[go: up one dir, main page]

WO2009112102A1 - Verfahren und vorrichtung zum betreiben eines fahrzeuges mit hybridantrieb - Google Patents

Verfahren und vorrichtung zum betreiben eines fahrzeuges mit hybridantrieb Download PDF

Info

Publication number
WO2009112102A1
WO2009112102A1 PCT/EP2008/066128 EP2008066128W WO2009112102A1 WO 2009112102 A1 WO2009112102 A1 WO 2009112102A1 EP 2008066128 W EP2008066128 W EP 2008066128W WO 2009112102 A1 WO2009112102 A1 WO 2009112102A1
Authority
WO
WIPO (PCT)
Prior art keywords
drive unit
driver
pressure point
accelerator pedal
drive
Prior art date
Application number
PCT/EP2008/066128
Other languages
English (en)
French (fr)
Inventor
Ernst Brocke
Robert Lock
Markus Ganswind
Herbert Prickarz
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Priority to CN200880127933XA priority Critical patent/CN101965285A/zh
Priority to US12/736,041 priority patent/US20110106353A1/en
Priority to EP08873350A priority patent/EP2254783A1/de
Priority to JP2010550046A priority patent/JP2011517634A/ja
Publication of WO2009112102A1 publication Critical patent/WO2009112102A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/15Control strategies specially adapted for achieving a particular effect
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K26/00Arrangements or mounting of propulsion unit control devices in vehicles
    • B60K26/02Arrangements or mounting of propulsion unit control devices in vehicles of initiating means or elements
    • B60K26/021Arrangements or mounting of propulsion unit control devices in vehicles of initiating means or elements with means for providing feel, e.g. by changing pedal force characteristics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/08Interaction between the driver and the control system
    • B60W50/14Means for informing the driver, warning the driver or prompting a driver intervention
    • B60W50/16Tactile feedback to the driver, e.g. vibration or force feedback to the driver on the steering wheel or the accelerator pedal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/08Interaction between the driver and the control system
    • B60W50/14Means for informing the driver, warning the driver or prompting a driver intervention
    • B60W2050/143Alarm means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/10Accelerator pedal position
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Definitions

  • the invention relates to a method for operating a vehicle having a hybrid drive, which is driven by a first drive unit designed as an internal combustion engine and a second drive unit, preferably an electric motor, wherein the first drive unit and the second drive unit contribute individually or jointly to drive the hybrid vehicle and a Apparatus for carrying out the method.
  • hybrid drives In which various drives are used for a drive task.
  • the individual motors in the hybrid drive can work together differently. They either act simultaneously or only one drive unit acts on the vehicle to be moved.
  • the coordination of the drive units takes place via a motor control, which decides on the connection and disconnection of the various drive units depending on the operating conditions of the vehicle and the driver's drive request.
  • the invention has for its object to provide a method for operating a vehicle with hybrid drive, in which the driver is informed about the connection and disconnection of the various drive units.
  • the advantage of the haptic feedback which takes place when connecting the previously unused drive unit to the already in operation drive unit to the driver, is that the driver simply contains information about which drive unit is in operation without his attention from general driving is distracted. The driver can quickly and easily recognize when the other drive is connected to torque generation. The driver is thus offered an extended control over the vehicle.
  • a particularly fast haptic feedback is given to the driver when this is done via an accelerator pedal, by which a driver's desired torque is entered. Additional information sources for the driver can be dispensed with.
  • the accelerator pedal thus fulfills two tasks, once the transmission of the driver's speed request to a motor control, on the other hand, the accelerator pedal works as a source of information.
  • the driver feels with his foot that a second drive unit has been switched on. This information can be done for example by the vibration of the accelerator pedal.
  • the haptic feedback via a pressure point in the pedal travel of the accelerator pedal.
  • the driver senses a resistance which is normal, e.g. linear movement during operation of the accelerator pedal disturbs. In this way, the driver receives the desired information about the connection of another drive unit.
  • the pressure point can be calculated by an engine controller as a function of operating data of the hybrid vehicle, such as the state of charge of the battery of the electric motor, the torque request and the driver's desired torque. Depending on this data, the pressure point is variable. By means of this variable pressure point, the driver receives the Information as of when the internal combustion engine or the electric motor is switched on. In this case, the case is considered that the engine is forcibly started, even if the driver's request does not require it, but the drop in the battery power of the electric motor makes this necessary to maintain the once achieved driving performance or to ensure the ability to drive.
  • the pedal travel is divided by at least one pressure point into two areas, which differ by the resistance that opposes the accelerator pedal to the driver.
  • the accelerator pedal in a region in which the vehicle is driven, for example, only with an electric motor, smoother than after overcoming the pressure point, which signals the connection of the engine.
  • the accelerator pedal is heavier, which means that the driver has to use more force to pedal the accelerator pedal.
  • the engine control system eliminates the pressure point when it is not possible to connect the second drive unit due to an operating strategy.
  • connection of a drive unit is visually and / or acoustically displayed.
  • An optical or acoustic signal increases the information content and safety of the driver information.
  • a device for operating a vehicle with hybrid drive which with a first designed as an internal combustion engine drive unit and a second Drive unit, preferably an electric motor, is driven, wherein the first drive unit and the second drive unit individually or collectively contribute to the drive of the vehicle, means are provided which output a haptic feedback to the driver when switching the previously unused drive unit to the drive unit in operation.
  • the information is particularly fast when the haptic feedback on a driver's desired torque input accelerator pedal takes place.
  • the accelerator pedal outputs the haptic feedback via a pressure point in the pedal travel. Feedback is particularly easy if the pressure point is formed by a resistance in the pedal travel.
  • the pedal travel of the accelerator pedal is divided by the pressure point into two regions, which differ by the resistance of the accelerator pedal.
  • Figure 1 power-time diagram during operation with the electric motor
  • FIG. 3 Realization possibilities of the haptic accelerator pedal characteristic
  • Figure 4 embodiment of a hybrid drive of a vehicle
  • an internal combustion engine and an electric motor are considered as drive units of the vehicle.
  • a hybrid drive The behavior of a hybrid drive will be explained in more detail with reference to FIG. First, the driving takes place with the electric motor. In this case, the torque request M or the total power P ges is shown over the time t.
  • a dashed line 1 parallel to the time axis t documents the maximum power of the electric motor.
  • a solid curve 2 describes the driver's desired torque, which is input by the driver of the vehicle by the operation of an accelerator pedal. The near the solid curve
  • the driver's desired torque is initially generated only by the electric motor.
  • the actual torque of the electric motor is equivalent to the driver's desired torque.
  • the response time of the electric motor on the driver's request is very fast, which is why both curves 2 and
  • the driver feels at the point of the pressure point 4, a resistor as information that now the internal combustion engine is switched on in order to achieve a total power P ges , which is above the maximum power of the electric motor. But does the driver satisfy the current torque in the amount of the maximum power of the electric motor, as shown in FIG. 1, or does it remain with its requirement below or at the level of the pressure point 4, is continued purely electrically.
  • the operating strategy of the engine control unit provides that after a predetermined period in which the drive of the vehicle takes place only via the electric motor, the internal combustion engine is compulsorily started (point 7) to compensate for the drop in the maximum power of the electric motor and maintain the driver's desired torque accordingly to be able to.
  • FIG. 2 also shows a power-time diagram in which the vehicle drives with an internal combustion engine. Again, the driver's request is shown with a solid curve 2, while the actual torque of the internal combustion engine is shown with a dashed curve 3. The maximum power of the internal combustion engine is documented by the solid horizontal line 8.
  • the curve 2 representing the driver's desired torque and the curve 3 representing the actual moment of the internal combustion engine are approximately equal.
  • the driver only slows down the accelerator and the engine can follow the driver request torque request well.
  • the internal combustion engine can not provide the actual torque to the desired extent with respect to the driver's desired torque.
  • the curve 2 and the curve 3 diverge due to the inertia of the internal combustion engine.
  • the engine control unit switches in the area 9 to the electric motor
  • the driver is signaled via a further pressure point 11 that the electric motor is switched on to generate an additional torque in order to fulfill the driver's request, which is documented by a second solid line 12.
  • FIG. 1 Various implementation options for the haptic accelerator pedal characteristic can be seen in FIG.
  • the force Fpedai which is necessary to move the gas pedal, is shown above the Pedal Path Spedai.
  • the representation a) shows the dependency for an accelerator pedal in a conventional vehicle. In the selected example, there is a linear relationship between the force F Pe dai and the distance s Pe dai traveled with this force, which means that the same path is always traveled with a constant force.
  • a pressure point 4 is shown, which is displaceable in dependence on the available engine torque or the total power.
  • a constant force which is lower than in a conventional vehicle (dashed line) is used for a given pedal travel relatively high power is expended.
  • This point appears to the driver as a pressure point 4 and signals him the connection of a drive unit in the manner already explained.
  • this pressure point 4 is set, depends on the operating strategy of the engine control unit and is therefore variable. Once pressure point 4 has been overcome, the pedal can be moved more easily in section 13 1 ". Another possibility is shown in illustration c).
  • a predetermined first section 14 1 the force Fpedai necessary for a particular path s Pe dai runs linearly.
  • the subsequent section 14 has a greater force to be spent on the road, as in the first section 14 1. This can be easily set on the free movement of the accelerator pedal.
  • the accelerator is smooth, while the second Section 14 "is more difficult.
  • the point at which the transition from smooth to heavy is made is the pressure point 4.
  • the representation d) shows another example in which the
  • Pedal mobility is divided into three sections. With a rising force Fpedai in the first section 15 1 a certain path s Pe dai is covered. In the second section 15 "with a higher force F Pe dai a small pedal distance s Pe dai must be overcome, while in the third section 15 1 " the force F Pe dai to overcome the path s Pe dai is again lower and in the same order of magnitude first section 15 1 lies.
  • the horizontal arrow in the illustrations 3b to 3f indicates the battery power of the electric motor, which can change several times according to the arrows during a trip, whereby the pressure point 4 shifts accordingly.
  • FIG. 4 shows a possible embodiment of a hybrid drive of a vehicle, with which the method described above can be performed.
  • This hybrid drive has a combustion engine 20 as the first drive unit.
  • the internal combustion engine 20 is connected to a transmission 22 via a drive train 21.
  • the transmission 22 in turn leads to a differential 23, which via the vehicle axle 24 with the wheel
  • a second drive unit is an electric motor in the example given
  • the electric motor 26 has its own drive train 27, via which it is connected to the transmission 22.
  • the transmission 22 transmits the power provided by the electric motor 26 via the differential 23 and the wheel axle 24 to the wheel 25th
  • the control and regulation of the internal combustion engine 20 takes place via the engine control unit 28 and the control and regulation of the electric motor 26 via the electric motor control unit 29.
  • the engine control unit 28 and the electric motor control unit 29 communicate with an accelerator pedal electronics 30, which is connected to the accelerator pedal 31.
  • the accelerator pedal electronics 30 converts the signals output by the engine control unit 28 and the electric motor control unit 29 into mechanical states such as pressure point and accessibility of the accelerator pedal 31 via an electromechanical transducer 32 contained in them.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Human Computer Interaction (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Auxiliary Drives, Propulsion Controls, And Safety Devices (AREA)
  • Control Of Throttle Valves Provided In The Intake System Or In The Exhaust System (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zum Betreiben eines Fahrzeuges mit Hybridantrieb, welches mit einer ersten als Verbrennungsmotor ausgebildeten Antriebseinheit und einer zweiten Antriebseinheit, vorzugsweise einem Elektromotor, angetrieben wird, wobei die erste Antriebseinheit und die zweite Antriebseinheit einzeln oder gemeinsam zum Antrieb des Fahrzeuges beitragen. Bei einem Verfahren zum Betreiben eines Fahrzeuges mit Hybridantrieb, bei welchem der Fahrer über das Zuschalten der verschiedenen Antriebseinheiten informiert wird, erfolgt beim Zuschalten der bisher ungenutzten Antriebseinheit zu der im Betrieb befindlichen Antriebseinheit eine haptische Rückmeldung an den Fahrer.

Description

Beschreibung
Titel
Verfahren und Vorrichtung zum Betreiben eines Fahrzeuges mit Hybridantrieb
Stand der Technik
Die Erfindung betrifft ein Verfahren zum Betreiben eines Fahrzeuges mit Hybridantrieb, welches mit einer ersten als Verbrennungsmotor ausgebildeten Antriebseinheit und einer zweiten Antriebseinheit, vorzugsweise einem Elektromotor, angetrieben wird, wobei die erste Antriebseinheit und die zweite Antriebseinheit einzeln oder gemeinsam zum Antrieb des Hybridfahrzeuges beitragen sowie eine Vorrichtung zur Durchführung des Verfahrens.
Es werden verstärkt Fahrzeuge mit Hybridantrieben entwickelt, bei welchem verschiedene Antriebe für eine Antriebsaufgabe genutzt werden. Dabei können die einzelnen Motoren in dem Hybridantrieb unterschiedlich zusammenarbeiten. Sie wirken entweder gleichzeitig oder es wirkt nur eine Antriebseinheit auf das zu bewegenden Fahrzeug. Die Koordinierung der Antriebseinheiten erfolgt dabei über eine Motorsteuerung, die über die Zu- und Abschaltung der verschiedenen Antriebseinheiten in Abhängigkeit der Betriebsbedingungen des Fahrzeuges und des Fahrerantriebswunsches entscheidet.
Offenbarung der Erfindung
Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren zum Betreiben eines Fahrzeuges mit Hybridantrieb anzugeben, bei welchem der Fahrer über das Zu- und Abschalten der verschiedenen Antriebseinheiten informiert wird. Der Vorteil der haptischen Rückmeldung, welche beim Zuschalten der bisher ungenutzten Antriebseinheit zu der bereits im Betrieb befindlichen Antriebseinheit an den Fahrer erfolgt, besteht darin, dass der Fahrer auf einfache Weise eine Information darüber enthält, welche Antriebseinheit im Betrieb ist, ohne dass seine Aufmerksamkeit vom allgemeinen Fahrgeschehen abgelenkt wird. Der Fahrer kann schnell und einfach erkennen, wann der jeweils andere Antrieb zur Momentenerzeugung zugeschaltet wird. Dem Fahrer wird somit eine erweiterte Kontrolle über das Fahrzeug geboten.
Eine besonders schnelle haptische Rückmeldung erhält der Fahrer, wenn diese über ein Fahrpedal erfolgt, durch welches ein Fahrerwunschmoment eingegeben wird. Auf zusätzliche Informationsquellen für den Fahrer kann verzichtet werden.
Das Fahrpedal erfüllt somit zwei Aufgaben, einmal die Übermittlung des Fahrergeschwindigkeitswunsches an eine Motorsteuerung, zum anderen arbeitet das Fahrpedal als Informationsquelle. Der Fahrer spürt mit seinem Fuß, dass eine zweite Antriebseinheit zugeschaltet wurde. Diese Information kann beispielsweise durch die Vibration des Fahrpedals erfolgen.
In einer vorteilhaften Ausbildung erfolgt die haptische Rückmeldung über einen Druckpunkt im Pedalweg des Fahrpedals. Bei der Betätigung des Fahrpedals verspürt der Fahrer einen Widerstand, welcher den normalen, z.B. linearen Bewegungsablauf bei der Betätigung des Fahrpedals stört. Auf diese Weise erhält der Fahrer die gewünschte Information über die Zuschaltung einer weiteren Antriebseinheit.
Der Druckpunkt lässt sich von einer Motorsteuerung in Abhängigkeit von Betriebsdaten des Hybridfahrzeuges wie z.B. dem Ladezustand der Batterie des Elektromotors, der Drehmomentenanforderung sowie dem Fahrerwunschmoment berechnen. In Abhängigkeit von diesen Daten ist der Druckpunkt variabel. Mittels dieses variablen Druckpunkts erhält der Fahrer die Information, ab wann der Verbrennungsmotor bzw. der Elektromotor zugeschaltet wird. Dabei wird auch der Fall berücksichtigt, dass der Verbrennungsmotor zwangsweise gestartet wird, auch wenn der Fahrerwunsch es nicht erfordert, aber der Abfall der Batterieleistung des Elektromotors dies erforderlich macht, um die einmal erreichte Fahrleistung weiter aufrecht erhalten zu können oder die Fahrtüchtigkeit zu gewährleisten.
In einer Weiterbildung der Erfindung wird der Pedalweg durch mindestens einen Druckpunkt in zwei Bereiche unterteilt, die sich durch den Widerstand, den das Fahrpedal dem Fahrer entgegensetzt, unterscheiden. So ist das Fahrpedal in einem Bereich, in welchem das Fahrzeug beispielsweise nur mit einem Elektromotor angetrieben wird, leichtgängiger als nach Überwindung des Druckpunktes, der die Zuschaltung des Verbrennungsmotors signalisiert. In diesem zweiten Bereich ist das Fahrpedal schwergängiger, was bedeutet, dass der Fahrer mehr Kraft aufwenden muss, um das Fahrpedal durchzutreten.
Die Motorsteuerung hebt beim Betrieb des Verbrennungsmotors den Druckpunkt auf, wenn ein Zuschalten der zweiten Antriebseinheit auf Grund einer Betriebsstrategie nicht möglich ist. Bei der Verwendung eines Elektromotors als zweite Antriebseinheit tritt dies z. B. bei einem zu niedrigen Batterieladezustand auf, so dass der Elektromotor zur Erhöhung der Gesamtleistung nicht verwendet werden kann. Auch bei niedrigen Temperaturen ist die Batterie des Elektromotors nicht so leistungsfähig. Dasselbe gilt, wenn auf Grund des Batteriezustandes ein rein elektrisches Fahren mit dem Elektromotor nicht möglich ist.
Vorteilhafterweise wird die Zuschaltung einer Antriebseinheit optisch und/oder akustisch angezeigt. Ein optisches oder akustisches Signal erhöht den Informationsgehalt und die Sicherheit der Fahrerinformation.
In einer anderen Weiterbildung der Erfindung sind bei einer Vorrichtung zum Betreiben eines Fahrzeuges mit Hybridantrieb, welches mit einer ersten als Verbrennungsmotor ausgebildeten Antriebseinheit und einer zweiten Antriebseinheit, vorzugsweise einem Elektromotor, angetrieben wird, wobei die erste Antriebseinheit und die zweite Antriebseinheit einzeln oder gemeinsam zum Antrieb des Fahrzeuges beitragen, Mittel vorhanden, die beim Zuschalten der bisher ungenutzten Antriebseinheit zu der im Betrieb befindlichen Antriebseinheit eine haptische Rückmeldung an den Fahrer ausgeben. Durch diese Maßnahme wird der Fahrer über das Zu- und Abschalten der Antriebseinheiten informiert.
