[go: up one dir, main page]

WO2009149845A1 - Geschäumte polyester und verfahren zu deren herstellung - Google Patents

Geschäumte polyester und verfahren zu deren herstellung Download PDF

Info

Publication number
WO2009149845A1
WO2009149845A1 PCT/EP2009/003911 EP2009003911W WO2009149845A1 WO 2009149845 A1 WO2009149845 A1 WO 2009149845A1 EP 2009003911 W EP2009003911 W EP 2009003911W WO 2009149845 A1 WO2009149845 A1 WO 2009149845A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyester
thermoplastic
weight
foam
elastomers
Prior art date
Application number
PCT/EP2009/003911
Other languages
English (en)
French (fr)
Inventor
Heinrich Rüger
Michael Gisler
Linus Villiger
Cédric MÜNGER
Original Assignee
Alcan Technology & Management Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=40941894&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2009149845(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority claimed from CH01943/08A external-priority patent/CH700050B1/de
Priority to CA2727639A priority Critical patent/CA2727639C/en
Priority to BRPI0915376A priority patent/BRPI0915376A2/pt
Priority to RU2011100164/05A priority patent/RU2482138C2/ru
Priority to CN200980121758.8A priority patent/CN102056967B/zh
Priority to US12/996,648 priority patent/US20110082227A1/en
Priority to ES09761408.5T priority patent/ES2439713T3/es
Application filed by Alcan Technology & Management Ltd. filed Critical Alcan Technology & Management Ltd.
Priority to EP09761408.5A priority patent/EP2288643B1/de
Priority to PL09761408T priority patent/PL2288643T3/pl
Priority to SI200930820T priority patent/SI2288643T1/sl
Priority to JP2011512864A priority patent/JP5670321B2/ja
Priority to DK09761408.5T priority patent/DK2288643T3/da
Publication of WO2009149845A1 publication Critical patent/WO2009149845A1/de
Priority to HRP20140054AT priority patent/HRP20140054T1/hr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/122Hydrogen, oxygen, CO2, nitrogen or noble gases
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/22After-treatment of expandable particles; Forming foamed products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/34Auxiliary operations
    • B29C44/36Feeding the material to be shaped
    • B29C44/46Feeding the material to be shaped into an open space or onto moving surfaces, i.e. to make articles of indefinite length
    • B29C44/50Feeding the material to be shaped into an open space or onto moving surfaces, i.e. to make articles of indefinite length using pressure difference, e.g. by extrusion or by spraying
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0014Use of organic additives
    • C08J9/0023Use of organic additives containing oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0061Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof characterized by the use of several polymeric components
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2201/00Foams characterised by the foaming process
    • C08J2201/02Foams characterised by the foaming process characterised by mechanical pre- or post-treatments
    • C08J2201/022Foams characterised by the foaming process characterised by mechanical pre- or post-treatments premixing or pre-blending a part of the components of a foamable composition, e.g. premixing the polyol with the blowing agent, surfactant and catalyst and only adding the isocyanate at the time of foaming
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2201/00Foams characterised by the foaming process
    • C08J2201/02Foams characterised by the foaming process characterised by mechanical pre- or post-treatments
    • C08J2201/03Extrusion of the foamable blend
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/06CO2, N2 or noble gases
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2205/00Foams characterised by their properties
    • C08J2205/04Foams characterised by their properties characterised by the foam pores
    • C08J2205/052Closed cells, i.e. more than 50% of the pores are closed
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2400/00Characterised by the use of unspecified polymers
    • C08J2400/14Water soluble or water swellable polymers, e.g. aqueous gels
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2467/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/09Carboxylic acids; Metal salts thereof; Anhydrides thereof
    • C08K5/092Polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/15Heterocyclic compounds having oxygen in the ring
    • C08K5/151Heterocyclic compounds having oxygen in the ring having one oxygen atom in the ring
    • C08K5/1535Five-membered rings
    • C08K5/1539Cyclic anhydrides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • C08L67/025Polyesters derived from dicarboxylic acids and dihydroxy compounds containing polyether sequences

Definitions

  • the invention relates to foam bodies of thermoplastic polyesters, with high homogeneity, low open-cell content and high shear fracture elongation, containing as modifier dianhydrides of tetracarboxylic acids, means for producing the foamed bodies and processes for producing foamed polyesters.
  • thermoplastic polyesters suitable for extrusion foaming have, for example, an intrinsic viscosity of more than 0.8 dl / g.
  • a two-stage process is described, according to which a polyester having an intrinsic viscosity higher than 0.52 dl / g is added with a dianhydride of an organic tetracarboxylic acid and reacted to form a polyester having an intrinsic viscosity of 0.85 to 1.95 dl / g.
  • the foaming process by extrusion foaming can be initiated with the thus prepared polyester.
  • further dianhydride can be added to an organic tetracarboxylic acid during extrusion foaming.
  • foamed polyester can be obtained by forming a molten mixture and extruding this mixture.
  • the mixture is made up of a major portion of polyester and a smaller portion of one Mixture of polyester with a substance formed, the chain extension, resp. Branch, causes.
  • the invention has for its object to propose foams made of polyester, means for their preparation and a process for their preparation in order to foam, resp.
  • Particularly sought-after foams of polyester have, for example, low density, high homogeneity, low open-celledness, high strength and, in particular, high shear fracture elongation.
  • the foaming of polyesters to foam bodies is difficult to control process.
  • intrinsically viscous polyesters (IV) can either not be foamed at all or, if foaming is still possible, the foams have poor properties, such as varying high density, high open-celledness, irregular pore distribution and low shear fracture elongation.
  • the polyester foam of the foam body contains at least one thermoplastic elastomer.
  • foamed bodies of polyesters according to the invention contain thermoplastic elastomers in amounts of from 0.5 to 15.0% by weight, based on the weight of the foam body.
  • thermoplastic elastomers from 0.5 to 12 wt .-%, and preferably from 1, 5 to 12% by weight, each based on the weight of the foam body.
  • the foam bodies of polyesters according to the present invention advantageously comprise as thermoplastic elastomers polymer blends or thermoplastic copolyester elastomers.
  • Thermoplastic elastomers consist of or contain polymers or a polymer blend (blend) which exhibits properties at service temperature. Similar to vulcanized rubber, but which can be processed and worked up at elevated temperatures like a thermoplastic.
  • the polymer blends have a polymer matrix of hard thermoplastic with incorporated particles of soft crosslinked or uncrosslinked elastomers.
  • the thermoplastic copolyester elastomers contain hard thermoplastic sequences and soft elastomeric sequences.
  • thermoplastic copolyester elastomers contain polyester blocks, expediently from a diol, preferably from 1,4-butanediol or 1,2-ethanediol, and a dicarboxylic acid, preferably terephthalic acid, which are reacted with polyesters which carry hydroxyl end groups in a condensation reaction - were restert.
  • Thermoplastic elastomers are also known under the abbreviation TPE and the subgroups TPO (thermoplastic olefin elastomers), TPS (thermoplastic styrene elastomers), TPV (thermoplastic rubber vulcanizates), TPU (thermoplastic urethane elastomers), TPA (thermoplastic polyamide elastomers), TPC (thermoplastic copolyester elastomers) and TPZ (other unclassified thermoplastic elastomers) known.
  • TPE thermoplastic olefin elastomers
  • TPS thermoplastic styrene elastomers
  • TPV thermoplastic rubber vulcanizates
  • TPU thermoplastic urethane elastomers
  • TPA thermoplastic polyamide elastomers
  • TPC thermoplastic copolyester elastomers
  • TPZ other unclassified thermoplastic elastomers
  • the TPEs include block or segmented polymers such as thermoplastic styrenic block polymers, thermoplastic copolyesters, polyetheresters, thermoplastic polyurethanes or polyether-polyamide block copolymers.
  • the TPEs obtain their elastomeric properties either by copolymerizing hard and soft blocks or blending a thermoplastic matrix. In the case of graft copolymerization, the hard segments form so-called domains, which function as physical crosslinks. TPE are repeatedly melted and processed.
  • the TPE described as thermoplastic copolyester elastomers, resp.
  • TPC also called TPC
  • TPC-EE are divided into the TPC-EE with soft segments with ether and ester linkages and the TPC-ES / -ET with soft polyester segments, respectively.
  • Polyether In the present case, the TPC-EE are of particular interest.
  • the thermoplastic copolyester elastomers, resp. thermoplastic copolyester or thermoplastic polyetherester, resp. elastomeric copolyether restoratives are alternately composed of hard polyester segments and soft polyether segments. Depending on the type and length of the hard and soft segments, a wide hardness range is adjustable.
  • Thermoplastic copolyesters are block copolymers consisting on the one hand of amorphous soft segments of polyalkylene ether diols and / or long-chain aliphatic dicarboxylic acid esters and on the other hand of hard segments of crystalline polybutylene terephthalate.
  • the preparation of the elastomeric copolyether esters takes place in the melt by transesterification reactions between a terephthalate ester, a polyalkylene ether glycol (eg polytetramethylene ether glycol, polyethylene oxide glycol or polypropylene oxide glycol) and a short-chain diol, for example 1,4-butanediol or 1,2-ethanediol.
  • a modifier can be added to the polyester.
  • the modifier is, for example, a dianhydride of an organic tetracarboxylic acid (tetracarboxylic acid dianhydride).
  • Preferred dianhydrides are the dianhydrides of the following tetracarboxylic acids:
  • Benzene-1, 2,4,5-tetracarboxylic acid (pyromellitic acid), 3,3 ', 4,4'-diphenyltetracarboxylic acid, 3,3', 4,4'-benzophenonetetracarboxylic acid, 2,2-bis- (3,4-) dicarboxyphenyl) -propane, bis (3,4-dicarboxyphenyl) ether, bis (3,4-dicarboxylphenyl) thioether, naphthalene-2,3,6,7-tetracarboxylic acid, bis (3,4-dicarboxylphenyl) sulfone, tetrahydrofuran-2,3,4,5-tetracarboxylic acid, 2,2-bis (3,4-dicarboxlphenyl) hexafluoropropane, 1, 2,5,6-naphthalenetetracarboxylic acid, bis (3,4-dicarboxyphenyl) - sulfoxide and
  • polyesters such as thermoplastic polyesters obtainable by polycondensation of aromatic dicarboxylic acids with diols.
  • aromatic acids are terephthalic and isophthalic acids, naphthalene dicarboxylic acids and diphenyl ether dicarboxylic acids.
  • diols are glycols such as ethylene glycol, tetraethylene glycol, cyclohexanedimethanol, 1,4-butanediol and 1,2-ethanediol.
  • Polyesters of or containing polyethylene terephthalate, polybutylene terephthalate and polyethylene terephthalate copolymers containing up to 20% of isophthalic acid are preferred.
  • a particularly important feature of the polyesters used as starting material, which are modified according to the invention and foamed to form the foam bodies according to the invention, is the intrinsic viscosity. It has not been possible to produce foams starting from polyesters having an intrinsic viscosity of about 0.4 dl / g. According to the present invention, starting materials, such as of polyesters having an intrinsic viscosity as low as about 0.4 dl / g and above, and especially of polyesters having an intrinsic viscosity of, for example, 0.6 to 0.7 dl / g and above, can reliably form foams be manufactured with the required properties.
  • the proportion of modifier, in particular the tetracarboxylic dianhydride, based on the polyester used, must be increased accordingly.
  • concentration of modifier in the masterbatch and the amount of masterbatch used with respect to the amount of polyester the intrinsic viscosity of the processed polyester, and hence its foamability, is easily controlled.
  • the intrinsic viscosity of 0.6 to 0.7 dl / g can be increased by the modification to above 1, 0 or even 1, 2 dl / g and above.
  • the present invention also relates to compositions for producing foam bodies from polyesters of high homogeneity, low open-cell content and high shear fracture strain, containing as modifier dianhydrides of tetracarboxylic acids.
  • the compositions are a masterbatch containing thermoplastic elastomers, such as copolyester thermoplastic elastomers, in amounts of from 25 to 95% by weight, based on the weight of the composition, and dianhydrides of tetracarboxylic acids in amounts of from 5 to 30% by weight, based on the weight of the agent.
  • compositions for producing foam bodies from polyesters where the composition is a masterbatch comprising thermoplastic copolyester elastomers in amounts of from 25 to 95% by weight and dianhydrides of a tetracarboxylic acid in amounts of from 5 to 30% by weight and 0 to 70%, preferably 1 to 50 wt .-%, each based on the weight of the composition, stabilizers, nucleating agents, flame retardants and / or polyester, suitably a polyester of the same quality, such as a starting polyester to be modified.
  • the means i. the premix can be prefabricated and stored temporarily on a case-by-case basis. Thereafter, in the quantities provided, the premix and the polyesters to be foamed can be mixed together. This mixture of premix and polyesters can be further fed to the foaming process and processed into foam bodies.
  • the present invention also relates to a process for the preparation of foam bodies of polyesters of high homogeneity and shear rate elongation, containing as modifying agent dianhydrides of a tetracarboxylic acid.
  • a polyester resin is admixed with a premix of thermoplastic elastomers, such as thermoplastic copolyester elastomers, and dianhydrides of a tetracarboxylic acid, to give a foam body, containing the ther- moplastic copolyester elastomers in amounts of 0.5 to 15 wt .-%, based on the weight of the foam body, foamed.
  • thermoplastic elastomers such as thermoplastic copolyester elastomers, and dianhydrides of a tetracarboxylic acid
  • thermoplastic elastomers such as thermoplastic co-polyester elastomers and dianhydrides of a tetracarboxylic acid is prepared as a precursor by mixing the ingredients.
  • the masterbatch may contain from 25 to 95% by weight, based on the premix, copolyester elastomers and from 5 to 30% by weight, based on the masterbatch, of tetracarboxylic dianhydride.
  • the premix contains 50 to 90 wt .-%, preferably 80 to 90 wt .-%, based on the masterbatch, copolyester elastomers and 10 to 25 wt%, preferably 10 to 15 wt .-%, based on the premix, tetracarboxylic dianhydride ,
  • the premix may contain as further constituents, for example a total of 0 to 70%, preferably 0.1 to 70% by weight and in particular 1 to 50% by weight, for example polyesters, stabilizers, nucleating agents, fillers and flame retardants.
  • the polyesters listed on the other components may be of the same quality as the polyesters to be modified, i. Starting polyester, e.g. with an intrinsic viscosity above about 0.4 dl / g and in particular polyester having an intrinsic viscosity of about 0.6 to 0.7 dl / g and above, be.
  • the preparation of the premix can be carried out by feeding the components into a mixer, for example a screw extruder, such as a single- or twin-screw extruder or a multi-screw extruder etc., and intimately mixing the components over a period of 10 to 120 seconds at temperatures of 200 to 260 0 C take place.
  • the premix can be discharged from the mixer and be granulated in a further processable form, for example.
  • a polyester with a - Intrinsic viscosity of at least 0.4 dl / g submitted and mixed with the premix.
  • the premix can be used in amounts of 1, 0 to 20.0 wt .-%, based on the polyester.
  • additional components can be added to the mixing and foaming process, in addition to the polyester and the premix.
  • these are the stabilizers, fillers and flame retardants already mentioned, which can be added instead of or not already contained in the premix.
  • the amounts of further components are, for example, up to 15% by weight, advantageously from 0.1 to 15% by weight, based on the sum of polyester and premix.
  • Other components for example for controlling cell size and cell distribution in the foam, can also be added to the mixing and foaming process. These are, for example, up to 5% by weight, suitably from 0.1 to 5% by weight, based on the sum of polyester and premix, of metal compounds of I. to III. Group in the periodic system, e.g. Sodium carbonate, calcium carbonate, aluminum or magnesium stearate, aluminum or magnesium myristate or sodium terephthalate and the other suitable compounds, such. Talc or titanium dioxide.
  • the components can be fed to and mixed in a reactor or mixer, for example a single- or twin-screw extruder or a multi-screw extruder or a tandem unit consisting of two single-screw extruders combined together or combined with one another, a twin-screw extruder and a single-screw extruder.
  • the residence time of the components in the reactor or mixer can be for example from 8 to 40 minutes.
  • the temperature during the residence time can be from 240 to 320 ° C.
  • the blowing agent for foaming is also fed to the reactor or mixer, for example the extruders mentioned.
  • Suitable propellants are, for example, easily vaporizable liquids, thermally decomposing substances that release gases or inert gases and mixtures or combinations mentioned Medium.
  • the readily volatile liquids include saturated aliphatic or cycloaliphatic hydrocarbons, aromatic hydrocarbons and halogenated hydrocarbons. Examples are butane, pentane, hexane, cyclohexane, ethanol, acetone and HFC 152a.
  • As an inert gas CO 2 and nitrogen can be mentioned.
  • the blowing agent is usually fed into the extruder after the feed zone, the components.
  • the foam body of substantially largely closed-cell foam, which may have, for example, a round, rounded, rectangular or polygonal cross-section.
  • the foam body can then be as far as required, according to the use, deformed, cut and / or joined. If foamed bodies are produced, then the foamed bodies can be stacked next to one another and / or one above the other and processed to form foam blocks, in particular homogeneous foam blocks, with mutual release-resistant connection, such as mutual bonding or, in particular, welding.
  • the foam bodies can be plate-shaped and stacked. The touching surfaces can be connected to each other over the entire surface, as if welded. This results in foam blocks with welds that run in the extrusion direction. It can, in particular transversely to the extrusion direction, resp. transverse to the welds, individual foam sheets are separated from the foam block.
  • the foam body according to the invention has, in particular, the following advantageous features at a bulk density of about 120 kg / m 3 :
  • Shear strength according to ISO 1922 for example greater than 1.0 N / mm 2
  • - shear modulus (G-modulus) according to ASTM C393, for example greater than 20 N / mm 2 .
  • Airex method AM-19 Open cell according to Airex method AM-19 according to ASTM D1056-07, for example, of less than 8% and in particular less than 4%.
  • the viscosity number of the resulting foam is determined according to ISO 1628/5 and may for example be more than 150 ml / g, approximately corresponding to an intrinsic viscosity of more than 1.2 dl / g.
  • a viscosity number of the resulting foam, determined according to ISO 1628/5 of, for example, more than 160 ml / g, approximately corresponding to an intrinsic viscosity of more than 1.30 dl / g.
  • the process according to the invention is also distinguished, for example, by the fact that no gel formation takes place during extrusion.
  • the premix is fully miscible with the polyester and no second undesirable phase forms.
  • the premix can be produced in devices known per se, the so-called compounding devices, the process being light is controllable.
  • the properties of the resulting foam body can also be controlled in a simple manner by the choice of the thermoplastic copolyester elastomer (TPC) and the soft elastomers and hard thermoplastic sequences contained therein.
  • Thermoplastic copolyester elastomer (TPC) in the form of granules with a Shore hardness of 55 D is dried for 4 hrs. At 100 0 C by means of hot air.
  • TPC Thermoplastic copolyester elastomer
  • PMDA pyromellitic dianhydride
  • the strands are transferred after cooling in a water bath and drying with an air blower in a granulating device by means of rotating blades in a cylindrical granules.
  • the premix thus obtained is after-dried at 70 ° C. for 3 hours.
  • Premix Example 2 Thermoplastic copolyester elastomer (TPC) in the form of granules having a Shore hardness of 33 D is dried for 4 hours at 100 ° C. by means of hot air. On a co-rotating twin-screw extruder with a diameter of 27 mm and an L / D ratio of 40, 85% by weight of TPC and 15% by weight of pyromellitic dianhydride (PMDA) are used at a cylinder temperature between 200 and 210 ° C. and a speed of 200 rpm mixed under protective gas atmosphere and discharged in strand form.
  • TPC Thermoplastic copolyester elastomer
  • PMDA pyromellitic dianhydride
  • the strands are transferred after cooling in a water bath and drying with an air blower in a granulating device by means of rotating blades in a cylindrical granules.
  • the premix thus obtained is after-dried at 70 ° C. for 3 hours.
  • Polyester granules (PET) with an intrinsic viscosity of 0.81 dl / g are dried for 8 hrs. At 150 0 C by means of hot air.
  • PET PET granules
  • PMDA pyromellitic anhydride
  • the strands are transferred after cooling in a water bath and drying with an air blower in a granulating device by means of rotating blades in a cylindrical granules.
  • the premix thus obtained is after-dried at 70 ° C. for 3 hours.
  • PET granules as starting material having an intrinsic viscosity of 0.81 dl / g are dried for about 5 hours at 170 0 C with dry air and together with 2.7 wt .-% of the premix of Example 1 ( about 11 hours dried with dry air at 60 ° C.) and 1.0% of a nucleating agent (30% talc in PET, dried for about 11 hours with dry air at 60 ° C.) are metered into the first extruder of an extrusion foaming plant with two screw extruders, melted, mixed and foamed with CO 2 .
  • the melt temperature at the exit from the extrusion die is 248 ° C, the output approx.
  • foam bodies for example approximately cuboidal cross-section, which are cut to plate-shaped foam bodies.
  • the plate-shaped foam bodies are stacked and welded to one another at the contact surfaces, forming foam blocks.
  • the measured values given in the examples are determined on foam sheets which are separated from the foam blocks transversely to the extrusion direction.
  • the viscosity number of the resulting foam is determined according to ISO 1628/5 and is 164.0 ml / g, which corresponds to an intrinsic viscosity of 1.32 dl / g.
  • PET granules having an intrinsic viscosity of 0.81 dl / g are dried for about 5 hours at 170 0 C with dry air and together with 2.7 wt .-% of the premix of Example 2 (ca. Dried for 11 hours with dry air at 60 ° C.) and 1.0% of a nucleating agent (30% talc in PET, dried for about 11 hours with dry air at 60 ° C.) are metered into the first extruder of an extrusion foaming plant with two screw extruders, melted. zen, mixed and foamed with CO 2 .
  • the melt temperature at the exit from the extrusion die is 249 ° C.
  • the output is about 290 kg / h
  • the residence time in the extruder is about 17 min.
  • the viscosity number of the resulting foam is determined according to ISO 1628/5 and is 165.6 ml / g, which corresponds to an intrinsic viscosity of 1.33 dl / g.
  • PET granules having an intrinsic viscosity of 0.81 dl / g are dried for about 5 hours at 170 0 C with dry air and together with 2.3 wt .-% of the premix of Example 2 (ca.
  • a nucleating agent (30% talc in PET, dried for about 11 hours with dry air at 60 ° C.) and 10% by weight of a thermoplastic copolyester elastomer (TPC) with a Shore hardness of 33 D (dried for about 12 hours with dry air at 100 ° C.) is metered into the first extruder of an extrusion foaming plant with two screw extruders, melted, mixed and foamed with CO 2 .
  • the melt temperature at the exit from the extrusion die is 248 ° C, the output about 270 kg / h, the residence time in the extruder about 18 min.
  • the viscosity number of the resulting foam is determined according to ISO 1628/5 and amounts to 162.2 ml / g, which corresponds to an intrinsic viscosity of 1.30 dl / g.
  • PET granules having an intrinsic viscosity of 0.81 dl / g are dried for about 5 hours at 170 0 C with dry air and together with 2.7 wt .-% of the premix of the comparative example (ca. 11 hours dried with dry air at 60 ° C.) and 1.0% of a nucleating agent (30% talc in PET, dried for about 11 hours with dry air at 60 ° C.) are metered into the first extruder of an extrusion foaming plant with two screw extruders, melted, mixed and foamed with CO 2 .
  • the melt temperature at the outlet from the extrusion tool is 247 0 C.
  • the emissions must be reduced to about 200 kg / h in order to realize the required Offenzelltechnikswert of ⁇ 8%.
  • the residence time in the extruder thus increases to about 24 minute
  • the viscosity number of the resulting foam according to ISO 1628/5 is lower than in Examples 1 and 2, and thus also the correlating intrinsic viscosity (1.27 dl / g), despite the longer residence time at 157.8 ml / g.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Emergency Medicine (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

Schaumkörper aus thermoplastischen Polyestem hoher Homogenität, niedriger Offenzelligkeit und hoher Schubbruchdehnung, wobei der Polyesterschaum wenigstens ein thermoplastisches Elastomer, wie ein thermoplastisches Copolyesterelastomer, in Mengen von beispielsweise 0,5 bis 15 Gew.-%, bezogen auf das Gewicht des Schaumkörpers, enthält. Die Schaumkörper sind erhältlich durch Aufschäumen eines Ausgangspolyesters niedriger Grenzviskosität in Mischung mit einem Modifizierungsmittel in Form einer Vormischung enthaltend Dianhydride von Tetracarbonsäuren und thermoplastische Copolyesterelastomere.

Description

Geschäumte Polyester und Verfahren zu deren Herstellung
Die Erfindung betrifft Schaumkörper aus thermoplastischen Polyestem, mit hoher Homogenität, niedriger Offenzelligkeit und hoher Schubbruchdehnung, ent- haltend als Modifizierungsmittel Dianhydride von Tetracarbonsäuren, Mittel zur Herstellung der Schaumkörper und Verfahren zur Herstellung von geschäumten Polyestern.
Es sind beispielsweise aus der WO 93/12164 geschäumte zelluläre Polyester und ein Verfahren zu deren Herstellung bekannt. Es wird beschrieben, dass thermoplastische Polyester, die sich für das Extrusionsschäumen eignen, beispielsweise eine Grenzviskosität (intrinsic viscosity) von mehr als 0,8 dl/g aufweisen. Um den angegebenen Wert der Grenzviskosität zu erhalten, wird ein zweistufiges Verfahren beschrieben, demgemäss ein Polyester mit einer Grenzviskosität von höher als 0,52 dl/g mit einem Dianhydrid einer organischen Tetracarbonsäure versetzt und zur Reaktion gebracht wird, um einen Polyester mit einer Grenzviskosität von 0,85 bis 1.95 dl/g zu erhalten. Mit dem derart aufbereiteten Polyester kann danach der Schäumungsvorgang durch Extrusionsschäumen eingeleitet werden. Fallweise kann während des Extrusionsschäu- mens weiteres Dianhydrid einer organischen Tetracarbonsäure zugegeben werden.
Nachteil des genannten Verfahrens ist, dass zwei aufwändige Prozessschritte notwendig sind, um zunächst das ganze Volumen an Polyester mit dem Dian- hydrid der Tetracarbonsäure zu vermischen, und es dann in einem Festphasenreaktor auf Reaktionstemperatur zu bringen und bis zum Ende der Reaktion mehrere Stunden auf Temperatur zu halten. Danach erst schliesst sich der eigentliche Schäumungsvorgang an.
Gemäss der US 5,288,764 kann geschäumtes Polyester durch Bilden einer geschmolzenen Mischung und Extrudieren dieser Mischung erhalten werden. Die Mischung wird aus einem Hauptanteil Polyester und einem kleineren Teil einer Mischung aus Polyester mit einer Substanz gebildet, die eine Kettenverlängerung, resp. -Verzweigung, bewirkt.
Der Erfindung liegt die Aufgabe zugrunde, Schäume aus Polyester, Mittel zu deren Herstellung und ein Verfahren zu deren Herstellung vorzuschlagen, um auf einfache Weise zu Schäumen, resp. Schaumkörpern, aus thermoplastischen Polyestem mit vorteilhaften Eigenschaften zu gelangen. Besonders gesuchte Schäume aus Polyester weisen beispielsweise bei niedriger Dichte, eine hohe Homogenität, eine niedrige Offenzelligkeit, eine hohe Festigkeit und ins- besondere eine hohe Schubbruchdehnung auf. Das Schäumen von Polyestern zu Schaumkörpern ist ein nur schwer beherrsch barer Prozess. Insbesondere Polyester mit niedriger Grenzviskosität (Intrinsic Viscosity, IV), lassen sich entweder gar nicht schäumen oder falls ein Schäumen dennoch möglich ist, so weisen die Schäume schlechte Eigenschaften auf, wie variierende hohe Dichte, hohe Offenzelligkeit, unregelmässige Porenverteilung und geringe Schubbruchdehnung.
Zur erfindungsgemässen Lösung der Aufgabe führt, dass der Polyesterschaum des Schaumkörpers wenigstens ein thermoplastisches Elastomer enthält.
Beispielsweise enthalten erfindungsgemässe Schaumkörper aus Polyestern thermoplastische Elastomere in Mengen von 0,5 bis 15,0 Gew.-%, bezogen auf das Gewicht des Schaumkörpers. Zweckmässig sind Mengen an thermoplastischen Elastomeren von 0,5 bis 12 Gew.-%, und bevorzugt von 1 ,5 bis 12 Gew.- %, jeweils bezogen auf das Gewicht des Schaumkörpers.
Die Schaumkörper aus Polyestern nach vorliegender Erfindung enthalten als thermoplastische Elastomere vorteilhaft Polymer-Blends oder thermoplastische Copolyesterelastomere.
Thermoplastische Elastomere bestehen aus oder enthalten Polymere oder eine Polymermischung (Blend), die bei Gebrauchstemperatur Eigenschaften aufwei- sen, die denen von vulkanisiertem Kautschuk ähnlich sind, die sich jedoch bei erhöhten Temperaturen wie ein thermoplastischer Kunststoff verarbeiten und aufarbeiten lassen. Die Polymer-Blends weisen eine Polymermatrix aus hartem Thermoplast mit darin eingelagerten Partikeln aus weichen vernetzten oder unvernetzten Elastomeren auf. Die thermoplastischen Copolyesterelastomere enthalten harte thermoplastische Sequenzen und weiche elastomere Sequenzen. Die thermoplastischen Copolyesterelastomere enthalten Polyesterblöcke, zweckmässig aus einem Diol, vorzugsweise aus 1 ,4-Butandiol oder 1 ,2-Ethan- diol, und einer Dicarbonsäure, vorzugsweise Terephthalsäure, die mit Polye- thern, die Hydroxyl-Endgruppen tragen, in einer Kondensationsreaktion ve- restert wurden.
Thermoplastische Elastomere (beispielsweise nach prEN ISO 18064) sind auch unter dem Kürzel TPE und den Untergruppen TPO (thermoplastische Olefine- lastomere), TPS (thermoplastische Styrenelastomere), TPV (thermoplastische Kautschukvulkanisate), TPU (thermoplastische Urethanelastomere), TPA (thermoplastische Polyamidelastomere), TPC (thermoplastische Copolyesterelastomere) und TPZ (sonstige, nicht klassierte thermoplastische Elastomere) bekannt. Zu den TPE gehören Blockpolymere oder Segmentpolymere, wie beispielsweise thermoplastische Styrolblockpolymere, thermoplastische Copoly- ester, Polyetherester, thermoplastische Polyurethane oder Polyether-Polyamid- Blockcopolymere. Die TPE erhalten ihre elastomeren Eigenschaften entweder durch Copolymerisieren von harten und weichen Blöcken oder durch Blenden einer thermoplastischen Matrix. Im Falle von Propfcopolymerisation bilden die Hartsegmente sogenannte Domänen, die als physikalische Vernetzungsstellen fungieren. TPE sind wiederholt aufschmelz- und verarbeitbar. Die TPE, beschrieben als thermoplastische Copolyesterelastomere, resp. auch TPC genannt, sind unterteilt in die TPC-EE mit weichen Segmenten mit Ether- und Esterverknüpfungen und die TPC-ES/-ET mit weichen Polyestersegmenten, resp. Polyethersegmenten. Vorliegend sind die TPC-EE von besonderem Interesse. Die thermoplastischen Copolyesterelastomere, resp. thermoplastischen Copo- lyester oder thermoplastischen Polyetherester, resp. elastomere Copoyethe- rester sind alternierend aus harten Polyestersegmenten und weichen Polyether- segmenten aufgebaut. Je nach Art und Länge der harten und weichen Segmente ist ein breiter Härtebereich einstellbar. Thermoplastische Copolyester sind Blockcopolymere bestehend einerseits aus amorphen Weichsegmenten aus Polyalkylenetherdiolen und/oder langkettigen aliphatischen Dicarbonsäu- reestern und andererseits aus Hartsegmenten aus kristallinem Polybutylente- rephthalat. Die Herstellung der elastomeren Copolyetherester erfolgt in der Schmelze durch Umesterungsreaktionen zwischen einem Terephthalatester, einem Polyalkylenetherglycol (z.B. Polytetramethylenetherglycol, Polyethyleno- xidglycol oder Polypropylenoxidglycol) und einem kurzkettigen Diol, beispielsweise 1 ,4-Butandiol oder 1 ,2-Ethandiol.
Um bei Polyestem das Molekulargewicht zu erhöhen, kann dem Polyester ein Modifizierungsmittel beigegeben werden. Das Modifizierungsmittel ist beispielsweise ein Dianhydrid einer organischen Tetracarbonsäure (Tetracarbon- säuredianhydrid). Bevorzugte Dianhydride sind die Dianhydride folgender Tetracarbonsäuren:
Benzol-1 ,2,4,5-Tetracarbonsäure (Pyromellitsäure), 3,3',4,4'-Diphenyltetracarbonsäure, 3,3',4,4'-Benzophenontetracarbonsäure, 2,2-Bis-(3,4-dicarboxyphenyl)-propan, Bis-(3,4-dicarboxyphenyl)-ether, Bis-(3,4-dicarboxylphenyl)-thioether, Naphthalin-2,3,6,7-tetracarbonsäure, Bis-(3,4-dicarboxylphenyl)-sulfon, Tetrahydrofuran-2,3,4,5-tetracarbonsäure, 2,2-Bis-(3,4-dicarboxlphenyl) hexafluoropropan, 1 ,2,5,6 -Naphthalintetracarbonsäure, Bis-(3,4-dicarboxyphenyl)-sulfoxid und Mischungen davon. Das bevorzugte Dianhydrid ist das Pyromellitsäuredianhydrid (Benzo!-1 ,2,4,5- tetracarbonsäure-1 ,2:4,5-dianhydrid).
Zur Erzeugung von geschäumten Polyestern anwendbare Ausgangsmaterialien sind Polyester, wie thermoplastische Polyester, die durch Polykondensation von aromatischen Dicarbonsäuren mit Diolen erhältlich sind. Beispiele von aromatischen Säuren sind Terephthal- und Isophthalsäuren, Naphthalindicarbonsäuren und Diphenyletherdicarbonsäuren. Beispiele von Diolen sind Glykole wie Ethy- lenglykol, Tetraethylenglykol, Cyclohexandimethanol, 1 ,4-Butandiol und 1 ,2- Ethandiol.
Polyester aus oder enthaltend Polyethylenterephthalat, Polybutylenterephthalat sowie Polyethylenterephthalat-Copolymere enthaltend bis zu 20 % Einheiten Isophthalsäure, sind bevorzugt.
Ein besonders wichtiges Merkmal der als Ausgangsmaterial eingesetzten Polyester, die erfindungsgemäss modifiziert und zu den erfindungsgemässen Schaumkörpern geschäumt werden, ist die Grenzviskosität. Es war bis anhin nicht möglich, ausgehend von Polyestern mit einer Grenzviskosität von etwa 0,4 dl/g Schäume herzustellen. Nach vorliegender Erfindung können aus Ausgangsmaterialien, wie aus Polyestern mit einer Grenzviskosität bereits ab Werten von etwa 0,4 dl/g und darüber und insbesondere aus Polyestern mit einer Grenzviskosität von z.B. 0,6 bis 0,7 dl/g und darüber, zuverlässig Schäume mit den geforderten Eigenschaften gefertigt werden. Um tiefe Grenzviskositäten zu erhöhen, muss der Anteil an Modifizierungsmittel, insbesondere des Tetracar- bonsäuredianhydrids, bezogen auf den eingesetzten Polyester, entsprechend erhöht werden. Durch die Wahl der Konzentration des Modifizierungsmittels in der Vormischung und die Menge eingesetzter Vormischung bezüglich der Menge Polyester, lässt sich die Grenzviskosität des verarbeiteten Polyesters - und damit dessen Schäumbarkeit - leicht kontrollieren. Beispielsweise kann die Grenzviskosität von 0,6 bis 0,7 dl/g durch die Modifizierung auf über 1 ,0 oder auch 1 ,2 dl/g und darüber erhöht werden. Vorliegende Erfindung betrifft auch Mittel zur Erzeugung von Schaumkörpern aus Polyestern hoher Homogenität, niedriger Offenzelligkeit und hoher Schubbruchdehnung, enthaltend als Modifizierungsmittel Dianhydride von Tetracarbonsäuren. Die Mittel stellen eine Vormischung dar, enthaltend thermoplastische Elastomere, wie thermoplastische Copolyesterelastomere, in Mengen von 25 bis 95 Gew.-%, bezogen auf das Gewicht des Mittels, und Dianhydride von Tetracarbonsäuren in Mengen von 5 bis 30 Gew.-%, bezogen auf das Gewicht des Mittels.
Bevorzugt sind Mittel zur Erzeugung von Schaumkörper aus Polyestern, wobei das Mittel eine Vormischung darstellt, enthaltend thermoplastische Copolyesterelastomere in Mengen von 25 bis 95 Gew.-% und Dianhydride einer Tetracarbonsäure in Mengen von 5 bis 30 Gew-% sowie 0 bis 70%, vorzugsweise 1 bis 50 Gew.-%, jeweils bezogen auf das Gewicht des Mittels, Stabilisatoren, Nukleierungsmittel, Flammschutzmittel und/oder Polyester, zweckmässig ein Polyester der gleichen Qualität, wie ein zu modifizierender Ausgangspolyester.
Das Mittel, d.h. die Vormischung kann vorgefertigt und fallweise zwischengelagert werden. Danach können, in den vorgesehenen Mengen, die Vormischung und die zu schäumenden Polyester zusammengemischt werden. Diese Mischung aus Vormischung und Polyestern kann weiter dem Schäumprozess zugeführt und zu den Schaumkörpern verarbeitet werden.
Vorliegende Erfindung betrifft auch ein Verfahren zur Herstellung von Schaumkörpern aus Polyestern hoher Homogenität und Schubbruchdehnung, enthaltend als Modifizierungsmittel Dianhydride einer Tetracarbonsäure.
Nach dem erfindungsgemässen Verfahren zur Herstellung der Schaumkörpern wird ein Polyesterharz mit einer Vormischung aus thermoplastischen Elastomeren, wie thermoplastischen Copolyesterelastomeren, und Dianhydriden einer Tetracarbonsäure versetzt und zu einem Schaumkörper, enthaltend die ther- moplastischen Copolyesterelastomere in Mengen von 0,5 bis 15 Gew.-%, bezogen auf das Gewicht des Schaumkörpers, aufgeschäumt.
Die Vormischung aus thermoplastische Elastomere, wie thermoplastischen Co- polyesterelastomeren, und Dianhydriden einer Tetracarbonsäure wird als Vorprodukt durch Mischen der Bestandteile hergestellt. Die Vormischung kann 25 bis 95 Gew.-%, bezogen auf die Vormischung, Copolyesterelastomere und 5 bis 30 Gew-%, bezogen auf die Vormischung, Tetracarbonsäuredianhydrid enthalten. Zweckmässig enthält die Vormischung 50 bis 90 Gew.-%, vorteilhaft 80 bis 90 Gew.-%, bezogen auf die Vormischung, Copolyesterelastomere und 10 bis 25 Gew-%, vorteilhaft 10 bis 15 Gew.-%, bezogen auf die Vormischung, Tetracarbonsäuredianhydrid.
Die Vormischung kann als weitere Bestandteile, beispielsweise insgesamt 0 bis 70%, vorzugsweise 0,1 bis 70 Gew.-% und insbesondere 1 bis 50 Gew.-%, beispielsweise Polyester, Stabilisatoren, Nukleierungsmittel, Füllstoffe und Flamm- Schutzmittel enthalten. Die zu den weiteren Bestandteilen angeführten Polyester können von der gleichen Qualität, wie die zu modifizierenden Polyester, d.h. Ausgangspolyester, z.B. mit einer Grenzviskosität ab etwa 0,4 dl/g und insbesondere Polyester mit einer Grenzviskosität von ca. 0,6 bis 0,7 dl/g und darüber, sein.
Die Bereitstellung der Vormischung kann durch Zuführen der Bestanteile in einen Mischer, beispielsweise einen Schneckenextruder, wie einen Ein- oder Doppelschneckenextruder oder einen Mehrwellenextruder etc., und einer innigen Vermischung der Bestandteile über eine Zeitraum von 10 bis 120 Sekun- den bei Temperaturen von 200 bis 2600C erfolgen. Die Vormischung kann aus dem Mischer ausgebracht und in eine weiter verarbeitbare Form, z.B. granuliert, werden.
Zur Herstellung der Schaumkörper aus Polyestern erfolgt durch einen Misch- und Schäumprozess. Dazu wird beispielsweise ein Polyester mit einer - Grenzviskosität von wenigstens 0,4 dl/g, vorgelegt und mit der Vormischung versetzt. Die Vormischung kann in Mengen von 1 ,0 bis 20,0 Gew.-%, bezogen auf den Polyester, eingesetzt werden. Vorteilhaft sind Mengen von 2,0 bis 4,0 Gew.-%, bezogen auf den Polyester.
Fallweise können zusätzlich zum Polyester und der Vormischung weitere Komponenten dem Misch- und Schäumprozess, zugeführt werden. Es sind dies die bereits erwähnten Stabilisatoren, Füllstoffe und Flammschutzmittel, die anstelle oder soweit nicht schon in der Vormischung enthalten, zugeführt werden kön- nen. Die Mengen weiterer Komponenten sind beispielsweise bis zu 15 Gew.-%, zweckmässig 0,1 bis 15 Gew.-%, bezogen auf die Summe von Polyester und Vormischung. Weitere Komponenten, beispielsweise zur Steuerung der ZeII- grösse und der Zellverteilung im Schaum, können ebenfalls dem Misch- und Schäumprozess zugeführt werden. Es sind dies beispielsweise bis zu 5 Gew.- %, zweckmässig 0,1 bis 5 Gew.-%, (bezogen auf die Summe von Polyester und Vormischung) an Metallverbindungen der I. bis III. Gruppe im periodischen System, wie z.B. Natriumcarbonat, Calciumcarbonat, Aluminium- oder Magne- siumstearat, Aluminium- oder Magnesiummyrisat oder Natriumterephtalat und die weiteren geeigneten Verbindungen, wie z.B. Talkum oder Titandioxid.
Die Komponenten können einem Reaktor oder Mischer, beispielsweise einem Ein- oder Doppelschneckenextruder oder einem Mehrwellenextruder oder einer Tandemanlage aus zwei miteinander kombinierten Einschneckenextrudern oder aus, miteinander kombiniert, einem Doppel- und einem Einschneckenextruder zugeführt und vermischt werden. Die Verweilzeit der Komponenten im Reaktor oder Mischer kann beispielsweise von 8 bis 40 Minuten betragen. Die Temperatur während der Verweilzeit kann von 240 bis 3200C betragen.
Dem Reaktor oder Mischer, z.B. den genannten Extrudern, wird auch das Treib- mittel zum Aufschäumen zugeführt. Geeignete Treibmittel sind beispielsweise leicht verdampfbare Flüssigkeiten, thermisch zersetzende Stoffe, die Gase freisetzen oder Inertgase sowie Mischungen oder Kombinationen genannter Mittel. Zu den leicht verdampfbaren Flüssigkeiten gehören gesättigte aliphati- sche oder cycloaliphatische Kohlenwasserstoffe, aromatische Kohlenwasserstoffe und halogenierte Kohlenwasserstoffe. Beispiele sind Butan, Pentan, Hexan, Cyclohexan, Ethanol, Aceton und HFC 152a. Als inertes Gas kann CO2 und Stickstoff genannt werden. Das Treibmittel wird in der Regel nach dem Zuführungsbereich die Komponenten in den Extruder eingespeist.
An der formgebenden Auslassöffnung des Extruders entsteht kontinuierlich der Schaumkörper aus im wesentlichen weitestgehend geschlossenzelligem Schaum, der beispielsweise einen runden, gerundeten, rechteckigen oder polygonalen Querschnitt aufweisen kann. Der Schaumkörper kann danach soweit gefordert, nach Massgabe des Einsatzes, verformt, geschnitten und/oder gefügt werden. Werden Schaumkörper erzeugt, so können die Schaumkörper nebeneinander und/oder übereinander gestapelt werden und unter gegenseiti- ger trennfester Verbindung, wie gegenseitiges verkleben oder insbesondere verschweissen, zu Schaumstoffblöcken, insbesondere homogenen Schaumstoffblöcken, verarbeitet werden. Die Schaumkörper können plattenförmig sein und gestapelt werden. Die sich berührenden Flächen können vollflächig miteinander verbunden, wie verschweisst, werden. Dadurch entstehen Schaumstoff- blocke mit Schweissnähten, die in Extrusionsrichtung laufen. Es können, insbesondere quer zur Extrusionsrichtung, resp. quer zu den Schweissnähten, vom Schaumstoffblock einzelne Schaumstoffplatten abgetrennt werden.
Der erfindungsgemässe Schaumkörper weist insbesondere folgende vorteil- haften Merkmale auf:
- Sortenreinheit, es sind nur Polyester und keine weiteren artfremden Polymere vorhanden.
- Regelmässige geschlossenzellige Poren.
Der erfindungsgemässe Schaumkörper weist bei einer Rohdichte von etwa 120 kg/m3 insbesondere folgende vorteilhaften Merkmale auf:
- Schubfestigkeit nach ISO 1922 , beispielsweise von grösser als 1.0 N/mm2, - Schubmodul (G-Modul) nach ASTM C393, beispielsweise von grösser als 20 N/mm2.
- Schubbruchdehnung nach ISO 1922 , beispielsweise mit Werten von mehr als 12 %, zweckmässig von mehr als 16 % und bevorzugt von mehr als 50 %. - Druckfestigkeit nach ISO 844 beispielsweise von grösser als 1.7 N/mm2
- Druckmodul (E-Modul) nach DIN 53421 , beispielsweise von grösser als 90 N/mm2.
- Offenzelligkeit nach Airex-Methode AM-19 in Anlehnung an ASTM D1056 - 07 beispielsweise von kleiner als 8% und insbesondere kleiner als 4%. Die Offen- zelligkeitsmessung gemäss der Airex-Methode AM-19 wird wie in ASTM D 1056 beschrieben durchgeführt, jedoch mit einer anderen Formel berechnet: ASTM D 1059: W = [(A-B)/B] x 100 mit W = change in mass [%]; A = final mass of specimen; und B = initial mass of specimen. Airex AM-19: OZ = [(A-B)/(LxBxD)] x 100 mit OZ = Offenzelligkeit [Vol-%] A = Gewicht der Probe nach Konditionierung [g]; B = Gewicht der Probe vor Konditionierung [g]; L, B, D = Länge, Breite, Dicke der Probe [cm]; die Dichte des Wassers mit 1 g/cm3 ist in der Formel nicht explizit ausgewiesen. Nach vorliegender Erfindung werden beispielsweise Werte im Wasser-Adsorptions-Test (water adsorption test) von unter 40 Gew.-%, zweckmässig von unter 35 Gew.- % und insbesondere von unter 30 Gew.-% erreicht.
- Die Viskositätszahl des resultierenden Schaums wird nach ISO 1628/5 bestimmt und kann beispielsweise mehr als 150 ml/g, etwa entsprechend einer Grenzviskosität von mehr als 1 ,2 dl/g, betragen. Bevorzugt ist eine Viskositätszahl des resultierenden Schaums, bestimmt nach ISO 1628/5, von beispiels- weise mehr als 160 ml/g, etwa entsprechend einer Grenzviskosität von mehr als 1 ,30 dl/g.
Das Verfahren nach der Erfindung zeichnet sich beispielsweise auch dadurch aus, dass beim Extrudieren keine Gel-Bildung stattfindet. Die Vormischung ist vollständig mit dem Polyester mischbar und es bildet sich keine zweite unerwünschte Phase. Die Vormischung lässt sich in an sich bekannten Vorrichtungen, den sog. Compoundiervorrichtungen, herstellen, wobei der Prozess leicht beherrschbar ist. Die Eigenschaften des entstehenden Schaumkörpers lassen sich auch durch die Wahl des thermoplastischen Copolyesterelastomeren (TPC) und der darin enthaltenen weichen Elastomeren und harten thermoplastischen Sequenzen auf einfache Weise steuern.
Beispiele:
Vormischung Beispiel 1 :
Thermoplastisches Copolyesterelastomer (TPC) in Form von Granulat mit einer Shorehärte von 55 D wird während 4 Std. bei 100 0C mittels heisser Luft getrocknet. Auf einem gleichdrehenden Doppelschneckenextruder mit 27 mm- Zylinderdurchmesser und einem L/D-Verhältnis von 40 werden 85 Gew.-% TPC und 15 Gew.-% Pyromellitsäuredianhydrid (PMDA) bei einer Zylindertemperatur zwischen 200 und 210 0C und einer Drehzahl von 200 UpM unter Schutzgas- atmosphäre gemischt und in Strangform ausgetragen. Die Stränge werden nach Abkühlung im Wasserbad und Trocknung mit einem Luftgebläse in einer Granuliervorrichtung mittels rotierender Messer in ein zylindrisches Granulat überführt. Die so erhaltene Vormischung wird während 3 Stunden bei 70 0C nachgetrocknet.
Vormischung Beispiel 2: Thermoplastisches Copolyesterelastomer (TPC) in Form von Granulat mit einer Shorehärte von 33 D wird während 4 Std. bei 100 0C mittels heisser Luft getrocknet. Auf einem gleichdrehenden Doppelschneckenextruder mit 27 mm-Zy- linderdurchmesser und einem L/D-Verhältnis von 40 werden 85 Gew.-% TPC und 15 Gew.-% Pyromellitsäuredianhydrid (PMDA) bei einer Zylindertemperatur zwischen 200 und 210 0C und einer Drehzahl von 200 UpM unter Schutzgasatmosphäre gemischt und in Strangform ausgetragen. Die Stränge werden nach Abkühlung im Wasserbad und Trocknung mit einem Luftgebläse in einem Granuliervorrichtung mittels rotierender Messer in ein zylindrisches Granulat überführt. Die so erhaltene Vormischung wird während 3 Stunden bei 70 0C nachgetrocknet. Vormischung Vergleichsbeispiel:
Polyestergranulat (PET)mit einer Grenzviskosität von 0,81 dl/g wird während 8 Std. bei 150 0C mittels heisser Luft getrocknet. Auf der gleichen Anlage wie in Beispiel 1 werden 85 Gew.-% PET-Granulat und 15 Gew.-% Pyromellitsäuredi- anhydrid (PMDA) bei einer Zylindertemperatur zwischen 240 und 250 0C und einer Drehzahl von 200 UpM unter Schutzgasatmosphäre gemischt und in Strangform ausgetragen. Die Stränge werden nach Abkühlung im Wasserbad und Trocknung mit einem Luftgebläse in einem Granuliervorrichtung mittels rotierender Messer in ein zylindrisches Granulat überführt. Die so erhaltene Vormischung wird während 3 Stunden bei 70 0C nachgetrocknet.
Tabelle 1
Versuchsparameter zur Herstellung der Vormischungen
Beispiel Beispiel Vergleichs¬
Vormischung 1 2 beispiel
Rezeptur
TPC-Anteil Gew-% 85.0 85.0
PET-Anteil Gew-% 85.0
PMDA-Anteil Gew-% 15.0 15.0 15.0
Maschinenparameter
Temperatur Einzugszone 0C 200 200 250
Temperatur Mischzone 0C 210 210 250
Temperatur Austra- 0C 205 205 240 gszone
Masse-Temperatur 0C 199 204 238
Masse-Druck bar 34 12 12
Ankerstrom Extruder % 52 33 43
Durchsatz kg/h 20 20 20 Drehzahl Extruder UpM 200 200 200
Abzugsgeschwindigk. m/min 30 30 30
Vormischung
Schüttdichte g/dl 65.4 59.7 76.5
Schäumung Beispiel 1
96,3 Gew.-% PET-Granulat als Ausgangsmaterial mit einer Grenzviskosität von 0,81 dl/g werden ca. 5 Stunden bei 170 0C mit Trockenluft getrocknet und zusammen mit 2,7 Gew.-% der Vormischung aus Beispiel 1 (ca. 11 Stunden getrocknet mit Trockenluft bei 600C) und 1 ,0 % eines Nukleierungsmittels (30 % Talkum in PET; ca. 11 Stunden getrocknet mit Trockenluft bei 600C) werden in den ersten Extruder einer Extrusionsschäumanlage mit zwei Schneckenextrudern dosiert, aufgeschmolzen, vermischt und mit CO2 verschäumt. Die Schmelzetemperatur am Austritt aus dem Extrusionswerkzeug beträgt 248°C, der Aus- stoss ca. 290 kg/h, die Verweilzeit im Extruder ca. 17 min. Es entstehen kontinuierlich Schaumkörper beispielsweise etwa quaderförmigen Querschnitts, die zu plattenförmigen Schaumkörpern abgelängt werden. Die plattenförmigen Schaumkörper werden gestapelt und an den Berührungsflächen gegenseitig verschweisst, wobei Schaumblöcke entstehen. Die in den Beispielen angegebenen Messwerte werden an Schaumplatten, die quer zur Extrusionsrichtung von den Schaumblöcken abgetrennt werden, ermittelt. Die Viskositätszahl des resultierenden Schaums wird nach ISO 1628/5 bestimmt und beträgt 164.0 ml/g, was einer Grenzviskosität von 1 ,32 dl/g entspricht.
Schäumung Beispiel 2
96,3 Gew.-% PET-Granulat mit einer Grenzviskosität von 0,81 dl/g werden ca. 5 Stunden bei 170 0C mit Trockenluft getrocknet und zusammen mit 2,7 Gew.-% der Vormischung aus Beispiel 2 (ca. 11 Stunden getrocknet mit Trockenluft bei 600C) und 1.0 % eines Nukleierungsmittels (30 % Talkum in PET; ca. 11 Stunden getrocknet mit Trockenluft bei 600C) werden in den ersten Extruder einer Extrusionsschäumanlage mit zwei Schneckenextrudern dosiert, aufgeschmol- zen, vermischt und mit CO2 verschäumt. Die Schmelzetemperatur am Austritt aus dem Extrusionswerkzeug beträgt 2490C, der Ausstoss ca. 290 kg/h, die Verweilzeit im Extruder ca. 17 min. Die Viskositätszahl des resultierenden Schaums wird nach ISO 1628/5 bestimmt und beträgt 165,6 ml/g, was einer Grenzviskosität von 1 ,33 dl/g entspricht.
Schäumung Beispiel 3
86,7 Gew.-% PET-Granulat mit einer Grenzviskosität von 0,81 dl/g werden ca. 5 Stunden bei 170 0C mit Trockenluft getrocknet und zusammen mit 2,3 Gew.-% der Vormischung aus Beispiel 2 (ca. 11 Stunden getrocknet mit Trockenluft bei 600C), 1 ,0 % eines Nukleierungsmittels (30 % Talkum in PET; ca. 11 Stunden getrocknet mit Trockenluft bei 600C) und 10 Gew.-% eines thermoplastischen Copolyesterelastomers (TPC) mit einer Shorehärte von 33 D (ca. 12 Stunden getrocknet mit Trockenluft bei 1000C) werden in den ersten Extruder einer Extrusionsschäumanlage mit zwei Schneckenextrudern dosiert, aufgeschmolzen, vermischt und mit CO2 verschäumt. Die Schmelzetemperatur am Austritt aus dem Extrusionswerkzeug beträgt 248°C, der Ausstoss ca. 270 kg/h, die Verweilzeit im Extruder ca. 18 min. Die Viskositätszahl des resultierenden Schaums werden nach ISO 1628/5 bestimmt und betragen 162,2 ml/g, was einer Grenzviskosität von 1 ,30 dl/g entspricht.
Schäumung Vergleichsbeispiel
96,3 Gew.-% PET-Granulat mit einer Grenzviskosität von 0,81 dl/g werden ca. 5 Stunden bei 170 0C mit Trockenluft getrocknet und zusammen mit 2,7 Gew.-% der Vormischung aus dem Vergleichsbeispiel (ca. 11 Stunden getrocknet mit Trockenluft bei 600C) und 1 ,0 % eines Nukleierungsmittels (30 % Talkum in PET; ca. 11 Stunden getrocknet mit Trockenluft bei 600C) werden in den ersten Extruder einer Extrusionsschäumanlage mit zwei Schneckenextrudem dosiert, aufgeschmolzen, vermischt und mit CO2 verschäumt. Die Schmelzetemperatur am Austritt aus dem Extrusionswerkzeug beträgt 2470C. Der Ausstoss muss auf ca. 200 kg/h reduziert werden, um den geforderten Offenzelligkeitswert von < 8 % zu realisieren. Die Verweilzeit im Extruder erhöht sich dadurch auf ca. 24 min. Die Viskositätszahl des resultierenden Schaumes nach ISO 1628/5 ist trotz der längeren Verweilzeit mit 157,8 ml/g tiefer als in den Beispielen 1 und 2 und damit auch die korrelierende Grenzviskosität (1 ,27 dl/g).
Die mechanischen Eigenschaften der erhaltenen Schäume sind in Tabelle 2 aufgeführt.
Tabelle 2
Mechanische Eigenschaften der erhaltenen Schäume
Figure imgf000016_0001

Claims

Patentansprüche
1. Schaumkörper aus thermoplastischen Polyestem, mit hoher Homogenität, niedriger Offenzelligkeit und hoher Schubbruchdehnung, enthaltend als Modifizierungsmittel Dianhydride von Tetracarbonsäuren,
dadurch gekennzeichnet, dass
der Polyesterschaum thermoplastische Elastomere enthält.
2. Schaumkörper aus Polyestem nach Anspruch 1 , dadurch gekennzeichnet, dass die thermoplastischen Elastomere in Mengen von 0,5 bis 15 Gew.-%, bezogen auf das Gewicht des Schaumkörpers, enthalten sind.
3. Schaumkörper aus Polyestem nach wenigstens einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, dass als thermoplastische Elastomere im Polyesterschaum thermoplastische Copolyesterelastomere enthalten sind.
4. Schaumkörper aus Polyestem nach Anspruch 3, dadurch gekennzeichnet, dass die thermoplastischen Copolyesterelastomere in Mengen von 0,5 bis 15 Gew.-%, bezogen auf das Gewicht des Schaumkörpers, enthalten sind.
5. Schaumkörper aus Polyestem nach wenigstens einem der Ansprüche 3 oder 4, dadurch gekennzeichnet, dass die thermoplastischen Copolyesterelastomere Polyesterblöcke enthalten, wobei die Polyesterblöcke aus einem Diol, vorzugsweise aus 1 ,4-Butandiol oder 1 ,2-Ethandiol, und einer Dicarbonsäure, vorzugsweise aus Terephthalsäure, die mit PoIy- ethern, die Hydroxyl-Endgruppen tragen und in einer Kondensationsreaktion verestert werden, sind.
6. Schaumkörper aus Polyestem nach wenigstens einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass der Polyesterschaum eine Offenzelligkeit von kleiner als 8% und insbesondere von kleiner als 4% aufweist.
7. Schaumkörper aus Polyestem nach wenigstens einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass der Polyesterschaum eine Schubbruchdehnung von mehr als 12 %, zweckmässig von mehr als 16 % und bevorzugt von mehr als 50 % aufweist.
8. Verfahren zur Herstellung von Schaumkörpern aus thermoplastischen Polyestern, mit hoher Homogenität, niedriger Offenzelligkeit und hoher Schubbruchdehnung, enthaltend als Modifizierungsmittel Dianhydride von Tetracarbonsäuren,
dadurch gekennzeichnet, dass
ein Polyester mit einer Vormischung aus thermoplastischen Elastomeren, vorzugsweise thermoplastischen Copolyesterelastomeren, und Dianhydriden von Tetracarbonsäuren versetzt, vermischt und zu einem Schaumkörper, enthaltend die thermoplastischen Elastomere oder thermoplastischen Copolyesterelastomere in Mengen von 0,5 bis 15 Gew.-%, bezogen auf das Gewicht des Schaumkörpers, aufgeschäumt wird.
9. Verfahren zur Herstellung von Schaumkörpern aus Polyestern nach Anspruch 8, dadurch gekennzeichnet, dass der Polyester mit der Vormischung aus thermoplastischen Copolyesterelastomeren und Dianhydriden von Tetracarbonsäuren als Komponenten einem Reaktor oder Mischer, insbesondere einem Ein- oder Doppelschneckenextruder oder einem Mehrwellenextruder oder einer Tandemanlage aus zwei miteinander kombinierten Einschneckenextrudern oder aus einem Doppel- und einem Einschneckenextruder, zugeführt und darin vermischt werden
10. Mittel zur Erzeugung von Schaumkörpern aus Polyestern, mit hoher Homogenität, niedriger Offenzelligkeit und hoher Schubbruchdehnung, enthal- tend als Modifizierungsmittel Dianhydride von Tetracarbonsäuren, dadurch gekennzeichnet, dass das Mittel eine Vormischung, enthaltend thermoplastische Elastomere, vorzugsweise thermoplastische Copolyesterelasto- mere, in Mengen von 25 bis 95 Gew.-%, bezogen auf das Gewicht des Mittels, und Dianhydride von Tetracarbonsäuren in Mengen von 5 bis 30 Gew.-%, bezogen auf das Gewicht des Mittels, darstellt.
11. Mittel zur Erzeugung von Schaumkörper aus Polyestern gemäss Anspruch 10, dadurch gekennzeichnet, dass das Mittel eine Vormischung darstellt, enthaltend thermoplastische Copolyesterelastomere in Mengen von 50 bis 90 Gew.-%, zweckmässig von 80 bis 90 Gew.-%, und Dianhydride von Tetracarbonsäuren in Mengen von 10 bis 25 Gew-%, zweckmässig von 10 bis 15 Gew.-%, bezogen auf das Gewicht des Mittels
12. Mittel zur Erzeugung von Schaumkörper aus Polyestern gemäss wenigstens einem der Ansprüche 10 oder 11 , dadurch gekennzeichnet, dass das Mittel eine Vormischung darstellt, enthaltend 0 bis 70%, vorzugsweise 1 bis 50 Gew.-%, jeweils bezogen auf das Gewicht des Mittels, Stabilisatoren, Nukleierungsmittel, Flammschutzmittel und/oder Polyester, zweckmässig ein Polyester der gleichen Qualität, wie ein zu modifizierender Ausgangspolyester.
PCT/EP2009/003911 2008-06-12 2009-06-02 Geschäumte polyester und verfahren zu deren herstellung WO2009149845A1 (de)

Priority Applications (12)

Application Number Priority Date Filing Date Title
JP2011512864A JP5670321B2 (ja) 2008-06-12 2009-06-02 発泡ポリエステル類及びその製造方法
DK09761408.5T DK2288643T3 (da) 2008-06-12 2009-06-02 Skumpolyestere og fremgangsmåder til fremstilling heraf
EP09761408.5A EP2288643B1 (de) 2008-06-12 2009-06-02 Geschäumte polyester und verfahren zu deren herstellung
RU2011100164/05A RU2482138C2 (ru) 2008-06-12 2009-06-02 Вспененные сложные полиэфиры и способы их получения
CN200980121758.8A CN102056967B (zh) 2008-06-12 2009-06-02 发泡的聚酯及其制备方法
US12/996,648 US20110082227A1 (en) 2008-06-12 2009-06-02 Foamed polyesters and methods for their production
ES09761408.5T ES2439713T3 (es) 2008-06-12 2009-06-02 Poliésteres espumados y procedimiento para su producción
CA2727639A CA2727639C (en) 2008-06-12 2009-06-02 Foamed polyesters and methods for their production
BRPI0915376A BRPI0915376A2 (pt) 2008-06-12 2009-06-02 poliésteres espumados e métodos para sua produção
PL09761408T PL2288643T3 (pl) 2008-06-12 2009-06-02 Spienione poliestry i sposób ich wytwarzania
SI200930820T SI2288643T1 (sl) 2008-06-12 2009-06-02 Penjeni polestri in postopki za njihovo pripravo
HRP20140054AT HRP20140054T1 (hr) 2008-06-12 2014-01-17 Pjenasti poliesteri i postupci njihove proizvodnje

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CH8922008 2008-06-12
CH00892/08 2008-06-12
CH01943/08A CH700050B1 (de) 2008-12-11 2008-12-11 Geschäumte Polyester und Verfahren zu deren Herstellung.
CH01943/08 2008-12-11

Publications (1)

Publication Number Publication Date
WO2009149845A1 true WO2009149845A1 (de) 2009-12-17

Family

ID=40941894

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2009/003911 WO2009149845A1 (de) 2008-06-12 2009-06-02 Geschäumte polyester und verfahren zu deren herstellung

Country Status (13)

Country Link
US (1) US20110082227A1 (de)
EP (1) EP2288643B1 (de)
JP (1) JP5670321B2 (de)
KR (1) KR20110036037A (de)
CN (1) CN102056967B (de)
BR (1) BRPI0915376A2 (de)
CA (1) CA2727639C (de)
DK (1) DK2288643T3 (de)
ES (1) ES2439713T3 (de)
PL (1) PL2288643T3 (de)
PT (1) PT2288643E (de)
RU (1) RU2482138C2 (de)
WO (1) WO2009149845A1 (de)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013122492A1 (en) 2012-02-16 2013-08-22 Politechnika Łódzka Medical material, the method of its production and use of the medical material
EP2671911A1 (de) 2012-06-05 2013-12-11 Armacell Enterprise GmbH Schaumstoffmaterial mit geringer Wärmeleitfähigkeit und Herstellungsverfahren dafür
EP2383309B1 (de) 2010-04-29 2016-11-23 Armacell Enterprise GmbH & Co. KG Zellulärer polyester aus altpolyesterflocken und verwendung der daraus hergestellten produkte
EP3970571A4 (de) * 2019-10-31 2023-06-21 Forpet S.A.R.L. Wegwerfbecher für heisse und gekühlte getränke
EP3970570A4 (de) * 2019-12-27 2023-06-21 Forpet S.A.R.L. Wegwerfbecher für heisse und gekühlte getränke

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102993421B (zh) * 2011-09-14 2015-07-22 中国石油化工股份有限公司 可发泡聚对苯二甲酸乙二醇共聚酯的制备方法
KR101587187B1 (ko) * 2014-04-25 2016-01-21 주식회사 휴비스 난연성 폴리에스테르 발포체 및 그 제조방법
JP6826982B2 (ja) 2014-12-22 2021-02-10 ビーエイエスエフ・ソシエタス・エウロパエアBasf Se 互いに接合されたセグメントから製造されたフォームの繊維による強化
ES2820073T3 (es) 2014-12-22 2021-04-19 Basf Se Refuerzo de fibra de espumas que contienen agentes expansores
KR101767989B1 (ko) * 2015-12-18 2017-08-16 주식회사 휴비스 탄성 발포체
CN109320951B (zh) * 2017-08-04 2021-06-08 南通德亿新材料有限公司 可降解防污热塑性微气囊聚合物弹性体材料及其制备方法
CN112074563B (zh) * 2018-03-12 2023-01-20 耐克创新有限合伙公司 热塑性泡沫物品
WO2021207951A1 (zh) * 2020-04-15 2021-10-21 南京越升挤出机械有限公司 一种用于pet挤出发泡的扩链剂母粒及其制备方法和应用
CN112011155B (zh) * 2020-07-27 2023-02-17 浙江恒逸石化研究院有限公司 一种热塑性共聚酯弹性体/as树脂复合材料发泡母粒及其制备方法和应用
CN112062940A (zh) * 2020-09-11 2020-12-11 新疆蓝山屯河高端新材料工程技术研究中心(有限公司) 可发泡聚对苯二甲酸丁二醇共聚酯及其制备方法
CN115806728B (zh) * 2022-12-07 2024-02-20 江苏越升科技股份有限公司 一种用于rPET挤出发泡的双组分扩链剂母粒及其制备方法和应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993012164A1 (en) * 1991-12-16 1993-06-24 M. & G. Ricerche S.P.A. Foamed cellular polyester resins and process for their preparation
WO1996040821A1 (en) * 1995-06-07 1996-12-19 Amoco Corporation Concentrate for use in the melt fabrication of polyester
DE10000712A1 (de) * 2000-01-11 2001-07-12 Buehler Ag Verfahren zur Herstellung eines modifizierten thermoplastischen Polyesterharzes und seiner geschäumten Form

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2535021A1 (de) * 1975-08-06 1977-02-24 Basf Ag Thermoplastische formmassen
US4200567A (en) * 1977-08-22 1980-04-29 Rohm And Haas Company Synergistic impact modifier system for poly (alkylene terephthalates)
US4337192A (en) * 1980-08-15 1982-06-29 General Electric Company Thermoplastic molding composition having improved warp resistance and process for preparing the same
US4845169A (en) * 1986-12-12 1989-07-04 General Motors Corporation High impact polyethylene terephthalate polyblends
US5000991B2 (en) * 1988-12-01 2000-07-11 Sekisui Plastics Process for producing polyester resin foam and polyester resin foam sheet
US5288764A (en) * 1993-01-29 1994-02-22 Amoco Corporation Increased throughput in foaming and other melt fabrication of polyester
CN1134473C (zh) * 1996-11-04 2004-01-14 亨茨曼Ici化学品有限公司 硬质聚氨基甲酸酯发泡体
JP3477037B2 (ja) * 1997-07-31 2003-12-10 積水化成品工業株式会社 熱可塑性ポリエステル系樹脂押出発泡体とその成形品並びに熱可塑性ポリエステル系樹脂押出発泡体の製造方法。
US6300399B1 (en) * 1999-08-27 2001-10-09 General Electric Company High specific gravity polyester blend
JP3535787B2 (ja) * 1999-12-24 2004-06-07 積水化成品工業株式会社 熱可塑性ポリエステル系樹脂発泡体及びその製造方法
US6849684B2 (en) * 2000-10-20 2005-02-01 E. I. Du Pont De Nemours And Company Molded soft elastomer/hard polyester composition with noise damping properties

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993012164A1 (en) * 1991-12-16 1993-06-24 M. & G. Ricerche S.P.A. Foamed cellular polyester resins and process for their preparation
WO1996040821A1 (en) * 1995-06-07 1996-12-19 Amoco Corporation Concentrate for use in the melt fabrication of polyester
DE10000712A1 (de) * 2000-01-11 2001-07-12 Buehler Ag Verfahren zur Herstellung eines modifizierten thermoplastischen Polyesterharzes und seiner geschäumten Form

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2383309B1 (de) 2010-04-29 2016-11-23 Armacell Enterprise GmbH & Co. KG Zellulärer polyester aus altpolyesterflocken und verwendung der daraus hergestellten produkte
WO2013122492A1 (en) 2012-02-16 2013-08-22 Politechnika Łódzka Medical material, the method of its production and use of the medical material
EP2671911A1 (de) 2012-06-05 2013-12-11 Armacell Enterprise GmbH Schaumstoffmaterial mit geringer Wärmeleitfähigkeit und Herstellungsverfahren dafür
EP3970571A4 (de) * 2019-10-31 2023-06-21 Forpet S.A.R.L. Wegwerfbecher für heisse und gekühlte getränke
EP3970570A4 (de) * 2019-12-27 2023-06-21 Forpet S.A.R.L. Wegwerfbecher für heisse und gekühlte getränke

Also Published As

Publication number Publication date
JP2011522932A (ja) 2011-08-04
CA2727639A1 (en) 2009-12-17
CA2727639C (en) 2014-08-05
JP5670321B2 (ja) 2015-02-18
RU2482138C2 (ru) 2013-05-20
PL2288643T3 (pl) 2014-05-30
KR20110036037A (ko) 2011-04-06
EP2288643B1 (de) 2013-10-30
BRPI0915376A2 (pt) 2015-11-03
PT2288643E (pt) 2014-01-03
DK2288643T3 (da) 2014-01-13
ES2439713T3 (es) 2014-01-24
CN102056967A (zh) 2011-05-11
CN102056967B (zh) 2014-02-05
RU2011100164A (ru) 2012-07-20
EP2288643A1 (de) 2011-03-02
US20110082227A1 (en) 2011-04-07

Similar Documents

Publication Publication Date Title
EP2288643B1 (de) Geschäumte polyester und verfahren zu deren herstellung
EP2524004B1 (de) Verfahren zur herstellung von expandierbaren polymilchsäurehaltigen granulaten
DE69417482T3 (de) Erhöhter durchsatz beim schäumen und anderen schmelzverfahren von polyester
EP3055352B1 (de) Verfahren zur herstellung von expandierten polyester-schaumstoffpartikeln
DE69233252T2 (de) Verfahren zur produktion von polyester mit hohem molekulargewicht
EP1204700B1 (de) Biologisch abbaubare schaumstoffpartikel
EP3497155A1 (de) Verfahren zur herstellung von expandiertem granulat
EP3233992B1 (de) Verfahren zur herstellung von expandierbaren polymilchsäure-haltigen granulaten
EP3917749B1 (de) Verfahren zur herstellung von stärkeblends
DE19630232A1 (de) Monoaxial gereckte, biologisch abbbaubare und kompostierbare Folie mit verbesserten Eigenschaften
EP1246865A1 (de) Verfahren zur herstellung eines modifizierten thermoplastischen polyesterharzes und seiner geschäumten form
CH700050A2 (de) Geschäumte Polyester und Verfahren zu deren Herstellung.
WO2017211660A1 (de) Verfahren zur herstellung von expandierbaren polymilchsäurehaltigen granulaten
DE19800166A1 (de) Verfahren und Vorrichtung zur Herstellung von Polyester-Schaumstoffen
WO2021170801A1 (de) TPU FÜR INMOLD ASSEMBLY EINER AUßENSCHUHSOHLE AN ETPU
CH702368A2 (de) Schaumkörper aus thermoplastischen Polyestern und Verfahren zur deren Herstellung.
WO2024218186A1 (de) Verfahren zur herstellung von nachexpandierbaren polycarbonat-beads und entsprechende polycarbonat-beads
WO2014001119A1 (de) Verfahren zur herstellung von expandierbaren polymilchsäurehaltigen granulaten
EP1099543A2 (de) Mehrschichtige, biologisch abbaubare, thermoplastische Folien und Verfahren zu deren Herstellung sowie deren Verwendung als Verpackungsmaterial und in Kosmetik- und Hygiene-Artikeln
DE2362664A1 (de) Ungesaettigte e/va-mischpolymerisate und ungesaettigte polyaethylene und verfahren zu deren herstellung durch partielle oder erschoepfende entacetylierung von e/va-mischpolymerisaten

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980121758.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09761408

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009761408

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2727639

Country of ref document: CA

Ref document number: 2011512864

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 110/CHENP/2011

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 20117000769

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2011100164

Country of ref document: RU

ENP Entry into the national phase

Ref document number: PI0915376

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20101213