[go: up one dir, main page]

WO2009101740A1 - Semiconductor light receiving element - Google Patents

Semiconductor light receiving element Download PDF

Info

Publication number
WO2009101740A1
WO2009101740A1 PCT/JP2008/071461 JP2008071461W WO2009101740A1 WO 2009101740 A1 WO2009101740 A1 WO 2009101740A1 JP 2008071461 W JP2008071461 W JP 2008071461W WO 2009101740 A1 WO2009101740 A1 WO 2009101740A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
receiving element
light receiving
light
type
Prior art date
Application number
PCT/JP2008/071461
Other languages
French (fr)
Japanese (ja)
Inventor
Masayoshi Tsuji
Takayoshi Anan
Naofumi Suzuki
Kenichiro Yashiki
Hiroshi Hatakeyama
Kimiyoshi Fukatsu
Takeshi Akagawa
Original Assignee
Nec Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nec Corporation filed Critical Nec Corporation
Publication of WO2009101740A1 publication Critical patent/WO2009101740A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10FINORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
    • H10F77/00Constructional details of devices covered by this subclass
    • H10F77/10Semiconductor bodies
    • H10F77/14Shape of semiconductor bodies; Shapes, relative sizes or dispositions of semiconductor regions within semiconductor bodies
    • H10F77/146Superlattices; Multiple quantum well structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals

Definitions

  • the present invention relates to a semiconductor light receiving element, and relates to a semiconductor light receiving element used in the fields of optical communication and optical interconnection.
  • optical communication Since optical communication is capable of long-distance and large-capacity transmission, long-distance communication has been widely used practically from early on.
  • various attempts to use the optical communication as a sensor network have been proposed. For example, it can be considered to be laid along a road network and used as an information communication between road vehicles and an atmospheric gas monitor at an intersection.
  • laying on large-scale farms, temperature and light sensing are also being considered.
  • the light receiving element plays an important role. For example, the light receiving element diagnoses a failure of the sensor network, or supplies power with light to the end of the fiber.
  • the light receiving element applied to the sensor network is low cost and does not require an external power source.
  • an enormous number of light receiving elements are required, so low cost is an essential condition.
  • the light can be generated from the propagating light itself used for optical communication by the light receiving element without supplying electric power to each sensor.
  • a light receiving element of a type that converts signal light into a signal current is applied to a semiconductor light receiving element, and a pin type photodiode (PD: Photo Diode) (for example, H. Ishihara, four others, “High-temperature”).
  • PD Photo Diode
  • Avalanche photodiode (APD) with gain effect (APD: Avalanche Photo ⁇ Diode) (for example, Y.
  • optical carriers are generated by light absorption in the depleted light absorption layer.
  • photoconductive devices that utilize the change in conductivity of the device due to photocarriers generated in the depletion layer (for example, C. Y. Chen and two others, “High-sensitivity Ga0.47In0.53As photoc onductive detectors “prepared” by “vapor” phase “epitaxy”, Appl. “Phys.” Lett., 1984, Vol. 44, p. 1142-1144).
  • a doping dipole structure composed of an n-type high-concentration delta doped layer and a p-type high-concentration delta doped layer close to at least 20 nm or less is periodically formed in an undoped layer that receives light irradiation.
  • a light-voltage conversion type semiconductor light receiving element is disclosed. With such a configuration, a sawtooth band structure is formed, and polarization occurs.
  • JP-A-62-285476, JP-A-5-160429, JP-A-06-196745, and JP-A-2626309 can be cited.
  • the above-described pin type PD and APD are light-current conversion type light receiving elements, and therefore cannot satisfy the condition that an external power source is unnecessary.
  • the light-voltage conversion type light receiving element disclosed in Japanese Patent Laid-Open No. 2000-216424 does not require an external power supply, but is formed on the InP substrate as a light receiving element having a wavelength of 1 ⁇ m, so that the cost is low. It becomes a problem from the viewpoint.
  • the sensor network network fault diagnosis application it is necessary to insert a light receiving element appropriately in the middle of the transmission path. In this case, the light absorption must be small enough not to affect the signal light intensity.
  • the present invention has been made in view of the above, and an object thereof is to provide a light receiving element that is low in cost, does not require an external power supply, and has low light absorption.
  • a semiconductor light-receiving element includes a semiconductor substrate and a light absorption layer formed on the semiconductor substrate and having a Type-II multiple quantum well structure, and a polarization distance in the quantum well structure is 20 nm or more. This is a light-voltage conversion type semiconductor light-receiving element.
  • the present invention it is possible to provide a light receiving element that is low in cost, does not require an external power supply, and has low light absorption.
  • FIG. 1 is a perspective view of a light receiving element according to Embodiment 1 of the present invention.
  • FIG. 3 is a cross-sectional view taken along the line IB-IB of the light receiving element according to Embodiment 1 of the present invention. It is a figure explaining the photobol of the Type-I heterostructure of this invention. It is a figure explaining the photovol of Type-II heterostructure of the present invention. It is a figure explaining the structure of the photovol which concerns on this invention. It is sectional drawing which shows the manufacture flow of the light receiving element which concerns on Embodiment 1 of this invention. It is sectional drawing which shows the manufacture flow of the light receiving element which concerns on Embodiment 1 of this invention.
  • FIG. 5 is a VB-VB sectional view of a light receiving element according to a second embodiment of the present invention. It is sectional drawing which shows the manufacture flow of the light receiving element which concerns on Embodiment 2 of this invention. It is sectional drawing which shows the manufacture flow of the light receiving element which concerns on Embodiment 2 of this invention.
  • FIG. 1A is a perspective view of a light receiving element according to the first embodiment of the present invention.
  • 1B is a cross-sectional view taken along the line IB-IB in FIG. 1A.
  • the light receiving element includes an n-type buffer layer 102, an i-type semiconductor layer 103, a p + -type semiconductor layer 104, a protective film 106, a p-side electrode 107, and an n-side electrode 108 on an n-type semiconductor substrate 101.
  • the protective film 106 is omitted.
  • the n-type semiconductor substrate 101 is made of, for example, GaAs.
  • the n-type buffer layer 102 is formed on the n-type semiconductor substrate 101 and is made of, for example, GaAs.
  • the i-type semiconductor layer 103 is formed on the n-type buffer layer 102 and has, for example, a Type-II band structure in which three layers of a GaAsSb layer, a GaAs layer, and an InGaAs layer are stacked for 10 periods.
  • the p + type semiconductor layer 104 is formed on the i type semiconductor layer 103 and is made of, for example, GaAs.
  • the n-type buffer layer 102, the i-type semiconductor layer 103, and the p + -type semiconductor layer 104 constitute a cylindrical mesa 105. As shown in FIG. 1A, light enters from the upper surface of the mesa 105.
  • the protective film 106 is made of, for example, SiNx, and is formed so as to cover the side surface of the mesa 105 and the upper surface of the n-type semiconductor substrate 101.
  • the p-side electrode 107 is formed in a ring shape at the edge of the upper surface of the cylindrical mesa 105.
  • the n-side electrode 108 is formed on the back surface of the n-type semiconductor substrate 101.
  • the i-type semiconductor layer 103 which is a light absorption layer of the light receiving element according to the first embodiment has a Type-II multiple quantum well structure.
  • 2A and 2B show heterostructures of Type-I and Type-II.
  • Ec and Ev are band edges of the conduction band and the valence band, respectively.
  • Eg1 to Eg4 are band gaps.
  • V is an electromotive force voltage generated by polarization.
  • the forbidden band width capable of absorbing light energy is Eg2 or more, whereas in Type-II, it is Eeff. This Eeff is smaller than the forbidden band widths Eg3 and Eg4 of the base material constituting the heterostructure. That is, by using Type-II (staggered type), it is possible to absorb light energy equal to or less than the forbidden band width inherent to the constituent material.
  • FIG. 3 is a band diagram of a structure in which three layers of GaAsSb / GaAs / InGaAs are stacked in a multi-cycle manner.
  • This material has sensitivity to light with a wavelength of 0.9 to 1.3 ⁇ m near the heterointerface. Electrons and holes are induced by light irradiation and move to positions where the energy is minimized (at the low energy side in the well layer).
  • electrons and holes are separated from each other in position, it is the principle of Photobol that voltage is generated by this polarization.
  • This electromotive force voltage V is expressed by the following equation (1).
  • Q is an electric charge
  • C is a capacitance
  • d is a polarization distance
  • is a dielectric constant
  • S is an area. Therefore, it is useful to obtain a large electromotive force voltage V as the polarization distance for confining electrons and holes is longer and to increase the charge Q as a multi-period structure.
  • the electromotive force voltage V generated at the interface between adjacent GaAsSb layers and InGaAs layers is small.
  • the polarization distance d is increased by the GaAs layer formed between the GaAsSb layer and the InGaAs layer, and the electromotive force voltage V can be increased.
  • the effective forbidden band width is small, so even the photovolt formed on the GaAs substrate as described above absorbs light having a wavelength of 0.9 to 1.3 ⁇ m, which is relatively low energy. can do.
  • the absorption coefficient can be assumed to be about 30% of the bulk. Now, assuming that the bulk absorption coefficient ⁇ is 10000 cm-1, Type-II is 3000 cm-1. Since light absorption with respect to incident light is expressed by exp ( ⁇ W), assuming that the absorption width W is 10 nm, the amount of light absorption at one interface is about 0.3% of the incident light.
  • the carrier lifetime ⁇ of the quantum well of Type-II is 100 nsec
  • V 350 mV was obtained.
  • the polarization distance d was 30 nm
  • the polarization distance d is preferably 20 nm or more.
  • This 350 mV electromotive force is a voltage value sufficient to determine the failure of the transmission line. Further, it means that a voltage of 350 mV can be induced at an arbitrary place by light propagation. Therefore, power can be supplied to the sensor. Even when the optical propagation signal performs high-speed transmission exceeding 10 GHz, the photovolt monitor of the present invention does not need to follow the high-speed driving. Power can be supplied.
  • the amount of light absorption at one interface is only about 0.3% of the incident light. That is, most light can be transmitted. For this reason, even if it is inserted in any part of the sensor network, it hardly affects the propagation light.
  • the above point is advantageous in that it monitors the light output of a surface emitting laser that is a multi-mode light emission.
  • the output mode of a surface emitting laser is not single-peak but multi-peak, and its distribution changes depending on injection current or time.
  • a photodetector of the type that monitors part of the light emitted from the surface emitting laser is susceptible to this influence.
  • the surface emitting laser output can be received as it is and most of the light can pass therethrough, it is possible to monitor the average value of the entire light output.
  • the light absorption rate in the light receiving element is preferably 10% or less.
  • a method for manufacturing the light receiving element according to Embodiment 1 will be described with reference to FIG. First, as shown in FIG. 4A, on an n-type semiconductor substrate 101 made of GaAs, a Type-II layer in which three layers of a GaAs n-type buffer layer 102, a GaAsSb layer, a GaAs layer, and an InGaAs layer are laminated for 10 periods.
  • the i-type semiconductor layer 103 and the p + -type semiconductor layer 104 made of GaAs are sequentially laminated by a metal-organic vapor phase epitaxy (MOVPE) method (step 1).
  • MOVPE metal-organic vapor phase epitaxy
  • MBE molecular beam epitaxy
  • a photoresist is applied onto the p + type semiconductor layer 104 to form a circular resist mask having a diameter of about 30 ⁇ m (step 2).
  • etching is performed by dry etching until the surface of the n-type semiconductor substrate 101 is exposed, and a mesa (columnar structure) 105 having a diameter of about 50 ⁇ m is formed (step 3).
  • a SiNx protective film 106 is formed so as to cover the side surface of the mesa 105 and the surface of the n-type semiconductor substrate 101. Then, the ring-shaped p-side electrode 107 is formed on the top surface of the mesa 105 and the n-side electrode 108 is formed on the back surface of the n-type semiconductor substrate 101, thereby completing the light receiving element of FIG. 1 (step 4).
  • an electromotive force voltage of 330 mV was obtained when the incident light was 5 mW.
  • the wavelength of incident light was 1.3 ⁇ m.
  • FIG. 5A is a perspective view of a light receiving element according to the second embodiment of the present invention.
  • 5B is a VB-VB cross-sectional view of FIG. 5A.
  • the light receiving element includes an n-type buffer layer 202, an i-type semiconductor layer 203, a p + -type semiconductor layer 204, a protective film 206, a p-side electrode 207, and an n-side electrode 208 on an n-type semiconductor substrate 201.
  • the protective film 206 is omitted.
  • the n-type semiconductor substrate 201 is made of, for example, GaAs.
  • the n-type buffer layer 202 is formed on the n-type semiconductor substrate 201 and is made of, for example, GaAs.
  • the i-type semiconductor layer 203 is formed on the n-type buffer layer 202 and has a Type-II band structure in which three layers of a GaAsSb layer, a GaAs layer, and a GaAsN layer are stacked for 20 periods.
  • the p + type semiconductor layer 204 is formed on the i type semiconductor layer 203 and is made of, for example, GaAs.
  • the n-type buffer layer 202, the i-type semiconductor layer 203, and the p + -type semiconductor layer 204 constitute a cylindrical mesa 205. As shown in FIG. 5A, light enters from the end face of the mesa 205.
  • the protective film 206 is made of, for example, SiNx, and is formed so as to cover the side surface of the mesa 205 and the upper surface of the n-type semiconductor substrate 201.
  • the p-side electrode 207 is formed on the upper surface of the mesa 205.
  • the n-side electrode 208 is formed on the back surface of the n-type semiconductor substrate 201.
  • the photodetector of the first embodiment has a multi-period structure of GaAsSb / GaAs / InGaAs. Since this material system has the same strain direction (compression strain) with respect to the GaAs substrate, if the number of heterointerfaces is increased too much, the critical film thickness will be exceeded, and the crystallinity will deteriorate rapidly.
  • the photodetector of the second embodiment includes a multi-period structure of GaAsSb / GaAs / GaAsN serving as a strain compensation structure. Therefore, the hetero interface can be further increased, the electromotive force voltage V can be further increased, and the light receiving wavelength can be expanded to 0.9 to 1.6 ⁇ m.
  • a method for manufacturing a light receiving element according to the second embodiment will be described with reference to FIGS.
  • a Type-II in which three layers of an n + -type semiconductor layer 202 made of GaAs, a GaAsSb layer, a GaAs layer, and a GaAsN layer are stacked for 20 periods.
  • the i type semiconductor layer 203 and the p + type semiconductor layer 204 made of GaAs are sequentially stacked by MOCVD (step 1).
  • MOCVD molecular beam epitaxy
  • a photoresist is applied onto the p + type semiconductor layer 204 to form a stripe resist mask for the waveguide (step 2).
  • etching is performed by dry etching until the surface of the n-type semiconductor substrate 201 is exposed, and a striped mesa 205 having a width of about 30 ⁇ m is formed (step 3).
  • a SiNx protective film 206 is formed so as to cover the side surface of the mesa 205 and the surface of the n-type semiconductor substrate 201. Then, the p-side electrode 207 is formed on the upper surface of the mesa 205 and the n-side electrode 208 is formed on the back surface of the n-type semiconductor substrate 201, thereby completing the light receiving element of FIG. 5 (step 4).
  • an electromotive force voltage of 305 mV was obtained when the incident light was 5 mW.
  • the wavelength of incident light was 1.5 ⁇ m.
  • the present invention it is possible to provide a light receiving element that has sensitivity in the incident light wavelength range of 0.9 to 1.6 ⁇ m and does not require an external power supply. Further, an element can be formed on an inexpensive GaAs substrate at a low cost. Since an external power supply is unnecessary, the corresponding circuit can be reduced. Further, since the light absorption layer has a multi-period Type-II heterostructure, the absorption of propagating light can be suppressed to several percent or less. Thereby, there is a merit in a multistage network configuration.
  • the present invention is a semiconductor light receiving element used in the fields of optical communication and optical interconnection, and can be suitably applied to, for example, a sensor network.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biophysics (AREA)
  • Optics & Photonics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Light Receiving Elements (AREA)

Abstract

Provided is a light receiving element which is low-cost, does not require an external power supply and absorbs a small quantity of light. The semiconductor light receiving element is of photo-voltage conversion type, and is provided with a semiconductor substrate (101), and a light absorption layer (103) which is formed on the semiconductor substrate (101) and has a multiple quantum well structure of Type-II. In the quantum well structure, a polarization distance is 20nm or more. The optical absorptance of the semiconductor light receiving element is preferably 10% or less.

Description

半導体受光素子Semiconductor photo detector

 本発明は、半導体受光素子に関し、光通信や光インターコネクションの分野で用いられる半導体受光素子に関する。 The present invention relates to a semiconductor light receiving element, and relates to a semiconductor light receiving element used in the fields of optical communication and optical interconnection.

 光通信は長距離、大容量伝送が可能であることから、特に長距離通信では早くから広く実用に供されてきた。近年、その光通信をセンサネットワークとして用いる試みが種々提案されている。例えば、道路網に沿って敷設し、路車間の情報通信や交差点での大気ガスのモニタとして使用することが考えられる。また、大規模農場に敷設し、気温や光のセンシングも検討されている。これらのネットワークにおいて、重要な役割を果たすのが受光素子である。例えば、受光素子が、センサネットワーク網の故障を診断したり、ファイバーの末端まで光で電力を給電する。 Since optical communication is capable of long-distance and large-capacity transmission, long-distance communication has been widely used practically from early on. In recent years, various attempts to use the optical communication as a sensor network have been proposed. For example, it can be considered to be laid along a road network and used as an information communication between road vehicles and an atmospheric gas monitor at an intersection. In addition, laying on large-scale farms, temperature and light sensing are also being considered. In these networks, the light receiving element plays an important role. For example, the light receiving element diagnoses a failure of the sensor network, or supplies power with light to the end of the fiber.

 ここで、センサネットワークに適用する受光素子には、低コストかつ外部電源が不要であることが望まれている。具体的には、上記のようなセンサネットワーク網を実現させるには、膨大な数の受光素子が必要となるため、低コスト性が必須条件である。また、個々のセンサに電力を供給することなく、受光素子により光通信に用いられる伝搬光そのものから起電できることが最も好ましい。 Here, it is desired that the light receiving element applied to the sensor network is low cost and does not require an external power source. Specifically, in order to realize the sensor network as described above, an enormous number of light receiving elements are required, so low cost is an essential condition. Most preferably, the light can be generated from the propagating light itself used for optical communication by the light receiving element without supplying electric power to each sensor.

 半導体受光素子では、一般には信号光を信号電流に変換するタイプの受光素子が適用されており、pin型フォトダイオード(PD:Photo Diode)(例えば、H. Ishihara、外4名、「High-temperature aging tests on planar structure InGaAs/InP PIN photodiode with Ti/Pt and Ti/Au contact」、Electr on. Lett.、1984年、Vol.20、No.16、p.654-656参照)、さらには、内部利得効果を有するアバランシェ・フォトダイオード(APD:Avalanche Photo Diode)(例えば、Y. Sugimoto、外5名、「High-speed planar-structure InP/InGaA sP/InGaAs avalanche photodiode grown by VPE」、Electron. Lett.、1984年、 Vol.20、No.16、p.653-654参照)等がある。 In general, a light receiving element of a type that converts signal light into a signal current is applied to a semiconductor light receiving element, and a pin type photodiode (PD: Photo Diode) (for example, H. Ishihara, four others, “High-temperature”). aging tests on planar structure InGaAs / InP PIN photodiode with Ti / Pt 」and Ti / Au contact”, Electr on. p Lett, 1984, Vol. 20, No. 16, p. Avalanche photodiode (APD) with gain effect (APD: Avalanche Photo 利得 Diode) (for example, Y. 外 Sugimoto, five others, “High-speed planar-structure InP / InGaA sP / InGaAs avalanche photodiode grown by VPE”, Electron. Lett. 1984, Vol.20, No.16, p.653-654).

 これらの素子では、空乏化された光吸収層内で光吸収により光キャリアが発生する。ここで、外部電界によりドリフト走行させ、電極から電流信号として取り出すことにより信号認識が可能となる。また他に、空乏層内で発生した光キャリアによる素子の伝導率変化を利用した光伝導素子がある(例えば、C. Y. Chen、外2名、「High-sensitivity Ga0.47In0.53As photoc onductive detectors prepared by vapor phase epitaxy」、Appl. Phys. Lett.、1984年、Vol.44、p.1142-1144)。 In these elements, optical carriers are generated by light absorption in the depleted light absorption layer. Here, it is possible to recognize a signal by drifting with an external electric field and extracting it from the electrode as a current signal. In addition, there are other photoconductive devices that utilize the change in conductivity of the device due to photocarriers generated in the depletion layer (for example, C. Y. Chen and two others, “High-sensitivity Ga0.47In0.53As photoc onductive detectors “prepared” by “vapor” phase “epitaxy”, Appl. “Phys.” Lett., 1984, Vol. 44, p. 1142-1144).

 一方、特開2000-216424号公報には、少なくとも20nm以下に近接したn型高濃度デルタドープ層とp型高濃度デルタドープ層とからなるドーピングダイポール構造を、光照射を受けるアンドープ層に周期的に形成した光-電圧変換型半導体受光素子が開示されている。このような構成により、鋸歯状のバンド構造が形成され、分極が発生する。なお、他の関連技術として特開昭62-085476号公報、特開平05-160429号公報、特開平06-196745号公報、特許第2662309号公報を挙げることができる。
特開2000-216424号公報 特開昭62-085476号公報 特開平05-160429号公報 特開平06-196745号公報 特許第2662309号公報 H. Ishihara、外4名、「High-temperature aging tests on planar structure InGaAs/InP PIN photodiode with Ti/Pt and Ti/Au contact」、Electr on. Lett.、1984年、Vol.20、No.16、p.654-656 Y. Sugimoto、外5名、「High-speed planar-structure InP/InGaA sP/InGaAs avalanche photodiode grown by VPE」、Electron. Lett.、1984年、 Vol.20、No.16、p.653-654 C. Y. Chen、外2名、「High-sensitivity Ga0.47In0.53As photoc onductive detectors prepared by vapor phase epitaxy」、Appl. Phys. Lett.、1984年、Vol.44、p.1142-1144
On the other hand, in Japanese Patent Laid-Open No. 2000-216424, a doping dipole structure composed of an n-type high-concentration delta doped layer and a p-type high-concentration delta doped layer close to at least 20 nm or less is periodically formed in an undoped layer that receives light irradiation. A light-voltage conversion type semiconductor light receiving element is disclosed. With such a configuration, a sawtooth band structure is formed, and polarization occurs. As other related techniques, JP-A-62-285476, JP-A-5-160429, JP-A-06-196745, and JP-A-2626309 can be cited.
JP 2000-216424 A JP 62-085476 A Japanese Patent Laid-Open No. 05-160429 Japanese Patent Laid-Open No. 06-196745 Japanese Patent No. 2662309 H. Ishihara, 4 others, “High-temperature aging tests on planar structure InGaAs / InP PIN photodiode with Ti / Pt and Ti / Au contact”, Electr on. Lett., 1984, Vol. 20, no. 16, p. 654-656 Y. Sugimoto, 5 others, “High-speed planar-structure InP / InGaAsP / InGaAs avalanche photodiode grown by VPE”, Electron. Lett., 1984, Vol. 20, no. 16, p. 653-654 C. Y. Chen, two others, “High-sensitivity Ga0.47In0.53As photoc onductive detectors prepared by vapor phase epitaxy”, Appl. Phys. Lett., 1984, Vol. 44, p. 1142-1144

