WO2009141963A1 - 単結晶製造装置 - Google Patents
単結晶製造装置 Download PDFInfo
- Publication number
- WO2009141963A1 WO2009141963A1 PCT/JP2009/001888 JP2009001888W WO2009141963A1 WO 2009141963 A1 WO2009141963 A1 WO 2009141963A1 JP 2009001888 W JP2009001888 W JP 2009001888W WO 2009141963 A1 WO2009141963 A1 WO 2009141963A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- single crystal
- chamber
- raw material
- cooling
- manufacturing apparatus
- Prior art date
Links
- 239000013078 crystal Substances 0.000 title claims abstract description 191
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 83
- 239000002994 raw material Substances 0.000 claims abstract description 149
- 238000001816 cooling Methods 0.000 claims abstract description 117
- 238000010438 heat treatment Methods 0.000 claims abstract description 57
- 238000000034 method Methods 0.000 claims abstract description 42
- 239000010453 quartz Substances 0.000 claims description 18
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 18
- 239000007789 gas Substances 0.000 claims description 12
- 239000002826 coolant Substances 0.000 claims description 11
- 229910052736 halogen Inorganic materials 0.000 claims description 11
- 150000002367 halogens Chemical class 0.000 claims description 11
- 239000000112 cooling gas Substances 0.000 claims description 8
- 238000002844 melting Methods 0.000 description 31
- 230000008018 melting Effects 0.000 description 31
- 230000000694 effects Effects 0.000 description 7
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 7
- 239000000498 cooling water Substances 0.000 description 5
- 238000009434 installation Methods 0.000 description 5
- 239000011810 insulating material Substances 0.000 description 5
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 4
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 4
- 239000010931 gold Substances 0.000 description 4
- 229910052737 gold Inorganic materials 0.000 description 4
- 229910052710 silicon Inorganic materials 0.000 description 4
- 239000010703 silicon Substances 0.000 description 4
- 238000011109 contamination Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 230000005855 radiation Effects 0.000 description 3
- 238000004804 winding Methods 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- 238000007747 plating Methods 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 238000004904 shortening Methods 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 238000005429 filling process Methods 0.000 description 1
- 239000007770 graphite material Substances 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 238000010309 melting process Methods 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 235000012431 wafers Nutrition 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B15/00—Single-crystal growth by pulling from a melt, e.g. Czochralski method
- C30B15/14—Heating of the melt or the crystallised materials
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B15/00—Single-crystal growth by pulling from a melt, e.g. Czochralski method
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B29/00—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
- C30B29/02—Elements
- C30B29/06—Silicon
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B35/00—Apparatus not otherwise provided for, specially adapted for the growth, production or after-treatment of single crystals or of a homogeneous polycrystalline material with defined structure
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T117/00—Single-crystal, oriented-crystal, and epitaxy growth processes; non-coating apparatus therefor
- Y10T117/10—Apparatus
- Y10T117/1024—Apparatus for crystallization from liquid or supercritical state
- Y10T117/1032—Seed pulling
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T117/00—Single-crystal, oriented-crystal, and epitaxy growth processes; non-coating apparatus therefor
- Y10T117/10—Apparatus
- Y10T117/1024—Apparatus for crystallization from liquid or supercritical state
- Y10T117/1032—Seed pulling
- Y10T117/1056—Seed pulling including details of precursor replenishment
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T117/00—Single-crystal, oriented-crystal, and epitaxy growth processes; non-coating apparatus therefor
- Y10T117/10—Apparatus
- Y10T117/1024—Apparatus for crystallization from liquid or supercritical state
- Y10T117/1032—Seed pulling
- Y10T117/1068—Seed pulling including heating or cooling details [e.g., shield configuration]
Definitions
- the present invention relates to a single crystal manufacturing apparatus for pulling up a single crystal by a Czochralski method (hereinafter also referred to as CZ method).
- FIG. 2 is a schematic view showing a general single crystal production apparatus used in the CZ method.
- This general single crystal manufacturing apparatus 20 grows a single crystal 31 from a raw material melt 30 by a CZ method, and contains a raw material melt 30 in which a raw material polycrystal is melted in a main chamber 21. 23, a heater 25 around the crucible 23, and a heat insulating material 26 around the heater 25. Parts such as the crucible 23, the heater 25, and the heat insulating material 26 that are particularly hot are called hot zone parts.
- a pull chamber 22 for storing and removing the pulled single crystal 31 is connected to the upper end of the main chamber 21.
- a gate valve 28 that opens and closes an opening at the upper end of the main chamber 21 is provided between the upper end of the main chamber 21 and the pull chamber 22.
- a single crystal pulling mechanism (not shown) for winding the wire 34 having the seed holder 33 attached to the tip is provided.
- the seed crystal 32 is held at the tip of the seed holder 33, the seed crystal 32 is immersed in the raw material melt 30, and is gently rotated.
- the rod-shaped single crystal 31 is grown by pulling it upward.
- an inert gas such as Ar is circulated in the chamber while evacuating in order to exhaust oxide evaporated from the melt surface.
- the heater When the pulling of the single crystal is finished, the heater is turned off, the gate valve is closed, and the single crystal stored in the pull chamber is cooled and taken out. Then, after the hot zone components are cooled, the inside of the chamber is returned to normal pressure, and the hot zone components in the main chamber are disassembled. After the dismantling of the hot zone part is completed, the hot zone part is cleaned, replaced, etc., and then the hot zone part is assembled again, and the single crystal is pulled again after filling the raw material, assembling the chamber, and melting the raw material polycrystal.
- the operation cycle for producing a single crystal by the CZ method is composed of single crystal pulling and many processes other than the pulling as described above, and at present, it is difficult to significantly shorten the pulling time. Therefore, it is considered that shortening the time required for the process other than the pulling of the single crystal is effective in improving the operation efficiency, that is, improving the operating rate of the single crystal manufacturing apparatus and increasing the productivity.
- the ratio of the filling and melting of the raw material polycrystal before the single crystal pulling and the cooling time of the hot zone parts is large.
- the cooling time of the hot zone parts is determined from the condition that when the inside of the main chamber is returned to normal pressure, the temperature is such that the carbon member such as a heater is cooled to such an extent that it does not deteriorate even when it comes into contact with oxygen in the air. .
