[go: up one dir, main page]

WO2009157716A2 - 매체감별장치 및 그 감별방법 - Google Patents

매체감별장치 및 그 감별방법 Download PDF

Info

Publication number
WO2009157716A2
WO2009157716A2 PCT/KR2009/003410 KR2009003410W WO2009157716A2 WO 2009157716 A2 WO2009157716 A2 WO 2009157716A2 KR 2009003410 W KR2009003410 W KR 2009003410W WO 2009157716 A2 WO2009157716 A2 WO 2009157716A2
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic
signal
medium
noise
magnetic component
Prior art date
Application number
PCT/KR2009/003410
Other languages
English (en)
French (fr)
Other versions
WO2009157716A3 (ko
WO2009157716A9 (ko
Inventor
김인욱
한승오
Original Assignee
엘지엔시스(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020080060462A external-priority patent/KR100985889B1/ko
Priority claimed from KR1020080073713A external-priority patent/KR100981775B1/ko
Application filed by 엘지엔시스(주) filed Critical 엘지엔시스(주)
Priority to US12/999,097 priority Critical patent/US8872513B2/en
Priority to CN200980124640.0A priority patent/CN102077253B/zh
Priority to EP09770388.8A priority patent/EP2306409B1/en
Publication of WO2009157716A2 publication Critical patent/WO2009157716A2/ko
Publication of WO2009157716A9 publication Critical patent/WO2009157716A9/ko
Publication of WO2009157716A3 publication Critical patent/WO2009157716A3/ko

Links

Images

Classifications

    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07DHANDLING OF COINS OR VALUABLE PAPERS, e.g. TESTING, SORTING BY DENOMINATIONS, COUNTING, DISPENSING, CHANGING OR DEPOSITING
    • G07D7/00Testing specially adapted to determine the identity or genuineness of valuable papers or for segregating those which are unacceptable, e.g. banknotes that are alien to a currency
    • G07D7/04Testing magnetic properties of the materials thereof, e.g. by detection of magnetic imprint