 上述のpin型PDやAPDは、光-電流変換型受光素子であるため、外部電源が不要という条件を満たすことができない。また、特開2000-216424号公報に開示された光-電圧変換型受光素子では、外部電源は不要であるが、波長1μm帯の受光素子としてInP基板上に形成されているため、低コストの観点から問題となる。 The above-described pin type PD and APD are light-current conversion type light receiving elements, and therefore cannot satisfy the condition that an external power source is unnecessary. The light-voltage conversion type light receiving element disclosed in Japanese Patent Laid-Open No. 2000-216424 does not require an external power supply, but is formed on the InP substrate as a light receiving element having a wavelength of 1 μm, so that the cost is low. It becomes a problem from the viewpoint.

 さらに、センサネットワーク網の故障診断用途では、伝送経路の途中に適宜受光素子を挿入する必要がある。この場合、信号光強度に影響を与えない程度に光吸収が少なくなければならない。 Furthermore, in the sensor network network fault diagnosis application, it is necessary to insert a light receiving element appropriately in the middle of the transmission path. In this case, the light absorption must be small enough not to affect the signal light intensity.

 本発明は上記に鑑みてなされたものであり、低コストで外部電源が不要であって、かつ、光吸収が少ない受光素子を提供することを目的とする。 The present invention has been made in view of the above, and an object thereof is to provide a light receiving element that is low in cost, does not require an external power supply, and has low light absorption.

 本発明に係る半導体受光素子は、半導体基板と、前記半導体基板上に形成され、Type-IIの多重量子井戸構造を有する光吸収層とを備え、前記量子井戸構造における分極距離が20nm以上であることを特徴とする光-電圧変換型の半導体受光素子である。 A semiconductor light-receiving element according to the present invention includes a semiconductor substrate and a light absorption layer formed on the semiconductor substrate and having a Type-II multiple quantum well structure, and a polarization distance in the quantum well structure is 20 nm or more. This is a light-voltage conversion type semiconductor light-receiving element.

 本発明によれば、低コストで外部電源が不要であって、かつ、光吸収が少ない受光素子を提供することができる。 According to the present invention, it is possible to provide a light receiving element that is low in cost, does not require an external power supply, and has low light absorption.

本発明の実施の形態1に係る受光素子の斜視図である。1 is a perspective view of a light receiving element according to Embodiment 1 of the present invention. 本発明の実施の形態1に係る受光素子のIB-IB断面図である。FIG. 3 is a cross-sectional view taken along the line IB-IB of the light receiving element according to Embodiment 1 of the present invention. 本発明のType-Iヘテロ構造のフォトボルを説明する図である。It is a figure explaining the photobol of the Type-I heterostructure of this invention. 本発明のType-IIヘテロ構造のフォトボルを説明する図である。It is a figure explaining the photovol of Type-II heterostructure of the present invention. 本発明に係るフォトボルの構造を説明する図である。It is a figure explaining the structure of the photovol which concerns on this invention. 本発明の実施の形態1に係る受光素子の製造フローを示す断面図である。It is sectional drawing which shows the manufacture flow of the light receiving element which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る受光素子の製造フローを示す断面図である。It is sectional drawing which shows the manufacture flow of the light receiving element which concerns on Embodiment 1 of this invention. 本発明の実施の形態2に係る受光素子の斜視図である。It is a perspective view of the light receiving element which concerns on Embodiment 2 of this invention. 本発明の実施の形態2に係る受光素子のVB-VB断面図である。FIG. 5 is a VB-VB sectional view of a light receiving element according to a second embodiment of the present invention. 本発明の実施の形態2に係る受光素子の製造フローを示す断面図である。It is sectional drawing which shows the manufacture flow of the light receiving element which concerns on Embodiment 2 of this invention. 本発明の実施の形態2に係る受光素子の製造フローを示す断面図である。It is sectional drawing which shows the manufacture flow of the light receiving element which concerns on Embodiment 2 of this invention.

符号の説明Explanation of symbols

101、201 n型半導体基板
102、202 n型バッファ層
103、203 i型半導体層
104、204 p型半導体層
105、205 メサ
106、206 保護膜
107、207 p側電極
108、208 n側電極
101, 201 n-type semiconductor substrate 102, 202 n-type buffer layer 103, 203 i-type semiconductor layer 104, 204 p + -type semiconductor layer 105, 205 Mesa 106, 206 Protective film 107, 207 p-side electrode 108, 208 n-side electrode

 以下、本発明を適用した具体的な実施の形態について、図面を参照しながら詳細に説明する。ただし、本発明が以下の実施の形態に限定される訳ではない。また、説明を明確にするため、以下の記載及び図面は、適宜、簡略化されている。 Hereinafter, specific embodiments to which the present invention is applied will be described in detail with reference to the drawings. However, the present invention is not limited to the following embodiment. In addition, for clarity of explanation, the following description and drawings are simplified as appropriate.

実施の形態1
 本発明の実施の形態1に係る受光素子の構成について図1を参照して説明する。図1Aは、本発明の第1の実施の形態に係る受光素子の斜視図である。図1Bは図1AのIB-IB断面図である。この受光素子は、n型半導体基板101上に、n型バッファ層102、i型半導体層103、p型半導体層104、保護膜106、p側電極107及びn側電極108を備える。なお、図1Bでは、保護膜106を省略している。
Embodiment 1
The configuration of the light receiving element according to Embodiment 1 of the present invention will be described with reference to FIG. FIG. 1A is a perspective view of a light receiving element according to the first embodiment of the present invention. 1B is a cross-sectional view taken along the line IB-IB in FIG. 1A. The light receiving element includes an n-type buffer layer 102, an i-type semiconductor layer 103, a p + -type semiconductor layer 104, a protective film 106, a p-side electrode 107, and an n-side electrode 108 on an n-type semiconductor substrate 101. In FIG. 1B, the protective film 106 is omitted.

 n型半導体基板101は、例えば、GaAsからなる。
 n型バッファ層102は、n型半導体基板101上に形成されており、例えば、GaAsからなる。
 i型半導体層103は、n型バッファ層102上に形成されており、例えば、GaAsSb層とGaAs層とInGaAs層との3層を10周期積層したType-IIのバンド構造を有する。
 p型半導体層104は、i型半導体層103上に形成されており、例えば、GaAsからなる。
 ここで、n型バッファ層102、i型半導体層103、p型半導体層104が円柱状のメサ105を構成している。図1Aに示すように、このメサ105の上面から光が入射する。
The n-type semiconductor substrate 101 is made of, for example, GaAs.
The n-type buffer layer 102 is formed on the n-type semiconductor substrate 101 and is made of, for example, GaAs.
The i-type semiconductor layer 103 is formed on the n-type buffer layer 102 and has, for example, a Type-II band structure in which three layers of a GaAsSb layer, a GaAs layer, and an InGaAs layer are stacked for 10 periods.
The p + type semiconductor layer 104 is formed on the i type semiconductor layer 103 and is made of, for example, GaAs.
Here, the n-type buffer layer 102, the i-type semiconductor layer 103, and the p + -type semiconductor layer 104 constitute a cylindrical mesa 105. As shown in FIG. 1A, light enters from the upper surface of the mesa 105.

 保護膜106は、例えば、SiNxからなり、メサ105の側面及びn型半導体基板101の上面を覆うように形成されている。
 p側電極107は円柱状メサ105の上面の縁部にリング状に形成されている。
 n側電極108はn型半導体基板101の裏面に形成されている。
The protective film 106 is made of, for example, SiNx, and is formed so as to cover the side surface of the mesa 105 and the upper surface of the n-type semiconductor substrate 101.
The p-side electrode 107 is formed in a ring shape at the edge of the upper surface of the cylindrical mesa 105.
The n-side electrode 108 is formed on the back surface of the n-type semiconductor substrate 101.

 本実施の形態1に係る受光素子の光吸収層であるi型半導体層103は、Type-IIの多重量子井戸構造を備える。図2A,図2Bに、Type-IとType-IIのヘテロ構造を示す。図中、Ec、Evは各々伝導帯及び価電子帯のバンド端である。Eg1~Eg4はバンドギャップである。また、Vは分極により発生する起電力電圧である。Type-Iでは、光エネルギーを吸収できる禁制帯幅はEg2以上であるのに対し、Type-IIではEeffとなる。このEeffは、ヘテロ構造を構成する母材の禁制帯幅Eg3やEg4よりも小さい。即ち、Type-II(スタガード型)にすることにより、構成材料固有の禁制帯幅以下の光エネルギーを吸収することができる。 The i-type semiconductor layer 103 which is a light absorption layer of the light receiving element according to the first embodiment has a Type-II multiple quantum well structure. 2A and 2B show heterostructures of Type-I and Type-II. In the figure, Ec and Ev are band edges of the conduction band and the valence band, respectively. Eg1 to Eg4 are band gaps. V is an electromotive force voltage generated by polarization. In Type-I, the forbidden band width capable of absorbing light energy is Eg2 or more, whereas in Type-II, it is Eeff. This Eeff is smaller than the forbidden band widths Eg3 and Eg4 of the base material constituting the heterostructure. That is, by using Type-II (staggered type), it is possible to absorb light energy equal to or less than the forbidden band width inherent to the constituent material.

 次に、このType-IIヘテロ構造を多周期積層したフォトボルの原理について説明する。図3は、GaAsSb/GaAs/InGaAsからなる3層を多周期積層した構造のバンド図である。当然のことながら、これらの材料はあくまでも一例である。この材料では、ヘテロ界面付近で波長0.9~1.3μmの光に対して感度を有する。光照射により電子と正孔が誘起され、それぞれエネルギーが最小となる位置に移動する(井戸層内の低エネルギー側)。ここで、電子と正孔は位置的に分離しているため、この分極により電圧を発生するのがフォトボルの原理である。この起電力電圧Vは、次の式(1)で表される。

Figure JPOXMLDOC01-appb-M000001

 ここで、Qは電荷、Cは容量、dは分極の距離、εは誘電率、Sは面積である。よって、電子と正孔を閉じ込める分極距離が長いほど、また、多周期構造として電荷Qを多くすることが、大きな起電力電圧Vを得るために有用となる。図3に示すように、隣接したGaAsSb層とInGaAs層の界面で発生する起電力電圧Vは小さい。一方、GaAsSb層とInGaAs層との間に形成されたGaAs層により分極距離dが大きくなり、起電力電圧Vを大きくすることができる。 Next, the principle of a photovol in which this Type-II heterostructure is laminated in a multi-cycle will be described. FIG. 3 is a band diagram of a structure in which three layers of GaAsSb / GaAs / InGaAs are stacked in a multi-cycle manner. Of course, these materials are only examples. This material has sensitivity to light with a wavelength of 0.9 to 1.3 μm near the heterointerface. Electrons and holes are induced by light irradiation and move to positions where the energy is minimized (at the low energy side in the well layer). Here, since electrons and holes are separated from each other in position, it is the principle of Photobol that voltage is generated by this polarization. This electromotive force voltage V is expressed by the following equation (1).
Figure JPOXMLDOC01-appb-M000001

Here, Q is an electric charge, C is a capacitance, d is a polarization distance, ε is a dielectric constant, and S is an area. Therefore, it is useful to obtain a large electromotive force voltage V as the polarization distance for confining electrons and holes is longer and to increase the charge Q as a multi-period structure. As shown in FIG. 3, the electromotive force voltage V generated at the interface between adjacent GaAsSb layers and InGaAs layers is small. On the other hand, the polarization distance d is increased by the GaAs layer formed between the GaAsSb layer and the InGaAs layer, and the electromotive force voltage V can be increased.

 次に、具体的に予測される起電力電圧Vを算出する。Type-IIのヘテロ構造では、実効的な禁制帯幅が小さくなるため、上記のようにGaAs基板上に形成したフォトボルでも、比較的低エネルギーである波長0.9~1.3μmの光を吸収することができる。一方、界面近傍のみでの吸収となるため、その吸収係数はバルクの30%程度と想定できる。いま、バルクの吸収係数αを10000cm-1とした場合、Type-IIでは3000cm-1となる。入射光に対する光吸収は、exp(-αW)で表されるから、吸収幅Wを10nmと仮定すると、1界面での光吸収量は入射光の約0.3%となる。 Next, a specifically predicted electromotive force voltage V is calculated. In the Type-II heterostructure, the effective forbidden band width is small, so even the photovolt formed on the GaAs substrate as described above absorbs light having a wavelength of 0.9 to 1.3 μm, which is relatively low energy. can do. On the other hand, since absorption is performed only near the interface, the absorption coefficient can be assumed to be about 30% of the bulk. Now, assuming that the bulk absorption coefficient α is 10000 cm-1, Type-II is 3000 cm-1. Since light absorption with respect to incident light is expressed by exp (−αW), assuming that the absorption width W is 10 nm, the amount of light absorption at one interface is about 0.3% of the incident light.

 次に、受光素子への入射光が5mW(=5mJ/s)とした場合、1界面当たりの光子数/secはX=7.8×1012個/secである。ここで、Type-IIの量子井戸のキャリア寿命τを100nsecとすると、定常状態での1量子井戸中のキャリア数Nは、N/τ=Xの関係から、N=7.8×105個となる。これらの算出したデータを式1に代入して起電力電圧を求めると、V=350mVが得られた。ここで、分極距離dは30nm、面積Sは10μm×10μm=100μmとした。分極距離dは20nm以上であることが好ましい。 Next, when the incident light to the light receiving element is 5 mW (= 5 mJ / s), the number of photons per interface / sec is X = 7.8 × 10 12 / sec. Here, assuming that the carrier lifetime τ of the quantum well of Type-II is 100 nsec, the number of carriers N in one quantum well in a steady state is N = 7.8 × 105 from the relationship of N / τ = X. Become. Substituting these calculated data into Equation 1 to obtain the electromotive force voltage, V = 350 mV was obtained. Here, the polarization distance d was 30 nm, and the area S was 10 μm × 10 μm = 100 μm 2 . The polarization distance d is preferably 20 nm or more.

 この350mVの起電力は、伝送路の故障判定を行うために十分な電圧値である。また、光伝搬により、350mVの電圧を任意の場所に誘起できることを意味する。そのため、センサへの電力供給も可能である。なお、光伝搬信号が10GHzを越える高速伝送を行っている場合でも、本発明のフォトボルモニタはその高速駆動に追随する必要はなく、平均光入力をモニタできれば、伝送経路の故障判定、あるいは、給電が可能である。 This 350 mV electromotive force is a voltage value sufficient to determine the failure of the transmission line. Further, it means that a voltage of 350 mV can be induced at an arbitrary place by light propagation. Therefore, power can be supplied to the sensor. Even when the optical propagation signal performs high-speed transmission exceeding 10 GHz, the photovolt monitor of the present invention does not need to follow the high-speed driving. Power can be supplied.

 さらに、上述したように、Type-IIでは、1界面での光吸収量は入射光の約0.3%に過ぎない。即ち、ほとんどの光を透過できる。そのため、センサネットワーク網の任意の箇所に挿入しても、伝搬光にほとんど影響しない。 Furthermore, as described above, in Type-II, the amount of light absorption at one interface is only about 0.3% of the incident light. That is, most light can be transmitted. For this reason, even if it is inserted in any part of the sensor network, it hardly affects the propagation light.

 上記の点は、マルチモード発光である面発光レーザの光出力をモニタする点でメリットがある。通常、面発光レーザの出力モードは単峰ではなく多峰であり、その分布は、注入電流によって、あるいは時間によっても変化する。このため、面発光レーザの出射光の一部をモニタするタイプの光検出器ではこの影響を受けやすい。本発明では、面発光レーザ出力をそのまま受光し、そのほとんどの光を通過させることができるため、光出力全体の平均値としてモニタすることが可能となる。受光素子における光吸収率は10%以下あることが好ましい。 The above point is advantageous in that it monitors the light output of a surface emitting laser that is a multi-mode light emission. Usually, the output mode of a surface emitting laser is not single-peak but multi-peak, and its distribution changes depending on injection current or time. For this reason, a photodetector of the type that monitors part of the light emitted from the surface emitting laser is susceptible to this influence. In the present invention, since the surface emitting laser output can be received as it is and most of the light can pass therethrough, it is possible to monitor the average value of the entire light output. The light absorption rate in the light receiving element is preferably 10% or less.

 次に、実施の形態1に係る受光素子の製造方法について図4を参照して説明する。まず、図4Aに示すように、GaAsからなるn型半導体基板101上に、GaAsからなるn型バッファ層102、GaAsSb層とGaAs層とInGaAs層との3層を10周期積層したType-IIのi型半導体層103、GaAsからなるp型半導体層104を有機金属気相化学堆積(MOVPE:Metal-Organic Vapor Phase Epitaxy)法にて順次積層する(工程1)。もちろん、分子線エピタキシー成長(MBE:Molecular Beam Epitaxy)法など他の結晶成長方法を用いてもよい。 Next, a method for manufacturing the light receiving element according to Embodiment 1 will be described with reference to FIG. First, as shown in FIG. 4A, on an n-type semiconductor substrate 101 made of GaAs, a Type-II layer in which three layers of a GaAs n-type buffer layer 102, a GaAsSb layer, a GaAs layer, and an InGaAs layer are laminated for 10 periods. The i-type semiconductor layer 103 and the p + -type semiconductor layer 104 made of GaAs are sequentially laminated by a metal-organic vapor phase epitaxy (MOVPE) method (step 1). Of course, other crystal growth methods such as molecular beam epitaxy (MBE) may be used.

 次に、図4Bに示すように、フォトレジストを、p型半導体層104上へ塗布し、直径約30μmの円形のレジストマスクを形成する(工程2)。次に、ドライエッチングにより、n型半導体基板101の表面が露出するまでエッチングを行い、直径約50μmのメサ(円柱状構造)105を形成する(工程3)。 Next, as shown in FIG. 4B, a photoresist is applied onto the p + type semiconductor layer 104 to form a circular resist mask having a diameter of about 30 μm (step 2). Next, etching is performed by dry etching until the surface of the n-type semiconductor substrate 101 is exposed, and a mesa (columnar structure) 105 having a diameter of about 50 μm is formed (step 3).

 次に、メサ105側面及びn型半導体基板101表面を覆うようにSiNx保護膜106を形成する。そして、メサ105の上面にリング形状のp側電極107を、n型半導体基板101の裏面にn側電極108をそれぞれ形成して図1の受光素子が完成する(工程4)。 Next, a SiNx protective film 106 is formed so as to cover the side surface of the mesa 105 and the surface of the n-type semiconductor substrate 101. Then, the ring-shaped p-side electrode 107 is formed on the top surface of the mesa 105 and the n-side electrode 108 is formed on the back surface of the n-type semiconductor substrate 101, thereby completing the light receiving element of FIG. 1 (step 4).

 この実施の形態1に係る受光素子では、入射光5mWにおいて330mVの起電力電圧が得られた。ここで、入射光の波長は1.3μmであった。 In the light receiving element according to the first embodiment, an electromotive force voltage of 330 mV was obtained when the incident light was 5 mW. Here, the wavelength of incident light was 1.3 μm.

実施の形態2
 次に、本発明の実施の形態2に係る受光素子の構成について図5を参照して説明する。図5Aは、本発明の第2の実施の形態に係る受光素子の斜視図である。図5Bは図5AのVB-VB断面図である。この受光素子は、n型半導体基板201上に、n型バッファ層202、i型半導体層203、p型半導体層204、保護膜206、p側電極207及びn側電極208を備える。なお、図5Bでは、保護膜206を省略している。
Embodiment 2
Next, the configuration of the light receiving element according to Embodiment 2 of the present invention will be described with reference to FIG. FIG. 5A is a perspective view of a light receiving element according to the second embodiment of the present invention. 5B is a VB-VB cross-sectional view of FIG. 5A. The light receiving element includes an n-type buffer layer 202, an i-type semiconductor layer 203, a p + -type semiconductor layer 204, a protective film 206, a p-side electrode 207, and an n-side electrode 208 on an n-type semiconductor substrate 201. In FIG. 5B, the protective film 206 is omitted.

 n型半導体基板201は、例えば、GaAsからなる。
 n型バッファ層202は、n型半導体基板201上に形成されており、例えば、GaAsからなる。
 i型半導体層203は、n型バッファ層202上に形成されており、GaAsSb層とGaAs層とGaAsN層との3層を20周期積層したType-IIのバンド構造を有する。
 p型半導体層204は、i型半導体層203上に形成されており、例えば、GaAsからなる。
 ここで、n型バッファ層202、i型半導体層203、p型半導体層204が円柱状のメサ205を構成している。図5Aに示すように、このメサ205の端面から光が入射する。
The n-type semiconductor substrate 201 is made of, for example, GaAs.
The n-type buffer layer 202 is formed on the n-type semiconductor substrate 201 and is made of, for example, GaAs.
The i-type semiconductor layer 203 is formed on the n-type buffer layer 202 and has a Type-II band structure in which three layers of a GaAsSb layer, a GaAs layer, and a GaAsN layer are stacked for 20 periods.
The p + type semiconductor layer 204 is formed on the i type semiconductor layer 203 and is made of, for example, GaAs.
Here, the n-type buffer layer 202, the i-type semiconductor layer 203, and the p + -type semiconductor layer 204 constitute a cylindrical mesa 205. As shown in FIG. 5A, light enters from the end face of the mesa 205.

 保護膜206は、例えば、SiNxからなり、メサ205の側面及びn型半導体基板201の上面を覆うように形成されている。
 p側電極207はメサ205の上面に形成されている。
 n側電極208はn型半導体基板201の裏面に形成されている。
The protective film 206 is made of, for example, SiNx, and is formed so as to cover the side surface of the mesa 205 and the upper surface of the n-type semiconductor substrate 201.
The p-side electrode 207 is formed on the upper surface of the mesa 205.
The n-side electrode 208 is formed on the back surface of the n-type semiconductor substrate 201.

 実施の形態1の光検出器は、GaAsSb/GaAs/InGaAsの多周期構造を備える。この材料系はGaAs基板に対して共に同じ歪方向(圧縮歪)であるために、ヘテロ界面を多くしすぎると臨界膜厚を超えてしまい、結晶性が急激に劣化する。これに対し、本実施の形態2の光検出器は、歪補償構造となるGaAsSb/GaAs/GaAsNの多周期構造を備える。そのため、更なるヘテロ界面の増加が可能となり、起電力電圧Vをより大きくすることができるとともに、受光波長も0.9~1.6μmと拡大することができる。 The photodetector of the first embodiment has a multi-period structure of GaAsSb / GaAs / InGaAs. Since this material system has the same strain direction (compression strain) with respect to the GaAs substrate, if the number of heterointerfaces is increased too much, the critical film thickness will be exceeded, and the crystallinity will deteriorate rapidly. On the other hand, the photodetector of the second embodiment includes a multi-period structure of GaAsSb / GaAs / GaAsN serving as a strain compensation structure. Therefore, the hetero interface can be further increased, the electromotive force voltage V can be further increased, and the light receiving wavelength can be expanded to 0.9 to 1.6 μm.

 次に、第2の実施の形態に係る受光素子の製造方法について図5及び図6を参照して説明する。まず、図6Aに示すように、GaAsからなるn型半導体基板201上に、GaAsからなるn型半導体層202、GaAsSb層とGaAs層とGaAsN層との3層を20周期積層したType-IIのi型半導体層203、GaAsからなるp型半導体層204をMOCVD法にて順次積層する(工程1)。もちろん、分子線エピタキシー成長(MBE:Molecular Beam Epitaxy)法など他の結晶成長方法を用いてもよい。 Next, a method for manufacturing a light receiving element according to the second embodiment will be described with reference to FIGS. First, as shown in FIG. 6A, on an n-type semiconductor substrate 201 made of GaAs, a Type-II in which three layers of an n + -type semiconductor layer 202 made of GaAs, a GaAsSb layer, a GaAs layer, and a GaAsN layer are stacked for 20 periods. The i type semiconductor layer 203 and the p + type semiconductor layer 204 made of GaAs are sequentially stacked by MOCVD (step 1). Of course, other crystal growth methods such as molecular beam epitaxy (MBE) may be used.

 次に、図6Bに示すように、フォトレジストを、p型半導体層204上へ塗布し、導波路用のストライプのレジストマスクを形成する(工程2)。次いで、ドライエッチングにより、n型半導体基板201の表面が露出するまでエッチングを行い、幅約30μmのストライプ状メサ205を形成する(工程3)。 Next, as shown in FIG. 6B, a photoresist is applied onto the p + type semiconductor layer 204 to form a stripe resist mask for the waveguide (step 2). Next, etching is performed by dry etching until the surface of the n-type semiconductor substrate 201 is exposed, and a striped mesa 205 having a width of about 30 μm is formed (step 3).

 次に、メサ205側面及びn型半導体基板201表面を覆うようにSiNx保護膜206を形成する。そして、メサ205の上面にp側電極207を、n型半導体基板201の裏面にn側電極208をそれぞれ形成して図5の受光素子が完成する(工程4)。 Next, a SiNx protective film 206 is formed so as to cover the side surface of the mesa 205 and the surface of the n-type semiconductor substrate 201. Then, the p-side electrode 207 is formed on the upper surface of the mesa 205 and the n-side electrode 208 is formed on the back surface of the n-type semiconductor substrate 201, thereby completing the light receiving element of FIG. 5 (step 4).

 この実施の形態2に係る受光素子では、入射光5mWにおいて305mVの起電力電圧が得られた。ここで、入射光の波長は1.5μmであった。 In the light receiving element according to the second embodiment, an electromotive force voltage of 305 mV was obtained when the incident light was 5 mW. Here, the wavelength of incident light was 1.5 μm.

 以上説明したとおり、本発明によれば、入射光波長0.9~1.6μm帯に感度を有し、外部電源が不要な受光素子を提供することができる。また、安価なGaAs基板上に低コストに素子を形成することができる。外部電源が不要であるため、対応する回路を削減することができる。さらに、光吸収層が多周期のType-IIのヘテロ構造を有するため、伝搬光の吸収を数%以下に抑えることができる。これにより、多段のネットワーク構成にメリットがある。 As described above, according to the present invention, it is possible to provide a light receiving element that has sensitivity in the incident light wavelength range of 0.9 to 1.6 μm and does not require an external power supply. Further, an element can be formed on an inexpensive GaAs substrate at a low cost. Since an external power supply is unnecessary, the corresponding circuit can be reduced. Further, since the light absorption layer has a multi-period Type-II heterostructure, the absorption of propagating light can be suppressed to several percent or less. Thereby, there is a merit in a multistage network configuration.

 本発明の実施方法は上記した各種形態に限定されるものではなく、その趣旨を逸脱しない範囲で各種の変形が可能である。受光素子の波長、材料についても実施の形態に挙げたもの以外を選ぶことが可能である。 The implementation method of the present invention is not limited to the above-described various forms, and various modifications can be made without departing from the spirit of the present invention. As for the wavelength and material of the light receiving element, those other than those listed in the embodiment can be selected.

 この出願は、2008年2月12日に出願された日本出願特願2008-30821を基礎とする優先権を主張し、その開示の全てをここに取り込む。 This application claims priority based on Japanese Patent Application No. 2008-30821 filed on February 12, 2008, the entire disclosure of which is incorporated herein.

 本発明は、光通信や光インターコネクションの分野で用いられる半導体受光素子であって、例えばセンサネットワーク等に好適に適用可能である。 The present invention is a semiconductor light receiving element used in the fields of optical communication and optical interconnection, and can be suitably applied to, for example, a sensor network.

Claims (8)

 半導体基板と、
 前記半導体基板上に形成され、Type-IIの多重量子井戸構造を有する光吸収層とを備え、
 前記量子井戸構造における分極距離が20nm以上であることを特徴とする光-電圧変換型の半導体受光素子。
A semiconductor substrate;
A light absorption layer formed on the semiconductor substrate and having a Type-II multiple quantum well structure;
A light-voltage conversion type semiconductor light receiving element, wherein a polarization distance in the quantum well structure is 20 nm or more.
 受光波長が0.9~1.6μmであることを特徴とする請求項1に記載の半導体受光素子。 2. The semiconductor light receiving element according to claim 1, wherein the light receiving wavelength is 0.9 to 1.6 μm.  当該半導体受光素子における光吸収率が10%以下あることを特徴とする請求項1又は2に記載の半導体受光素子。 3. The semiconductor light receiving element according to claim 1, wherein the light absorption rate of the semiconductor light receiving element is 10% or less.  前記Type-IIの多重量子井戸構造は、InGaAs層とGaAsSb層の2層、又は、GaAsN層とGaAsSb層の2層を含む複数層が周期的に積層されてなることを特徴とする請求項1~3のいずれか一項に記載の受光素子。 2. The Type-II multiple quantum well structure is formed by periodically laminating a plurality of layers including two layers of an InGaAs layer and a GaAsSb layer, or two layers of a GaAsN layer and a GaAsSb layer. 4. The light receiving element according to any one of items 1 to 3.  前記Type-IIの多重量子井戸構造は、InGaAs層とGaAsSb層とGaAs層の3層、又は、GaAsN層とGaAsSb層とGaAs層の3層が周期的に積層されてなることを特徴とする請求項4に記載の受光素子。 The Type-II multiple quantum well structure is characterized in that three layers of an InGaAs layer, a GaAsSb layer, and a GaAs layer, or three layers of a GaAsN layer, a GaAsSb layer, and a GaAs layer are periodically stacked. Item 5. The light receiving element according to Item 4.  前記半導体基板が、GaAs基板であることを特徴とする請求項1~5のいずれか一項に記載の受光素子。 The light receiving element according to any one of claims 1 to 5, wherein the semiconductor substrate is a GaAs substrate.  前記半導体基板上にバッファ層と、キャップ層とをさらに有し、
 当該バッファ層とキャップ層との間に前記光吸収層が形成されており、
 前記半導体基板の主面に略垂直な方向から光が入射する面入射型であることを特徴とする請求項1~6のいずれか一項に記載の半導体受光素子。
A buffer layer on the semiconductor substrate; and a cap layer;
The light absorption layer is formed between the buffer layer and the cap layer,
7. The semiconductor light receiving element according to claim 1, wherein the semiconductor light receiving element is a surface incident type in which light enters from a direction substantially perpendicular to a main surface of the semiconductor substrate.
 前記半導体基板上にバッファ層と、キャップ層とをさらに有し、
 当該バッファ層とキャップ層との間に前記光吸収層が形成されており、
 前記半導体基板の主面に略平行な方向から光が入射する導波路型であることを特徴とする請求項1~6のいずれか一項に記載の半導体受光素子。
A buffer layer on the semiconductor substrate; and a cap layer;
The light absorption layer is formed between the buffer layer and the cap layer,
7. The semiconductor light receiving element according to claim 1, wherein the semiconductor light receiving element is of a waveguide type in which light enters from a direction substantially parallel to the main surface of the semiconductor substrate.
PCT/JP2008/071461 2008-02-12 2008-11-26 Semiconductor light receiving element WO2009101740A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-030821 2008-02-12
JP2008030821 2008-02-12

Publications (1)

Publication Number Publication Date
WO2009101740A1 true WO2009101740A1 (en) 2009-08-20

Family

ID=40956778

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/071461 WO2009101740A1 (en) 2008-02-12 2008-11-26 Semiconductor light receiving element

Country Status (1)

Country Link
WO (1) WO2009101740A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011129031A1 (en) * 2010-04-13 2011-10-20 住友電気工業株式会社 Semiconductor wafer, light-receiving element, light-receiving element array, hybrid-type detection device, optical sensor device, and process for production of semiconductor wafer
WO2012137795A1 (en) * 2011-04-08 2012-10-11 住友電気工業株式会社 Light receiving element and method for manufacturing same
JP2015167241A (en) * 2015-04-20 2015-09-24 住友電気工業株式会社 Light receiving element and manufacturing method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6285476A (en) * 1985-08-30 1987-04-18 サントル・ナシヨナル・ド・ラ・ルシエルシエ・シヤンテイフイク High-speed optical detection method and device using superlattice
JPH05160429A (en) * 1991-12-09 1993-06-25 Nec Corp Infrared ray sensor
JPH06196745A (en) * 1992-12-24 1994-07-15 Nec Corp Infrared detector
JP2662309B2 (en) * 1990-09-28 1997-10-08 沖電気工業株式会社 Compound semiconductor solar cells
JP2000216424A (en) * 1999-01-22 2000-08-04 Nec Corp Light-voltage conversion type semiconductor photo detecting element, optical signal processing device and optical integrated element
JP2007324572A (en) * 2006-05-02 2007-12-13 Sumitomo Electric Ind Ltd Light receiving element array, manufacturing method thereof, and optical measurement system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6285476A (en) * 1985-08-30 1987-04-18 サントル・ナシヨナル・ド・ラ・ルシエルシエ・シヤンテイフイク High-speed optical detection method and device using superlattice
JP2662309B2 (en) * 1990-09-28 1997-10-08 沖電気工業株式会社 Compound semiconductor solar cells
JPH05160429A (en) * 1991-12-09 1993-06-25 Nec Corp Infrared ray sensor
JPH06196745A (en) * 1992-12-24 1994-07-15 Nec Corp Infrared detector
JP2000216424A (en) * 1999-01-22 2000-08-04 Nec Corp Light-voltage conversion type semiconductor photo detecting element, optical signal processing device and optical integrated element
JP2007324572A (en) * 2006-05-02 2007-12-13 Sumitomo Electric Ind Ltd Light receiving element array, manufacturing method thereof, and optical measurement system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"5-doping Chokoshi Kozo ni yoru Photovol Soshi no Teian to Shisaku", EXTENDED ABSTRACTS; THE JAPAN SOCIETY OF APPLIED PHYSICS, vol. 60, no. 3, 1999, pages 987 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011129031A1 (en) * 2010-04-13 2011-10-20 住友電気工業株式会社 Semiconductor wafer, light-receiving element, light-receiving element array, hybrid-type detection device, optical sensor device, and process for production of semiconductor wafer
JP2011222874A (en) * 2010-04-13 2011-11-04 Sumitomo Electric Ind Ltd Semiconductor wafer, photo detector, photo detector array, hybrid type detector device, optical sensor device, and manufacturing method of semiconductor wafer
US8642943B2 (en) 2010-04-13 2014-02-04 Sumitomo Electric Industries, Ltd. Semiconductor wafer, light-receiving element, light-receiving element array, hybrid-type detection device, optical sensor device, and process for production of semiconductor wafer
WO2012137795A1 (en) * 2011-04-08 2012-10-11 住友電気工業株式会社 Light receiving element and method for manufacturing same
JP2012222154A (en) * 2011-04-08 2012-11-12 Sumitomo Electric Ind Ltd Light receiving element and method for manufacturing the same
CN103477449A (en) * 2011-04-08 2013-12-25 住友电气工业株式会社 Light receiving element and method for manufacturing same
JP2015167241A (en) * 2015-04-20 2015-09-24 住友電気工業株式会社 Light receiving element and manufacturing method thereof

Similar Documents

Publication Publication Date Title
US6104047A (en) Avalanche photodiode with thin built-in depletion region
US6614086B2 (en) Avalanche photodetector
US7415185B2 (en) Buried-waveguide-type light receiving element and manufacturing method thereof
US20100133637A1 (en) Avalanche photodiode
JP2003522421A (en) VCSEL with monolithically integrated photodetector
US8659053B2 (en) Semiconductor light detecting element
JP2013236012A (en) Avalanche photodiode and method for manufacturing the same
JP2014093459A (en) Semiconductor photodetector, and photodetector
US7659536B2 (en) High performance hyperspectral detectors using photon controlling cavities
KR100463416B1 (en) Avalanche phototransistor
JP2011258809A (en) Semiconductor photodetector
JP4386191B2 (en) Optical element
US20140361249A1 (en) Quantum dot infrared photodetector
WO2009101740A1 (en) Semiconductor light receiving element
JP2000323746A (en) Avalanche photodiode and its manufacture
US20240304739A1 (en) Semiconductor light-receiving device
JP2023506759A (en) solid state device
US10129613B2 (en) Optical switch, optical switching apparatus
CA2477989A1 (en) A laser diode with a low absorption diode junction
JP2962069B2 (en) Waveguide structure semiconductor photodetector
JP5391945B2 (en) Light receiving element and epitaxial wafer
US20230146773A1 (en) GaAs Based Photodetectors Using Dilute Nitride for Operation in O-band and C-bands
WO2009101739A1 (en) Surface-emitting laser and method for manufacturing the same
Umezawa et al. Improvement of photodiode responsivity using the InAs quantum dot family for monolithic integration
Wu et al. Study on 1550 nm Human Eye-Safe High-Power Tunnel Junction Quantum Well Laser

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08872441

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08872441

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP