WO2009155740A1 - 一种高速上行分组接入业务分扇区调度方法和系统 - Google Patents
一种高速上行分组接入业务分扇区调度方法和系统 Download PDFInfo
- Publication number
- WO2009155740A1 WO2009155740A1 PCT/CN2008/002137 CN2008002137W WO2009155740A1 WO 2009155740 A1 WO2009155740 A1 WO 2009155740A1 CN 2008002137 W CN2008002137 W CN 2008002137W WO 2009155740 A1 WO2009155740 A1 WO 2009155740A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- sector
- load
- hsupa
- mobile station
- packet access
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 47
- 238000004364 calculation method Methods 0.000 claims description 3
- 238000010586 diagram Methods 0.000 description 6
- 238000004891 communication Methods 0.000 description 5
- 230000009286 beneficial effect Effects 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000011218 segmentation Effects 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/50—Allocation or scheduling criteria for wireless resources
- H04W72/52—Allocation or scheduling criteria for wireless resources based on load
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/04—Wireless resource allocation
- H04W72/044—Wireless resource allocation based on the type of the allocated resource
- H04W72/046—Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W88/00—Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
- H04W88/08—Access point devices
Definitions
- the present invention relates to the field of communication technologies, and in particular to a high speed uplink packet access service in a Wideband Code Division Multiple Access (WCDMA) wireless communication system.
- WCDMA Wideband Code Division Multiple Access
- WCDMA Wideband Code Division Multiple Access
- OTSR Omni Transmission Sectorized Receive
- the downlink signal of one cell is transmitted in the entire cell, but the uplink signal is received from multiple sectors. Due to the wide coverage of WCDMA network, or the more flexible implementation of complex urban coverage, the number of cells is reduced and the network configuration is simplified.
- Others such as the Cell portion method defined in the 3GPP (The 3rd Generation Partnership Project) protocol, the industry's simulcast method, also uses the sectorized method. This sectorization method can improve uplink receiving performance and system capacity, and is applied in the commercial network of the R99 version of WCDMA.
- the High Speed Uplink Packet Access Service (HSUPA) is introduced.
- the mobile station using the HSUPA service can be called HSUPA User Equipment.
- the key technology ⁇ B station (Node B) needs to be the HSUPA UE.
- the uplink load is scheduled.
- the size of the load can be measured by the Received Total Wideband Power (RTWP).
- RCWP Received Total Wideband Power
- the system sets an RTWP reference value (Reference Received Total Wide Band Power) and an RTWP target value (Maximum Target Received Total Wide Band Power), which can be divided into RTWPref and RTWPtarget.
- the RTWPref is equivalent to the system receiving noise (bottom noise) when the current cell does not have any mobile station (UE: User Equipment) for communication. If the current system RTWP is RTWPcurrent, the current system load can be expressed as:
- a conventional scheduling assignment process is: Node B calculates the remaining available load based on the RTWP measurements. The load consumed by each HSUPA UE is calculated using the Signal to Interference Ratio (SIR) of each HSUPA UE. The remaining available load is then allocated to each HSUPA UE. Usually these load allocations are calculated for the entire cell and the HSUPA UE in the cell.
- the method for estimating the load according to the SIR of the HSUPA UE is:
- L is the load of the HSUPA UE and SIR is the signal-to-interference ratio of the HSUPA UE.
- FIG. 1 is a schematic diagram of a conventional HSUPA scheduling method for a conventional cell.
- each HSUPA UE gives only one SIR estimate in each cell, and the SIR is used in the scheduler to calculate the load occupied by the UE.
- the RTWP of a regular cell also has only one value, and the scheduler directly uses this value to calculate the load of the cell.
- the HSUPA function runs more stably, and its throughput is the throughput of one cell.
- the limit HSUPA throughput of such a cell is 5.76 Mbps.
- the conventional HSUPA scheduling method performs scheduling in units of cells.
- the uplink signal is received by the base station antenna of a plurality of sectors, and the signals of the multi-sector antenna are combined in the baseband processing.
- the HSUPA scheduler different sectors in a cell have different RTWPs. How to determine the RTWP required for cell scheduling is a problem; the signals of each HSUPA UE are different in each sector, and only rely on the HSUPA UE. The SIR estimation cannot distinguish the load of the HSUPA UE from the RTWP of each sector, which also causes the scheduler to get into confusion.
- each sector of the base station has its own receiving antenna, and each sector has its own different RTWP.
- the RTWP of one cell must first be synthesized from multiple sector RTWPs.
- the disadvantage of this is that when the resources of one sector are allocated, the RTWP reaches the target value, even if other sectors have resources, the RTWP is still relatively low, and these resources cannot be allocated to the HSUPA UE, resulting in waste of resources, throughput.
- the rate is limited.
- the conventional HSUPA scheduling method is used in the sectorized cell, and the SIR of the HSUPA UE has only one value, so that if the HSUPA UE is in the adjacent area of each sector, the uplink multi-sector antenna receives the diversity gain, thereby making the RTWP lower.
- the SIR value is similar to that of the case where there is no diversity gain.
- the sum of the HSUPA UE loads calculated according to the SIR has reached the full load of the cell, but the cell load calculated according to the RTWP is still relatively small.
- the conventional HSUPA scheduling algorithm will not be repeated. Allocating resources to HSUPA UEs also causes problems of large underload and limited throughput.
- the RTWP and the SIR cannot be reasonably corresponding, resulting in a large overload rate or a large underload.
- the cell is used as the basic unit for scheduling, and the throughput is the same as that of the conventional cell.
- the throughput that can be achieved theoretically in the sector mode is several times that of a conventional cell. Therefore, there is a need to improve the existing HSUPA scheduling method. Summary of the invention
- the invention solves the technical problem of large overload rate or large underload caused by HSUPA scheduling in a sectorized cell, and proposes a HSUPA sector scheduling method and system, which improves the throughput of HSUPA several times.
- the present invention provides a method for segmentation scheduling of a high-speed uplink packet access service, including:
- each sector According to the maximum allowable load of each sector and the current sector load, the remaining available sector load is obtained, and each sector is separately allocated load according to the remaining available sector load and the distribution of each HSUPA mobile station in each sector.
- the above method may further have the following feature: obtaining the current sector load according to the current total received broadband power of each sector.
- the foregoing method may further have the following features: Power is measured by the RF module of each sector.
- each HSUPA mobile station load is obtained according to the signal-to-interference ratio of each HSUPA mobile station in each sector.
- the foregoing method may further have the following feature: the signal-to-interference ratio of the HSUPA mobile station in each sector is measured according to the following manner: according to the sector of the uplink signal demodulation path of each HSUPA mobile station, the sector is divided into sectors. The signal-to-interference ratio of the HSUPA mobile station in each sector is estimated.
- the load allocation for each sector is specifically: obtaining a high-speed uplink that can be allocated to the mobile station of the sector according to the remaining available sector load and the HSUPA mobile station load of the sector.
- the packet access service load is used to load the high-speed uplink packet access service load according to the signal-to-interference ratio of each HSUPA mobile station in each sector.
- the above method may further have the following feature: the maximum allowed sector load of each sector is calculated by the following steps:
- the current sector load of each sector is obtained as follows:
- the difference between the current received broadband total power and the reference power of the received broadband power divided by the current received wideband total power is taken as the current sector load of each sector.
- the current HSUPA mobile station load of each sector is calculated by the following formula:
- the mobile station load of the sector the signal-to-interference ratio of the mobile station in the sector / (1 + mobile station's signal-to-interference ratio in the sector).
- the present invention also provides a high-speed uplink packet access service sectorized scheduling system, the system includes a sectorized high-speed uplink packet access service scheduler, and the sectorized high-speed uplink packet access service scheduler is used to acquire each The current sector load of the sector and the current HSUPA mobile station load for each sector, and the maximum allowed sector load for each sector; based on the maximum allowable load for each sector and the current sector load, The remaining available sector load is obtained, and the load distribution is performed for each sector according to the remaining available sector load of each sector and the distribution of each HSUPA mobile station in each sector.
- system may further have the following features, the system further includes a radio frequency module, configured to measure a total received broadband power of the sector, and send the current received broadband total power to the sectorized high-speed uplink packet And entering the service scheduler, the sectorized high speed uplink packet access service scheduler obtains a current sector load of the sector according to the current total received broadband power.
- a radio frequency module configured to measure a total received broadband power of the sector, and send the current received broadband total power to the sectorized high-speed uplink packet And entering the service scheduler, the sectorized high speed uplink packet access service scheduler obtains a current sector load of the sector according to the current total received broadband power.
- the system further includes a sector-to-sector signal-to-interference ratio estimation module, configured to estimate the HSUPA mobile station according to the sector of the uplink signal demodulation path of the HSUPA mobile station. Transmitting the signal to interference ratio to the sectorized high speed uplink packet access service scheduler, and the sectorized high speed uplink packet access service scheduler according to the HSUPA mobile station in each fan The area's signal-to-interference ratio calculates the current HSUPA mobile station load for each sector of the HSUPA mobile station.
- a sector-to-sector signal-to-interference ratio estimation module configured to estimate the HSUPA mobile station according to the sector of the uplink signal demodulation path of the HSUPA mobile station. Transmitting the signal to interference ratio to the sectorized high speed uplink packet access service scheduler, and the sectorized high speed uplink packet access service scheduler according to the HSUPA mobile station in each fan The area's signal-to-interference ratio calculates the current HSUPA mobile station load for each sector of the H
- the foregoing system may further have the following features: the sector-segment high-speed uplink packet access service scheduler performs load allocation on each sector separately: according to remaining available sector load and sector HSUPA mobile station load A high-speed uplink packet access service load that can be allocated to the sector mobile station, and the high-speed uplink packet access service load is load-allocated according to the signal-to-interference ratio of each HSUPA mobile station in each sector.
- FIG. 1 is a schematic diagram of a conventional HSUPA scheduling method for a conventional cell
- FIG. 2 is a schematic diagram of a conventional HSUPA scheduling method of a conventional sectorized cell
- FIG. 3 is a schematic diagram of a sectorized HSUPA scheduling method according to the present invention.
- FIG. 4 is a flowchart of a method for scheduling a sector of HSUPA according to the present invention.
- Figure 5 is a schematic illustration of a preferred embodiment of the method of the present invention applied in a system. Preferred embodiment of the invention
- FIG. 3 is a schematic diagram of a sectorized HSUPA scheduling method according to the present invention.
- the RTWP input of the sector-scheduled scheduling of the present invention is an RTWP of all sectors
- the sector estimation of the SIR estimation of the HSUPA UE is performed
- the SIR estimation result of the sector is input into the sector.
- HSUPA scheduler In the sectorized HUSPA scheduler, the RTWP and SIR can be correctly mapped, and load calculation and load distribution are performed separately for each sector, thereby rationally utilizing resources, accurately controlling the load, and improving throughput.
- FIG. 4 is a flowchart of a sectorized HSUPA scheduling method according to the present invention, specifically including.
- Step 401 For each HSUPA UE uplink signal, according to the sector where the demodulation path is located, the SIR is estimated by the sector, and the radio modules of each sector estimate the respective RTWP.
- Step 402 The sectorized HSUPA scheduler obtains the SIRs of all HSUPA UEs in each sector, calculates the HSUPA UE load of each sector, and the HSUPA scheduler also obtains the RTWP from the radio modules of each sector, and calculates the current fan of each sector. Zone load, and get the maximum sector load for each sector.
- the current sector load refers to the Lsector value when the RTWP value is the current sector RTWP
- the maximum sector load refers to the Lsector value when the RTWP value is RTWPtarget
- the RTWPtarget is the target value or maximum value of the total received broadband power that the sector is allowed to use.
- Step 403 Calculate the remaining available sector load of each sector, and perform load allocation for each sector according to the distribution of the SIR of each HSUPA UE in each sector.
- the maximum sector load minus the current sector load is the remaining available sector load, the remaining available sector load plus the HSUPA UE load within the sector That is, the HSUPA load that can be allocated to the mobile station in the sector,
- the HSUPA load is allocated according to the signal-to-interference ratio of each mobile station.
- the sectorized load distribution method of the present invention can make full use of the load of each sector and ensure that each sector has a low overload rate.
- FIG. 5 is a schematic illustration of an embodiment of the method of the present invention in a system.
- Cell A in the base station is divided into three sectors, each having its own base station antenna. Assume that there are currently 3 HSUPA users UE1, UE2, UE3, and each UE requires as much load resources as possible.
- the UE1 is in the vicinity of the adjacent boundary of the sector 1 and the sector 2, so that both the sector 1 and the sector 2 can receive the uplink signal of the UE1, that is, the RTWP of the sector 1 and the sector 2 are affected by the UE1, UE1
- the SIR in sector 1 and sector 2 is not equal to 0 (for example, 0.2), but the SIR in sector 3 is equal to zero.