Definitions

  • the present invention relates to a medium discrimination apparatus, and more particularly, to a medium discrimination apparatus and a method for discriminating the medium for minimizing noise to improve the media discrimination power.
  • the term "medium” in the present specification refers to, for example, a bill, a check, a ticket, a certificate, and the like, and may have various thicknesses having a very thin thickness compared to a width and a length.
  • a banknote will be described as an example.
  • the banknote discrimination device is applied to the automatic teller machine, media handling machine, vending machine, etc. to determine the type and forgery of the banknote by recognizing the magnetic component, image, silver, fluorescent ink, various numbers and letters printed on the banknote. Done.
  • FIG. 1 is a partial cross-sectional view of a bill discrimination apparatus for reading a magnetic component printed on a bill.
  • first and second magnetic sensors 12a and 12b for detecting magnetic components printed on a banknote 30 are arranged in a row at an upper bracket 10 at predetermined intervals.
  • the magnetic sensors 12a and 12b are installed so that the sensing surface is exposed downward, and installed so as to be perpendicular to the direction in which the banknote 30 is transferred, thereby detecting the magnetic component printed on the banknote.
  • the first and second magnetic sensors 12a and 12b are magnetoresistive sensors and are magnetic pattern recognition sensors.
  • first and second magnetic sensors 12a and 12b are installed in line with each other, they are driven in opposition to the lower bank transfer rollers 24a and 24b which describe the inserted bill 30.
  • the upper bank transfer roller 14a, 14b is provided.
  • the lower banknote conveying rollers 24a and 24b for conveying the banknote 30 and the conveyed banknote 30 are made. Push up the first and second magnetic sensors 12a and 12b to bring the banknote 30 closer to the first and second magnetic sensors 12a and 12b so that the magnetic component printed on the banknote can be detected more accurately. Sensor contact rollers 26a and 26b are provided.
  • rollers 24a, 24b, 26a, and 26b are arranged at predetermined intervals on the bill conveying roller shaft 22, and the lower bill conveying rollers 24a and 24b are respectively the upper bill conveying rollers 14a. 14b are provided so as to face each other, and the sensor contact rollers 26a and 26b are installed so as to face the first and second magnetic sensors 12a and 12b, respectively.
  • Lower support springs 28a and 28b are provided at both ends of the bill conveying roller shaft 22 to continuously push the bill conveying roller shaft 22 upward. This keeps the upper paper transfer rollers 14a and 14b and the first and second magnetic sensors 12a and 12b facing each other opposite the rollers 24a, 24b, 26a and 26b, respectively. To do this. At this time, bearers 29a and 29b are provided to prevent the rollers 24a, 24b, 26a and 26b from being in close contact with each other by the elasticity of the lower support springs 28a and 28b.
  • the analog signals for the magnetic components sensed from the first and second magnetic sensors 12a, 12b are respectively received, and amplified to a stable signal strength, respectively, according to the amplification
  • the banknote discrimination apparatus configured as described above can be in close contact with the magnetic sensor by the roller that is elastically supported to improve the banknote discrimination performance.
  • the magnetic component detected by the first and second magnetic sensors 12a and 12b includes a noise component. This is because the first and second magnetic sensors 12a and 12b are affected by a magnetic field generated by the operation of peripheral actuators (eg, motors, solenoids, etc.). This is because internal noise, that is, switching noise of a power supply circuit, flows into the first and second magnetic sensors 12a and 12b.
  • peripheral actuators eg, motors, solenoids, etc.
  • the 'X' axis of the graph refers to the position value of the magnetic component, and the 'Y' axis refers to the strength value of the magnetic component.
  • the digital signal converted by the AD converter includes both the magnetic component A of the inserted banknote and the magnetic component (ie, noise; B) introduced from the internal circuit and the outside.
  • the magnetic component A of the banknote is sensed only at the first magnetic sensor 110a. This is because the magnetic component is printed only at a specific position for each bill. If the bill is reversed, the magnetic component A printed on the bill will be sensed by the second magnetic sensor 12b.
  • the bill discrimination apparatus has the following problems.
  • the noise B has a relatively large magnetic component strength value
  • the MCU reads the magnetic component A of the banknote to discriminate the authenticity of the banknote, the discrimination power is reduced.
  • the MCU receives two digital signals (a, b) from the AD converter and processes them all, there is a problem in that the discrimination time is required.
  • an expensive magnetic shielding film and a nonmagnetic material may be used to prevent noise (B) flowing from the internal circuit and the outside, but in this case, the cost may be increased and the maintenance may be difficult.
  • an object of the present invention is to solve the above problems, and to provide a medium discrimination apparatus and a method for discriminating the bill for minimizing noise when the bill is introduced to improve bill discrimination.
  • Another object of the present invention is to shorten the time for discriminating bills.
  • a first magnetic sensor which is printed at a predetermined position of the incoming medium to sense the magnetic component of the analog form including noise, and generated when the medium is transported
  • a plurality of magnetic sensors including a second magnetic sensor for sensing the noise of the analog form, and a differential analog / subtracting the noise sensed by each of the first magnetic sensor and the second magnetic sensor and converts it into a digital signal /
  • a controller for discriminating the authenticity of the inserted medium according to the converted digital signal.
  • the reference value refers to a magnetic component intensity value printed at a predetermined position of the medium.
  • the magnetic sensor is a magnetic pattern recognition sensor.
  • a medium retraction step in which a medium is retracted, and an analog type magnetic component including noise and an analog generated when two or more magnetic sensors are printed at a predetermined position of the retracted medium and the medium is transferred.
  • a sensing step of sensing noise of a form, a subtraction step of subtracting noise included in magnetic components of the sensed analog signal, and subtracting noise of the sensed analog signal, and noise of the subtracted analog signal A signal conversion step of converting into a digital signal, and authenticity discrimination step of discriminating the authenticity of the inserted medium based on the converted digital signal.
  • the magnitude of the noise is relatively smaller than the magnetic component strength value of the medium.
  • a plurality of magnetic sensors which are printed at a predetermined position of an incoming medium and sense magnetic components in analog form including noise, and magnetic component signals sensed and output by the magnetic sensors, respectively And a medium discriminating unit receiving a subtracting unit for subtracting the output signal, and a medium discriminating unit receiving the subtracted output signal and discriminating the authenticity of the medium.
  • the plurality of magnetic sensors may include first and second magnetic sensors, and the subtractor may include a first interface unit receiving a first magnetic component signal sensed and output from the first magnetic sensor, and the second magnetic sensor. And a second interface unit receiving the second magnetic component signal sensed and output from the sensor, and a differential circuit unit for subtracting the transmitted first and second magnetic component signals.
  • the at least one first sensor configured to be in contact with the medium, and detects the magnetic component signal of the medium, and is provided in contact with the medium, the noise generated when the medium is conveyed
  • a second sensor for detecting a signal
  • a subtractor / extracter for extracting the magnetic component signal by subtracting a noise signal included in a magnetic component signal of the first sensor and a noise signal of the second sensor, and the extracted signal
  • an analog to digital converter for converting the digital signal into a digital signal
  • a controller for discriminating the authenticity of the medium based on the converted digital signal.
  • the first and second sensors are magnetoresistive sensors.
  • a detection step of detecting a noise signal generated during a medium transfer and a magnetic component signal printed on the medium an extraction step of canceling the noise signal to extract the magnetic component signal, and And a discrimination step of discriminating the authenticity of the medium by the extracted magnetic component signal.
  • the magnetic component signal includes the noise signal generated during media transfer, and the extracting step extracts the magnetic component signal by subtracting the noise signal generated during the media transfer and the noise signal included in the magnetic component signal. .
  • the magnetic component signal is detected from a sensor in contact with the medium, and the noise signal is detected from a sensor not in contact with the medium.
  • the medium discriminating apparatus and the discriminating method of the present invention having such a configuration have the following effects.
  • the magnetic components printed on the bills are summed into one signal by the subtraction function to minimize the noise flowing from the internal circuit and the outside, thereby improving the medium discrimination ability and shortening the time required for discriminating the bills.
  • FIG. 1 is a partial cross-sectional view of a conventional banknote discrimination apparatus.
  • FIG. 2 is an output graph of a digital signal converted by the AD converter of FIG.
  • FIG. 3 is a block diagram of a medium discrimination apparatus according to a first embodiment of the present invention.
  • FIG. 4 is a flowchart of a medium discrimination method according to a first embodiment of the present invention.
  • 5 is an output graph of a digital signal converted by a differential AD converter.
  • FIG. 7 is a block diagram of a medium discrimination apparatus according to a second embodiment of the present invention.
  • FIG. 8 is a block diagram of a medium discrimination apparatus according to a third embodiment of the present invention.
  • FIG. 9 is an internal circuit diagram of an amplifier circuit section and a differential amplifier section.
  • FIG. 10 is a flowchart of a medium discrimination method according to a third embodiment of the present invention.
  • 11 is a table of pneumococcal reference values.
  • FIG. 12 is an exemplary output waveform diagram for explaining a process of extracting a magnetic component signal
  • banknote discrimination device 110a first magnetic sensor
  • second magnetic sensor 120a first amplification / bandpass filter
  • control unit 150 storage unit
  • banknote discrimination device 210a first magnetic sensor
  • first interface unit 222b second interface unit
  • third amplifier circuit 350 differential amplifier circuit
  • 352a first differential amplifier 352b: second differential amplifier
  • FIG. 3 is a block diagram of a medium discrimination apparatus according to a first embodiment of the present invention. Since the medium discriminating apparatus of the present embodiment detects and processes magnetic components printed on bills, only such a configuration will be described.
  • the bill discrimination apparatus 100 includes first and second magnetic sensors 110a and 110b that sense magnetic components printed at predetermined positions of bills to be inserted.
  • the first magnetic sensor 110a senses a magnetic component printed on the specific portion of the bill
  • the second magnetic sensor 110b Does not sense the magnetic component printed on the incoming banknote, but senses only the magnetic component (ie, noise) flowing from the internal circuit and the outside.
  • the sensed magnetic component may be obtained as an analog waveform by sensing bills into which the first and second magnetic sensors 110a and 110b are inserted at predetermined intervals (for example, 1 mm and 2 mm).
  • predetermined intervals for example, 1 mm and 2 mm.
  • the predetermined section can be reduced or increased the length of the section as necessary.
  • the first and second magnetic sensors 110a and 110b may be magnetic resistance sensors, and may be magnetic pattern recognition sensors.
  • the magnetic sensors need not necessarily be two, but three or more magnetic sensors may be provided at an optimal position according to the printed magnetic component to further improve discrimination.
  • Amp & Band-pass Filters 120a and 120b are provided.
  • the first and second magnetic sensors 110a and 110b and the first and second amplification / band pass filter units 120a and 120b are configured to correspond 1: 1.
  • a digital analog converter (hereinafter, abbreviated as "AD converter") 130 is provided.
  • the subtraction method subtracts the magnetic component of the analog signal transmitted from the second amplification / bandpass filter 120b from the magnetic component of the analog signal transmitted from the first amplification / bandpass filter 120a.
  • the magnetic component of the analog signal transmitted from the first amplification / bandpass filter 120a may be subtracted from the magnetic component of the analog signal transmitted from the second amplification / bandpass filter 120b. Accordingly, the two analog signals are summed into one analog signal in which noise is mostly canceled out.
  • the AD converter 130 quantizes the summed analog signal and converts the summed analog signal into a digital signal.
  • the controller 140 receives the converted digital signal and reads the converted digital signal. That is, the control unit 140 compares the transmitted digital signal with a reference value for puffing to determine the authenticity of the inserted bill.
  • the storage unit 150 is provided with a storage unit 150 for storing the reference value for determining the authenticity of the bill.
  • the pneumatic reference value includes a position value of a magnetic component printed on a bill and a magnetic component intensity value corresponding thereto.
  • an inflow detection sensor detects this (S100).
  • the controller 140 transmits a control signal to the first and second magnetic sensors 110a and 110b.
  • the first and second magnetic sensors 110a and 110b sense magnetic components printed at predetermined positions of the bill (S102). That is, the first and second magnetic sensors 110a and 110b sense magnetic components every predetermined interval, for example, 1 mm, of the incoming banknote.
  • the first and second magnetic sensors 110a and 110b transfer the magnetic components sensed in each of the predetermined sections to the first and second amplification / bandpass filters 120a and 120b as analog signals, respectively.
  • step 104 the first and second amplification / bandpass filters 120a and 120b amplify the transmitted analog signal into an analog signal having a large power and filter the amplified noise together (S104). ).
  • the first and second amplification / bandpass filters 120a and 120b transmit the same to a differential analog to digital converter (hereinafter, referred to as an “AD converter”) 130.
  • AD converter differential analog to digital converter
  • the AD converter 130 receives the filtered two analog signals and subtracts them. For example, the AD converter 130 subtracts the analog signal transmitted from the second amplification / bandpass filter 120b from the analog signal transmitted from the first amplification / bandpass filter 120a. Accordingly, the two analog signals are summed into one analog signal in which noise is mostly canceled out.
  • the AD converter 130 quantizes the summed analog signal, converts the digital signal into a digital signal, and transfers the converted analog signal to the controller 140 (S106).
  • FIG. 5 shows an output graph of the converted digital signal.
  • the 'X' axis of the graph refers to the position value of the magnetic component
  • the 'Y' axis refers to the strength value of the magnetic component.
  • the converted digital signal c cancels most of the noise according to the subtraction function so that only noise C having a small magnetic component intensity value exists.
  • the intensity value of the magnetic component D printed on the bill is also partially canceled, but the value is insignificant. Accordingly, the magnetic component (D) printed on the bill has a result that is relatively large compared with the noise (C).
  • the control unit 140 receives the digital signal, accesses the storage unit 150, and reads it (S108). That is, the controller 140 compares the magnetic component of the banknote included in the transmitted digital signal with the reference value of the pulmonary value stored in the storage unit 150 to discriminate the authenticity of the inserted banknote. The authenticity is to determine whether or not the magnetic component intensity value for the position value at which the magnetic component printed on the banknote is sensed coincides with the reference value for the dusting.
  • FIG. 6 shows a table of the pneumococcal reference values. As shown in Fig.
  • the reference value for pneumocontraction is a magnetic component position value E for dividing the total length of a banknote (for example, the short side of a 10,000 won bill is 68 mm) in units of 1 mm, and the magnetic component position value. ('A' in FIG. 5), ie, magnetic component strength values F corresponding to each of approximately 49 mm to 60 mm.
  • the magnetic component intensity value detected at the magnetic component position value '54mm' is '-'.
  • the authenticity of the banknote is determined to match if the degree of coincidence is equal to or greater than a certain ratio in preparation for the case where the magnetic component of the specific position is damaged or the banknote is damaged.
  • control unit 140 reduces the discrimination time because it determines the authenticity by calculating and processing only one digital signal transmitted from the AD converter 130.
  • Figure 7 is a block diagram of a medium discrimination apparatus according to a second embodiment of the present invention.
  • the banknote discrimination apparatus 200 includes first and second magnetic sensors 210a and 210b that sense magnetic components printed at predetermined positions of bills to be inserted.
  • the first magnetic sensor 210a senses a magnetic component printed on the specific portion of the incoming banknote
  • the second magnetic sensor 210b Does not sense the magnetic component printed on the incoming banknote, but senses only the magnetic component (ie, noise) flowing from the internal circuit and the outside.
  • the subtraction unit 220 receives the sensed magnetic component signal and subtracts it.
  • the subtraction unit 220 includes a first interface unit 222a receiving the first magnetic component signal sensed by the first magnetic sensor 210a and a second sensor sensed by the second magnetic sensor 210b.
  • a second interface unit 222b receiving the magnetic component signal and a differential circuit unit 224 mutually subtracting the transmitted first and second magnetic component signals are provided.
  • a bill discrimination unit 230 is provided to receive the output signal subtracted by the differential circuit unit 224 and discriminate the authenticity of the inserted bill by using the same.
  • the operation process of the medium discrimination apparatus having such a configuration is as follows.
  • the first and second magnetic sensors 210a and 210b sense the magnetic component printed at a predetermined position of the bill. That is, the first and second magnetic sensors 210a and 210b sense magnetic components every predetermined period of the bill, for example, 1 mm.
  • the differential circuit unit 224 Mutually subtracts the transmitted first and second magnetic component signals.
  • the banknote discrimination unit 230 receives the output signal subtracted by the differential circuit unit 224, and discriminates the authenticity of the inserted banknotes.
  • the present invention described in the above embodiment has an advantage of improving medium discrimination power and shortening discrimination time by minimizing noise generated by using a subtracting function when discriminating authenticity of banknotes.
  • FIG. 8 is a block diagram of a medium discriminating apparatus according to a third embodiment of the present invention. Since the medium discriminating apparatus of the present embodiment detects and processes magnetic components printed on bills, only such a configuration will be described.
  • the bill discrimination apparatus 300 includes first and second sensors 310a and 310b configured to be in contact with a bill to be inserted and to detect magnetic components printed on the bill.
  • the detected magnetic component includes a general noise component.
  • the noise refers to electrical noise generated in various circuits inside the banknote discrimination apparatus 300 and mechanical noise due to a magnetic field generated when a driving means such as a motor / solenoid is driven.
  • various noises included in the magnetic component detected by the first and second sensors 310a and 310b will be referred to as first noise.
  • a third sensor 320 for detecting noise having the same component as the first noise is provided.
  • the noise detected by the third sensor 320 will be referred to as second noise.
  • the third sensor 320 is located at a location not in contact with the incoming banknote. Thus, only the second noise is detected, and the magnetic component printed on the banknote is not detected.
  • the first to third sensors 310a, 310b, and 320 are magnetoresistive sensors in which resistance components change according to magnetic components.
  • First to third amplifier circuits 330a, 330b, and 340 are provided to amplify the detection signals of the first to third sensors 310a, 310b, and 320 to a predetermined level.
  • the first to third amplification circuit parts 330a, 330b, and 340 are configured to have the same amplification factor.
  • the first to third amplifier circuits 330a, 330b, and 340 include first and second amplifiers 332a, 332b, 342, 334a, 334b, and 344, respectively. do. This is because magnetic components may be degraded due to repetition and long use of banknotes.
  • the amplification ratios of the first to third amplification circuit units 330a, 330b, and 340 are preferably at an amplification rate sufficient to extract magnetic components.
  • the configuration of the first to third amplification circuit parts 330a, 330b and 340 It is not necessary.
  • a differential amplifier circuit 350 is provided to subtract and amplify the second noise.
  • the differential amplifier 350 includes a first differential amplifier 352a for subtracting and amplifying detection signals of the first sensor 310a and the third sensor 320, and the second sensor 310b and the third sensor.
  • a second differential amplifier 352b subtracts and amplifies the detection signal of the sensor 320.
  • An analog / digital converter (abbreviated as "AD converter") 360 for converting the subtracted / amplified signal into a digital signal is provided.
  • the controller 370 is provided to discriminate the authenticity of banknotes based on the converted digital signal.
  • a storage unit 380 is provided for storing a pneumococcal reference value used for discriminating the authenticity of the bill.
  • FIG. 9 illustrates internal circuit diagrams of the first and third amplifier circuits 330a and 340 and the first differential amplifier 352a.
  • a non-inverting (+) terminal of the first operational amplifier OP1 is connected to the first amplifier 332b of the first amplifier circuit 330a by the first sensor 310a via the resistor R1.
  • the inverting terminal ( ⁇ ) of the first operational amplifier OP1 is connected to the ground (ground).
  • the first capacitor C1 and the resistor R2 are connected in series between the ground and the inverting ( ⁇ ) terminal.
  • the second capacitor C2 and the resistor R3 are connected in parallel between the inverting ( ⁇ ) terminal and the output terminal of the first operational amplifier OP1.
  • an output terminal of the first operational amplifier OP1 is connected to the non-inverting (+) terminal of the second operational amplifier OP2 through the resistor R4 in the secondary amplifier 334b.
  • the inverting terminal (-) of the second operational amplifier OP2 is connected to ground.
  • a third capacitor C3 and a resistor R5 are connected in series between the ground and the inverting terminal.
  • a fourth capacitor C4 and a resistor R6 are connected in parallel between the inverting ( ⁇ ) terminal and the output terminal of the second operational amplifier OP2. Since the third amplifier circuit 340 is the same as the configuration of the second amplifier circuit 330b described above, a description thereof will be omitted.
  • An output terminal of the first amplifier circuit part 330a is connected to a non-inverting (+) terminal of the third operational amplifier OP3 through the resistor R7 in the first differential amplifier 352b.
  • a resistor R8 is connected in parallel between the resistor R7 and the non-inverting (+) terminal of the third associating amplifier OP3.
  • the output terminal of the third amplifier circuit 340 is connected to the inverting ( ⁇ ) terminal of the third operational amplifier OP3 through the resistor R9.
  • a resistor R10 is connected in parallel between the inverting ( ⁇ ) terminal and the output terminal of the third associative amplifier OP3.
  • the detection signals of the first sensor 310a and the third sensor 320 are amplified to a predetermined level by the first and second amplifiers 332a, 334a, 342 and 344, respectively. Then, after the noise component is subtracted from the first differential amplifier 352a, only the magnetic component is extracted.
  • the first and second sensors 310a and 310b respectively detect magnetic components printed on the bill. do.
  • a first noise signal is included in the detection signals of the first and second sensors 310a and 310b.
  • the third sensor 320 detects a second noise signal having the same component as the first noise signal (S202).
  • the first to third amplification circuit units 330a, 330b, and 340 amplify the detection signals of the first to third sensors 310a, 310b, and 320 to a predetermined level (S204). ).
  • the first differential amplifier 352a extracts only the magnetic component detected by the first sensor 310a from the signals amplified by the first and third amplifier circuits 330a and 340. After subtracting the detection signals of the first sensor 310a and the third sensor 320, the amplification is performed again. In other words, the first noise signal and the second noise signal are canceled with each other to extract only the magnetic component detected by the first sensor 310a and then amplify the magnetic component.
  • the second differential amplifier 352b subtracts the detected signals of the second sensor 310b and the third sensor 320 and amplifies them again, similarly to the first differential amplifier 330a.
  • the AD converter 360 converts the signal subtracted / amplified by the first and second differential amplifiers 352a and 352b into a digital signal (S208).
  • the control unit 370 discriminates whether or not the authenticity of the inserted bill is based on the converted digital signal (S210). That is, the controller 370 reads the magnetic component signal of the banknote included in the transmitted digital signal, and discriminates the authenticity of the inserted banknote by comparing it with the reference value of the cardiopulmonary stored in the storage unit 380. .
  • FIG. 11 shows a table of pneumococcal reference values. Referring to FIG. 11, the reference value of the pneumococcal value is the first and second sensors 310a for the position value of the banknote that divides the total length of the banknote (for example, the short side of the 10,000 won banknote is 68 mm) in units of 1 mm ( And a detection signal strength value of 310b).
  • the detection signal strength value of the first sensor 310a detected at the position value '50mm' of the banknote is '30' and the detection signal strength value of the second sensor 310b is '0'
  • discrimination is made with pneumoconiosis
  • the detected signal strength value of the first sensor 310a detected at the position value '54mm' of the banknote is '-50' or the detected signal strength value of the second sensor 310b is '-30'
  • discrimination is made by counterfeiting. do.
  • the authenticity of the banknote is determined to match if the degree of coincidence is equal to or greater than a certain ratio in preparation for the case where the magnetic component of the specific position is damaged or the banknote is damaged.
  • the pneumatic reference value for all cases corresponding to the winding and billing direction that is, front and back, left and right reversed
  • Figure 12 is a waveform diagram for explaining the process of extracting the magnetic component is shown.
  • '(A)' indicates a detection signal of the first sensor 310a
  • '(B)' indicates a detection signal of the third sensor 320. That is, '(A)' includes both the detected magnetic component signal and the first noise signal, and '(B)' includes only the second noise signal. Since both (A) and (B) contain noise signals, they have almost similar signal waveforms.
  • the 'D' region it can be seen that there is a slight difference in the waveform, because it is the region containing the magnetic component signal detected by the first sensor 310a. Therefore, when '(A)' and '(B)' are subtracted by the first differential amplifier 352a, the 'E' region cancels each other because only a noise signal exists, and the noise signal in the 'D' region. Only the canceled magnetic component signal C is extracted.
  • the magnetic component signal C is a value amplified by the first differential amplifier 352a.
  • the present invention described in the above embodiment has an advantage of improving the medium discrimination power by removing various noises introduced into the bill discrimination device when the authenticity of the inserted medium is discriminated.
  • two magnetic sensors are configured as sensors for detecting magnetic components, but at least one magnetic sensor may be installed at an optimal position.
  • the amplifying circuit section and the differential amplifying circuit section are not necessarily the circuit configuration shown in the figure, but may be configured using other circuit elements.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Inspection Of Paper Currency And Valuable Securities (AREA)

Abstract

본 발명은 매체감별장치 및 그 감별방법에 관한 것이다. 본 발명은 지폐가 지폐인입부를 통해 인입되면, 제1 및 제2자기센서(110a)(110b)는 상기 인입되는 지폐의 소정 위치에 인쇄된 자기성분을 센싱하고, 상기 센싱된 자기성분에 대한 아날로그신호를 제1 및 제2증폭/대역통과필터(120a)(120b)로 각각 전달한다. 그러면, 상기 제1 및 제2증폭/대역통과필터(120a)(120b)는 상기 아날로그 신호를 전달받아 이를 증폭하고, 그 증폭된 아날로그 신호에 포함된 노이즈를 필터링한다. 그리고, 디퍼렌셜 AD 컨버터(differential Analog to Digital Converter)(130)는 상기 필터링된 두 개의 아날로그 신호에 기초하여 감산기능을 수행한 후 이를 디지털신호로 변환한다. 그러면, 노이즈가 대부분 상쇄된 하나의 디지털신호를 갖게 된다. 이에 따라, 제어부(140)는 상기 디지털신호를 판독하여 인입된 지폐의 진위 여부를 감별한다. 이때, 상기 제어부(140)는 하나의 디지털신호를 판독하므로 연산수행 시간을 단축할 수 있다. 이에 따라 본 발명은, 지폐 감별력을 향상시키고, 아울러 감별 시간이 단축되는 이점이 있다.

Description

매체감별장치 및 그 감별방법
본 발명은 매체감별장치에 관한 것으로, 특히 노이즈(noise)를 최소화하여 매체 감별력을 향상시키도록 한 매체감별장치 및 그 감별방법에 관한 것이다.
본 명세서에서의 매체라는 용어는 예를 들어, 지폐, 수표, 티켓, 증명서 등을 나타내는 것으로, 폭이나 길이에 비해 두께가 매우 얇은 것으로 다양한 것이 있을 수 있다. 본 명세서에서는 지폐를 예로 들어 설명하겠다.
일반적으로, 지폐감별장치는 금융자동화기기, 매체취급기, 자동판매기 등에 적용되어 지폐에 인쇄된 자기성분, 이미지, 은화, 형광잉크, 각종 숫자 및 문자를 인식하여 지폐의 종류, 위조 여부 등을 판단하게 된다.
그 중, 도 1에는 지폐에 인쇄된 자기성분을 판독하는 지폐감별장치의 부분 단면도가 도시되어 있다.
도 1을 설명하면, 상부 브라켓(10)에는 지폐(30)에 인쇄된 자기성분을 검출하기 위한 제1 및 제2자기(magnetic)센서(12a)(12b)가 소정 간격으로 일렬로 설치된다. 이때, 상기 자기 센서(12a)(12b)는 감지면이 아래를 향하여 노출되도록 설치하고, 상기 지폐(30)가 이송되는 방향과 수직을 이루도록 설치함으로써 지폐에 인쇄된 자기성분을 검출하게 된다.
여기서, 상기 제1 및 제2자기센서(12a)(12b)는, 자기 저항 센서로서, 자기 패턴 인식 센서(Magnetic Pattern Recognition Sensor)이다.
상기 제1 및 제2자기센서(12a)(12b)와 동일선상에 일렬로 설치되어 상기 인입된 지폐(30)를 후술하는 하부지폐이송롤러(24a)(24b)들과 대향되어 구동됨에 따라 이송하는 상부지폐이송롤러(14a)(14b)가 구비된다.
그리고, 하부 브라켓(20) 내에는 지폐이송롤러축(22)이 회전함에 따라 상기 지폐(30)를 이송하는 하부지폐이송롤러(24a)(24b)와, 상기 이송되는 지폐(30)를 상기 제1 및 제2자기센서(12a)(12b)측으로 밀어 올려 상기 지폐(30)가 상기 제1 및 제2자기센서(12a)(12b)와 근접되게 함으로써 지폐에 인쇄된 자기성분을 보다 정확하게 검출되도록 하는 센서접촉롤러(26a)(26b)가 구비된다.
상기 롤러(24a)(24b)(26a)(26b)들은 지폐이송롤러축(22)에 소정 간격으로 배열되되, 상기 하부지폐이송롤러(24a)(24b)는 각각 상기 상부지폐이송롤러(14a)(14b)와 대향되도록 설치되고, 상기 센서접촉롤러(26a)(26b)는 각각 상기 제1 및 제2자기센서(12a)(12b)와 대향되도록 설치된다.
상기 지폐이송롤러축(22)의 양단에 설치되어 상기 지폐이송롤러축(22)을 상방으로 지속적으로 밀어주는 하부지지 스프링(28a)(28b)이 구비된다. 이는 상기 롤러(24a)(24b)(26a)(26b)들과 각각 대향되는 상기 상부지폐이송롤러(14a)(14b)와 제1 및 제2자기센서(12a)(12b) 사이가 근접되도록 유지하기 위함이다. 이때, 상기 하부지지 스프링(28a)(28b)의 탄성에 의해 상기 롤러(24a)(24b)(26a)(26b)들이 지나치게 밀착되는 것을 방지하기 위한 베어러(29a)(29b)가 구비된다.
한편, 도면에 미도시하고 있지만, 상기 제1 및 제2자기센서(12a)(12b)로부터 센싱된 자기성분에 대한 아날로그 신호를 각각 전달받고, 이를 각각 안정된 신호세기로 증폭하고, 상기 증폭에 따라 함께 증폭되는 노이즈(noise)를 필터링하는 증폭/대역통과필터(Amp & Band-pass Filter)와, 상기 필터링된 두 개의 아날로그 신호 각각을 디지털신호로 변환하는 아날로그/디지털 변환부(Analog to Digital Converter; 이하 "AD 컨버터"라 약칭함.)와, 상기 변환된 두 개의 디지털신호를 판독하여 상기 인입된 지폐(30)의 진위 여부를 감별하는 마이크로 컨트롤러 유닛(Micro Controller Unit; 이하 "MCU"라 약칭함.)이 구비된다.
이와 같이 구성된 지폐감별장치는 탄성적으로 지지되는 롤러에 의해 지폐가 자기센서와 긴밀하게 접촉될 수 있어 지폐 감별 성능을 향상시킬 수 있다.
상기 제1 및 제2자기센서(12a)(12b)에 의해 검출된 자기성분에는 노이즈성분이 포함된다. 이는, 제1 및 제2자기센서(12a)(12b)가 주변의 엑츄에이터(예컨대, 모터, 솔레노이드 등)의 동작으로 인해 발생되는 자기장(magnetic field)의 영향을 받기 때문이다. 또 상기 제1 및 제2자기센서(12a)(12b)에는 내부회로, 즉 전원회로의 스위칭 노이즈 등이 유입되기 때문이다.
도 2에는 상기 AD 컨버터에서 출력된 두 개의 디지털신호의 출력 그래프가 도시되어 있다. 그래프의 'X'축은 자기성분의 위치 값을 말하고, 'Y'축은 자기성분의 세기 값을 말한다.
도 2에 도시된 바와 같이, 상기 AD컨버터에서 변환된 디지털신호는 인입된 지폐의 자기성분(A)과 내부 회로 및 외부로부터 유입되는 자기성분(즉, 노이즈; B)을 모두 포함한다. 이때, 상기 지폐의 자기성분(A)은 제1자기센서(110a)에서만 센싱(ⓐ)되어 있다. 이는 지폐마다 자기성분이 특정 위치에만 인쇄되어 있기 때문이다. 만약, 상기 지폐가 반대로 인입되었다면, 상기 지폐에 인쇄된 자기성분(A)은 제2자기센서(12b)에서 센싱(ⓑ)될 것이다.
그러나, 상기 지폐감별장치는 다음과 같은 문제점이 있다.
즉, 노이즈(B)는 상대적으로 큰 자기성분 세기 값을 가지므로, 상기 MCU가 상기 지폐의 자기성분(A)을 판독하여 지폐의 진위 여부를 감별할 때, 감별력을 감소시키는 결과를 초래한다.
또한, 상기 MCU는 상기 AD 컨버터로부터 두 개의 디지털신호(ⓐ, ⓑ)를 전달받고, 이를 모두 연산 처리하기 때문에 그만큼의 감별 시간이 소요되는 문제점이 있다.
또한, 내부 회로 및 외부로부터 유입되는 노이즈(B)를 방지하기 위해 고가의 자기 차폐막 및 비자성 소재 등을 사용할 수도 있지만, 이 경우 그에 따른 비용이 증가될 수 있고, 아울러 유지보수가 어려운 문제점이 있다.
따라서 본 발명의 목적은 상기한 문제점을 해결하기 위한 것으로서, 지폐 인입 시 노이즈를 최소화하여 지폐 감별력을 향상시키기 위한 매체감별장치 및 그 감별방법을 제공하는 것이다.
본 발명의 다른 목적은 지폐 감별 시간을 단축시키도록 하는 것이다.
상기한 바와 같은 목적을 달성하기 위한 본 발명의 특징에 따르면, 인입되는 매체의 소정 위치에 인쇄되어 노이즈를 포함한 아날로그 형태의 자기성분을 센싱하는 제1자기센서와, 상기 매체가 이송될 때 발생하는 아날로그 형태의 노이즈를 센싱하는 제2자기센서를 포함하는 복수의 자기센서와, 상기 제1자기센서와 제2자기센서 각각에 의해 센싱된 노이즈를 감산하고 이를 하나의 디지털신호로 변환하는 디퍼렌셜 아날로그/디지털 컨버터와, 상기 변환된 디지털신호에 따라 상기 인입된 매체의 진위 여부를 감별하는 제어부를 포함하여 구성된다.
상기 자기센서와 1:1 대응되고, 상기 자기센서에 의해 센싱된 아날로그신호의 자기성분을 증폭한 후 노이즈를 필터링하는 증폭/대역통과필터부와, 상기 진위 여부 감별 시 기준값이 저장되어 있는 저장부를 더 포함하여 구성된다.
상기 기준값은 상기 매체의 소정 위치에 인쇄된 자기성분 세기 값을 말한다.
상기 자기센서는 자기 패턴 인식 센서(Magnetic Pattern Recognition Sensor)이다.
본 발명의 다른 특징에 따르면, 매체가 인입되는 매체인입단계와, 둘 이상의 자기센서가 상기 인입되는 매체의 소정 위치에 인쇄되어 노이즈를 포함한 아날로그 형태의 자기성분과 상기 매체가 이송될 때 발생하는 아날로그 형태의 노이즈를 센싱하는 센싱단계와, 상기 센싱된 아날로그신호의 자기성분 중에 포함된 노이즈(noise)를 상쇄시켜 상기 센싱된 아날로그신호의 노이즈를 감산하는 감산단계와, 상기 감산된 아날로그신호의 노이즈를 디지털신호로 변환하는 신호변환단계와, 상기 변환된 디지털신호에 기초하여 인입된 매체의 진위 여부를 감별하는 진위여부 감별단계를 포함한다.
상기 감산단계에 따라 상기 노이즈의 크기는 상기 매체의 자기성분 세기 값보다 상대적으로 작게 나타난다.
본 발명의 또 다른 특징에 따르면, 인입되는 매체의 소정 위치에 인쇄되어 노이즈를 포함한 아날로그 형태의 자기성분을 센싱하는 복수의 자기센서와, 상기 자기센서에 의해 각각 센싱되어 출력되는 자기성분신호를 상호 감산 처리하는 감산부와, 상기 감산부에 의해 감산 처리된 출력신호를 전달받고, 상기 매체의 진위 여부를 감별하는 매체감별부를 포함하여 구성된다.
상기 복수의 자기센서는 제1 및 제2자기센서를 포함하여 구성되고, 상기 감산부는 상기 제1자기센서로부터 센싱되어 출력되는 제1자기성분신호를 전달받는 제1인터페이스부와, 상기 제2자기센서로부터 센싱되어 출력되는 제2자기성분신호를 전달받는 제2인터페이스부와, 상기 전달된 제1 및 제2자기성분신호를 상호 감산 처리하는 차동회로부를 포함하여 구성된다.
본 발명의 또 다른 특징에 따르면, 매체와 접촉되게 구성되고, 상기 매체의 자기성분신호를 검출하는 적어도 하나 이상의 제1센서와, 상기 매체와 비접촉되게 구비되고, 상기 매체가 이송될 때 발생하는 노이즈신호를 검출하는 제2센서와, 상기 제1센서의 자기성분신호에 포함된 노이즈신호와 상기 제2센서의 노이즈신호를 감산하여 상기 자기성분신호를 추출하는 감산/추출부와, 상기 추출된 신호를 디지털신호로 변환하는 아날로그/디지털 변환부(Analog to Digital Converter)와, 상기 변환된 디지털신호에 기초하여 상기 매체의 진위 여부를 감별하는 제어부를 포함하여 구성된다.
상기 제1 및 제2센서의 추출신호를 각각 증폭하는 복수의 증폭부를 더 포함하여 구성되고, 상기 증폭부는 모두 동일한 증폭률을 갖는다.
상기 제1 및 제2센서는 자기저항센서이다.
본 발명의 또 다른 특징에 따르면, 매체 이송 시 발생하는 노이즈신호와 상기 매체에 인쇄된 자기성분신호를 검출하는 검출단계와, 상기 노이즈신호를 상쇄시켜 상기 자기성분신호를 추출하는 추출단계와, 상기 추출된 자기성분신호에 의해 상기 매체의 진위 여부를 감별하는 감별단계를 포함한다.
상기 자기성분신호에는 매체 이송 시 발생하는 상기 노이즈신호가 포함되고, 상기 추출단계는, 상기 매체 이송 시 발생하는 노이즈신호와 상기 자기성분신호에 포함된 노이즈신호를 감산하여 상기 자기성분신호를 추출한다.
상기 자기성분신호는 매체에 접촉된 센서로부터 검출되고, 상기 노이즈신호는 매체와 비접촉된 센서로부터 검출된다.
상기 검출단계에서 검출된 신호를 증폭하는 제1증폭단계와, 상기 추출단계에서 추출된 자기성분신호를 증폭하는 제2증폭단계를 더 포함하고, 상기 제1증폭단계는 서로 동일한 증폭률로 증폭한다.
이와 같은 구성을 갖는 본 발명의 매체감별장치 및 그 감별방법에는 다음과 같은 효과가 있다.
먼저, 지폐 인입 시 지폐에 인쇄된 자기성분을 감산기능에 의해 하나의 신호로 합산하여 내부 회로 및 외부로부터 유입되는 노이즈를 최소화함으로써 매체 감별력이 향상되고, 아울러 지폐 감별에 소요되는 시간을 단축하는 효과가 있다.
또 매체감별장치 및 그 외부의 하우징에 사용되는 금속 소재를 저가의 소재로 대체할 수 있어 비용 절감 및 유지보수가 용이하다.
도 1은 종래의 지폐감별장치의 부분 단면도.
도 2는 도 1의 AD 컨버터에 의해 변환된 디지털신호의 출력 그래프.
도 3은 본 발명의 제1실시 예에 따른 매체감별장치의 블록 구성도.
도 4는 본 발명의 제1실시 예에 따른 매체감별방법의 흐름도.
도 5는 디퍼렌셜 AD 컨버터에 의해 변환된 디지털신호의 출력 그래프.
도 6은 진폐 기준값의 테이블.
도 7은 본 발명의 제2실시 예에 따른 매체감별장치의 블록 구성도.
도 8은 본 발명의 제3실시 예에 따른 매체감별장치의 블록 구성도.
도 9는 증폭회로부와 차동증폭부의 내부 회로도.
도 10은 본 발명의 제3실시 예에 따른 매체감별방법의 흐름도.
도 11은 진폐 기준값의 테이블.
도 12는 자기성분신호가 추출되는 과정을 설명하기 위한 출력 파형 예시도.
*도면의 주요 부분에 대한 부호의 설명*
100 : 지폐감별장치 110a : 제1자기(magnetic)센서
110b : 제2자기(magnetic)센서 120a : 제1증폭/대역통과필터
120b : 제2증폭/대역통과필터 130 : 디퍼렌셜 AD 컨버터
140 : 제어부 150 : 저장부
200 : 지폐감별장치 210a : 제1자기센서
210b : 제2자기센서 220 : 감산부
222a : 제1인터페이스부 222b : 제2인터페이스부
224 : 차동회로부 230 : 지폐감별부
300 : 지폐감별장치 310a : 제1센서
310b : 제2센서 320 : 제3센서
330a : 제1증폭회로부 330b : 제2증폭회로부
340 : 제3증폭회로부 350 : 차동증폭회로부
352a : 제1차동증폭부 352b : 제2차동증폭부
360 : 아날로그/디지털 컨버터 370 : 제어부
380 : 저장부
이하, 본 발명의 바람직한 실시 예에 따른 매체감별장치 및 그 제어방법을 첨부된 도면에 도시된 바람직한 실시 예를 참고하여 상세하게 설명한다.
도 3에는 본 발명의 제1실시 예에 따른 매체감별장치의 블록 구성도가 도시되어 있다. 본 실시 예의 매체감별장치는 지폐에 인쇄된 자기성분을 검출하고 이를 처리하기 때문에, 이러한 구성에 대해서만 설명하기로 한다.
도 3을 참조하면, 지폐감별장치(100)에는 인입되는 지폐의 소정 위치에 인쇄된 자기성분을 센싱하는 제1 및 제2자기센서(110a)(110b)가 구비된다. 여기서, 상기 인입되는 지폐의 특정 부분에만 자기성분이 인쇄되어 있는 경우, 상기 제1자기센서(110a)는 상기 인입되는 지폐의 특정 부분에 인쇄된 자기성분을 센싱하고, 상기 제2자기센서(110b)는 상기 인입되는 지폐에 인쇄된 자기성분을 센싱하지 못하고 내부 회로 및 외부로부터 유입되는 자기성분(즉, 노이즈)만을 센싱하게 된다.
상기 센싱된 자기성분은, 상기 제1 및 제2자기센서(110a)(110b)가 인입되는 지폐를 기 설정된 구간(예컨대, 1mm, 2mm 등)마다 센싱하여, 아날로그 파형으로 얻어지게 된다. 물론, 상기 기 설정된 구간은 필요에 따라 그 구간의 길이를 감소 또는 증가시킬 수 있음은 당연하다.
상기 제1 및 제2자기센서(110a)(110b)들은, 자기 저항 센서로서, 자기 패턴 인식 센서(Magnetic Pattern Recognition Sensor)인 것이 바람직하다. 그리고, 상기 자기센서는 반드시 두 개일 필요는 없으며, 세 개 이상 구비하되 인쇄된 자기성분에 따라 최적의 위치에 설치하여 감별력을 더욱더 향상시킬 수 있을 것이다.
상기 센싱된 자기성분은 반복 사용 및 시간 경과에 따라서 그 자기성분 정도가 저하되므로, 상기 자기성분을 증폭하고, 상기 증폭에 따라 함께 증폭되는 노이즈(noise)를 필터링하는 제1 및 제2증폭/대역통과필터부(Amp & Band-pass Filter)(120a)(120b)가 구비된다.
상기 제1 및 제2자기센서(110a)(110b)와 제1 및 제2증폭/대역통과필터부(120a)(120b)는 1:1 대응되어 구성된다.
상기 제1 및 제2증폭/대역통과필터부(Amp & Band-pass Filter)(120a)(120b)에 의해 필터링된 자기성분을 감산한 후 상기 감산된 자기성분을 디지털신호로 변환하는 디퍼렌셜 아날로그/디지털 컨버터(Differential Analog to Digital Converter; 이하 "AD 컨버터"라 약칭함.)(130)가 구비된다. 상기 감산방법은, 제1증폭/대역통과필터(120a)로부터 전달된 아날로그신호의 자기성분에서 제2증폭/대역통과필터(120b)로부터 전달된 아날로그신호의 자기성분을 감산한다. 물론, 제2증폭/대역통과필터(120b)로부터 전달된 아날로그신호의 자기성분에서 제1증폭/대역통과필터(120a)로부터 전달된 아날로그신호의 자기성분을 감산할 수도 있다. 이에 따라, 상기 두 개의 아날로그신호는 노이즈가 대부분 상쇄된 하나의 아날로그신호로 합산된다. 그리고, 상기 AD 컨버터(130)는 상기 합산된 아날로그신호를 양자화하여 디지털신호로 변환한다.
상기 변환된 디지털신호를 전달받고, 이를 판독하는 제어부(140)가 구비된다. 즉, 상기 제어부(140)는 상기 전달된 하나의 디지털신호와 진폐 기준값을 비교하여 상기 인입된 지폐의 진위 여부를 판단하는 것이다.
상기 제어부(140)가 상기 지폐의 진위 여부를 감별하기 위한 진폐 기준값을 저장하는 저장부(150)가 구비된다. 상기 진폐 기준값은 지폐에 인쇄된 자기성분의 위치 값과 그에 대응되는 자기성분 세기 값을 포함한다.
이하, 상기한 바와 같은 구성을 가지는 본 발명의 제1실시 예에 따른 매체감별방법을 도 4를 참조하여 상세하게 설명한다.
도 4를 참조하면, 지폐인입부를 통해 지폐가 인입되면, 인입감지센서(미도시)가 이를 감지한다(S100).
상기 감지 결과 지폐 인입이 감지된 경우, 제어부(140)는 제어신호를 제1및 제2자기센서(110a)(110b)에게 전달한다.
상기 전달된 제어신호에 따라 지폐가 이동될 때, 상기 제1 및 제2자기센서(110a)(110b)는 상기 지폐의 소정 위치에 인쇄된 자기성분을 센싱한다(S102). 즉, 상기 제1 및 제2자기센서(110a)(110b)는 상기 인입되는 지폐를 기 설정된 구간, 예컨대, 1mm마다 자기성분을 센싱한다.
상기 제1 및 제2자기센서(110a)(110b)는 상기 기 설정된 구간마다 센싱한 자기성분을 아날로그신호로써 제1 및 제2증폭/대역통과필터(120a)(120b)에 각각 전달한다.
제104단계에서, 상기 제1 및 제2증폭/대역통과필터(120a)(120b)는 전달된 아날로그신호를 큰 전력을 갖는 아날로그신호로 증폭하고, 함께 증폭된 노이즈(noise)를 필터링한다(S104). 그리고 상기 제1 및 제2증폭/대역통과필터(120a)(120b)는 이를 각각 디퍼렌셜 아날로그/디지털 컨버터(Differential Analog to Digital Converter; 이하 "AD 컨버터"라 약칭함.)(130)로 전달한다.
그러면, 상기 AD 컨버터(130)는 상기 필터링된 두 개의 아날로그 신호를 전달받고, 이를 감산한다. 예컨대, 상기 AD 컨버터(130)는 제1증폭/대역통과필터(120a)로부터 전달된 아날로그신호에서 제2증폭/대역통과필터(120b)로부터 전달된 아날로그신호를 감산한다. 이에 따라, 상기 두 개의 아날로그 신호는 노이즈가 대부분 상쇄된 하나의 아날로그 신호로 합산된다.
그리고 상기 AD 컨버터(130)는 상기 합산된 아날로그신호를 양자화하여 디지털신호로 변환하고, 이를 제어부(140)로 전달한다(S106). 예컨대, 도 5에는 상기 변환된 디지털신호의 출력 그래프가 도시되어 있다. 여기서, 상기 그래프의 'X'축은 자기성분의 위치 값을 말하고, 'Y'축은 자기성분의 세기 값을 말한다. 도 5를 설명하면, 상기 변환된 디지털신호(ⓒ)는 상기 감산기능에 따라 대부분의 노이즈가 상쇄되어 근소한 자기성분 세기 값을 갖는 노이즈(C)만이 존재하게 된다. 물론, 상기 감산기능이 수행됨에 따라 지폐에 인쇄된 자기성분(D)의 세기 값 또한 일부 상쇄되는 결과를 초래하지만, 그 값은 미미하다. 이에 따라, 지폐에 인쇄된 자기성분(D)은 상기 노이즈(C)와 대비하여 상대적으로 커지는 결과를 갖게 된다.
이에 따라, 상기 제어부(140)는 상기 디지털신호를 전달받고, 저장부(150)를 액세스하여 이를 판독한다(S108). 즉, 상기 제어부(140)는 상기 전달된 디지털신호에 포함된 지폐의 자기성분과 상기 저장부(150)에 저장되어 있는 진폐 기준값을 비교하여 상기 인입된 지폐의 진위 여부를 감별한다. 상기 진위 여부는 상기 지폐에 인쇄된 자기성분이 센싱된 위치 값에 대한 자기성분 세기 값이 상기 진폐 기준값과 일치하는지 여부를 판단하는 것이다. 예컨대, 도 6에는 상기 진폐 기준값의 테이블이 도시되어 있다. 도 6에 도시된 바와 같이, 상기 진폐 기준값은 지폐의 총 길이(예컨대, 1만원권 지폐의 짧은 쪽의 길이는 68mm)를 1mm 단위로 구분하는 자기성분 위치 값(E)과, 상기 자기성분 위치 값(도 5의 'A'), 즉 대략 49mm에서 60mm까지 각각에 대응되는 자기성분 세기 값(F)을 포함한다. 설명의 편의상 하나의 경우에 대한 진폐 기준값만을 설명하였으나, 상기 저장부(150)에는 권종 및 지폐 인입 방향(즉, 앞뒤, 좌우가 바뀌어 인입)에 대응되는 모든 경우에 대한 진폐 기준값이 저장되어 있음은 당연하다. 그래서, 예를 들어, 자기성분 위치 값 '50mm'에서 검출된 자기성분의 세기 값이 '30'인 경우 진폐로 감별하고, 반면 자기성분 위치 값 '54mm'에서 검출된 자기성분 세기 값이 '-50'인 경우 위폐로 감별한다. 이때, 상기 지폐의 진위 여부는, 특정 위치의 자기성분이 훼손되거나 또는 지폐가 훼손된 경우를 대비하여, 일치 정도가 일정 비율 이상이면 일치된 것으로 판단한다.
이때, 상기 제어부(140)는 상기 AD 컨버터(130)로부터 전달된 디지털신호 하나만을 연산처리하여 진위 여부를 판단하기 때문에 감별 시간이 단축된다.
한편, 도 7에는 본 발명의 제2 실시 예에 따른 매체감별장치의 블록 구성도가 도시되어 있다.
도 7을 참조하면, 지폐감별장치(200)에는 인입되는 지폐의 소정 위치에 인쇄된 자기성분을 센싱하는 제1 및 제2자기센서(210a)(210b)가 구비된다. 여기서, 상기 인입되는 지폐의 특정 부분에만 자기성분이 인쇄되어 있는 경우, 상기 제1자기센서(210a)는 상기 인입되는 지폐의 특정 부분에 인쇄된 자기성분을 센싱하고, 상기 제2자기센서(210b)는 상기 인입되는 지폐에 인쇄된 자기성분을 센싱하지 못하고 내부 회로 및 외부로부터 유입되는 자기성분(즉, 노이즈)만을 센싱하게 된다.
상기 자기센서는 반드시 두 개일 필요는 없으며, 세 개 이상 구비하되 인쇄된 자기성분에 따라 최적의 위치에 설치하여 감별력을 더욱더 향상시킬 수 있을 것이다.
상기 센싱된 자기성분신호를 전달받고, 이를 상호 감산하는 감산부(220)가 구비된다. 상기 감산부(220)에는 상기 제1자기센서(210a)에 의해 센싱된 제1자기성분신호를 전달받는 제1인터페이스부(222a)와, 상기 제2자기센서(210b)에 의해 센싱된 제2자기성분신호를 전달받는 제2인터페이스부(222b)와, 상기 전달된 제1 및 제2자기성분신호를 상호 감산 처리하는 차동회로부(224)가 구비된다.
상기 차동회로부(224)에 의해 감산 처리된 출력신호를 전달받고, 이를 이용하여 상기 인입된 지폐의 진위 여부를 감별하는 지폐감별부(230)가 구비된다.
이와 같은 구성을 갖는 매체감별장치의 동작 과정은 다음과 같다.
지폐가 지폐인입부를 통해 인입되어 지폐감별장치(200) 내부로 이송될 때, 제1 및 제2자기센서(210a)(210b)는 상기 지폐의 소정 위치에 인쇄된 자기성분을 센싱한다. 즉, 상기 제1 및 제2자기센서(210a)(210b)는 상기 인입되는 지폐를 기 설정된 구간, 예컨대, 1mm마다 자기성분을 센싱한다.
상기 제1 및 제2자기센서(210a)(210b)에 의해 센싱된 제1 및 제2자기성분신호가 제1 및 제2인터페이스부(222a)(222b)를 통해 각각 전달되면, 차동회로부(224)는 상기 전달된 제1 및 제2자기성분신호를 상호 감산 처리한다.
그러면, 지폐감별부(230)는 상기 차동회로부(224)에 의해 감산 처리된 출력신호를 전달받고, 상기 인입된 지폐의 진위 여부를 감별한다.
이와 같이 상기 실시 예에 설명되고 있는 본 발명은 지폐의 진위 여부 감별 시 감산기능을 이용하여 발생한 노이즈를 최소화함에 따라 매체 감별력을 향상시키고, 아울러 감별 시간이 단축되는 이점이 있다.
도 8에는 본 발명의 제3실시 예에 따른 매체감별장치의 블록 구성도가 도시되어 있다. 본 실시 예의 매체감별장치는 지폐에 인쇄된 자기성분을 검출하고 이를 처리하기 때문에, 이러한 구성에 대해서만 설명하기로 한다.
도 8를 참조하면, 지폐감별장치(300)에는 인입되는 지폐와 접촉되게 구성되고, 지폐에 인쇄된 자기성분을 검출하는 제1 및 제2센서(310a)(310b)가 구비된다. 상기 검출된 자기성분에는 일반적인 노이즈 성분이 포함된다. 상기 노이즈는 상기 지폐감별장치(300)의 내부 각종 회로에서 발생하는 전기적 노이즈와, 모터/솔레노이드 등의 구동수단이 구동될 때 발생되는 자기장으로 인한 기계적 노이즈를 말한다. 이하에서는 상기 제1 및 제2센서(310a)(310b)에 의해 검출된 자기성분에 포함된 각종 노이즈를 제1노이즈라고 하기로 한다.
상기 제1노이즈를 차감시키기 위해 상기 제1노이즈와 동일한 성분의 노이즈를 검출하는 제3센서(320)가 구비된다. 이하에서는 상기 제3센서(320)에 의해 검출된 노이즈를 제2노이즈라고 하기로 한다. 상기 제3센서(320)는 인입되는 지폐와 접촉되지 않는 개소에 위치한다. 그래서 상기 제2노이즈만을 검출하고 상기 지폐에 인쇄된 자기성분은 검출하지 않는다.
상기 제1 내지 제3센서(310a)(310b)(320)는 모두 자기성분에 따라 저항성분이 변하는 자기저항센서이다.
상기 제1 내지 제3센서(310a)(310b)(320)의 검출신호를 소정 레벨로 증폭하는 제1 내지 제3증폭회로부(330a)(330b)(340)가 구비된다. 여기서, 상기 제1 내지 제3증폭회로부(330a)(330b)(340)는 모두 동일한 증폭률을 갖도록 구성한다. 그리고, 상기 제1 내지 제3증폭회로부(330a)(330b)(340)는 각각 제1 및 제2증폭부(332a)(332b)(342)(334a)(334b)(344)를 포함하여 구성된다. 이는 지폐의 반복 및 오랜 사용으로 인해 자기성분이 저하될 수 있기 때문이다. 그래서 상기 제1 내지 제3증폭회로부(330a)(330b)(340)의 증폭률은 자기성분을 충분히 추출할 수 있을 정도의 증폭률이어야 바람직하다. 물론 상기 제1 내지 제3센서(310a)(310b)(320)의 검출신호에서 충분히 자기성분이 추출될 수 있으면, 상기 제1 내지 제3증폭회로부(330a)(330b)(340)의 구성은 반드시 필요하지는 않다.
상기 제1 내지 제3증폭회로부(330a)(330b)(340)에서 증폭된 증폭신호로부터 상기 제1 및 제2센서(310a)(310b)에서 검출된 자기성분만을 추출하기 위해 상기 제1노이즈와 제2노이즈를 감산하고 증폭하는 차동증폭회로부(350)가 구비된다. 상기 차동증폭부(350)에는 상기 제1센서(310a)와 제3센서(320)의 검출신호를 감산하고 증폭하는 제1차동증폭부(352a)와, 상기 제2센서(310b)와 제3센서(320)의 검출신호를 감산하고 증폭하는 제2차동증폭부(352b)가 구비된다.
상기 감산/증폭된 신호를 디지털신호로 변환하는 아날로그/디지탈 변환부(Analog to Digital Converter; 이하 "AD 변환부"라 약칭함.)(360)가 구비된다.
상기 변환된 디지털신호에 기초하여 지폐의 진위 여부를 감별하는 제어부(370)가 구비된다.
상기 지폐의 진위 여부 감별에 사용되는 진폐 기준값을 저장하는 저장부(380)가 구비된다.
한편, 도 9에는 제1 및 제3증폭회로부(330a)(340)와 제1차동증폭부(352a)의 내부 회로도가 도시되어 있다. 도 9을 설명하면, 제1증폭회로부(330a)의 제1증폭부(332b)에는 제1센서(310a)가 저항(R1)을 매개하여 제1연산증폭기(OP1)의 비반전(+)단자와 연결된다. 그리고 상기 제1연산증폭기(OP1)의 반전(-)단자는 접지(그라운드)와 연결된다. 상기 접지와 반전(-)단자 사이에는 제1캐패시터(C1)와 저항(R2)이 직렬로 연결된다. 또 상기 제1연산증폭기(OP1)의 반전(-)단자와 출력단자 사이에는 제2캐패시터(C2)와 저항(R3)이 병렬로 연결된다. 그리고, 상기 2차증폭부(334b)에는 상기 제1연산증폭기(OP1)의 출력단자가 저항(R4)을 매개하여 제2연산증폭기(OP2)의 비반전(+)단자와 연결된다. 그리고 상기 제2연산증폭기(OP2)의 반전(-)단자에는 접지(그라운드)와 연결된다. 상기 접지와 반전(-)단자 사이에는 제3캐패시터(C3)와 저항(R5)이 직렬로 연결된다. 또 상기 제2연산증폭기(OP2)의 반전(-)단자와 출력단자 사이에는 제4캐패시터(C4)와 저항(R6)이 병렬로 연결된다. 상기 제3증폭회로부(340)는 상술한 제2증폭회로부(330b)의 구성과 동일하므로 설명은 생략한다. 상기 제1차동증폭부(352b)에는 상기 제1증폭회로부(330a)의 출력단자가 저항(R7)을 매개하여 제3연산증폭기(OP3)의 비반전(+)단자와 연결된다. 상기 저항(R7)과 상기 제3연상증폭기(OP3)의 비반전(+)단자 사이에는 저항(R8)이 병렬로 연결된다. 그리고 제3증폭회로부(340)의 출력단자가 저항(R9)를 매개하여 상기 제3연산증폭기(OP3)의 반전(-)단자와 연결된다. 또 상기 제3연상증폭기(OP3)의 반전(-)단자와 출력단자 사이에는 저항(R10)이 병렬로 연결된다. 이와 같이 구성됨에 따라 제1센서(310a)와 제3센서(320)의 검출신호는 각각 제1 및 제2증폭부(332a)(334a)(342)(344)에 의해 소정 레벨로 증폭되고, 그 다음 제1차동증폭부(352a)에서 노이즈성분이 차감된 후 자기성분만이 추출되게 된다.
이하, 상기한 바와 같은 구성을 가지는 본 발명의 제3실시 예에 따른 매체감별방법을 도 10를 참조하여 상세하게 설명한다.
도 10를 참조하면, 지폐인입부를 통해 지폐가 인입되면(S200), 상기 인입된 지폐가 이송될 때 상기 제1 및 제2센서(310a)(310b)는 상기 지폐에 인쇄된 자기성분을 각각 검출한다. 이때, 상기 제1 및 제2센서(310a)(310b)의 검출신호에는 제1노이즈신호가 포함된다. 아울러, 상기 제3센서(320)는 상기 제1노이즈신호와 동일한 성분을 갖는 제2노이즈신호를 검출한다(S202).
상기 검출이 완료되면, 제1 내지 제3증폭회로부(330a)(330b)(340)는 상기 제1 내지 제3센서(310a)(310b)(320)의 검출신호를 소정 레벨로 증폭한다(S204).
제206단계에서, 제1차동증폭부(352a)는 상기 제1 및 제3증폭회로부(330a)(340)에서 증폭된 신호로부터 제1센서(310a)에서 검출된 자기성분만을 추출하기 위해 상기 제1센서(310a)와 제3센서(320)의 검출신호를 감산한 후 이를 다시 증폭한다. 다시 말하면, 상기 제1노이즈신호와 제2노이즈신호가 서로 상쇄되어 제1센서(310a)에서 검출된 자기성분만을 추출한 후 증폭한다. 동시에, 제2차동증폭부(352b)는 상기 제1차동증폭부(330a)와 마찬가지로 상기 제2센서(310b)와 제3센서(320)의 검출신호를 감산하고 이를 다시 증폭한다.
그러면, AD 변환부(Analog to Digital Converter)(360)는 상기 제1 및 제2차동증폭부(352a)(352b)에 의해 감산/증폭된 신호를 디지털신호로 변환한다(S208).
그리고, 제어부(370)는 상기 변환된 디지털신호에 기초하여 상기 인입된 지폐의 진위 여부를 감별한다(S210). 즉, 상기 제어부(370)는 상기 전달된 디지털신호에 포함된 지폐의 자기성분신호를 판독하고, 저장부(380)에 저장되어 있는 진폐 기준값과 비교하여 상기 인입된 지폐의 진위 여부를 감별하는 것이다. 예컨대, 도 11에는 진폐 기준값의 테이블이 도시되어 있다. 도 11를 참조하면, 상기 진폐 기준값은 지폐의 총 길이(예컨대, 1만원권 지폐의 짧은 쪽의 길이는 68mm)를 1mm 단위로 구분하는 지폐의 위치 값에 대한 제1 및 제2센서(310a)(310b)의 검출신호 세기 값을 포함한다. 만약, 지폐의 위치 값 '50mm'에서 검출된 제1센서(310a)의 검출신호 세기 값이 '30'이고 제2센서(310b)의 검출신호 세기 값이 '0'인 경우 진폐로 감별하고, 반면 지폐의 위치 값 '54mm'에서 검출된 제1센서(310a)의 검출신호 세기 값이 '-50'이거나 또는 제2센서(310b)의 검출신호 세기 값이 '-30'인 경우 위폐로 감별한다. 이때, 상기 지폐의 진위 여부는, 특정 위치의 자기성분이 훼손되거나 또는 지폐가 훼손된 경우를 대비하여, 일치 정도가 일정 비율 이상이면 일치된 것으로 판단한다. 설명의 편의상 하나의 경우에 대한 진폐 기준값만을 설명하였으나, 상기 저장부(380)에는 권종 및 지폐 인입 방향(즉, 앞뒤, 좌우가 바뀌어 인입)에 대응되는 모든 경우에 대한 진폐 기준값이 저장되어 있음은 당연하다.
한편, 도 12에는 상기 자기성분이 추출되는 과정을 설명하기 위한 파형 예시도가 도시되어 있다. 설명의 편의상 제1차동증폭부(352a)가 제1센서(310a)에서 검출된 자기성분을 추출하는 과정에 대해서만 설명하겠다. 도 12을 참조하면, '(A)'는 제1센서(310a)의 검출신호를 나타내며, '(B)'는 제3센서(320)의 검출신호를 나타낸다. 즉, '(A)'는 검출된 자기성분신호 및 제1노이즈신호를 모두 포함하고, '(B)'는 제2노이즈신호만을 포함한다. '(A)', '(B)'는 모두 노이즈신호를 포함하므로, 거의 비슷한 신호파형을 갖는다. 그러나, 'D'영역을 보면, 미세하게 파형 차이가 있음을 알 수 있는데, 이는 상기 제1센서(310a)에서 검출된 자기성분신호가 포함된 영역이기 때문이다. 따라서, 상기 제1차동증폭부(352a)에 의해 '(A)'와 '(B)'가 감산되면, 'E'영역은 노이즈신호만이 존재하므로 서로 상쇄되고, 'D'영역에서 노이즈신호가 상쇄된 자기성분신호(C)만이 추출되는 것이다. 여기서, 상기 자기성분신호(C)는 상기 제1차동증폭부(352a)에 의해 증폭된 값이다.
이와 같이 상기 실시 예에 설명되고 있는 본 발명은 인입된 매체의 진위 여부 감별 시 지폐감별장치 내부에서 유입되는 각종 노이즈를 제거하여 매체 감별력을 향상시키는 이점이 있다.
이상과 같이 본 발명의 도시된 실시 예를 참고하여 설명하고 있으나, 이는 예시적인 것들에 불과하며, 본 발명의 속하는 기술분야의 통상 지식을 가진 자라면 본 발명의 요지 및 범위에 벗어나지 않으면서도 다양한 변형, 변경 및 균등한 타 실시 예들이 가능하다는 것을 명백하게 알 수 있을 것이다. 따라서 본 발명의 진정한 기술적 보호 범위는 첨부된 청구범위의 기술적인 사상에 의해 정해져야 할 것이다.
상기 실시 예에서는 자기성분을 검출하기 위한 센서로 두 개의 자기센서를 구성하였으나, 적어도 하나 이상의 자기센서를 최적의 위치에 설치할 수 있다. 또 증폭회로부 및 차동증폭회로부는 반드시 도면에 도시된 회로 구성일 필요는 없으며, 다른 회로소자를 이용하여 구성할 수 있다.

Claims (15)

  1. 인입되는 매체의 소정 위치에 인쇄되어 노이즈를 포함한 아날로그 형태의 자기성분을 센싱하는 제1자기센서와, 상기 매체가 이송될 때 발생하는 아날로그 형태의 노이즈를 센싱하는 제2자기센서를 포함하는 복수의 자기센서;
    상기 제1자기센서와 제2자기센서 각각에 의해 센싱된 노이즈를 감산하고 이를 하나의 디지털신호로 변환하는 디퍼렌셜 아날로그/디지털 컨버터; 그리고
    상기 변환된 디지털신호에 따라 상기 인입된 매체의 진위 여부를 감별하는 제어부를 포함하여 구성되는 것을 특징으로 하는 매체감별장치.
  2. 제 1항에 있어서,
    상기 자기센서와 1:1 대응되고, 상기 자기센서에 의해 센싱된 아날로그신호의 자기성분을 증폭한 후 노이즈를 필터링하는 증폭/대역통과필터부, 그리고
    상기 진위 여부 감별 시 기준값이 저장되어 있는 저장부를 더 포함하여 구성되는 것을 특징으로 하는 매체감별장치.
  3. 제 2항에 있어서,
    상기 기준값은 상기 매체의 소정 위치에 인쇄된 자기성분 세기 값인 것을 특징으로 하는 매체감별장치.
  4. 제 1항에 있어서,
    상기 자기센서는 자기 패턴 인식 센서(Magnetic Pattern Recognition Sensor)인 것을 특징으로 하는 매체감별장치.
  5. 매체가 인입되는 매체인입단계;
    둘 이상의 자기센서가 상기 인입되는 매체의 소정 위치에 인쇄되어 노이즈를 포함한 아날로그 형태의 자기성분과 상기 매체가 이송될 때 발생하는 아날로그 형태의 노이즈를 센싱하는 센싱단계;
    상기 센싱된 아날로그신호의 자기성분 중에 포함된 노이즈(noise)를 상쇄시켜 상기 센싱된 아날로그신호의 노이즈를 감산하는 감산단계;
    상기 감산된 아날로그신호의 노이즈를 디지털신호로 변환하는 신호변환단계; 그리고
    상기 변환된 디지털신호에 기초하여 인입된 매체의 진위 여부를 감별하는 진위여부 감별단계를 포함하는 것을 특징으로 하는 매체감별방법.
  6. 제 5항에 있어서,
    상기 감산단계에 따라 상기 노이즈의 크기는 상기 매체의 자기성분 세기 값보다 상대적으로 작게 나타나는 것을 특징으로 하는 매체감별방법.
  7. 인입되는 매체의 소정 위치에 인쇄되어 노이즈를 포함한 아날로그 형태의 자기성분을 센싱하는 복수의 자기센서;
    상기 자기센서에 의해 각각 센싱되어 출력되는 자기성분신호를 상호 감산 처리하는 감산부; 그리고
    상기 감산부에 의해 감산 처리된 출력신호를 전달받고, 상기 매체의 진위 여부를 감별하는 매체감별부를 포함하여 구성되는 것을 특징으로 하는 매체감별장치.
  8. 제 7항에 있어서,
    상기 복수의 자기센서는 제1 및 제2자기센서를 포함하여 구성되고,
    상기 감산부는,
    상기 제1자기센서로부터 센싱되어 출력되는 제1자기성분신호를 전달받는 제1인터페이스부;
    상기 제2자기센서로부터 센싱되어 출력되는 제2자기성분신호를 전달받는 제2인터페이스부; 그리고
    상기 전달된 제1 및 제2자기성분신호를 상호 감산 처리하는 차동회로부를 포함하여 구성되는 것을 특징으로 하는 매체감별장치.
  9. 매체와 접촉되게 구성되고, 상기 매체의 자기성분신호를 검출하는 적어도 하나 이상의 제1센서;
    상기 매체와 비접촉되게 구비되고, 상기 매체가 이송될 때 발생하는 노이즈신호를 검출하는 제2센서;
    상기 제1센서의 자기성분신호에 포함된 노이즈신호와 상기 제2센서의 노이즈신호를 감산하여 상기 자기성분신호를 추출하는 감산/추출부;
    상기 추출된 신호를 디지털신호로 변환하는 아날로그/디지털 변환부(Analog to Digital Converter); 그리고
    상기 변환된 디지털신호에 기초하여 상기 매체의 진위 여부를 감별하는 제어부;를 포함하여 구성되는 것을 특징으로 하는 매체감별장치.
  10. 제 9항에 있어서,
    상기 제1 및 제2센서의 추출신호를 각각 증폭하는 복수의 증폭부를 더 포함하여 구성되고,
    상기 증폭부는 모두 동일한 증폭률을 갖는 것을 특징으로 하는 매체감별장치.
  11. 제 9항에 있어서,
    상기 제1 및 제2센서는 자기저항센서임을 특징으로 하는 매체감별장치.
  12. 매체 이송 시 발생하는 노이즈신호와 상기 매체에 인쇄된 자기성분신호를 검출하는 검출단계;
    상기 노이즈신호를 상쇄시켜 상기 자기성분신호를 추출하는 추출단계;
    상기 추출된 자기성분신호에 의해 상기 매체의 진위 여부를 감별하는 감별단계;를 포함하는 것을 특징으로 하는 매체감별방법.
  13. 제 12항에 있어서,
    상기 자기성분신호에는 매체 이송 시 발생하는 상기 노이즈신호가 포함되고,
    상기 추출단계는, 상기 매체 이송 시 발생하는 노이즈신호와 상기 자기성분신호에 포함된 노이즈신호를 감산하여 상기 자기성분신호를 추출하는 것을 특징으로 하는 매체감별방법.
  14. 제 12항에 있어서,
    상기 자기성분신호는 매체에 접촉된 센서로부터 검출되고, 상기 노이즈신호는 매체와 비접촉된 센서로부터 검출되는 것을 특징으로 하는 매체감별방법.
  15. 제 12항에 있어서,
    상기 검출단계에서 검출된 신호를 증폭하는 제1증폭단계와, 상기 추출단계에서 추출된 자기성분신호를 증폭하는 제2증폭단계를 더 포함하고,
    상기 제1증폭단계는 서로 동일한 증폭률로 증폭하는 것을 특징으로 하는 매체감별방법.
PCT/KR2009/003410 2008-06-25 2009-06-24 매체감별장치 및 그 감별방법 WO2009157716A2 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US12/999,097 US8872513B2 (en) 2008-06-25 2009-06-24 Medium discrimination apparatus and discrimination method thereof
CN200980124640.0A CN102077253B (zh) 2008-06-25 2009-06-24 介质鉴别装置及其鉴别方法
EP09770388.8A EP2306409B1 (en) 2008-06-25 2009-06-24 Medium discrimination apparatus and discrimination method thereof

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2008-0060462 2008-06-25
KR1020080060462A KR100985889B1 (ko) 2008-06-25 2008-06-25 매체감별장치 및 그 감별방법
KR10-2008-0073713 2008-07-28
KR1020080073713A KR100981775B1 (ko) 2008-07-28 2008-07-28 매체감별장치 및 그 감별방법

Publications (3)

Publication Number Publication Date
WO2009157716A2 true WO2009157716A2 (ko) 2009-12-30
WO2009157716A9 WO2009157716A9 (ko) 2010-03-18
WO2009157716A3 WO2009157716A3 (ko) 2010-04-29

Family

ID=41445107

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2009/003410 WO2009157716A2 (ko) 2008-06-25 2009-06-24 매체감별장치 및 그 감별방법

Country Status (4)

Country Link
US (1) US8872513B2 (ko)
EP (1) EP2306409B1 (ko)
CN (1) CN102077253B (ko)
WO (1) WO2009157716A2 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104599393A (zh) * 2013-10-30 2015-05-06 光荣株式会社 纸张磁检测装置

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5375912B2 (ja) * 2011-09-22 2013-12-25 沖電気工業株式会社 媒体鑑別装置及び媒体取引装置
CN103247412B (zh) * 2012-02-10 2015-12-16 中国人民银行印制科学技术研究所 一种对两种矫顽力磁性材料进行磁化的结构及识读的装置
JP6226629B2 (ja) 2013-08-09 2017-11-08 株式会社東芝 磁気検出装置及び紙葉類処理装置
CN104569869B (zh) * 2013-10-21 2018-11-02 北京嘉岳同乐极电子有限公司 磁传感器
CN104484937B (zh) * 2014-12-19 2017-02-01 广州广电运通金融电子股份有限公司 现金票据防伪信息的采样方法和采样装置
CN105139509B (zh) * 2015-08-13 2017-08-29 深圳怡化电脑股份有限公司 一种磁性数据滤波的方法及装置
CN105488896A (zh) * 2015-12-31 2016-04-13 威海华菱光电股份有限公司 纸币检测装置
EP3503047B1 (de) * 2017-12-22 2021-01-27 CI Tech Sensors AG Vorrichtung zum nachweis eines magnetischen sicherheitsmerkmals eines wertdokuments und verfahren zur messwertkompensation für den nachweis eines magnetischen sicherheitsmerkmals eines wertdokuments
CN110108781B (zh) * 2019-05-15 2023-11-10 中钞印制技术研究院有限公司 移动设备及其物品鉴别方法、装置和系统、存储介质
CN112509211A (zh) * 2019-08-26 2021-03-16 深圳怡化电脑股份有限公司 纸币检测方法、装置、验钞设备及可读存储介质
CN112509209A (zh) * 2019-08-26 2021-03-16 深圳怡化电脑股份有限公司 纸币磁性检测方法、装置、验钞设备及可读存储介质
CN112509210A (zh) * 2019-08-26 2021-03-16 深圳怡化电脑股份有限公司 纸币图像处理方法、装置、验钞设备及可读存储介质
CN112530077B (zh) * 2019-09-18 2022-10-11 深圳怡化电脑股份有限公司 检测纸币磁性数据的方法、装置、终端设备和存储介质
CN112652288B (zh) * 2019-09-25 2024-08-09 深圳怡化电脑股份有限公司 消除磁性浮动辊磁噪声的方法、装置及终端设备

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3549935B2 (ja) 1995-03-06 2004-08-04 株式会社日本コンラックス 紙葉類識別装置
US7377425B1 (en) * 1999-11-30 2008-05-27 Diebold Self-Service Systems Division Of Diebold, Incorporated Method and system of evaluating checks deposited into a cash dispensing automated banking machine
WO2002059841A1 (en) 2001-01-08 2002-08-01 De La Rue International Limited Magnetic thread reader
JP4208428B2 (ja) * 2001-03-30 2009-01-14 芝浦メカトロニクス株式会社 センサの信号処理方法および装置
KR100472164B1 (ko) 2001-10-24 2005-03-08 주식회사 카스모아이티 위조지폐 검출 계수장치
JP3657218B2 (ja) * 2001-11-12 2005-06-08 Necマイクロシステム株式会社 差動入力a/d変換器
JP3799448B2 (ja) 2002-12-19 2006-07-19 独立行政法人 国立印刷局 印刷物、その真偽判別方法及び真偽判別装置
KR100607696B1 (ko) 2004-10-18 2006-08-02 이-뱅킹텍 수인을 이용한 위조지폐 및 권종식별방법
US7267274B2 (en) * 2004-11-18 2007-09-11 Honeywell International Inc. Magnetic ink validation for coupon and gaming industries

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
None
See also references of EP2306409A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104599393A (zh) * 2013-10-30 2015-05-06 光荣株式会社 纸张磁检测装置

Also Published As

Publication number Publication date
US8872513B2 (en) 2014-10-28
CN102077253B (zh) 2014-05-14
WO2009157716A3 (ko) 2010-04-29
US20110089939A1 (en) 2011-04-21
CN102077253A (zh) 2011-05-25
EP2306409B1 (en) 2015-04-15
WO2009157716A9 (ko) 2010-03-18
EP2306409A4 (en) 2011-11-30
EP2306409A2 (en) 2011-04-06

Similar Documents

Publication Publication Date Title
WO2009157716A2 (ko) 매체감별장치 및 그 감별방법
ES2151548T3 (es) Aparato de deteccion de documentos falsificados.
KR100985889B1 (ko) 매체감별장치 및 그 감별방법
JPS582993A (ja) 印刷物の判別装置
JP2015034794A (ja) 磁気検出装置及び紙葉類処理装置
KR100981775B1 (ko) 매체감별장치 및 그 감별방법
JPH08180189A (ja) 紙葉類の真贋判定方法及び装置
KR100472164B1 (ko) 위조지폐 검출 계수장치
JP3195024B2 (ja) コイン識別装置
CN204740658U (zh) 存取款循环机的钞票识别模块
WO2016093440A1 (ko) 현금 자동 입출금 장치 및 그를 이용한 위폐 검출 방법
JP2511488B2 (ja) 紙葉類判別装置
JP2002296332A (ja) センサの信号処理方法および装置
JP2810776B2 (ja) 紙幣判別装置
WO2023085536A1 (ko) 대용량 직류 전류 회로 설치용 직류 아크 전류 검출센서 및 이를 이용한 직류 아크 검출장치
WO2011010795A2 (ko) 금융 자동화 기기 및 매체감지장치
JPS63247895A (ja) 紙幣判別装置
CN109307686B (zh) 磁性墨水检测装置
CN207268883U (zh) 单张式验钞机
WO2025143645A1 (ko) 지폐 입출금장치
WO2025143957A1 (ko) 금융 자동화 기기 및 금융 자동화 기기 제어방법
JPS60146388A (ja) 紙葉類判別装置
JP2536586Y2 (ja) 紙葉類検出装置
JPS6128185A (ja) 紙幣鑑別装置
JPH10255098A (ja) 紙幣識別装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980124640.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09770388

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 2009770388

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12999097

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE