[go: up one dir, main page]

WO2009149735A1 - Système et procédé de production et de réception d'un rayonnement électro-magnétique - Google Patents

Système et procédé de production et de réception d'un rayonnement électro-magnétique Download PDF

Info

Publication number
WO2009149735A1
WO2009149735A1 PCT/EP2008/005040 EP2008005040W WO2009149735A1 WO 2009149735 A1 WO2009149735 A1 WO 2009149735A1 EP 2008005040 W EP2008005040 W EP 2008005040W WO 2009149735 A1 WO2009149735 A1 WO 2009149735A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmitting
transmission
control device
transmitting element
mode
Prior art date
Application number
PCT/EP2008/005040
Other languages
German (de)
English (en)
Inventor
Daniel Reznik
Oliver Theile
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Priority to PCT/EP2008/005040 priority Critical patent/WO2009149735A1/fr
Publication of WO2009149735A1 publication Critical patent/WO2009149735A1/fr

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/04Systems determining the presence of a target
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/94Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the way in which the control signals are generated
    • H03K17/941Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the way in which the control signals are generated using an optical detector
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/22Modifications for ensuring a predetermined initial state when the supply voltage has been applied
    • H03K17/24Storing the actual state when the supply voltage fails
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K2217/00Indexing scheme related to electronic switching or gating, i.e. not by contact-making or -breaking covered by H03K17/00
    • H03K2217/94Indexing scheme related to electronic switching or gating, i.e. not by contact-making or -breaking covered by H03K17/00 characterised by the way in which the control signal is generated
    • H03K2217/941Indexing scheme related to electronic switching or gating, i.e. not by contact-making or -breaking covered by H03K17/00 characterised by the way in which the control signal is generated using an optical detector
    • H03K2217/94102Indexing scheme related to electronic switching or gating, i.e. not by contact-making or -breaking covered by H03K17/00 characterised by the way in which the control signal is generated using an optical detector characterised by the type of activation
    • H03K2217/94108Indexing scheme related to electronic switching or gating, i.e. not by contact-making or -breaking covered by H03K17/00 characterised by the way in which the control signal is generated using an optical detector characterised by the type of activation making use of reflection

Definitions

  • the invention relates to an arrangement with the features according to the preamble of claim 1.
  • Arrangements of this type are known, for example, from optical proximity switches, that is to say, for example, optical light barriers, optical light scanners, or optical rangefinders. These arrangements have a transmitting element for generating electromagnetic radiation, a receiving element for receiving electromagnetic radiation and generating a receiving signal and a control device connected to the transmitting element and the receiving element for activating the transmitting element and for evaluating the received signal.
  • the invention has for its object to provide an arrangement of the type described above, which consumes very little electrical energy, in particular low electrical current.
  • control device is designed in such a way that, during transmission pauses between successive transmission phases, it transposes both the transmitting element and the receiving element at least temporarily in a power-saving mode.
  • a significant advantage of the inventive arrangement is the fact that these very little electrical Be ⁇ operating current needed, because that is in phases in which to send either broadcast signals yet to receive reception signals or are to be evaluated, both the sending and receiving zustan- Digen elements, so both the transmitting element and the receiving element are switched to a power-saving mode.
  • the control device operates the transmitting element pulsed in the transmitting phases and generates only a single transmitting pulse per transmitting phase.
  • the pulse duration is less than 5 seconds and is more preferably less than 150 ns.
  • a single pulse per sending phase several short individual pulses can be sent in succession, for example in the form of send bursts.
  • the arrangement may, for example, be an optical proximity switch, in particular a light barrier, a light scanner or an optical rangefinder.
  • control device reduces or completely shuts off the power supply of the transmitting element and that of the receiving element during the power-saving mode.
  • a predetermined period of time for example, a period of at least one microsecond
  • the transmitting element emits transmit pulses in the transmission phases, it is accordingly considered to be advantageous in a corresponding manner if the control device before sending a each transmit pulse first the receiving element from the current ⁇ saving mode in a receive operating mode and then delayed by a predetermined period of time, the transmitting sender element to send the respective transmit pulse.
  • electromagnetic radiation preferably optical radiation with a frequency between 1 and JUUU THz is generated with the transmitting element.
  • control device has a sleep mode and an active mode and at least temporarily goes into this sleep mode in a period of time after an evaluation of the received signal until the transmission of the next transmit pulse ,
  • control means comprises a timing module and a digital circuit connected thereto, in particular in the form of a microprocessor, which can be put into the active mode or into the sleep mode; in this case, the timing module will preferably cooperate with the digital circuitry such that the timing module periodically wakes the digital circuitry from sleep mode.
  • the timing module is preferably formed by a quartz or contains a quartz to achieve a high frequency stability.
  • the transmitting element and the receiving element can have, for example, analog electro-optical circuit components which are suitable for transmitting or receiving optical radiation.
  • the transmitting element can, for example, contain a laser or a transmitting light-emitting diode and the receiving element a Si receiving diode.
  • the invention also relates to a method for generating and receiving electromagnetic radiation in which radiation is generated with a transmitting element, radiation is measured with a receiving element to form a received signal and the received signal is evaluated.
  • the object of the invention is to specify a method which can be carried out with as little electrical current as possible.
  • This object is achieved erf indungsgelien in that during transmission pauses between successive transmission phases, both the transmitting element and the receiving element are at least temporarily offset in a power-saving mode.
  • FIG. 1 shows an exemplary embodiment of an inventive arrangement in the form of an optical proximity switch
  • FIG. 2 shows a first exemplary embodiment for triggering a transmitting element of the arrangement according to FIG. gur 1 for generating a single transmission pulse per transmission phase
  • FIG. 3 shows a second exemplary embodiment for a control of the transmitting element according to FIG.
  • FIG. 1 shows an exemplary embodiment of an arrangement according to the invention, which is an optical proximity switch.
  • the proximity switch can be operated, for example, as an optical light barrier 10 in the reflection mode.
  • the light barrier 10 has a control device 20, a transmitting element 30 and a receiving element 40
  • the control device 20 comprises a timing module 50, which is connected on the output side to a digital circuit in the form of a programmable microprocessor 60.
  • the microprocessor 60 is connected to a memory 70, in which a control program is included, which determines the operation of the microprocessor 60.
  • the control device 20 is also equipped with a comparator 80 and a flip-flop 90.
  • the transmitting element 30 consists of a laser 100, which is connected to a pulse circuit 110.
  • the pulse circuit 110 is connected via a control line Ll to an output of the microprocessor 60 in connection.
  • the receiving element 40 consists of a photodiode 120, which is electrically connected to a transimpedance amplifier 130.
  • the transimpedance amplifier 130 is controlled by the microprocessor 60 via a control line L2. On the output side, the transimpedance amplifier 130 is connected to the comparator 80 of the control device 20.
  • the comparator 80 is also controlled by the microprocessor 60 via a control line L3. On the output side, the comparator 80 is connected to the flip-flop 90, which is controlled by the microprocessor 60 via a control line L4. On the output side, the flip-flop 90 is connected to an input of the microprocessor 60.
  • the arrangement of the laser 100 and the photodiode 120 is selected so that an optical transmission pulse P generated by the laser 100 is reflected at a reflection element 200 and as a reflected signal Pr from the photodiode 120 can get.
  • the mode of operation of the light barrier 10 according to FIG. 1 will be explained in more detail below by way of example with reference to FIG. In this case, it is assumed by way of example that the microprocessor 60 is in an active mode at a time t ⁇ .
  • the transmitting element 30 and the receiving element 40 should be in a power-saving mode at this time t ⁇ ; the flip-flop 90 and the comparator 80 of the control device 20 are switched to an inactive state at the time t ⁇ .
  • the microprocessor 60 will generate a control signal S2 and transmit it via the control line L2 to the trans ⁇ impedance amplifier 130.
  • the control signal S2 the transimpedance amplifier 130 and thus the receiving element 40 are woken up from the power-saving mode and brought into a receive operating mode until the time t3.
  • the duration of the receive mode of operation is designated by the reference Trec in FIG.
  • the microprocessor 60 will also set the comparator 80 and the flip-flop 90 to control signals S3 and S4 from their inactive state to their active state, such that the signal received by the receiver 40, the comparator 80 and the flip -Flop 90 formed receiving branch of the light barrier 10 is switched according to Figure 1 active.
  • the microprocessor 60 will also activate the transmission branch of the light barrier 10 according to FIG. 1 formed by the laser 100 and the pulse circuit 110 by a predetermined period .DELTA.t, that is to say in FIG. 2 at the instant t.sub.1, so that the transmission element 30 switches from its power-saving mode into one Transmission phase is offset.
  • the transmission phase is denoted by the reference symbol Ton in FIG.
  • the microprocessor 60 will generate a control signal S1 via the control line L1, with which the pulse circuit 110 as well as the laser 100 are controlled in such a way that the laser 100 generates an optical transmission pulse P.
  • the corresponding transmission pulse is identified by the reference symbol P in FIG.
  • the pulse duration of the transmission pulse P is designated by the reference symbol ⁇ in FIG.
  • the pulse duration is preferably less than 150 nanoseconds.
  • the microprocessor 60 is expected to receive the corresponding reflected signal Pr.
  • the reflected signal Pr is guided by the reflection element 60 to the photodiode 120 and converted there into an electrical signal.
  • the electrical signal is converted by the transimpedance amplifier 130 into a received signal, which is denoted by the reference symbol E in FIG.
  • the received signal E passes to the comparator 80 and via this to the flip-flop 90 and is then received by the microprocessor 60 as a preprocessed received signal E '.
  • the microprocessor 60 awaits the occurrence of the corresponding pre-processed received signal E 'as soon as the transmission pulse P has been generated. Remains receiving the corresponding received signal E ', so the microprocessor will end 60 thereof, that the light barrier is interrupted or on the other hand a Storob ⁇ ect befin ⁇ det in the light path between the laser and photodiode on the one hand and the reflecting element 200, the light path interrupts. In this case, the microprocessor 60 will generate a corresponding control signal ST - for example a logic "0" - at its output.
  • the microprocessor 60 will generate another control signal ST - for example a logic "1" - if the corresponding received signal E 1 at its Input is received. In this case, the microprocessor 60 assumes that there is no StorSense in the light path between the laser 100 and photodiode 120 on the one hand and the reflection element 200 on the other hand, and the light path is undisturbed.
  • the microprocessor 60 After the corresponding received signal E 'has been received, or after expiry of a certain period of time in which reception of a received signal E' can be expected, the microprocessor 60 will terminate the receiving mode of operation of the receiving element 40 at time t3 and cause the receiving element 40 to enter a power saving mode , The time interval Trec has thus expired in FIG.
  • the light barrier 10 consumes significantly less current than would be the case if one of the two elements, ie the transmitting element 30 and / or the Emp - catch element 40, remain active.
  • the microprocessor 60 is furthermore embodied such that it also receives the power between the microprocessor 60 and the transmitting element 30 or the receiving element 40 during the power-saving mode of the transmitting element 30 and the receiving element 40 located components of the control device 20, so in the present case, the comparator 80 and the flip-flop 90, placed in an inactive state. In the inactive state, the comparator 80 and the flip-flop 90 are either turned off or put into a state of consuming less power than they are in their on or active state. In order to further reduce the power consumption of the light barrier 10, the microprocessor 60 is programmed via the control program located in the memory 70 such that it can adopt a sleep mode and an active mode.
  • the microprocessor 60 is able to drive the transmitting element 30 and the receiving element 40, to evaluate the received signal E 'and to generate the control signal ST, as has already been explained in detail above.
  • the microprocessor 60 in the active mode, the microprocessor 60 is able to put itself into a sleep mode.
  • the active mode of the micro-processor 60 is the ACPI (ACPI) Advanced Standard (ACPI) mode; in the active mode SO, the microprocessor 60 is fully operational.
  • ACPI ACPI
  • ACPI ACPI Advanced Standard
  • the microprocessor 60 will go into sleep mode once the transmitter 30 and receiver 40 have been switched to power-saving mode and also the flip-flop 90 and comparator 80 are in their inactive state. Once the microprocessor 60 has entered sleep mode at time t4, its power consumption will be drastically reduced.
  • the duration of the sleep mode of the microprocessor 60 is indicated in Figure 2 with the scratchesszei ⁇ chen TSLEEP.
  • the microprocessor 60 is placed in the so-called sleep mode S4 according to ACPI standard; the sleep mode S4 is a sleep state in which the operating state is stored on a non-volatile memory such as the memory 70.
  • the timing module 50 which periodically generates a wake-up signal SW terminating the sleep mode of the microprocessor 60 and returning it to its active state at time t5.
  • the transmit and receive cycle described above begins again. This means that at a time t ⁇ , the microprocessor 60 will again activate its receiving branch formed by the receiving element 40, the comparator 80 and the flip-flop 90, so that the flip-flop 90 and the comparator 80 are in their active state and the receiving element 40 is brought into its receive mode of operation.
  • the transmission branch of the light barrier 10 formed by the transmitting element 30 is then activated, so that the laser 100 can generate its next transmission pulse P.
  • individual transmission pulses are produced at periodic intervals with a period T P produced which in each case a pulse ⁇ ⁇ duration of preferably less than 500 nano-seconds, more preferably less than 150 nanoseconds.
  • the period T may, for example, be between 50 ⁇ s and 10 ms.
  • the ratio between the period T and the pulse duration ⁇ and / or the ratio between the time duration Tsleep of the sleep mode of the microprocessor and the pulse duration ⁇ is as large as possible; preferably: T / ⁇ > 500 and / or Tsleep / ⁇ > 100
  • FIG. 3 shows a further exemplary embodiment for driving the transmitting element 30 and the receiving element 40 according to FIG. It can be seen that during the transmission phases sound not only a single transmission pulse is generated, but in each case three individual pulses P ', P' 'and P' ''.
  • the transmission phases Ton are again separated from each other by a transmission pause Toff, within which at least temporarily the transmitting element 30 and the receiving element 40 have their power-saving mode, the flip-flop 90 and the comparator 80 have their inactive state and the microprocessor 60 has its sleep mode.
  • the control for the pulse generation according to FIG. 3 corresponds to the activation for the pulse generation according to FIG. 2, as has been explained in detail above.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Optical Communication System (AREA)
  • Electronic Switches (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

La présente invention concerne entre autres un système qui se présente par exemple sous la forme d'un détecteur optique de proximité, comprenant un dispositif de commande, un élément d'émission et un élément de réception. Selon un exemple de mode de réalisation, le dispositif de commande, lors de pauses d'émission (Toff) entre des phases d'émission (Ton) successives, fait passer l'élément d'émission ainsi que l'élément de réception au moins temporairement dans un mode d'économie d'énergie électrique. Cette mesure permet de diminuer l'énergie électrique nécessaire au fonctionnement du système. Pour réduire davantage les besoins en énergie, l'élément d'émission fonctionne de préférence de manière pulsée lors des phases d'émission. Par exemple, à chaque phase d'émission est produite respectivement une seule impulsion d'émission (P) d'une durée d'impulsion inférieure à 150 ns. Une économie d'énergie électrique peut également être obtenue en dotant le dispositif de commande d'un mode veille et d'un mode actif, le dispositif de commande pouvant passer au moins temporairement au mode veille. Le dispositif de commande présente par exemple à cet effet un module de commande temporelle et un microprocesseur (60) qui est relié à celui-ci et peut être mis en mode actif et en mode veille.
PCT/EP2008/005040 2008-06-12 2008-06-12 Système et procédé de production et de réception d'un rayonnement électro-magnétique WO2009149735A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/EP2008/005040 WO2009149735A1 (fr) 2008-06-12 2008-06-12 Système et procédé de production et de réception d'un rayonnement électro-magnétique

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/EP2008/005040 WO2009149735A1 (fr) 2008-06-12 2008-06-12 Système et procédé de production et de réception d'un rayonnement électro-magnétique

Publications (1)

Publication Number Publication Date
WO2009149735A1 true WO2009149735A1 (fr) 2009-12-17

Family

ID=40379021

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2008/005040 WO2009149735A1 (fr) 2008-06-12 2008-06-12 Système et procédé de production et de réception d'un rayonnement électro-magnétique

Country Status (1)

Country Link
WO (1) WO2009149735A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017129185A1 (de) 2016-12-19 2018-06-21 Wimtec Sanitärprodukte Gmbh Verfahren zum energieeffizienten Betrieb einer Schaltungsanordnung mit einem Annäherungssensor sowie Annäherungssensoren und Schaltungsanordnungen zum Durchführen dieses Verfahrens
WO2021228640A1 (fr) * 2020-05-15 2021-11-18 Helmut Fischer GmbH Institut für Elektronik und Messtechnik Dispositif d'émission et/ou de réception de rayonnement térahertz et dispositif de commande associé

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0463440A2 (fr) * 1990-06-22 1992-01-02 Hansa Metallwerke Ag Méthode d'utilisation de circuit destiné à commander sans contact une armature sanitaire et circuit pour la réalisation de cette méthode
US5933224A (en) * 1994-05-09 1999-08-03 Hines; Robin H. Hand-held distance-measurement apparatus and system
EP1585268A2 (fr) * 1995-05-26 2005-10-12 SimonsVoss Technologies AG Système de transfert des données avec circuit pour économiser de l'énergie
WO2007122475A1 (fr) * 2006-04-20 2007-11-01 Shangai Kohler Electronic, Ltd. Procédé et appareil de traitement destinés à économiser l'énergie d'un instrument d'induction infrarouge actif alimenté par une batterie sèche

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0463440A2 (fr) * 1990-06-22 1992-01-02 Hansa Metallwerke Ag Méthode d'utilisation de circuit destiné à commander sans contact une armature sanitaire et circuit pour la réalisation de cette méthode
US5933224A (en) * 1994-05-09 1999-08-03 Hines; Robin H. Hand-held distance-measurement apparatus and system
EP1585268A2 (fr) * 1995-05-26 2005-10-12 SimonsVoss Technologies AG Système de transfert des données avec circuit pour économiser de l'énergie
WO2007122475A1 (fr) * 2006-04-20 2007-11-01 Shangai Kohler Electronic, Ltd. Procédé et appareil de traitement destinés à économiser l'énergie d'un instrument d'induction infrarouge actif alimenté par une batterie sèche

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017129185A1 (de) 2016-12-19 2018-06-21 Wimtec Sanitärprodukte Gmbh Verfahren zum energieeffizienten Betrieb einer Schaltungsanordnung mit einem Annäherungssensor sowie Annäherungssensoren und Schaltungsanordnungen zum Durchführen dieses Verfahrens
AT519532A1 (de) * 2016-12-19 2018-07-15 Wimtec Sanitaerprodukte Gmbh Verfahren zum energieeffizienten Betrieb einer Schaltungsanordnung sowie Annäherungssensoren und Schaltungsanordnungen zum Durchführen dieses Verfahrens
AT519532B1 (de) * 2016-12-19 2018-10-15 Wimtec Sanitaerprodukte Gmbh Verfahren zum energieeffizienten Betrieb einer Schaltungsanordnung sowie Annäherungssensoren und Schaltungsanordnungen zum Durchführen dieses Verfahrens
WO2021228640A1 (fr) * 2020-05-15 2021-11-18 Helmut Fischer GmbH Institut für Elektronik und Messtechnik Dispositif d'émission et/ou de réception de rayonnement térahertz et dispositif de commande associé
GB2610336A (en) * 2020-05-15 2023-03-01 Helmut Fischer Gmbh Inst Fuer Elektronik Und Messtechnik Apparatus for transmitting and/or receiving terahertz radiation, and control device therefor
GB2610336B (en) * 2020-05-15 2024-02-28 Helmut Fischer Gmbh Inst Fuer Elektronik Und Messtechnik Apparatus for transmitting and/or receiving terahertz radiation, and control device therefor
ES2935007R1 (es) * 2020-05-15 2024-03-27 Helmut Fischer Gmbh Inst Fuer Elektronik Und Messtechnik Dispositivo para emitir y/o recibir radiación de terahercios e instalación de control del mismo

Similar Documents

Publication Publication Date Title
EP2083286B1 (fr) Barrière lumineuse
DE3106427A1 (de) Fernbedienungssender
DE3784960T2 (de) Strombegrenzer fuer konstantstrom fuer einen treiber eines schaltgeraetes.
DE3125728C2 (de) Photoelektrischer Schalter
WO2001045280A1 (fr) Appareil electronique dote d'un mode de fonctionnement et d'un mode de repos a economie d'energie et procede de commutation entre ces deux modes
DE3434217A1 (de) Schaltungsanordnung zum ein- und ausschalten einer lichtemissionsdiode
DE3705697A1 (de) Schaltungsanordnung zur stabilisierung des laser-vorstroms fuer ein im burst-betrieb arbeitendes lichtleiter-kommunikationssystem
DE19747180A1 (de) Pulslaser mit Erstpulssteuerung
DE102005051825B4 (de) Treiberschaltung für eine Licht emittierende Diode und damit ausgerüstete Übertragungseinrichtung
DE69004999T2 (de) Schaltungsanordnung.
DE19712222A1 (de) Steuervorrichtung für eine Auslaßarmatur und ein Verfahren zur Steuerung einer Auslaßarmatur
WO2009149735A1 (fr) Système et procédé de production et de réception d'un rayonnement électro-magnétique
EP0806713A1 (fr) Dispositif de commande avec un oscillateur de mise en veille accordable
DE202020101814U1 (de) LED-Lichtketten-Steuersystem
DE3122530A1 (de) Gepulster radarsender mit einem halbleiter-leistungsmodulator
DE10346813A1 (de) Optoelektronischer Sensor und Verfahren zur Detektion eines Objekts in einem Überwachungbereich
DE3123758A1 (de) Insbesondere mit infrarot-strahlen zu betreibende photozellenanordnung
DE19946917A1 (de) Näherungssensor mit geringer Leistungsaufnahme
DE2531953A1 (de) Funksteuerungsanlage
DE69528047T2 (de) Positionsbestimmungsgerät
DE69026362T2 (de) Zeichengenerator mit einem Start-Stop-Oszillator
DE3807177C2 (fr)
DE19917487A1 (de) Optoelektronische Vorrichtung
DE3443238A1 (de) Analog-feuerdetektor
DE3118838A1 (de) Photoelektrische schalteinrichtung

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08773581

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08773581

Country of ref document: EP

Kind code of ref document: A1