を形成すると異種材料間の界面への応力集中が起こらないため、絶縁性基板1との密着性が向上して安定な電極とすることが可能となる。混合傾斜組成層は、同一チャンバ内に導電層2、中間層、炭素膜3のそれぞれのターゲットを設置し、基板を回転させながらスパッタすることにより形成することができる。 As described above, when the mixed gradient composition layer is formed, stress concentration at the interface between different materials does not occur, so that the adhesiveness with the insulating substrate 1 is improved and a stable electrode can be obtained. The mixed gradient composition layer can be formed by setting the targets of the conductive layer 2, the intermediate layer, and the carbon film 3 in the same chamber and performing sputtering while rotating the substrate.
 炭素膜3および炭素膜30の成膜(ステップS20)は、SP2結合とSP3結合の比率の制御が容易なことからスパッタ法が好ましく用いられる。スパッタ法において、結合比率はバイアス電圧の調節により制御される。これにより、SP2/SP3値が異なる2以上の炭素膜3,30が積層された構成とすることができる。
(第3の実施の形態)
For the deposition of the carbon film 3 and the carbon film 30 (step S20), the sputtering method is preferably used because the control of the ratio of SP2 bonds to SP3 bonds is easy. In the sputtering method, the coupling ratio is controlled by adjusting the bias voltage. Thereby, it can be set as the structure by which the two or more carbon films 3 and 30 from which SP2 / SP3 value differs were laminated | stacked.
(Third embodiment)
 第3の実施の形態について、図3を用いて説明する。図3は、本実施の形態に係る修飾電極の断面構成図である。本実施の形態の修飾電極は、第1の実施形態に係る炭素電極10に対して、修飾物質9が追加されている。尚、第1の実施の形態と同様の構成については、省略して説明する。 The third embodiment will be described with reference to FIG. FIG. 3 is a cross-sectional configuration diagram of the modified electrode according to the present embodiment. In the modified electrode of the present embodiment, a modifying substance 9 is added to the carbon electrode 10 according to the first embodiment. Note that the same configuration as that of the first embodiment will be omitted.
 第3の実施の形態の炭素電極10は、第1の実施形態の炭素電極10が、第二炭素層に担持した修飾物質9をさらに備えることを特徴としている。
 また、第3の実施の形態は、第二炭素層として透水性炭素層4を用いた。さらに、第3の実施の形態の炭素電極10は、修飾電極として用いることができる。
The carbon electrode 10 of the third embodiment is characterized in that the carbon electrode 10 of the first embodiment further includes a modifier 9 supported on the second carbon layer.
In the third embodiment, the water permeable carbon layer 4 is used as the second carbon layer. Furthermore, the carbon electrode 10 of the third embodiment can be used as a modified electrode.
 図3に示すように、絶縁性基板1の上に、導電層2が形成され、その少なくとも上面が炭素膜3によって被覆されている。そして、炭素膜3の表面を覆うように透水性炭素層4が形成されている。修飾物質9は、透水性炭素層4の内部および外部に担持されている。 As shown in FIG. 3, a conductive layer 2 is formed on an insulating substrate 1, and at least the upper surface thereof is covered with a carbon film 3. A water permeable carbon layer 4 is formed so as to cover the surface of the carbon film 3. The modifying substance 9 is supported inside and outside the water-permeable carbon layer 4.
 修飾物質9としては、特に限定されることなく、一般的に修飾電極に使用される物質が用いられる。修飾物質9としては、例えば、対象物質の酸化還元反応を促進する物質、対象物質と電極の間での電子の授受を仲介する物質、分子認識機能を有する物質、物質透過性を調節する物質等が用いられる。 The modifying substance 9 is not particularly limited, and a substance generally used for a modifying electrode is used. Examples of the modifying substance 9 include a substance that promotes the oxidation-reduction reaction of the target substance, a substance that mediates transfer of electrons between the target substance and the electrode, a substance that has a molecular recognition function, a substance that regulates substance permeability, and the like Is used.
 さらに具体的には、修飾物質9としては、触媒、酵素、金属錯体、電子伝達メディエータ、抗体、核酸、受容体、タンパク質、脂質、高分子、細胞、微生物、および生体組織等がある。これらは単一の物質、および複数の物質が用いられる。これらの修飾物質9を透水性炭素層4の内部および外部に担持させることにより、直接電極反応しない物質の検出や、感度、応答特異性、安定性などを向上させた電気化学センサを構築することが可能となる。 More specifically, examples of the modifying substance 9 include a catalyst, an enzyme, a metal complex, an electron transfer mediator, an antibody, a nucleic acid, a receptor, a protein, a lipid, a polymer, a cell, a microorganism, and a living tissue. A single substance and a plurality of substances are used. By carrying these modifiers 9 inside and outside the water-permeable carbon layer 4, an electrochemical sensor that improves detection of substances that do not directly react with the electrode, sensitivity, response specificity, stability, etc. Is possible.
 修飾物質9は、溶媒に分散されたものを透水性炭素層4上に塗布することによって担持してもよい。溶媒の種類としては、緩衝液等の水溶液や、アルコール等の有機溶媒等、修飾物質9が活性を維持して分散されるものが適宜用いられる。 The modifying substance 9 may be supported by applying a substance dispersed in a solvent on the water-permeable carbon layer 4. As the type of the solvent, an aqueous solution such as a buffer solution or an organic solvent such as alcohol in which the modifying substance 9 is dispersed while maintaining the activity is appropriately used.
 透水性炭素層4は、透水性を持つため、塗布された分散液は透水性炭素層4の内部に浸透し、修飾物質9が炭素層の内外に担持される。尚、溶媒には、修飾物質を強固に担持させるためにグルタルアルデヒド等の架橋剤や、ポリエチレングリコール、ビニルアルコールなどの高分子が添加されていてもよい。 Since the water-permeable carbon layer 4 has water permeability, the applied dispersion penetrates into the water-permeable carbon layer 4 and the modifier 9 is supported inside and outside the carbon layer. The solvent may be added with a crosslinking agent such as glutaraldehyde or a polymer such as polyethylene glycol or vinyl alcohol in order to firmly support the modifying substance.
 修飾物質が炭素膜の内部に浸透すると、アンカー効果によって、修飾物質9は透水性炭素層4に密着し剥離が防止される。そのため、安定性が高い修飾電極とすることが可能となる。 When the modifying substance penetrates into the carbon film, the modifying substance 9 adheres to the water-permeable carbon layer 4 and is prevented from peeling by the anchor effect. Therefore, a modified electrode with high stability can be obtained.
 さらに、透水性炭素層4の炭素は導電性が高いため、その炭素の末端含む全体で電極として機能する。よって、修飾物質9の作用により生じる電気化学反応性物質は、近傍の透水性炭素層4および炭素膜3によって速やかに電気信号に変換され、拡散による電極外への流出が少ない。修飾物質9の作用を効率的に検出することができるため、高感度な修飾電極とすることが可能である。 Furthermore, since the carbon of the water permeable carbon layer 4 has high conductivity, it functions as an electrode as a whole including the ends of the carbon. Therefore, the electrochemically reactive substance generated by the action of the modifying substance 9 is quickly converted into an electrical signal by the nearby water-permeable carbon layer 4 and the carbon film 3, and there is little outflow from the electrode due to diffusion. Since the action of the modifying substance 9 can be detected efficiently, a highly sensitive modified electrode can be obtained.
 また、透水性炭素層4の比表面積は大きいため、透水性炭素層4には多量の修飾物質9を担持させることができる。これにより、修飾物質9の効果が顕著にあらわれ、検出感度、応答特異性が特に高められた修飾電極とすることが可能となる。 Further, since the water-permeable carbon layer 4 has a large specific surface area, the water-permeable carbon layer 4 can carry a large amount of modifier 9. As a result, the effect of the modifying substance 9 is remarkably exhibited, and a modified electrode with particularly enhanced detection sensitivity and response specificity can be obtained.
 修飾物質9は、ダイシング(ステップS40)の前に、パターニングされた透水性炭素層4に担持される。修飾物質9の担持は、例えば、修飾物質9の分散液をスピンコートすることによりおこなってもよい。 The modifier 9 is supported on the patterned water-permeable carbon layer 4 before dicing (step S40). The modification substance 9 may be supported by, for example, spin coating a dispersion of the modification substance 9.
 本実施の形態によれば、透水性炭素層4の内部に修飾物質9が浸透して担持されることにより、検出感度、安定性が特に高められた修飾電極とすることが可能となる。また、透水性炭素層4に多量の修飾物質9が固定化され、検出感度、応答特異性が特に高められた修飾電極とすることが可能となる。
(第4の実施の形態)
According to the present embodiment, the modified substance 9 permeates and is carried inside the water-permeable carbon layer 4, whereby a modified electrode with particularly improved detection sensitivity and stability can be obtained. In addition, a large amount of the modifying substance 9 is immobilized on the water-permeable carbon layer 4, and a modified electrode with particularly enhanced detection sensitivity and response specificity can be obtained.
(Fourth embodiment)
 本発明の第4の実施の形態について図5、および図6を参照して説明する。 A fourth embodiment of the present invention will be described with reference to FIG. 5 and FIG.
 図6は、本実施の形態に係る電気化学センサ14の断面図を示している。電気化学センサ14は、絶縁性基板1と、作用極13と、参照極11と、対極12とを有している。 FIG. 6 shows a cross-sectional view of the electrochemical sensor 14 according to the present embodiment. The electrochemical sensor 14 has an insulating substrate 1, a working electrode 13, a reference electrode 11, and a counter electrode 12.
 また、図5は、電気化学センサ14の上面図を示している。図6では、絶縁性基板1上に複数個の電気化学センサ14が形成されている構造を示している。尚、作用極13が微小電極である場合は、参照極11が対極12としての作用を兼ねることができるため、その際は、電気化学センサ14は、作用極13と参照極11とを有してよい。 FIG. 5 shows a top view of the electrochemical sensor 14. FIG. 6 shows a structure in which a plurality of electrochemical sensors 14 are formed on the insulating substrate 1. When the working electrode 13 is a microelectrode, the reference electrode 11 can also serve as the counter electrode 12. In this case, the electrochemical sensor 14 includes the working electrode 13 and the reference electrode 11. It's okay.
 作用極13は、導電層2と炭素膜3と透水性炭素層4を有している。絶縁性基板1上に形成された作用極13は、第1から第3の実施形態のいずれに記載の炭素電極10も用いることができるが、この炭素電極10に限定されない。 The working electrode 13 includes a conductive layer 2, a carbon film 3, and a water permeable carbon layer 4. The working electrode 13 formed on the insulating substrate 1 can use the carbon electrode 10 described in any of the first to third embodiments, but is not limited to the carbon electrode 10.
 参照極11は、銀を主成分とする金属層が好ましく用いられる。そのうち、測定溶液中での酸化還元電位の安定性が高いことから、特に銀/塩化銀で形成されることが好ましい。 The reference electrode 11 is preferably a metal layer mainly composed of silver. Of these, the formation of silver / silver chloride is particularly preferred because of the high stability of the redox potential in the measurement solution.
 銀/塩化銀を形成する際には、基板との密着性を向上させるため、参照極11と絶縁性基板1との間にTiやCr等の層を挟んでもよい。また、銀/塩化銀は、絶縁性基板1の上に形成されたPtおよびAuなどの層による電気配線(図示せず)の表面を覆うように形成されてもよい。 When forming silver / silver chloride, a layer of Ti, Cr, or the like may be sandwiched between the reference electrode 11 and the insulating substrate 1 in order to improve adhesion to the substrate. Further, silver / silver chloride may be formed so as to cover the surface of an electrical wiring (not shown) formed of a layer such as Pt and Au formed on the insulating substrate 1.
 銀/塩化銀は、例えば、スパッタ法によって銀を形成した後に、塩酸水溶液中でアノード分極することにより形成することができる。 Silver / silver chloride can be formed, for example, by anodic polarization in aqueous hydrochloric acid after forming silver by sputtering.
 対極12は、白金族元素が好ましく用いられる。対極12としては、特に耐薬品性に優れた白金が好ましい。尚、白金を形成する際には、基板との密着性を向上させるため、絶縁性基板1との間にTiやCr等の層を挟んでもよい。 The counter electrode 12 is preferably a platinum group element. As the counter electrode 12, platinum having particularly excellent chemical resistance is preferable. When platinum is formed, a layer such as Ti or Cr may be sandwiched between the insulating substrate 1 and the substrate so as to improve adhesion to the substrate.
 参照極11および対極12は、リフトオフ法によって絶縁性基板1上に形成させることができる。参照極11および対極12は、導電層2を形成する工程(ステップS10)より前に形成してもよいし、後に形成してもよい。尚、対極12が導電層2と同じ材質である場合には、導電層2を形成する工程(ステップS10)と、対極12を形成する工程とを同時におこなうこともできる。 The reference electrode 11 and the counter electrode 12 can be formed on the insulating substrate 1 by a lift-off method. The reference electrode 11 and the counter electrode 12 may be formed before or after the step of forming the conductive layer 2 (step S10). When the counter electrode 12 is made of the same material as that of the conductive layer 2, the step of forming the conductive layer 2 (Step S <b> 10) and the step of forming the counter electrode 12 can be performed simultaneously.
 さらに、参照極11に用いる銀の形成方法は、スパッタ法に限定されず、例えばめっき法によって形成してもよい。めっき法を用いる場合、絶縁性基板1上にPtおよびAuなどによる電気配線を形成し、電解めっきによって電気配線の表面に銀を形成することができる。 Furthermore, the method of forming silver used for the reference electrode 11 is not limited to the sputtering method, and may be formed by, for example, a plating method. When the plating method is used, an electric wiring made of Pt, Au or the like can be formed on the insulating substrate 1, and silver can be formed on the surface of the electric wiring by electrolytic plating.
 銀の形成は、導電層2を形成する工程(ステップS10)より前に形成してもよいし、後に形成してもよい。なお、電気配線が対極12または導電層2と同じ材質の場合は、電気配線を形成する工程と対極12または導電層2を形成する工程(ステップS10)を同時におこなうこともできる。
(第5の実施の形態)
Silver may be formed before or after the step of forming the conductive layer 2 (step S10). When the electric wiring is made of the same material as the counter electrode 12 or the conductive layer 2, the step of forming the electric wiring and the step of forming the counter electrode 12 or the conductive layer 2 (step S10) can be performed simultaneously.
(Fifth embodiment)
 第5の実施の形態について、図2を用いて説明する。尚、第1の実施の形態と同様の構成については、説明が省略されている。本実施の形態の炭素電極10は、第1の実施形態に係る炭素電極10に対して、結線部8が追加されている。 The fifth embodiment will be described with reference to FIG. In addition, description is abbreviate | omitted about the structure similar to 1st Embodiment. In the carbon electrode 10 of the present embodiment, a connection portion 8 is added to the carbon electrode 10 according to the first embodiment.
 第5の実施の形態の電気化学センサは、測定部(図示せず)と導線5をさらに備え、上記測定部と上記炭素電極10は、上記導線5で電気的に接続し、上記導線5は、上記第一炭素層を貫通して上記導電層2と電気的に接触し、上記導線5の表面は、絶縁膜6で被覆され、上記絶縁膜6と上記第一炭素層の表面は、封止材7で被覆されることを特徴とする。
 また、第5の実施の形態は、第一炭素層として炭素膜3を用いた。
The electrochemical sensor of the fifth embodiment further includes a measurement unit (not shown) and a conductive wire 5, the measurement unit and the carbon electrode 10 are electrically connected by the conductive wire 5, and the conductive wire 5 is Through the first carbon layer and in electrical contact with the conductive layer 2, the surface of the conductive wire 5 is covered with an insulating film 6, and the surfaces of the insulating film 6 and the first carbon layer are sealed. It is characterized by being covered with a stopper 7.
In the fifth embodiment, the carbon film 3 is used as the first carbon layer.
 図2に示すように、絶縁性基板1の上に、導電層2が形成され、その少なくとも上面が炭素膜3によって被覆されている。そして、炭素膜3の表面を覆うように透水性炭素層4が設けられている。結線部8は、炭素膜3を貫通して導電層2と接触する導線5と、導線5の表面を覆う絶縁膜6と、導線5が炭素膜3を貫通する箇所を覆う封止材7とで構成される。 As shown in FIG. 2, a conductive layer 2 is formed on an insulating substrate 1, and at least the upper surface thereof is covered with a carbon film 3. A water permeable carbon layer 4 is provided so as to cover the surface of the carbon film 3. The connection portion 8 includes a conductive wire 5 that penetrates the carbon film 3 and contacts the conductive layer 2, an insulating film 6 that covers the surface of the conductive wire 5, and a sealing material 7 that covers a portion where the conductive wire 5 penetrates the carbon film 3. Consists of.
 導線5は、電気化学測定装置(図示せず)に接続される。導線5を導電層2に接触させることによって、低抵抗な電気配線が形成される。すると、抵抗損が低減されるので、電気化学測定を高感度におこなうことが可能となる。 The conducting wire 5 is connected to an electrochemical measurement device (not shown). By bringing the conductive wire 5 into contact with the conductive layer 2, a low resistance electric wiring is formed. Then, the resistance loss is reduced, so that electrochemical measurement can be performed with high sensitivity.
 さらに、導線5の表面は絶縁膜6で被覆され、炭素膜3に形成された導線5の貫通部は封止材7で被覆される。これによって導線5および、導線5と導電層2の接触部分を保護し、防水性の高い接続部とすることが可能となる。これにより、電極の安定性と耐久性を向上させることが可能となる。 Furthermore, the surface of the conductive wire 5 is covered with an insulating film 6, and the penetration portion of the conductive wire 5 formed in the carbon film 3 is covered with a sealing material 7. As a result, the conductive wire 5 and the contact portion between the conductive wire 5 and the conductive layer 2 can be protected and a highly waterproof connection portion can be obtained. Thereby, the stability and durability of the electrode can be improved.
 導線5は、導電性を有するものが用いられる。導線5は、少なくとも一端が炭素膜3を貫通して導電層2と接触するように設けられることにより、導電層2と電気的に接続する。 The conducting wire 5 is conductive. The conducting wire 5 is electrically connected to the conductive layer 2 by being provided so that at least one end penetrates the carbon film 3 and contacts the conductive layer 2.
 さらに、導線5の別の末端は、電気化学測定装置に接続される。これにより、炭素膜3、および透水性炭素層4の電極電位を制御し、電気化学測定における作用極として機能させることが可能となる。 Furthermore, another end of the conducting wire 5 is connected to an electrochemical measuring device. Thereby, the electrode potentials of the carbon film 3 and the water permeable carbon layer 4 can be controlled to function as working electrodes in electrochemical measurement.
 導線5の材質としては、金属が好ましく用いられる。その理由は、電気抵抗が低いことと、導電層2との接触抵抗が低いことである。金属の種類は特に限定されないが、例えば、Pt、Au、Ag、Cu、Al、Fe、Cr、Ni、Zn、In、Pb、Nb、Sn、およびこれらを主成分とした合金を用いることができる。なお、導線5は、単一の材料および複数数種の材料から構成されてもよい。例えば、先端部分に硬度が高いステンレス鋼を用い、それ以外の部位に電気抵抗が低い銅を用いることで、作製の容易さと低抵抗を両立することができる。 A metal is preferably used as the material of the conducting wire 5. The reason is that the electrical resistance is low and the contact resistance with the conductive layer 2 is low. There are no particular limitations on the type of metal, but for example, Pt, Au, Ag, Cu, Al, Fe, Cr, Ni, Zn, In, Pb, Nb, Sn, and alloys based on these can be used. . In addition, the conducting wire 5 may be comprised from a single material and several types of materials. For example, it is possible to achieve both ease of manufacture and low resistance by using stainless steel having high hardness at the tip portion and using copper having low electrical resistance at other portions.
 導線5は、パンチャー等によって打ち込まれることによって、炭素膜3を貫通して導電層2と接触させることができる。炭素膜3は緻密な膜であるため、導線5の打ち込み時にもクラックの発生を防ぐことができる。そのため、導線5が貫通する箇所を除き、導電層2は炭素膜3によって溶液から保護される。 The conducting wire 5 can be brought into contact with the conductive layer 2 through the carbon film 3 by being driven by a puncher or the like. Since the carbon film 3 is a dense film, generation of cracks can be prevented even when the conductive wire 5 is driven. Therefore, the conductive layer 2 is protected from the solution by the carbon film 3 except for the portion where the conducting wire 5 penetrates.
 製造時に炭素膜3を貫通させやすいことから、導線5の端部の形状は、針状、刀身状などのテーパー状であることが好ましい。また、端部には先端の逆方向に向けて尖った、いわゆるかえし構造が形成されていてもよい。特に、かえし構造は導電層2に埋設している構成が好ましい。かえし構造があると導線5の脱落が防止され、電気接触の不良を低減することが可能となる。 Since it is easy to penetrate the carbon film 3 during manufacturing, the shape of the end of the conductive wire 5 is preferably a tapered shape such as a needle shape or a blade shape. Further, a so-called barb structure that is pointed in the direction opposite to the tip may be formed at the end. In particular, the barb structure is preferably embedded in the conductive layer 2. When there is a barb structure, the lead wire 5 is prevented from falling off, and it is possible to reduce defective electrical contact.
 尚、図2において、導線5は針状の形状をしているが、導線5の形状はこれに限定されない。例えば、導線5の端部の断面の形状は、特に限定されず、円、多角形、および曲線とすることができる。このうち、多角形および曲線としたものが特に好ましい。 In addition, in FIG. 2, although the conducting wire 5 has a needle-like shape, the shape of the conducting wire 5 is not limited to this. For example, the shape of the cross section of the end portion of the conducting wire 5 is not particularly limited, and may be a circle, a polygon, or a curve. Of these, polygons and curves are particularly preferable.
 その理由として、導電層2との接触面積を大きくすることができ、接触抵抗が減少することが挙げられる。接触抵抗が減少すると低抵抗な電極とすることができ、検出感度の高いセンサの構築が可能となる。 The reason is that the contact area with the conductive layer 2 can be increased and the contact resistance is reduced. When the contact resistance decreases, a low-resistance electrode can be obtained, and a sensor with high detection sensitivity can be constructed.
 また、導線5の端部には複数の先端を設けても良く、例えば、針状の先端を複数設けた剣山状の端部、前記多角形の断面を複数有する端部、曲線の断面を複数有する端部、およびこれらの形状を混在させた端部とすることができる。導線5に複数の先端を設けることで、導電層2との接触面積を大きくし、低抵抗な電極とすることができる。 Moreover, you may provide a some front-end | tip in the edge part of the conducting wire 5, for example, a sword mountain-like end part provided with two or more needle-like front-end | tips, an end part which has two or more said polygonal cross sections, and a plurality of curved cross sections It can be set as the edge part which has, and the edge part which mixed these shapes. By providing a plurality of tips on the conducting wire 5, the contact area with the conductive layer 2 can be increased and a low-resistance electrode can be obtained.
 また、導線5をクリップ状の形状とすることができる。このクリップの内側に鋭利な凹凸を形成し、クリップで基板を挟み込むことにより、導線5が炭素膜3を貫通する。これにより、導線5と導電層2とを電気的に接触させてもよい。クリップにより導線5と導電層2が常に密着するため、電気接触の不良を低減することが可能となる。 Moreover, the conducting wire 5 can be made into a clip shape. The conductive wire 5 penetrates the carbon film 3 by forming sharp irregularities inside the clip and sandwiching the substrate with the clip. Thereby, you may make the conducting wire 5 and the conductive layer 2 contact electrically. Since the conductive wire 5 and the conductive layer 2 are always in close contact with each other by the clip, it is possible to reduce electrical contact defects.
 また、結線部8を取り外せることから、基板を使い捨てにして結線部8を再利用することが可能となる。電極ごとに結線部8を製造する必要がなくなり、電極の製造を簡略化することが可能となる。 Further, since the connection part 8 can be removed, the connection part 8 can be reused by making the substrate disposable. It is not necessary to manufacture the connection portion 8 for each electrode, and the manufacturing of the electrode can be simplified.
 また、導電層2には、2本以上の導線5が接続されてもよい。同一の導電層2と電気的に接続された複数の導線5は、電気化学測定装置の同一の作用極接続部に接続することで単一の電極として作用することができる。複数の導線5を接続することで、導電層2との接触面積を大きくし、低抵抗な電極とすることができる。 Further, two or more conductive wires 5 may be connected to the conductive layer 2. The plurality of conductive wires 5 electrically connected to the same conductive layer 2 can act as a single electrode by being connected to the same working electrode connection part of the electrochemical measuring device. By connecting a plurality of conducting wires 5, the contact area with the conductive layer 2 can be increased, and a low resistance electrode can be obtained.
 尚、図2において、導線5の先端は導電層2に存在するが、導線5と導電層2が電気的に接続すれば導線5の先端の位置はこれに限定されない。例えば、絶縁性基板1にプラスチック等の耐クラック性の高い材料を用い、導線5の先端がプラスチックの中に差し込まれることで、導線5が基板に強固に固定し脱落を防止することが可能である。 In FIG. 2, the leading end of the conducting wire 5 exists in the conductive layer 2, but the position of the leading end of the conducting wire 5 is not limited to this as long as the conducting wire 5 and the conductive layer 2 are electrically connected. For example, by using a material having high crack resistance such as plastic for the insulating substrate 1 and the tip of the conductive wire 5 is inserted into the plastic, the conductive wire 5 can be firmly fixed to the substrate and prevented from falling off. is there.
 炭素膜3に挿入された部位を除き、導線5は、絶縁膜6、および封止材7で完全に被覆される。尚、導電層2との電気的接触が妨げられない程度であれば、炭素膜3に挿入された部位の導線5の少なくとも一部が絶縁膜6および封止材7で被覆されていてもよい。 Except for the part inserted into the carbon film 3, the conductive wire 5 is completely covered with the insulating film 6 and the sealing material 7. In addition, as long as the electrical contact with the conductive layer 2 is not hindered, at least a part of the conductive wire 5 in the portion inserted into the carbon film 3 may be covered with the insulating film 6 and the sealing material 7. .
 絶縁膜6は、不透水性の電気絶縁性皮膜が用いられ、導線5を被覆している。これにより、導線5は溶液と接触しないため、導線5の電位印加時の電気化学反応を抑制できる。 The insulating film 6 uses a water-impermeable electrical insulating film and covers the conductive wire 5. Thereby, since the conducting wire 5 does not contact with the solution, an electrochemical reaction at the time of applying the potential of the conducting wire 5 can be suppressed.
 絶縁膜6の材質としては、導線5および封止材7と密着するものを用いることができる。絶縁膜6の材質としては、例えば、プラスチックス、シリコン樹脂、およびテフロン(登録商標)樹脂等がある。このうち、シリコン樹脂およびテフロン(登録商標)樹脂を用いると高い耐薬品性が得られ、封止材7と密着性が高いことからシリコン樹脂が特に好ましい。これらは、単一の種類、および複数種類を組み合わせて用いることができる。例えば、封止材7と接しない箇所をエナメル等のプラスチック素材で被覆し、封止材7と接する箇所をシリコン樹脂で被覆してもよい。 As the material of the insulating film 6, a material that is in close contact with the conductive wire 5 and the sealing material 7 can be used. Examples of the material of the insulating film 6 include plastics, silicon resin, and Teflon (registered trademark) resin. Among these, when a silicon resin and a Teflon (registered trademark) resin are used, a high chemical resistance is obtained, and a silicon resin is particularly preferable because it has high adhesion to the sealing material 7. These can be used in combination of a single type or a plurality of types. For example, a portion that does not contact the sealing material 7 may be covered with a plastic material such as enamel, and a portion that contacts the sealing material 7 may be covered with a silicon resin.
 封止材7は、導線5が炭素膜3を貫通する箇所を完全に覆うように形成され、絶縁膜6および炭素膜3と密着するように設けられる。封止材7によって、導線5の貫通により炭素膜3に形成される溝に溶液が浸透せず、導電層2および導線5と溶液の接触を防止することが可能となる。これにより、電極の防水性が向上し、安定性の高いセンサの構築が可能となる。 The sealing material 7 is formed so as to completely cover a portion where the conductive wire 5 penetrates the carbon film 3, and is provided so as to be in close contact with the insulating film 6 and the carbon film 3. The sealing material 7 prevents the solution from penetrating into the groove formed in the carbon film 3 due to the penetration of the conductive wire 5, thereby preventing the conductive layer 2 and the conductive wire 5 from contacting the solution. As a result, the waterproofness of the electrode is improved, and a highly stable sensor can be constructed.
 封止材7は、電気絶縁性の弾性体が用いられる。封止材7の材料としては、電気絶縁性の弾性体であれば特に限定されないが、例えば、ニトリルゴム、フッ素ゴム等の合成ゴム、天然ゴム、熱可塑性エラストマー、シリコン樹脂等を用いることができる。このうち、シリコン樹脂は耐薬品性が高いため特に好ましい。 The sealing material 7 is an electrically insulating elastic body. The material of the sealing material 7 is not particularly limited as long as it is an electrically insulating elastic body. For example, synthetic rubber such as nitrile rubber and fluorine rubber, natural rubber, thermoplastic elastomer, silicon resin, and the like can be used. . Of these, silicone resins are particularly preferred because of their high chemical resistance.
 封止材7は、炭素膜3および絶縁膜6と接着して密着させることができる。接着した封止材7が強固に密着し、溶液の浸透が防がれるとともに導線5の脱落が防止される。これにより、安定な電極とすることが可能となる。このような構造は、絶縁膜6が形成された導線5が炭素膜3に打ち込まれた箇所に、軟化した封止材7または封止材7のプレポリマーを流し込み硬化させることにより形成することができる。 The sealing material 7 can be adhered and adhered to the carbon film 3 and the insulating film 6. The bonded sealing material 7 adheres firmly, preventing penetration of the solution and preventing the lead 5 from falling off. Thereby, a stable electrode can be obtained. Such a structure can be formed by pouring a softened sealing material 7 or a prepolymer of the sealing material 7 into a portion where the conductive wire 5 on which the insulating film 6 is formed is driven into the carbon film 3, and then curing. it can.
 また、封止材7は、絶縁膜6とは接着して密着させ、炭素膜3とは物理的に押し付けて密着させてもよい。これにより、炭素膜3の表面エネルギーが小さく、封止材7を接着させることが困難な場合でも、溶液の浸透を防ぐことが可能となる。 Further, the sealing material 7 may be adhered and adhered to the insulating film 6 and may be physically pressed and adhered to the carbon film 3. Thereby, even when the surface energy of the carbon film 3 is small and it is difficult to adhere the sealing material 7, it is possible to prevent the penetration of the solution.
 このような構造は、絶縁膜6が形成された導線5に封止材7を接着し、この導線5を炭素膜3に打ち込むことによって形成することができる。また、先端が封止材7で被覆された導線5を用いると、炭素膜3に打ち込む際に先端部分の封止材7が剥離し、導線5が露出して導電層2と電気的に接続すると共に、封止材7と炭素膜3を密着させることが可能となる。 Such a structure can be formed by adhering the sealing material 7 to the conductive wire 5 on which the insulating film 6 is formed, and driving the conductive wire 5 into the carbon film 3. Further, when the conductive wire 5 whose tip is covered with the sealing material 7 is used, when the carbon film 3 is driven, the sealing material 7 at the tip is peeled off, and the conductive wire 5 is exposed and electrically connected to the conductive layer 2. In addition, the sealing material 7 and the carbon film 3 can be brought into close contact with each other.
 結線部8は、ダイシング(ステップS40)のあとに、炭素膜3の上に形成される。結線部8の形成は、例えば、導電層2と接触させる部位を除き絶縁膜6で被覆された導線5を炭素膜3に打ち込み、導線5が打ち込まれた箇所に、軟化した封止材7または封止材7のプレポリマーを流し込み硬化させることにより形成することができる。尚、封止材7と絶縁膜6に同じ材料が用いられる場合は、絶縁膜の形成と封止材の形成を同時に行うことができる。 The connecting portion 8 is formed on the carbon film 3 after dicing (step S40). The connection portion 8 is formed by, for example, driving the conductive wire 5 covered with the insulating film 6 into the carbon film 3 except for the portion to be brought into contact with the conductive layer 2, and softening the sealing material 7 or at the portion where the conductive wire 5 is driven. It can be formed by pouring and curing the prepolymer of the sealing material 7. In the case where the same material is used for the sealing material 7 and the insulating film 6, the insulating film and the sealing material can be formed at the same time.
 本実施の形態によれば、導線5を導電層2に接触させることによって、低抵抗な電気配線が形成される。抵抗損が低減され、電気化学測定を高感度におこなうことができる電極とすることが可能となる。 According to the present embodiment, a low resistance electric wiring is formed by bringing the conductive wire 5 into contact with the conductive layer 2. The resistance loss is reduced, and an electrode capable of performing electrochemical measurement with high sensitivity can be obtained.
 さらに、導線5の接続部が絶縁膜6および封止材7で保護されることにより、防水性の高い接続部とすることが可能となる。これにより、安定性と耐久性を向上させた電極とすることが可能となる。 Furthermore, since the connection part of the conducting wire 5 is protected by the insulating film 6 and the sealing material 7, it becomes possible to make the connection part highly waterproof. Thereby, it is possible to obtain an electrode with improved stability and durability.
 本実施の形態によれば、単一の絶縁性基板1上に、導電層を形成する工程(ステップS10)の後に、前記導電層をパターニング(ステップS11)して複数の導電層を形成して、複数の作用極13、参照極11、対極12を一度に形成し、第二炭素層として透水性炭素層を形成する工程(ステップS30)の後に、複数の炭素電極10に分割して、各電気化学センサ14単位でダイシングすることにより、複数の電気化学センサ14を得ることができ、量産性に優れた電気化学センサが得られる。 According to the present embodiment, after the step of forming a conductive layer (step S10) on a single insulating substrate 1, the conductive layer is patterned (step S11) to form a plurality of conductive layers. After the step of forming the plurality of working electrodes 13, the reference electrode 11, and the counter electrode 12 at a time, and forming the water permeable carbon layer as the second carbon layer (step S30), the plurality of carbon electrodes 10 are divided into By dicing in units of electrochemical sensors 14, a plurality of electrochemical sensors 14 can be obtained, and an electrochemical sensor excellent in mass productivity can be obtained.
 尚、上述の各実施の形態は、夫々独立したものではなく、必要に応じて複数の実施形態を組み合わせることもできる。 Note that the above-described embodiments are not independent of each other, and a plurality of embodiments can be combined as necessary.
 以下、実施例と比較例を用いて本発明を説明する。本発明は、以下の実施例に限定されるものではない。
(実施例1)
Hereinafter, the present invention will be described using examples and comparative examples. The present invention is not limited to the following examples.
Example 1
 実施例1の炭素電極の製造方法について説明する。
はじめに、10mmx10mm(厚さ0.515mm)の石英基板を用意し、アセトンで洗浄した後、過酸化水素と硝酸を同量含む溶液で洗浄した。
A method for manufacturing the carbon electrode of Example 1 will be described.
First, a 10 mm × 10 mm (0.515 mm thick) quartz substrate was prepared, washed with acetone, and then washed with a solution containing the same amount of hydrogen peroxide and nitric acid.
 続いて、石英基板に白金のスパッタリングで300nmの白金層を形成した。リフトオフ法によって、白金層は、図5に示す作用極および対極のデザインにパターニングし、対極を得た。 Subsequently, a 300 nm platinum layer was formed on the quartz substrate by sputtering of platinum. By the lift-off method, the platinum layer was patterned into the working electrode and counter electrode designs shown in FIG. 5 to obtain a counter electrode.
 続いて、イオンビームスパッタ法によって、SP2結合とSP3結合の結合比率をバイアス電圧の調節により制御してSP2/SP3値が0.01以上、100.0以下、厚さ1μmであるダイヤモンドライクカーボン膜を形成した。 Subsequently, a diamond-like carbon film having an SP2 / SP3 value of 0.01 or more and 100.0 or less and a thickness of 1 μm by controlling the coupling ratio of SP2 coupling and SP3 coupling by adjusting the bias voltage by ion beam sputtering. Formed.
 この炭素膜のSP2/SP3値は、エレクトロンエナジーロススペクトロメトリーから、2.5であることが分かった。エレクトロンエナジーロススペクトロメトリーによって、炭素のみからなる同素体において、284eV近傍の吸収ピークの形状解析を行うことにより、結合状態の違いが明瞭に示される。この差を比べることにより、炭素膜のSP2/SP3値を求めることができる。また、炭素膜の電子顕微鏡像から、SP2/SP3値が0.1以上、10.0以下において、炭素膜は同じような構造をしていることが分かった。
 また、可視光レーザーを用いたラマン散乱分光測定によって、1584cm-1付近にブロードなピークが観測された。そのため、炭素膜は、アモルファス構造を有することが確認できた。
The SP2 / SP3 value of this carbon film was found to be 2.5 from electron energy loss spectrometry. By analyzing the shape of the absorption peak in the vicinity of 284 eV in the allotrope consisting only of carbon by electron energy loss spectrometry, the difference in the binding state is clearly shown. By comparing this difference, the SP2 / SP3 value of the carbon film can be obtained. Further, it was found from the electron microscopic image of the carbon film that the carbon film had the same structure when the SP2 / SP3 value was 0.1 or more and 10.0 or less.
In addition, a broad peak was observed near 1584 cm −1 by Raman scattering spectroscopy using a visible light laser. Therefore, it was confirmed that the carbon film has an amorphous structure.
 続いて、10mgのカーボンナノホーンを10mLのジクロロエタンに添加し、超音波洗浄器によって5分間分散させた。そして、カーボンナノホーンを含むジクロロエタン溶液500μLを分取して基板上に滴下し、2000rpm、30秒間の回転条件でスピンコートした。基板を100℃の窒素雰囲気下で10分間乾燥させた。 Subsequently, 10 mg of carbon nanohorn was added to 10 mL of dichloroethane and dispersed with an ultrasonic cleaner for 5 minutes. And 500 microliters of dichloroethane solutions containing carbon nanohorn were fractionated, and it was dripped on the board | substrate, and spin-coated on 2000 rpm and the rotation conditions for 30 second. The substrate was dried under a nitrogen atmosphere at 100 ° C. for 10 minutes.
 続いて、基板上にフォトレジストパターンを形成し、酸素プラズマを用いたエッチングによって、カーボンナノホーンの層および炭素膜を図5に示す作用極のデザインにパターニングし、作用極を得た。 Subsequently, a photoresist pattern was formed on the substrate, and the carbon nanohorn layer and the carbon film were patterned into the working electrode design shown in FIG. 5 by etching using oxygen plasma to obtain a working electrode.
 続いて、銀のスパッタリングで300nmの銀層を形成し、0.1M塩酸水溶液中で0.8mAの電流を10分間流して銀/塩化銀を形成した。そして、リフトオフ法によって図5の参照極のデザインにパターニングして参照極を得た。 Subsequently, a 300 nm silver layer was formed by silver sputtering, and a current of 0.8 mA was passed in a 0.1 M hydrochloric acid aqueous solution for 10 minutes to form silver / silver chloride. Then, the reference electrode was obtained by patterning into the reference electrode design of FIG. 5 by the lift-off method.
 続いて、各電極とフレキシブル基板とをワイヤーボンディングで電気的に接続し、作用極に流れる電流を測定できるように配線した。ここで、ワイヤーボンディングで結線した部分には防水処理を施した。
(比較例1)
Subsequently, each electrode and the flexible substrate were electrically connected by wire bonding, and wiring was performed so that the current flowing through the working electrode could be measured. Here, waterproofing was applied to the portion connected by wire bonding.
(Comparative Example 1)
 比較例1として、従来のダイヤモンド膜を使用した電気化学センサを使用した。ダイヤモンド電極は、特許文献3に記載の方法に従って作製した。
(比較例2)
 比較例2として、特許文献4に従ってグラッシーカーボンの上にカーボンナノチューブを塗布して作製した電気化学センサを用いた。電極は、市販のグラッシーカーボン(BAS社)に、0.2W/W%の含有量で懸濁したカーボンナノチューブを含む0.25W/W%のカルボキシメチルセルロース水溶液を8μL塗布し37%、1時間乾燥して作製した。
(比較例3)
As Comparative Example 1, a conventional electrochemical sensor using a diamond film was used. The diamond electrode was produced according to the method described in Patent Document 3.
(Comparative Example 2)
As Comparative Example 2, an electrochemical sensor produced by applying carbon nanotubes on glassy carbon according to Patent Document 4 was used. The electrode was coated with 8 μL of a 0.25 W / W% aqueous solution of carboxymethylcellulose containing carbon nanotubes suspended at a content of 0.2 W / W% on commercially available glassy carbon (BAS), 37% dried for 1 hour. And produced.
(Comparative Example 3)
 比較例3として、SP3結合のみからなる炭素材料の上にCNTを塗布して電気化学センサを作製した。SP3結合のみからなる炭素材料として、ダイヤモンド膜を用いた。ダイヤモンド膜の製造は、特許文献3の方法に従い、それ以外は、実施例1と同じ方法を用いた。 As Comparative Example 3, an electrochemical sensor was fabricated by applying CNTs on a carbon material consisting only of SP3 bonds. A diamond film was used as a carbon material consisting only of SP3 bonds. For the production of the diamond film, the same method as in Example 1 was used except for the method of Patent Document 3.
 実施例1および比較例1~3の電気化学センサの特性を評価した。評価項目は、測定感度、安定性、電極面積、電気抵抗である。測定感度と安定性の評価は水溶液中での電気化学測定によっておこなった。測定溶液として、0.1MのKCl、0.4mMのフェロセンメタノールおよび0.4mMのアデニンを溶解したpH7のリン酸バッファを用いた。溶液中に電気化学センサを浸し、0.2~1.8V vs. Ag/AgClの電位条件におけるサイクリックボルタンメトリー測定をおこなった。 The characteristics of the electrochemical sensors of Example 1 and Comparative Examples 1 to 3 were evaluated. Evaluation items are measurement sensitivity, stability, electrode area, and electrical resistance. Measurement sensitivity and stability were evaluated by electrochemical measurement in an aqueous solution. A pH 7 phosphate buffer in which 0.1 M KCl, 0.4 mM ferrocenemethanol and 0.4 mM adenine were dissolved was used as a measurement solution. Immerse the electrochemical sensor in the solution, 0.2-1.8V vs. Cyclic voltammetry measurement was performed under a potential condition of Ag / AgCl.
 測定感度は、フェロセンメタノールおよびアデニンの酸化電流値の大小を比較して、電流値が高いものほど良いとした。安定性は、サイクリックボルタンメトリーを50サイクル繰り返しておこない、波形の変形の多少を比較して、変形が少ないものほど良いとした。電極面積は、電極表面の電子顕微鏡像を比較して、見かけ上の比表面積が大きいものほど良いとした。電気抵抗は、作用極の表面と作用極からの引き出し配線の間での電気抵抗を二端子法で測定して、電気抵抗が低いものほど良いとした。 The measurement sensitivity was determined to be better as the current value was higher by comparing the oxidation current values of ferrocene methanol and adenine. Stability was determined by repeating cyclic voltammetry for 50 cycles, and comparing the degree of waveform deformation, the smaller the deformation, the better. As for the electrode area, an electron microscope image on the electrode surface was compared, and the larger the specific surface area, the better. The electric resistance between the surface of the working electrode and the lead wire from the working electrode was measured by a two-terminal method, and the lower the electric resistance, the better.
 各センサの特性を、〇、△、×で相対的に示した(図8)。 ・ ・ ・ Characteristics of each sensor are indicated by ○, △, × (Fig. 8).
 実施例1のセンサは、測定感度、安定性、電極面積、電気抵抗ともに良好であった。一方で、比較例1~3のセンサは、どれも何らかの特性に欠点があった。 The sensor of Example 1 had good measurement sensitivity, stability, electrode area, and electrical resistance. On the other hand, all of the sensors of Comparative Examples 1 to 3 have a defect in some characteristics.
 比較例1のセンサは、電極面積は安定性と電気抵抗は良好であったが、測定感度と電極面積が劣った。特に、電極面積の評価において電極表面が平滑であるため比表面積が他の電極と比べて著しく小さかった。比較例2のセンサは、測定感度、電極面積、電気抵抗は良好であった。しかし、測定を繰り返すうちに電流値が徐々に変動し安定性が劣った。比較例3の電極は、電極面積は良好であった。しかし、電極抵抗が大きく電極感度も劣った。また、測定中にCNTの剥離が生じて電流値が安定しなかった。 The sensor of Comparative Example 1 had good electrode area stability and electrical resistance, but was inferior in measurement sensitivity and electrode area. In particular, since the electrode surface was smooth in the evaluation of the electrode area, the specific surface area was remarkably small compared to other electrodes. The sensor of Comparative Example 2 had good measurement sensitivity, electrode area, and electrical resistance. However, as the measurement was repeated, the current value gradually changed and the stability was poor. The electrode of Comparative Example 3 had a good electrode area. However, the electrode resistance was large and the electrode sensitivity was inferior. Further, CNT peeling occurred during the measurement, and the current value was not stable.
 以上のように、実施例1の電極は、測定感度、安定性、電極面積、電気抵抗ともに良好であり電気化学センサとして優れた特性を示すことが確認された。
(実施例2)
As described above, it was confirmed that the electrode of Example 1 had good measurement sensitivity, stability, electrode area, and electrical resistance, and exhibited excellent characteristics as an electrochemical sensor.
(Example 2)
 実施例2の電気化学センサの製造方法について説明する。
はじめに、10mmx10mm(厚さ0.515mm)の石英基板を用意し、アセトンで洗浄した後、過酸化水素と硝酸を同量含む溶液で洗浄した。
A method for manufacturing the electrochemical sensor of Example 2 will be described.
First, a 10 mm × 10 mm (0.515 mm thick) quartz substrate was prepared, washed with acetone, and then washed with a solution containing the same amount of hydrogen peroxide and nitric acid.
 続いて、石英基板に白金のスパッタリングで300nmの白金層を形成した。リフトオフ法によって、白金層は、図5に示す作用極および対極のデザインにパターニングし、対極を得た。
Subsequently, a 300 nm platinum layer was formed on the quartz substrate by sputtering of platinum. By the lift-off method, the platinum layer was patterned into the working electrode and counter electrode designs shown in FIG. 5 to obtain a counter electrode.
 続いて、同様にイオンビームスパッタ法によって厚さ0.05μmであって、SP2/SP3値が1.1のダイヤモンドライクカーボン膜を形成した。炭素膜のSP2/SP3値は、エレクトロンエナジーロススペクトロメトリーによって求めた。
 また、可視光レーザーを用いたラマン散乱分光測定によって、1584cm-1付近にブロードなピークが観測された。そのため、炭素膜は、アモルファス構造を有することが確認できた。
Subsequently, a diamond-like carbon film having a thickness of 0.05 μm and an SP2 / SP3 value of 1.1 was similarly formed by ion beam sputtering. The SP2 / SP3 value of the carbon film was determined by electron energy loss spectrometry.
In addition, a broad peak was observed near 1584 cm −1 by Raman scattering spectroscopy using a visible light laser. Therefore, it was confirmed that the carbon film has an amorphous structure.
 続いて、10mgのカーボンナノホーンを10mLのジクロロエタンに添加し、超音波洗浄器によって5分間分散させた。そして、カーボンナノホーンを含むジクロロエタン溶液500μLを分取して基板上に滴下し、2000rpm、30秒間の回転条件でスピンコートした。100℃の窒素雰囲気下で、10分間乾燥させた。 Subsequently, 10 mg of carbon nanohorn was added to 10 mL of dichloroethane and dispersed with an ultrasonic cleaner for 5 minutes. And 500 microliters of dichloroethane solutions containing carbon nanohorn were fractionated, and it was dripped on the board | substrate, and spin-coated on 2000 rpm and the rotation conditions for 30 second. It was dried for 10 minutes in a nitrogen atmosphere at 100 ° C.
 続いて、基板上にフォトレジストパターンを形成し、酸素プラズマを用いたエッチングによって、カーボンナノホーンの層および炭素膜を図5に示す作用極のデザインにパターニングし、作用極を得た。 Subsequently, a photoresist pattern was formed on the substrate, and the carbon nanohorn layer and the carbon film were patterned into the working electrode design shown in FIG. 5 by etching using oxygen plasma to obtain a working electrode.
 続いて、銀のスパッタリングで300nmの銀層を形成し、0.1M塩酸水溶液中で0.8mAの電流を10分間流して銀/塩化銀を形成した。そして、リフトオフ法によって図5の参照極のデザインにパターニングして参照極を得た。 Subsequently, a 300 nm silver layer was formed by silver sputtering, and a current of 0.8 mA was passed in a 0.1 M hydrochloric acid aqueous solution for 10 minutes to form silver / silver chloride. Then, the reference electrode was obtained by patterning into the reference electrode design of FIG. 5 by the lift-off method.
 続いて、一端の挟みしろを平坦にし、もう一端の挟みしろに鋭利な凹凸を形成したワニ口クリップの持ち手側に銅線を半田付けした。銅線の接続部およびクリップの表面にシリコン樹脂のプレポリマーを塗布し、クリップを開いた状態で120℃のオーブンに3時間入れてシリコン樹脂を硬化した。空気中で冷却した後、鋭利な凹凸が形成された挟みしろが炭素膜と接するよう、作用極が形成された基板を挟んだ。参照極および対極はフレキシブル基板とワイヤーボンディングで電気的に接続し、作用極に流れる電流を測定できるように配線した。ここで、ワイヤーボンディングで結線した部分には防水処理を施した。 Subsequently, the margin of one end was flattened, and a copper wire was soldered to the handle side of the alligator clip having sharp irregularities on the other end. A silicone resin prepolymer was applied to the connection portion of the copper wire and the surface of the clip, and the silicone resin was cured by placing it in an oven at 120 ° C. for 3 hours with the clip open. After cooling in the air, the substrate on which the working electrode was formed was sandwiched so that the sandwiching margin on which sharp irregularities were formed was in contact with the carbon film. The reference electrode and the counter electrode were electrically connected to the flexible substrate by wire bonding and wired so that the current flowing through the working electrode could be measured. Here, waterproofing was applied to the portion connected by wire bonding.
 作製した電極の抵抗をテスターにより測定したところ、従来に比べ低抵抗な電極とできることが確認できた。また、水溶液中で測定をしたところ、ワニ口クリップと白金層の接触点への溶液の浸透がシリコン樹脂により防止され、従来に比べ安定性が高い電極とできることを確認した。
(実施例3)
When the resistance of the produced electrode was measured with a tester, it was confirmed that the electrode could be made to have a lower resistance than before. Moreover, when it measured in aqueous solution, the penetration of the solution to the contact point of a crocodile clip and a platinum layer was prevented by the silicon resin, and it confirmed that it could be an electrode with higher stability compared with the past.
(Example 3)
 実施例3の修飾電極を用いた電気化学センサの製造方法について説明する。 A method for producing an electrochemical sensor using the modified electrode of Example 3 will be described.
 はじめに、10mmx10mm(厚さ0.515mm)の石英基板を用意し、アセトンで洗浄した後、過酸化水素と硝酸を同量含む溶液で洗浄した。 First, a 10 mm × 10 mm (thickness 0.515 mm) quartz substrate was prepared, washed with acetone, and then washed with a solution containing the same amount of hydrogen peroxide and nitric acid.
 続いて、石英基板に白金のスパッタリングで300nmの白金層を形成した。リフトオフ法によって、白金層を図5に示す作用極および対極のデザインにパターニングし、対極を得た。 Subsequently, a 300 nm platinum layer was formed on the quartz substrate by sputtering of platinum. The platinum layer was patterned into a working electrode and counter electrode design shown in FIG. 5 by the lift-off method to obtain a counter electrode.
 続いて、同様にイオンビームスパッタ法によって厚さ2.5μmであって、SP2/SP3値が5.2のダイヤモンドライクカーボン膜を形成した。炭素膜のSP2/SP3値は、エレクトロンエナジーロススペクトロメトリーによって求めた。
 また、可視光レーザーを用いたラマン散乱分光測定によって、1584cm-1付近にブロードなピークが観測された。そのため、炭素膜は、アモルファス構造を有することが確認できた。
Subsequently, similarly, a diamond-like carbon film having a thickness of 2.5 μm and an SP2 / SP3 value of 5.2 was formed by ion beam sputtering. The SP2 / SP3 value of the carbon film was determined by electron energy loss spectrometry.
In addition, a broad peak was observed near 1584 cm −1 by Raman scattering spectroscopy using a visible light laser. Therefore, it was confirmed that the carbon film has an amorphous structure.
 続いて、10mgのカーボンナノホーンを10mLのジクロロエタンに添加し、超音波洗浄器によって5分間分散させた。そして、カーボンナノホーンを含むジクロロエタン溶液500μLを分取して基板上に滴下し、2000rpm、30秒間の回転条件でスピンコートした。100℃の窒素雰囲気下で、10分間乾燥させた。 Subsequently, 10 mg of carbon nanohorn was added to 10 mL of dichloroethane and dispersed with an ultrasonic cleaner for 5 minutes. And 500 microliters of dichloroethane solutions containing carbon nanohorn were fractionated, and it was dripped on the board | substrate, and spin-coated on 2000 rpm and the rotation conditions for 30 second. It was dried for 10 minutes in a nitrogen atmosphere at 100 ° C.
 続いて、基板上にフォトレジストパターンを形成し、酸素プラズマを用いたエッチングによって、カーボンナノホーンの層および炭素膜を図5に示す作用極のデザインにパターニングし、作用極を得た。 Subsequently, a photoresist pattern was formed on the substrate, and the carbon nanohorn layer and the carbon film were patterned into the working electrode design shown in FIG. 5 by etching using oxygen plasma to obtain a working electrode.
 続いて、銀のスパッタリングで300nmの銀層を形成し、0.1M塩酸水溶液中で0.8mAの電流を10分間流して銀/塩化銀を形成した。そして、リフトオフ法によって図5の参照極のデザインにパターニングして参照極を得た。 Subsequently, a 300 nm silver layer was formed by silver sputtering, and a current of 0.8 mA was passed in a 0.1 M hydrochloric acid aqueous solution for 10 minutes to form silver / silver chloride. Then, the reference electrode was obtained by patterning into the reference electrode design of FIG. 5 by the lift-off method.
 続いて、100mg/100μL(純水)のグルコースオキシダーゼを含み、かつ、1v/v%のグルタルアルデヒドを含む22.5w/v%アルブミン溶液をスピンコートし、窒素雰囲気下の4℃で24時間乾燥させて酵素を固定化した。 Subsequently, a 22.5 w / v% albumin solution containing 100 mg / 100 μL (pure water) glucose oxidase and 1 v / v% glutaraldehyde was spin-coated and dried at 4 ° C. for 24 hours in a nitrogen atmosphere. To fix the enzyme.
 続いて、各電極とフレキシブル基板とをワイヤーボンディングで電気的に接続し、作用極に流れる電流を測定できるように配線した。ここで、ワイヤーボンディングで結線した部分には防水処理を施した。これにより、実施例3の修飾電極を用いた電気化学センサが得られた。 Subsequently, each electrode and the flexible substrate were electrically connected by wire bonding and wired so that the current flowing through the working electrode could be measured. Here, waterproofing was applied to the portion connected by wire bonding. Thereby, an electrochemical sensor using the modified electrode of Example 3 was obtained.
 作製した電気化学センサを、0.1MのKClを溶解したpH6.5のリン酸バッファ中に浸し、0.8 V vs. Ag/AgClの電位条件におけるアンペロメトリー測定をおこなった。グルコースオキシダーゼの基質であるグルコースを、溶液中に0.1mMとなるよう添加すると、酸化電流の増加が観測された。グルコース濃度をさらに高めると電流値が増加した。一方、グルコースオキシダーゼの基質でないフルクトースを0.1mMとなるよう添加しても電流値の増加はおこらなかった。実施例3の修飾電極が、酵素修飾電極として機能することが確認された。
(実施例4)
The produced electrochemical sensor was immersed in a phosphate buffer at pH 6.5 in which 0.1 M KCl was dissolved, and 0.8 V vs. Amperometric measurement was performed under a potential condition of Ag / AgCl. When glucose, which is a substrate for glucose oxidase, was added to the solution to a concentration of 0.1 mM, an increase in oxidation current was observed. When the glucose concentration was further increased, the current value increased. On the other hand, even when fructose which is not a substrate for glucose oxidase was added to a concentration of 0.1 mM, the current value did not increase. It was confirmed that the modified electrode of Example 3 functions as an enzyme-modified electrode.
Example 4
 実施例4の、電気化学センサの製造方法について説明する。
はじめに、4インチの石英ウエハを用意し、アセトンで洗浄した後、過酸化水素と硝酸を同量含む溶液で洗浄した。
The manufacturing method of the electrochemical sensor of Example 4 will be described.
First, a 4-inch quartz wafer was prepared, washed with acetone, and then washed with a solution containing the same amount of hydrogen peroxide and nitric acid.
 続いて、石英基板に白金のスパッタリングで300nmの白金層を形成した。リフトオフ法によって、白金層を図7に示す作用極および対極のデザインにパターニングし、48個の対極を得た。 Subsequently, a 300 nm platinum layer was formed on the quartz substrate by sputtering of platinum. By the lift-off method, the platinum layer was patterned into the working electrode and counter electrode design shown in FIG. 7 to obtain 48 counter electrodes.
 続いて、同様にイオンビームスパッタ法によって厚さ1μmであって、SP2/SP3値が2.5のダイヤモンドライクカーボン膜を形成した。炭素膜のSP2/SP3値は、エレクトロンエナジーロススペクトロメトリーによって求めた。
 また、可視光レーザーを用いたラマン散乱分光測定によって、1584cm-1付近にブロードなピークが観測された。そのため、炭素膜は、アモルファス構造を有することが確認できた。
Subsequently, similarly, a diamond-like carbon film having a thickness of 1 μm and an SP2 / SP3 value of 2.5 was formed by ion beam sputtering. The SP2 / SP3 value of the carbon film was determined by electron energy loss spectrometry.
In addition, a broad peak was observed near 1584 cm −1 by Raman scattering spectroscopy using a visible light laser. Therefore, it was confirmed that the carbon film has an amorphous structure.
 続いて、10mgのカーボンナノホーンを10mLのジクロロエタンに添加し、超音波洗浄器によって5分間分散させた。そして、カーボンナノホーンを含むジクロロエタン溶液5mLを分取して基板上に滴下し、2000rpm、30秒間の回転条件でスピンコートした。100℃の窒素雰囲気下で、10分間乾燥させた。 Subsequently, 10 mg of carbon nanohorn was added to 10 mL of dichloroethane and dispersed with an ultrasonic cleaner for 5 minutes. Then, 5 mL of a dichloroethane solution containing carbon nanohorns was collected and dropped onto the substrate, and spin-coated under a rotation condition of 2000 rpm for 30 seconds. It was dried for 10 minutes in a nitrogen atmosphere at 100 ° C.
 続いて、基板上にフォトレジストパターンを形成し、酸素プラズマを用いたエッチングによって、カーボンナノホーンの層および炭素膜を図7に示す作用極のデザインにパターニングし、48個の作用極を得た。 Subsequently, a photoresist pattern was formed on the substrate, and the carbon nanohorn layer and the carbon film were patterned into the working electrode design shown in FIG. 7 by etching using oxygen plasma to obtain 48 working electrodes.
 続いて、銀のスパッタリングで300nmの銀層を形成し、0.1M塩酸水溶液中で0.8mAの電流を10分間流して銀/塩化銀を形成した。そして、リフトオフ法によって図7の参照極のデザインにパターニングして48個の参照極を得た。 Subsequently, a 300 nm silver layer was formed by silver sputtering, and a current of 0.8 mA was passed in a 0.1 M hydrochloric acid aqueous solution for 10 minutes to form silver / silver chloride. Then, 48 reference electrodes were obtained by patterning into the reference electrode design of FIG. 7 by the lift-off method.
 尚、48個の作用極、対極、および参照極は、1個ずつ組を形成するよう配置されている。すなわち、基板上に図5に示す電極の組が6行x8列に配置されている。 Note that the 48 working electrodes, the counter electrode, and the reference electrode are arranged so as to form a set one by one. That is, the electrode pairs shown in FIG. 5 are arranged in 6 rows × 8 columns on the substrate.
 続いて、ダイシング装置で48組を切り分けた後、各組をワイヤーボンディングでフレキシブル基板と電気的に接続した。ワイヤーボンディングで結線した部分には防水処理を施した。これにより、48個の電気化学センサが得られた。 Subsequently, 48 sets were separated by a dicing apparatus, and each set was electrically connected to the flexible substrate by wire bonding. The parts connected by wire bonding were waterproofed. As a result, 48 electrochemical sensors were obtained.
 各電極の、フェロセンメタノールに対する応答特性を評価したところ、電極間の電流値のばらつきはある程度の範囲内におさえられ、高感度に電気化学測定をおこなえることが確かめられた。すなわち、単一の石英ウエハ上に複数の電気化学センサを形成させても解く清浄に問題のないことが確認された。 When the response characteristics of each electrode to ferrocenemethanol were evaluated, it was confirmed that the variation in the current value between the electrodes was within a certain range, and electrochemical measurement could be performed with high sensitivity. That is, it has been confirmed that there is no problem in cleaning even if a plurality of electrochemical sensors are formed on a single quartz wafer.
 以上、図面を参照して本発明の実施形態について述べたが、これらは本発明の例示であり、上記以外の様々な構成を採用することもできる。
 この出願は、2008年7月9日に出願された日本特許出願特願2008-178870を基礎とする優先権を主張し、その開示の全てをここに取り込む。
As mentioned above, although embodiment of this invention was described with reference to drawings, these are the illustrations of this invention, Various structures other than the above are also employable.
This application claims priority based on Japanese Patent Application No. 2008-178870 filed on Jul. 9, 2008, the entire disclosure of which is incorporated herein.

Claims (23)

  1.  絶縁性基板と、
     前記絶縁性基板の上に設けられた導電層と、
     前記導電層の上に設けられた第一炭素層と、
     前記第一炭素層を覆うように設けられた第二炭素層と、
    を備え、
     前記第一炭素層は、SP2結合とSP3結合を有し、アモルファス構造を有する炭素を含み、
     前記第二炭素層は、SP2結合を有する炭素を含む炭素電極。
    An insulating substrate;
    A conductive layer provided on the insulating substrate;
    A first carbon layer provided on the conductive layer;
    A second carbon layer provided to cover the first carbon layer;
    With
    The first carbon layer includes carbon having an SP2 bond and an SP3 bond and having an amorphous structure;
    The second carbon layer is a carbon electrode containing carbon having an SP2 bond.
  2.  前記第一炭素層は、SP2結合とSP3結合の比率(SP2/SP3値)が0.01以上、100.0以下である請求項1に記載の炭素電極。 The carbon electrode according to claim 1, wherein the first carbon layer has an SP2 bond to SP3 bond ratio (SP2 / SP3 value) of 0.01 or more and 100.0 or less.
  3.  前記SP2/SP3値が0.1以上、10.0以下である請求項2に記載の炭素電極。 The carbon electrode according to claim 2, wherein the SP2 / SP3 value is 0.1 or more and 10.0 or less.
  4.  前記第一炭素層は、ダイヤモンドライクカーボンまたはアモルファスカーボンを含む請求項1から3のいずれかに記載の炭素電極。 The carbon electrode according to any one of claims 1 to 3, wherein the first carbon layer includes diamond-like carbon or amorphous carbon.
  5.  前記第二炭素層は、ナノ構造を有する粉末状の炭素を含む請求項1から4のいずれかに記載の炭素電極。 The carbon electrode according to any one of claims 1 to 4, wherein the second carbon layer includes powdered carbon having a nanostructure.
  6.  前記ナノ構造を有する粉末状の炭素は、黒鉛、アモルファスカーボン、ダイヤモンドライクカーボン、カーボンファイバー、カーボンブラック、アセチレンブラック、ケッチェンブラック(登録商標)、カーボンナノチューブ、カーボンナノホーン、およびカーボンナノファイバーから選択される少なくとも1種を含む請求項5に記載の炭素電極。 The powdery carbon having the nanostructure is selected from graphite, amorphous carbon, diamond-like carbon, carbon fiber, carbon black, acetylene black, ketjen black (registered trademark), carbon nanotube, carbon nanohorn, and carbon nanofiber. The carbon electrode according to claim 5, comprising at least one selected from the group consisting of:
  7.  前記ナノ構造を有する粉末状の炭素は、カーボンナノチューブまたはカーボンナノホーンを含む請求項6に記載の炭素電極。 The carbon electrode according to claim 6, wherein the powdered carbon having a nanostructure includes a carbon nanotube or a carbon nanohorn.
  8.  前記第一炭素層のSP2/SP3値が、前記第一炭素層と前記第二炭素層の界面付近で最大となることを特徴とする請求項1から7のいずれかに記載の炭素電極。 The carbon electrode according to any one of claims 1 to 7, wherein the SP2 / SP3 value of the first carbon layer is maximized in the vicinity of an interface between the first carbon layer and the second carbon layer.
  9.  前記第一炭素層が、前記第一炭素層と異なるSP2/SP3値を有する少なくとも1つの第三炭素層をさらに含む請求項1から8のいずれかに記載の炭素電極。 The carbon electrode according to any one of claims 1 to 8, wherein the first carbon layer further includes at least one third carbon layer having an SP2 / SP3 value different from that of the first carbon layer.
  10.  前記第一炭素層と前記第二炭素層が接し、前記第一炭素層の前記SP2/SP3値が、前記第三炭素層のSP2/SP3値より高くなることを特徴とする請求項9に記載の炭素電極。 The first carbon layer and the second carbon layer are in contact with each other, and the SP2 / SP3 value of the first carbon layer is higher than the SP2 / SP3 value of the third carbon layer. Carbon electrode.
  11.  前記導電層と前記第一炭素層の間に、Cr、Ti、およびWから選択される少なくとも1種を含む中間層をさらに備える請求項1から10のいずれかに記載の炭素電極。 The carbon electrode according to any one of claims 1 to 10, further comprising an intermediate layer including at least one selected from Cr, Ti, and W between the conductive layer and the first carbon layer.
  12.  前記導電層と前記中間層の界面付近で、前記導電層と前記中間層の組成が混合していることを特徴とする請求項11に記載の炭素電極。 The carbon electrode according to claim 11, wherein the composition of the conductive layer and the intermediate layer is mixed in the vicinity of the interface between the conductive layer and the intermediate layer.
  13.  前記中間層と前記第一炭素層の界面付近で、前記中間層と前記第一炭素層の組成が混合していることを特徴とする請求項11または12のいずれかに記載の炭素電極。 The carbon electrode according to claim 11 or 12, wherein the composition of the intermediate layer and the first carbon layer is mixed in the vicinity of the interface between the intermediate layer and the first carbon layer.
  14.  前記第二炭素層が修飾物質を担持している、請求項1から13のいずれかに記載の炭素電極。 The carbon electrode according to any one of claims 1 to 13, wherein the second carbon layer carries a modifier.
  15.  前記修飾物質は、触媒、酵素、金属錯体、電子伝達メディエータ、抗体、核酸、受容体、タンパク質、脂質、高分子、細胞、微生物、および生体組織から選択される少なくとも1種を含む請求項14に記載の炭素電極。 The modified substance includes at least one selected from a catalyst, an enzyme, a metal complex, an electron transfer mediator, an antibody, a nucleic acid, a receptor, a protein, a lipid, a polymer, a cell, a microorganism, and a living tissue. The described carbon electrode.
  16.  請求項1から15のいずれかに記載の炭素電極と、
     参照極と、
    を備える電気化学センサ。
    A carbon electrode according to any one of claims 1 to 15,
    A reference pole;
    An electrochemical sensor comprising:
  17.  対極をさらに備える請求項16に記載の電気化学センサ。 The electrochemical sensor according to claim 16, further comprising a counter electrode.
  18.  前記電気化学センサは、測定部と導線をさらに備え、
     前記測定部と前記炭素電極は、前記導線で電気的に接続し、
     前記導線は、前記第一炭素層を貫通して前記導電層と電気的に接触し、
     前記導線の表面は、絶縁膜で被覆され、
     前記絶縁膜と前記第一炭素層の表面は、封止材で被覆されることを特徴とする請求項16または17記載の電気化学センサ。
    The electrochemical sensor further includes a measurement unit and a conducting wire,
    The measurement unit and the carbon electrode are electrically connected by the conductive wire,
    The conducting wire penetrates the first carbon layer and is in electrical contact with the conductive layer;
    The surface of the conducting wire is covered with an insulating film,
    The electrochemical sensor according to claim 16 or 17, wherein surfaces of the insulating film and the first carbon layer are covered with a sealing material.
  19.  前記導線の先端が、テーパー状である請求項18に記載の電気化学センサ。 The electrochemical sensor according to claim 18, wherein a tip end of the conducting wire is tapered.
  20.  前記導線は、端部の少なくとも一部にかえし構造を備え、
     前記かえし構造は前記導電層に埋設している請求項18または19のいずれかに記載の電気化学センサ。
    The conducting wire has a barbed structure at least at a part of its end,
    The electrochemical sensor according to claim 18, wherein the barb structure is embedded in the conductive layer.
  21.  前記導線の先端が、前記第一炭素層および前記導電層を貫通し、前記絶縁性基板に差し込まれている請求項18から20のいずれかに記載の電気化学センサ。 The electrochemical sensor according to any one of claims 18 to 20, wherein a leading end of the conducting wire penetrates the first carbon layer and the conductive layer and is inserted into the insulating substrate.
  22.  絶縁性基板上に、導電層を形成する工程と、
     前記導電層の上面に第一炭素層を形成する工程と、
     前記第一炭素層を覆うように第二炭素層を形成する工程と、
    を含む請求項1から15のいずれかに記載の炭素電極の製造方法。
    Forming a conductive layer on an insulating substrate;
    Forming a first carbon layer on the upper surface of the conductive layer;
    Forming a second carbon layer so as to cover the first carbon layer;
    The manufacturing method of the carbon electrode in any one of Claim 1 to 15 containing.
  23.  前記導電層を形成する工程の後に、前記導電層をパターニングして複数の導電層を形成する工程と、
     前記第二炭素層を形成する工程の後に、複数の炭素電極に分割する工程をさらに含む請求項22に記載の炭素電極の製造方法。
    After the step of forming the conductive layer, patterning the conductive layer to form a plurality of conductive layers;
    The method for producing a carbon electrode according to claim 22, further comprising a step of dividing the plurality of carbon electrodes after the step of forming the second carbon layer.
PCT/JP2009/002794 2008-07-09 2009-06-19 Carbon electrode, electrochemical sensor, and carbon electrode manufacturing method WO2010004690A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010519627A JP5120453B2 (en) 2008-07-09 2009-06-19 Carbon electrode, electrochemical sensor, and carbon electrode manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008178870 2008-07-09
JP2008-178870 2008-07-09

Publications (1)

Publication Number Publication Date
WO2010004690A1 true WO2010004690A1 (en) 2010-01-14

Family

ID=41506818

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/002794 WO2010004690A1 (en) 2008-07-09 2009-06-19 Carbon electrode, electrochemical sensor, and carbon electrode manufacturing method

Country Status (2)

Country Link
JP (1) JP5120453B2 (en)
WO (1) WO2010004690A1 (en)

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012036047A1 (en) 2010-09-13 2012-03-22 大日本印刷株式会社 Biosensor and production method therefor
JP2012181085A (en) * 2011-03-01 2012-09-20 Nippon Telegr & Teleph Corp <Ntt> Electrochemical measuring electrode and method for manufacturing the same
JP2013068359A (en) * 2011-09-22 2013-04-18 Hitachi Building Systems Co Ltd Method and apparatus for grasping inhibitor concentration in absorbing liquid, and absorption chiller heater provided with the apparatus
JP2013190212A (en) * 2012-03-12 2013-09-26 Dainippon Printing Co Ltd Biosensor and manufacturing method of the same
CN104849329A (en) * 2015-05-07 2015-08-19 湖北民族学院 Resveratrol measuring method by multi-wall carbon nanotube modified electrode
CN105954338A (en) * 2016-04-21 2016-09-21 福建师范大学 Electrochemical sensing method for food-borne pollutants based on carbon nanohorn and triethoxysilane
WO2017086445A1 (en) 2015-11-20 2017-05-26 凸版印刷株式会社 Biosensor and manufacturing method therefor
JP2017129572A (en) * 2016-01-15 2017-07-27 凸版印刷株式会社 Electrode for biological sensor
CN109085224A (en) * 2018-08-27 2018-12-25 浙江大学 Sensitive microelectrode for cell surface domains ATP detection
WO2019117112A1 (en) * 2017-12-11 2019-06-20 日東電工株式会社 Electrode film and electrochemical measurement system
JP2019105637A (en) * 2017-12-11 2019-06-27 日東電工株式会社 Electrode film and electrochemical measurement system
WO2020175471A1 (en) * 2019-02-28 2020-09-03 日東電工株式会社 Electrode and electrochemical measurement system
JP2020144116A (en) * 2019-02-28 2020-09-10 日東電工株式会社 Electrode and electrochemical measurement system
JP2020528549A (en) * 2017-07-24 2020-09-24 ユニバーシティ オブ チェスター Electrode support and electrode assembly
WO2020196587A1 (en) * 2019-03-28 2020-10-01 日東電工株式会社 Electrode and electrochemical measurement system
WO2021009845A1 (en) * 2019-07-16 2021-01-21 株式会社オプトラン Electrode and electrode chip
JP2021043087A (en) * 2019-09-12 2021-03-18 株式会社ニコン Electrochemical sensor electrode, electrochemical sensor, and electrochemical analyzer
WO2021192247A1 (en) * 2020-03-27 2021-09-30 子誠 朱 Electrochemical analysis chip
WO2021193631A1 (en) * 2020-03-26 2021-09-30 日東電工株式会社 Electrode
WO2021192248A1 (en) * 2020-03-27 2021-09-30 子誠 朱 Electrode and electrode chip
CN114008827A (en) * 2019-06-19 2022-02-01 帝伯爱尔株式会社 Collector for electrode of electricity storage device, method for producing same, and electricity storage device
WO2022071101A1 (en) * 2020-09-30 2022-04-07 日東電工株式会社 Electrode
WO2023190657A1 (en) * 2022-03-31 2023-10-05 日東電工株式会社 Electrode, and electrochemical measuring system
WO2024071293A1 (en) * 2022-09-30 2024-04-04 日東電工株式会社 Electrode, and electrochemical measurement system
WO2024071292A1 (en) * 2022-09-30 2024-04-04 日東電工株式会社 Electrode, and electrochemical measuring system
CN118225862A (en) * 2024-04-12 2024-06-21 上海市环境科学研究院 Electrochemical device for representing electron gain and loss capability of biochar and testing method

