WO2009099306A1 - Methods and apparatus to allocate acknowledgement channels - Google Patents
Methods and apparatus to allocate acknowledgement channels Download PDFInfo
- Publication number
- WO2009099306A1 WO2009099306A1 PCT/KR2009/000567 KR2009000567W WO2009099306A1 WO 2009099306 A1 WO2009099306 A1 WO 2009099306A1 KR 2009000567 W KR2009000567 W KR 2009000567W WO 2009099306 A1 WO2009099306 A1 WO 2009099306A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- index
- phich
- group
- automatic repeat
- hybrid automatic
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 30
- 238000004891 communication Methods 0.000 claims description 12
- 230000004044 response Effects 0.000 claims description 5
- 101150071746 Pbsn gene Proteins 0.000 abstract 1
- 230000005540 biological transmission Effects 0.000 description 26
- 230000000694 effects Effects 0.000 description 6
- 238000005562 fading Methods 0.000 description 4
- 125000004122 cyclic group Chemical group 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 230000011218 segmentation Effects 0.000 description 2
- 230000008054 signal transmission Effects 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 238000013461 design Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 238000013468 resource allocation Methods 0.000 description 1
- 230000011664 signaling Effects 0.000 description 1
- 230000007480 spreading Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/12—Arrangements for detecting or preventing errors in the information received by using return channel
- H04L1/16—Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
- H04L1/18—Automatic repetition systems, e.g. Van Duuren systems
- H04L1/1829—Arrangements specially adapted for the receiver end
- H04L1/1854—Scheduling and prioritising arrangements
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/12—Arrangements for detecting or preventing errors in the information received by using return channel
- H04L1/16—Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
- H04L1/18—Automatic repetition systems, e.g. Van Duuren systems
- H04L1/1829—Arrangements specially adapted for the receiver end
- H04L1/1861—Physical mapping arrangements
Definitions
- the present invention relates to methods and apparatus for allocating acknowledgement channels in a communication network.
- Telecommunication enables transmission of data over a distance for the purpose of communication between a transmitter and a receiver.
- the data is usually carried by radio waves and is transmitted using a limited transmission resource. That is, radio waves are transmitted over a period of time using a limited frequency range.
- the information to be transmitted are first encoded and then modulated to generate multiple modulation symbols.
- the symbols are subsequently mapped into transmission resource.
- the transmission resource available for data transmission is segmented into a plurality of equal duration time and frequency slots, so called resource elements.
- a single resource element or multiple resource elements may be allocated for transmitting the data.
- a control signal may accompany the data to carry information regarding the allocation of the resource elements for the current data transmission. Therefore, when a receiver receives the data and the control signal, the receiver may derive the information regarding resource allocation used for data transmission from the control signal and decodes the received data using the derived information.
- each data transmission carries information bits of one or multiple transport blocks.
- the information bits in a transport block may be segmented into multiple code blocks.
- the process of dividing the information bits in a transport block into multiple code blocks is called code block segmentation. Due to the limited selection of code block sizes and the attempt to maximize packing efficiency during the code block segmentation, the multiple code blocks of a transport block may have different sizes.
- Each code block will be encoded, interleaved, rate matched, and modulated. Therefore, the data symbols for a transmission may consist of modulation symbols of multiple code blocks.
- PHICH Physical Hybrid Automatic Repeat-reQuest Indicator Channel
- HARQ Physical Hybrid Automatic Repeat-reQuest
- UEs user equipments
- a linking scheme is established between indices of a plurality of physical hybrid automatic repeat-request indicator channels (PHICHs), and a combination of indices of control channel elements (CCEs) and indices of demodulation reference signals (DMRSs).
- PHICHs physical hybrid automatic repeat-request indicator channels
- CCEs control channel elements
- DMRSs demodulation reference signals
- the first node determines an index of a physical hybrid automatic repeat-request indicator channel (PHICH) within the plurality of physical hybrid automatic repeat-request indicator channels (PHICHs) in dependence upon at least one index of the control channel elements (CCEs) used to transmit the scheduling grant, and an index of the transmitted demodulation reference signal (DMRS) in accordance with the linking scheme established.
- the first node transmits an acknowledgement signal to the second node by using the physical hybrid automatic repeat-request indicator channel (PHICH) indicated by the determined index of the physical hybrid automatic repeat-request indicator channel (PHICH).
- the plurality of physical hybrid automatic repeat-request indicator channels may be equally divided into a plurality of groups.
