[go: up one dir, main page]

WO2009157534A1 - 閉ループ送信電力制御方法及び基地局装置、端末装置 - Google Patents

閉ループ送信電力制御方法及び基地局装置、端末装置 Download PDF

Info

Publication number
WO2009157534A1
WO2009157534A1 PCT/JP2009/061695 JP2009061695W WO2009157534A1 WO 2009157534 A1 WO2009157534 A1 WO 2009157534A1 JP 2009061695 W JP2009061695 W JP 2009061695W WO 2009157534 A1 WO2009157534 A1 WO 2009157534A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission power
signal
power control
hopped
quality
Prior art date
Application number
PCT/JP2009/061695
Other languages
English (en)
French (fr)
Inventor
輝雄 川村
祥久 岸山
健一 樋口
衛 佐和橋
Original Assignee
株式会社エヌ・ティ・ティ・ドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社エヌ・ティ・ティ・ドコモ filed Critical 株式会社エヌ・ティ・ティ・ドコモ
Priority to CN200980124553.5A priority Critical patent/CN102090117B/zh
Priority to US13/000,486 priority patent/US8665926B2/en
Priority to EP09770244.3A priority patent/EP2296409A4/en
Priority to JP2010518068A priority patent/JP5411856B2/ja
Publication of WO2009157534A1 publication Critical patent/WO2009157534A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. Transmission Power Control [TPC] or power classes
    • H04W52/04Transmission power control [TPC]
    • H04W52/06TPC algorithms
    • H04W52/08Closed loop power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. Transmission Power Control [TPC] or power classes
    • H04W52/04Transmission power control [TPC]
    • H04W52/38TPC being performed in particular situations
    • H04W52/42TPC being performed in particular situations in systems with time, space, frequency or polarisation diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/713Spread spectrum techniques using frequency hopping
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A) or DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signalling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. Transmission Power Control [TPC] or power classes
    • H04W52/04Transmission power control [TPC]
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters

Definitions

  • the present invention relates to a closed loop transmission power control method, a base station apparatus, and a terminal apparatus suitable for a fixed rate channel such as a control channel.
  • an uplink signal transmitted from a mobile station apparatus (UE: User equipment) existing in the same cell is multiplied by a user-specific scramble code, Uplink received signals are non-orthogonal between UEs in the same cell. Therefore, in order to reduce the influence of multi-user interference (that is, the perspective problem), high-speed transmission power control (TPC: “Transmission” Power “Control”) is essential.
  • UE User equipment
  • TPC Transmission” Power “Control”
  • LTE Long-8 Evolution LTE
  • Rel-8 LTE Long-8 Evolution LTE
  • PAPR Peak-to Average Power Ratio
  • SC-FDMA Single-Carrier Frequency Division Multiple Access
  • TPC is not always essential from the viewpoint of suppressing multiuser interference in the same cell.
  • Rel-8 LTE is based on one-cell frequency repetition using the same frequency in all cells, the same cell interference from neighboring cells is large, and especially UEs existing at the cell edge receive from UEs in other cells. The interference level is high. For this reason, in order to compensate for such neighboring cell interference and maintain a constant reception quality, it is necessary to apply TPC also in LTE.
  • PRACH Physical Random Access Channel
  • PUSCH Physical Uplink Shared Channel
  • PUCCH Physical Uplink Control Channel
  • PUSCH is a physical channel that transmits user data, and adaptive modulation and channel coding (AMC: Adaptive Modulation and channel Coding) according to the reception channel state of UE and adaptive TPC are applied.
  • AMC adaptive modulation and channel coding
  • compensation for path loss and shadowing fluctuation is handled by using adaptive TPC (open loop TPC), and instantaneous fading fluctuation is dealt with by adaptive rate control by AMC.
  • PUCCH transmits control information (typically, downlink reception channel quality (CQI: Channel Quality Indicator) information, downlink acknowledgment (ACK: Acknowledgement) / non-acknowledgement (NACK: negative ACK), etc.)
  • control information typically, downlink reception channel quality (CQI: Channel Quality Indicator) information, downlink acknowledgment (ACK: Acknowledgement) / non-acknowledgement (NACK: negative ACK), etc.
  • CQI Channel Quality Indicator
  • ACK Acknowledgement
  • NACK negative ACK
  • FIG. 2 is a configuration diagram of PUCCH in the uplink of Rel-8 LTE.
  • PUCCH uses a radio resource having a narrow bandwidth (180 kHz) in order to achieve both transmission at any time and low overhead.
  • a 1 msec subframe is composed of two 0.5 msec slots.
  • the frequency diversity gain is generally reduced.
  • frequency hopping that uses two slots in one subframe and hops between bands at both ends of the transmission spectrum, A large frequency diversity effect can be obtained.
  • Transmission bands RB1 and RB2 are allocated to the bands at both ends of the transmission spectrum to be frequency hopped, UE1 causes frequency hopping between slot 1 of RB1 and slot 2 of RB2, and UE2 performs slot 1 of RB2 and slot 2 of RB1. Frequency hopping between.
  • the transmission bands RB1 and RB2 can also be called resource blocks (RB).
  • RB resource blocks
  • multiple mobile station apparatuses to which frequency hopping using the same radio resource is applied are orthogonalized by code multiplexing.
  • Fig. 5 is a conceptual diagram of closed-loop TPC for PUCCH specified in Rel-8 LTE.
  • a mode in which CQI information is transmitted periodically (TCQI) on PUCCH is defined.
  • the base station measures the uplink received channel quality (SINR) using a channel estimation reference signal (RS: Reference Signal) transmitted on the PUCCH.
  • RS Reference Signal
  • the reception SINR and the target reception level are compared, and TPC command bits for controlling the transmission power are generated so that the reception quality is constant.
  • the base station generates a TPC command bit at a certain period (TTPC) and transmits it to the mobile station.
  • the transmission power of PUCCH is adjusted according to the received TPC command bit. In this way, an uplink closed loop TPC is realized.
  • FIG. 6 is a conceptual diagram of the TPC method (referred to as “RB common TPC method” in this specification) for PUCCH in Rel-8 LTE.
  • the received SINR is measured in each of RB1 and RB2 of the PUCCH to be frequency hopped, and the measured received SINR is averaged between RB1 and RB2 to obtain an average received SINR.
  • Closed loop control is performed by transmitting TPC command bits to the UE so that the average received SINR matches the target SINR value.
  • the RB common TPC method is a method in which the UE performs common power control between RBs so that the average received SINR of the two RBs 1 and 2 used for frequency hopping matches the target SINR value.
  • the power is adjusted to the same (identical) power for RB1 and RB2, but is subjected to frequency selective fading in the channel propagation path between the mobile station and the base station.
  • the reception SINR at has different reception levels between RB1 and RB2.
  • the average received SINR of RB1 and RB2 matches the target SINR, but RB1 is received with an excess quality that exceeds the target value, while RB2 is less than the target value. It shows the quality being received.
  • the present invention has been made in view of such points, and a closed-loop transmission power control method and a base station apparatus capable of realizing constant reception quality for all RBs without applying another technique for each RB in the closed-loop TPC,
  • An object is to provide a terminal device.
  • a signal hopped to one of a plurality of frequency bands is received from a terminal device every predetermined time unit, and the quality of the signal received from the terminal device is hopped.
  • Transmission power control information is generated separately for each frequency band, and transmission power control information generated separately for each frequency band is transmitted to the terminal apparatus.
  • the transmission power control method of the present invention receives a signal hopped to one of a plurality of frequency bands from a terminal device every predetermined time unit, and measures the quality of the received signal for each time unit.
  • the difference between the quality of only the measurement signal and the target quality causes the terminal device to Transmission power control information indicating the amount of uplink transmission power to be increased or decreased is generated, and the generated transmission power control information is transmitted to the terminal device.
  • the quality of each signal matches the target quality more accurately than when averaging the signal quality of different frequency bands And high quality reception can be realized.
  • the transmission power control method of the present invention is the time average of the measured quality when the measurement signal to be measured and any adjacent signal that is temporally adjacent are hopped in the same frequency band.
  • transmission power control information indicating the amount of uplink transmission power to be increased / decreased in the terminal device due to the difference from the target quality, and the measurement signal to be measured is any one of the time difference When the adjacent signal is hopped to a different frequency band, only the measurement signal is used as a basis for generating transmission power control information.
  • the frequency when the measurement signal and any adjacent signal that precedes and follows in time are hopped in the same frequency band, and the measurement signal and any adjacent signal that precedes and follows in time differ. High-quality reception can be realized by the case where the band is hopped.
  • the present invention in the closed-loop TPC, it is possible to realize high-quality reception for all RBs without applying another technique for each RB.
  • a transmission power control method according to the present embodiment will be described with reference to FIG.
  • a PUCCH shown in FIG. 2 will be described as an example of a channel that is subjected to closed-loop transmission power control in the uplink defined in Rel-8 LTE.
  • the present invention is not limited to an uplink fixed rate channel to which frequency hopping is applied, and can also be applied to channels other than PUCCH.
  • Rel-8 LTE uplink PUCCH is a channel for transmitting control information (typically CQI, ACK, NACK).
  • One subframe is composed of two slots 1 and 2. Frequency hopping using bands (RB1, RB2) at both ends of the transmission spectrum is applied to slot 1 and slot 2.
  • the base station measures the received SINR using the RS in the PUCCH that periodically transmits CQI information.
  • the received SINR and the target SINR are compared, and a TPC command bit for adjusting the transmission power of the PUCCH is generated according to the comparison result.
  • the generated TPC command bit for transmission power of PUCCH is feedback-transmitted from the opposite link to the mobile station apparatus.
  • the mobile station apparatus controls the transmission power of the PUCCH based on the TPC command bit received on the downlink. This realizes a closed loop TPC of PUCCH that transmits CQI.
  • the received SINR is calculated for each RB, and each received SINR is independently determined between RB1 and RB2.
  • the TPC command bits thus obtained individually for RB1 and RB2 are fed back in the downlink (hereinafter referred to as “RB independent TPC method”). That is, in the RB independent TPC method, the received SINRs of RB1 and RB2 in different frequency bands are not averaged, but the TPC command bit (RB1) for matching the received SINR of RB1 with the target SINR value and the received SINR of RB2.
  • TPC command bits (RB2) that match the target SINR value are generated and transmitted to the UE.
  • the UE controls the transmission power of the corresponding RB 1 and 2 with the TPC command bits (RB 1 and RB 2) designated for each RB.
  • the present invention described above receives a signal hopped in any of a plurality of frequency bands for each predetermined time unit, measures the received SINR for each time unit as the quality of the received signal, In the case where the measured signal that has become hopped in a different frequency band from any adjacent signal that fluctuates in time, it can be said that only the measured signal is used as a basis for generating the TPC command bits.
  • the present invention described above receives a signal hopped in any of a plurality of frequency bands for each predetermined time unit, measures the received SINR for each time unit as the quality of the received signal, If the measured signal and any adjacent signal that fluctuates in time are hopped to the same frequency band, the terminal device should increase or decrease due to the difference between the measured quality time average and the target quality.
  • An aspect of generating transmission power control information indicating the amount of uplink transmission power may be included. That is, it is applicable not to frequency hopping in units of slots but to frequency hopping in units of subframes.
  • a control signal is transmitted using two adjacent slots 1 and 2 in RB1 in a certain subframe, and then other CQI information is transmitted.
  • frequency hopping is performed so that the control signal is transmitted by using two adjacent slots 1 and 2 in RB2.