- the cooling time is about 7 hours for natural cooling, and is less than about half the time required for processes other than pulling. It has come to occupy. Further, it takes about 14 hours to fill and melt the raw material polycrystal necessary for manufacturing such a single crystal.
- the melting of the raw material polycrystal and the cooling of the hot zone parts are nothing but the suspension period of the single crystal manufacturing equipment. For this reason, the time taken for other than the single crystal pulling process results in a significant decrease in the operating rate of the single crystal manufacturing apparatus.
- the demand for large diameter single crystals has not been limited, and many large single crystals having a size of 300 mm (12 inches) or more have been demanded. In that case, the heat capacity of the hot zone component becomes much larger than the present one, and the cooling time becomes longer accordingly.
- the charge amount (melting amount) of the raw material polycrystal is increased, the melting time is increasing in proportion to this. Therefore, a reduction in the operating rate of the apparatus due to the extension of the cooling time and the melting time has become a problem from the present.
- Japanese Patent Application Laid-Open No. 10-81595 proposes to provide an auxiliary heating device using a lamp or a laser separately from the heater arranged around the crucible. Furthermore, Japanese Patent Application Laid-Open No. 11-255593 proposes that an auxiliary heating chamber having an infrared lamp is disposed on the main chamber at the focal position of the parabolic reflector. In order to shorten the cooling time of hot zone components, Japanese Patent Application Laid-Open No. 9-235173 proposes to circulate an inert gas at room temperature or lower in the main chamber.
- the present invention has been made in view of such problems, and in the production of a single crystal having a large diameter of, for example, about 200 mm or more, a single crystal capable of improving the operating rate of the single crystal production apparatus and increasing the productivity of the single crystal.
- An object is to provide a manufacturing apparatus.
- the present invention includes at least a main chamber for storing a hot zone component including a crucible, and a pull chamber for storing and taking out a single crystal pulled from a raw material melt stored in the crucible.
- a single-crystal manufacturing apparatus using the Czochralski method wherein the single-crystal manufacturing apparatus further includes a multi-purpose chamber replaceable with the pull chamber, and the multi-purpose chamber is filled in the crucible.
- a single crystal production apparatus characterized in that a heating means for heating the raw material and a cooling means for cooling the hot zone components after the pulling of the single crystal can be installed.
- the single crystal manufacturing apparatus of the present invention has a multipurpose chamber in which a heating means for heating a raw material polycrystal and a cooling means for cooling a hot zone component such as a crucible after the pulling of the single crystal can be installed. It is provided separately from the chamber, and the multipurpose chamber and the pull chamber can be replaced on the main chamber.
- the pull chamber and the multipurpose chamber can be used simultaneously.
- the cooling means for the hot zone parts is installed in the multipurpose chamber, and the pull chamber is used for the multipurpose as soon as the pulling of the single crystal is completed.
- the chamber forced cooling of the hot zone components in the main chamber can be started without waiting for cooling of the single crystal and removal from the pull chamber.
- the cooling and taking out of the single crystal can be performed in parallel with the forced cooling of the hot zone components in the main chamber.
- the multi-purpose chamber includes a moving mechanism that moves up and down at least one of the heating unit and the cooling unit on the crucible.
- the multipurpose chamber includes a moving mechanism that moves up and down at least one of the heating means and the cooling means on the crucible, so that each means can be easily lowered from the multipurpose chamber to the main chamber. Can thereby enhance the function of each means. Moreover, the installation work of each means to a multipurpose chamber can also be simplified.
- the pull chamber and the multipurpose chamber are preferably replaceable by a hydraulic unit. In this manner, the pull chamber and the multipurpose chamber can be replaced on the main chamber by the hydraulic unit, so that the pull chamber and the multipurpose chamber can be replaced with a simple configuration.
- the heating means includes at least a heat source inside a quartz tube, and the quartz tube preferably has a reflection structure that reflects heat rays toward the crucible on the inside, and the heat source is a halogen lamp. It is preferable that
- the heating means includes at least a heat source inside the quartz tube, and the quartz tube has a reflection structure that reflects heat rays toward the crucible on the inside thereof, so that the halogen that is a heat source is provided. Since the heat rays of the lamp and the heat rays dissipated from the heater can be blocked and condensed and reflected toward the raw material polycrystal, the raw material polycrystal can be melted extremely efficiently.
- the heating means installed in the multipurpose chamber different from the heater in the main chamber for heating the raw material charged in the crucible has a halogen lamp inside the quartz tube, the main means by the heating means Contamination in the chamber can be prevented, and the heating means itself can be prevented from being deteriorated, so that it can be heated efficiently, and the melting time of the raw material polycrystal can be shortened.
- the cooling means may be a cooling pipe through which a cooling medium is circulated.
- the cooling means for cooling the hot zone component is a cooling pipe through which the cooling medium is circulated, so that the hot zone component can be easily forcibly cooled at low cost.
- the multi-purpose chamber is provided with a gas inlet for introducing a cooling gas.
- the cooling gas can be circulated from the gas inlet when the hot zone part is cooled. Time can be further reduced.
- the multipurpose chamber can be provided with raw material filling means for containing the raw material polycrystal and filling the crucible.
- the raw material filling means is removed, a heating means for heating the raw material filled in the crucible is installed, and the raw material polycrystal in the crucible is melted.
- a heating means for heating the raw material filled in the crucible is installed, and the raw material polycrystal in the crucible is melted.
- an operation of attaching a seed crystal for growing a single crystal to the seed holder can be performed. Therefore, if the multipurpose chamber connected to the main chamber is replaced with a pull chamber after the raw material polycrystal is melted, without removing the raw material filling means and attaching the seed crystal in the pull chamber as in the prior art The single crystal pulling process can be started immediately after the raw material is melted.
- the raw material filling means may be a recharge tube filled with the raw material polycrystal.
- the raw material filling means is a recharge tube filled with the raw material polycrystal, the raw material polycrystal can be easily added to the crucible.
- the multipurpose chamber includes a moving mechanism that moves the raw material filling means up and down on the crucible.
- the multipurpose chamber is provided with a moving mechanism for moving the raw material filling means up and down on the crucible, the raw material filling means can be easily lowered from the multipurpose chamber to the main chamber, thereby The function of the raw material filling means can be further enhanced. Moreover, the installation operation
- the waiting time between each process can be eliminated, and further, the cooling time of hot zone parts and the melting time of the raw material polycrystal can be shortened.
- the rate can be improved and the productivity of single crystal production can be improved.
- the pulling time of the single crystal is about 35 hours.
- the raw material polycrystal must be melted before growing the single crystal, and the time required for this is about 12 hours. Further, after growing the single crystal, wait for the single crystal to cool and then remove it, cool the hot zone parts installed in the main chamber, dismantle and clean the hot zone parts, and raw materials for the next single crystal growth There is a process of filling.
- the present inventors have introduced a multipurpose chamber that can be replaced with a pull chamber into a general single crystal manufacturing apparatus, thereby eliminating waiting time until the next process is started, as well as a raw material melting process and a hot zone component.
- the present invention was completed by conceiving to shorten the time of the cooling process.
- FIG. 1 is a schematic view showing a single crystal manufacturing apparatus according to the present invention.
- This single crystal manufacturing apparatus 10 is used in the Czochralski method, and is roughly divided into a main chamber 11, a pull chamber 12, and a multipurpose chamber 2.
- a lid and an opening at the upper end of the main chamber 11 are provided.
- a gate valve 18 is provided.
- the vicinity of a high temperature due to heat radiation from the heater during single crystal growth is referred to as a hot zone, and a part that becomes red hot in the hot zone is referred to as a hot zone part.
- Typical examples of the hot zone part include a crucible 13 and a heater 15. , And a heat insulating material 16.
- the pull chamber 12 is a chamber for storing and taking out the single crystal 6 pulled up from the raw material melt stored in the crucible 13.
- a pulling mechanism 19 for a single crystal having a wire is disposed above the pull chamber 12, and a seed holder 17 for holding the seed crystal 5 is attached to the tip of the pulling mechanism 19.
- the multi-purpose chamber 2 is replaceable with the pull chamber 12, and also heats the raw material charged in the crucible L (see FIG. 1C), and cools the hot zone components after pulling up the single crystal.
- Each of the cooling means C can be installed, and preferably, the raw material filling means R (see FIG. 1B) for containing the raw material polycrystal and filling the crucible 13 can be installed. Is.
- the multipurpose chamber 2 preferably includes a moving mechanism 3 that moves up and down at least one of the raw material filling means R, the heating means L, and the cooling means C on the crucible 13.
- each means can be easily lowered from the multipurpose chamber to the main chamber, and the function of each means can be further enhanced.
- work of each means to a multipurpose chamber can be simplified.
- the moving mechanism 3 has a wire 3W, a hook 3F and a wire 3W at the tip of the wire 3W, for example, as shown in FIG. Although it can be comprised from the winding shaft 3M for winding up, it is not specifically limited to this.
- FIG. 8 is a plan view of FIG.
- the pull chamber 12 and the multipurpose chamber 2 can be replaced on the main chamber 11 so that the pull chamber 12 and the multipurpose chamber 2 are rotated by the hydraulic unit 8, so that the pull chamber and the multipurpose chamber can be replaced with a simple configuration.
- the gate valve 18 on the main chamber can be closed.
- the 1st means installed in the multipurpose chamber 2 is the cooling means C for cooling a hot zone component (refer FIG. 5).
- FIG. 5A is a view showing a state in which the cooling means C is installed in the multipurpose chamber 2
- FIG. 5B is a view in which the cooling means C descends from the multipurpose chamber 2 and the hot zone components 13, 15, 16 are moved. It is a figure which shows the state when cooling.
- the cooling means C can be a cooling pipe C1 through which a cooling medium flows. Thereby, forced cooling of hot zone components can be easily performed at low cost.
- a pipe C3 and a cooling pipe C1 communicating from the outside to the inside of the multipurpose chamber 2 are connected. By connecting with the flexible tube C2, the cooling tube can be moved up and down.
- the cooling pipe C1 that has fallen into the crucible 13 as shown in FIG. Due to the radiation cooling effect, the hot zone components can be strongly cooled, and even the hot zone components having a large heat capacity after pulling up the large-diameter single crystal can greatly reduce the cooling time.
- the cooling pipe C1 can be a pipe in which a large number of seamless pipes are wound in a ring shape, which makes it difficult for the cooling medium to leak from the cooling pipe C1 and reduces the possibility of contamination of the main chamber with the cooling medium. .
- the pipe of the cooling pipe C1 is preferably a copper pipe.
- the cooling pipe has a good thermal conductivity, the heat removal effect is enhanced, and the atmosphere in the main chamber in contact with the cooling pipe can be quickly cooled.
- the cooling pipe C1 can be easily attached to and removed from the multipurpose chamber at the upper position, and the hot zone can be set at the lower position.
- the cooling effect on the parts can be remarkably enhanced.
- cooling medium distribute
- cooling water such as a pure water
- a gas inlet 4 for introducing a cooling gas is formed in the upper part of the multipurpose chamber 2 as shown in FIG.
- the gas inlet 4 in the multipurpose chamber 2 in which the cooling means C is installed, the cooling gas introduced from the gas inlet 4 in addition to the radiation cooling effect of the hot zone components by the cooling pipe C1.
- a convective cooling effect can also be desired. Therefore, the cooling of the hot zone component can be further accelerated. Since the gas discharge port 14 for discharging the introduced gas is provided at the bottom of the main chamber 11, the gas introduced from the multipurpose chamber 2 can be discharged from the gas discharge port 14 of the main chamber 11. it can.
- the second means that can be installed in the multipurpose chamber 2 is a raw material filling means R that contains the raw material polycrystal and fills the crucible (see FIG. 6).
- FIG. 6A is a view showing a state in which the raw material filling means R is installed in the multipurpose chamber 2
- FIG. 6B is a view showing that the raw material filling means R descends from the multipurpose chamber 2 and the raw material polycrystalline 1 is placed in the crucible 13. It is a figure which shows a state when is filled.
- the raw material filling means R can be a recharge pipe R1 filled with the raw material polycrystal 1.
- the recharge pipe R1 is provided with an openable / closable lid R2 for filling the crucible 13 with the polycrystalline raw material 1 on its bottom surface.
- the single crystal to be manufactured is a silicon single crystal, the risk of impurity contamination of the single crystal can be reduced if the outermost layer in contact with at least the raw material polycrystal of the recharge tube R1 is made of quartz.
- the moving mechanism 3 to move the raw material filling means R up and down on the crucible, the recharge pipe R1 can be easily detached from the multipurpose chamber at the upper position, and the lower position is set.
- the lid R2 By opening and closing the lid R2, the raw material can be safely and reliably filled in the crucible.
- FIG. 7A is a diagram showing a state in which the heating means L of the raw material different from the heater is installed in the multipurpose chamber 2, and FIG. It is a figure which shows the state which is heating the crystal.
- the heating means L can include a halogen lamp L1 as a heat source inside the quartz tube L6.
- the heating means installed in the multi-purpose chamber different from the heater in the main chamber for heating the raw material charged in the crucible has a halogen lamp inside the quartz tube, so that the heating means The inside of the main chamber 11 can be prevented from being contaminated by L, and the raw material polycrystal can be efficiently heated by the heat of the halogen lamp L1 without deteriorating the halogen lamp L1, and the melting time can be shortened.
- a cooling pipe L2 for heat removal may be provided inside the quartz tube L6 as shown in FIG. Good.
- the heating means L can be moved up and down on the crucible 13 with the same configuration as the cooling means for the hot zone components, for example, cooling water can be expanded and contracted from the pipe L4 connecting the inside and outside of the multipurpose chamber 2. It can be circulated to the cooling pipe L2 via the flexible tube L3.
- the heating means includes the cooling pipe
- the inside of the multipurpose chamber 2 can be prevented from being heated and damaged more than necessary, and the heat resistance of the quartz pipe L6 can be improved. Therefore, the heating means L can be used for a long time, and the cost can be reduced. Furthermore, by adopting a structure in which the gas introduced into the multipurpose chamber 2 is circulated inside the heating means L, the heat resistance of the heating means L can be further improved.
- the heat rays are reflected to the inner side L5 of the cylindrical quartz tube L6 and reflected toward the raw material polycrystal 1 in the crucible 13.
- the heat rays from the halogen lamp and the heater that have been dissipated in the direction of the chamber connected to the upper part of the main chamber are blocked with a quartz tube, and condensed to form a raw material. It can be reflected toward the polycrystal 1, and heat can be used effectively. Therefore, the amount of heat to the raw material polycrystal can be increased as compared with the conventional case, the time required for melting can be shortened, and as a result, improvement in productivity and reduction in production cost can be achieved.
- the reflection structure will be described in detail.
- the upper and side surfaces of the quartz tube are subjected to any one of gold plating, gold deposition, and gold coating, or quartz or bubbles obtained by sintering slurry.
- a light-transmitting material including 10% or less, particularly preferably 1% or less (OM-100 or HRC manufactured by Heraus) covered with opaque quartz can be used as the reflective structure.
- FIG. 3 is a figure which shows the flow of the process at the time of using the single crystal manufacturing apparatus 10 which concerns on this invention.
- the numbers in parentheses in FIG. 3 indicate the time required for the process.
- an empty crucible 13 in the main chamber 11 is filled with about 60% of the required raw material polycrystal.
- the reason why the raw material polycrystal is filled by about 60% is that the polycrystalline raw material before melting is bulky and cannot be filled in the crucible 13 any more. Therefore, the remaining 40% is additionally filled by the raw material filling means R after the initial melting. Then, the heating means L is attached to the multipurpose chamber 2 as shown in FIG.
- the multipurpose chamber 2 in which the heating means L is installed is connected to the main chamber 11, and the heating means L is lowered to the position of FIG. And the raw material polycrystal 1 is heated and melted by the heater 15 (initial melting of the raw material polycrystal).
- the raw material polycrystal to be additionally filled is accommodated in the recharge pipe R1, and the raw material filling means R is installed in the pull chamber 12 as shown in FIG.
- the gate valve 18 of the main chamber is closed, and the pull unit in which the multipurpose chamber 2 in which the heating means L is installed and the raw material filling means R are installed in the hydraulic unit 8 shown in FIG.
- the chamber 12 is replaced, the gate valve 18 is opened, and the pull chamber 12 and the main chamber 11 are connected.
- the raw material filling means R is lowered to an appropriate position on the crucible 13 by a moving mechanism (not shown in FIG. 6), the lid R2 at the bottom of the recharge pipe R1 is opened, and the remaining raw material polycrystal is added to the crucible 13. Fill.
- the empty raw material filling means R is pulled up, the gate valve 18 is closed, and the pull chamber 12 and the multipurpose chamber 2 with the heating means L installed are replaced. Then, additional melting of the raw material polycrystal is performed in the same manner as the initial melting of the raw material polycrystal. During the additional melting of the raw material polycrystal, in the pull chamber not connected to the main chamber 11, the raw material filling means R is removed, the seed holder 17 is installed, and the seed crystal 5 is attached.
- the gate valve 18 of the main chamber 11 is closed, and the multipurpose chamber 2 in which the heating means L is installed is already attached to the seed crystal. Is replaced with the pull chamber 12, and the gate valve 18 is opened to connect the pull chamber 12 and the main chamber 11. Thereafter, the seed crystal 5 is brought into contact with the raw material melt 9 and the pulling of the single crystal is started.
- the heating means L for assisting the heating of the raw material polycrystal is removed, and the cooling means C for cooling the hot zone components is shown in FIG. ).
- the gate valve 18 of the main chamber is closed, and the pull chamber 12 containing the single crystal and the multipurpose chamber 2 in which the cooling means C are installed are replaced on the main chamber 11, The multipurpose chamber 2 is connected to the main chamber 11. Thereby, the time for cooling and taking out the single crystal can be saved.
- the cooling means C is lowered to the position just above the raw material melt 9 remaining in the crucible 13 to cool the hot zone components such as the crucible 13, the heater 15, and the heat insulating material 16.
- the pulled single crystal 6 is waited for cooling and taken out from the pull chamber.
- the multipurpose chamber 2 When the cooling of the hot zone component by the multipurpose chamber 2 is completed, the multipurpose chamber 2 is removed from the main chamber 11, and the hot zone component is disassembled, cleaned, assembled, and the like. And the initial stage filling process of the raw material for the next single crystal manufacture can be started.
- the pull chamber and the multipurpose chamber can be used at the same time. Therefore, the cooling means for the hot zone component is installed in the multipurpose chamber during the pulling of the single crystal. As soon as the pulling of the single crystal is completed, the pull chamber is replaced with a multipurpose chamber, so that the forced cooling of the hot zone components can be started without waiting for the cooling of the single crystal and the removal from the pull chamber. In the pull chamber removed from the main chamber, the single crystal can be cooled and taken out in parallel with the forced cooling of the hot zone components.
- a raw material polycrystal filling means is installed in the pull chamber during the initial melting of the raw material, additional filling of the remaining raw material polycrystal can be started immediately after the initial melting.
- the heating means is still installed in the multipurpose chamber, the additional melting can be started immediately after replacing the pull chamber and the multipurpose chamber after the additional filling of the raw material polycrystal.
- the multi-purpose chamber can be equipped with a cooling means for hot zone parts, the natural cooling of the hot zone parts or the cooling using only the cooling cylinder 7 for cooling the single crystal, or only the cooling gas is used.
- the cooling time for the hot zone components can be shortened compared to the cooling method of circulating in the chamber.
- the multipurpose chamber can be provided with a heating means for heating the raw material polycrystal filled in the crucible, only the heater 15 provided in the main chamber 11 contains the raw material polycrystal filled in the crucible 13.
- the melting time of the raw material polycrystal can be shortened by using the heating means L together.
- a separate heater may be installed on the outer upper portion of the main chamber 11 to assist heating of the polycrystalline raw material.
- the melting time of the raw material polycrystal other than pulling up the single crystal, the cooling time of the hot zone parts can be greatly shortened, and the waiting time due to the preparation of these processes can be omitted, Since the operating rate of the single crystal manufacturing apparatus can be improved, the productivity of single crystal manufacturing is greatly improved.
- the raw material filling means is removed, and a heating means for heating the raw material filled in the crucible is installed, and the raw material polycrystal in the crucible is additionally melted.
- a heating means for heating the raw material filled in the crucible is installed, and the raw material polycrystal in the crucible is additionally melted.
- an operation of attaching a seed crystal for growing a single crystal to the seed holder can be performed. Therefore, if the multipurpose chamber connected to the main chamber is replaced with a pull chamber after the raw material polycrystal is melted, the single crystal pulling process can be started immediately without waiting for the seed crystal mounting process.
- the single crystal manufacturing apparatus of the present invention reduces the cooling time of the single crystal and the melting time of the raw material polycrystal even when pulling a large number of single crystals. It is effective for shortening and can improve productivity.
- the pull chamber was connected to the main chamber, and the remaining raw material polycrystalline silicon 160 kg was additionally filled. This took an hour.
- the pull chamber in which the raw material filling means was installed and the multipurpose chamber in which the heating means were installed were replaced, and additional melting of the additionally filled polycrystalline silicon was performed with the heating means and the heater. It took 3 hours until the raw material polycrystal was completely melted. During this additional melting, in the pull chamber, the work of attaching the seed crystal for pulling up the single crystal was performed in 30 minutes.
- the pull chamber was connected to the main chamber, the seed crystal was brought into contact with the raw material melt, and a single crystal pulling step was performed.
- the single crystal was pulled at a pulling rate of 0.5 mm / min, and it took 50 hours to be completely accommodated in the pull chamber.
- a cooling pipe for cooling the hot zone components was installed in the multipurpose chamber in about 30 minutes so that the cooling water could be circulated.
- the gate valve was closed, the pull chamber and the multipurpose chamber were replaced, and the multipurpose chamber was connected to the main chamber. And cooling water was distribute
- the multi-purpose chamber was removed from the main chamber, and the hot zone parts were disassembled, cleaned, and assembled in 5 hours.
- the total time for one cycle for manufacturing one single crystal using the single crystal manufacturing apparatus of the present invention was about 66 hours.
- the raw material polycrystal filled in the crucible 23 was melted in 6 hours using the heater 25. Subsequently, 160 kg of the remaining raw material polycrystalline silicon contained in the raw material filling means was additionally filled in the crucible. This took an hour. Then, after raising the raw material filling means into the pull chamber 22, the gate valve 28 was closed and removed, and the seed crystal was attached for pulling up the single crystal in one hour.
- the gate valve of the main chamber was closed, and after waiting for the single crystal accommodated in the pull chamber to cool, it was taken out. This took an hour. Further, in order to clean the hot zone parts in the main chamber, the process waited until the hot zone parts reached room temperature.
- the hot zone part was cooled to room temperature in about 7 hours, the hot zone part was disassembled, cleaned, and assembled in 5 hours. As a result, the total time for one cycle for manufacturing one single crystal using the single crystal manufacturing apparatus of the present invention was about 78 hours.
- the single crystal manufacturing apparatus of the present invention can omit the time for cooling and taking out the single crystal, and the operating rate of the single crystal manufacturing apparatus is improved.
- the present invention by installing means for reducing the melting time of the raw material polycrystal and the cooling time of the hot zone parts in the multipurpose chamber, these times can be easily reduced, and the total production time is about A time reduction of about 15% is expected, and the production cost can be reduced.
- the present invention is not limited to the above embodiment.
- the above embodiment is merely an example, and the present invention has the same configuration as that of the technical idea described in the claims of the present invention, and any device that exhibits the same function and effect is the present invention. It is included in the technical idea of the invention.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Crystallography & Structural Chemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
Abstract
Description
この一般的な単結晶製造装置20は、CZ法によって原料融液30から単結晶31を成長させるものであって、メインチャンバー21内に、原料多結晶を溶融した原料融液30を収容するルツボ23と、該ルツボ23の周囲にヒーター25と、該ヒーター25の周囲に断熱材26とを収納して構成されている。
特に熱を帯びるルツボ23、ヒーター25、断熱材26といった部品は、ホットゾーン部品と呼ばれている。
このとき、チャンバー内には、融液表面から蒸発した酸化物を排気するために真空排気を行いながらAr等の不活性ガスを流通させる。
ホットゾーン部品の冷却時間はメインチャンバー内を常圧に戻したときにヒーター等のカーボン部材が空気中の酸素と接しても劣化しない程度にまで冷却された温度になるという条件から決められている。現在主流の直径200mm(8インチ)、直胴部1mという大きさの単結晶を製造する場合、この冷却時間は自然放冷では約7時間に達し、引上げ以外の工程所要時間の約半分弱を占めるに至っている。
また、このような単結晶製造に必要な原料多結晶を充填・溶融する時間も約14時間程度かかっていた。
またホットゾーン部品の冷却時間を短縮するため、特開平9-235173号公報では、メインチャンバー内に常温以下の不活性なガスを流通させることが提案されている。
このように、油圧ユニットによりプルチャンバーと多目的チャンバーをメインチャンバー上で置換できることで、簡単な構成でプルチャンバーと多目的チャンバーの入れ替えが可能となる。
また、ルツボに充填された原料を加熱するメインチャンバー内にあるヒーターとは別の多目的チャンバーに設置する加熱手段が、石英管の内部にハロゲンランプを具備するものであることにより、加熱手段によるメインチャンバー内の汚染を防止でき、また加熱手段自体の劣化も防止して、効率良く加熱することができ、原料多結晶の溶融時間を短縮することができる。
このようにホットゾーン部品を冷却する冷却手段が、冷却媒体が流通される冷却管であることにより、低コストで、簡単にホットゾーン部品の強制冷却を行うことができる。
このように、多目的チャンバーが、冷却ガスを導入するガス導入口を具備するものであることにより、ホットゾーン部品の冷却時にガス導入口から冷却ガスを流通させることができるので、ホットゾーン部品の冷却時間をさらに短縮することができる。
このように、原料充填手段が、原料多結晶を充填したリチャージ管であることにより、容易にルツボに原料多結晶を追加充填することができる。
図1は、本発明にかかる単結晶製造装置を示す概略図である。
この単結晶製造装置10はチョクラルスキー法で使用されるものであり、大きく分けてメインチャンバー11、プルチャンバー12、多目的チャンバー2を具備し、メインチャンバー11の上端の開口部には、蓋となるゲートバルブ18が設けられている。
特に単結晶成長中にヒーターからの放熱により高温となる付近をホットゾーンと呼び、ホットゾーンで赤熱状態となる部品をホットゾーン部品と呼び、このホットゾーン部品の代表は、例えばルツボ13、ヒーター15、そして断熱材16である。
このプルチャンバー12の上部には、ワイヤを具備する単結晶の引上げ機構19が配置され、引上げ機構19の先端には種結晶5を保持するための種ホルダ17が取りつけられている。
移動機構3があることによって、それぞれの手段を容易に多目的チャンバーからメインチャンバーに降下することができ、各手段の機能をより高めることができる。また、多目的チャンバーへの各手段の設置作業を簡略化することができる。
このように、油圧ユニット8によりプルチャンバー12と多目的チャンバー2を回転するように、メインチャンバー11上で置換できることで、簡単な構成でプルチャンバーと多目的チャンバーの入れ替えが可能となる。入れ替えを行う場合には、メインチャンバー上のゲートバルブ18を閉めて行うことができる。
まず、多目的チャンバー2に設置される1つ目の手段は、ホットゾーン部品を冷却するための冷却手段Cである(図5参照)。
図5(a)は多目的チャンバー2に冷却手段Cが設置された状態を示す図であり、図5(b)は多目的チャンバー2から冷却手段Cが降下してホットゾーン部品13、15、16を冷却するときの状態を示す図である。
この冷却管に冷却媒体を流通させ、且つ、冷却管がルツボ13上で上下動可能とするためには、例えば、多目的チャンバー2の外から中へと通じている管C3と冷却管C1とをフレキシブルチューブC2で接続することにより、冷却管の上下動が可能となる。
このように、冷却手段Cを設置する多目的チャンバー2にガス導入口4が形成されていることによって、冷却管C1によるホットゾーン部品の輻射冷却効果に加えて、ガス導入口4から導入した冷却ガスにより、対流冷却効果も望むことができる。そのため、ホットゾーン部品の冷却をさらに加速させることができる。
尚、メインチャンバー11の底部には導入したガスを排出するためのガス排出口14が設けられているため、多目的チャンバー2から導入したガスは、メインチャンバー11のガス排出口14から排出することができる。
図6(a)は多目的チャンバー2に原料充填手段Rが設置された状態を示す図であり、図6(b)は多目的チャンバー2から原料充填手段Rが降下してルツボ13に原料多結晶1が充填されるときの状態を示す図である。
このリチャージ管R1は、その底面に原料多結晶1をルツボ13に充填するための開閉可能な蓋R2が設けてあるものである。また、製造する単結晶がシリコン単結晶の場合、リチャージ管R1の少なくとも原料多結晶に接触する最表層が石英からなるものであれば、単結晶への不純物汚染の恐れを軽減できる。
図7(a)は多目的チャンバー2にヒーターとは別の原料の加熱手段Lが設置された状態を示す図であり、図7(b)は多目的チャンバー2から加熱手段Lが降下して原料多結晶1を加熱している状態を示す図である。
このような構造をとることによって、メインチャンバーの上部に接続されているチャンバーの方向に向かって散逸されていたハロゲンランプやヒーターからの熱線を、石英管でブロックし、且つ、集光して原料多結晶1に向けて反射させることができ、熱を有効利用することができる。従って、原料多結晶への熱量を従来に比べて増加させることができ、溶融にかかる時間を短縮させることができ、ひいては生産性の向上及び生産コストの低減を達成することができる。
そして、この原料多結晶の充填の間に、図7(a)のように加熱手段Lを多目的チャンバー2に取り付ける。
この間に、追加充填する原料多結晶をリチャージ管R1に収容し、図6(a)のように原料充填手段Rをプルチャンバー12に設置する。
この原料多結晶の追加溶融の間に、メインチャンバー11に接続されていないプルチャンバー内では、原料充填手段Rを取外して種ホルダ17を設置し、種結晶5の取付け工程を行う。
これにより、単結晶の冷却、取り出しのための時間を省くことができる。
そして、次の単結晶製造のための原料の初期充填工程を開始することができる。
尚、メインチャンバー11の外側上部にさらに別途ヒーターを設置して原料多結晶の加熱の補助を行ってもよい。
(実施例)
図1に示す本発明に係る単結晶製造装置10を用いて、図3に示すフローでシリコン単結晶インゴット1本を製造するのに要する1サイクルのトータル時間を測定した。
続いて、充填された原料多結晶を加熱手段及びヒーターを用いて3時間で溶融した。この間にプルチャンバーにはリチャージ管を有する原料充填手段を取付けた。
次に、原料充填手段が設置されたプルチャンバーと加熱手段が設置された多目的チャンバーを置換し、追加充填した多結晶シリコンの追加溶融を加熱手段及びヒータで行った。
原料多結晶が完全に溶融されるまでには3時間を費やした。
この追加溶融の間に、プルチャンバー内では、単結晶引上げのための種結晶の取付け作業を30分で行った。
この結果、本発明の単結晶製造装置を使用して単結晶1本を製造する1サイクルのトータル時間は、約66時間となった。
図2に示す従来の単結晶製造装置を用いて、図4に示すフローでシリコン単結晶インゴット1本を製造するのに要する1サイクルのトータル時間を測定した。
続いて、原料充填手段に収容されている残りの原料多結晶シリコン160kgをルツボ内に追加充填した。これには1時間を要した。そして、原料充填手段をプルチャンバー22内に上昇させた後にゲートバルブ28を閉じて取外し、単結晶引上げのための種結晶の取付け作業を1時間で行った。
そして、原料溶融後に種結晶を原料融液に接触させて単結晶の引上げ工程を行った。この単結晶の引上げは、実施例と同様に、引上げ速度0.5mm/分で行い、完全にプルチャンバーに収容されるまで50時間かかった。
また、メインチャンバー内のホットゾーン部品を清掃するために、ホットゾーン部品が常温となるまで待った。
この結果、本発明の単結晶製造装置を使用して単結晶1本を製造する1サイクルのトータル時間は、約78時間となった。
Claims (10)
- 少なくとも、ルツボを含むホットゾーン部品を収容するメインチャンバーと、
前記ルツボに収容された原料融液から引上げられる単結晶を収納して取り出すためのプルチャンバーとを具備するチョクラルスキー法による単結晶製造装置であって、
該単結晶製造装置は、さらに前記プルチャンバーと置換可能な多目的チャンバーを具備するものであり、
前記多目的チャンバーは、前記ルツボに充填された原料を加熱する加熱手段、前記単結晶の引上げ後に前記ホットゾーン部品を冷却する冷却手段をそれぞれ設置できるものであることを特徴とする単結晶製造装置。
- 前記多目的チャンバーは、前記加熱手段、及び冷却手段の少なくとも1つを前記ルツボの上で上下動させる移動機構を具備するものであることを特徴とする請求項1に記載の単結晶製造装置。
- 前記プルチャンバーと前記多目的チャンバーは、油圧ユニットにより置換可能とされるものであることを特徴とする請求項1又は請求項2に記載の単結晶製造装置。
- 前記加熱手段は少なくとも石英管の内部に熱源を具備するものであり、前記石英管はその内側に前記ルツボに向けて熱線を反射する反射構造を有するものであることを特徴とする請求項1乃至請求項3のいずれか1項に記載の単結晶製造装置。
- 前記熱源はハロゲンランプであることを特徴とする請求項4に記載の単結晶製造装置。
- 前記冷却手段は、冷却媒体が流通される冷却管であることを特徴とする請求項1乃至請求項5のいずれか1項に記載の単結晶製造装置。
- 前記多目的チャンバーは、冷却ガスを導入するガス導入口を具備するものであることを特徴とする請求項1乃至請求項6のいずれか1項に記載の単結晶製造装置。
- 前記多目的チャンバーは、原料多結晶を収容して前記ルツボに充填する原料充填手段を設置できるものであることを特徴とする請求項1乃至請求項7のいずれか1項に記載の単結晶製造装置。
- 前記原料充填手段は、前記原料多結晶を充填したリチャージ管であることを特徴とする請求項8に記載の単結晶製造装置。
- 前記多目的チャンバーは、前記原料充填手段を前記ルツボの上で上下動させる移動機構を具備するものであることを特徴とする請求項8又は請求項9に記載の単結晶製造装置。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/936,450 US8821636B2 (en) | 2008-05-20 | 2009-04-24 | Single-crystal manufacturing apparatus |
JP2010512923A JP5152328B2 (ja) | 2008-05-20 | 2009-04-24 | 単結晶製造装置 |
CN200980112890.2A CN101999014B (zh) | 2008-05-20 | 2009-04-24 | 单晶制造装置 |
DE112009001202T DE112009001202T5 (de) | 2008-05-20 | 2009-04-24 | Einkristallherstellungsvorrichtung |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008131637 | 2008-05-20 | ||
JP2008-131637 | 2008-05-20 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2009141963A1 true WO2009141963A1 (ja) | 2009-11-26 |
Family
ID=41339906
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2009/001888 WO2009141963A1 (ja) | 2008-05-20 | 2009-04-24 | 単結晶製造装置 |
Country Status (7)
Country | Link |
---|---|
US (1) | US8821636B2 (ja) |
JP (1) | JP5152328B2 (ja) |
KR (1) | KR101569711B1 (ja) |
CN (1) | CN101999014B (ja) |
DE (1) | DE112009001202T5 (ja) |
TW (1) | TWI413711B (ja) |
WO (1) | WO2009141963A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012116691A (ja) * | 2010-11-30 | 2012-06-21 | Sumco Corp | 単結晶原料の溶融装置 |
CN113430638A (zh) * | 2021-06-19 | 2021-09-24 | 连城凯克斯科技有限公司 | 用于长晶炉的溶液移除装置及其移除方法、长晶炉和溶液移除方法 |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5605902B2 (ja) * | 2010-12-01 | 2014-10-15 | 株式会社Sumco | シリカガラスルツボの製造方法、シリカガラスルツボ |
DE102015104932B3 (de) * | 2015-03-31 | 2016-06-02 | Heraeus Noblelight Gmbh | Vorrichtung zur Wärmebehandlung |
JP6631406B2 (ja) * | 2016-05-20 | 2020-01-15 | 株式会社Sumco | シリコン単結晶の製造方法 |
CN113235157A (zh) * | 2021-06-24 | 2021-08-10 | 连城凯克斯科技有限公司 | 一种具有双提拉副室的单晶硅生长炉 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63319287A (ja) * | 1987-06-23 | 1988-12-27 | Toshiba Ceramics Co Ltd | 単結晶引上装置 |
JPH09235173A (ja) * | 1996-03-01 | 1997-09-09 | Sumitomo Sitix Corp | 単結晶製造方法及びその装置 |
JPH1081595A (ja) * | 1996-09-04 | 1998-03-31 | Shin Etsu Handotai Co Ltd | 単結晶製造装置および製造方法 |
JP2004244236A (ja) * | 2003-02-12 | 2004-09-02 | Komatsu Electronic Metals Co Ltd | リチャージ装置、インゴット引上げ装置、及びインゴット製造方法 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4410494A (en) * | 1981-04-13 | 1983-10-18 | Siltec Corporation | Apparatus for controlling flow of molten material between crystal growth furnaces and a replenishment crucible |
US6007621A (en) * | 1997-01-31 | 1999-12-28 | Komatsu Elctronic Metals Co., Ltd. | Apparatus for feeding raw material into a quartz crucible and method of feeding the same |
JPH11255593A (ja) | 1998-03-12 | 1999-09-21 | Super Silicon Kenkyusho:Kk | 原料溶解補助装置 |
CN1326518A (zh) * | 1998-06-26 | 2001-12-12 | Memc电子材料有限公司 | 任意大直径无缺陷硅晶体的生长方法 |
JP4498516B2 (ja) | 1999-04-01 | 2010-07-07 | Sumco Techxiv株式会社 | 単結晶インゴット製造装置及び方法 |
JP3587155B2 (ja) | 2000-10-10 | 2004-11-10 | 三菱住友シリコン株式会社 | 結晶成長装置 |
JP4055362B2 (ja) * | 2000-12-28 | 2008-03-05 | 信越半導体株式会社 | 単結晶育成方法および単結晶育成装置 |
CN101006205B (zh) * | 2004-06-18 | 2011-11-09 | Memc电子材料有限公司 | 向晶体形成装置装载熔融源材料的熔化器组件和方法 |
-
2009
- 2009-04-24 WO PCT/JP2009/001888 patent/WO2009141963A1/ja active Application Filing
- 2009-04-24 KR KR1020107025943A patent/KR101569711B1/ko active Active
- 2009-04-24 DE DE112009001202T patent/DE112009001202T5/de not_active Ceased
- 2009-04-24 US US12/936,450 patent/US8821636B2/en active Active
- 2009-04-24 JP JP2010512923A patent/JP5152328B2/ja active Active
- 2009-04-24 CN CN200980112890.2A patent/CN101999014B/zh active Active
- 2009-05-05 TW TW98114895A patent/TWI413711B/zh active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63319287A (ja) * | 1987-06-23 | 1988-12-27 | Toshiba Ceramics Co Ltd | 単結晶引上装置 |
JPH09235173A (ja) * | 1996-03-01 | 1997-09-09 | Sumitomo Sitix Corp | 単結晶製造方法及びその装置 |
JPH1081595A (ja) * | 1996-09-04 | 1998-03-31 | Shin Etsu Handotai Co Ltd | 単結晶製造装置および製造方法 |
JP2004244236A (ja) * | 2003-02-12 | 2004-09-02 | Komatsu Electronic Metals Co Ltd | リチャージ装置、インゴット引上げ装置、及びインゴット製造方法 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012116691A (ja) * | 2010-11-30 | 2012-06-21 | Sumco Corp | 単結晶原料の溶融装置 |
CN113430638A (zh) * | 2021-06-19 | 2021-09-24 | 连城凯克斯科技有限公司 | 用于长晶炉的溶液移除装置及其移除方法、长晶炉和溶液移除方法 |
Also Published As
Publication number | Publication date |
---|---|
KR20110018316A (ko) | 2011-02-23 |
CN101999014B (zh) | 2012-11-14 |
JPWO2009141963A1 (ja) | 2011-09-29 |
US8821636B2 (en) | 2014-09-02 |
CN101999014A (zh) | 2011-03-30 |
JP5152328B2 (ja) | 2013-02-27 |
TWI413711B (zh) | 2013-11-01 |
DE112009001202T5 (de) | 2011-06-22 |
TW201006972A (en) | 2010-02-16 |
KR101569711B1 (ko) | 2015-11-18 |
US20110030612A1 (en) | 2011-02-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5152328B2 (ja) | 単結晶製造装置 | |
WO2009118993A1 (ja) | 単結晶製造装置及び単結晶の製造方法 | |
US8337616B2 (en) | Apparatus and method for producing single crystal | |
JP4103593B2 (ja) | 固形状多結晶原料のリチャージ管及びそれを用いた単結晶の製造方法 | |
CN216237373U (zh) | 连续型锭生长装置 | |
CN109913939B (zh) | 热屏蔽组件、拉晶炉系统及其工作方法 | |
JP2011219312A (ja) | 単結晶引き上げ装置 | |
TW201300584A (zh) | 用於屏蔽拉晶裝置之一部分之進料工具 | |
WO2002031234A1 (fr) | Appareil de croissance de cristal | |
JP2007254162A (ja) | 単結晶製造装置およびリチャージ方法 | |
JP4668100B2 (ja) | 固形状原料のリチャージ管およびこれを用いたリチャージ方法 | |
JP2008063205A (ja) | 固形状原料のリチャージ装置およびこれを用いたリチャージ方法 | |
JP2004224642A (ja) | 単結晶製造装置 | |
JP2009126738A (ja) | シリコン単結晶の製造方法 | |
JP2010006657A (ja) | シリコン単結晶の製造装置およびシリコン単結晶の製造方法 | |
JPH06183876A (ja) | 単結晶引き上げ装置および引き上げ方法 | |
JP2008013376A (ja) | 固形状原料のリチャージ装置およびこれを用いたリチャージ方法 | |
JP2012126601A (ja) | シリコン原料の再利用方法 | |
CN119162647A (zh) | 单晶炉和单晶炉的控制方法 | |
KR20030046718A (ko) | 소구경 실리콘 잉곳 성장챔버 | |
JP2001335397A (ja) | 半導体原料塊支持治具および半導体原料塊ならびにこれを用いた半導体単結晶の製造方法 | |
US20090165703A1 (en) | Silicon ingot fabrication | |
JPH1192275A (ja) | 半導体単結晶製造装置及び半導体単結晶製造方法 | |
KR20100086322A (ko) | 석영 도가니의 변형을 방지하는 구조를 가진 잉곳 성장장치 | |
JP2010275135A (ja) | シリコン精製装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200980112890.2 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09750325 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010512923 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 12936450 Country of ref document: US |
|
ENP | Entry into the national phase |
Ref document number: 20107025943 Country of ref document: KR Kind code of ref document: A |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 09750325 Country of ref document: EP Kind code of ref document: A1 |