- the first node may determine the physical hybrid automatic repeat-request indicator channel (PHICH) within the plurality of physical hybrid automatic repeat- request indicator channels (PHICHs) in dependence upon a combination of an index of a first control channel element (CCE) used to transmit the scheduling grant, and the index of the transmitted demodulation reference signal (DMRS) in accordance with the linking scheme established.
- PHICH physical hybrid automatic repeat-request indicator channel
- CCE first control channel element
- DMRS transmitted demodulation reference signal
- the linking scheme may be established by:
- IndexpHicH (Index lst C CE % N group ) x S group + ( Index DMRS + L Index lst C CE /
- Indexp H ici-i denotes the index of the physical hybrid automatic repeat- request indicator channel (PHICH)
- Index lst CCE denotes the index of the first control channel element (CCE) used to transmit the scheduling grant
- Index DMR s denotes the index of the transmitted demodulation reference signal (DMRS)
- N group denotes the quantity of the plurality of groups of physical hybrid automatic repeat-request indicator channels (PHICHs)
- S group denotes the quantity of the physical hybrid automatic repeat-request indicator channels (PHICHs) in each group.
- linking scheme may be established by:
- IndexpHicH ( Index lst cC E % N group ) x S group + Index DMRS .
- linking scheme may be established by:
- IndexpHicH Index lst C cE % N group + Index DMRS x N group .
- a linking scheme is established between indices of a plurality of physical hybrid automatic repeat-request indicator channels (PHICH), and a combination of indices of physical resource blocks (PRBs) and indices of demodulation reference signals.
- a first node transmits a scheduling grant to a second node that allocates a plurality of physical resource blocks (PRBs) for the second node to transmit a data packet.
- PRBs physical resource blocks
- the first node determines an index of a physical hybrid automatic repeat-request indicator channel (PHICH) within the plurality of physical hybrid automatic repeat-request indicator channels (PHICHs) in dependence upon at least one index of the physical resource blocks (PRBs) used to transmit the scheduling grant, and an index of the transmitted demodulation reference signal (DMRS) in accordance with the linking scheme established.
- the first node transmits an acknowledgement signal to the second node by using the physical hybrid automatic repeat-request indicator channel (PHICH) indicated by the determined index of the physical hybrid automatic repeat-request indicator channel (PHICH).
- the first node may determine the physical hybrid automatic repeat-request indicator channel (PHICH) within the plurality of physical hybrid automatic repeat- request indicator channels (PHICHs) in dependence upon a combination of an index of a first physical resource block (PRB) used to transmit the scheduling grant, and the index of the transmitted demodulation reference signal (DMRS) in accordance with the linking scheme established.
- PHICH physical hybrid automatic repeat-request indicator channel
- PRB physical resource block
- DMRS transmitted demodulation reference signal
- the linking scheme may be established by:
- IndexpHicH (Index lst PRB % N group ) x S group + ( Index DMRS + L Index, stPRB /
- Index PHICH denotes the index of the physical hybrid automatic repeat- request indicator channel (PHICH)
- Index st PRB denotes the index of the first physical resource block (PRB) used to transmit the scheduling grant
- Index DMR s denotes the index of the transmitted demodulation reference signal (DMRS)
- N gr0Up denotes the quantity of the plurality of groups of physical hybrid automatic repeat-request indicator channels (PHICHs)
- S group denotes the quantity of the physical hybrid automatic repeat-request indicator channels (PHICHs) in each group.
- the linking scheme may be established by:
- IndexpHicH Index lstPRB % N gr0U p + (( Index DMRS + L Index lst PRB / N ⁇ p J ) %
- linking scheme may be established by:
- IndexpHicH ( Index lst p RB % N group ) x S group + Index DMRS .
- the linking scheme may be established by:
- Indexp H icH Index lstPRB % N group + Index DMRS x-N group .
