WO2009136808A1 - Method for heat treating carbon-containing raw material - Google Patents
Method for heat treating carbon-containing raw material Download PDFInfo
- Publication number
- WO2009136808A1 WO2009136808A1 PCT/RU2008/000288 RU2008000288W WO2009136808A1 WO 2009136808 A1 WO2009136808 A1 WO 2009136808A1 RU 2008000288 W RU2008000288 W RU 2008000288W WO 2009136808 A1 WO2009136808 A1 WO 2009136808A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- containing raw
- carbon
- raw material
- raw materials
- synthesis gas
- Prior art date
Links
- 239000002994 raw material Substances 0.000 title claims abstract description 28
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 title claims abstract description 26
- 229910052799 carbon Inorganic materials 0.000 title claims abstract description 26
- 238000000034 method Methods 0.000 title claims abstract description 25
- 238000010438 heat treatment Methods 0.000 claims description 9
- 239000007787 solid Substances 0.000 claims description 8
- 239000003054 catalyst Substances 0.000 claims description 7
- 239000000126 substance Substances 0.000 claims description 5
- 230000003993 interaction Effects 0.000 claims description 3
- 230000003197 catalytic effect Effects 0.000 claims description 2
- 229910052500 inorganic mineral Inorganic materials 0.000 claims description 2
- 239000011707 mineral Substances 0.000 claims description 2
- 239000007790 solid phase Substances 0.000 claims 1
- 238000003786 synthesis reaction Methods 0.000 abstract description 28
- 230000015572 biosynthetic process Effects 0.000 abstract description 27
- 238000000197 pyrolysis Methods 0.000 abstract description 19
- 150000002430 hydrocarbons Chemical class 0.000 abstract description 11
- 238000004519 manufacturing process Methods 0.000 abstract description 10
- 229930195733 hydrocarbon Natural products 0.000 abstract description 9
- 239000007788 liquid Substances 0.000 abstract description 9
- 150000002894 organic compounds Chemical class 0.000 abstract description 5
- 239000007789 gas Substances 0.000 description 25
- 239000000446 fuel Substances 0.000 description 8
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 7
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 4
- 229910002091 carbon monoxide Inorganic materials 0.000 description 4
- 229910052739 hydrogen Inorganic materials 0.000 description 4
- 229910052760 oxygen Inorganic materials 0.000 description 4
- 239000001301 oxygen Substances 0.000 description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 230000005611 electricity Effects 0.000 description 3
- 239000001257 hydrogen Substances 0.000 description 3
- 238000005979 thermal decomposition reaction Methods 0.000 description 3
- 239000002028 Biomass Substances 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 101100495328 Mus musculus Cdk7 gene Proteins 0.000 description 2
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 2
- 239000000571 coke Substances 0.000 description 2
- 238000002485 combustion reaction Methods 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 230000006378 damage Effects 0.000 description 2
- 239000003546 flue gas Substances 0.000 description 2
- 239000003345 natural gas Substances 0.000 description 2
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 229910052776 Thorium Inorganic materials 0.000 description 1
- 229910052770 Uranium Inorganic materials 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- 229910052788 barium Inorganic materials 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 229910052735 hafnium Inorganic materials 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 229910052741 iridium Inorganic materials 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- VUZPPFZMUPKLLV-UHFFFAOYSA-N methane;hydrate Chemical compound C.O VUZPPFZMUPKLLV-UHFFFAOYSA-N 0.000 description 1
- 239000010705 motor oil Substances 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 239000005416 organic matter Substances 0.000 description 1
- 229910052762 osmium Inorganic materials 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 239000002574 poison Substances 0.000 description 1
- 231100000614 poison Toxicity 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 229910052703 rhodium Inorganic materials 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 229910052712 strontium Inorganic materials 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 229910052716 thallium Inorganic materials 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 229910001868 water Inorganic materials 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J3/00—Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10B—DESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
- C10B49/00—Destructive distillation of solid carbonaceous materials by direct heating with heat-carrying agents including the partial combustion of the solid material to be treated
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10B—DESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
- C10B53/00—Destructive distillation, specially adapted for particular solid raw materials or solid raw materials in special form
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2/00—Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J2300/00—Details of gasification processes
- C10J2300/16—Integration of gasification processes with another plant or parts within the plant
- C10J2300/164—Integration of gasification processes with another plant or parts within the plant with conversion of synthesis gas
- C10J2300/1656—Conversion of synthesis gas to chemicals
- C10J2300/1659—Conversion of synthesis gas to chemicals to liquid hydrocarbons
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J2300/00—Details of gasification processes
- C10J2300/16—Integration of gasification processes with another plant or parts within the plant
- C10J2300/1671—Integration of gasification processes with another plant or parts within the plant with the production of electricity
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E50/00—Technologies for the production of fuel of non-fossil origin
- Y02E50/30—Fuel from waste, e.g. synthetic alcohol or diesel
Definitions
- the invention relates to methods for heat treatment of carbon-containing raw materials in order to obtain synthesis gas and liquid components that can be used for the production of motor fuel and may find application in industrial heat power engineering, electricity production and chemical synthesis of organic compounds.
- Synthetic gas consisting mainly of CO and H 2
- Synthetic gas is the basis for many areas in chemical synthesis, can be used as combustible gas for the production of heat and electricity, as well as for the production of motor oils and fuels for internal combustion engines .
- synthesis gas consisting mainly of CO and H 2
- pyrolysis The thermal decomposition of carbon-containing raw materials without oxygen is called pyrolysis. Pyrolysis is the thermal destruction of complex organic matter to produce simpler compounds - hydrogen, carbon monoxide, water and residual carbon in the form of semicoke. In the process of pyrolysis due to reactions between organic radicals that are formed as a result of thermal degradation, hydrocarbon molecules are formed - methane and other limit and unsaturated compounds. The amount of newly formed hydrocarbons and their composition depends on the initial carbon-containing raw materials and the speed of pyrolysis.
- a known method and device for producing synthesis gas from biomass which provides heating of the feedstock in the first stage to 450 0 F in order to remove part of the oxygen contained in the feedstock, in the second stage, the temperature rises to 650 0 F in order to remove residual oxygen and then an increase in temperature, obtaining high-quality synthesis gas, (see patent ⁇ AN ° 2003/0008928 dated 01/03/03, MPK-7: C07C 27/06)
- a known method for producing hydrocarbons from synthesis gas involving the use of a Fischer-Tropsch catalyst containing one or more metals supported on a base consisting of A12O3, MgO or ZnO.
- the method allows to obtain liquid hydrocarbons from synthesis gas, while high demands are made on the purity of the initial synthesis gas, because sulfur impurities can poison the catalyst, (see WO application 02
- the closest method of the same purpose to the claimed invention according to the maximum number of similar features is a method of producing gas from biomass, in which part of the flue gases resulting from the combustion of fuel enters the heat exchanger and serves to heat the feedstock, thereby reducing the cost of pyrolysis, because part of the heat is transferred by the flue gas to the feedstock, (see US Pat. Ne 6767375 of July 27, 04, MPK-7: ClOJ 3/00).
- the challenge facing the inventors was to create and develop a method for heat treatment of carbon-containing raw materials in order to obtain synthesis gas and liquid components that can be used to produce motor fuel.
- the essence of the claimed invention lies in the fact that the synthesis gas resulting from the pyrolysis of carbon-containing raw materials in the pyrolysis chamber (Fig. 1, item 4) is removed from the pyrolysis completion zone (Fig. 1, item 2) and is fed into the process in the zone the beginning of thermal decomposition (Fig. 1, item 3).
- a countercurrent is organized: the solid carbon-containing feed moves through the heating zone in one direction, and the gas emitted, using a high-temperature fan, is pumped in the other direction, i.e. opposite the course of movement of solid carbon-containing raw materials.
- the remainder of the pyrolysis in the form of a semicoke is sent for further use (Fig. 1, item 5).
- Synthesis gas additionally formed as a result of pyrolysis of carbon-containing raw materials, is supplied to consumers (Fig.
- the synthesis gas used in the circulation to create a counterflow has a high temperature, is in contact with a heated solid carbon-containing raw material, and due to this, hydrocarbons and other complex organic compounds are additionally formed.
- the proposed method combines high temperature pyrolysis and Fischer-Trochp synthesis, while the catalyst is a mineral residue of carbon-containing raw materials.
- additional chemicals such as Si, Zr, Ti, Cu, Zn, Mn, Ba, Co, Ni, Na, K, Ca 5 Sn, Cr, Fe, Li , Tl, Mg, Sr 3 Ga, Sb, V, Hf, Th, Ce, Ge, U, Nb, Ta, Au, Ag, Pt, Pd , Rh, Ir, Os, Ru can be introduced into a solid carbonaceous raw material 'to start of heat treatment.
- the fundamental difference of the proposed method is that without the use of expensive catalysts and special equipment, it is possible to obtain liquid components of motor fuels in the process of thermal conversion of solid carbon-containing raw materials.
- the volume of synthesis gas constantly increasing as a result of thermal decomposition of a carbon-containing material is divided into two parts - the first enters the pyrolysis chamber for interaction with the carbon-containing raw material, and the second, newly formed part is sent for use for other purposes - generating electricity, synthesizing organic compounds or producing thermal energy.
- the technical result of the application of the proposed technical solution consists in the production of purified high-calorie gas, liquid components of motor fuels and semi-coke from a wide range of solid organic raw materials at low production costs.
Landscapes
- Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Combustion & Propulsion (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
The invention relates to methods for heat treating carbon-containing raw material and can be used in industrial heat-power engineering, for electric power production and for chemical synthesis of organic compounds. The inventive method for heat treating carbon-containing raw material makes it possible to use the produced synthesis gas in two direction during a single process: for interacting with the treated carbon-containing raw material with a view of producing liquid hydrocarbons, thereby reducing expenses for additional outside sources maintaining a temperature in a pyrolysis chamber, and for producing electric power, for carrying out organic compound synthesis and for producing heat.
Description
Способ термической обработки углеродсодержащего сырья The method of heat treatment of carbon-containing raw materials
Изобретение относится к способам термической обработки углеродсодержащего сырья с целью получения синтез-газа и жидких компонентов, которые могут быть использованы для производства моторного топлива и может найти применение в промышленной теплоэнергетике, производстве электроэнергии и химическом синтезе органических соединений.The invention relates to methods for heat treatment of carbon-containing raw materials in order to obtain synthesis gas and liquid components that can be used for the production of motor fuel and may find application in industrial heat power engineering, electricity production and chemical synthesis of organic compounds.
Синтетический газ (синтез-газ), состоящий в основном из СО и H2, является основой для многих направлений в химическом синтезе, может применяться в качестве горючего газа для производства тепла и электроэнергии, а также для производства моторных масел и топлива для двигателей внутреннего сгорания. При существующем уровне развития техники крупнотоннажные химические производства получают синтез-газ неполным окислением метана:Synthetic gas (synthesis gas), consisting mainly of CO and H 2 , is the basis for many areas in chemical synthesis, can be used as combustible gas for the production of heat and electricity, as well as for the production of motor oils and fuels for internal combustion engines . At the current level of technological development, large-capacity chemical plants receive synthesis gas by the incomplete oxidation of methane:
2CH4 + O2= 2CO + 4H2 2CH 4 + O 2 = 2CO + 4H 2
До начала широкого использования природного газа в химической промышленности во второй половине XX столетия, синтез-газ получали в основном в коксовых батареях и башенных газификаторах из каменного угля парокислородной конверсией:Before the widespread use of natural gas in the chemical industry in the second half of the 20th century, synthesis gas was obtained mainly in coke oven batteries and tower gasifiers from coal using steam-oxygen conversion:
ЗС + H2O + O2 = 3CO + H2 ZC + H 2 O + O 2 = 3CO + H 2
Значительное увеличение мировых цен на нефть и природный газ заставляют рассматривать другие сырьевые источники для получения синтез- газа, в том числе углеродсодержащее сырьё. Термическое разложение углеродсодержащего сырья без доступа кислорода называется пиролизом. Пиролиз представляет собой термическое разрушение сложного органического вещества с получением более простых соединений - водорода, монооксида углерода, воды и остаточного углерода в виде полукокса. В процессе пиролиза за счет протекания реакций между органическими радикалами, которые образуются в результате термической деструкции, образуются молекулы углеводородов - метана и других предельных и непредельных соединений.
Количество вновь образовавшихся углеводородов и их состав зависит от исходного углеродсодержащего сырья и скорости проведения пиролиза. Известно, что скоростной пиролиз позволяет максимально увеличить выход жидких углеводородов при разложении твердого углеродсодержащего сырья. Открытый в 20-ом веке синтез Фишера-Тропша представляет собой слияние молекул водорода и монооксида углерода с образованием углеводородных цепочек в присутствии железного или кобальтового катализаторов. Образование углеводородов при скоростном пиролизе и синтез Фишера-Тропша имеют одинаковую химическую основу, суть которой состоит во взаимодействии монооксида углерода, водорода и образующихся в результате термической деструкции органических радикалов друг с другом.A significant increase in world prices for oil and natural gas compels us to consider other raw materials for the production of synthesis gas, including carbon-containing raw materials. The thermal decomposition of carbon-containing raw materials without oxygen is called pyrolysis. Pyrolysis is the thermal destruction of complex organic matter to produce simpler compounds - hydrogen, carbon monoxide, water and residual carbon in the form of semicoke. In the process of pyrolysis due to reactions between organic radicals that are formed as a result of thermal degradation, hydrocarbon molecules are formed - methane and other limit and unsaturated compounds. The amount of newly formed hydrocarbons and their composition depends on the initial carbon-containing raw materials and the speed of pyrolysis. It is known that high-speed pyrolysis can maximize the yield of liquid hydrocarbons during the decomposition of solid carbon-containing raw materials. Discovered in the 20th century, the Fischer-Tropsch synthesis is a fusion of hydrogen molecules and carbon monoxide to form hydrocarbon chains in the presence of iron or cobalt catalysts. The formation of hydrocarbons during high-speed pyrolysis and Fischer-Tropsch synthesis have the same chemical basis, the essence of which is the interaction of carbon monoxide, hydrogen and organic radicals formed as a result of thermal destruction of each other.
Известен способ и устройство для получения синтез-газа из биомассы предусматривающий нагревание исходного сырья на первом этапе до 4500F с целью удаления части кислорода, содержащегося в исходном сырье, на втором этапе температура поднимается до 6500F с целью удаления остаточного кислорода и при дальнейшем увеличении температуры, получение качественного синтез-газа, (см. патент CШAN°2003/0008928 от 09.01.03, MПK-7: C07C 27/06)A known method and device for producing synthesis gas from biomass, which provides heating of the feedstock in the first stage to 450 0 F in order to remove part of the oxygen contained in the feedstock, in the second stage, the temperature rises to 650 0 F in order to remove residual oxygen and then an increase in temperature, obtaining high-quality synthesis gas, (see patent СШAN ° 2003/0008928 dated 01/09/03, MPK-7: C07C 27/06)
К причинам, препятствующим достижению указанного ниже технического результата при использовании известного способа относится то, что медленное двухстадийное повышение температуры уменьшает вероятность образования сложных углеводородных соединении и следовательно данный способ не может производить компоненты моторного топлива в необходимом количестве.The reasons that impede the achievement of the technical result indicated below when using the known method include the fact that a slow two-stage temperature increase reduces the likelihood of complex hydrocarbon compounds and, therefore, this method cannot produce the required amount of motor fuel components.
Известен способ для получения углеводородов из синтез-газа предусматривающий использование катализатора Фишера-Тропша, содержащего один или несколько металлов, нанесенных на основу, состоящую из A12OЗ, MgO или ZnO. Способ позволяет получать жидкие углеводороды из синтез-газа, при этом к чистоте исходного синтез-газа предъявляются высокие требования, т.к. примеси серы могут отравить катализатор, (см. заявку WO
02|07883 от 23/07/01 MШC-7; BOlJ 37/02).A known method for producing hydrocarbons from synthesis gas involving the use of a Fischer-Tropsch catalyst containing one or more metals supported on a base consisting of A12O3, MgO or ZnO. The method allows to obtain liquid hydrocarbons from synthesis gas, while high demands are made on the purity of the initial synthesis gas, because sulfur impurities can poison the catalyst, (see WO application 02 | 07883 from 23/07/01 MShC-7; BOlJ 37/02).
К причинам, препятствующим достижению указанного ниже технического результата при использовании известного способа относится то, что высокая стоимость оборудования и катализатора, а также необходимость в тщательной очистке синтез-газа поступающего в процесс, что делает производство жидких углеводородов дорогостоящим.The reasons that impede the achievement of the following technical result when using the known method include the fact that the high cost of equipment and catalyst, as well as the need for thorough cleaning of the synthesis gas entering the process, which makes the production of liquid hydrocarbons expensive.
Наиболее близким способом того же назначения к заявляемому изобретению по максимальному количеству сходных признаков является способ получения газа из биомассы, в котором часть дымовых газов, образующихся в результате горения топлива поступает в теплообменник и служит для нагрева исходного сырья, что позволяет уменьшить затраты на проведения пиролиза, т.к. часть тепла передается дымовыми газами исходному сырью, (см. патент США Ne 6767375 от 27.07.04, MПK-7: ClOJ 3/00).The closest method of the same purpose to the claimed invention according to the maximum number of similar features is a method of producing gas from biomass, in which part of the flue gases resulting from the combustion of fuel enters the heat exchanger and serves to heat the feedstock, thereby reducing the cost of pyrolysis, because part of the heat is transferred by the flue gas to the feedstock, (see US Pat. Ne 6767375 of July 27, 04, MPK-7: ClOJ 3/00).
К причинам, препятствующим достижению указанного ниже технического результата при использовании прототипа, относится то, что время контакта образовывающегося синтез-газа с сырьём, которое подвергается пиролизу недостаточно для образования жидких компонентов моторного топлива.The reasons that impede the achievement of the technical result indicated below when using the prototype include the fact that the contact time of the resulting synthesis gas with raw materials that undergo pyrolysis is insufficient for the formation of liquid components of motor fuel.
Задача, стоящая перед изобретателями, заключалась в создании и разработке способа для термической обработки углеродсодержащего сырья с целью получения синтез-газа и жидких компонентов, которые могут быть использованы для производства моторного топлива.The challenge facing the inventors was to create and develop a method for heat treatment of carbon-containing raw materials in order to obtain synthesis gas and liquid components that can be used to produce motor fuel.
Сущность заявляемого изобретения схематически проиллюстрирована чертежом, фигурой 1, где:The essence of the claimed invention is schematically illustrated in the drawing, figure 1, where:
1 - подача углеродсодержащего сырья,1 - supply of carbon-containing raw materials,
2- выход синтез-газа,2 - synthesis gas output,
3 - вход синтез-газа в пиролизную камеру для создания противотока,3 - input synthesis gas into the pyrolysis chamber to create a countercurrent,
4 - пиролизная камера,4 - pyrolysis chamber,
5 - выход остатка от пиролиза
6- отбор синтез-газа для потребителей.5 - output residue from pyrolysis 6- selection of synthesis gas for consumers.
Сущность заявляемого изобретения состоит в том, что синтез-газ, образующийся в результате пиролиза углеродсодержащего сырья в пиролизной камере (фиг. 1, поз. 4) отводится из зоны завершения пиролиза (фиг. 1, поз. 2) и подается в процесс в зону начала термического разложения (фиг. 1, поз. 3). Таким образом, организуется противоток: твердое углеродсодержащее сырьё движется через зону нагрева в одну сторону, а выделяемый газ, с помощью высокотемпературного вентилятора, прокачивается в другую сторону, т.е. напротив хода движения твердого углеродсодержащего сырья. Остаток от пиролиза в виде полукокса направляется для дальнейшего использования (фиг.l, поз. 5). Синтез-газ, дополнительно образованный в результате пиролиза углеродсодержащего сырья, поступает потребителям (фиг.l, пoз.6). Синтез-газ, используемый в обороте для создания противотока, имеет высокую температуру, контактирует с разогретым твердым углеродсодержащим сырьем и за счет этого дополнительно образуется углеводороды и другие сложные органические соединения. Предлагаемый способ сочетает в себе высокотемпературный пиролиз и синтез Фишера-Трошпа, при этом катализатором является минеральный остаток углеродсодержащего сырья. В случае низкой зольности сырья или отсутствия в золе необходимых каталитических компонентов, дополнительные химические вещества, такие как Si, Zr, Ti, Cu, Zn, Mn, Ba, Со, Ni, Na, К, Ca5 Sn, Cr, Fe, Li, Tl, Mg, Sr3 Ga, Sb, V, Hf, Th, Ce, Ge, U, Nb, Та, Au, Ag, Pt, Pd, Rh, Ir, Os, Ru могут вводится в твердое углеродсодержащее сырьё' до начала термической обработки. Принципиальным отличием заявляемого способа является то, что он позволяет без применения дорогостоящих катализаторов и специального оборудования получить жидкие компоненты моторных топлив в процессе термической конверсии твердого углеродсодержащего сырья. Постоянно увеличивающийся в результате термического разложения углеродсодержащего материала объем синтез-газа делится на две части - первая поступает обратно в пиролизную камеру для взаимодействия с уrлеродсодержащим сырьем, а вторая, вновь образованная
часть, направляется для использования в других целях - выработки электроэнергии, синтезе органических соединений или производстве тепловой энергии.The essence of the claimed invention lies in the fact that the synthesis gas resulting from the pyrolysis of carbon-containing raw materials in the pyrolysis chamber (Fig. 1, item 4) is removed from the pyrolysis completion zone (Fig. 1, item 2) and is fed into the process in the zone the beginning of thermal decomposition (Fig. 1, item 3). Thus, a countercurrent is organized: the solid carbon-containing feed moves through the heating zone in one direction, and the gas emitted, using a high-temperature fan, is pumped in the other direction, i.e. opposite the course of movement of solid carbon-containing raw materials. The remainder of the pyrolysis in the form of a semicoke is sent for further use (Fig. 1, item 5). Synthesis gas, additionally formed as a result of pyrolysis of carbon-containing raw materials, is supplied to consumers (Fig. The synthesis gas used in the circulation to create a counterflow has a high temperature, is in contact with a heated solid carbon-containing raw material, and due to this, hydrocarbons and other complex organic compounds are additionally formed. The proposed method combines high temperature pyrolysis and Fischer-Trochp synthesis, while the catalyst is a mineral residue of carbon-containing raw materials. In the case of low ash content of the feedstock or the absence of the necessary catalytic components in the ash, additional chemicals such as Si, Zr, Ti, Cu, Zn, Mn, Ba, Co, Ni, Na, K, Ca 5 Sn, Cr, Fe, Li , Tl, Mg, Sr 3 Ga, Sb, V, Hf, Th, Ce, Ge, U, Nb, Ta, Au, Ag, Pt, Pd , Rh, Ir, Os, Ru can be introduced into a solid carbonaceous raw material 'to start of heat treatment. The fundamental difference of the proposed method is that without the use of expensive catalysts and special equipment, it is possible to obtain liquid components of motor fuels in the process of thermal conversion of solid carbon-containing raw materials. The volume of synthesis gas constantly increasing as a result of thermal decomposition of a carbon-containing material is divided into two parts - the first enters the pyrolysis chamber for interaction with the carbon-containing raw material, and the second, newly formed part is sent for use for other purposes - generating electricity, synthesizing organic compounds or producing thermal energy.
Технический результат применения заявляемого технического решения заключается в производстве очищенного высококалорийного газа, жидких компонентов моторных топлив и полукокса из широкого спектра твердого органического сырья при низких производственных затратах.The technical result of the application of the proposed technical solution consists in the production of purified high-calorie gas, liquid components of motor fuels and semi-coke from a wide range of solid organic raw materials at low production costs.
При анализе уровня техники не обнаружено подобного сочетания технической эффективности, экономичности и низкой чувствительности к качеству сырья, что позволяет сделать вывод о том, что заявляемое техническое решение соответствует критериям «нoвизнa», «изoбpeтaтeльcкий уровень)) и «пpoмышлeннaя применимость)).
In the analysis of the prior art, such a combination of technical efficiency, economy and low sensitivity to the quality of raw materials was not found, which allows us to conclude that the claimed technical solution meets the criteria of "novelty", "inventive step)) and" industrial applicability)).
Claims
1. Способ термической обработки углеродсодержащего сырья отличающийся тем, что твердое углеродсодержащее сырьё движется через зону нагрева в одну сторону, а выделяемый газ, с помощью высокотемпературного вентилятора, прокачивается в другую сторону.1. The method of heat treatment of carbon-containing raw materials characterized in that the solid carbon-containing raw materials moves through the heating zone in one direction, and the gas emitted, using a high-temperature fan, is pumped in the other direction.
2. Способ по п. I5 отличающийся тем, что катализатором процесса является минеральный остаток углеродсодержащего сырья.2. The method according to p. I 5 characterized in that the catalyst for the process is a mineral residue of carbon-containing raw materials.
3. Способ по п.1 , отличающийся тем, что в исходное углеродсодержащее сырьё могут добавляться вещества, усиливающие каталитический эффект взаимодействия газовой и твердой фаз. 3. The method according to claim 1, characterized in that substances that enhance the catalytic effect of the interaction of the gas and solid phases can be added to the carbonaceous feedstock.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/RU2008/000288 WO2009136808A1 (en) | 2008-05-08 | 2008-05-08 | Method for heat treating carbon-containing raw material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/RU2008/000288 WO2009136808A1 (en) | 2008-05-08 | 2008-05-08 | Method for heat treating carbon-containing raw material |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2009136808A1 true WO2009136808A1 (en) | 2009-11-12 |
Family
ID=41264748
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/RU2008/000288 WO2009136808A1 (en) | 2008-05-08 | 2008-05-08 | Method for heat treating carbon-containing raw material |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2009136808A1 (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SU78838A1 (en) * | 1948-04-12 | 1975-05-05 | Method for the production of combustible gases and gases for the synthesis of solid fuels | |
SU81613A1 (en) * | 1947-11-28 | 1975-05-25 | The method of operation of the gas generator countercurrent process | |
US20030008928A1 (en) * | 2001-07-05 | 2003-01-09 | Klepper Robert E. | Method and apparatus for producing synthesis gas from carbonaceous materials |
-
2008
- 2008-05-08 WO PCT/RU2008/000288 patent/WO2009136808A1/en active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SU81613A1 (en) * | 1947-11-28 | 1975-05-25 | The method of operation of the gas generator countercurrent process | |
SU78838A1 (en) * | 1948-04-12 | 1975-05-05 | Method for the production of combustible gases and gases for the synthesis of solid fuels | |
US20030008928A1 (en) * | 2001-07-05 | 2003-01-09 | Klepper Robert E. | Method and apparatus for producing synthesis gas from carbonaceous materials |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Bakhtyari et al. | Hydrogen production through pyrolysis | |
Navarro et al. | Hydrogen production from renewable sources: biomass and photocatalytic opportunities | |
Gao et al. | A novel reforming method for hydrogen production from biomass steam gasification | |
Kırtay | Recent advances in production of hydrogen from biomass | |
RU2600373C2 (en) | Partial oxidation of methane and higher hydrocarbons in flows of synthesis gas | |
Ptasinski | Thermodynamic efficiency of biomass gasification and biofuels conversion | |
US20110152593A1 (en) | Production of hydrocarbon liquids | |
Speight | Gasification processes for syngas and hydrogen production | |
Moazezi et al. | Hydrothermal liquefaction of Chlorella vulgaris and catalytic upgrading of product: Effect of process parameter on bio-oil yield and thermodynamics modeling | |
Rajagopal et al. | Photocatalytic reforming of aqueous phase obtained from liquefaction of household mixed waste biomass for renewable bio-hydrogen production | |
HRP20220930T1 (en) | Process for producing a substitute natural gas from synthesis gas | |
GB2253406A (en) | Electrical power generation | |
WO2020023452A1 (en) | Methods and systems for the generation of high purity hydrogen with co2 capture from biomass and biogenic wastes | |
JP2010501685A (en) | Production method of fuel from waste | |
Fang et al. | Optimizing performance of iron-rich sludge ash as cost-effective oxygen carrier by calcium-based additive for syngas production from biomass chemical-looping gasification | |
US20070100003A1 (en) | Hybrid system for Gasification of Biomass and conversion to synthesis gas suitable for fuel synthesis, with 3 potential applications | |
Kan et al. | Hydrogen production from biomass | |
CN1648034A (en) | Process for preparing synthetic gas by reforming carbon dioxide-methane | |
WO2009136808A1 (en) | Method for heat treating carbon-containing raw material | |
RU2591075C1 (en) | Poly-generating energy system | |
WO2021044125A1 (en) | Process for producing one or more hydrocarbon products | |
Samanta et al. | Advanced Hydrogen Production through Methane Cracking: A Review | |
Yabe et al. | Development of coal partial hydropyrolysis process | |
RU41307U1 (en) | INSTALLATION OF GASES OF VARIOUS HEAT CAPACITY FROM OIL RESIDUES | |
Singh et al. | Thermochemical hydrogen production |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 08874219 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 08874219 Country of ref document: EP Kind code of ref document: A1 |