Die Information erfolgt besonders schnell, wenn die haptische Rückmeldung über ein das Fahrerwunschmoment eingebendes Fahrpedal erfolgt.
Vorteilhafterweise gibt das Fahrpedal die haptische Rückmeldung über einen Druckpunkt im Pedalweg aus. Besonders einfach erfolgt die Rückmeldung, wenn der Druckpunkt durch einen Widerstand im Pedalweg gebildet wird. In einer anderen Ausgestaltung ist der Pedalweg des Fahrpedals durch den Druckpunkt in zwei Bereiche unterteilt, die sich durch den Widerstand des Fahrpedals unterscheiden.
Die Erfindung lässt zahlreiche Ausführungsformen zu. Eine davon soll anhand der in der Zeichnung dargestellten Figuren näher erläutert werden.
Es zeigt:
Figur 1: Leistungs-Zeit- Diagramm beim Betrieb mit dem Elektromotor und
Zuschaltung des Verbrennungsmotors
Figur 2: Leistungs-Zeit-Diagramm beim Betrieb mit dem
Verbrennungsmotor und Zuschaltung des Elektromotors
Figur 3: Realisierungsmöglichkeiten der haptischen Fahrpedalcharakteristik
Figur 4: Ausführungsform eines Hybridantriebes eines Fahrzeuges Bei den nachfolgenden Beispielen werden als Antriebsaggregate des Fahrzeuges ein Verbrennungsmotor und ein Elektromotor betrachtet.
Das Verhalten eines Hybridantriebs soll anhand von Figur 1 näher erläutert werden. Zunächst erfolgt der Fahrbetrieb mit dem Elektromotor. Dabei ist die Momentenanforderung M bzw. die Gesamtleistung Pges über der Zeit t dargestellt. Eine zur Zeitachse t parallel verlaufene Strichlinie 1 dokumentiert die maximale Leistung des Elektromotors. Eine durchgezogene Kurve 2 beschreibt das Fahrerwunschmoment, welches der Fahrer des Fahrzeuges durch die Betätigung eines Gaspedals eingibt. Die in der Nähe der durchgezogenen Kurve
2 für das Fahrerwunschmoment verlaufende gestrichelte Kurve 3 beschreibt das Ist- Moment des Elektromotors.
Wie aus der Figur 1 ersichtlich, wird das Fahrerwunschmoment zunächst nur durch den Elektromotor erzeugt. Das Ist-Moment des Elektromotors verläuft äquivalent zum Fahrerwunschmoment. Dabei ist die Ansprechzeit des Elektromotors auf den Fahrerwunsch sehr schnell, weshalb beide Kurven 2 und
3 sehr nah aneinander verlaufen. Im Schnittpunkt des Fahrerwunschmomentes mit der die Maximalleistung des Elektromotors darstellenden gestrichelten Linie 1 liegt der Druckpunkt 4. Dieser Druckpunkt 4 wird durch ein Motorsteuergerät erzeugt, welches das durch das Gaspedal dokumentierte Fahrerwunschmoment detektiert. Da an dieser Stelle die Leistung des Elektromotors nicht mehr ausreicht, um den Fahrerwunsch zu befriedigen, muss das Motorsteuergerät den Verbrennungsmotor zuschalten. Darüber wird der Fahrer über den Druckpunkt 4 informiert, welchen das Motorsteuergerät an das Gaspedal ausgibt. Die Zuschaltung des Verbrennungsmotors ist in Figur 1 durch eine durchgezogene Linie 5 dargestellt.
Der Fahrer verspürt an der Stelle des Druckpunktes 4 einen Widerstand als Information, dass nun der Verbrennungsmotor zugeschaltet wird, um eine Gesamtleistung Pges zu erzielen, die über der Maximalleistung des Elektromotors liegt. Genügt dem Fahrer aber das aktuelle Drehmoment in Höhe der Maximalleistung des Elektromotors, wie in Figur 1 dargestellt, bzw. bleibt er mit seiner Anforderung unterhalb oder in Höhe des Druckpunktes 4, wird rein elektrisch weitergefahren.
Bei der rein elektrischen Fahrt fällt allerdings mit der Zeit die Batterieleistung ab, was einen Leistungsabfall des Elektromotors bedingt, der im Abschnitt 6 dargestellt ist. Daher sieht die Betriebsstrategie des Motorsteuergerätes vor, dass nach einem vorgegebenen Zeitraum, in welchem der Antrieb des Fahrzeuges nur über den Elektromotor erfolgt, der Verbrennungsmotor zwingend gestartet wird (Punkt 7), um den Abfall der Maximalleistung des Elektromotors zu kompensieren und das Fahrerwunschmoment entsprechend aufrechterhalten zu können.
Figur 2 zeigt ebenfalls ein Leistungs-Zeit- Diagramm, bei welchem das Fahrzeug mit einem Verbrennungsmotor fährt. Auch hier wird der Fahrerwunsch mit einer durchgezogenen Kurve 2 dargestellt, während das Ist-Moment des Verbrennungsmotors mit einer gestrichelten Kurve 3 dargestellt ist. Die Maximalleistung des Verbrennungsmotors ist durch die durchgezogene waagerechte Linie 8 dokumentiert.
Anfänglich verlaufen die das Fahrerwunschmoment darstellende Kurve 2 und die das Ist-Moment des Verbrennungsmotors darstellende Kurve 3 annähernd gleich. In dieser Phase tritt der Fahrer das Gaspedal nur langsam durch und der Verbrennungsmotor kann der Fahrerwunschmomentanforderung gut folgen.
Betätigt der Fahrer das Gaspedal aber schneller, kann der Verbrennungsmotor das Ist-Moment nicht im gewünschten Maße gegenüber dem Fahrerwunschmoment bereitstellen. Die Kurve 2 und die Kurve 3 laufen auf Grund der Trägheit des Verbrennungsmotors auseinander. Bei einem sehr schnellen Durchtreten des Gaspedals kann der Verbrennungsmotor nicht folgen. Das Motorsteuergerät schaltet im Bereich 9 den Elektromotor zum
Instationärausgleich solange zu, bis das Ist-Moment des Verbrennungsmotors sich dem Fahrerwunschmoment wieder angenähert hat. Über den Druckpunkt 10 teilt das Motorsteuergerät dem Fahrer mit, das es den Elektromotor zuschaltet.
Hat das Fahrerwunschmoment die Maximalleistung des Verbrennungsmotors erreicht, wird dem Fahrer über einen weiteren Druckpunkt 11 signalisiert, dass der Elektromotor zur Erzeugung eines Zusatzmomentes zugeschaltet wird, um den Fahrerwunsch zu erfüllen, was mit einer zweiten durchgezogenen Linie 12 dokumentiert ist.
Bleibt das Fahrerwunschmoment unterhalb des Druckpunktes 11 wird rein mittels des Verbrennungsmotors weitergefahren.
Verschiedene Realisierungsmöglichkeiten zur haptischen Fahrpedalcharakteristik sind aus der Figur 3 ersichtlich. Dabei ist die Kraft Fpedai , die notwendig ist, um das Gaspedal zu bewegen, über dem Pedalweg Spedai dargestellt. Die Darstellung a) zeigt die Abhängigkeit für ein Gaspedal in einem konventionellen Fahrzeug. Dabei besteht im ausgewählten Beispiel zwischen der Kraft FPedai und dem mit dieser Kraft zurückgelegten Weg sPedai ein linearer Zusammenhang, was bedeutet, dass bei einer konstanten Kraft immer derselbe Weg zurückgelegt wird.
In der Darstellung b) ist ein Druckpunkt 4 dargestellt, der in Abhängigkeit von dem verfügbaren Motormoment bzw. der Gesamtleistung verschiebbar ist. Im ersten Abschnitt 131 und im dritten Abschnitt 131" der durchgezogenen Kurve wird für einen vorgegebenen Pedalweg eine konstante Kraft aufgewendet, welche geringer ist, als bei einem konventionellen Fahrzeug (gestrichelte Linie). Im zweiten Abschnitt 13" muss für einen kurzen Pedalweg eine relativ hohe Kraft aufgewendet werden. Dieser Punkt erscheint dem Fahrer als Druckpunkt 4 und signalisiert ihm die Zuschaltung eines Antriebsaggregates in der bereits erläuterten Art und Weise. An welcher Stelle des Pedalweges dieser Druckpunkt 4 eingestellt wird, hängt von der Betriebsstrategie des Motorsteuergerätes ab und ist daher variabel. Ist der Druckpunkt 4 erst einmal überwunden, lässt sich das Pedal im Abschnitt 131" wieder leichter bewegen. Eine andere Möglichkeit ist in der Darstellung c) gezeigt. In einem vorgegebenen ersten Abschnitt 141 verläuft die für einen bestimmten Weg sPedai notwendige Kraft Fpedai linear. In dem sich anschließenden Abschnitt 14" muss für den Weg eine größere Kraft aufgewendet werden, als im ersten Abschnitt 141. Dies lässt sich über die Gängigkeit des Gaspedals einfach einstellen. Im ersten Abschnitt 141 ist das Gaspedal leicht gängig, während es im zweiten Abschnitt 14" schwerer gängig ist. Der Punkt, indem der Übergang von der Leichtgängigkeit auf die Schwergängigkeit erfolgt, ist der Druckpunkt 4.
Die Darstellung d) zeigt ein weiteres Beispiel, bei welchem die
Pedalbeweglichkeit in drei Abschnitte aufgeteilt ist. Mit einer ansteigenden Kraft Fpedai wird im ersten Abschnitt 151 ein bestimmter Weg sPedai zurückgelegt. Im zweiten Abschnitt 15" muss mit einer höheren Kraft FPedai eine geringe Pedalwegstrecke sPedai überwunden werden, während im dritten Abschnitt 151" die Kraft FPedai zur Überwindung des Weges sPedai wieder geringer wird und in derselben Größenordnung wie im ersten Abschnitt 151 liegt.
Drei unterschiedliche Kräfte FPedai müssen in den drei Abschnitten der Darstellung e) aufgebracht werden. Die geringste Kraft FPedai wird im ersten Abschnitt 161 für die Überwindung eines relativ langen Pedalweges sPedai benötigt. Dagegen wird die größte Kraft FPedai für einen relativ kurzen Weg sPedai im Abschnitt 16" gebraucht, welche den Druckpunkt 4 charakterisiert. Eine Kraft Fpedaii deren Wert zwischen den in den Abschnitten 161 und 16" beschriebenen Kräften liegt, wird im Abschnitt 161" aufgewendet. Insbesondere bei dieser Ausführung können auch zwei Druckpunkte realisiert werden, die beispielsweise im ersten Druckpunkt den Instationärausgleich des Elektromotors und im zweiten Druckpunkt das Zuschalten des Elektromotors zum Verbrennungsmotor darstellen, wie es im Zusammenhang mit Figur 2 beschrieben wurde.
In den drei Abschnitten der Darstellung f) müssen ebenfalls unterschiedliche Kräfte FPedai für die Überwindung dreier Pedalwegstrecken sPedai aufgebracht werden. Im ersten Abschnitt 171 ist der Kraftaufwand nichtlinear zum Weg sdai. Um die Wegstrecke zu überwinden, muss zunächst etwas mehr Kraft FPedai und anschließend etwas weniger Kraft FPedai aufgewendet werden. Im Abschnitt 17" ist eine konstant hohe Kraft FPedai notwendig, um einen kurzen Weg sPedai zurückzulegen. Analog zum Abschnitt 171 sind im Abschnitt 171" unterschiedliche Kräfte notwendig, um den gewünschten Pedalweg sPedai zurückzulegen.
Der waagerechte Pfeil in den Darstellungen 3b bis 3f deutet die Batterieleistung des Elektromotors an, welche sich entsprechend den Pfeilen während einer Fahrt mehrfach verändern kann, wodurch sich der Druckpunkt 4 entsprechend verschiebt.
Figur 4 zeigt eine mögliche Ausführung eines Hybridantriebes eines Fahrzeuges, mit welchem das eingangs beschriebene Verfahren ausgeführt werden kann. Dieser Hybridantrieb weist als erstes Antriebsaggregat einen Verbrennungsmotor 20 auf. Der Verbrennungsmotor 20 ist über einen Antriebsstrang 21 mit einem Getriebe 22 verbunden. Das Getriebe 22 wiederum führt auf ein Differential 23, welches über die Fahrzeugachse 24 mit dem Rad
25 verbunden ist, wodurch die vom Verbrennungsmotor 20 aufgebrachte Leistung auf das Rad 25 übertragen wird.
Als zweites Antriebaggregat ist bei dem angegebenen Beispiel ein Elektromotor
26 vorgesehen. Der Elektromotor 26 weist einen eigenen Antriebsstrang 27 auf, über welchen er mit dem Getriebe 22 verbunden ist.
Das Getriebe 22 überträgt die vom Elektromotor 26 bereitgestellte Leistung über das Differential 23 und die Radachse 24 auf das Rad 25.
Die Steuerung und Regelung des Verbrennungsmotors 20 erfolgt dabei über das Motorsteuergerät 28 und die Steuerung und Regelung des Elektromotors 26 über das Elektromotorsteuergerät 29. Das Motorsteuergerät 28 und das Elektromotorsteuergerät 29 kommunizieren mit einer Fahrpedalelektronik 30, die mit dem Fahrpedal 31 verbunden ist. Die Fahrpedalelektronik 30 setzt die von dem Motorsteuergerät 28 und dem Elektromotorsteuergerät 29 ausgegebenen Signale über einen in ihr enthaltenen elektro-mechanischen Wandler 32 in mechanische Zustände, wie Druckpunkt und Gängigkeit des Fahrpedals 31 um.

Claims

Patentansprüche
1. Verfahren zum Betreiben eines Fahrzeuges mit Hybridantrieb, welches mit einer ersten als Verbrennungsmotor ausgebildeten Antriebseinheit und einer zweiten Antriebseinheit, vorzugsweise einem Elektromotor, angetrieben wird, wobei die erste Antriebseinheit und die zweite Antriebseinheit einzeln oder gemeinsam zum Antrieb des Fahrzeuges beitragen dadurch gekennzeichnet, dass beim Zuschalten der bisher ungenutzten Antriebseinheit (20, 26) zu der im Betrieb befindlichen
Antriebseinheit (20, 26) eine haptische Rückmeldung an den Fahrer erfolgt.
2. Verfahren nach Anspruch 1 dadurch gekennzeichnet, dass die haptische Rückmeldung über ein Fahrpedal (31) erfolgt, durch welches ein Fahrerwunschmoment eingegeben wird.
3. Verfahren nach Anspruch 2 dadurch gekennzeichnet, dass die haptische Rückmeldung über einen Druckpunkt (4, 10, 11) im Pedalweg (s Pedai) des Fahrpedals (31) erfolgt.
4. Verfahren nach Anspruch 3 dadurch gekennzeichnet, dass der Druckpunkt (4, 10, 11) durch einen Widerstand im Pedalweg (s Pedai) gebildet wird.
5. Verfahren nach einem der Ansprüche 3 oder 4 dadurch gekennzeichnet, dass der Druckpunkt (4, 10, 11) in Abhängigkeit von Betriebsdaten des Hybridfahrzeuges berechnet wird.
6. Verfahren nach einem der Ansprüche 3 bis 5 dadurch gekennzeichnet, dass der Druckpunkt (4, 10, 11) in Abhängigkeit von dem Fahrerwunschmoment berechnet wird.
7. Verfahren nach Anspruch 3 dadurch gekennzeichnet, dass der Pedalweg (s Pedai) durch mindestens einen Druckpunkt (4) in zwei Bereiche (141, 14") unterteilt wird, die sich durch den Widerstand des Fahrpedals (31) unterscheiden.
8. Verfahren nach Anspruch 3 dadurch gekennzeichnet, dass beim Betrieb der ersten Antriebseinheit (20) der Druckpunkt (4) aufgehoben wird, wenn ein Zuschalten der zweiten Antriebseinheit (26) auf Grund einer Betriebsstrategie nicht möglich wird.
9. Verfahren nach einem der vorhergehenden Ansprüche dadurch gekennzeichnet, dass die Zuschaltung einer Antriebseinheit (20, 26) optisch und/oder akustisch angezeigt wird.
10. Vorrichtung zum Betreiben eines Fahrzeuges mit Hybridantrieb, welches mit einer ersten als Verbrennungsmotor ausgebildeten Antriebseinheit und einer zweiten Antriebseinheit, vorzugsweise einem Elektromotor, angetrieben wird, wobei die erste Antriebseinheit und die zweite Antriebseinheit einzeln oder gemeinsam zum Antrieb des Fahrzeuges beitragen dadurch gekennzeichnet, dass Mittel (31) vorhanden sind, die beim Zuschalten der bisher ungenutzten Antriebseinheit (20, 26) zu der im Betrieb befindlichen Antriebseinheit (20, 26) eine haptische Rückmeldung an den Fahrer ausgeben.
11. Vorrichtung nach Anspruch 10 dadurch gekennzeichnet, dass die haptische Rückmeldung über ein das Fahrerwunschmoment eingebende Fahrpedal (31) erfolgt.
12. Vorrichtung nach Anspruch 11 dadurch gekennzeichnet, dass das
Fahrpedal (31) die haptische Rückmeldung über einen Druckpunkt (4, 10, 11) im Pedalweg (s Pedai) ausgibt.
13. Vorrichtung nach Anspruch 12 dadurch gekennzeichnet, dass das Fahrpedal den Druckpunkt (4, 10, 11) durch einen Widerstand im Pedalweg (s Pedai) bildet.
14. Vorrichtung nach Anspruch 12 dadurch gekennzeichnet, dass der Pedalweg (s Pedai) des Fahrpedals (31) durch den Druckpunkt (10, 11) in zwei Bereiche (141, 14") unterteilt ist, die sich durch den Widerstand des Fahrpedals (31) unterscheiden.
PCT/EP2008/066128 2008-03-10 2008-11-25 Verfahren und vorrichtung zum betreiben eines fahrzeuges mit hybridantrieb WO2009112102A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN200880127933XA CN101965285A (zh) 2008-03-10 2008-11-25 用于运行具有混合驱动装置的汽车的方法和装置
US12/736,041 US20110106353A1 (en) 2008-03-10 2008-11-25 Method and device for operating a vehicle having a hybrid drive
EP08873350A EP2254783A1 (de) 2008-03-10 2008-11-25 Verfahren und vorrichtung zum betreiben eines fahrzeuges mit hybridantrieb
JP2010550046A JP2011517634A (ja) 2008-03-10 2008-11-25 ハイブリッドドライブを備える車両を運転する方法及び装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102008000577.0 2008-03-10
DE102008000577A DE102008000577A1 (de) 2008-03-10 2008-03-10 Verfahren und Vorrichtung zum Betreiben eines Fahrzeuges mit Hybridantrieb

Publications (1)

Publication Number Publication Date
WO2009112102A1 true WO2009112102A1 (de) 2009-09-17

Family

ID=40544686

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2008/066128 WO2009112102A1 (de) 2008-03-10 2008-11-25 Verfahren und vorrichtung zum betreiben eines fahrzeuges mit hybridantrieb

Country Status (6)

Country Link
US (1) US20110106353A1 (de)
EP (1) EP2254783A1 (de)
JP (1) JP2011517634A (de)
CN (1) CN101965285A (de)
DE (1) DE102008000577A1 (de)
WO (1) WO2009112102A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011517634A (ja) * 2008-03-10 2011-06-16 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング ハイブリッドドライブを備える車両を運転する方法及び装置
DE102009054872A1 (de) * 2009-12-17 2011-06-22 ZF Friedrichshafen AG, 88046 Antriebsstrang und Verfahren zum Betreiben desselben

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010006305B4 (de) 2010-01-30 2015-02-05 Audi Ag Verfahren zum Betreiben eines Hybridantriebs eines Fahrzeugs
JP5471829B2 (ja) * 2010-05-25 2014-04-16 日産自動車株式会社 ハイブリッド車両のアクセルペダル踏力制御装置
DE102010039375A1 (de) * 2010-08-17 2012-02-23 Zf Friedrichshafen Ag Verfahren zum Betreiben eines Antriebsstrangs
DE102010039377A1 (de) 2010-08-17 2012-02-23 Zf Friedrichshafen Ag Verfahren zum Betreiben eines Antriebsstrangs
DE102011013045A1 (de) * 2011-03-04 2012-09-06 Conti Temic Microelectronic Gmbh Antriebs-System und Verfahren zur Steuerung eines Antriebs-Systems
DE102011005803A1 (de) * 2011-03-18 2012-09-20 Bayerische Motoren Werke Aktiengesellschaft Verfahren zum Betreiben eines Hybridfahrzeugs
DE102011101138A1 (de) * 2011-05-11 2012-11-15 Volkswagen Aktiengesellschaft Verfahren zur Aktivierung eines Verbrennungsmotors für ein Fahrzeug sowie entsprechende Steuerung und Fahrzeug
JP5577465B2 (ja) 2011-06-21 2014-08-20 本田技研工業株式会社 アクセルペダル反力制御装置
DE102011078669A1 (de) * 2011-07-05 2013-01-10 Zf Friedrichshafen Ag Verfahren zum Ansteuern eines Hybridantriebes eines Fahrzeuges
KR101305835B1 (ko) * 2011-08-30 2013-09-06 현대자동차주식회사 하이브리드 차량의 가속페달 제어방법
JP5756185B2 (ja) 2011-11-25 2015-07-29 本田技研工業株式会社 車両用走行制御装置
CN103249624B (zh) * 2011-12-13 2015-06-24 丰田自动车株式会社 混合动力系统控制装置
WO2013145973A1 (ja) 2012-03-27 2013-10-03 オイレス工業株式会社 ダンパおよび操作ユニット
DE102012108589A1 (de) * 2012-09-14 2014-03-20 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Verfahren und Vorrichtung zum Betreiben eines Kraftfahrzeugs
DE102013219347A1 (de) * 2013-09-26 2015-04-23 Conti Temic Microelectronic Gmbh Pedalvorrichtung für ein Kraftfahrzeug mit mehreren Kick-Down Punkten
DE102014100947A1 (de) * 2014-01-28 2015-07-30 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Antriebsstrang sowie Verfahren zum Betrieb eines Antriebsstrangs
DE102014018641B4 (de) * 2014-12-13 2019-05-23 Audi Ag Einrichtung zur haptischen Anzeige eines Antrieb-Umschaltpunktes bei Fahrzeugen mit unterschiedlichen Antrieben
DE102015221752A1 (de) 2015-11-05 2017-05-11 Ford Global Technologies, Llc Verfahren zum Bereitstellen eines Druckpunktes für ein haptisches Gaspedal eines Hybridfahrzeuges

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2837142A1 (fr) * 2002-03-18 2003-09-19 Renault Procede de commande d'un systeme d'entrainement de vehicule automobile et vehicule automobile associe
DE10259486A1 (de) * 2002-12-19 2004-07-01 Bayerische Motoren Werke Ag Aktives Fahrpedalmodul
DE102004026409A1 (de) * 2004-05-29 2005-12-29 Bayerische Motoren Werke Ag Verfahren zur Steuerung einer einstellbaren Rückstellkraft auf ein Fahrpedal in einem Fahrzeug
DE102004026407A1 (de) * 2004-05-29 2005-12-29 Bayerische Motoren Werke Ag Verfahren zur Steuerung einer einstellbaren Rückstellkraft auf ein Fahrpedal in einem Fahrzeug
DE102004026406A1 (de) * 2004-05-29 2005-12-29 Bayerische Motoren Werke Ag Verfahren zur Steuerung einer elektrisch einstellbaren Stellkraft auf ein Fahrpedal in einem Fahrzeug
DE102006012515A1 (de) * 2006-03-18 2007-09-20 Bayerische Motoren Werke Ag Kraftfahrzeug mit Hybridantrieb
US20080042489A1 (en) * 2006-08-17 2008-02-21 Lewis Donald J Driver Feedback to Improve Vehicle Performance
DE102007011739A1 (de) * 2007-03-10 2008-09-11 Bayerische Motoren Werke Aktiengesellschaft Kraftfahrzeug mit Hybridantrieb

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19922338A1 (de) * 1999-05-14 2000-11-23 Bayerische Motoren Werke Ag Verfahren zum Herstellen einer vorgegebenen Wirkbeziehung zwischen der Betätigung des Fahrpedals und dem daraus resultierenden Bremsmoment eines Fahrzeugs
JP3702749B2 (ja) * 2000-05-24 2005-10-05 トヨタ自動車株式会社 ハイブリッド車両およびその制御方法
US6909947B2 (en) * 2000-10-14 2005-06-21 Motorola, Inc. System and method for driver performance improvement
US6751534B2 (en) * 2000-12-21 2004-06-15 Ford Global Technologies, Llc System and method for providing feedback to a driver of a hybrid vehicle
US6827167B2 (en) * 2002-03-28 2004-12-07 Ford Global Technologies, Llc Hybrid electric vehicle torque distribution
JP3651793B2 (ja) * 2002-04-03 2005-05-25 本田技研工業株式会社 車両用アクセルペダル装置
JP4367089B2 (ja) * 2003-10-30 2009-11-18 日産自動車株式会社 アクセルペダル踏力制御装置
US7417620B2 (en) * 2004-04-26 2008-08-26 Nokia Corporation Hybrid magnet for retarding haptic applications using active friction braking
DE102008000577A1 (de) * 2008-03-10 2009-09-17 Robert Bosch Gmbh Verfahren und Vorrichtung zum Betreiben eines Fahrzeuges mit Hybridantrieb
US20090281701A1 (en) * 2008-05-07 2009-11-12 Kargman James B Multi-mode accelerator for automobile and method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2837142A1 (fr) * 2002-03-18 2003-09-19 Renault Procede de commande d'un systeme d'entrainement de vehicule automobile et vehicule automobile associe
DE10259486A1 (de) * 2002-12-19 2004-07-01 Bayerische Motoren Werke Ag Aktives Fahrpedalmodul
DE102004026409A1 (de) * 2004-05-29 2005-12-29 Bayerische Motoren Werke Ag Verfahren zur Steuerung einer einstellbaren Rückstellkraft auf ein Fahrpedal in einem Fahrzeug
DE102004026407A1 (de) * 2004-05-29 2005-12-29 Bayerische Motoren Werke Ag Verfahren zur Steuerung einer einstellbaren Rückstellkraft auf ein Fahrpedal in einem Fahrzeug
DE102004026406A1 (de) * 2004-05-29 2005-12-29 Bayerische Motoren Werke Ag Verfahren zur Steuerung einer elektrisch einstellbaren Stellkraft auf ein Fahrpedal in einem Fahrzeug
DE102006012515A1 (de) * 2006-03-18 2007-09-20 Bayerische Motoren Werke Ag Kraftfahrzeug mit Hybridantrieb
US20080042489A1 (en) * 2006-08-17 2008-02-21 Lewis Donald J Driver Feedback to Improve Vehicle Performance
DE102007011739A1 (de) * 2007-03-10 2008-09-11 Bayerische Motoren Werke Aktiengesellschaft Kraftfahrzeug mit Hybridantrieb

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011517634A (ja) * 2008-03-10 2011-06-16 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング ハイブリッドドライブを備える車両を運転する方法及び装置
DE102009054872A1 (de) * 2009-12-17 2011-06-22 ZF Friedrichshafen AG, 88046 Antriebsstrang und Verfahren zum Betreiben desselben

Also Published As

Publication number Publication date
JP2011517634A (ja) 2011-06-16
US20110106353A1 (en) 2011-05-05
CN101965285A (zh) 2011-02-02
DE102008000577A1 (de) 2009-09-17
EP2254783A1 (de) 2010-12-01

Similar Documents

Publication Publication Date Title
WO2009112102A1 (de) Verfahren und vorrichtung zum betreiben eines fahrzeuges mit hybridantrieb
DE102010004846B4 (de) Verfahren und Steuervorrichtung zur Rekuperation für ein Fahrzeug
DE10155129A1 (de) Verfahren und System zur Nutzung von Bremsenenergie in einem Fahrzeug mit Hybridantrieb
DE102011108446B4 (de) Verfahren und Vorrichtung zur Rekuperation für ein Fahrzeug
DE4133014A1 (de) Nicht-spurgebundenes fahrzeug mit elektrodynamischem wandler und fahrhebel
WO2018229140A1 (de) Verfahren zum ansteuern eines fahrzeugantriebsstrangs
DE102011050739A1 (de) Verfahren zum Betreiben eines Kraftfahrzeugs
DE102010061439A1 (de) Bremssystem für ein Kraftfahrzeug
DE102010015425A1 (de) Vorrichtung zum Betreiben einer Antriebseinheit eines Kraftfahrzeugs
DE102011005962B4 (de) Aufteilen einer Momentenanforderung auf zwei von unterschiedlichen Motoren angetriebenen Antriebsachsen eines Kraftfahrzeugs
DE102010008741A1 (de) Kraftfahrzeug
EP0584457A1 (de) Verfahren und Vorrichtung zur geregelten Zu- und Abkopplung der Fahrkupplung im Getriebe eines Fahrzeuges
DE102005032196A1 (de) Antriebseinrichtung für ein Kraftfahrzeug
DE102016116713A1 (de) Verfahren und Vorrichtung zur Drehmomentregelung eines Fahrzeugs, und Fahrzeug
WO2010034570A1 (de) Verfahren und vorrichtung zum betrieb einer hybridantriebsvorrichtung während des startens einer brennkraftmaschine
DE102008041693A1 (de) Verfahren zum Antreiben eines Hybridfahrzeugs bei einem Lastwechsel
WO2014029548A1 (de) Steuervorrichtung für ein generatorisches bremssystem eines fahrzeugs und verfahren zum betreiben eines generatorischen bremssystems eines fahrzeugs
WO2017029017A1 (de) Verfahren und vorrichtung zum betreiben eines bremssystems eines kraftfahrzeugs, bremssystem
DE102013019902A1 (de) Vorrichtungen und Verfahren zum Verteilen einer Gesamtsollmoment-Vorgabe
EP2733035A2 (de) Steuervorrichtung für zumindest eine Bremssystemkomponente eines rekuperativen Bremssystems, Steuervorrichtung für eine Informationsausgabeeinrichtung eines Fahrzeugs und Verfahren zum Betreiben mindestens eines rekuperativen Bremssystems eines Fahrzeugs
DE102008024622B4 (de) Verfahren zum Darstellen eines Summenradmoments und Triebstrangstruktur bei Hybrid-Kraftfahrzeugen
EP3012144B1 (de) Verfahren zur steuerung einer einstellbaren rückstellkraft auf ein fahrpedal eines nutzfahrzeugs
DE102010034422A1 (de) Kupplungssteuerung
DE10233570A1 (de) Verfahren und Vorrichtung zur Signalisierung mehrerer für den Betrieb eines Kraftfahrzeuges relevanter Informationen
DE102019211916A1 (de) Verfahren zum Starten eines Verbrennungsmotors

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880127933.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08873350

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008873350

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010550046

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 12736041

Country of ref document: US