- FIG. 1 is an illustration of an Orthogonal Frequency Division Multiplexing (OFDM) transceiver chain suitable for the practice of the principles of the present invention
- FIG. 2 is an illustration of LTE downlink control channel elements
- FIG. 3 is an illustration of LTE downlink sub frame structure
- FIG. 4 illustrates a communication scheme between a base station (BS) and a unit of user equipment (UE) in packet-based wireless data communication systems;
- FIGs. 5(a) and (b) schematically illustrates two different Physical Hybrid Automatic Repeat-reQuest (HARQ) Indicator Channel (PHICH) indexing schemes;
- HARQ Physical Hybrid Automatic Repeat-reQuest
- PHICH Indicator Channel
- FIGs. 6(a)-(c) schematically illustrates linking schemes between the PHICH index and the CCE index, when the DMRS index is equal to 0, 1 , 2, respectively, as an embodiment according to the principles of the present invention
- FIGs. 7(a)-(c) schematically illustrates linking schemes between the PHICH index and the CCE index, when the DMRS index is equal to 0, I 5 2, respectively, as another embodiment according to the principles of the present invention
- FIGs. 8(a)-(c) schematically illustrates linking schemes between the PHICH index and the CCE index, when the DMRS index is equal to 0, 1, 2, respectively, as still another embodiment according to the principles of the present invention
- FIG. 9(a) schematically illustrates a base station for allocating the acknowledgement channels as an embodiment according to the principles of the present invention
- FIG. 9(b) is a flow chart outlining the procedure for acknowledgement channel allocation as an embodiment according to the principles of the present invention.
- FIGs. 10(a)-(c) schematically illustrates linking schemes between the PHICH index and the PRB index, when the DMRS index is equal to 0, 1, 2, respectively, as an embodiment according to the principles of the present invention
- FIGs. l l(a)-(c) schematically illustrates linking schemes between the PHICH index and the PRB index, when the DMRS index is equal to 0, 1, 2, respectively, as another embodiment according to the principles of the present invention.
- FIGs. 12(a)-(c) schematically illustrates linking schemes between the PHICH index and the PRB index, when the DMRS index is equal to 0, 1, 2, respectively, as still another embodiment according to the principles of the present invention.
- FIG. 13 is a flow chart outlining the procedure for acknowledgement channel allocation as another embodiment according to the principles of the present invention.
- FIG. 1 illustrates an Orthogonal Frequency Division Multiplexing (OFDM) transceiver chain.
- OFDM Orthogonal Frequency Division Multiplexing
- control signals or data 111 is modulated by modulator 112 and is serial-to-parallel converted by Serial/Parallel (S/P) converter 113.
- IFFT Inverse Fast Fourier Transform
- CP Cyclic prefix
- ZP zero prefix
- the signal is transmitted by transmitter (Tx) front end processing unit 117 and at least one antenna (not shown), or fixed wire or cable.
- the signal is transmitted from one or more antennas driven by unit 117 via the atmosphere and is subjected to multipath fading to arrive at a receiver.
- the multipath fading channel illustrated in FIG. 1 refers to a transmission media (for example, atmosphere), and the multipath fading channel is not a component connected to the receiver, nor to the transmitter.
- the signal received by receiver (Rx) front end processing unit 121 is processed by CP removal unit 122.
- FFT Fast Fourier Transform
- Control channel candidate set can be constructed based on the control channel elements reserved for downlink control channels.
- Each downlink control channel can be transmitted on one of the control channel candidate set.
- An example of control channel elements and control channel candidate set is shown in FIG. 2. In this example, 11 control channel candidate sets can be constructed on 6 control channel elements. In the rest of the document, we will refer to these control channel candidate sets as control channel resource sets, or simply, resource sets.
- the downlink subframe structure in a 3GPP LTE system is shown in FIG. 3.
- a time and frequency resource can be divided into a plurality of resource blocks 210 (RB).
- Each resource block 210 can be further divided into a plurality of resource elements 211 in a time and frequency domain.
- a single OFDM symbol can be transmitted using a row of resource elements corresponding to the same period of time.
- each subframe is lms long, containing 14 OFDM symbols. Assume the OFDM symbols in a subframe are indexed from 0 to 13. Reference symbols (RS) for antenna 0 and 1 are located in OFDM symbol 0, 4, 7, and 11.
- RS Reference symbols
- control channel signals including Control Channel Format Indicator (CCFI), acknowledgement signal (ACK), packet data control channel (PDCCH) signal, are transmitted in the first one, or two, or three OFDM symbols. The number of OFDM symbols used for control channel signals is indicated by CCFI.
- Data channel signals i.e., Physical Downlink Shared Channel (PDSCH) signals, are transmitted in other OFDM symbols.
- FIG. 4 illustrates a communication scheme between a base station (BS) and a unit of user equipment (UE) in packet-based wireless data communication systems.
- BS 250 transmits an uplink grant to UE 260 to schedule an uplink transmission, via step 270.
- UE 260 transmits data and demodulation reference signal (DMRS) to BS 250.
- DMRS demodulation reference signal
- BS 250 may transmit an acknowledgement message or a negative acknowledgement message by using downlink acknowledgement channels.
- PHICH channels are transmitted in groups, with each group containing S group PHICH channels.
- N group N PHICH / S gr0U p-
- Each PHICH channel in a PHICH group is transmitted using a different spreading sequence, and / or on a different In-phase or Quadrature-phase branch.
- index of a PHICH channel within a group as Index sequence .
- Index group the index of the PHICH group that a PHICH channel belongs to as Index group .
- one indexing scheme is to increment the sequence index first, and then the group index, thus,
- IndexpHicH Index group x S group + Index seque nc e ( 1 )
- IndexpHicH Index group + Index seqU en C e x N group (2)
- the PHICH that acknowledges an uplink transmission is allocated according to at least one index of the CCEs used in transmitting the uplink grant for the said uplink transmission, and the index of the demodulation reference signal (DMRS) used in the said uplink transmission.
- the demodulation reference signal (DMRS) is transmitted together with the uplink data packet.
- the purpose of the DMRS is to aid the BS receiver to detect the uplink transmission.
- a number of different sequences can be used in generating the DMRS.
- the UE uses one of these sequences in generating the DMRS for one uplink transmission, which is indicated by the DMRS index.
- the PHICH can be allocated by the first CCE index of the Physical Downlink Control Channel (PDCCH) used in transmitting the uplink grant and the index of the DMRS.
- the index of the DMRS can be broadly defined as the index of the DMRS sequence, or the index of the cyclic shift of the DMRS sequence, or the combination of both.
- the index of the first CCE used for uplink grant as Index lst cCE .
- index of the DMRS for uplink transmission as Index DMR s-
- the PHICH allocation can be determined by:
- Index group Index lst CCE % N group (3)
- Index sequence ( Index DMRS + L Index lst CCE / N group J ) % S gro ⁇ p (4)
- IndexpHicH (Index lst C C E % N group ) x S group + ( Index DMRS + L Index lst CC E / N group J ) % S group (5) or
- IndexpHicH Index lst CC E % N group + (( Index DM R S + L Index lst cC E / N group J ) %
- FIG. 6(a)-6(c) illustrates the linking scheme established based upon Equations (3), (4), and (5) when the DMRS index, Index DMRS , is 0;
- FIG. 6(b) illustrates the linking scheme established when Index DMRS is 1;
- FIG. 6(c) illustrates the linking scheme established when Index DMRS is 2.
- the PHICH allocation can be determined based on the index of the first CCE and the index of the DMRS as follows:
- Index group Index lst CCE % N group (8)
- the PHICH index can be calculated as in Equation (1) or Equation (2). In other words, we can calculate the PHICH index by:
- Indexp H ic H ( 1 ⁇ eX 1 st CCE % N group ) x S group + Index DMRS (9) or
- IndexpHicH Index lst CC E % N group + Index DM Rs x N group ( 10)
- the PHICH index can be calculated as in Equation (1) or Equation (2). In other words, we can calculate the PHICH index by:
- FIG. 7(a) illustrates the linking scheme established based upon Equations (7), (8), and (10) when the DMRS index, Index DMRS , is 0;
- FIG. 7(b) illustrates the linking scheme established when Indexo MR s is Ij an d
- FIG. 7(c) illustrates the linking scheme established when Index DMR s is 2.
- FIG. 9(a) schematically illustrates a base station for allocating the acknowledgement channels as an embodiment according to the principles of the present invention.
- FIG. 9(b) is a flow chart outlining the procedure for acknowledgement channel allocation as an embodiment according to the principles of the present invention.
- base station 300 is constructed with a storage circuit 310, a control circuit 320, a transmitter 330 and a receiver 340.
- storage circuit 310 stores the linking scheme established between indices of PHICHs, and a combination of indices of CCEs and indices of DMRS, via step 410.
- Transmitter 330 transmits a scheduling grant by using a plurality of CCEs to a unit of user equipment (UE) via step 420.
- Receiver 340 receives a data packet and a DMRS from the UE via step 430.
- Control circuit 320 determines an index of a PHICH within the plurality of PHICHs in dependence upon at least one index of the CCEs used to transmit the scheduling grant, and an index of - li ⁇
- Transmitter 330 transmits an acknowledgement signal by using the PHICH indicated by the determined index of the PHICH via step 450.
- the first embodiment of the present invention for determining the PHICH index may be implemented at both of the base station and the user equipment.
- the UE may determine the PHICH index in dependence upon the CCE index and the DMRS index. In this way, the UE knows which PHICH channel to listen to without the BS explicitly indicating the index of the PHICH channel.
- the UE In order to receive the scheduling grant, the UE needs to decode the control channel. There are a limited number of CCEs or combinations of CCEs. The UE needs to tiy multiple hypotheses to determine on which CCE the scheduling grant is intended to be transmitted to the UE (this is typically called "blind decoding"). The UE will only be able to decode the scheduling grant that is transmitted to the UE. Once the UE decodes the scheduling grant, the UE may know the CCE index.
- the PHICH that acknowledges an uplink transmission is allocated according to at least one index of the Physical Resource Blocks (PRB) used in transmitting the said uplink transmission, and the index of the demodulation reference signal (DMRS) used in the said uplink transmission.
- PRB Physical Resource Block
- DMRS demodulation reference signal
- the PHICH can be allocated by the first PRB index of the uplink transmission and the index of the DMRS.
- the index of the DMRS can be broadly defined as the index of the DMRS sequence, or the index of the cyclic shift of the DMRS sequence, or the combination of both.
- the index of the first PRB used for uplink transmission as Index lst PRB .
- DMR s- The PHICH allocation can be determined by:
- Indexg roup Index lst PRB % N group (11)
- Index sequence ( Index DMRS + L Index lst PRB / N group J ) % S group ( 12)
- the PHICH index can be calculated as in Equation (1) or Equation (2). In other words, we can calculate the PHICH index by:
- FIG. 10(a) illustrates the linking scheme established based upon Equations (11), (12), and (13) when the DMRS index, Index DMRS , is 0;
- FIG. 10(b) illustrates the linking scheme established when Index DMRS is 1;
- FIG. 10(c) illustrates the linking scheme established when Index DMR s is 2.
- Equation (l l) ⁇ (14) there can be many other formulas than those shown in Equation (l l) ⁇ (14) to establish a linking or allocation scheme of PHICH by using the index of PRB and DMRS index.
- the PHICH allocation can be determined based on the index of the first PRB and the index of the DMRS as follows:
- Index group Index ls t PRB % N group (16)
- the PHICH index can be calculated as in Equation (1) or Equation (2). In other words, we can calculate the PHICH index by:
- IndexpHic H ( Index lst PRB % N group ) x S group + Index DMRS (17) or,
- IndexpHic H Index lst PRB % N group + Index DMRS x N group (18)
- FIG. 11 (a) illustrates the linking scheme established based upon Equations (15), (16), (18) when the DMRS index, Index DMRS , is 0;
- FIG. 11 (b) illustrates the linking scheme established when Index DMR s is 1 ;
- FIG. 11 (c) illustrates the linking scheme established when Index DMRS is 2.
- FIG. 13 is a flow chart outlining the procedure for acknowledgement channel allocation as the second embodiment according to the principles of the present invention.
- a linking scheme is established between indices of PHICHs, and a combination of indices of PRBs and indices of DMRS, via step 510.
- a scheduling grant that allocates one or a plurality of PRBs is transmitted to a unit of user equipment (UE) via step 520.
- a data packet and a DMRS are received from the UE via step 530.
- An index of a PHICH within the plurality of PHICHs is determined in dependence upon at least one index of the PRBs used to transmit the data packet, and an index of the received DMRS in accordance with the linking scheme via step 540.
- an acknowledgement signal is transmitted by using the PHICH indicated by using the determined index of the PHICH via step 550.
- the second embodiment of the present invention for determining the PHICH index can be implemented at both of the base station and the user equipment. In this case, once the UE decodes the scheduling grant, the UE will know the indices of the PRB allocated for the UE to transmit on the uplink.
- This invention provides schemes to allocation acknowledgement channels in an OFDM system.
- Both LTE and 802.16 standards employ acknowledgement channels in both downlink and uplink.
- the proposal of this invention optimizes the use of acknowledgement resources while minimizing the allocation and scheduling complexity. This scheme is therefore likely to be adopted either in LTE or future evolutions of this standard towards IMT- advanced.
- the proposal can also be applied to 802.16m standard as well.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
Description
Claims
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010545807A JP5231578B2 (en) | 2008-02-07 | 2009-02-05 | Method and apparatus for assigning acknowledgment channel |
CN200980104526.1A CN101939941B (en) | 2008-02-07 | 2009-02-05 | Methods and apparatus to allocate acknowledgement channels |
KR1020107019952A KR101660941B1 (en) | 2008-02-07 | 2009-02-05 | Methods and apparatus to allocate acknowledgement channels |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US695508P | 2008-02-07 | 2008-02-07 | |
US61/006,955 | 2008-02-07 | ||
US12/210,864 US8116271B2 (en) | 2008-02-07 | 2008-09-15 | Methods and apparatus to allocate acknowledgement channels |
US12/210,864 | 2008-09-15 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2009099306A1 true WO2009099306A1 (en) | 2009-08-13 |
Family
ID=40938808
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2009/000567 WO2009099306A1 (en) | 2008-02-07 | 2009-02-05 | Methods and apparatus to allocate acknowledgement channels |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2009099306A1 (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102111211A (en) * | 2009-12-26 | 2011-06-29 | 华为技术有限公司 | Allocation method for a physical hybrid repeat request AICH and equipment adopting same |
CN102122985A (en) * | 2010-01-11 | 2011-07-13 | 株式会社Ntt都科摩 | MU-MIMO (Multi-User Multi-Input Multi-Output) transmission method |
WO2011097923A1 (en) * | 2010-02-12 | 2011-08-18 | 中兴通讯股份有限公司 | Pre-coding method and apparatus based on mixed multiplexing demodulation reference signals |
JP2013526105A (en) * | 2010-03-19 | 2013-06-20 | クアルコム,インコーポレイテッド | Resource mapping for multi-carrier operation |
WO2014052132A1 (en) * | 2012-09-27 | 2014-04-03 | Motorola Solutions, Inc. | Method and apparatus for providing acknowledgment information to radio communication devices in a wireless communication system |
JP2014168256A (en) * | 2009-11-18 | 2014-09-11 | Lg Electronics Inc | Method and apparatus for performing harq in wireless communication system |
EP2802178A4 (en) * | 2012-01-05 | 2015-08-26 | Fujitsu Ltd | METHOD AND USER DEVICE FOR DISTRIBUTING LINK RESOURCES, METHOD AND BASE STATION FOR MULTIPLEXING TRANSMISSION |
RU2725704C1 (en) * | 2017-03-25 | 2020-07-03 | ЭлДжи ЭЛЕКТРОНИКС ИНК. | Method of receiving ptrs for suppressing phase noise in a wireless communication system and a device thereof |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20030037398A (en) * | 2001-11-03 | 2003-05-14 | 삼성전자주식회사 | Method for high speed downlink packet access indicator transmission on associated channel in narrow band time division duplexing system |
KR20050091599A (en) * | 2004-03-12 | 2005-09-15 | 삼성전자주식회사 | Method and apparatus for allocating sub-carriers broadband wireless communication system using multiple carriers |
KR20050102852A (en) * | 2004-04-23 | 2005-10-27 | 한국전자통신연구원 | Sending apparatus, receiving apparatus of multicarrier mobile telecommunication system and method for allocation subcarrier threrof |
US20070081491A1 (en) * | 2005-10-12 | 2007-04-12 | Lg-Nortel Co., Ltd. | Apparatus and method for assigning sub-channels in an OFDMA system |
-
2009
- 2009-02-05 WO PCT/KR2009/000567 patent/WO2009099306A1/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20030037398A (en) * | 2001-11-03 | 2003-05-14 | 삼성전자주식회사 | Method for high speed downlink packet access indicator transmission on associated channel in narrow band time division duplexing system |
KR20050091599A (en) * | 2004-03-12 | 2005-09-15 | 삼성전자주식회사 | Method and apparatus for allocating sub-carriers broadband wireless communication system using multiple carriers |
KR20050102852A (en) * | 2004-04-23 | 2005-10-27 | 한국전자통신연구원 | Sending apparatus, receiving apparatus of multicarrier mobile telecommunication system and method for allocation subcarrier threrof |
US20070081491A1 (en) * | 2005-10-12 | 2007-04-12 | Lg-Nortel Co., Ltd. | Apparatus and method for assigning sub-channels in an OFDMA system |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014168256A (en) * | 2009-11-18 | 2014-09-11 | Lg Electronics Inc | Method and apparatus for performing harq in wireless communication system |
US9154270B2 (en) | 2009-11-18 | 2015-10-06 | Lg Electronics Inc. | Method and apparatus for performing HARQ in a wireless communication system |
US9042335B2 (en) | 2009-11-18 | 2015-05-26 | Lg Electronics Inc. | Method and apparatus for performing HARQ in a wireless communication system |
US8885588B2 (en) | 2009-11-18 | 2014-11-11 | Lg Electronics Inc. | Method and apparatus for performing HARQ in a wireless communication system |
CN102111211B (en) * | 2009-12-26 | 2013-11-06 | 华为技术有限公司 | Allocation method for a physical hybrid repeat request AICH and equipment adopting same |
CN102111211A (en) * | 2009-12-26 | 2011-06-29 | 华为技术有限公司 | Allocation method for a physical hybrid repeat request AICH and equipment adopting same |
CN102122985B (en) * | 2010-01-11 | 2015-04-08 | 株式会社Ntt都科摩 | MU-MIMO (Multi-User Multi-Input Multi-Output) transmission method |
CN102122985A (en) * | 2010-01-11 | 2011-07-13 | 株式会社Ntt都科摩 | MU-MIMO (Multi-User Multi-Input Multi-Output) transmission method |
WO2011097923A1 (en) * | 2010-02-12 | 2011-08-18 | 中兴通讯股份有限公司 | Pre-coding method and apparatus based on mixed multiplexing demodulation reference signals |
US8989109B2 (en) | 2010-02-12 | 2015-03-24 | Zte Corporation | Pre-coding method and apparatus based on mixed multiplexing demodulation reference signals |
JP2013526105A (en) * | 2010-03-19 | 2013-06-20 | クアルコム,インコーポレイテッド | Resource mapping for multi-carrier operation |
US8824387B2 (en) | 2010-03-19 | 2014-09-02 | Qualcomm Incorporated | Resource mapping for multicarrier operation |
EP2802178A4 (en) * | 2012-01-05 | 2015-08-26 | Fujitsu Ltd | METHOD AND USER DEVICE FOR DISTRIBUTING LINK RESOURCES, METHOD AND BASE STATION FOR MULTIPLEXING TRANSMISSION |
WO2014052132A1 (en) * | 2012-09-27 | 2014-04-03 | Motorola Solutions, Inc. | Method and apparatus for providing acknowledgment information to radio communication devices in a wireless communication system |
US9065645B2 (en) | 2012-09-27 | 2015-06-23 | Motorola Solutions, Inc. | Method and apparatus for providing acknowledgement information to radio communication devices in a wireless communication system |
RU2725704C1 (en) * | 2017-03-25 | 2020-07-03 | ЭлДжи ЭЛЕКТРОНИКС ИНК. | Method of receiving ptrs for suppressing phase noise in a wireless communication system and a device thereof |
US10886956B2 (en) | 2017-03-25 | 2021-01-05 | Lg Electronics Inc. | Method and device for receiving PTRS for cancelling phase noise in wireless communication system |
US11476879B2 (en) | 2017-03-25 | 2022-10-18 | Lg Electronics Inc. | Method and device for receiving PTRS for cancelling phase noise in wireless communication system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8116271B2 (en) | Methods and apparatus to allocate acknowledgement channels | |
US11064484B2 (en) | Method for acquiring resource region information for PHICH and method of receiving PDCCH | |
CN102379150B (en) | Method and apparatus for transmitting HARQ ack/nack signal in multi-antenna system | |
US9184883B2 (en) | Method for allocating resource to uplink control signal in wireless communication system and apparatus therefor | |
CN103262455B (en) | Launch the method and apparatus of ACK/NACK in based on the wireless communication system of TDD | |
JP4974016B2 (en) | Method and system for selective use of implicit indications based on control channel elements | |
US8413001B2 (en) | Determining hybrid automatic repeat request (HARQ) timing | |
CN111052653A (en) | Method, apparatus and system for transmitting or receiving data channels and control channels in a wireless communication system | |
WO2009099306A1 (en) | Methods and apparatus to allocate acknowledgement channels | |
CN110431791A (en) | The method and apparatus that down link control information for the network coordination designs |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200980104526.1 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09707797 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010545807 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 20107019952 Country of ref document: KR Kind code of ref document: A |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 09707797 Country of ref document: EP Kind code of ref document: A1 |