WO2009148088A1 - 膜外周が被覆された中空糸膜モジュール - Google Patents
膜外周が被覆された中空糸膜モジュール Download PDFInfo
- Publication number
- WO2009148088A1 WO2009148088A1 PCT/JP2009/060170 JP2009060170W WO2009148088A1 WO 2009148088 A1 WO2009148088 A1 WO 2009148088A1 JP 2009060170 W JP2009060170 W JP 2009060170W WO 2009148088 A1 WO2009148088 A1 WO 2009148088A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- hollow fiber
- fiber membrane
- elastic body
- fixed layer
- membrane module
- Prior art date
Links
- 239000012528 membrane Substances 0.000 title claims abstract description 467
- 239000012510 hollow fiber Substances 0.000 title claims abstract description 437
- 238000001914 filtration Methods 0.000 claims abstract description 114
- 229920005989 resin Polymers 0.000 claims abstract description 71
- 239000011347 resin Substances 0.000 claims abstract description 71
- 238000005266 casting Methods 0.000 claims abstract description 51
- 239000002654 heat shrinkable material Substances 0.000 claims description 22
- 238000007654 immersion Methods 0.000 claims description 11
- 239000010410 layer Substances 0.000 description 161
- 239000010802 sludge Substances 0.000 description 53
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 46
- 238000000034 method Methods 0.000 description 30
- 239000000126 substance Substances 0.000 description 28
- 229920006257 Heat-shrinkable film Polymers 0.000 description 20
- 238000005273 aeration Methods 0.000 description 17
- 239000011248 coating agent Substances 0.000 description 13
- 238000000576 coating method Methods 0.000 description 13
- 239000007788 liquid Substances 0.000 description 13
- 239000000463 material Substances 0.000 description 13
- 238000009825 accumulation Methods 0.000 description 12
- 238000000926 separation method Methods 0.000 description 10
- 229920002803 thermoplastic polyurethane Polymers 0.000 description 10
- 239000011247 coating layer Substances 0.000 description 8
- 230000006378 damage Effects 0.000 description 8
- 239000007787 solid Substances 0.000 description 8
- 229920002943 EPDM rubber Polymers 0.000 description 7
- 238000004519 manufacturing process Methods 0.000 description 7
- -1 polyethylene Polymers 0.000 description 6
- 238000009750 centrifugal casting Methods 0.000 description 5
- 238000005374 membrane filtration Methods 0.000 description 5
- 230000002093 peripheral effect Effects 0.000 description 5
- 238000000967 suction filtration Methods 0.000 description 5
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 4
- 150000001336 alkenes Chemical class 0.000 description 4
- 230000008901 benefit Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000011049 filling Methods 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 4
- 239000011148 porous material Substances 0.000 description 4
- 239000010865 sewage Substances 0.000 description 4
- 239000010703 silicon Substances 0.000 description 4
- 229910052710 silicon Inorganic materials 0.000 description 4
- 239000002033 PVDF binder Substances 0.000 description 3
- 239000004698 Polyethylene Substances 0.000 description 3
- 239000000853 adhesive Substances 0.000 description 3
- 230000001070 adhesive effect Effects 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 238000007599 discharging Methods 0.000 description 3
- 239000003822 epoxy resin Substances 0.000 description 3
- 230000007774 longterm Effects 0.000 description 3
- 238000001471 micro-filtration Methods 0.000 description 3
- 229920000647 polyepoxide Polymers 0.000 description 3
- 229920000573 polyethylene Polymers 0.000 description 3
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 239000004952 Polyamide Substances 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical compound ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 description 2
- 229920001971 elastomer Polymers 0.000 description 2
- 239000000806 elastomer Substances 0.000 description 2
- 239000000706 filtrate Substances 0.000 description 2
- 230000004927 fusion Effects 0.000 description 2
- 238000000691 measurement method Methods 0.000 description 2
- 229920002647 polyamide Polymers 0.000 description 2
- 229920000728 polyester Polymers 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 229920006124 polyolefin elastomer Polymers 0.000 description 2
- 229920005672 polyolefin resin Polymers 0.000 description 2
- 229920001296 polysiloxane Polymers 0.000 description 2
- 229920002635 polyurethane Polymers 0.000 description 2
- 239000004814 polyurethane Substances 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 230000000630 rising effect Effects 0.000 description 2
- 238000004062 sedimentation Methods 0.000 description 2
- 239000002356 single layer Substances 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 229920005992 thermoplastic resin Polymers 0.000 description 2
- 229920001187 thermosetting polymer Polymers 0.000 description 2
- WSSSPWUEQFSQQG-UHFFFAOYSA-N 4-methyl-1-pentene Chemical compound CC(C)CC=C WSSSPWUEQFSQQG-UHFFFAOYSA-N 0.000 description 1
- 239000004925 Acrylic resin Substances 0.000 description 1
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 1
- 229920000181 Ethylene propylene rubber Polymers 0.000 description 1
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 1
- 229920000459 Nitrile rubber Polymers 0.000 description 1
- 239000004696 Poly ether ether ketone Substances 0.000 description 1
- 239000004695 Polyether sulfone Substances 0.000 description 1
- 239000004697 Polyetherimide Substances 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 238000011001 backwashing Methods 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 229920002301 cellulose acetate Polymers 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 239000010840 domestic wastewater Substances 0.000 description 1
- 239000002657 fibrous material Substances 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 239000003673 groundwater Substances 0.000 description 1
- 238000007542 hardness measurement Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000012466 permeate Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920001643 poly(ether ketone) Polymers 0.000 description 1
- 229920002492 poly(sulfone) Polymers 0.000 description 1
- 229920002239 polyacrylonitrile Polymers 0.000 description 1
- 229920006393 polyether sulfone Polymers 0.000 description 1
- 229920002530 polyetherether ketone Polymers 0.000 description 1
- 229920001601 polyetherimide Polymers 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- 239000004810 polytetrafluoroethylene Substances 0.000 description 1
- 229920003225 polyurethane elastomer Polymers 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 238000011085 pressure filtration Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- KCTAWXVAICEBSD-UHFFFAOYSA-N prop-2-enoyloxy prop-2-eneperoxoate Chemical compound C=CC(=O)OOOC(=O)C=C KCTAWXVAICEBSD-UHFFFAOYSA-N 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 230000002040 relaxant effect Effects 0.000 description 1
- 238000001223 reverse osmosis Methods 0.000 description 1
- 239000013535 sea water Substances 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
- 238000003892 spreading Methods 0.000 description 1
- 230000007480 spreading Effects 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 230000001954 sterilising effect Effects 0.000 description 1
- 238000004659 sterilization and disinfection Methods 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 238000000108 ultra-filtration Methods 0.000 description 1
- 239000002351 wastewater Substances 0.000 description 1
- 238000004065 wastewater treatment Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D63/00—Apparatus in general for separation processes using semi-permeable membranes
- B01D63/02—Hollow fibre modules
- B01D63/021—Manufacturing thereof
- B01D63/022—Encapsulating hollow fibres
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D63/00—Apparatus in general for separation processes using semi-permeable membranes
- B01D63/02—Hollow fibre modules
- B01D63/04—Hollow fibre modules comprising multiple hollow fibre assemblies
- B01D63/043—Hollow fibre modules comprising multiple hollow fibre assemblies with separate tube sheets
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D61/00—Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
- B01D61/14—Ultrafiltration; Microfiltration
- B01D61/18—Apparatus therefor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D63/00—Apparatus in general for separation processes using semi-permeable membranes
- B01D63/02—Hollow fibre modules
- B01D63/021—Manufacturing thereof
- B01D63/0233—Manufacturing thereof forming the bundle
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D65/00—Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
- B01D65/08—Prevention of membrane fouling or of concentration polarisation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D69/00—Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
- B01D69/08—Hollow fibre membranes
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F3/00—Biological treatment of water, waste water, or sewage
- C02F3/02—Aerobic processes
- C02F3/12—Activated sludge processes
- C02F3/1236—Particular type of activated sludge installations
- C02F3/1268—Membrane bioreactor systems
- C02F3/1273—Submerged membrane bioreactors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2313/00—Details relating to membrane modules or apparatus
- B01D2313/44—Cartridge types
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2315/00—Details relating to the membrane module operation
- B01D2315/06—Submerged-type; Immersion type
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2321/00—Details relating to membrane cleaning, regeneration, sterilization or to the prevention of fouling
- B01D2321/18—Use of gases
- B01D2321/185—Aeration
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2321/00—Details relating to membrane cleaning, regeneration, sterilization or to the prevention of fouling
- B01D2321/20—By influencing the flow
- B01D2321/2033—By influencing the flow dynamically
- B01D2321/2058—By influencing the flow dynamically by vibration of the membrane, e.g. with an actuator
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/44—Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2201/00—Apparatus for treatment of water, waste water or sewage
- C02F2201/002—Construction details of the apparatus
- C02F2201/006—Cartridges
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2301/00—General aspects of water treatment
- C02F2301/06—Pressure conditions
- C02F2301/066—Overpressure, high pressure
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W10/00—Technologies for wastewater treatment
- Y02W10/10—Biological treatment of water, waste water, or sewage
Definitions
- the present invention relates to a filtration module using a hollow fiber membrane that is installed in a container such as a tank or a tank to be aerated and filtered. More specifically, the present invention relates to a filtration device for removing turbidity and sterilization of raw water such as river water, lake water, groundwater, seawater, domestic wastewater, factory wastewater, and secondary treated water, or solid-liquid separation of activated sludge.
- the present invention relates to a filtration module using a hollow fiber membrane that is used in a membrane activated sludge apparatus that performs a membrane.
- the activated sludge concentration (MLSS: Mixed Liquid Suspended Solid) can be increased to 5000 to 20000 mg / l for filtration, so the volume of the activated sludge tank can be reduced or the reaction time in the activated sludge tank can be reduced. It has the advantage that it can be shortened.
- SS Suspended Solid
- the membrane itself is strong, so that the membrane surface is not damaged by contact with fresh substances mixed from the raw water and can be used for a long time. Furthermore, there is an advantage that backwashing can be performed in which a medium such as treated water is ejected in the direction opposite to the filtration direction to remove deposits on the membrane surface.
- the effective membrane area is reduced if filtration is not performed while removing aggregates of activated sludge accumulated in the gaps between the hollow fiber membranes and fresh substances brought into the raw water (hereinafter referred to as suspended substances). To do. As a result, there is a problem that long-term stable filtration cannot be performed because the filtration efficiency is lowered.
- aeration of air or the like has been performed from the lower part of the module in order to avoid accumulation of suspended substances on the surface of the hollow fiber membrane and between the hollow fiber membranes.
- the suspended matter between the surface of the hollow fiber membrane and the hollow fiber membrane was peeled off from the sliding effect of the hollow fiber membrane and the stirring effect due to the upward movement of the bubbles, thereby preventing their accumulation.
- a skirt is installed in the lower part of the hollow fiber membrane module, and a plurality of through holes are provided in the skirt side fixing layer, and a gas-liquid mixed layer is formed in the skirt end protruding from the skirt by aeration from the lower part of the skirt.
- air bubbles were generated uniformly from the plurality of through holes, and the suspended matter deposited on the outer surface of the hollow fiber membrane was easily peeled off.
- the activated sludge having a high MLSS is subjected to filtration treatment such as the membrane separation activated sludge method, the suspended substance entrained in the gas-liquid mixed phase flow is contained in the hollow fiber membrane bundle in the hollow fiber membrane bundle near the head. There was a problem of accumulating gradually without getting out.
- the hollow fiber membrane module as described above When the hollow fiber membrane module as described above is immersed in an activated sludge tank and subjected to filtration for a long period of time, suspended substances accumulate in the hollow fiber membrane bundle in the vicinity of the fixed portion of the divided small bundles and are small. A phenomenon that the diameter of the bundle gradually increases occurs, thereby reducing the distance between the small bundles, reducing the removability of suspended substances from the inside of the module, and causing a problem of reducing the filtration performance.
- the hollow fiber membrane may break near the fixed part interface due to the action of intense gas-liquid mixed phase flow generated by continuous aeration, and there is a problem that raw water is mixed into the filtrate and the quality of the filtrate is reduced. there were.
- An object of the present invention is to provide a hollow fiber membrane module that suppresses the accumulation of suspended substances in the hollow fiber membrane bundle and exhibits stable filtration performance for a long period of time.
- the present inventors have found that the above problem can be solved by coating the outer periphery of the hollow fiber membrane with a specific elastic body in the vicinity of the fixed layer interface, and the present invention has been completed. .
- the present invention is as follows.
- One or a plurality of hollow fiber membrane bundles composed of a plurality of hollow fiber membranes has a fixing layer fixed with a casting resin at both ends, and the hollow fiber membrane is hollow at one or both ends.
- a hollow fiber membrane module having an open portion wherein the hollow fiber membrane bundle is divided into a plurality of small bundles in at least one fixed layer on the side where the hollow portion is open, and in the vicinity of the filtration portion interface of the fixed layer
- the hollow fiber membrane module of the present invention covers the outer periphery of a hollow fiber membrane or a bundle of hollow fiber membranes, and as a result, suspended substances accumulate between the hollow fiber membranes or in the hollow fiber membrane bundle and the filtration performance decreases. Can be remarkably suppressed, and damage to the hollow fiber membrane can be prevented, so that high filtration performance can be exhibited stably over a long period of time. Further, by coating with a specific heat-shrinkable material, it can be easily and efficiently manufactured, and damage to the hollow fiber membrane itself due to rubbing with the coating material can be prevented.
- the position of the filtration part interface of the fixed layer outside the elastic body be closer to the center of the module than the tip position of the casting resin covering the outer surface of the hollow fiber membrane in the elastic body.
- the hollow fiber membrane does not break at the rising portion of the casting resin when receiving external force during handling or use.
- (C) A cylinder having the through hole of (b) above.
- Explanatory drawing which shows an example of the utilization form of an immersion type hollow fiber membrane cartridge module.
- Explanatory drawing which shows an example of the utilization form of a pressurization type hollow fiber membrane cartridge module.
- Explanatory drawing which shows another example of the utilization form of a pressurization type hollow fiber membrane cartridge module.
- Explanatory drawing which shows the manufacture example of the hollow fiber membrane bundle by which the outer periphery of the hollow fiber membrane was coat
- (A) A configuration example at the stage where a hollow fiber membrane is set on a heat-shrinkable film.
- (B) An example of a stage in which another heat-shrinkable film is set on (a) and the hollow fiber membranes are fused.
- C A form example after the heat treatment of (b).
- both ends of a plurality of hollow fiber membranes are fixed with a casting resin, and the hollow portion of the hollow fiber membrane is open at one or both ends. That is, when the hollow fiber membrane module is installed in the vertical direction, (1) a hollow fiber membrane module in which a hollow portion is opened on the upper side of the hollow fiber membrane module and a hollow portion is closed on the lower side, A hollow fiber membrane module from which permeate can be collected from the upper opening, (2) a hollow fiber membrane module in which hollow portions are open on both the upper and lower sides of the hollow fiber membrane module, both of the upper and lower sides A hollow fiber membrane module capable of collecting permeated water from an opening; (3) a hollow fiber membrane module in which the hollow fiber membrane is U-shaped and the hollow portions at both ends are open above the hollow fiber membrane module; And a hollow fiber membrane module capable of collecting permeated water from the upper opening.
- the “hollow fiber membrane module” means a filtration element that includes a hollow fiber membrane and a fixed part that fixes the hollow fiber membrane end, and is used by being attached to a filtration device.
- the “immersion-type hollow fiber membrane cartridge module” means a hollow fiber membrane module that is used by being attached to a filtration device that performs suction and filtration while immersed in a tank filled with raw water.
- the “pressurized hollow fiber membrane cartridge module” means a hollow fiber membrane module that is attached to a filtration device in a state of being inserted into a pressurizing container, and performs filtration by applying pressure.
- a pressurizing container there are a type in which one module is inserted into one container (rack type) and a type in which a plurality of containers are inserted into one container (tank type).
- rack type a type in which one module is inserted into one container
- tank type a type in which a plurality of containers are inserted into one container
- the immersion type cartridge module using the hollow fiber membrane of the present invention is a hollow fiber membrane bundle 1 composed of a plurality of hollow fiber membranes (in the hollow fiber membrane module of the present invention, one or a plurality of hollow fiber membrane bundles may be used, In this embodiment, the number is 1), and the hollow fiber membrane bundle 1 has a head 2 and a skirt 3 at both ends, and the hollow fiber membrane is fixed by the head side first fixed layer 4 and the skirt side first fixed layer 5. is doing.
- the hollow fiber membrane opens at the head side end (head side first fixed layer end surface 6), and the hollow portion of the hollow fiber membrane is sealed at the skirt side end (skirt side first fixed layer end surface 7). Yes.
- the portion of the hollow fiber membrane that is not included in the fixed layers at both ends is referred to as a filtration unit 12, and the portion of the fixed layer on the head side that faces the filtration unit side is the interface on the filtration unit of the head side fixed layer, on the skirt side.
- the part facing the filtration part is defined as the filtration part interface of the skirt side fixed layer.
- the fixed layer on the head side may be a single layer or a plurality of layers. In the case of two layers as in the example shown in FIG.
- the layer on the filtration unit 12 side is referred to as a head-side second fixed layer, and the layer on the end face 6 side is referred to as a head-side first fixed layer.
- the fixed layer on the skirt side may be a single layer or a plurality of layers.
- the layer on the filtration unit 12 side is referred to as a skirt side second fixed layer, and the layer on the end face 7 side is referred to as a skirt side first fixed layer.
- the entire head side first fixed layer 4 and the entire head side second fixed layer 13 are simply referred to as “head side fixed layer”, and the entire skirt side first fixed layer 5 and the entire skirt side second fixed layer 14 are simply referred to as “skirt side.
- the portion facing the filtration portion of the head side second fixed layer is the position 13 'of the filtration portion interface of the head side fixed layer
- the portion facing the filtration portion of the skirt side second fixed layer is the filtration of the skirt side fixed layer.
- the position 14 ′ of the part interface is described.
- the skirt 3 is provided with a skirt end 9 protruding from the end face 7 of the skirt-side first fixed layer. And the some through-hole 8 is provided in the skirt side fixed layer.
- the through hole 8 is for introducing the raw water and the cleaning gas into the hollow fiber membrane bundle and effectively contacting the outer peripheral surface of the hollow fiber membrane.
- the hollow fiber membrane bundle 1 is divided into a plurality of small bundles 10 in the head side fixed layer.
- the hollow fiber membrane bundle may be divided into a plurality of small bundles at a position other than the head side fixed layer.
- the head 2 and the skirt 3 are connected by a support material 11.
- the support material 11 has a function of preventing the skirt 3 from rising and twisting during aeration.
- the head side first fixed layer 4 and the skirt side first fixed layer 5 are connected to each other by a pipe, a rod,
- the function can be expressed by connecting and fixing any of a plate, a chain, a string, and a net.
- the diameter of the hollow fiber membrane module is preferably 30 mm to 800 mm, more preferably 100 mm to 800 mm.
- the length of the hollow fiber membrane module is preferably selected from the range of 300 mm to 3000 mm.
- the material of the head 2, the skirt 3 and the perforated plate 16 used in the present invention is not particularly limited, and may be the same or different, but a thermoplastic resin or stainless steel is preferably used. Since the head 2 serves as a fixing portion when the hollow fiber membrane module is suspended in the container, the shape of the head 2 is manufactured according to the structure of suspension / fixation. For example, a step or a groove may be provided on the outer peripheral portion, or a screw portion may be provided.
- suspension methods in the container a tank method in which the tank is fixed to a separator plate that is vertically separated, and a rack method in which the tank is fixed to a branch pipe branched from the main pipe, both of which can be suitably used in the present invention.
- the pore diameter of the hollow fiber membrane used in the present invention reverse osmosis membranes and ultrafiltration membranes to microfiltration membranes can be used.
- the material of the hollow fiber membrane is not particularly limited, and polysulfone, polyethersulfone, polyacrylonitrile, polyimide, polyetherimide, polyamide, polyetherketone, polyetheretherketone, polyethylene, polypropylene, poly-4-methylpentene Cellulose, cellulose acetate, polyvinylidene fluoride, polyethylene-tetrafluoroethylene copolymer, polytetrafluoroethylene, and the like. Alternatively, these composite material films can also be used.
- a hollow fiber membrane having an inner diameter of 50 ⁇ m to 3000 ⁇ m and an inner / outer diameter ratio of 0.3 to 0.8 can be preferably used.
- one or more hollow fiber membrane bundles 1 may be used as described above.
- all of them may be divided into a plurality of small bundles 10 or may include one that is not divided into a plurality of small bundles.
- the hollow fiber membrane bundle may be divided into a plurality of small bundles.
- the small bundles 10 of the hollow fiber membranes in the head-side fixing layer may be between hollow fiber membranes in which the distance between the closest hollow fiber membranes is preferably less than 2 mm, more preferably less than 1 mm. This is preferable because the hollow fiber membrane area can be increased and the amount of filtered water in the immersion cartridge module can be improved.
- the distance between hollow fiber membranes here means the distance between the outermost surfaces of a hollow fiber.
- the number of hollow fiber membranes forming the small bundle 10 is preferably 20 or more and 500 or less, more preferably 30 or more and 300 or less. In these ranges, the accumulation of suspended substances is reduced particularly between the hollow fiber membranes.
- the distance between the closest bundles is preferably 2 mm or more and 100 mm or less, more preferably 3 mm or more and less than 30 mm. In this range, there is no accumulation of suspended substances, the filling rate of the hollow fiber membrane can be increased, and the amount of filtered water can be increased.
- the distance between the small bundles means the closest distance among the distances of the outermost surfaces of the hollow fiber membranes included in each small bundle.
- the small bundle 10 of hollow fiber membranes at the filtration part side interface of the head side fixed layer has a hollow fiber membrane in which the distance between the closest hollow fiber membranes in each small bundle is preferably less than 2 mm, more preferably less than 1 mm. It is preferable to be between the two because the hollow fiber membrane area can be increased and the amount of filtered water in the hollow fiber membrane module can be improved.
- the distance between hollow fiber membranes here means the distance between the outermost surfaces of a hollow fiber.
- the number of hollow fiber membranes forming a small bundle is preferably 10 or more and 1000 or less, more preferably 20 or more and 300 or less. In these ranges, sludge deposits are reduced particularly between the hollow fiber membranes.
- the distance between the closest bundles is preferably 2 mm or more and 100 mm or less, more preferably 3 mm or more and less than 30 mm. In this range, there is no particularly sludge deposit, the filling rate of the hollow fiber membrane can be increased, and the amount of filtered water can be increased.
- the distance between the small bundles means the closest distance among the distances of the outermost surfaces of the hollow fiber membranes included in each small bundle.
- each small bundle 10 of the hollow fiber membranes at the filtration part interface of the head-side fixed layer has a structure arranged on one or more concentric circles, aeration bubbles can be discharged evenly in the circumferential direction. Expected to eliminate suspended solids with minimal aeration.
- the number of hollow fiber membranes included in the small bundle may be the same or different as long as the number of hollow fiber membranes included in the small bundle 10 is in the above range, but the number of hollow fiber membranes included in the small bundle is the same in all small bundles. And / or an equal spacing between the small bundles on the concentric circles is preferable for effectively discharging suspended substances.
- the hollow fiber membrane bundle is present in all directions from the central part of the concentric circle at the interface of the filtration part of the head side fixed layer to the outer peripheral part, so that the flow of aeration flows in a part of the direction from the central part of the module to the outer peripheral part.
- each small bundle is inserted into a through hole provided in the perforated plate 16.
- the through hole of the porous plate 16 is preferably provided at a position corresponding to the arrangement of the hollow fiber membrane bundle, and the hole diameter is preferably equal to or larger by 1 to 2 mm than the outer diameter of the hollow fiber membrane bundle to be inserted. .
- the skirt 3 preferably protrudes downward from the end face of the hollow fiber membrane and is fixed to the outer periphery of the hollow fiber membrane bundle.
- the length protruding from the end face depends on the diameter of the hollow fiber membrane module, the amount of air supplied, and the diameter and number of the through holes, but is preferably 5 mm to 300 mm in order to prevent air dissipation. If the length is too long, the total length of the hollow fiber membrane module becomes long, and a useless space is formed, which is not preferable. If it is too short, the air supplied to the module is not effectively guided to the through hole and is dissipated in the lateral direction, which is not preferable.
- the through hole 8 provided in the skirt side fixing layer is a hole formed in the fixing layer itself, and the size of the hole is selected from the range of an equivalent diameter of 2 mm to 30 mm.
- the shape of the through hole 8 is selected from a polygon such as a triangle, a quadrangle, and a hexagon, a circle, an ellipse, a fan, a C shape, a star, and the like.
- the number of holes may be 2 to 300, depending on the cross-sectional area of the hollow fiber membrane module and the number of yarns.
- the positions of the holes are preferably provided so as to be evenly distributed in the cross section of the fixed layer on the skirt side, for example, the intersections of multiple circles and radial lines, the intersections of lattices, or the positions of the vertices of a number of equilateral triangles. .
- the air bubbles that have passed through the plurality of through holes in the skirt-side fixing layer swing the hollow fiber membrane bundle 1 while raising the gap between the hollow fiber membranes almost vertically.
- the amplitude of the hollow fiber membrane bundle 1 is also small, the gap is reduced, the bubbles cannot rise, diffuse in the circumferential direction, and escape from the module.
- the filling rate of the membrane is increased and the distance between the hollow fiber membranes is small, suspended substances contained in the liquid to be treated cannot pass through, and accumulate between the hollow fiber membranes, reducing the filtration area, and filtering. Make it difficult.
- thermoplastic resin or thermosetting resin can be used as the casting resin for forming the fixed layer in the present invention.
- a two-component thermosetting resin is used. Is particularly preferred.
- Specific examples of such a resin include polymer materials such as an epoxy resin, a urethane resin, an epoxy acrylate resin, and a silicon resin.
- the casting method a known method such as a centrifugal casting method or a stationary casting method is used.
- the casting resin may contain a fibrous material such as glass fiber or carbon fiber, or fine powder such as carbon black, alumina, or silica.
- the resin of the head side first fixing layer 4 liquid-tightly fixes the hollow fiber membranes and the hollow fiber membrane and the head inner wall, and withstands the differential pressure between the filtration unit 12 side and the end face 6 side during filtration. It is desirable to obtain. Therefore, the hardness of the resin is preferably 20D or more and 80D or less, more preferably 30D or more and 70D or less (the hardness measurement method conforms to JISK6253 and ISO7619. The same applies to the following description in the present specification. ). If it is 20D or more, the mechanical strength is sufficient, and the fixed state with the hollow fiber membrane can be maintained for a long time.
- a second fixed layer (head-side second fixed layer 13) is provided in contact with the head-side first fixed layer on the filtration part side.
- the resin of the head side second fixed layer may be the same resin as the head side first fixed layer, but is preferably a more flexible resin from the viewpoint of reducing stress concentration at the head side second fixed layer interface.
- the hardness of the resin is preferably 20A or more and 90A or less, and more preferably 40A or more and 80A or less.
- the resin of the skirt side first fixing layer 5 may be any resin as long as it fixes the hollow fiber membranes and the hollow fiber membrane and the inner wall of the skirt and does not break by vibration of the hollow fiber membrane.
- the resin may be the same resin as the head-side first fixed layer 4 or the resin of the skirt-side second fixed layer 14 described later.
- the resin preferably has a hardness of 20 A or more and 90 A or less, more preferably 40 A or more and 80 A or less.
- the mechanical strength is sufficient and the shape can be maintained over a long period of time. If it is 90 A or less, the stress generated at the interface of the filtration part when the hollow fiber membrane swings can be effectively relieved, and the possibility of the hollow fiber membrane breaking is reduced.
- the hardness is A method of forming a silicon resin layer on the filtration part side of the epoxy layer after forming the first fixed layer with a high epoxy resin, or a urethane resin layer with a low hardness after forming the first fixed layer with a urethane resin with high hardness
- the method of making it form in the filtration part side of a said 1st fixed layer can take. From the viewpoint of productivity in production, the latter method is particularly suitable.
- the outer periphery of the hollow fiber membrane or the hollow fiber membrane bundle is covered with the elastic body 15 at least at the filtration part interface of the head side fixed layer.
- the elastic body 15 By coating with an elastic body, the following two effects are exhibited. (1) The distance between the hollow fiber membranes or hollow fiber membrane bundles is kept constant, the flow path for discharging suspended substances in the liquid to be treated can be maintained, and accumulation of suspended substances can be prevented. can do. (2) When the hollow fiber membrane is fixed with the casting resin, a creeping phenomenon due to the interfacial tension of the casting resin occurs, and a coating layer of the casting resin is formed on the outer surface of the hollow fiber membrane.
- the elastic body 15 in the present invention is a polymer substance that shows the property of being deformed when a force is applied but returning to its original dimension when the load is gradually applied.
- the elastic body preferably has a hardness of 20A to 90A.
- the length of the protruding portion of the elastic body is preferably 5 mm or more and 100 mm or less. If it is 5 mm or more, a gas-liquid mixed phase flow path containing a large amount of suspended substances can be maintained, and stable operation over a long period of time is possible. Moreover, if it is 100 mm or less, the reduction rate of the hollow fiber membrane area of a filtration part is small, and the influence on filtration performance is small. Particularly, 10 mm or more and 60 mm or less are preferable.
- the length of the portion exposed from the fixed layer may vary depending on the position on the circumference of one elastic body.
- the shortest length is defined as the “projection length”.
- the projection length of each elastic body is in the above-mentioned range.
- the length of the portion exposed from the second fixed layer is the shortest on the right side in the drawing.
- the exposed portion 18 on the right side of the figure is the “projection length” of the elastic body.
- the outer circumference of the hollow fiber membrane or the bundle of hollow fiber membranes included in the elastic body and the inner surface of the elastic body are in close contact with each other at the portion protruding from the filter interface. Otherwise, the hollow fiber membrane vibrates violently when exposed to gas-liquid mixed phase flow, and the hollow fiber membrane is damaged by rubbing the surface of the elastic body or the inner edge of the elastic body with the hollow fiber membrane. There are things to do. In contrast to this, the hollow fiber membrane is not damaged because the hollow fiber membrane does not move in the elastic body.
- the distance 19 between the elastic bodies closest to each other at the portion protruding from the filter interface is preferably 2 mm or more and 80 mm or less. If it is 2 mm or more, the possibility that sludge accumulates between the elastic bodies is low, a flow path can be secured, and a long-term stable operation is possible. Moreover, the reduction rate of the hollow fiber membrane area of a filtration part is small as it is 80 mm or less, and the influence on filtration performance is small. Preferably, it is 3 mm or more and 30 mm or less.
- the filtration part interface of the head-side fixed layer is preferably inclined with respect to a plane perpendicular to the yarn length direction of the hollow fiber membrane bundle.
- the filtration part interface 13 ′ of the head-side second fixed layer 13 in which a part of the elastic body 15 is embedded is inclined with respect to the length direction of the small bundle 10 of hollow fiber membranes.
- the angle of the filtration unit interface 13 ′ with respect to a plane (horizontal plane in FIG. 2) perpendicular to the length direction of the small bundle 10 is set to “inclination angle 17”.
- the inclination angle is preferably 0.5 degrees or more and 20 degrees or less. More preferably, it is 1 degree or more and 10 degrees or less.
- the flow direction of the gas-liquid mixed phase flow can be controlled to one side.
- a large number of hollow fiber membrane modules are often arranged in two rows and used, but at that time, by flowing toward the outside of the row, suspended substances in the entire device can be obtained.
- the discharge property can be kept good.
- the maximum value of the inclination angle is in a range where the influence on the membrane area contributing to the filtration is small. If it is the said range, there will be almost no influence on a film area and effective control of a flow is realizable.
- the inclination can be provided by the following method when the fixing layer is formed with a casting resin.
- the inclination angle is determined by the balance between centrifugal force and gravity.
- the centrifugal force is determined by the position (rotational radius) and rotational speed (RPM) of the fixed layer of the module. Therefore, the inclination angle can be set by appropriately setting the rotation speed in accordance with the position of the fixed layer of the module.
- RPM rotational speed
- the inclination angle can be set by appropriately setting the rotation speed in accordance with the position of the fixed layer of the module.
- it If it is a stationary casting method, it can be provided by fixing the hollow fiber membrane in an inclined state from the vertical direction.
- the position of the filtration portion interface of the fixed layer outside the elastic body is preferably closer to the center of the module than the tip position of the casting resin covering the outer surface of the hollow fiber membrane inside the elastic body. This will be described with reference to FIG.
- the first casting resin crawls up into the gap between the hollow fiber membranes.
- a coating layer is formed. “The position of the filtration part interface of the fixed layer outside the elastic body is closer to the center of the module than the tip position of the casting resin covering the outer surface of the hollow fiber membrane inside the elastic body”. Filtration on the side closest to the head-side first fixed layer among the filter portion interface positions of the second fixed layer 13 formed on the outer side of the elastic body 15 is the position of the tip 31 closest to the center of the module (right side in FIG. 3). This means that it is located closer to the first fixed layer than the part interface position 13 ′.
- the casting resin used for the head-side first fixed layer and the head-side second fixed layer may be the same material, but the second is from the viewpoint of reducing stress concentration on the elastic body at the head-side second fixed layer interface.
- the casting resin for the fixed layer it is more preferable to use a material having lower hardness (that is, more flexible).
- the hardness of the casting resin of the second fixed layer is preferably 20A or more and 90A or less, and more preferably 40A or more and 80A or less.
- the elastic body may be a tube, or a sheet or a film (hereinafter simply referred to as a film). If it is a tube-like thing, after inserting a hollow fiber membrane or a hollow fiber membrane bundle in a tube, it fixes with the resin for casting. Further, if it is a film, it is wound around the outer periphery of a hollow fiber membrane or a bundle of hollow fiber membranes to provide an overlapping portion, and then the overlapping portion is joined by heat fusion or adhesive, and then cast resin is used. Fix it. In the case of a hollow fiber membrane module having 100 or less hollow fiber membrane bundles per module, it is preferable to use a tubular elastic body.
- the process of joining the elastic body with heat fusion or an adhesive can be omitted, and there is no concern that the joint will peel off or be damaged during use.
- a film-like thing In the case of a film, it is possible to continuously wind and join the elastic body when manufacturing the hollow fiber membrane continuously, which is suitable for mass production.
- the material of the elastic body is selected in consideration of the characteristics of raw water and the durability against chemicals used during filtration operation.
- polyolefin elastomers such as ethylene propylene rubber (EPDM) and nitrile butadiene rubber, polyurethane elastomers, polyamide elastomers, polyester elastomers, olefin resins such as polyethylene, vinyl chloride resins, fluorine resins, silicon resins, etc. Is mentioned.
- polyolefin elastomers such as EPDM, olefin resins, and silicon resins are particularly preferable from the viewpoints of flexibility and chemical resistance.
- the elastic body may be homogeneous, or may be a foam or a bubble sheet having closed cells inside, or a porous body having continuous pores inside.
- the elastic body is particularly preferably made of a heat-shrinkable material.
- An elastic body made of a heat-shrinkable material is disposed so as to surround the outer periphery of the hollow fiber membrane or the hollow fiber membrane bundle, and then heated so that the elastic body is in close contact with the outer periphery of the hollow fiber membrane or the hollow fiber membrane bundle. Can be coated. Because of the close contact, the hollow fiber membrane does not move in the elastic body during the filtration operation, so that the hollow fiber membrane is not damaged. And the shape of this elastic body is fixed in the state which contact
- the hollow fiber membrane Since the force for tightening the hollow fiber membrane is not working, the hollow fiber membrane is not damaged by the tightening force.
- a heat-shrinkable material that is separate from the elastic body is used, and the hollow fiber membrane or hollow fiber membrane bundle is surrounded by the elastic body, and then the outer periphery is surrounded by the heat-shrinkable material, and the heat-shrinkable material is heated to shrink.
- covering a hollow fiber membrane or a hollow fiber membrane bundle with an elastic body can also be taken.
- the shrinkage force when the heat-shrinkable material is shrunk by heating is weak, it is difficult to deform the elastic body by the shrinkage force so as to adhere to the outer periphery of the hollow fiber membrane or the hollow fiber membrane bundle.
- the types of elastic bodies are extremely limited.
- a porous body having a porosity of 70% or more, such as a urethane sponge, is used.
- the hollow fiber membrane may move in the elastic body even after the heat-shrinkable material contracts.
- the hollow fiber membrane When such a hollow fiber membrane module is used in a state where intense membrane vibration occurs due to aeration such as membrane separation activated sludge method, the hollow fiber membrane may be rubbed and damaged in the elastic body. It is important to select the thickness of the elastic body and the type and size of the heat-shrinkable material according to the ease of deformation of the body. Further, it is necessary to fix the elastic body and the heat-shrinkable material at predetermined positions, and the work becomes complicated. On the other hand, when the elastic body itself is made of a heat-shrinkable material, the above two disadvantages are eliminated. When the elastic body is made of a heat-shrinkable material, the hardness after heat shrinkage is preferably 20A to 90A.
- the mechanical strength is sufficient and the shape can be maintained over a long period of time, and if it is 90A or less, the hollow fiber membrane may be damaged. Is low.
- a module used in the membrane separation activated sludge method it is particularly preferably 40A to 90A because it is exposed to a vigorous gas-liquid mixed phase flow for a long time.
- the heat-shrinkable material a known material such as a tube shape, a film shape or a sheet shape (hereinafter, “film or sheet shape” is simply referred to as “film”) can be used. It is selected considering the durability against chemicals.
- heat shrinkable tube materials such as EPDM heat shrinkable tubes, olefin heat shrinkable tubes, silicone heat shrinkable tubes, PVC heat shrinkable tubes, polyurethane heat shrinkable tubes, and olefin heat shrinkable tubes
- heat-shrinkable films such as films, polyurethane-based heat-shrinkable films, and polyester-based heat-shrinkable films.
- EPDM heat-shrinkable tubes, olefin-based heat-shrinkable tubes, silicone-based heat-shrinkable tubes, and olefin-based heat-shrinkable films are preferable from the viewpoints of flexibility and chemical resistance.
- the heat shrinkable tube is preferable because the insertability of the hollow fiber membrane bundles is excellent.
- the EPDM heat-shrinkable tube is preferable because it has good adhesion to a casting resin such as an epoxy resin or a urethane resin that forms the fixing portion.
- the heat-shrinkable material preferably shrinks when heated to a temperature in the range of 50 ° C to 150 ° C. In particular, those that shrink by heating to a temperature in the range of 50 ° C. to 120 ° C. are preferred. If it is the temperature of this range, it will not affect the characteristic of a hollow fiber membrane.
- the inner diameter of the heat-shrinkable tube (the inner diameter before shrinking) is preferably determined in consideration of the outer diameter of the hollow fiber membrane or hollow fiber membrane bundle to be coated and the maximum heat shrinkage rate of the heat-shrinkable tube. That is, it is preferable that the inner diameter of the heat-shrinkable tube is larger than the outer diameter of the hollow fiber membrane or the hollow fiber membrane bundle to be coated because the insertion work is easy.
- the inner diameter before shrinking is preferably 1.05 times or more and 3 times or less, and 1.1 times or more and 2 times or less of the outer diameter of the hollow fiber membrane or hollow fiber membrane bundle. More preferably it is.
- covering a hollow fiber membrane or a hollow fiber membrane bundle using a heat-shrinkable material is shown.
- an elastic tube having heat-shrinkability (hereinafter simply referred to as an elastic tube), it can be performed as follows. (1) A hollow fiber membrane bundle is produced by converging a predetermined number of hollow fiber membranes whose ends are heated and fused to close the hollow portion. (2) The hollow fiber membrane bundle is inserted into an elastic tube, and the tube is placed on a tray so as to be in a predetermined position. (3) The tray is put in an oven and heated to a predetermined temperature to be shrunk. By the above operation, the elastic body comes into close contact with a predetermined position of the hollow fiber membrane bundle. (4) The hollow fiber membrane bundle coated as described above is disposed at a predetermined position in the module head member using a perforated plate or the like.
- a casting resin (first casting resin) is injected into the head member to fix the hollow fiber membranes, the hollow fiber membrane, the tube, and the head inner wall.
- the casting resin (second casting resin) is again injected between the tube and the inner wall of the head onto the interface of the casting resin. Solidify.
- the end portion side of the hollow fiber membrane is cut together with the head member to open the hollow portion of the hollow fiber membrane. Thereby, a hollow fiber membrane bundle in which the filtration part interface on the side where the hollow fiber membrane is opened is covered with an elastic body made of a heat-shrinkable tube can be produced.
- the step (6) can be omitted.
- an elastic film when covering each hollow fiber membrane using a heat-shrinkable elastic film (hereinafter simply referred to as an elastic film), it can be carried out as follows. (1) A hollow fiber membrane in which the end portion is heated and fused to close the hollow portion is produced. (2) An elastic film 50 having a predetermined width and length is placed on the tray. (3) A predetermined number of hollow fiber membranes 21 are aligned in parallel at a predetermined interval, and a predetermined portion of the hollow fiber membrane 21 is placed on the film 50. The state at this time is shown in FIG. (4) Place another elastic film 50 ′ on the hollow fiber membrane 21 at a position corresponding to the elastic film 50.
- a heat-shrinkable elastic film hereinafter simply referred to as an elastic film
- each hollow fiber membrane is surrounded by the elastic films 50 and 50 ′.
- the state at this time is shown in FIG. (6) Put the entire tray in an oven and heat to a predetermined temperature to shrink.
- the elastic film is brought into close contact with the outer periphery of the hollow fiber membrane for each hollow fiber membrane.
- the state at this time is shown in FIG.
- a hollow fiber membrane bundle in which the filtration part interface on the side where the hollow fiber membrane is opened is coated with an elastic body made of a heat-shrinkable tube can be produced.
- a hollow fiber membrane or a hollow fiber membrane bundle is directly covered with the elastic body.
- “Direct coating” means that there is no other coating between the hollow fiber membrane or the bundle of hollow fiber membranes and the elastic body, and it is directly coated with the elastic body.
- damage to the hollow fiber membrane or the hollow fiber membrane bundle at the tip of the heat-shrinkable material can be prevented, and the hollow fiber membrane or the hollow fiber membrane bundle is removed after the heat shrinkage. It is preferable from the viewpoint of not excessively tightening.
- a hollow fiber membrane as shown in FIG. 4 (a) in addition to a type having no outer cylinder covering the outer periphery of the hollow fiber membrane bundle as shown in FIG.
- Modules that do not have an outer cylinder that covers the outer periphery of the bundle of hollow fiber membranes can increase the extent of the hollow fiber membrane when performing aeration to prevent the accumulation of suspended solids.
- a module of a type covered with a squirrel-cylinder cylinder or a cylinder having a through-hole is suitable for pressure filtration used by being housed in a pressure vessel. Since the hollow fiber membrane is covered with a cage cylinder or a cylinder having a through-hole, it is possible to effectively prevent the hollow fiber membrane from being damaged when stored in a pressurized container.
- a membrane separation activated sludge method as shown in FIG.
- the hollow fiber membrane module 100 is connected to the water collecting pipe 300 on the side where the hollow portion is opened, and the hollow fiber membrane module 100 is immersed in the water tank 200 released to the atmosphere and suction filtered.
- an air introduction tube membrane 400 for aeration is disposed below the hollow fiber membrane module.
- a pressurized type there is a type in which a hollow fiber membrane module is housed in a pressurized container and the inside of the container is pressurized and filtered. This pressurization type is suitable for filtering raw water with relatively little suspended matter in the raw water.
- FIG. 6 There is a type (rack type) in which one hollow fiber membrane module is accommodated in one pressurized container and a type (tank type) in which a plurality of hollow fiber membrane modules are accommodated in one container.
- FIG. 6 An example of the former is shown in FIG. 6, and an example of the latter is shown in FIG.
- the hollow fiber membrane module 100 is housed in a module case 700 and connected to the water collection pipe 300 and the raw water supply pipe 500 via a connection member.
- a nozzle On the upper side surface of the module case 700, there is provided a nozzle for discharging suspended substances out of the module.
- an air introduction pipe (not shown) is connected to a connection pipe at the lower part of the module to introduce air into each module and discharge suspended substances in the module.
- the some hollow fiber membrane module 100 is accommodated in the pressurized tank 800, and the side which the hollow part opened is connected to the water collection pipe 300 via a connection member.
- an air introduction tube 400 for aeration is disposed below each hollow fiber membrane module.
- the pressurized tank 800 is provided with a raw water supply port 510 and a concentrated water discharge port 610. By pressurizing the inside of the pressurized tank, raw water is filtered through a hollow fiber membrane, and the filtered water is collected through a water collection pipe 300.
- Example 1 An example of an immersion type hollow fiber membrane cartridge module in which a heat-shrinkable tube is used as an elastic body and a small bundle of hollow fiber membrane bundles is covered with an elastic body will be shown.
- the heat-shrinkable tube used is manufactured by EPDM (manufactured by West Nippon Electric Cable Co., Ltd .: trade name “Nishitube”: model name “NPM-65-20-1”), and has an inner diameter of 20 mm and a wall thickness before shrinkage. 1 mm, and the maximum shrinkage in the circumferential direction when heated to 100 ° C. is about 50%. Both ends of the hollow fiber membrane were fixed with a urethane resin by centrifugal casting to produce a cylindrical hollow fiber membrane module having a membrane area of 25 m 2 .
- the hollow fiber membrane was a microfiltration membrane made of polyvinylidene fluoride and having a pore diameter of 0.1 ⁇ m, and had an outer diameter of 1.2 mm, an inner diameter of 0.7 mm, and an effective length of 2000 mm.
- the hollow fiber membrane is divided into 0.83m 3 / bundle unit (110 pieces / bundle corresponds to 30 bundles), and heat shrinkable tubes (90mm from the end of the hollow fiber membrane bundle, tube length 50mm) are inserted into each bundle. Then, it was shrunk in a hot air dryer at 100 ° C. for 10 minutes. The hardness of the heat-shrinked tube was 70A.
- a flat perforated plate having a thickness of 10 mm that is arranged concentrically at intervals of 3 mm was used for each small bundle.
- the hollow fiber membrane was used in a state where a small bundle was used for the head side fixing layer and a perforated plate was used, and a single bundle was used for the skirt side fixing layer.
- a first fixed layer was formed by a centrifugal casting method using urethane resin (hardness after curing 50D). Then, urethane resin (hardness 65A after hardening) was inject
- the coated elastic body had a length of 20 mm at the shortest from the filtration part interface of the head-side second fixed layer, and the distance between the elastic bodies was 3 mm at the shortest. Further, the inclination angle of the head side second fixed layer interface was 3 degrees.
- the head-side fixing layer and the skirt-side fixing layer were connected and fixed using a pipe made of SUS304 having an outer diameter of 13 mm as a support material.
- the module was immersed in an activated sludge tank having a volume of 8 m 3 , a head cap and a pipe for filtered water were connected, and the module was fixed to the activated sludge tank.
- the distance between the elastic bodies after 3 months was 3 mm at the shortest, there was no change, no sludge was accumulated between the elastic bodies, and the protruding length of the interface of the filtration part was not changed in all the elastic bodies. Furthermore, yarn breakage did not occur.
- concentration MLSS of the activated sludge tank of the filtration operation period was 10000 mg / l on average, and the average temperature was 25 degreeC.
- the raw water for activated sludge municipal sewage having an average BOD of 150 mg / l and SS of 160 mg / l was used.
- a hollow fiber membrane module was produced in the same manner as in Example 1 except that only the head side did not form the second fixing layer with the second casting resin (65A hardness urethane resin).
- the elastic body in the hollow fiber membrane module had a length of 25 mm at the shortest from the filtration part interface of the head side first fixed layer, and the distance between the elastic bodies was 3 mm at the shortest. Further, the inclination angle of the head side first fixed layer interface was 2 degrees.
- the module was immersed in an activated sludge tank having a volume of 8 m 3 , a head cap and a pipe for filtered water were connected, and the module was fixed to the activated sludge tank.
- the distance between the elastic bodies after 3 months was 3 mm at the shortest, there was no change, no sludge was accumulated between the elastic bodies, and the protruding length of the interface of the filtration part was not changed in all the elastic bodies. Furthermore, yarn breakage did not occur.
- concentration MLSS of the activated sludge tank of the filtration operation period was 10000 mg / l on average, and the average temperature was 25 degreeC.
- Municipal sewage having an average BOD of 150 mg / l and SS of 160 mg / l was used as the raw water for activated sludge.
- a hollow fiber membrane module having the same structure as that of Example 1 was prepared except that the heat-shrinkable tube was not coated. The shortest distance between the hollow fiber membrane small bundles was 3 mm.
- the hollow fiber membrane module was immersed in the same activated sludge tank as in Example 1, and a filtration operation was performed.
- Suction filtration was performed with a suction pump so that the membrane filtration flow rate was 0.6 m 3 / membrane area m 2 / day while aeration of 6 Nm 3 / hr of air from the through hole in the skirt side fixed layer end surface.
- the transmembrane pressure difference at this time was ⁇ 15 to ⁇ 20 kPa in the initial stage, and ⁇ 30 to ⁇ 35 kPa after 3 months.
- the weight of the hollow fiber membrane module including the sludge adhering after 3 months increased by 800 g compared to the time of the start of filtration, and yarn breakage occurred in the vicinity of the head side second fixed layer.
- the distance between the small bundles of hollow fiber membranes after 3 months was 1.5 mm at the shortest, and was shorter than before the start of filtration. Furthermore, sludge adhered to the hollow fiber membrane small bundle, and it was confirmed that each small bundle was thicker than before the start of filtration. Furthermore, the position where the distance between the small bundles was maintained was 15 mm from the head-side fixed layer before the start of filtration, but after 3 months it was 3 mm, and the flow path was clearly reduced due to sludge accumulation. It was observed that it was in a state of being.
- concentration MLSS of the activated sludge tank of the filtration operation period was 10000 mg / l on average, and the average temperature was 25 degreeC.
- Municipal sewage having an average BOD of 150 mg / l and SS of 160 mg / l was used as the raw water for activated sludge.
- a hollow fiber membrane module having the same structure as in Example 2 was prepared except that the heat-shrinkable tube was not coated. The shortest distance between the hollow fiber membrane bundles was 3 mm.
- the hollow fiber membrane module was immersed in the same activated sludge tank as in Example 1, and a filtration operation was performed.
- Suction filtration was performed with a suction pump so that the membrane filtration flow rate was 0.6 m 3 / membrane area m 2 / day while aeration of 6 Nm 3 / hr of air from the through hole in the skirt side fixed layer end surface.
- the transmembrane pressure difference at this time was ⁇ 15 to ⁇ 20 kPa in the initial stage, and ⁇ 30 to ⁇ 35 kPa after 3 months.
- the weight of the hollow fiber membrane module including the sludge adhering after 3 months increased by 800 g compared to the time of the start of filtration, and yarn breakage occurred in the vicinity of the head side first fixed layer.
- the distance between the small bundles of hollow fiber membranes after 3 months was 1.5 mm at the shortest, which was shorter than before the start of operation. Furthermore, sludge adhered to the hollow fiber membrane small bundle, and it was confirmed that each small bundle was thicker than before the start of operation. Further, the position where the distance between the small bundles was maintained was 15 mm from the first fixed layer on the head side before the start of operation, but after 3 months it was 3 mm, and the flow path was clear due to sludge accumulation. It was observed that the condition was decreasing.
- concentration MLSS of the activated sludge tank of the filtration operation period was 10000 mg / l on average, and the average temperature was 25 degreeC.
- Municipal sewage having an average BOD of 150 mg / l and SS of 160 mg / l was used.
- 110 hollow fiber membranes as in Example 1 were made into a heat-shrinkable tube made of EPDM (manufactured by West Nippon Electric Cable Co., Ltd .: trade name “Nishitube”: model name “NPM-65-20-1”, length 50 mm). Inserted and shrunk by heating to 100 ° C. for 10 minutes in an oven.
- the length of the tube outer periphery was measured. This length is L1.
- the tip of one hollow fiber membrane on the outer periphery of the hollow fiber membrane bundle was tied to a spring balance, and the spring balance was pulled in a direction perpendicular to the length direction of the tube to apply a load of 400 g.
- the load was released after 10 seconds.
- the tip of the tube was deformed in close contact with the hollow fiber membrane, and when the load was released, the tube immediately returned to its original state and maintained in close contact with the hollow fiber membrane. In addition, no damage was observed in the portion of the hollow fiber membrane that hit the tube tip.
- the hollow fiber membrane when the hollow fiber membrane was pulled in the length direction of the tube, the hollow fiber membrane could be pulled out from the tube. And after extracting all the hollow fiber membranes from the inside of a tube, the length of the outer periphery of this tube was measured. When this length was taken as L2, L2 / L1 was calculated to be 1.0. From the above, it was found that the hollow fiber membrane received almost no tightening force by the tube after heat shrinkage. Then, when the said tube was cut
- Example 4 The same operation as in Example 3 was performed using a polyolefin heat-shrinkable tube (manufactured by Sumitomo Electric Fine Polymer Co., Ltd .: trade name “Sumitube” SUMI-FZ-25).
- the heat-shrinkable tube has an inner diameter of 26 mm and a wall thickness of 0.4 mm before shrinkage, and a maximum shrinkage rate in the circumferential direction when heated to 100 ° C. is about 47%.
- a load of 400 g was applied, the tip of the tube was deformed in close contact with the hollow fiber membrane, and when the load was released, it immediately returned to its original state and kept in close contact with the hollow fiber membrane. .
- Example 5 The same operation as in Example 3 was performed using a heat-shrinkable tube made of soft vinyl chloride (manufactured by Mitsubishi Plastics, Inc., trade name “Hishitube” I-15-0.5).
- the heat-shrinkable tube has an inner diameter of 22 mm and a wall thickness of 0.5 mm before shrinkage, and a maximum shrinkage rate in the circumferential direction when heated to 100 ° C. is about 37%.
- a load of 400 g was applied, the tip of the tube was deformed in close contact with the hollow fiber membrane.
- the load was released, the deformation of the tube did not return immediately and took about 1 hour to return.
- the part of the hollow fiber membrane that hit the tube tip was crushed and recessed. Further, when the hollow fiber membrane was pulled in the length direction of the tube, the hollow fiber membrane could be pulled out from the inside of the tube.
- Example 6 A drop test was performed on the assumption that an external impact was applied to the coated portion of the hollow fiber membrane bundle.
- a hollow fiber membrane module produced in the same manner as in Example 1 was placed on the floor sideways, and a 1 kg iron pipe was dropped from a height of 1 m onto the tube portion of the module. The dropping operation was repeated three times.
- Example 7 An example of an immersion type hollow fiber membrane cartridge module in which a heat-shrinkable film is used as an elastic body and an elastic body is coated for each hollow fiber membrane will be shown.
- the heat-shrinkable film used was a polyethylene porous film obtained by uniaxial stretching described in Example 9 of JP-A-62-58813, and the porosity was 60%, the film thickness was 90 ⁇ m, and the film was heated to 120 ° C. The maximum shrinkage in the stretching direction is 70%.
- the hollow fiber membrane is a microfiltration membrane made of polyvinylidene fluoride and having an outer diameter of 1.7 mm, an inner diameter of 0.9 mm, and a pore diameter of 0.1 ⁇ m.
- a heat-shrinkable film having a width of 50 mm and a length of 800 mm is placed on the tray, and 100 of the hollow fiber membranes are aligned in parallel at a pitch of 7 mm, so that 20 to 70 mm from the end of the hollow fiber membrane is 20 to 70 mm. It was placed so that it was located above.
- another heat-shrinkable film was placed on the hollow fiber membrane at a position corresponding to the heat-shrinkable film.
- the heat shrinkable film was heated and shrunk in a state where both ends in the length direction of the heat shrinkable film were gripped so that the shrinkage rate of the heat shrinkable film was the same as that when the above operation was performed.
- the hardness after shrinkage was measured and found to be 40A.
- the hardness was measured by stacking a plurality of the films so that the thickness was 10 mm.
- the above-mentioned five sheet-like hollow fiber membrane bundles are arranged in parallel with a spacer having a thickness of 2 mm, and the first casting resin (hardness after curing is 50D, mixing initial viscosity is 600 mPa ⁇
- the first fixed layer was formed by a stationary casting method using s urethane resin).
- a second casting resin (a urethane resin having a hardness after curing of 65 A and a mixed initial viscosity of 2200 mPa ⁇ s) is used to form a 10 mm thick first on the first fixed layer by a stationary casting method.
- Two fixed layers were formed.
- the fixed layer has a width of 30 mm and a length of 400 mm, and the total thickness of the first fixed layer and the second fixed layer is 40 mm.
- the ends of both fixing parts were cut to open the hollow part of the hollow fiber membrane.
- a cap having a nozzle for circulating filtered water was put on both fixed layer portions and adhered.
- This module has an effective length of 1.5 m and a membrane area of 4 m2. And the protrusion length of the part which has coat
- Example 6 The submerged hollow fiber membrane cartridge modules produced as described above were fixed in a state of being arranged in parallel at a pitch of 5 cm, and the cap nozzle of each module was connected to the water collecting pipe of the filtration device. It was immersed in the same activated sludge tank. Further, a diffuser tube was provided in a gap between the modules and below the lower end of the module. In the present embodiment, “pitch” means the distance between the centers of the hollow fiber membranes or modules. Suction filtration was performed for 3 months under the same conditions as in Example 1.
- the transmembrane pressure difference during this period was -10 to -15 kPa, and the operation was extremely stable. Furthermore, no sludge was observed on the hollow fiber membrane after 3 months, and the total weight of the six hollow fiber membrane modules including the sludge was increased by 200 g compared to the time when filtration was started. And there was no sludge accumulation between elastic bodies. Moreover, the distance between adjacent elastic bodies was kept at 2 mm, there was no change before and after the filtration operation, and the protruding length of the filtration part interface was not changed in all the elastic bodies. And there was no yarn breakage in the vicinity of the fixed layers at both ends. When the part covered with the elastic body was disassembled and the inside was observed, there was a coating layer formed on the outer surface of the hollow fiber membrane by scooping up the first casting resin at the fused part. It was located between the first fixed layer and the second fixed layer.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Water Supply & Treatment (AREA)
- Life Sciences & Earth Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Hydrology & Water Resources (AREA)
- Environmental & Geological Engineering (AREA)
- Organic Chemistry (AREA)
- Biodiversity & Conservation Biology (AREA)
- Microbiology (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
Abstract
Description
また、連続曝気によって生じる激しい気液混相流の作用によって固定部界面付近で中空糸膜が破断してしまうことがあり、ろ過水に原水が混入してろ過水の水質を低下させてしまう問題があった。従来、固定部界面付近での中空糸膜の破断を抑制するために、固定部界面の上に柔軟な樹脂層を設けることが行われていた(例えば、特許文献1参照)。しかしながら、このような方法によってもモジュールの取り扱い時や長期間の運転において中空糸膜が破断してしまうことがあり、更なる改良が必要であった。
(1)複数本の中空糸膜から成る1つ又は複数の中空糸膜束が両端部において注型用樹脂で固定された固定層を有し、片方又は両方の端部において中空糸膜の中空部が開口した中空糸膜モジュールであって、中空部が開口した側の少なくとも一方の固定層において該中空糸膜束が複数の小束に分割されており、該固定層のろ過部界面付近において各小束の外周が弾性体で被覆されている中空糸膜モジュール。
(2)複数本の中空糸膜が両端部において注型用樹脂で固定された固定層を有し、片方又は両方の端部において中空糸膜の中空部が開口した中空糸膜モジュールであって、中空部が開口した側の少なくとも一方の固定層のろ過部界面付近において各中空糸膜の外周が弾性体で被覆されている中空糸膜モジュール。
(3)前記弾性体の一部が固定層に埋め込まれ、かつ弾性体の残りの部分は固定層のろ過部界面から突出している(1)又は(2)記載の中空糸膜モジュール。
(4)前記弾性体のろ過部界面から突出している長さが5mm以上、100mm以下である(1)~(3)のいずれか1項に記載の中空糸膜モジュール。
(5)前記弾性体のろ過部界面から突出している部分において、該弾性体が内包する中空糸膜束の外周と該弾性体の内表面とが密着している(4)に記載の中空糸膜モジュール。
(6)ろ過部界面から突出している部分において最も近接する弾性体同士の距離が2mm以上、80mm以下である(1)~(5)のいずれか1項に記載の中空糸膜モジュール。
(7)前記弾性体を有する側の固定層のろ過部界面が中空糸膜束の糸長方向に対して傾斜している(1)~(6)のいずれか1項に記載の中空糸膜モジュール。
(8)前記弾性体外における固定層のろ過部界面の位置が、該弾性体内において中空糸膜外表面を被覆している注型用樹脂の先端位置よりもモジュール中央側である(3)~(7)のいずれか1項に記載の中空糸膜モジュール。
(9)前記弾性体がチューブ状である(1)~(8)のいずれか1項に記載の中空糸膜モジュール。
(10)前記中空糸膜或いは中空糸膜束が前記弾性体に直接被覆されてなる(1)~(9)のいずれか1項に記載の中空糸膜モジュール。
(11)前記弾性体が熱収縮性材料からなる(1)~(10)のいずれか1項に記載の中空糸膜モジュール。
(12)前記熱収縮性材料の熱収縮後の硬度が40A~90Aである(11)に記載の中空糸膜モジュール。
(13)中空糸膜束外周を覆う外筒を有さない(1)~(12)のいずれか1項に記載の中空糸膜モジュール。
(14)(1)~(13)のいずれか1項に記載の中空糸膜モジュールを用いた浸漬型中空糸膜カートリッジモジュール。
(15)(1)~(13)のいずれか1項に記載の中空糸膜モジュールを用いた加圧型中空糸膜カートリッジモジュール。
なお、本明細書において、「中空糸膜モジュール」とは、中空糸膜と中空糸膜端部を固定した固定部とを含み、ろ過装置に装着して使用されるろ過用エレメントを意味している。また、「浸漬型中空糸膜カートリッジモジュール」とは、原水を満たした槽に浸漬した状態で吸引してろ過を行うろ過装置に装着して用いる中空糸膜モジュールを意味している。さらに、「加圧型中空糸膜カートリッジモジュール」とは、加圧用容器内に挿入した状態でろ過装置に装着し、加圧してろ過を行う中空糸膜モジュールを意味している。加圧用容器としては、一つの容器に一つのモジュールを挿入するタイプ(ラック式)と一つの容器に複数本を挿入するタイプ(タンク式)とがある。
以下、図1により本発明に係る中空糸膜を用いた浸漬型カートリッジモジュールの実施形態の例を説明する。
中空糸膜のうち、両端の固定層に含まれない部分をろ過部12と称し、ヘッド側の固定層のうち、ろ過部側に面した部分をヘッド側固定層のろ過部界面、スカート側の固定層のうち、ろ過部に面した部分をスカート側固定層のろ過部界面と定義する。ヘッド側の固定層は、単一の層であってもよいし、複数の層から成っていてもよい。図1に示す例のような2つの層から成る場合には、ろ過部12側の層をヘッド側第2固定層、端面6側の層をヘッド側第1固定層と記す。また、スカート側の固定層も同様に、単一の層であってもよいし、複数の層から成っていてもよい。図1に示す例のような2つの層から成る場合には、ろ過部12側の層をスカート側第2固定層、端面7側の層をスカート側第1固定層と記す。そして、ヘッド側第1固定層4とヘッド側第2固定層13全体を単に「ヘッド側固定層」と記し、スカート側第1固定層5とスカート側第2固定層14全体を単に「スカート側固定層」と記す。また、ヘッド側第2固定層のろ過部側に面した部分をヘッド側固定層のろ過部界面の位置13’、スカート側第2固定層のろ過部に面した部分をスカート側固定層のろ過部界面の位置14’と記す。
ヘッド側第1固定層に接してそのろ過部側に第2の固定層(ヘッド側第2固定層13)を設けるのが好ましい。該ヘッド側第2固定層の樹脂は、前記のヘッド側第1固定層と同じ樹脂でもよいが、ヘッド側第2固定層界面における応力集中を低減する観点からより柔軟な樹脂であることが好ましい。該樹脂の硬度は、20A以上、90A以下であることが好ましく、40A以上、80A以下であることがより好ましい。
スカート側固定層のろ過部界面の樹脂(図1におけるスカート側第2固定層14の樹脂)は、中空糸膜が振動した際に生じる応力を緩和して中空糸膜の破断を防止する観点から、柔軟な材料であることが望ましい。該樹脂の硬度が20A以上、90A以下であることが好ましく、より好ましくは40A以上、80A以下である。20A以上であれば、機械的強度が十分であり、長期にわたり形状を保つことができる。90A以下であれば、中空糸膜が揺動した際にろ過部界面に生じる応力を効果的に緩和でき、中空糸膜が破断する可能性が低くなる。
なお、ヘッド側或いはスカート側において、比較的高い硬度の樹脂層(第1固定層)と、それに接して低い硬度の樹脂層(第2固定層)をろ過部側に設ける場合、例えば、硬度が高いエポキシ樹脂で第1固定層を形成した後にシリコン樹脂層を前記エポキシ層のろ過部側に形成させる方法や、硬度が高いウレタン樹脂で第1固定層を形成した後に硬度が低いウレタン樹脂層を前記第1固定層のろ過部側に形成させる方法が取り得る。製造における生産性の観点から、後者の方法が特に好適である。
本発明における弾性体15とは、力を加えると変形するが、徐荷すれば元の寸法に戻る性質を示す高分子物質である。該弾性体としては、硬度が20Aから90Aであることが好ましい。(硬度の測定方法はJISK6253、ISO7619に準じる。)20A以上であれば、機械的強度が十分であり、長期にわたり形状を保つことができ、90A以下であれば、中空糸膜を破損する可能性が低い。膜分離活性汚泥法に用いるモジュールの場合には、長時間激しい気液混相流に曝されるので、40A~90Aであることが特に好ましい。
前記の弾性体は、一部が固定層に埋め込まれ、かつ、残りの部分が固定層のろ過部界面から突出していることが好ましい。このようにすることによって、中空糸膜の固定層界面部分と前記のコーティング部やその先端部分での中空糸膜の破断を効果的に防止できる。
前記の弾性体が突出している部分の長さは、5mm以上、100mm以下であることが好ましい。5mm以上であれば、多量の懸濁物質を含んだ気液混相流の流路を保持でき、長期間の安定運転が可能となる。また100mm以下であれば、ろ過部の中空糸膜面積の減少割合が少なく、ろ過性能への影響が小さい。特に、10mm以上、60mm以下が好適である。この範囲であれば、前記のコーティング部が確実に弾性体内に納まり効果的に中空糸膜の破断を防止できると共に、流路の保持による懸濁物質の蓄積防止効果が発現する。
なお、固定層のろ過部界面が傾斜している場合には、固定層から露出している部分の長さが一つの弾性体の円周上の位置によって異なることがあるが、この場合には最も短い長さを「突出長さ」とする。そして、一つの中空糸膜モジュールにおいて複数の弾性体が在る場合には、各々の弾性体の突出長さが前記の範囲であることが好ましい。図2に示す第2固定層が傾斜している例で説明する。図2における右側に記載の弾性体15においては、第2固定層から露出している部分の長さが図の右側において最も短くなっている。この弾性体の場合、図の右側の露出部分18を該弾性体の「突出長さ」とする。
前記の弾性体は、ろ過部界面から突出している部分において、該弾性体が内包する中空糸膜又は中空糸膜束の外周と該弾性体の内表面とが密着していることが好ましい。密着していない場合には、気液混相流の暴露されたときに中空糸膜が激しく振動するので、弾性体内表面や弾性体の先端部内縁と中空糸膜とが擦れて中空糸膜が損傷することがある。これに対して密着した状態であれば、中空糸膜が弾性体内で動ことが無いので中空糸膜が損傷することが無い。
前記の傾斜は、注型用樹脂で固定層を形成させる際に次の方法で設けることができる。(1)遠心注型法であれは、遠心力と重力とのバランスで傾斜角が決まる。一方、遠心力はモジュールの固定層の位置(回転半径)と回転速度(RPM)とで決まる。従って、モジュールの固定層の位置に応じて回転速度を適宜設定することにより、傾斜角を設定できる。(2)静置注型法であれば、中空糸膜を鉛直方向から傾斜をつけた状態で固定することによって設けることができる。
前記の弾性体外における固定層のろ過部界面の位置は、該弾性体内において中空糸膜外表面を被覆している注型用樹脂の先端位置よりもモジュール中央側であることが好ましい。図3を用いて説明する。中空糸膜21の束の外周を弾性体15で被覆し、第1注型用樹脂で第1固定層4を形成する際に、中空糸膜同士の間隙に第1注型用樹脂が這い上がりコーティング層が形成される。「弾性体外における固定層のろ過部界面の位置が、該弾性体内において中空糸膜外表面を被覆している注型用樹脂の先端位置よりもモジュール中央側である」とは、前記コーティング層の最もモジュール中央側にある先端31の位置が、弾性体15の外側に形成される第2固定層13のろ過部界面位置のうちヘッド側第1固定層に近い側(図3では右側)のろ過部界面位置13’よりも第1固定層側に位置することを意味している。このような状態にすることによって、中空糸膜の長さ方向に対して直角の方向から弾性体に力がかかった場合でも、弾性体内部にある中空糸膜外表面を被覆している注型用樹脂の部分(コーティング層の部分)には力が加わらないので、該部分で中空糸膜が破断することが起こらない。
この場合、ヘッド側第1固定層とヘッド側第2固定層で用いる注型用樹脂は同じ材料でもよいが、ヘッド側第2固定層界面における弾性体への応力集中を低減する観点から第2固定層の注型用樹脂は、硬度がより低い(即ち、より柔軟な)材料を用いることがより好ましい。第2固定層の注型用樹脂の硬度は、20A以上、90A以下であることが好ましく、40A以上、80A以下であることがより好ましい。
該弾性体の材質は、原水の特性やろ過運転時に使用する薬液に対する耐久性を考慮して選択される。例えば、エチレンプロピレンゴム(EPDM)、ニトリルブタジエンゴム等のポリオレフィン系エラストマー、ポリウレタン系エラストマー、ポリアミド系エラストマー、ポリエステル系エラストマー、ポリエチレン等のオレフィン系樹脂、塩化ビニル系樹脂、フッ素系樹脂、シリコン系樹脂等が挙げられる。これらの中でも、EPDM等のポリオレフィン系エラストマーやオレフィン系樹脂、シリコン系樹脂が柔軟性と耐薬品性との観点から特に好ましい。
また、前記の弾性体は、均質なものでもよいし、内部に独立気泡を有する発泡体や気泡シート、内部に連続気孔を有する多孔体であってもよい。
なお、弾性体とは別体の熱収縮性材料を用い、中空糸膜或いは中空糸膜束を弾性体で囲んだ後にその外周を熱収縮性材料で囲み、熱収縮性材料を加熱して収縮させることにより、中空糸膜或いは中空糸膜束を弾性体で被覆する方法も取り得る。しかしながら、熱収縮性材料が加熱によって収縮する際の収縮力が弱いので、該収縮力によって弾性体を変形させて中空糸膜或いは中空糸膜束外周に密着させることが困難である。そのために弾性体の種類が極めて限定され、例えば、ウレタン製スポンジ等の、空隙率が70%以上の多孔体が使用される。このような変形し易い弾性体を用いた場合には、熱収縮性材料の収縮後においても該弾性体内で中空糸膜が動く場合がある。このような中空糸膜モジュールを膜分離活性汚泥法のような曝気による激しい膜の振動が起こる状態で使用すると、弾性体内で中空糸膜が擦れて損傷してしまうことがあるので、使用する弾性体の変形し易さに応じて弾性体の厚みや熱収縮性材料の種類や寸法を選択するのが重要になる。また、弾性体と熱収縮性材料とを各々所定の位置に固定する必要があり、作業が繁雑になる。これに対して、弾性体自身が熱収縮性材料から成る場合には前記の2つの不都合な点が解消される。
弾性体が熱収縮性材料から成る場合には、熱収縮後の硬度が20Aから90Aであることが好ましい。(硬度の測定方法はJISK6253、ISO7619に準じる。)20A以上であれば、機械的強度が十分であり、長期にわたり形状を保つことができ、90A以下であれば、中空糸膜を破損する可能性が低い。膜分離活性汚泥法に用いるモジュールの場合には、長時間激しい気液混相流に曝されるので、40A~90Aであることが特に好ましい。熱収縮性材料としては、チューブ状やフィルム或いはシート状(以後、「フィルム或いはシート状」を単に「フィルム」と記す)等の公知の材料が使用できるが、原水の特性やろ過運転時に使用する薬液に対する耐久性を考慮して選択される。例えば、EPDM系熱収縮性チューブ、オレフィン系熱収縮性チューブ、シリコーン系熱収縮性チューブ、PVC系熱収縮性チューブ、ポリウレタン系熱収縮性チューブ等の熱収縮性チューブ材料や、オレフィン系熱収縮性フィルム、ポリウレタン系熱収縮性フィルム、ポリエステル系熱収縮性フィルム等の熱収縮性フィルムが挙げられる。これらの中でも、EPDM系熱収縮性チューブ、オレフィン系熱収縮性チューブ、シリコーン系熱収縮性チューブ、オレフィン系熱収縮性フィルムが、柔軟性と耐薬品性の観点から好ましい。また、1モジュール当たり百本以下の中空糸膜束を有するモジュールの製造においては、中空糸膜束の挿入性が優れるので前記の熱収縮性チューブが好適である。特に、EPDM系熱収縮性チューブは固定部を形成するエポキシ樹脂やウレタン樹脂等の注型用樹脂との接着性が良好であるので好ましい。
前記の熱収縮性材料は、50℃~150℃の範囲の温度に加熱することによって収縮するものが好ましい。特に、50℃~120℃の範囲の温度に加熱することによって収縮するものが好適である。この範囲の温度であれば、中空糸膜の特性に影響することがない。
前記の熱収縮性チューブの内径(収縮させる前の内径)は、被覆する中空糸膜又は中空糸膜束の外径と熱収縮性チューブの最大熱収縮率を勘案して決めるのが良い。即ち、熱収縮性チューブの内径は被覆する中空糸膜又は中空糸膜束の外径よりも大きい方が挿入作業が容易であるので好ましい。一方、熱収縮性チューブを収縮させた後には被覆した中空糸膜或いは中空糸膜束の外周に密着するように、(中空糸膜或いは中空糸膜束の外径)≧(収縮させる前の内径)×(1-(最大収縮率)/100)となるように設定するのが好ましい。具体的には、収縮させる前の内径が中空糸膜又は中空糸膜束の外径に対して1.05倍以上、3倍以下であることが好ましく、1.1倍以上、2倍以下であることがさらに好ましい。
以下に、熱収縮性材料を用いて中空糸膜又は中空糸膜束を被覆する方法の例を示す。
熱収縮性を有する弾性チューブ(以下、単に弾性チューブと記す)で中空糸膜束を被覆する場合には、以下のようにして行うことができる。
(1)端部を加熱融着して中空部を閉塞させた中空糸膜を所定本数収束して中空糸膜束を作製する。(2)該中空糸膜束を弾性チューブ内に挿入し、該チューブを所定の位置になるようにしてトレイに置く。(3)該トレイをオーブンに入れ、所定の温度に加熱して収縮させる。以上の操作によって、中空糸膜束の所定の位置に弾性体が密着した状態になる。(4)前記のようにして被覆した中空糸膜束を、多孔板等を用いてモジュールヘッド部材内における所定位置に配置する。(5)前記ヘッド部材内に注型用樹脂(第1注型用樹脂)を注入して中空糸膜同士、中空糸膜、前記チューブ及び前記ヘッド内壁とを固定する。(6)前記の注型用樹脂が流動性を失った後、前記注型用樹脂の界面上に再度注型用樹脂(第2注型用樹脂)を前記チューブとヘッド内壁間に注入して固化させる。(7)中空糸膜の端部側を前記ヘッド部材ごと切断して、中空糸膜の中空部を開口させる。これによって、中空糸膜が開口した側のろ過部界面を熱収縮性チューブから成る弾性体で被覆した中空糸膜束が作製できる。なお、場合によって、前記(6)の工程は省略することができる。
次に、熱収縮性を有する弾性フィルムを用いて(以下、単に弾性フィルムと記す)中空糸膜1本ごとに被覆する場合には、以下のようにして行うことができる。
(1)端部を加熱融着して中空部を閉塞させた中空糸膜を作製する。(2)トレイの上に所定の幅と長さを有する弾性フィルム50を置く。(3)所定本数の中空糸膜21を所定の間隔で平行に引きそろえ、中空糸膜21の所定部分が前記フィルム50の上に位置するように置く。このときの状態を図8(a)に示す。(4)別の弾性フィルム50’を、前記中空糸膜21の上の前記弾性フィルム50に対応する位置に被せて置く。(5)各中空糸膜の中間部分に、前記2つの弾性フィルム両方の外側表面にヒーターを当てて2つの弾性フィルム50及び50’を加熱融着し、融着部51を形成する。これによって、中空糸膜1本ごとに周囲が弾性フィルム50及び50’によって囲われた状態になる。このときの状態を図8(b)に示す。(6)トレイごとオーブンに入れ、所定温度に加熱して収縮させる。以上の操作によって、中空糸膜1本ごとに弾性フィルムが中空糸膜外周に密着した状態になる。このときの状態を図8(c)に示す。(7)以後、前記弾性チューブの場合と同様にして、中空糸膜が開口した側のろ過部界面を熱収縮性チューブから成る弾性体で被覆した中空糸膜束が作製できる。
以上のように、熱収縮性材料を用いて本発明の中空糸膜モジュールを作製する場合、注型工程の前に加熱処理を行って収縮させる工程を行うのが好ましい。このようにすることによって、固定層のろ過部界面及びろ過側付近において中空糸膜又は中空糸膜束の外周に弾性体が密着した状態を作り出すことができ、効果的に中空糸膜の損傷を防止できる。また、注型工程に先立って収縮させる工程を行うことにより、注型工程における中空糸膜或いは中空糸膜束を所定の位置に配置して所定の間隔を設けることがより簡易に行える。
また、中空糸膜又は中空糸膜束が前記弾性体によって直接被覆されてなることが好ましい。「直接被覆」とは、中空糸膜又は中空糸膜束と弾性体との間に他の被覆物がなく直に弾性体によって被覆されていることをいう。特に、前記熱収縮性材料によって直接被覆されている場合、熱収縮性材料の先端部での中空糸膜又は中空糸膜束の損傷を防止でき、熱収縮後に中空糸膜又は中空糸膜束を過度に締め付けない観点から好ましい。
本発明の中空糸膜モジュールの実施形態としては、図1に示すような中空糸膜束の外周を覆う外筒を有さないタイプの他に、図4(a)に示すような中空糸膜束の外周をかご状円筒110で覆ったタイプや、図4(b)及び図4(c)に示すような中空糸膜束の外周を、壁面に貫通口121を有する円筒120で覆ったタイプも可能である。中空糸膜束の外周を覆う外筒を有さないタイプのモジュールは、懸濁物質の蓄積を防止するための曝気を行う際に中空糸膜の広がりを大きくとることが可能であって、懸濁物質の蓄積防止を効果的に行えるので膜分離活性汚泥法での使用に好適である。一方、かご状円筒や貫通口を有する円筒で覆ったタイプのモジュールは、加圧容器に収納して使用する加圧ろ過に好適である。かご状円筒や貫通口を有する円筒で中空糸膜が覆われているので、加圧容器に収納する際に中空糸膜が損傷してしまうことを効果的に防止できる。
本発明の中空糸膜モジュールを利用形態としては、図5に示すような膜分離活性汚泥法がある。即ち、中空糸膜モジュール100の中空部が開口した側を集水管300に接続し、大気解放された水槽200の中に中空糸膜モジュール100を浸漬して吸引ろ過するタイプである。このタイプにおいては、中空糸膜モジュールの下部に曝気するための空気導入管膜400が配置される。
また、他の利用形態として、加圧容器に中空糸膜モジュールを収納して、該容器内を加圧してろ過を行うタイプ(以下、加圧型と記す)がある。この加圧型は、原水中の懸濁物質が比較的少ない原水をろ過するのに適している。1つの加圧容器に1つの中空糸膜モジュールを収納して使用するタイプ(ラック式)と1つの容器に複数の中空糸膜モジュールを収納して使用するタイプ(タンク式)とがある。前者の例を図6に、後者の例を図7に示す。
図6において、中空糸膜モジュール100は、モジュールケース700内に収納され、接続部材を介して集水管300と原水供給管500とに接続される。モジュールケース700の上部側面には、懸濁物質をモジュール外に排出するためのノズルが設けられているる。このタイプにおいては、モジュール下部の接続配管に空気導入管を接続して(図示せず)各モジュールに空気を導入し、モジュール内の懸濁物質を排出することができる。また、図7においては、複数の中空糸膜モジュール100が加圧タンク800内に収納され、中空部が開口した側が接続部材を介して集水管300に接続される。また、各中空糸膜モジュールの下部には、曝気するための空気導入管400が配置される。そして、加圧タンク800には、原水供給口510と濃縮水排出口610とが設けられている。該加圧タンク内を加圧することによって原水が中空糸膜でろ過され、該ろ過水は集水管300を介して回収される。
本実施例及び比較例、参考例における硬度は、デュロメーター(西東京精密(株)製:型式名『Durometer WR-202NA』)を用いて測定した。
(実施例1)
弾性体として熱収縮性チューブを用い、中空糸膜束の小束に弾性体を被覆した浸漬型中空糸膜カートリッジモジュールの例を示す。
使用した熱収縮性チューブは、EPDM製(西日本電線(株)製:商品名『ニシチューブ』:型式名『NPM-65-20-1』)であり、収縮前において内径が20mm、肉厚が1mmであり、100℃に加熱したときの円周方向の最大収縮率が約50%のものである。
中空糸膜の両端をウレタン樹脂で遠心注型法により固定し、膜面積25m2の円筒型の中空糸膜モジュールを作製した。中空糸膜は、ポリフッ化ビニリデン製の細孔径0.1μmの精密ろ過膜で、外径1.2mm、内径0.7mm、有効長2000mmであった。
(実施例2)
(比較例1)
熱収縮性チューブを被覆しなかった以外は実施例1と全く同じ構造の中空糸膜モジュールを準備した。中空糸膜小束間の最短距離は3mmであった。
(比較例2)
熱収縮性チューブを被覆しなかった以外は実施例2と全く同じ構造の中空糸膜モジュールを準備した。中空糸膜小束間は、最短で3mmであった。
(実施例3)
実施例1と同じ中空糸膜110本を、EPDM製熱収縮性チューブ(西日本電線(株)製:商品名『ニシチューブ』:型式名『NPM-65-20-1』、長さ50mm)に挿入し、オーブン中で10分間100℃に加熱して収縮させた。
室内に24時間放置した後、前記のチューブ外周の長さを測定した。この長さをL1とする。
次いで、中空糸膜束外周の中空糸膜1本の先端をバネ秤に結び付け、チューブの長さ方向に対して垂直方向にバネ秤を引っ張って400gの荷重をかけた。10秒後に荷重を解放した。このとき、荷重をかけた際には、該チューブの先端は中空糸膜と密着した状態で変形し、荷重を解放したときには、直ちに元に戻って中空糸膜と密着した状態を保持した。また、チューブ先端に当たった中空糸膜の部位には何ら損傷は観察されなかった。
次いで、チューブの長さ方向に中空糸膜を引っ張ったところ、チューブ内から中空糸膜を引き抜くことができた。
そして、全ての中空糸膜をチューブ内から抜き出した後に、該チューブの外周の長さを測定した。この長さをL2として、L2/L1を計算したところ、1.0であった。以上のことから、熱収縮後において中空糸膜はチューブによる締め付け力を殆ど受けていないことが分かった。
その後、前記のチューブを長さ方向に切断して開き、複数枚重ねて厚みが10mm以上である状態で硬度を測定したところ、70Aであった。
(実施例4)
ポリオレフィン製熱収縮性チューブ(住友電工ファインポリマー(株)製:商品名『スミチューブ』SUMI-FZ-25)を用いて実施例3と同様な操作を行った。前記の熱収縮性チューブは、収縮前において内径が26mm、肉厚が0.4mmであり、100℃に加熱したときの円周方向の最大収縮率が約47%のものである。
その結果、400gの荷重を掛けた際には、該チューブの先端は中空糸膜と密着した状態で変形し、荷重を解放したときには、直ちに元に戻って中空糸膜と密着した状態を保持した。また、チューブ先端に当たった中空糸膜の部位には損傷は観察されなかった。
また、チューブの長さ方向に中空糸膜を引っ張ったところ、チューブ内から中空糸膜を引き抜くことができた。そして、全ての中空糸膜をチューブ内から抜き出してL2/L1を求めたところ、1.0であった。以上のことから、熱収縮後において中空糸膜はチューブによる締め付け力を殆ど受けていないことが分かった。
そして、硬度は85Aであった。
(実施例5)
軟質塩化ビニル製熱収縮性チューブ(三菱樹脂(株)製:商品名『ヒシチューブ』I-15-0.5)を用いて実施例3と同様な操作を行った。前記の熱収縮性チューブは、収縮前において内径が22mm、肉厚が0.5mmであり、100℃に加熱したときの円周方向の最大収縮率が約37%のものである。
その結果、400gの荷重を掛けた際には、該チューブの先端は中空糸膜と密着した状態で変形した。一方、荷重を解放したときには、チューブの変形が直ぐには元に戻らず、元に戻るのに約1時間を要した。また、チューブ先端に当たった中空糸膜の部位は、潰れて凹んでいた。
また、チューブの長さ方向に中空糸膜を引っ張ったところ、チューブ内から中空糸膜を引き抜くことができた。そして、全ての中空糸膜をチューブ内から抜き出してL2/L1を求めたところ、1.0であった。以上のことから、熱収縮後において中空糸膜はチューブによる締め付け力を殆ど受けていないことが分かった。
そして、硬度は92Aであった。
(実施例6)
中空糸膜束の被覆部分に外部から衝撃が加わった場合を想定した落下試験を行った。
実施例1と同様にして作製した中空糸膜モジュールを横にして床面に置き、該モジュールのチューブ部分に1kgの鉄製パイプを高さ1mの位置から落下させた。落下させる操作を3回繰り返した。その後、中空糸膜モジュールを水中に浸漬した状態で中空部から空気圧100kPaを印加してリークの有無を観察したところ、中空糸膜からのエアーリークは全く無く膜の切断が起こっていないことが確認できた。
次いで、各小束を切り出してチューブ内を詳細に観察した。チューブ内の中空糸膜に損傷は観察されなかった。また、中空糸膜を被覆している注型用樹脂のコーティング層の先端は、30個全てのチューブ内において第2固定層のろ過部界面よりも第1固定層側に位置していた。
(参考例1)
実施例2と同様にして作製した中空糸膜モジュールを用いて、実施例6と同様にして落下試験を行った。
落下操作を行った後、中空糸膜モジュールを水中に浸漬した状態で中空部から空気圧100kPaを印加したところ、チューブ内から気泡が流出するのが観察された。
気泡が流出したチューブの小束を切り出して、チューブ内を詳細に観察した。その結果、中空糸膜を被覆している注型用樹脂のコーティング部分で中空糸膜が破断していた。そして、該コーティング部の先端の位置が、第1固定層のろ過部界面よりもモジュール中央側に位置していた。
以上の実施例6と参考例1との比較により、弾性体外における固定層のろ過部界面の位置が、該弾性体内において中空糸膜外表面を被覆している注型用樹脂の先端位置よりもモジュール中央側である場合には、モジュール外部から衝撃力が加わったときでも中空糸膜を損傷することが無いことが明らかである。
(実施例7)
弾性体として熱収縮性フィルムを用い、中空糸膜1本ごとに弾性体を被覆した浸漬型中空糸膜カートリッジモジュールの例を示す。
使用した熱収縮性フィルムは、特開昭62-58813の実施例9に記載の一軸延伸して得たポリエチレン製多孔膜であり、空隙率が60%、膜厚が90μm、120℃に加熱したときの延伸方向の最大収縮率が70%のものである。
中空糸膜は、ポリフッ化ビニリデン製であり、外径1.7mm、内径0.9mm、細孔径0.1μmの精密ろ過膜である。
先ず、端部を加熱融着して中空部を閉塞させた。トレイの上に幅50mm、長さ800mmの熱収縮性フィルムを置き、前記の中空糸膜100本を7mmのピッチで平行に引きそろえて、中空糸膜の端部から20~70mmが前記フィルムの上に位置するように置いた。次いで、別の熱収縮性フィルムを、前記中空糸膜の上の前記の熱収縮性フィルムに対応する位置に被せて置いた。その後、各中空糸膜の中間部分に、前記2つの熱収縮性フィルム両方の外側からヒーターを当てて加圧し、2つの熱収縮性フィルムを加熱融着した。融着した部分の幅は2mmである。トレイごとオーブンに入れ、120℃に加熱して収縮させた。以上の操作は、中空糸膜の両方の端部に行った。これによって、中空糸膜1本ごとに弾性体が中空糸膜外周に密着した状態で被覆され、隣り合う弾性体間の距離が2mmに保持されたシート状の中空糸膜束が製作できた。
また、熱収縮フィルムの収縮率が前記の操作を行ったときと同じになるように、熱収縮性フィルムの長さ方向の両端を把持した状態で加熱して収縮させた。収縮後の硬度を測定したところ、40Aであった。なお、硬度の測定は、厚みが10mmになるように該フィルムを複数枚重ねて行った。
前記のシート状の中空糸膜束5枚を、厚みが2mmのスペーサーを挟んで平行に並べ、両端部に第1注型用樹脂(硬化後の硬度が50Dであり、混合初期粘度が600mPa・sのウレタン樹脂)を用い静置注型法によって第1固定層を形成させた。さらに、第2注型用樹脂(硬化後の硬度が65Aであり、混合初期粘度が2200mPa・sのウレタン樹脂)を用い静置注型法によって、前記第1固定層の上に厚み10mmの第2固定層を形成させた。該固定層は、幅30mm、長さ400mmであり、第1固定層と第2固定層の合計厚みが40mmである。次に、両方の固定部の端を切断して中空糸膜の中空部を開口させた。その後に、ろ過水を流通させるためのノズルを有するキャップを両方の固定層部分に被せて接着した。以上の操作によって、両端部の中空部が開口した浸漬型中空糸膜カートリッジモジュールを得た。このモジュールは、有効長が1.5m、膜面積が4m2である。そして、各中空糸膜を被覆している部分の突出長さは、30mmである。
前記のようにして作製した浸漬型中空糸膜カートリッジモジュール6個を5cmのピッチで平行に並べた状態で固定し、各モジュールのキャップのノズルをろ過装置の集水管に接続して、実施例1と同様な活性汚泥槽に浸漬した。また、各モジュールの隙間であって、かつ、モジュールの下端より下の位置に散気管を設けた。なお、本実施例において「ピッチ」とは、中空糸膜或いはモジュールの中心間の距離を意味している。
実施例1と同様な条件で吸引ろ過を3ヶ月間行った。この期間の膜間差圧は、-10~-15kPaで、極めて安定に運転できた。また、3ヶ月後の中空糸膜には汚泥の付着が観察されず、汚泥付着を含む中空糸膜モジュール6個の合計重量が、ろ過開始時に比べて200gだけ増加していた。そして、弾性体間に汚泥堆積が無かった。
また、隣り合う弾性体間の距離は2mmに保持されており、ろ過運転前後で変化が無く、ろ過部界面の突出長さも全ての弾性体において変化していなかった。
そして、両端の固定層近傍での糸切れは無かった。弾性体で被覆されている部分を解体して内部を観察したところ、融着した部分において中空糸膜外表面に第1注型用樹脂が這い上がって形成されたコーティング層があり、その先端が第1固定層と第2固定層の間に位置していた。
2 ヘッド
3 スカート
4 ヘッド側第1固定層
5 スカート側第1固定層
6 ヘッド側第1固定層の端面
7 スカート側第1固定層の端面
8 貫通穴
9 スカート端部
10 小束
11 支持材
12 ろ過部
13 ヘッド側第2固定層
13’ ヘッド側第2固定層のろ過部界面の位置
14 スカート側第2固定層
14’ スカート側第2固定層のろ過部界面の位置
15 弾性体
16 多孔板
17 ろ過部の界面の傾斜角度
18 ろ過部界面からの突出長さ
19 弾性体同士の距離
21 中空糸膜
31 注型用樹脂のコーティング層の先端
50 熱収縮性フィルム
50’ 熱収縮性フィルム
51 熱収縮性フィルムの融着部
100 中空糸膜モジュール
110 かご状円筒
120 円筒
121 貫通口
200 解放型水槽
300 集水管
400 空気導入管
500 原水供給管
510 原水供給口
610 濃縮水排出口
700 モジュールケース
800 加圧型タンク
Claims (15)
- 複数本の中空糸膜から成る1つ又は複数の中空糸膜束が両端部において注型用樹脂で固定された固定層を有し、片方又は両方の端部において中空糸膜の中空部が開口した中空糸膜モジュールであって、中空部が開口した側の少なくとも一方の固定層において該中空糸膜束が複数の小束に分割されており、該固定層のろ過部界面付近において各小束の外周が弾性体で被覆されている中空糸膜モジュール。
- 複数本の中空糸膜が両端部において注型用樹脂で固定された固定層を有し、片方又は両方の端部において中空糸膜の中空部が開口した中空糸膜モジュールであって、中空部が開口した側の少なくとも一方の固定層のろ過部界面付近において各中空糸膜の外周が弾性体で被覆されている中空糸膜モジュール。
- 前記弾性体の一部が固定層に埋め込まれ、かつ弾性体の残りの部分は固定層のろ過部界面から突出している請求項1又は2に記載の中空糸膜モジュール。
- 前記弾性体のろ過部界面から突出している長さが5mm以上、100mm以下である請求項1~3のいずれか1項に記載の中空糸膜モジュール。
- 前記弾性体のろ過部界面から突出している部分において、該弾性体が内包する中空糸膜又は中空糸膜束の外周と該弾性体の内表面とが密着している請求項4に記載の中空糸膜モジュール。
- ろ過部界面から突出している部分において最も近接する弾性体同士の距離が2mm以上、80mm以下である請求項1~5のいずれか1項に記載の中空糸膜モジュール。
- 前記弾性体を有する側の固定層のろ過部界面が中空糸膜束の糸長方向に対して傾斜している請求項1~6のいずれか1項に記載の中空糸膜モジュール。
- 前記弾性体外における固定層のろ過部界面の位置が、該弾性体内において中空糸膜外表面を被覆している注型用樹脂の先端位置よりもモジュール中央側である請求項3~7のいずれか1項に記載の中空糸膜モジュール。
- 前記弾性体がチューブ状である請求項1~8のいずれか1項に記載の中空糸膜モジュール。
- 前記中空糸膜或いは中空糸膜束が前記弾性体に直接被覆されてなる請求項1~9のいずれか1項に記載の中空糸膜モジュール。
- 前記弾性体が熱収縮性材料からなる請求項1~10のいずれか1項に記載の中空糸膜モジュール。
- 前記熱収縮性材料の熱収縮後の硬度が40A~90Aである請求項11に記載の中空糸膜モジュール。
- 中空糸膜束外周を覆う外筒を有さない請求項1~12のいずれか1項に記載の中空糸膜モジュール。
- 請求項1~13のいずれか1項に記載の中空糸膜モジュールを用いた浸漬型中空糸膜カートリッジモジュール。
- 請求項1~13のいずれか1項に記載の中空糸膜モジュールを用いた加圧型中空糸膜カートリッジモジュール。
Priority Applications (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2010154656/05A RU2475296C2 (ru) | 2008-06-04 | 2009-06-03 | Половолоконный мембранный модуль с покрытой внешней периферией мембраны |
US12/993,291 US8679337B2 (en) | 2008-06-04 | 2009-06-03 | Hollow fiber membrane module with covered membrane outer periphery |
EP09758355A EP2286900A4 (en) | 2008-06-04 | 2009-06-03 | HOLLOW FIBER MEMBRANE MODULE WITH COVERED MEMBRANE OUTPUT |
CN200980120838.1A CN102056653B (zh) | 2008-06-04 | 2009-06-03 | 膜外周被包覆了的中空纤维膜组件 |
JP2010515895A JP5602017B2 (ja) | 2008-06-04 | 2009-06-03 | 膜外周が被覆された中空糸膜モジュール |
AU2009255103A AU2009255103B2 (en) | 2008-06-04 | 2009-06-03 | Hollow fiber membrane module with covered membrane outer periphery |
KR1020107025244A KR101250056B1 (ko) | 2008-06-04 | 2009-06-03 | 막 외주가 피복된 중공사막 모듈 |
CA2726669A CA2726669A1 (en) | 2008-06-04 | 2009-06-03 | Hollow fiber membrane module with covered membrane outer periphery |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008146758 | 2008-06-04 | ||
JP2008-146758 | 2008-06-04 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2009148088A1 true WO2009148088A1 (ja) | 2009-12-10 |
Family
ID=41398161
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2009/060170 WO2009148088A1 (ja) | 2008-06-04 | 2009-06-03 | 膜外周が被覆された中空糸膜モジュール |
Country Status (11)
Country | Link |
---|---|
US (1) | US8679337B2 (ja) |
EP (1) | EP2286900A4 (ja) |
JP (1) | JP5602017B2 (ja) |
KR (1) | KR101250056B1 (ja) |
CN (1) | CN102056653B (ja) |
AU (1) | AU2009255103B2 (ja) |
CA (1) | CA2726669A1 (ja) |
RU (1) | RU2475296C2 (ja) |
SG (1) | SG166558A1 (ja) |
TW (1) | TWI414344B (ja) |
WO (1) | WO2009148088A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013136903A1 (ja) * | 2012-03-15 | 2013-09-19 | 東レ株式会社 | カートリッジ型中空糸膜モジュール |
JPWO2013125681A1 (ja) * | 2012-02-24 | 2015-07-30 | 東洋紡株式会社 | 中空糸型半透膜及びその製造方法及びモジュール及び水処理方法 |
WO2015152401A1 (ja) * | 2014-04-03 | 2015-10-08 | 三菱レイヨン株式会社 | 中空糸膜シート状物、中空糸膜シート状物の製造方法、中空糸膜シート積層体、中空糸膜シート積層体の製造方法、中空糸膜モジュールおよび中空糸膜モジュールの製造方法 |
Families Citing this family (29)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9764288B2 (en) | 2007-04-04 | 2017-09-19 | Evoqua Water Technologies Llc | Membrane module protection |
EP3078411B1 (en) | 2007-05-29 | 2020-11-04 | Rohm & Haas Electronic Materials Singapore Pte. Ltd | Membrane cleaning with pulsed airlift pump |
BRPI1004927A2 (pt) * | 2009-01-14 | 2016-04-26 | Bl Technologies Inc | "aparelho de membrana imersa, sistema de filtração de membrana, processo de aeragem de um módulo de acionamento de sucção imerso de membranas de fibra oca geralmente verticais, processo de inibição a sujidade de um módulo de membrana, processo de limpeza de um módulo de membrana imersa em um tanque" |
SG10201502839SA (en) | 2010-04-16 | 2015-06-29 | Asahi Kasei Chemicals Corp | Deformed porous hollow fiber membrane, production method of deformed porous hollow fiber membrane, and module, filtration device, and water treatment method in which deformed porous hollow fiber membrane is used |
WO2011136888A1 (en) | 2010-04-30 | 2011-11-03 | Siemens Industry, Inc | Fluid flow distribution device |
AU2011305377B2 (en) | 2010-09-24 | 2014-11-20 | Evoqua Water Technologies Llc | Fluid control manifold for membrane filtration system |
DE102011110126A1 (de) * | 2011-08-15 | 2013-02-21 | Tig Automation Gmbh | Vorrichtung zum Filtern und Trennen von Strömungsmedien |
KR20140097140A (ko) | 2011-09-30 | 2014-08-06 | 에보쿠아 워터 테크놀로지스 엘엘씨 | 아이솔레이션 밸브 |
AU2012355957B2 (en) | 2011-12-22 | 2017-12-07 | Refine Technology, Llc | Hollow fiber cartridges and components and methods of their construction |
WO2013118859A1 (ja) * | 2012-02-09 | 2013-08-15 | 東洋紡株式会社 | 中空糸型半透膜及びその製造方法及びモジュール及び水処理方法 |
US9533261B2 (en) * | 2012-06-28 | 2017-01-03 | Evoqua Water Technologies Llc | Potting method |
US9555375B2 (en) | 2012-08-17 | 2017-01-31 | General Electric Company | Method of potting hollow fiber membranes and apparatus for filtering liquid with hollow fiber membranes |
DE112013004713T5 (de) | 2012-09-26 | 2015-07-23 | Evoqua Water Technologies Llc | Membransicherungsvorrichtung |
AU2013323934A1 (en) | 2012-09-27 | 2015-02-26 | Evoqua Water Technologies Llc | Gas scouring apparatus for immersed membranes |
KR101705402B1 (ko) | 2013-09-30 | 2017-02-09 | 롯데케미칼 주식회사 | 중공사막 모듈, 이의 제조 방법, 이를 위한 헤더 장치 및 중공사막 구속 장치 |
HUE061765T2 (hu) | 2013-10-02 | 2023-08-28 | Rohm & Haas Electronic Mat Singapore Pte Ltd | Berendezés membrán filtrációs modul javítására |
FR3011484B1 (fr) * | 2013-10-09 | 2017-06-23 | Air Liquide | Dispositif de separation d'air, dispositif d'inertage et aeronef comprenant un tel dispositif |
DK2883457T3 (en) | 2013-12-10 | 2017-05-01 | Dmk Deutsches Milchkontor Gmbh | Apparatus and method for the continuous production of protein hydrosylates |
DE102014005907A1 (de) * | 2014-04-25 | 2015-10-29 | Mann + Hummel Gmbh | Filtereinrichtung mit Hohlfasern |
RU2569700C1 (ru) * | 2014-07-30 | 2015-11-27 | Закрытое Акционерное Общество "Аквафор Продакшн" (Зао "Аквафор Продакшн") | Половолоконное мембранное устройство и способ его получения |
TWI541060B (zh) * | 2014-08-25 | 2016-07-11 | 集盛實業股份有限公司 | 用以包覆過濾用膜絲的韌性保護層及過濾用中空膜絲模組 |
DE102015005100A1 (de) * | 2015-04-22 | 2016-03-03 | Mann + Hummel Gmbh | Hohlfaseranordnung, Verfahren und Vorrichtung zur Herstellung einer Hohlfaseranordnung, Vorrichtung mit wenigstens einer Hohlfaseranordnung |
EP3322511B1 (en) | 2015-07-14 | 2022-09-07 | Rohm & Haas Electronic Materials Singapore Pte. Ltd | Aeration device for filtration system |
CN105036300B (zh) * | 2015-08-26 | 2017-08-15 | 中山朗清膜业有限公司 | 一种mbr膜组件的分段式膜壳结构 |
CN107626208A (zh) * | 2017-10-17 | 2018-01-26 | 海南立昇净水科技实业有限公司 | 中空纤维膜组件及其制造方法 |
RU2706302C1 (ru) * | 2018-10-17 | 2019-11-15 | Марк Александрович Мандрик | Способ изготовления половолоконного модуля |
WO2021085037A1 (ja) * | 2019-10-31 | 2021-05-06 | ユニチカ株式会社 | フィルタモジュールケース |
CN112023526B (zh) * | 2020-09-07 | 2022-04-01 | 南开大学 | 一种天然海绵状滤芯的制备方法及其在水处理中的应用 |
CN117509541B (zh) * | 2024-01-08 | 2024-03-15 | 潍坊石大昌盛能源科技有限公司 | 一种甲醇裂解粗氢制备高纯氢气的方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6258813A (ja) | 1985-09-03 | 1987-03-14 | 東京電力株式会社 | Cvケ−ブル用押出モ−ルド接続部の押出用金型 |
JPH0574626U (ja) * | 1992-03-18 | 1993-10-12 | 東洋濾紙株式会社 | 中空糸膜カ−トリッジフィルタ− |
JPH11179162A (ja) * | 1997-12-25 | 1999-07-06 | Nitto Denko Corp | 中空糸膜モジュールおよびその製造方法 |
JPH11197461A (ja) * | 1998-01-13 | 1999-07-27 | Nitto Denko Corp | 中空糸膜モジュール |
WO2004112944A1 (ja) | 2003-06-17 | 2004-12-29 | Asahi Kasei Chemicals Corporation | 膜カートリッジ、膜分離装置及び膜分離方法 |
Family Cites Families (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2374933A1 (fr) * | 1976-12-24 | 1978-07-21 | Rhone Poulenc Ind | Appareil a fibres creuses, utilisable notamment comme rein artificiel, et procede pour sa fabrication |
JPS62119942A (ja) | 1985-11-19 | 1987-06-01 | Nec Corp | 微細配線の形成方法およびその装置 |
JPS6344055Y2 (ja) * | 1986-01-22 | 1988-11-16 | ||
US4966699A (en) * | 1988-05-25 | 1990-10-30 | Terumo Kabushiki Kaisha | Hollow fiber membrane fluid processor |
JPH0775657B2 (ja) * | 1990-10-15 | 1995-08-16 | 旭化成工業株式会社 | 中空糸型モジュール |
JPH0574626A (ja) | 1991-09-12 | 1993-03-26 | Nec Corp | 磁気浮上搬送装置 |
JP3186138B2 (ja) | 1991-10-29 | 2001-07-11 | 旭メディカル株式会社 | 中空糸膜型の血液透析器 |
US5229721A (en) | 1992-04-06 | 1993-07-20 | Plantronics, Inc. | Micropower amplifier/transducer driver with signal expansion |
JPH0621730U (ja) * | 1992-08-25 | 1994-03-22 | 旭化成工業株式会社 | 中空糸状膜モジュール |
JPH06178918A (ja) * | 1992-12-15 | 1994-06-28 | Nitto Denko Corp | 外圧式中空糸膜モジュ−ル |
HU219067B (hu) * | 1994-06-02 | 2001-02-28 | Hofimo Aps | Eljárás üreges szálakat tartalmazó egység gyártására, valamint ilyen üreges szálakat tartalmazó egység szálmodulokhoz |
GB9602625D0 (en) * | 1996-02-09 | 1996-04-10 | Clegg Water Conditioning Inc | Modular apparatus for the demineralisation of liquids |
US5779897A (en) * | 1996-11-08 | 1998-07-14 | Permea, Inc. | Hollow fiber membrane device with inert filaments randomly distributed in the inter-fiber voids |
JPH10290832A (ja) | 1997-04-21 | 1998-11-04 | Asahi Medical Co Ltd | 中空糸膜型血液処理器 |
US6290756B1 (en) * | 1997-12-03 | 2001-09-18 | Praxair Technology, Inc. | Hollow fiber membrane tubesheets of variable epoxy composition and hardness |
RU2156645C1 (ru) * | 1999-08-04 | 2000-09-27 | ЗАО НТЦ "Владипор" | Трубчатый мембранный модуль для фильтрации жидкости и способ его изготовления |
RU2171133C2 (ru) * | 1999-10-25 | 2001-07-27 | Общество с ограниченной ответственностью "Микропор" | Мембранное устройство |
KR100575113B1 (ko) * | 2000-06-21 | 2006-05-03 | 가부시키가이샤 구라레 | 다공질 중공 섬유막 및 이의 제조방법 |
DE60313818T2 (de) | 2002-03-14 | 2007-10-31 | Nipro Corp., Osaka | Dialysator und Verfahren zu dessen Herstellung |
TWI277440B (en) * | 2004-12-14 | 2007-04-01 | Asahi Kasei Chemicals Corp | Hollow fiber membrane cartridge |
CN100441277C (zh) * | 2005-11-07 | 2008-12-10 | 中国科学院生态环境研究中心 | 帘式中空纤维膜膜丝端部固定加强技术 |
JP4993901B2 (ja) * | 2005-11-29 | 2012-08-08 | 水ing株式会社 | 中空糸膜モジュール |
JP2007185593A (ja) * | 2006-01-12 | 2007-07-26 | Kureha Corp | 中空糸モジュール及びその製造方法 |
CN201098607Y (zh) * | 2007-07-27 | 2008-08-13 | 苏州立升净水科技有限公司 | 具有防止中空纤维膜丝断裂功能的中空纤维膜组件 |
US8506808B2 (en) * | 2010-09-28 | 2013-08-13 | Dow Global Technologies Llc | Tubesheet and method for making and using the same |
-
2009
- 2009-06-03 WO PCT/JP2009/060170 patent/WO2009148088A1/ja active Application Filing
- 2009-06-03 SG SG201008564A patent/SG166558A1/en unknown
- 2009-06-03 CN CN200980120838.1A patent/CN102056653B/zh active Active
- 2009-06-03 JP JP2010515895A patent/JP5602017B2/ja active Active
- 2009-06-03 EP EP09758355A patent/EP2286900A4/en not_active Withdrawn
- 2009-06-03 CA CA2726669A patent/CA2726669A1/en not_active Abandoned
- 2009-06-03 US US12/993,291 patent/US8679337B2/en not_active Expired - Fee Related
- 2009-06-03 KR KR1020107025244A patent/KR101250056B1/ko active IP Right Grant
- 2009-06-03 RU RU2010154656/05A patent/RU2475296C2/ru not_active IP Right Cessation
- 2009-06-03 AU AU2009255103A patent/AU2009255103B2/en not_active Ceased
- 2009-06-04 TW TW098118608A patent/TWI414344B/zh not_active IP Right Cessation
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6258813A (ja) | 1985-09-03 | 1987-03-14 | 東京電力株式会社 | Cvケ−ブル用押出モ−ルド接続部の押出用金型 |
JPH0574626U (ja) * | 1992-03-18 | 1993-10-12 | 東洋濾紙株式会社 | 中空糸膜カ−トリッジフィルタ− |
JPH11179162A (ja) * | 1997-12-25 | 1999-07-06 | Nitto Denko Corp | 中空糸膜モジュールおよびその製造方法 |
JPH11197461A (ja) * | 1998-01-13 | 1999-07-27 | Nitto Denko Corp | 中空糸膜モジュール |
WO2004112944A1 (ja) | 2003-06-17 | 2004-12-29 | Asahi Kasei Chemicals Corporation | 膜カートリッジ、膜分離装置及び膜分離方法 |
Non-Patent Citations (1)
Title |
---|
See also references of EP2286900A4 |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2013125681A1 (ja) * | 2012-02-24 | 2015-07-30 | 東洋紡株式会社 | 中空糸型半透膜及びその製造方法及びモジュール及び水処理方法 |
WO2013136903A1 (ja) * | 2012-03-15 | 2013-09-19 | 東レ株式会社 | カートリッジ型中空糸膜モジュール |
JPWO2013136903A1 (ja) * | 2012-03-15 | 2015-08-03 | 東レ株式会社 | カートリッジ型中空糸膜モジュール |
US9795923B2 (en) | 2012-03-15 | 2017-10-24 | Toray Industries, Inc. | Cartridge type hollow fiber membrane module |
WO2015152401A1 (ja) * | 2014-04-03 | 2015-10-08 | 三菱レイヨン株式会社 | 中空糸膜シート状物、中空糸膜シート状物の製造方法、中空糸膜シート積層体、中空糸膜シート積層体の製造方法、中空糸膜モジュールおよび中空糸膜モジュールの製造方法 |
JP5999262B2 (ja) * | 2014-04-03 | 2016-09-28 | 三菱レイヨン株式会社 | 中空糸膜シート積層体、中空糸膜シート積層体の製造方法、中空糸膜モジュールおよび中空糸膜モジュールの製造方法 |
JPWO2015152401A1 (ja) * | 2014-04-03 | 2017-04-13 | 三菱レイヨン株式会社 | 中空糸膜シート積層体、中空糸膜シート積層体の製造方法、中空糸膜モジュールおよび中空糸膜モジュールの製造方法 |
KR101916556B1 (ko) * | 2014-04-03 | 2019-01-28 | 미쯔비시 케미컬 주식회사 | 중공사막 시트 형상물, 중공사막 시트 형상물의 제조 방법, 중공사막 시트 적층체, 중공사막 시트 적층체의 제조 방법, 중공사막 모듈 및 중공사막 모듈의 제조 방법 |
US10507430B2 (en) | 2014-04-03 | 2019-12-17 | Mitsubishi Chemical Corporation | Hollow fiber membrane sheet-like object, method of manufacturing hollow fiber membrane sheet-like object, hollow fiber membrane sheet laminate, method of manufacturing hollow fiber membrane sheet laminate, hollow fiber membrane module and method of manufacturing hollow fiber membrane module |
Also Published As
Publication number | Publication date |
---|---|
JPWO2009148088A1 (ja) | 2011-11-04 |
EP2286900A1 (en) | 2011-02-23 |
KR20100132546A (ko) | 2010-12-17 |
CN102056653B (zh) | 2014-04-23 |
CA2726669A1 (en) | 2009-12-10 |
EP2286900A4 (en) | 2012-03-28 |
CN102056653A (zh) | 2011-05-11 |
US8679337B2 (en) | 2014-03-25 |
JP5602017B2 (ja) | 2014-10-08 |
RU2010154656A (ru) | 2012-07-20 |
KR101250056B1 (ko) | 2013-04-03 |
US20110062074A1 (en) | 2011-03-17 |
TWI414344B (zh) | 2013-11-11 |
AU2009255103A1 (en) | 2009-12-10 |
SG166558A1 (en) | 2010-12-29 |
TW201012538A (en) | 2010-04-01 |
RU2475296C2 (ru) | 2013-02-20 |
AU2009255103B2 (en) | 2012-08-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5602017B2 (ja) | 膜外周が被覆された中空糸膜モジュール | |
AU2001269498B2 (en) | Hollow thread film cartridge, hollow thread film module using the cartridge, and tank type filter | |
JP4536008B2 (ja) | 外圧式中空糸膜モジュール | |
WO2000030740A1 (fr) | Cartouche a membranes de fibres creuses | |
JP4932492B2 (ja) | 中空糸膜カートリッジ | |
JP4491691B2 (ja) | 膜カートリッジ、膜分離装置及び膜分離方法 | |
JP2004344848A (ja) | 膜分離方法および膜分離装置 | |
JP4498373B2 (ja) | 中空糸膜カートリッジ、並びにそれを用いた中空糸膜モジュール及びタンク型濾過装置 | |
JP4269171B2 (ja) | エアレーションフラッシング用外圧式中空糸膜モジュールのろ過方法 | |
IL153377A (en) | Hollow thread film cartridge, hollow thread film module using the cartridge and tank type filter |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200980120838.1 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09758355 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010515895 Country of ref document: JP |
|
ENP | Entry into the national phase |
Ref document number: 20107025244 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 12993291 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2477/MUMNP/2010 Country of ref document: IN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2009758355 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2726669 Country of ref document: CA Ref document number: 2009255103 Country of ref document: AU |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2009255103 Country of ref document: AU Date of ref document: 20090603 Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010154656 Country of ref document: RU |