  • the measurement signal (slot 1) that is the object of measurement and any adjacent signal (slot 2) that fluctuates in time are hopped to the same frequency band (for example, R1).
  • band (R1) transmission power control information indicating the amount of uplink transmission power to be increased or decreased in the terminal device is determined based on the difference between the measured quality time average (slot 1 + slot 2) and the target quality. .
  • the transmission power control information is similarly determined for the other frequency band (R1).
  • FIG. 3 is a functional block diagram of a transmitter and a receiver of the mobile station apparatus (UE)
  • FIG. 4 is a functional block diagram of a transmitter and a receiver of the base station apparatus.
  • the transmission unit of the mobile station apparatus includes a processing block 11 for transmitting CQI information as one of control information, a processing block 12 for transmitting RS, and a multiplexing unit 13 for multiplexing CQI information on RS. And a power amplifying unit 14 that controls transmission power of each RB 1 and 2 used for frequency hopping of the multiplexed signal.
  • the channel coding unit 21 performs channel coding on CQI information (CQI bit sequence), which is reception quality information estimated based on the RS received in the downlink in the receiving unit.
  • CQI information CQI bit sequence
  • the channel-coded CQI information is modulated by the data modulation unit 22 using a predetermined modulation method, and then supplied to the subcarrier mapping unit 23.
  • the subcarrier mapping unit 23 frequency hops CQI information between RB1 and RB2 in slot units based on the resource block number. For example, hopping is performed between slot 1 of RB1 and slot 2 of RB2.
  • the IFFT unit 24 performs fast inverse Fourier transform (Inverse Fast Fourier Transform) on the output signal of the subcarrier mapping unit 23 to generate a time-axis waveform signal, which is given a guard interval by the CP assigning unit 25 and then output to the multiplexing unit 13 .
  • Fast inverse Fourier transform Inverse Fast Fourier Transform
  • the resource block number and the sequence number decoded from the control signal received in the downlink in the receiving unit are captured.
  • An RS sequence generating unit 31 generates an RS based on the sequence number.
  • the subcarrier mapping unit 32 performs frequency hopping of the RS into RB1 and RB2 on a slot basis based on the resource block number.
  • the IFFT unit 33 performs fast inverse Fourier transform on the output signal of the subcarrier mapping unit 32 to obtain a time-axis waveform signal.
  • the CP applying unit 34 assigns a guard interval and then outputs the signal to the multiplexing unit 13.
  • the CQI information output from the CQI information processing block 11 and the RS output from the RS processing block 12 are multiplexed in the multiplexing unit 13.
  • the power amplification unit 14 controls the transmission power of the multiplexed signal of CQI information and RS output from the multiplexing unit 13 independently by the two RB1 and RB2.
  • the TPC command information decoded in the receiving unit includes TPC commands for RB1 and RB2 in which slot 1 and slot 2 are mapped by the subcarrier mapping units 23 and 32, respectively.
  • the power amplifying unit 14 amplifies the signal with the transmission power indicated by the TPC command independently of RB1 and RB2. In this way, the transmission signal whose transmission power is controlled independently for each of RB1 and RB2 is wirelessly transmitted from the transmission radio.
  • the RS is separated from the received signal in which the CQI information and the RS are multiplexed.
  • the separated RS is used for synchronization detection in the synchronization detection / channel estimation / reception quality measurement unit 51, and further, the received RS and the known signal (RS transmission replica) are compared to perform channel estimation. Further, the received SINR (RB1) and the received SINR (RB2) are measured for each of RB1 and RB2 based on the resource block number.
  • the TPC command information generation unit 52 takes in the received SINRs of RB1 and RB2 and compares them with the target SINR value.
  • a TPC command bit (RB1) for RB1 that matches the received SINR (RB1) with the target SINR value is generated.
  • a TPC command command (RB2) for RB2 that matches the received SINR (RB2) with the target SINR value is generated.
  • the TPC command bit indicating the amount of uplink transmission power to be increased or decreased in the mobile station is generated based on the difference between the received SINR and the target SINR.
  • TPC command bits that match the received SINR of each RB used for frequency hopping with the target SINR value are independently generated for each RB.
  • the received signal is subjected to the guard interval removal by the CP removal unit 53 based on the timing detected by the synchronization detection / channel estimation / reception quality measurement unit 51, the FFT unit 54 performs fast Fourier transform, and then the subcarrier demapping unit At 55, control information (CQI information) mapped to RB1 and RB2 is demapped based on the resource block number.
  • the demapped CQI information is demodulated by the data demodulator 56 and further decoded by the data decoder 57.
  • the TPC command (RB 1) and the TPC command (RB 2) generated independently for each RB as described above use an uplink TPC command transmission control channel (TPC-PDCCH) 61 to generate an OFDM signal generator 63. After being converted into an OFDM signal, the signal is transmitted to the mobile station apparatus (UE) in the downlink. Further, the uplink resource allocation information signal generation unit (UL grant) 62 generates uplink resource allocation information, and is transmitted using both TPC-PDCCH and UL grant by including TPC command information in the uplink resource allocation information signal. You can also
  • the received signal received from the base station apparatus is demodulated by the OFDM demodulator 41, the TPC command bit information is output to the TPC command bit information demodulator / decoder 42, and the RS is output to the CQI estimator 43.
  • the broadcast channel and the downlink control signal are output to the decoding unit 44.
  • the broadcast channel and downlink control signal decoding unit 44 decodes the broadcast channel or downlink control signal of the received signal to obtain a sequence number and a resource block number.
  • the sequence number is given to the RS sequence generation unit 31, and the resource block number is given to the subcarrier mapping units 23 and 32.
  • the TPC command information demodulation / decoding unit 42 demodulates and decodes the TPC command (RB1) and TPC command (RB2) generated independently for each RB via TPC-PDCCH or UL grant, It is given as TPC command information.
  • the power amplifying unit 14 controls transmission power based on the TPC command generated independently for each RB. In this way, a closed loop TPC is realized.
  • PUCCH is assigned to RB1 for transmission to UE1, and RB2 is assigned to transmission to UE2. Focusing on UE1, control information is transmitted using slot 1 and slot 2 of RB1.
  • the TPC command bit is not an average of the received SINRs of RB1 and RB2, but is a value obtained by averaging the one subframe of RB1 (for two slots) in the same phase.
  • a TPC command is generated for each RB to match the reception SINR obtained by in-phase averaging of one subframe (for two slots) with the target SINR, and an independent closed-loop TPC is performed between the RBs.
  • the channel estimation accuracy and the reception SINR measurement accuracy used for the closed-loop TPC can be improved by using the in-phase addition average of two slots constituting one subframe in the time domain, and the overall PUCCH information can be improved. Quality reception and high-precision closed-loop TPC can be realized.
  • FIG. 7 shows functional blocks of the mobile station apparatus in which processing blocks for orthogonalizing uplink control information (CQI information, RS) between users in the same cell are shown.
  • FIG. 8 shows the movement shown in FIG. The functional block of the base station apparatus corresponding to a station apparatus is shown.
  • the uplink resource allocation information signal generation unit 62 in the transmission unit of the base station apparatus includes a sequence number indicating the start position of a CAZAC (Constant Amplitude Zero Auto-Correlation) sequence, a cyclic shift number indicating a shift amount, And a resource block number indicating a radio resource allocated to the mobile station apparatus.
  • the base station apparatus allocates different cyclic shifts for each mobile station apparatus to the same CAZAC sequence in order to orthogonalize and multiplex uplink control signals of mobile station apparatuses existing in the same cell to be managed ( That is, code multiplexing).
  • the base station apparatus generates a common sequence number among users and a different cyclic shift number for each user and notifies the mobile station apparatuses existing in the same cell to be managed in the downlink.
  • a Zadoff-Chu sequence may be used as the CAZAC sequence.
  • the broadcast channel / downlink control signal decoding unit 44 in the receiving unit of the mobile station apparatus decodes a control signal including a sequence number, a resource block number, and a cyclic shift number from the downlink OFDM demodulated signal. .
  • the transmitter of the mobile station apparatus generates a CAZAC sequence signal based on the sequence number notified from the base station apparatus, and a CAZAC sequence signal generated by the CAZAC sequence generator according to the cyclic shift number.
  • the CQI information transmitted by this mobile station apparatus in the uplink is encoded into an orthogonalized signal in relation to other mobile station apparatuses.
  • the transmission unit of the mobile station apparatus includes a cyclic shift unit 35 that shifts the RS sequence signal generated by the RS sequence generation unit 31 according to the cyclic shift number.
  • the RS transmitted by the mobile station apparatus in the uplink is encoded into an orthogonalized signal in relation to other mobile station apparatuses.
  • control signals (CQI, RS) are orthogonally multiplexed between other users in the mobile station apparatus, they are transmitted with frequency hopping in the uplink.
  • the receiving unit of the base station apparatus includes a cyclic shift separation unit 58 that receives a signal (CQI information) returned to the frequency domain by the FFT unit 54 and separates the CQI information from the signal based on the cyclic shift number. Since the cyclic shift number is assigned a different value for each user, it is possible to extract CQI information received from each user by performing signal separation using the cyclic shift number assigned to the user.
  • the receiving unit of the base station apparatus includes a channel compensating unit 59 that returns (compensates) channel fluctuation received by the mobile station apparatus-base station apparatus building based on the channel estimation value estimated using the RS. After subcarrier demapping, the channel fluctuation received by the mobile station apparatus-base station apparatus building is compensated and then passed to the data demodulation unit 56.
  • the present invention is applicable to a closed-loop transmission power control method in uplink PUCCH of Rel-8 LTE.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

 周波数ホッピングを適用した無線リソースを用いるチャネルに対する閉ループTPCにおいて、各RBについて別の技術を適用することなく、全てのRBについて高品質受信を実現すること。この送信電力制御方法は、信号を複数のリソースブロックで周波数ホッピングさせて送信する移動通信システムにおいて,周波数ホッピングを適用した無線リソースを用いるチャネルを閉ループで送信電力制御する送信電力制御方法であって、リソースブロック(RB1、RB2)毎に受信信号から受信チャネル品質を測定し、リソースブロック間で独立して各リソースブロックで測定された受信品質が目標受信品質と一致するようにTPCコマンドビットを下りリンクで送信する。

Description

閉ループ送信電力制御方法及び基地局装置、端末装置
 本発明は、制御チャネルのような固定レートのチャネルに好適な閉ループ送信電力制御方法及び基地局装置、端末装置に関する。
 W-CDMA方式に基づいて無線通信する無線通信システムでは、同一セル内に存在する移動局装置(UE: User equipment)から送信される上りリンクの信号にユーザ固有のスクランブル符号が乗算されており、上りリンクの受信信号が同一セル内に存在するUE間で非直交となる。そこで、マルチユーザ干渉(すなわち、遠近問題)の影響を低減するため、高速送信電力制御(TPC: Transmission Power Control)が必須となっている。
 一方、3GPP Release 8で規定されるLTE(Long Term Evolution)のシステム(以下、「Rel-8 LTE」と略称する)では、低いピーク対平均電力比(PAPR: Peak-to Average Power Ratio)を実現しカバレッジの増大に有効であるSC-FDMA(Single-Carrier Frequency Division Multiple Access)方式が上りリンクの通信方式に採用されている。SC-FDMA方式では,基地局によるスケジューリングにより、基本的には、ある周波数リソースおよび時間リソースからなる無線リソースをひとつのUEに割り当てる。このため、同一セル内に存在する複数ユーザ間は周波数および時間領域で直交が実現されている。このため、同一セル内のマルチユーザ干渉を抑圧する観点からは,TPCは必ずしも必須ではない。しかしながら、Rel-8 LTEでは全てのセルで同一の周波数を用いる1セル周波数繰り返しをベースとするため、周辺セルからの同一セル干渉が大きく、特にセル端に存在するUEが他セルのUEから受ける干渉レベルは高い。このため、このような周辺セル干渉を補償し一定の受信品質を維持するため、LTEにおいてもTPCを適用する必要がある。
 Rel-8 LTEの上りリンクでは、1)物理ランダムアクセスチャネル(PRACH: Physical Random Access Channel)、2)上りリンク物理共有チャネル(PUSCH: Physical Uplink Shared Channel)、3)上りリンク物理制御チャネル(PUCCH: Physical Uplink Control Channel)が規定されている。
 PRACHに対しては,距離減衰,およびシャドウイング変動を補償する低速のTPC(開ループTPC)のみが適用される。
 PUSCHは、ユーザデータを送信する物理チャネルであり、UEの受信チャネル状態に応じた適応変復調・チャネル符号化(AMC: Adaptive Modulation and channel Coding)、及び適応TPCが適用される。この場合,パスロス、シャドウイング変動の補償には適応TPC(開ループTPC)を用いて対応し、瞬時のフェージング変動に対してはAMCによる適応レート制御で対応している。
 一方、PUCCHは、制御情報(典型的には,下りの受信チャネル品質(CQI: Channel Quality Indicator)情報、下りの確認応答(ACK: Acknowledgement)/非確認応答(NACK: negative ACK)等)を伝送する物理チャネルである。このような制御情報は,送信ビット数が予め決められているので,固定レートであり、受信チャネル品質に応じたAMCによる適応レート制御の必要はない。むしろ,PUCCHで伝送する情報は,下りリンクデータチャネルに適用されるAMCあるいは再送のためのフィードバックに必要不可欠であることから、一定の受信品質を維持することが重要である。このため、PUCCHに対しては、パスロス、シャドウイング変動、および瞬時フェージング変動を含めて,受信レベルを補償する必要があるため、開ループTPCに加えて、閉ループTPCを適用すべきである。
 図2はRel-8 LTEの上りリンクにおけるPUCCHの構成図である。
 PUCCHは、いつでも送信可能であること、及び低オーバヘッドであること、を両立するため、狭い帯域幅(180kHz)の無線リソースが用いられている。また、1msecのサブフレームは0.5 msecの2つのスロットで構成されている。狭い送信帯域幅を用いた場合、一般的には周波数ダイバーシチ利得が減少するが,1サブフレーム内の2つのスロットを利用し送信スペクトラムの両端の帯域間でホッピングさせる周波数ホッピングを適用することで、大きな周波数ダイバーシチ効果を得ることができる。周波数ホッピングされる送信スペクトラム両端の帯域に送信帯域RB1、2を割り付け、UE1はRB1のスロット1とRB2のスロット2との間で周波数ホッピングさせ、UE2はRB2のスロット1とRB1のスロット2との間で周波数ホッピングされる。送信帯域RB1、2はリソースブロック(RB: Resource Block)と呼ぶこともできる。さらに、同一の無線リソースを用いた周波数ホッピングが適用される複数移動局装置は、コード多重によって、直交化される。
 図5は、Rel-8 LTEで規定されているPUCCHに対する閉ループTPCの概念図である。図5に示すように、Rel-8 LTEの上りリンクでは、CQI情報をPUCCHにて周期的(TCQI)に送信するモードが規定されている。この場合、基地局では,PUCCHで送られるチャネル推定用の参照信号(RS: Reference Signal)を用いて上りリンクの受信チャネル品質(SINR)を測定する。受信SINRと目標受信レベルとが比較され、受信品質が一定となるように送信電力を制御するためのTPCコマンドビットが生成される。例えば、基地局は、ある周期(TTPC)でTPCコマンドビットを生成して移動局に送信する。移動局では,受信したTPCコマンドビットに応じて、PUCCHの送信電力が調整される。このようにして、上りリンクの閉ループTPCが実現されている。
 図6はRel-8 LTEにおけるPUCCHに対するTPC法(本明細書では「RB共通TPC法」と呼称する)の概念図である。RB共通TPC法では、周波数ホッピングするPUCCHのRB1及びRB2のそれぞれにおいて受信SINRを測定し、測定した受信SINRをRB1,RB2間で平均化して平均受信SINRを求める。平均受信SINRがターゲットSINR値と一致するようにUEに対してTPCコマンドビットを送信し、閉ループ制御を行う。
 RB共通TPC法は、周波数ホッピングに用いられる2つRB1,2の平均受信SINRをターゲットSINR値に一致させるように,UEに対してRB間で共通の電力制御を行う方法である。図6に示すように、送信側(Tx)では,RB1,2共通(同一)の電力に調整されるが,移動局と基地局間のチャネル伝搬路において周波数選択性フェージングを受けるため,基地局における受信SINRはRB1,RB2間で異なる受信レベルとなる。図6に示す例では、RB1とRB2の平均受信SINRがターゲットSINRに一致しているが,RB1に対してはターゲット値を上回る過剰品質で受信され,一方,RB2に対してはターゲット値を下回る品質で受信されている様子が示されている。
 しかしながら、上記したRB共通TPC法では、平均受信SINRとターゲットSINR値とが一致するようにRB間で共通の電力制御を行うので、RB単位では必ずしも高品質受信が実現されていない場合もあった。
 また、平均受信SINRとターゲットSINR値とが一致する場合でも、周波数ホッピングされるRB間で残留する受信品質の大きなレベル差は、別の技術(周波数ホッピング又は周波数ホッピング前後のチャネル符号化)で改善することが必須である。
 本発明は、かかる点に鑑みてなされたものであり、閉ループTPCにおいて各RBについて別の技術を適用することなく全てのRBについて一定の受信品質を実現できる閉ループ送信電力制御方法及び基地局装置、端末装置を提供することを目的とする。
 本発明の送信電力制御方法は、複数の周波数帯のいずれかにホッピングされた信号を所定の時間単位毎に端末装置から受信し、前記端末装置から受信した信号の品質を、前記信号がホッピングされた前記周波数帯毎に前記時間単位で別々に測定し、前記周波数帯毎の測定品質と目標品質とのそれぞれの差異に応じて、前記端末装置にて増減すべき上り送信電力量が示された送信電力制御情報を、前記各周波数帯で別々に生成し、前記周波数帯毎に別々に生成された送信電力制御情報を前記端末装置へ送信することを特徴とする。
 また、本発明の送信電力制御方法は、複数の周波数帯のいずれかにホッピングされた信号を所定の時間単位毎に端末装置から受信し、受信された信号の品質を前記時間単位毎に測定し、測定の対象となった測定信号と、時間的に前後するいずれかの隣接信号とが異なる周波数帯にホッピングされていた場合、測定信号のみの品質と目標品質との差異により、前記端末装置において増減すべき上り送信電力の量が示された送信電力制御情報を生成し、前記端末装置に対して、生成された送信電力制御情報を送信することを特徴とする。
 この構成によれば、測定の対象となった測定信号と、時間的に前後するいずれかの隣接信号とが異なる周波数帯にホッピングされていた場合、測定信号のみの品質と目標品質との差異により、端末装置において増減すべき上り送信電力の量が示された送信電力制御情報を生成するので、異なる周波数帯の信号品質を平均する場合に比べて、各信号の品質を精度よく目標品質に一致させることができ、高品質受信を実現できる。
 また、本発明の送信電力制御方法は、測定の対象となった測定信号と、時間的に前後するいずれかの隣接信号とが同一の周波数帯にホッピングされていた場合、測定した品質の時間平均と、目標品質との差異により、端末装置において増減すべき上り送信電力の量が示された送信電力制御情報を生成し、測定の対象となった測定信号と、時間的に前後するいずれかの隣接信号とが異なる周波数帯にホッピングされていた場合、測定信号のみを送信電力制御情報を生成する基として用いることを特徴とする。
 この構成によれば、測定信号と時間的に前後するいずれかの隣接信号とが同一の周波数帯にホッピングされていた場合と、測定信号と時間的に前後するいずれかの隣接信号とが異なる周波数帯にホッピングされていた場合とで、それぞれ高品質受信を実現できる。
 本発明によれば、閉ループTPCにおいて、各RBについて別の技術を適用することなく、全てのRBについて高品質受信を実現できる。
実施の形態に係る固定レートチャネルにおける送信電力制御方法の概念図 Rel-8 LTE上りリンクにおけるPUCCHの構成図 移動局装置(UE)の送信部及び受信部の機能ブロック図 基地局装置の送信部及び受信部の機能ブロック図 Rel-8 LTE上りリンクにおけるPUCCHでの閉ループTPCの概念図 Rel-8 LTEで採用されているRB共通TPC法の概念図 同一セル内のユーザ間で直交させるための処理ブロックを記入した移動局装置の機能ブロック図 図7に示す移動局装置に対応した基地局装置の機能ブロック図
 以下、本発明の実施の形態について添付図面を参照して詳細に説明する。
 図1を参照して本実施の形態に係る送信電力制御方法について説明する。Rel-8 LTEに規定された上りリンクにおいて閉ループ送信電力制御されるチャネルとして図2に示すPUCCHを例に説明する。但し、本発明は周波数ホッピングが適用された上りリンクの固定レートチャネルに限定されるものではなく、PUCCH以外のチャネルにも適用可能である。
 Rel-8 LTE上りリンクのPUCCHは、制御情報(典型的にはCQI、ACK、NACK)を伝送するためのチャネルである。1サブフレームは2つのスロット1,2で構成される。スロット1とスロット2とで送信スペクトラムの両端の帯域(RB1、RB2)を用いた周波数ホッピングが適用される。そして、基地局では、周期的にCQI情報を伝送するPUCCH内のRSを用いて受信SINRが測定される。受信SINRとターゲットSINRが比較され、比較結果に応じてPUCCHの送信電力を調整するためのTPCコマンドビットが生成される。生成されたPUCCHの送信電力用のTPCコマンドビットは,移動局装置に対して対向リンクからフィードバック送信される。そして,移動局装置では、下りリンクで受信したTPCコマンドビットに基づき,PUCCHの送信電力を制御する。これにより,CQIを伝送するPUCCHの閉ループTPCが実現される。
 本実施の形態では、PUCCHの送信信号の周波数ホッピングに用いられる2つのRB(RB1,RB2)について、RB毎に個別に受信SINRを計算し、RB1,2間で独立して夫々の受信SINRがターゲットSINR値に一致するように、適切なTPCコマンドビットを生成する。このようにRB1,RB2について個別に求めたTPCコマンドビットを下りリンクでフィードバックする(以下、「RB独立TPC法」と呼称する)。すなわち、RB独立TPC法では、異なる周波数帯であるRB1及びRB2の受信SINRを平均化するのではなく、RB1の受信SINRをターゲットSINR値に一致させるTPCコマンドビット(RB1)と、RB2の受信SINRをターゲットSINR値に一致させるTPCコマンドビット(RB2)とをそれぞれ生成してUEへ送信する。UEではRB毎に指示されたTPCコマンドビット(RB1,RB2)で対応するRB1,2の送信電力を制御する。
 また上記した本発明は、複数の周波数帯のいずれかにホッピングされた信号を所定の時間単位毎に受信し、受信された信号の品質として受信SINRを時間単位毎に測定し、測定の対象となった測定信号と、時間的に前後するいずれかの隣接信号とが異なる周波数帯にホッピングされていた場合、測定信号のみをTPCコマンドビットを生成する基として用いるということもできる。
 また上記した本発明は、複数の周波数帯のいずれかにホッピングされた信号を所定の時間単位毎に受信し、受信された信号の品質として受信SINRを時間単位毎に測定し、測定の対象となった測定信号と、時間的に前後するいずれかの隣接信号とが同一の周波数帯にホッピングされていた場合、測定した品質の時間平均と、目標品質との差異により、端末装置において増減すべき上り送信電力の量が示された送信電力制御情報を生成する態様を含んでも良い。すなわち、スロット単位での周波数ホッピングではなく、サブフレーム単位で周波数ホッピングさせる場合に適用可能である。具体的には、所定数のサブフレーム間隔でCQI情報を送る態様では、あるサブフレームではRB1にて隣接する2スロット1,2を用いて制御信号を送信し、次にCQI情報を送る他のサブフレームではRB2にて隣接する2スロット1,2を用いて制御信号を送信するように周波数ホッピングさせる。この場合には、測定の対象となった測定信号(スロット1)と、時間的に前後するいずれかの隣接信号(スロット2)とが同一の周波数帯(例えばR1)にホッピングされるので、周波数帯(R1)については、測定した品質の時間平均(スロット1+スロット2)と、目標品質との差異により、端末装置において増減すべき上り送信電力の量が示された送信電力制御情報を決定する。もう一方の周波数帯(R1)についても同様にして送信電力制御情報が決定される。
 したがって、図1に示すように、RB1とRB2の伝搬路の状況が異なれば、送信側(Tx)となるUEに対してRB1とRB2とで異なる送信電力を指示するTPCコマンドが指示されるが、受信側(Rx)となる基地局ではRB1とRB2の両方の受信SINRが最終的にはターゲットSINRと一致する。
 このように、PUCCHの閉ループTPCに上記したRB独立TPC法を適用することにより、RB共通TPC法に比べて、各RB1,2の受信SINRをターゲットSINR値に正確に一致させることができるので、全てのRB1,2について高受信品質を実現できる。その結果、SINRをターゲットSINR値に正確に一致させたPUCCHにおいて伝送される制御信号も高品質に受信することができる。
 以下、本発明を適用した基地局装置及び移動局装置(UE)の実施例について説明する。
 図3は移動局装置(UE)の送信部及び受信部の機能ブロック図であり、図4は基地局装置の送信部及び受信部の機能ブロック図である。
 移動局装置(UE)の送信部は、制御情報の1つとしてCQI情報を送信するための処理ブロック11と、RSを送信するための処理ブロック12と、RSにCQI情報を多重する多重部13と、多重化信号を周波数ホッピングに用いられるRB1,2毎に送信電力制御する電力増幅部14とを備える。
 処理ブロック11では、受信部において下りリンクで受信したRSを基に推定した受信品質情報であるCQI情報(CQIビット系列)をチャネル符号化部21でチャネル符号化する。チャネル符号化したCQI情報はデータ変調部22で所定の変調方式で変調されてから、サブキャリアマッピング部23に供給される。サブキャリアマッピング部23では、リソースブロック番号に基づいてスロット単位でCQI情報をRB1とRB2とに周波数ホッピングさせる。たとえば、RB1のスロット1とRB2のスロット2との間でホッピングさせる。このとき、時系列の複数スロットをスロット毎に交互に異なる周波数帯にマッピングする場合と、連続する複数スロットの塊(例えばサブフレーム単位)で交互に異なる周波数帯にマッピングする場合とがある。IFFT部24にてサブキャリアマッピング部23の出力信号を高速逆フーリエ変換(Inverse Fast Fourier Transform)して時間軸波形信号とし、CP付与部25でガードインターバルを付与してから多重部13へ出力する。
 RSの処理ブロック12では、受信部において下りリンクで受信した制御信号から復号されたリソースブロック番号及び系列番号が取り込まれる。RS系列の生成部31で系列番号に基づいてRSが生成される。サブキャリアマッピング部32でリソースブロック番号に基づいてスロット単位でRSをRB1とRB2とに周波数ホッピングする。IFFT部33にてサブキャリアマッピング部32の出力信号を高速逆フーリエ変換して時間軸波形信号とし、CP付与部34でガードインターバルを付与してから多重部13へ出力する。
 CQI情報の処理ブロック11から出力されるCQI情報とRSの処理ブロック12から出力されるRSとが多重部13において多重化される。多重部13から出力されるCQI情報とRSとの多重化信号が電力増幅部14において2つのRB1、RB2で独立して送信電力制御される。
 ここで、受信部において復号されるTPCコマンド情報には、サブキャリアマッピング部23、32でスロット1とスロット2をマッピングしたRB1とRB2のそれぞれに対するTPCコマンドが含まれている。電力増幅部14はRB1とRB2それぞれ独立にTPCコマンドで指示された送信電力で信号増幅する。このように、RB1とRB2それぞれ独立に送信電力が制御された送信信号は送信無線機から無線送信される。
 一方、基地局装置では、CQI情報とRSとが多重化された受信信号からRSが分離される。分離されたRSは同期検出・チャネル推定・受信品質測定部51において同期検出に用いられ、さらに受信したRSと既知信号(RSの送信レプリカ)とを比較してチャネル推定する。さらに、リソースブロック番号に基づいてRB1とRB2のそれぞれについて受信SINR(RB1)、受信SINR(RB2)を測定する。TPCコマンド情報生成部52では、RB1とRB2それぞれの受信SINRを取り込み、ターゲットSINR値と比較する。そして、ターゲットSINR値とRB1の受信SINR(RB1)との比較結果に基づいて、受信SINR(RB1)をターゲットSINR値に一致させるRB1に対するTPCコマンドビット(RB1)を生成する。またターゲットSINR値とRB2の受信SINR(RB2)との比較結果に基づいて、受信SINR(RB2)をターゲットSINR値に一致させるRB2に対するTPCコマンドコマンド(RB2)を生成する。このとき、測定の対象となった信号(例えばスロット1)と、時間的に前後するいずれかの隣接信号(例えばスロット2)とが異なる周波数帯にホッピングされていた場合、測定信号(スロット1)のみをTPCコマンドビットを生成する基として用いると言い換えることができる。また、測定の対象となった測定信号(スロット1)と、時間的に前後するいずれかの隣接信号(スロット2)とが異なる周波数帯にホッピングされていた場合、測定信号(スロット1)のみの受信SINRと目標SINRとの差異により、移動局において増減すべき上り送信電力の量が示されたTPCコマンドビットを生成すると言い換えることができる。
 このように、RB独立TPC法では周波数ホッピングに用いられる各RBの受信SINRをターゲットSINR値に一致させるTPCコマンドビットをRB毎に独立に生成する。
 また、受信信号は同期検出・チャネル推定・受信品質測定部51により検出されたタイミングに基づきCP除去部53でガードインターバルが除去され、FFT部54で高速フーリエ変換された後、サブキャリアデマッピング部55でRB1,RB2にそれぞれマッピングされている制御情報(CQI情報)がリソースブロック番号に基づいてデマッピングされる。デマッピングされたCQI情報はデータ復調部56で復調され、さらにデータ復号部57で復号される。
 一方、以上のようにしてRB毎に独立に生成されたTPCコマンド(RB1)及びTPCコマンド(RB2)は、上りTPCコマンド送信用制御チャネル(TPC-PDCCH)61を用いて、OFDM信号生成部63でOFDM信号に変換してから下りリンクで移動局装置(UE)へ送信される。また、上りリソース割り当て情報信号生成部(UL grant)62では上りリソース割り当て情報を生成しており、上りリソース割り当て情報信号にTPCコマンド情報を含めることでTPC-PDCCHとUL grantの双方を用いて送信することもできる。
 移動局装置では、基地局装置から受信した受信信号をOFDM復調部41で復調し、TPCコマンドビット情報はTPCコマンドビット情報の復調・復号部42へ出力し、RSはCQI推定部43へ出力し、報知チャネル及び下り制御信号は復号部44へ出力される。
 報知チャネル及び下り制御信号の復号部44では、受信信号の報知チャネル又は下り制御信号を復号して、系列番号及びリソースブロック番号を得る。系列番号はRS系列の生成部31へ与え、リソースブロック番号はサブキャリアマッピング部23,32へ与える。TPCコマンド情報の復調・復号部42では、TPC-PDCCH又はUL grantを介してRB毎に独立に生成されたTPCコマンド(RB1)及びTPCコマンド(RB2)を復調及び復号し、電力増幅部14にTPCコマンド情報として与える。上記した通り、電力増幅部14は当該RB毎に独立して生成されたTPCコマンドに基づいて送信電力を制御する。このようにして閉ループTPCが実現される。
 なお、PUCCHに周波数ホッピングを適用する場合について説明したが、周波数ホッピングを適用しない場合であっても同様に適用可能である。図2において、UE1との間の伝送にはPUCCHをRB1に割り当て、UE2との間の伝送にはRB2割り当てる。UE1に着目すると、RB1のスロット1とスロット2を用いて制御情報を伝送する。このとき、TPCコマンドビットは、RB1とRB2の受信SINRを平均化するのではなく、RB1の1サブフレーム(2スロット分)を同相加算平均したものを用いる。RB毎に1サブフレーム(2スロット分)を同相加算平均した受信SINRをターゲットSINRに一致させるTPCコマンドをRB毎に生成し、RB間で独立した閉ループTPCを行う。
 このように、1サブフレームを構成する2スロット分を時間領域において同相加算平均したものを用いることにより、チャネル推定精度および閉ループTPCに用いる受信SINR測定精度を改善でき、総合的なPUCCH情報を高品質受信および高精度な閉ループTPCを実現できる。
 図7は上りリンクの制御情報(CQI情報、RS)を同一セル内のユーザ間で直交させるための処理ブロックを記入した移動局装置の機能ブロックを示しており、図8は図7に示す移動局装置に対応した基地局装置の機能ブロックを示している。
 図8に示すように、基地局装置の送信部における上りリソース割り当て情報信号生成部62は、CAZAC(Constant Amplitude Zero Auto-Correlation)系列の開始位置を示す系列番号、シフト量を示す巡回シフト番号、及び移動局装置に割り当てられた無線リソースを示すリソースブロック番号を生成する。基地局装置は、管理する同一セル内に存在する移動局装置の上りリンクの制御信号を直交及び多重化するために、同一のCAZAC系列に対して、移動局装置毎に異なる巡回シフトを割り当てる(すなわち、符号多重)。したがって、基地局装置は、管理する同一セル内に存在する移動局装置に対して、ユーザ間で共通の系列番号と、ユーザ毎に異なる巡回シフト番号を生成して下りリンクで通知している。なお、CAZAC系列として、Zadoff-Chu系列を用いてもよい。
 図7に示すように、移動局装置の受信部における報知チャネル/下り制御信号復号部44は、下りリンクのOFDM復調信号から、系列番号、リソースブロック番号、巡回シフト番号を含む制御信号を復号する。
 移動局装置の送信部は、基地局装置から通知された系列番号に基づいてCAZAC系列信号を生成するCAZAC系列生成部26と、CAZAC系列生成部26で生成したCAZAC系列信号を巡回シフト番号にしたがってシフトさせる巡回シフト部27と、巡回シフト部27でシフトさせたCAZAC系列信号をCQI情報に乗算する多重部28とを備える。この結果、この移動局装置が上りリンクで送信するCQI情報は、他の移動局装置との関係では直交化された信号に符号化される。
 また、移動局装置の送信部は、RS系列生成部31で生成されたRS系列信号を巡回シフト番号にしたがってシフトさせる巡回シフト部35を備える。この結果、この移動局装置が上りリンクで送信するRSは、他の移動局装置との関係では直交化された信号に符号化される。
 以上のようにして移動局装置において制御信号(CQI,RS)が他のユーザ間で直交多重化された後、上りリンクで周波数ホッピングさせて送信される。
 基地局装置の受信部は、FFT部54によって周波数領域に戻された信号(CQI情報)が入力され、その信号から巡回シフト番号に基づいてCQI情報を分離する巡回シフト分離部58を備える。巡回シフト番号はユーザ毎に異なる値を割り当てているので、ユーザに割当てた巡回シフト番号を用いて信号分離することで各ユーザから受信したCQI情報を取り出すことができる。
 また基地局装置の受信部は、移動局装置-基地局装置館で受けるチャネル変動を、RSを用いて推定したチャネル推定値に基づいて戻す(補償する)チャネル補償部59を備える。サブキャリアデマッピン後に、移動局装置-基地局装置館で受けるチャネル変動を補償してからデータ復調部56へ渡している。
 本明細書は、2008年6月26日出願の特願2008-167956号に基づく。この内容はすべてここに含めておく。
 本発明は、Rel-8 LTEの上りリンクPUCCHにおける閉ループの送信電力制御方法に適用可能である。

Claims (8)

  1.  複数の周波数帯のいずれかにホッピングされた信号を所定の時間単位毎に端末装置から受信し、
     前記端末装置から受信した信号の品質を、前記信号がホッピングされた前記周波数帯毎に前記時間単位で別々に測定し、
     前記周波数帯毎の測定品質と目標品質とのそれぞれの差異に応じて、前記端末装置にて増減すべき上り送信電力量が示された送信電力制御情報を、前記各周波数帯で別々に生成し、
     前記周波数帯毎に別々に生成された送信電力制御情報を前記端末装置へ送信する
    ことを特徴とする送信電力制御方法。
  2.  請求項1記載の送信電力制御方法において、
     測定の対象となった測定信号と、時間的に前後するいずれかの隣接信号とが異なる周波数帯にホッピングされていた場合、測定信号のみの品質と目標品質との差異により、前記端末装置において増減すべき上り送信電力の量が示された送信電力制御情報を生成する
    ことを特徴とする送信電力制御方法。
  3.  請求項1記載の送信電力制御方法において、
     測定の対象となった測定信号と、時間的に前後するいずれかの隣接信号とが同一の周波数帯にホッピングされていた場合、測定した品質の時間平均と、目標品質との差異により、端末装置において増減すべき上り送信電力の量が示された送信電力制御情報を生成し、
     測定の対象となった測定信号と、時間的に前後するいずれかの隣接信号とが異なる周波数帯にホッピングされていた場合、測定信号のみを送信電力制御情報を生成する基として用いることを特徴とする送信電力制御方法。
  4.  基地局装置からホッピングされる周波数帯毎に増減すべき上り送信電力の量が示された送信電力制御情報を受信し、
     各周波数帯にホッピングさせた信号の送信電力を、受信した送信電力制御情報にしたがって周波数帯毎に増減させることを特徴とする送信電力制御方法。
  5.  複数の周波数帯のいずれかにホッピングされた信号を所定の時間単位毎に端末装置から受信する受信部と、
     前記端末装置から受信した信号の品質を、前記信号がホッピングされた前記周波数帯毎に前記時間単位で別々に測定する測定部と、
     前記周波数帯毎の測定品質と目標品質とのそれぞれの差異に応じて、前記端末装置にて増減すべき上り送信電力量が示された送信電力制御情報を、前記各周波数帯で別々に生成する生成部と、
     前記周波数帯毎に別々に生成された送信電力制御情報を前記端末装置へ送信する送信部と、
    を具備したことを特徴とする基地局装置。
  6.  請求項5記載の基地局装置において、
     前記生成部は、前記測定部によって測定の対象となった測定信号と、時間的に前後するいずれかの隣接信号とが異なる周波数帯にホッピングされていた場合、測定信号のみの品質と目標品質との差異により、端末装置において増減すべき上り送信電力の量が示された送信電力制御情報を生成する
    ことを特徴とする基地局装置。
  7.  請求項6記載の基地局装置において、
     前記生成部は、測定の対象となった測定信号と、時間的に前後するいずれかの隣接信号とが同一の周波数帯にホッピングされていた場合、測定した品質の時間平均と、目標品質との差異により、端末装置において増減すべき上り送信電力の量が示された送信電力制御情報を生成し、
     測定の対象となった測定信号と、時間的に前後するいずれかの隣接信号とが異なる周波数帯にホッピングされていた場合、測定信号のみを送信電力制御情報を生成する基として用いることを特徴とする基地局装置。
  8.  基地局装置から、ホッピングされる周波数帯毎に増減すべき上り送信電力の量が示された送信電力制御情報を受信する受信部と、
     信号を複数の周波数帯にホッピングさせる周波数ホッピング部と、
     前記周波数ホッピング部によってホッピングさせた信号の送信電力を、前記受信部によって受信された送信電力制御情報を用いて、周波数帯毎に増減させる送信電力制御部と、
    を具備したことを特徴とする端末装置。
PCT/JP2009/061695 2008-06-26 2009-06-26 閉ループ送信電力制御方法及び基地局装置、端末装置 WO2009157534A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN200980124553.5A CN102090117B (zh) 2008-06-26 2009-06-26 闭环发送功率控制方法和基站装置、终端装置
US13/000,486 US8665926B2 (en) 2008-06-26 2009-06-26 Closed-loop transmission power control method, base station apparatus and terminal
EP09770244.3A EP2296409A4 (en) 2008-06-26 2009-06-26 METHOD FOR CONTROLLING TRANSMISSION POWER IN CLOSED LOOP, BASE STATION EQUIPMENT AND DEVICE DEVICE
JP2010518068A JP5411856B2 (ja) 2008-06-26 2009-06-26 閉ループ送信電力制御方法及び基地局装置、端末装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-167956 2008-06-26
JP2008167956 2008-06-26

Publications (1)

Publication Number Publication Date
WO2009157534A1 true WO2009157534A1 (ja) 2009-12-30

Family

ID=41444594

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/061695 WO2009157534A1 (ja) 2008-06-26 2009-06-26 閉ループ送信電力制御方法及び基地局装置、端末装置

Country Status (6)

Country Link
US (1) US8665926B2 (ja)
EP (1) EP2296409A4 (ja)
JP (1) JP5411856B2 (ja)
KR (1) KR20110040816A (ja)
CN (1) CN102090117B (ja)
WO (1) WO2009157534A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014027412A (ja) * 2012-07-25 2014-02-06 Kddi Corp 送信電力制御装置、基地局装置、移動局装置、送信電力制御方法およびコンピュータプログラム

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6807405B1 (en) 1999-04-28 2004-10-19 Isco International, Inc. Method and a device for maintaining the performance quality of a code-division multiple access system in the presence of narrow band interference
US8385483B2 (en) 2008-11-11 2013-02-26 Isco International, Llc Self-adaptive digital RF bandpass and bandstop filter architecture
CN102196542B (zh) 2011-05-27 2014-06-25 上海华为技术有限公司 功率控制方法、设备和系统
EP2533453B1 (en) * 2011-06-10 2015-08-19 Sony Corporation Apparatus and method for transmitting and receiving in a multi carrier transmission system
EP2763326A4 (en) * 2011-09-26 2015-07-01 Lg Electronics Inc METHOD AND APPARATUS FOR TRANSMITTING CONTROL AMOUNT SIGNAL IN WIRELESS COMMUNICATION SYSTEM
WO2013071506A1 (en) * 2011-11-17 2013-05-23 Renesas Mobile Corporation Methods and apparatuses for provision of reference signal design for downlink tracking in occupied shared band
US8880012B2 (en) * 2012-01-19 2014-11-04 Motorola Mobility Llc Method and apparatus for resource block based transmitter optimization in wireless communication devices
US9730164B2 (en) 2012-01-30 2017-08-08 Qualcomm, Incorporated Power control management in uplink (UL) coordinated multipoint (CoMP) transmission
WO2013185319A1 (en) * 2012-06-14 2013-12-19 Qualcomm Incorporated Joint power control and rate adjustment scheme for voip
JP5962266B2 (ja) * 2012-07-05 2016-08-03 富士通株式会社 受信品質測定方法及び移動端末装置
US9319916B2 (en) 2013-03-15 2016-04-19 Isco International, Llc Method and appartus for signal interference processing
JP2015050575A (ja) 2013-08-30 2015-03-16 株式会社Nttドコモ 無線基地局、ユーザ端末及び送信電力制御方法
US9775116B2 (en) 2014-05-05 2017-09-26 Isco International, Llc Method and apparatus for increasing performance of communication links of cooperative communication nodes
KR20150136222A (ko) * 2014-05-26 2015-12-07 한국전자통신연구원 신호 처리 장치 및 방법
EP3651386B1 (en) 2015-05-04 2023-08-23 ISCO International, LLC Method and apparatus for increasing the performance of communication paths for communication nodes
US10932256B2 (en) 2015-06-16 2021-02-23 Qualcomm Incorporated Long-term evolution compatible very narrow band design
JP6759695B2 (ja) * 2016-05-11 2020-09-23 ソニー株式会社 端末装置、基地局装置、通信方法、及びプログラム
MX2018014697A (es) 2016-06-01 2019-09-13 Isco Int Llc Metodo y aparato para realizar acondicionamiento de señales para mitigar la interferencia detectada en un sistema de comunicacion.
US11601820B2 (en) * 2017-01-27 2023-03-07 Qualcomm Incorporated Broadcast control channel for shared spectrum
US10298279B2 (en) 2017-04-05 2019-05-21 Isco International, Llc Method and apparatus for increasing performance of communication paths for communication nodes
US10284313B2 (en) 2017-08-09 2019-05-07 Isco International, Llc Method and apparatus for monitoring, detecting, testing, diagnosing and/or mitigating interference in a communication system
US10812121B2 (en) 2017-08-09 2020-10-20 Isco International, Llc Method and apparatus for detecting and analyzing passive intermodulation interference in a communication system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007111132A1 (ja) * 2006-03-17 2007-10-04 Nec Corporation 送信電力制御方法及び基地局、基地局制御局並びにその制御プログラム
JP2008092375A (ja) * 2006-10-03 2008-04-17 Ntt Docomo Inc 移動局装置及び基地局装置
JP2008167956A (ja) 2007-01-12 2008-07-24 Samii Kk 遊技機及び遊技機情報出力方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7424268B2 (en) * 2002-04-22 2008-09-09 Cisco Technology, Inc. System and method for management of a shared frequency band
US7594151B2 (en) * 2004-06-18 2009-09-22 Qualcomm, Incorporated Reverse link power control in an orthogonal system
JP4567628B2 (ja) * 2005-06-14 2010-10-20 株式会社エヌ・ティ・ティ・ドコモ 移動局、送信方法及び通信システム
EP1734660A1 (en) * 2005-06-15 2006-12-20 Matsushita Electric Industrial Co., Ltd. Transmission power control in a system using frequency hopping
JP5106796B2 (ja) * 2006-06-19 2012-12-26 株式会社エヌ・ティ・ティ・ドコモ 基地局、送信方法
JP4519817B2 (ja) * 2006-08-22 2010-08-04 株式会社エヌ・ティ・ティ・ドコモ 基地局および移動局
JP4671982B2 (ja) * 2007-01-09 2011-04-20 株式会社エヌ・ティ・ティ・ドコモ 基地局、送信方法及び移動通信システム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007111132A1 (ja) * 2006-03-17 2007-10-04 Nec Corporation 送信電力制御方法及び基地局、基地局制御局並びにその制御プログラム
JP2008092375A (ja) * 2006-10-03 2008-04-17 Ntt Docomo Inc 移動局装置及び基地局装置
JP2008167956A (ja) 2007-01-12 2008-07-24 Samii Kk 遊技機及び遊技機情報出力方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2296409A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014027412A (ja) * 2012-07-25 2014-02-06 Kddi Corp 送信電力制御装置、基地局装置、移動局装置、送信電力制御方法およびコンピュータプログラム

Also Published As

Publication number Publication date
EP2296409A1 (en) 2011-03-16
JPWO2009157534A1 (ja) 2011-12-15
JP5411856B2 (ja) 2014-02-12
US20110164659A1 (en) 2011-07-07
CN102090117A (zh) 2011-06-08
KR20110040816A (ko) 2011-04-20
CN102090117B (zh) 2015-04-08
EP2296409A4 (en) 2016-06-22
US8665926B2 (en) 2014-03-04

Similar Documents

Publication Publication Date Title
JP5411856B2 (ja) 閉ループ送信電力制御方法及び基地局装置、端末装置
US8046029B2 (en) Method for selecting antennas in a wireless networks
WO2018084239A1 (ja) 基地局装置、端末装置および通信方法
US8817753B2 (en) Mobile terminal apparatus and radio communication method
JP5189111B2 (ja) 無線基地局装置、無線通信システム及び無線通信方法
EP2153571B1 (en) Uplink synchronization maintenance principles in wireless networks
US9461807B2 (en) Transmitting device and transmitting method
CN1951033B (zh) 宽带无线通信系统中使多载波和直接序列扩频信号重叠的方法和设备
AU2012319790B2 (en) Mobile station apparatus, base station apparatus, wireless communication method, and integrated circuit
US8560001B2 (en) Base station apparatus, user equipment terminal, and communication control method
US20130034066A1 (en) Radio base station apparatus, mobile terminal device and wireless communication method
EP2942888A1 (en) Method and apparatus for transmitting/receiving signals
CN110140329B (zh) 终端装置及其通信方法
EP2866366A1 (en) Device to device communication method using partial device control
US20130176924A1 (en) Mobile terminal apparatus and radio communication method
JP5066550B2 (ja) 送信電力制御方法、基地局装置および移動局装置
US20140293943A1 (en) Method and apparatus for transmitting a reference signal in wireless communication system
CA2824629A1 (en) Radio base station, user terminal and radio communication method
WO2009011511A1 (en) Apparatus and method for transmitting/receiving uplink control channels in a wireless communication system
CN102064848A (zh) 用于多小区宽带无线系统中的移动站和基站的方法和装置
US9438396B2 (en) Radio communication system, mobile terminal apparatus, radio base station apparatus and radio communication method
JP2015512199A (ja) 無線通信システムにおいて上りリンク信号送信方法及び装置
US20130288738A1 (en) Radio base station apparatus, mobile terminal apparatus and transmission power control method
US9001638B2 (en) Radio base station apparatus, mobile terminal apparatus and radio communication method
WO2010084828A1 (ja) 通信制御装置、通信端末装置および無線通信システム

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980124553.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09770244

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010518068

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20117000256

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2009770244

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2009770244

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13000486

Country of ref document: US