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101922500B1 (en) * 2016-06-22 2018-11-28 한국과학기술연구원 Capacitance-type sensor and producing method the same
WO2017222313A1 (en) * 2016-06-22 2017-12-28 한국과학기술연구원 Capacitance-type sensor and manufacturing method therefor
KR102374999B1 (en) * 2019-05-10 2022-03-15 포항공과대학교 산학협력단 Foldable hybrid circuit comprising anisotropic conductive carbon film and method of preparing the same
JP7547074B2 (en) * 2020-04-23 2024-09-09 住友化学株式会社 Electrochemical sensor and method for manufacturing the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993024828A1 (en) * 1992-05-29 1993-12-09 The Victoria University Of Manchester Sensor devices
JP2005233960A (en) * 2004-02-17 2005-09-02 Univ Of Electro-Communications Microprobe and manufacturing apparatus and method thereof
JP2007136645A (en) * 2005-11-22 2007-06-07 Toyo Univ CNT thin film manufacturing method and biosensor using the thin film
JP2008064724A (en) * 2006-09-11 2008-03-21 Osaka Univ Carbon nanotube electrode and sensor using the electrode

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993024828A1 (en) * 1992-05-29 1993-12-09 The Victoria University Of Manchester Sensor devices
JP2005233960A (en) * 2004-02-17 2005-09-02 Univ Of Electro-Communications Microprobe and manufacturing apparatus and method thereof
JP2007136645A (en) * 2005-11-22 2007-06-07 Toyo Univ CNT thin film manufacturing method and biosensor using the thin film
JP2008064724A (en) * 2006-09-11 2008-03-21 Osaka Univ Carbon nanotube electrode and sensor using the electrode

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9222909B2 (en) 2010-09-13 2015-12-29 Dai Nippon Printing Co., Ltd. Biosensor and method for producing the same
WO2012036047A1 (en) 2010-09-13 2012-03-22 大日本印刷株式会社 Biosensor and production method therefor
JP2012181085A (en) * 2011-03-01 2012-09-20 Nippon Telegr & Teleph Corp <Ntt> Electrochemical measuring electrode and method for manufacturing the same
JP2013068359A (en) * 2011-09-22 2013-04-18 Hitachi Building Systems Co Ltd Method and apparatus for grasping inhibitor concentration in absorbing liquid, and absorption chiller heater provided with the apparatus
JP2013190212A (en) * 2012-03-12 2013-09-26 Dainippon Printing Co Ltd Biosensor and manufacturing method of the same
CN104849329A (en) * 2015-05-07 2015-08-19 湖北民族学院 Resveratrol measuring method by multi-wall carbon nanotube modified electrode
WO2017086445A1 (en) 2015-11-20 2017-05-26 凸版印刷株式会社 Biosensor and manufacturing method therefor
JP2017129572A (en) * 2016-01-15 2017-07-27 凸版印刷株式会社 Electrode for biological sensor
CN105954338A (en) * 2016-04-21 2016-09-21 福建师范大学 Electrochemical sensing method for food-borne pollutants based on carbon nanohorn and triethoxysilane
JP2020528549A (en) * 2017-07-24 2020-09-24 ユニバーシティ オブ チェスター Electrode support and electrode assembly
CN111373248A (en) * 2017-12-11 2020-07-03 日东电工株式会社 Electrode membrane and electrochemical measurement system
JP2019105637A (en) * 2017-12-11 2019-06-27 日東電工株式会社 Electrode film and electrochemical measurement system
TWI833723B (en) * 2017-12-11 2024-03-01 日商日東電工股份有限公司 Electrode membrane and electrochemical measurement system
WO2019117112A1 (en) * 2017-12-11 2019-06-20 日東電工株式会社 Electrode film and electrochemical measurement system
JP7337498B2 (en) 2017-12-11 2023-09-04 日東電工株式会社 Electrode film and electrochemical measurement system
CN109085224B (en) * 2018-08-27 2023-11-03 浙江大学 Sensitive microelectrode for ATP detection in cell surface area
CN109085224A (en) * 2018-08-27 2018-12-25 浙江大学 Sensitive microelectrode for cell surface domains ATP detection
WO2020175471A1 (en) * 2019-02-28 2020-09-03 日東電工株式会社 Electrode and electrochemical measurement system
JP2020144116A (en) * 2019-02-28 2020-09-10 日東電工株式会社 Electrode and electrochemical measurement system
US12159998B2 (en) 2019-02-28 2024-12-03 Nitto Denko Corporation Electrode and electrochemical measurement system
WO2020196587A1 (en) * 2019-03-28 2020-10-01 日東電工株式会社 Electrode and electrochemical measurement system
JP2021056205A (en) * 2019-03-28 2021-04-08 日東電工株式会社 Electrode and electrochemical measurement system
CN114008827B (en) * 2019-06-19 2024-04-09 帝伯爱尔株式会社 Current collector for electrode of power storage device, method for producing same, and power storage device
CN114008827A (en) * 2019-06-19 2022-02-01 帝伯爱尔株式会社 Collector for electrode of electricity storage device, method for producing same, and electricity storage device
WO2021009845A1 (en) * 2019-07-16 2021-01-21 株式会社オプトラン Electrode and electrode chip
JP2021043087A (en) * 2019-09-12 2021-03-18 株式会社ニコン Electrochemical sensor electrode, electrochemical sensor, and electrochemical analyzer
CN115398217A (en) * 2020-03-26 2022-11-25 日东电工株式会社 electrode
WO2021193631A1 (en) * 2020-03-26 2021-09-30 日東電工株式会社 Electrode
JP7279260B2 (en) 2020-03-27 2023-05-22 子誠 朱 Electrodes and electrode tips
JPWO2021192248A1 (en) * 2020-03-27 2021-09-30
WO2021192248A1 (en) * 2020-03-27 2021-09-30 子誠 朱 Electrode and electrode chip
WO2021192247A1 (en) * 2020-03-27 2021-09-30 子誠 朱 Electrochemical analysis chip
WO2022071101A1 (en) * 2020-09-30 2022-04-07 日東電工株式会社 Electrode
JP7658980B2 (en) 2020-09-30 2025-04-08 日東電工株式会社 electrode
WO2023190657A1 (en) * 2022-03-31 2023-10-05 日東電工株式会社 Electrode, and electrochemical measuring system
WO2024071293A1 (en) * 2022-09-30 2024-04-04 日東電工株式会社 Electrode, and electrochemical measurement system
WO2024071292A1 (en) * 2022-09-30 2024-04-04 日東電工株式会社 Electrode, and electrochemical measuring system
CN118225862A (en) * 2024-04-12 2024-06-21 上海市环境科学研究院 Electrochemical device for representing electron gain and loss capability of biochar and testing method

Also Published As

Publication number Publication date
JPWO2010004690A1 (en) 2011-12-22
JP5120453B2 (en) 2013-01-16

Similar Documents

Publication Publication Date Title
JP5120453B2 (en) Carbon electrode, electrochemical sensor, and carbon electrode manufacturing method
Li et al. Inlaid multi‐walled carbon nanotube nanoelectrode arrays for electroanalysis
Liu et al. Ultrasensitive voltammetric detection of trace heavy metal ions using carbon nanotube nanoelectrode array
US7452452B2 (en) Carbon nanotube nanoelectrode arrays
Tu et al. Carbon nanotubes based nanoelectrode arrays: fabrication, evaluation, and application in voltammetric analysis
Kranz Recent advancements in nanoelectrodes and nanopipettes used in combined scanning electrochemical microscopy techniques
US20190313956A1 (en) Sensors for analyte detection and methods of manufacture thereof
KR101188172B1 (en) Electrochemical biosensor and method of fabricating the same
Zhu et al. Enzyme-free glucose biosensor based on low density CNT forest grown directly on a Si/SiO2 substrate
Revin et al. Electrochemical sensor for neurotransmitters at physiological pH using a heterocyclic conducting polymer modified electrode
US6740214B1 (en) Microelectrode biosensor and method therefor
Park et al. A novel glucose biosensor using bi-enzyme incorporated with peptide nanotubes
WO2014002998A1 (en) Enzyme electrode
Ghanbari et al. An electrochemical sensor based on Pt nanoparticles decorated over-oxidized polypyrrole/reduced graphene oxide nanocomposite for simultaneous determination of two neurotransmitters dopamine and 5-Hydroxy tryptamine in the presence of ascorbic acid
JP3647309B2 (en) Electrode, method for producing the same, and electrochemical sensor using the electrode
Srinivas et al. Edge and basal plane anisotropy of a preanodized pencil graphite electrode surface revealed using scanning electrochemical microscopy and electrocatalytic dopamine oxidation as a molecular probe
Miserendino et al. Electrochemical characterization of parylene-embedded carbon nanotube nanoelectrodearrays
Kundys et al. Electrochemical determination of selected neurotransmitters at electrodes modified with oppositely charged carbon nanoparticles
Mohan et al. Amperometric detection of glucose using Prussian blue-graphene oxide modified platinum electrode
KR20120126977A (en) CNT-based three electrode system, fabrication of the same and electrochemical biosensor using the same
Li et al. Tunable graphene oxide for the low-fouling electrochemical sensing of uric acid in human serum
JP4982899B2 (en) Microelectrode and manufacturing method thereof
Budai Carbon fiber-based microelectrodes and microbiosensors
Khamsavi et al. A novel two-electrode nonenzymatic electrochemical glucose sensor based on vertically aligned carbon nanotube arrays
Yang Diamond electrochemical devices

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09794138

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010519627

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09794138

Country of ref document: EP

Kind code of ref document: A1