- UE2 is completely in sector 2, affecting only the RTWP of sector 2, that is, it only consumes the load of sector 2, and only SIR is not 0 in sector 2 (for example, 0.7), and SIR is equal to 0 in other sectors. .
- UE3 is completely in sector 3 and has an SIR of one.
- the SIR of each HSUPA UE in each sector is:
- the current RTWP of each sector is: - 105.20dBm, -102.24dBm, -102.99dBm.
- the current sector load can be calculated by equation (1): 0.1667, 0.5785, 0.5.
- the remaining available load of each sector is the maximum sector load (0.75 in this embodiment) minus the current sector load of each sector, and the remaining available loads of each sector are obtained as 0.5833, 0.1715, and 0.25, respectively.
- the load that each sector can assign to the HSUPA user is equal to the remaining available load plus the current HSUPA user load, resulting in 0.75, 0.75, and 0.75, respectively.
- the interference calculated by the RTWP is greater than the sum of the loads of the respective HSUPA users due to the presence of non-HSUPA users and other cell interferences, so that the load that can be allocated to the HSUPA users is less than 0.75.
- the assignable load is then distributed to each HSUPA UE, with different allocation methods depending on different criteria.
- the throughput of the HSUPA UEs in the same sector is required to be the same as possible, in the above example, since UE1 can occupy the load of sector 1 and sector 2, and the load of the two sectors It is 1:1 (since UE1 has the same SIR value in sector 1 and sector 2), this ratio is determined by the wireless environment, so the load ratio of UE1 and UE2 in sector 2 of the same sector needs to be divided according to 1:2. It is guaranteed that the throughput of UE1 and the throughput of UE2 are basically equal.
- all remaining available payloads of sector 3 (0.75) can be allocated to UE3, the 0.5 load of sector 2 can be allocated to UE2, and the load of 0.25 of sector 2 can be allocated to UE1.
- All available payloads (0.75) can be allocated to UE1, but in order not to overload sector 2, UE1 consumes less than 0.75 in sector 1, for example, the actual consumption of sector 1 is 0.25.
- the conventional scheduling algorithm since the signal distribution of the HSUPA UE in each sector is not known, the sum of the load of each UE according to the SIR of each HSUPA UE cannot exceed 0.75, so as to prevent an overload phenomenon from occurring, thereby allocating The load to each HSUPA UE is less than 0.75.
- the UE is distributed in each sector, it is in an underload state for each sector. Therefore, using the sectorized scheduling method can solve the underload phenomenon and increase the throughput of HSUPA several times.
- the present invention also provides a high-speed uplink packet access service sectorized scheduling system, where the system includes a sectorized high-speed uplink packet access service scheduler, configured to acquire a current sector load of each sector and each sector Current HSUPA mobile station load, and maximum allowed sector load of each sector; according to the maximum allowable load of each sector and the current sector load, the remaining available sector load is obtained, according to the remaining available sector load of each sector, and Each HSUPA mobile station distributes load to each sector in the distribution of each sector.
- a sectorized high-speed uplink packet access service scheduler configured to acquire a current sector load of each sector and each sector Current HSUPA mobile station load, and maximum allowed sector load of each sector; according to the maximum allowable load of each sector and the current sector load, the remaining available sector load is obtained, according to the remaining available sector load of each sector, and
- Each HSUPA mobile station distributes load to each sector in the distribution of each sector.
- the system further includes a radio frequency module, configured to measure a total received broadband power of the sector, and send the current received broadband total power to the sectorized high speed uplink packet access service scheduler, where the sector is high speed
- the uplink packet access service scheduler obtains the current sector load of the sector according to the current total received broadband power.
- the system further includes a sector-to-sector signal-to-interference ratio estimation module, configured to estimate a signal-to-interference ratio of the HSUPA mobile station in each sector according to a sector in which the uplink signal demodulation path of the HSUPA mobile station is different, and the sector
- the signal-to-interference ratio is sent to the sub-sector high-speed uplink packet access service scheduler, and the sub-sector high-speed uplink packet access service scheduler calculates the HSUPA mobile station according to the signal-to-interference ratio of the HSUPA mobile station in each sector.
- the current HSUPA mobile station load of the sector is sent to the sub-sector high-speed uplink packet access service scheduler, and the sub-sector high-speed uplink packet access service scheduler calculates the HSUPA mobile station according to the signal-to-interference ratio of the HSUPA mobile station in each sector.
- the current HSUPA mobile station load of the sector is sent to the sub-sector high-speed up
- the sub-sector high-speed uplink packet access service scheduler respectively performs load allocation on each sector: according to the remaining available sector load and the sector HSUPA mobile station load, a high-speed uplink that can be allocated to the sector mobile station is obtained.
- the packet access service load is used to load the high-speed uplink packet access service load according to the signal-to-interference ratio of each HSUPA mobile station in each sector.
- the method of the present invention can achieve a very considerable economic effect in the application of the sectorized cell.
- the beneficial effects of the present invention are as follows: In the sectorized cell scheme, the HSUPA UE load and the sector load are correctly matched, and the problem of large overload rate or large underload rate is solved, and the throughput of the HSUPA is improved several times.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Mobile Radio Communication Systems (AREA)
Description
一种高速上行分组接入业务分扇区调度方法和系统
技术领域
本发明涉及通信技术领域, 尤其是在宽带码分多址 (WCDMA: Wideband Code Division Multiple Access)无线通信系统中对高速上行分组接入业务
背景技术
在宽带码分多址(WCDMA )无线通信系统中, 根据不同的网络运营需 求, 目前存在一种把小区( Cell )分成多个扇区( Sector )的应用, 比如 OTSR ( Omni Transmission Sectorized Receive, 全向发射分肩区接 4丈 )方式, 一个小 区的下行信号在整个小区发射, 但上行信号从多个扇区接收。 由于 WCDMA 广面积的网络覆盖, 或者较灵活的实现复杂城区的覆盖, 减少小区数目, 简 化网络配置。 其它比如 3GPP(The 3rd Generation Partnership Project, 第三代合 作伙伴计划)协议中定义的 Cell portion方式, 业界的 simulcast方式, 也釆用 了分扇区的方法。 这种扇区化方法可以提高上行接收性能和系统容量, 在 WCDMA的 R99版本的商用网络中得到了应用。
在新的 R6版本中,引入了高速上行分组接入业务( HSUPA ) ,使用 HSUPA 业务的移动台可以称为 HSUPA UE ( HSUPA User Equipment ) , 其关键技术 ^^站( Node B )需要对 HSUPA UE的上行链路负载进行调度。 负载的大小 可以用接收宽带总功率 RTWP ( Received Total Wideband Power )来衡量, RTWP抬升越大,负载就越高。根据 3GPP协议 25.433, 系统会设置一个 RTWP 的参考值(Reference Received Total Wide Band Power )和 RTWP的目标值 ( Maximum Target Received Total Wide Band Power ) ,可以分另 ll计为 RTWPref 和 RTWPtarget。 其中 RTWPref相当于当前小区没有任何移动台 ( UE: User Equipment )进行通信时的系统接收噪声 (底噪), 如果当前系统的 RTWP为 RTWPcurrent, 则当前系统负载可以表示为:
L = ( RTWPcurrent - RTWPref ) / RTWPcurrent ( 1 )
由上式(1 )可知, 当系统当前的 RTWP抬升到底噪的 2倍(3dB ) , 则 系统负载为 0.5(即 50 % ), 当系统当前的 RTWP抬升到底噪的 4倍(6dB ) , 则系统负载为 0.75(即 75 % )。 RTWPtarget则对应于允许系统使用的负载, 比 如 RTWPtarget为 RTWPref的 4倍( 6dB )时,则允许系统使用的负载为 0.75。 系统在负载的调度分配时尽量使 RTWP不超过 RTWPtarget。一个常规的调度 分配过程为: Node B 根据 RTWP 测量结果计算剩余可用负载。 利用各个 HSUPA UE 的信干比 SIR(Signal to Interference Ratio)估计结果计算每个 HSUPA UE消耗的负载。 再把剩余可用负载分配给各个 HSUPA UE。 通常这 些负载分配是针对整个小区及小区中的 HSUPA UE 来计算的。 其中根据 HSUPA UE的 SIR来估计负载的方法为:
L = SIR/(1+SIR) ( 2 )
其中 L为 HSUPA UE的负载, SIR为 HSUPA UE的信干比。
图 1为常规小区的常规 HSUPA调度方法示意图。常规的 HSUPA调度方 法中, 每个 HSUPA UE在每个小区中只给出一个 SIR估计值, 在调度器中用 这个 SIR计算这个 UE占用的负载。 常规小区的 RTWP也只有一个值, 调度 器直接用这个值计算小区的负载。 这种情况下, HSUPA功能较稳定运行, 其 吞吐量为一个小区的吞吐量, 在 3GPP R6 版本中, 这样一个小区的极限 HSUPA吞吐量为 5.76Mbps。 常规 HSUPA调度方法以小区为单位进行调度。
然而在分扇区接收方式中, 上行信号由多个扇区的基站天线接收, 在基 带处理中对多扇区天线的信号进行合并。 对 HSUPA调度器来讲, 一个小区 中不同的扇区有不同的 RTWP,如何确定小区调度需要的 RTWP是一个问题; 各个 HSUPA UE的信号在各个扇区的分布情况也不同,仅仅依靠 HSUPA UE 的 SIR估计无法区分 HSUPA UE的负载与各个扇区的 RTWP的对应关系,这 也会导致调度器陷入混乱。
图 2为现有分扇区小区的常规 HSUPA调度方法示意图。 在分扇区小区 中, 基站每个扇区都有各自的接收天线, 每个扇区都有各自不尽相同的 RTWP。 在这种情况下, 如果要用常规 HSUPA调度算法, 必须先从多个扇区 RTWP合成一个小区的 RTWP。 为了保持系统稳定, 防止 RTWP过度抬升, 通常的做法为从多个扇区 RTWP中选取最大的 RTWP作为小区的 RTWP,否
则会引起过载率较大的问题。 这样做的缺点是, 当一个扇区的资源被分配完 了, RTWP达到目标值了, 即使其它扇区还有资源, RTWP还比较低, 也无 法把这些资源分配给 HSUPA UE, 造成资源浪费, 吞吐率有限。 此外, 在分 扇区小区中使用常规 HSUPA调度方法, HSUPA UE的 SIR只有一个值, 这 样如果 HSUPA UE处于各个扇区相邻区域,上行多扇区天线接收有分集增益, 从而使得 RTWP较低,但 SIR值还是和没有分集增益时差不多,这样根据 SIR 计算的各个 HSUPA UE负载之和已经达到小区满负载,但根据 RTWP计算的 小区负载还比较小, 这种情况下常规 HSUPA调度算法不会再给 HSUPA UE 分配资源, 也会造成欠载量较大, 吞吐率有限的问题。
按照现有常规的方法, 会由于 RTWP和 SIR不能合理对应, 造成过载率 较大或欠载量较大, 而且, 以小区为基本单位进行调度, 其吞吐量与常规小 区是一样的, 而分扇区方式理论上能达到的吞吐量是常规小区的数倍。 因此, 需要对现有 HSUPA调度方法进行改进。 发明内容
本发明解决了在分扇区小区中 HSUPA调度造成的过载率较大或欠载量 较大技术问题, 提出了一种 HSUPA分扇区调度方法和系统, 数倍提升了 HSUPA的吞吐量。
为了解决上述问题, 本发明提供了一种高速上行分组接入业务分扇区调 度方法, 包括:
获取各扇区的当前扇区负载和各扇区的当前高速上行分组接入业务 HSUPA移动台负载, 及各扇区的最大允许扇区负载;
根据各扇区的最大允许负载和当前扇区负载, 得到剩余可用扇区负载, 根据剩余可用扇区负载和各 HSUPA移动台在各扇区的分布情况对各扇区分 别进行负载分配。
进一步地, 上述方法还可具有以下特点, 根据各扇区的当前接收宽带总 功率得到当前扇区负载。
进一步地, 上述方法还可具有以下特点, 所述各扇区的当前接收宽带总
功率由各扇区的射频模块测量得到。
进一步地, 上述方法还可具有以下特点, 根据各 HSUPA移动台在各扇 区的信干比值得到各 HSUPA移动台负载。
进一步地, 上述方法还可具有以下特点, 所述 HSUPA移动台在各扇区 的信干比值根据如下方式测量得到: 根据每个 HSUPA移动台的上行信号解 调径所在扇区不同, 分扇区估计出 HSUPA移动台在各扇区的信干比值。
进一步地, 上述方法还可具有以下特点, 所述对各扇区分别进行负载分 配具体为: 根据剩余可用扇区负载和扇区各 HSUPA移动台负载得到可分配 给该扇区移动台的高速上行分组接入业务负载, 将该高速上行分组接入业务 负载根据各 HSUPA移动台在各扇区的信干比值情况进行负载分配。
进一步地, 上述方法还可具有以下特点, 所述各扇区的最大允许扇区负 载通过以下步骤计算得到:
获取各扇区的接收宽带总功率的目标值和接收宽带总功率的参考值参 数;
取各扇区的接收宽带总功率的目标值与接收宽带总功率的参考值之差除 以接收宽带总功率的目标值的值作为各扇区的最大允许扇区负载;
所述各扇区的当前扇区负载通过如下方式得到:
获取各扇区的接收宽带总功率的参考值参数;
取当前接收宽带总功率与接收宽带总功率的参考值之差除以当前接收宽 带总功率的值作为各扇区的当前扇区负载。
进一步地, 上述方法还可具有以下特点, 所述各扇区的当前 HSUPA移 动台负载的通过以下计算公式计算得到:
扇区的移动台负载 =移动台在该扇区的信干比值 / ( 1 +移动台在该扇区 的信干比值) 。
本发明还提供一种高速上行分组接入业务分扇区调度系统, 所述系统包 含分扇区高速上行分组接入业务调度器, 所述分扇区高速上行分组接入业务 调度器用于获取各扇区的当前扇区负载和各扇区的当前 HSUPA移动台负载, 及各扇区的最大允许扇区负载;根据各扇区的最大允许负载和当前扇区负载,
得到剩余可用扇区负载, 根据各扇区的剩余可用扇区负载, 和各 HSUPA移 动台在各扇区的分布情况对各扇区分别进行负载分配。
进一步地, 上述系统还可具有以下特点, 所述系统还包含射频模块, 用 于测量扇区的当前接收宽带总功率, 并将该当前接收宽带总功率发送给所述 分扇区高速上行分组接入业务调度器, 所述分扇区高速上行分组接入业务调 度器根据所述当前接收宽带总功率得到该扇区的当前扇区负载。
进一步地, 上述系统还可具有以下特点, 所述系统还包含分扇区信干比 估计模块, 用于根据 HSUPA移动台的上行信号解调径所在扇区不同, 分扇 区估计出 HSUPA移动台在各扇区的信干比值, 将该信干比值发送给所述分 扇区高速上行分组接入业务调度器, 所述分扇区高速上行分组接入业务调度 器根据 HSUPA移动台在各扇区的信干比值计算 HSUPA移动台在各扇区的当 前 HSUPA移动台负载。
进一步地, 上述系统还可具有以下特点, 所述分扇区高速上行分组接入 业务调度器对各扇区分别进行负载分配具体为: 根据剩余可用扇区负载和扇 区各 HSUPA移动台负载得到可分配给该扇区移动台的高速上行分组接入业 务负载, 将该高速上行分组接入业务负载根据各 HSUPA移动台在各扇区的 信干比值情况进行负载分配。
本发明的有益效果为: 在分扇区小区方案中, 正确对应了 HSUPA UE负 载和扇区负载, 解决过载率较大或欠载率较大问题, 数倍提升了 HSUPA的 吞吐量。 附图概述
图 1为常规小区的常规 HSUPA调度方法示意图;
图 2为现有分扇区小区的常规 HSUPA调度方法示意图;
图 3为本发明的分扇区 HSUPA调度方法示意图;
图 4为本发明 HSUPA分扇区调度方法的流程图;
图 5为本发明方法在系统中应用的优选实施例示意图。
本发明的较佳实施方式
下面根据附图和实施例对本发明作进一步详细说明。
图 3为本发明的分扇区 HSUPA调度方法示意图。 与现有常规方法相比, 本发明分扇区调度的 RTWP输入为所有扇区的 RTWP,对 HSUPA UE的 SIR 估计时进行分扇区估计, 并把分扇区的 SIR估计结果输入分扇区 HSUPA调 度器。 这样在分扇区 HUSPA调度器中, 可以正确地把 RTWP和 SIR对应起 来, 对每个扇区分别进行负载计算和负载分配, 从而合理利用资源, 精确控 制负载, 提高吞吐率。
图 4为本发明分扇区 HSUPA调度方法的流程图, 具体包含。
步骤 401 : 对于每个 HSUPA UE的上行信号, 根据解调径所在的扇区不 同, 分扇区估计 SIR, 各个扇区的射频模块估计各自的 RTWP。
对于有的 HSUPA UE, 只在其中一个或几个扇区上有解调径, 则在这一 个或几个扇区上用相应的解调径解调结果分别进行 SIR估计, 其它没有解调 径的扇区上的 SIR为 0。 各扇区的 RTWP由各个扇区的射频模块测量。
步骤 402:分扇区 HSUPA调度器获取所有 HSUPA UE在各个扇区的 SIR, 计算各个扇区的 HSUPA UE负载, HSUPA调度器还从各扇区的射频模块获 取 RTWP, 计算各个扇区的当前扇区负载, 并获取各个扇区的最大扇区负载。
通常 HSUPA UE负载计算方法为: Lue = SIR/(1+SIR);
扇区负载的计算方法为: Lsector = ( RT WP - RT WPref ) /RTWP;
当前扇区负载是指 RTWP值为当前扇区 RTWP时的 Lsector值, 最大扇 区负载是指 RTWP值为 RTWPtarget时的 Lsector值, RTWPtarget是允许扇区 使用的接收宽带总功率的目标值或最大值。
步骤 403: 计算各扇区的剩余可用扇区负载, 并根据各个 HSUPA UE的 SIR在各个扇区的分布, 对各个扇区分别进行负载分配。
根据最大扇区负载和当前扇区负载计算剩余可用扇区负载, 最大扇区负 载减去当前扇区负载即为剩余可用扇区负载, 该剩余可用扇区负载加上该扇 区内 HSUPA UE 负载即为该扇区内可分配给移动台的 HSUPA 负载, 将该
HSUPA负载根据各移动台的信干比值情况进行分配。
本发明分扇区负载分配方法, 可以充分利用每个扇区的负载, 又能保证 每个扇区都有较低的过载率。
图 5为本发明方法在系统中实施例的示意图。 基站中的小区 A被分为 3 个扇区,每个扇区都有各自的基站天线。假设当前存在 3个 HSUPA用户 UEl , UE2, UE3 , 每个 UE都要求尽可能大的负载资源。
其中 UE1处于扇区 1和扇区 2的相邻边界附近, 这样扇区 1和扇区 2都 能接收到 UE1的上行信号, 即扇区 1和扇区 2的 RTWP都会受 UE1的影响, UE1在扇区 1和扇区 2的 SIR不等于 0 (例如为 0.2 ) , 但在扇区 3中的 SIR 等于 0。
UE2完全处于扇区 2中, 只影响扇区 2的 RTWP, 即只消耗扇区 2的负 载, 也只在扇区 2中 SIR不为 0 (例如为 0.7 ) , 在其它扇区中 SIR等于 0。
UE3完全处于扇区 3中, 其 SIR为 1。
即各个 HSUPA UE在各个扇区的 SIR为:
设各扇区的 RTWPtarget比 RTWPref 高 6dB, 即允许的最大扇区负载为 0.75, 其中 RTWPref = - 106dBm。 假设各个扇区当前的 RTWP分别为: - 105.20dBm, -102.24dBm, -102.99dBm,换算成线性值后由式(1 ) 可以算得当 前的扇区负载分别为: 0.1667 , 0.5785 , 0.5。 各扇区的剩余可用负载为最大 扇区负载(本实施例为 0.75 )减去各个扇区当前的扇区负载, 得到各个扇区 的剩余可用负载分别为 0.5833 , 0.1715 , 0.25。
各个扇区可以分配给 HSUPA用户的负载等于剩余可用负载加上当前 HSUPA用户的负载, 得到结果分别为 0.75 , 0.75 , 0.75。 在本实施例中, 本 小区内没有非 HSUPA用户 (比如纯语音用户) , 而且不考虑其它小区对本 小区的干扰, 所以计算的扇区负载恰好等于各个 HSUPA UE在扇区的负载之 和。 在真实系统中, 有可能由于非 HSUPA用户和其它小区干扰的存在, 导 致根据 RTWP算出的负载大于各个 HSUPA用户的负载之和, 从而可以分配 给 HSUPA用户的负载小于 0.75。
然后把可分配的负载分配到各个 HSUPA UE, 根据不同的准则有不同的 分配方法。 例如:
根据最大小区吞吐量的准则, 可以把扇区 1和扇区 2的所有负载分配给 UE1 , UE2得到负载为 0, UE3得到扇区 3的所有负载, 这样 3个扇区都达到 满负载, 小区总负载达到 0.75*3=2.25 , 吞吐量也能达到最高。 但显然这样对 UE2是非常不公平的, UE2不能进行 HSUPA业务通信。
如果釆用相对较公平的准则, 要求共处同一扇区内的 HSUPA UE吞吐量 尽量相同, 则在上述例子中, 由于 UE1可以占用扇区 1和扇区 2的负载, 且 两个扇区的负载为 1 : 1 (因为 UE1在扇区 1和扇区 2的 SIR值一样), 这个 比例由无线环境决定,这样同处扇区 2的 UE1和 UE2的负载比例需要按照 1: 2来分, 可以保证 UE1的吞吐量和 UE2的吞吐量基本相当。 利用分扇区调度 方法, 可以把扇区 3的所有剩余可用负载(0.75 )分配给 UE3 , 把扇区 2的 0.5负载分配给 UE2, 把扇区 2的 0.25的负载分配给 UE1。 此时虽然扇区 1
可以把所有可用负载(0.75 )分配给 UE1 , 但为了不让扇区 2过载, UE1在 扇区 1消耗的负载不到 0.75, 比如实际消耗扇区 1的负载为 0.25。 这样最后, 3个 UE得到的负载之和为: 0.75+0.5+(0.25+0.25)=1.75, 这也是这个小区的 总负载, 每个扇区负载分别为 0.25, 0.75, 0.75。
这样分配之后期望的各个 HSUPA UE在各个扇区的分布为:
如果 UE1移动到扇区 1中, 则每个 HSUPA UE可以得到 0.75的负载, 总负载为 0.75*3=2.25。 而如果釆用常规的调度算法, 由于不知道 HSUPA UE 在各个扇区的信号分布, 根据每个 HSUPA UE的 SIR计算每个 UE的负载之 和就不能超过 0.75, 以防止过载现象出现, 从而分配给各个 HSUPA UE的负 载都小于 0.75,在这种 UE在各个扇区分布的场景下,对每个扇区来讲都处于 欠载状态。 所以釆用分扇区调度方法, 可以解决欠载现象, 数倍提升 HSUPA 的吞吐量。
本发明还提供一种高速上行分组接入业务分扇区调度系统, 所述系统包 含分扇区高速上行分组接入业务调度器, 用于获取各扇区的当前扇区负载和 各扇区的当前 HSUPA移动台负载, 及各扇区的最大允许扇区负载; 根据各 扇区的最大允许负载和当前扇区负载, 得到剩余可用扇区负载, 根据各扇区 的剩余可用扇区负载, 和各 HSUPA移动台在各扇区的分布情况对各扇区分 别进行负载分配。
所述系统还包含射频模块, 用于测量扇区的当前接收宽带总功率, 并将 该当前接收宽带总功率发送给所述分扇区高速上行分组接入业务调度器, 所 述分扇区高速上行分组接入业务调度器根据所述当前接收宽带总功率得到该 扇区的当前扇区负载。
所述系统还包含分扇区信干比估计模块, 用于根据 HSUPA移动台的上 行信号解调径所在扇区不同, 分扇区估计出 HSUPA移动台在各扇区的信干 比值, 将该信干比值发送给所述分扇区高速上行分组接入业务调度器, 所述 分扇区高速上行分组接入业务调度器根据 HSUPA移动台在各扇区的信干比 值计算 HSUPA移动台在各扇区的当前 HSUPA移动台负载。
所述分扇区高速上行分组接入业务调度器对各扇区分别进行负载分配具 体为: 根据剩余可用扇区负载和扇区各 HSUPA移动台负载得到可分配给该 扇区移动台的高速上行分组接入业务负载, 将该高速上行分组接入业务负载 根据各 HSUPA移动台在各扇区的信干比值情况进行负载分配。
根据上面分析, 可见本发明方法在分扇区小区的应用中, 可以取得非常 可观的经济效果。
以上内容是结合具体的优选实施方式对本发明所作的进一步详细说明, 不能认定本发明的具体实施只局限于这些说明。 对于本发明所属技术领域的 普通技术人员来说, 在不脱离本发明构思的前提下, 还可以做出若干简单推 演或替换, 都应当视为属于本发明的保护范围。
工业实用性
本发明的有益效果为: 在分扇区小区方案中, 正确对应了 HSUPA UE负 载和扇区负载, 解决过载率较大或欠载率较大问题, 数倍提升了 HSUPA的 吞吐量。
Claims
1、 一种高速上行分组接入业务分扇区调度方法, 其特征在于, 包括: 获取各扇区的当前扇区负载和各扇区的当前高速上行分组接入业务 HSUPA移动台负载, 及各扇区的最大允许扇区负载;
根据各扇区的最大允许负载和当前扇区负载, 得到剩余可用扇区负载, 根据剩余可用扇区负载和各 HSUPA移动台在各扇区的分布情况对各扇区分 别进行负载分配。
2、 根据权利要求 1 所述的高速上行分组接入业务分扇区调度方法, 其特征在于, 根据各扇区的当前接收宽带总功率得到当前扇区负载。
3、 根据权利要求 2 所述的高速上行分组接入业务分扇区调度方法, 其特征在于, 所述各扇区的当前接收宽带总功率由各扇区的射频模块测量得 到。
4、 根据权利要求 1 所述的高速上行分组接入业务分扇区调度方法, 其特征在于,根据各 HSUPA移动台在各扇区的信干比值得到各 HSUPA移动 台负载。
5、 根据权利要求 4 所述的高速上行分组接入业务分扇区调度方法, 其特征在于, 所述 HSUPA移动台在各扇区的信干比值根据如下方式测量得 到: 根据每个 HSUPA移动台的上行信号解调径所在扇区不同, 分扇区估计 出 HSUPA移动台在各扇区的信干比值。
6、 根据权利要求 4 所述的高速上行分组接入业务分扇区调度方法, 其特征在于, 所述对各扇区分别进行负载分配具体为: 根据剩余可用扇区负 载和扇区各 HSUPA移动台负载得到可分配给该扇区移动台的高速上行分组 接入业务负载, 将该高速上行分组接入业务负载根据各 HSUPA移动台在各 扇区的信干比值情况进行负载分配。
7、 根据权利要求 1或 2所述的高速上行分组接入业务分扇区调度方 法, 其特征在于, 所述各扇区的最大允许扇区负载通过以下步骤计算得到: 获取各扇区的接收宽带总功率的目标值和接收宽带总功率的参考值参 数;
取各扇区的接收宽带总功率的目标值与接收宽带总功率的参考值之差除 以接收宽带总功率的目标值的值作为各扇区的最大允许扇区负载;
所述各扇区的当前扇区负载通过如下方式得到:
获取各扇区的接收宽带总功率的参考值参数;
取当前接收宽带总功率与接收宽带总功率的参考值之差除以当前接收宽 带总功率的值作为各扇区的当前扇区负载。
8、 根据权利要求 4或 5所述的高速上行分组接入业务分扇区调度方 法, 其特征在于, 所述各扇区的当前 HSUPA移动台负载的通过以下计算公 式计算得到:
扇区的移动台负载 =移动台在该扇区的信干比值 / ( 1 +移动台在该扇区 的信干比值) 。
9、 一种高速上行分组接入业务分扇区调度系统, 其特征在于, 所述 系统包含分扇区高速上行分组接入业务调度器, 所述分扇区高速上行分组接 入业务调度器用于获取各扇区的当前扇区负载和各扇区的当前 HSUPA移动 台负载, 及各扇区的最大允许扇区负载; 根据各扇区的最大允许负载和当前 扇区负载, 得到剩余可用扇区负载, 根据各扇区的剩余可用扇区负载, 和各 HSUPA移动台在各扇区的分布情况对各扇区分别进行负载分配。
10、 如权利要求 9 所述的系统, 其特征在于, 所述系统还包含射频模 块, 用于测量扇区的当前接收宽带总功率, 并将该当前接收宽带总功率发送 给所述分扇区高速上行分组接入业务调度器, 所述分扇区高速上行分组接入 业务调度器根据所述当前接收宽带总功率得到该扇区的当前扇区负载。
11、 如权利要求 9 所述的系统, 其特征在于, 所述系统还包含分扇区 信干比估计模块, 用于根据 HSUPA移动台的上行信号解调径所在扇区不同, 分扇区估计出 HSUPA移动台在各扇区的信干比值, 将该信干比值发送给所 述分扇区高速上行分组接入业务调度器, 所述分扇区高速上行分组接入业务 调度器根据 HSUPA移动台在各扇区的信干比值计算 HSUPA移动台在各扇区 的当前 HSUPA移动台负载。
12、 根据权利要求 11所述的系统, 其特征在于, 所述分扇区高速上行
分组接入业务调度器对各扇区分别进行负载分配具体为: 根据剩余可用扇区 负载和扇区各 HSUPA移动台负载得到可分配给该扇区移动台的高速上行分 组接入业务负载, 将该高速上行分组接入业务负载根据各 HSUPA移动台在 各扇区的信干比值情况进行负载分配。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP08874757.1A EP2293638B1 (en) | 2008-06-23 | 2008-12-30 | A sector based dispatching method for the high speed uplink packet access service and the system thereof |
US13/000,878 US9049738B2 (en) | 2008-06-23 | 2008-12-30 | Sectorized scheduling method for the high speed uplink packet access service and the system thereof |
HK11106507.0A HK1152445A1 (zh) | 2008-06-23 | 2011-06-23 | 種高速上行分組接入業務分扇區調度方法和系統 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN200810067982.0A CN101384056B (zh) | 2008-06-23 | 2008-06-23 | 一种高速上行分组接入业务分扇区调度方法 |
CN200810067982.0 | 2008-06-23 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2009155740A1 true WO2009155740A1 (zh) | 2009-12-30 |
Family
ID=40463622
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2008/002137 WO2009155740A1 (zh) | 2008-06-23 | 2008-12-30 | 一种高速上行分组接入业务分扇区调度方法和系统 |
Country Status (5)
Country | Link |
---|---|
US (1) | US9049738B2 (zh) |
EP (1) | EP2293638B1 (zh) |
CN (1) | CN101384056B (zh) |
HK (1) | HK1152445A1 (zh) |
WO (1) | WO2009155740A1 (zh) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102045764B (zh) * | 2009-10-20 | 2014-02-19 | 华为技术有限公司 | 高速上行分组接入自适应重传方法及装置 |
WO2011119075A1 (en) * | 2010-03-23 | 2011-09-29 | Telefonaktiebolaget L M Ericsson (Publ) | Uplink load prediction using kalman filters |
US11512278B2 (en) | 2010-05-20 | 2022-11-29 | Pond Technologies Inc. | Biomass production |
US20120156669A1 (en) | 2010-05-20 | 2012-06-21 | Pond Biofuels Inc. | Biomass Production |
CN101959233B (zh) * | 2010-09-30 | 2016-08-03 | 中兴通讯股份有限公司 | 扇区调度方法、节点b及无线网络控制器 |
CN102469515B (zh) * | 2010-11-08 | 2015-03-18 | 中兴通讯股份有限公司 | 在增强hsupa调度系统中发送传递参数的方法和系统 |
US20120276633A1 (en) | 2011-04-27 | 2012-11-01 | Pond Biofuels Inc. | Supplying treated exhaust gases for effecting growth of phototrophic biomass |
CN102413093A (zh) * | 2011-12-29 | 2012-04-11 | 苏州恩巨网络有限公司 | 一种ofdm网络容量估算方法 |
CN103781183B (zh) * | 2012-10-26 | 2018-08-14 | 南京中兴软件有限责任公司 | 一种下行资源的调度方法及装置 |
EP3179783B1 (en) * | 2014-09-02 | 2021-07-14 | Huawei Technologies Co., Ltd. | Cell selection method in wireless network, base station and user equipment |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1758804A (zh) * | 2004-10-10 | 2006-04-12 | 中兴通讯股份有限公司 | 一种时分组网系统中扇区负载均衡的方法 |
CN1863018A (zh) * | 2006-01-19 | 2006-11-15 | 华为技术有限公司 | 上行增强链路负载估计方法和wcdma上行链路负载估计方法 |
CN1933352A (zh) * | 2005-12-07 | 2007-03-21 | 上海华为技术有限公司 | 一种小区负载调度方法 |
CN101035085A (zh) * | 2007-04-28 | 2007-09-12 | 华为技术有限公司 | 高速上行链路分组接入技术的调度方法和装置 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8165148B2 (en) * | 2003-01-13 | 2012-04-24 | Qualcomm Incorporated | System and method for rate assignment |
JP5108028B2 (ja) * | 2007-02-05 | 2012-12-26 | テレフオンアクチーボラゲット エル エム エリクソン(パブル) | Iub負荷測定結果の調整 |
US8676124B2 (en) * | 2007-09-28 | 2014-03-18 | Qualcomm Incorporated | Scheduling based on effective target load with interference cancellation in a wireless communication system |
-
2008
- 2008-06-23 CN CN200810067982.0A patent/CN101384056B/zh active Active
- 2008-12-30 EP EP08874757.1A patent/EP2293638B1/en active Active
- 2008-12-30 US US13/000,878 patent/US9049738B2/en active Active
- 2008-12-30 WO PCT/CN2008/002137 patent/WO2009155740A1/zh active Application Filing
-
2011
- 2011-06-23 HK HK11106507.0A patent/HK1152445A1/zh unknown
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1758804A (zh) * | 2004-10-10 | 2006-04-12 | 中兴通讯股份有限公司 | 一种时分组网系统中扇区负载均衡的方法 |
CN1933352A (zh) * | 2005-12-07 | 2007-03-21 | 上海华为技术有限公司 | 一种小区负载调度方法 |
CN1863018A (zh) * | 2006-01-19 | 2006-11-15 | 华为技术有限公司 | 上行增强链路负载估计方法和wcdma上行链路负载估计方法 |
CN101035085A (zh) * | 2007-04-28 | 2007-09-12 | 华为技术有限公司 | 高速上行链路分组接入技术的调度方法和装置 |
Non-Patent Citations (1)
Title |
---|
See also references of EP2293638A4 * |
Also Published As
Publication number | Publication date |
---|---|
US20120020228A1 (en) | 2012-01-26 |
US9049738B2 (en) | 2015-06-02 |
EP2293638A4 (en) | 2012-03-07 |
CN101384056A (zh) | 2009-03-11 |
CN101384056B (zh) | 2012-09-26 |
EP2293638B1 (en) | 2014-04-02 |
HK1152445A1 (zh) | 2012-02-24 |
EP2293638A1 (en) | 2011-03-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2009155740A1 (zh) | 一种高速上行分组接入业务分扇区调度方法和系统 | |
Goyal et al. | Improving small cell capacity with common-carrier full duplex radios | |
KR101105998B1 (ko) | 주파수 분할 다중 접속 통신 시스템에서의 업링크 전력 제어 방법 및 장치 | |
KR101718088B1 (ko) | 무선통신 시스템에서 인접 셀의 부하 예측을 기반으로 하는 전력 할당 및 부하 균형을 위한 방법 및 장치 | |
US8830965B2 (en) | Radio communication method, radio communication system, radio base station, and radio terminal station | |
US20110281585A1 (en) | Method for performing a handoff by a comp set | |
US8285322B2 (en) | Minimizing inter-femtocell downlink interference | |
WO2010080904A1 (en) | Method for time/frequency spreading in a femtocell network for interference reduction | |
WO2015167379A1 (en) | Method and radio network node for scheduling of wireless devices in a cellular network | |
Doppler et al. | Interference aware scheduling for soft frequency reuse | |
EP2811781A1 (en) | Wireless communication system, wireless terminal, wireless base station, and wireless communication method | |
WO2012155695A1 (zh) | 一种选择协作节点的基站、系统及方法 | |
CN110662235B (zh) | 数据处理方法、主机单元、基站系统和存储介质 | |
WO2005099121A1 (fr) | Procede et dispositif de commande de la puissance de transmission d'un canal en liaison descendante dans un systeme distribue | |
WO2015062034A1 (zh) | 资源分配方法、装置以及用户设备 | |
Bhardwaj et al. | A resource allocation scheme for multiple device-to-device multicasts in cellular networks | |
JP2008193340A (ja) | 無線基地局装置、無線端末装置、無線通信システム、及びチャネルクオリティインジケータ推定方法 | |
WO2007112626A1 (fr) | Procédé et dispositif permettant de tester la performance en cas d'interférences d'un système de communication mobile, et procédé de planification du système | |
WO2010073059A1 (zh) | 协作通信方法及系统、用户设备、基站、程序和存储介质 | |
KR101332025B1 (ko) | 셀간 간섭을 고려한 사용자 스케쥴링 방법 및 이를 수행하는 무선 이동 통신 시스템 | |
CN116016056A (zh) | 信号的处理方法、装置及存储介质 | |
CN101466139A (zh) | 一种高速上行分组接入业务分天线调度方法及系统 | |
WO2017041615A1 (zh) | 一种确定多点传输资源的方法及装置 | |
CN102340805B (zh) | 一种用于小区间干扰协调的干扰信息均衡方法及系统 | |
Xiao et al. | Interference migration using concurrent transmission for energy-efficient HetNets |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 08874757 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13000878 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2008874757 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |