[go: up one dir, main page]

WO2009053506A1 - Robot paralelo con cuatro grados de libertad - Google Patents

Robot paralelo con cuatro grados de libertad Download PDF

Info

Publication number
WO2009053506A1
WO2009053506A1 PCT/ES2008/000647 ES2008000647W WO2009053506A1 WO 2009053506 A1 WO2009053506 A1 WO 2009053506A1 ES 2008000647 W ES2008000647 W ES 2008000647W WO 2009053506 A1 WO2009053506 A1 WO 2009053506A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotation
parallel
bars
joints
degrees
Prior art date
Application number
PCT/ES2008/000647
Other languages
English (en)
French (fr)
Inventor
Oscar SALGADO PICÓN
Oscar Altuzarra Maestre
Alfonso HERNÁNDEZ FRÍAS
Charles PINTO CÁMARA
Víctor PETUYA ARCOCHA
Original Assignee
Universidad Del Pais Vasco - Euskal Herriko Unibertsitatea
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidad Del Pais Vasco - Euskal Herriko Unibertsitatea filed Critical Universidad Del Pais Vasco - Euskal Herriko Unibertsitatea
Priority to EP08840817A priority Critical patent/EP2221153A4/en
Publication of WO2009053506A1 publication Critical patent/WO2009053506A1/es

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J17/00Joints
    • B25J17/02Wrist joints
    • B25J17/0258Two-dimensional joints
    • B25J17/0266Two-dimensional joints comprising more than two actuating or connecting rods

Definitions

  • the purpose of the robot of the invention is to move a platform that carries a tool for manipulating objects or for carrying out pick & place actions, with four degrees of freedom (three translations and a rotation around a vertical direction), with Very high accelerations and speeds in any direction.
  • a parallel robot comprises a fixed support or base plate on which actuators are mounted that act on articulated arms or kinematic chains that are attached to a mobile platform, in which the corresponding tool is arranged.
  • Parallel robots with four degrees of freedom, three translations and a turn around a main direction are very suitable to perform tasks of manipulation or assembly of parts, and are simpler, faster and cheaper than more complex parallel robots, for example With 6 degrees of freedom.
  • a priori one could think of the definition of a parallel robot with four degrees of freedom from one of lower complexity, how could a robot be three degrees of freedom.
  • the possibility of obtaining a fourth degree of freedom is described by incorporating a fourth kinematic chain that directly drives the fourth degree of freedom (the rotation of the tool), but a solution of this type, this robot does not have a parallel structure, so that it is outside the scope of the invention.
  • EP-A-1084802 describes a parallel robot in which the joints of the mobile platform are of the articulation type, which allows to reach high speeds and accelerations. Specifically, it comprises four kinematic chains, joined on one side to the mobile platform and on the other, through rotary actuators, to the base plate.
  • the mobile platform is constituted by two bars that are joined at its ends to the four kinematic chains and an additional bar, mounted between the first two bars through articulated joints.
  • the additional bar is the one that carries the tool. With this mobile platform a rotation of the tool of ⁇ 45 ° can be obtained. To achieve greater rotation, additional elements, for example, toothed crowns, must be incorporated.
  • Patent EP 1 084 802 developed a new configuration described in the publication: "14: a new parallel mechanism for SCARA motions" Proc. of IEEE ICRA: Int. Conf. on Robotics and Automation, Taipei, Taiwan, September 14-19, 2003.
  • the mobile platform comprises prismatic joints instead of articulated joints and the toothed crowns are replaced by pinion-rack , thus reducing the risks of collision between the elements of the mobile platform.
  • Publication WO-A-2006/087399 proposes a solution to the aforementioned problems by means of a mobile platform consisting of four elements linked to each other by articulated joints and four kinematic chains formed by four parallel bars being at least two parallel and joined by joints of spherical rotation
  • the invention relates to a parallel robot, capable of moving a platform in which it carries a tool with four degrees of freedom, three translations and a rotation around a vertical direction, which comprises four articulated kinematic chains or articulated arms, being able to Be these the same.
  • Each of these kinematic chains is connected by a first end to a mobile platform, for example polygonal, preferably square.
  • a tool can be placed.
  • the articulated kinematic chains are attached to a fixed element.
  • said mobile platform is constituted by a rigid element.
  • a rigid element is understood as a single non-flexible element, or an element formed by the union of a series of members such that said union is rigid and does not allow a relative movement between the different members, thus forming a single element from A mechanical point of view.
  • the embodiment is simpler by avoiding the union of the different elements of the mobile platform by spherical joints or other types of joints.
  • the platform of the present invention is rigid, that is, constituted by a single rigid element or by a plurality of them joined without any degree of freedom in the union. The kinematic modeling of the platform, therefore, is simplified by not having any degree of freedom.
  • the wear or risk of breakage of the mobile platform is minimized by the absence of relative movement between the different elements thereof.
  • Each articulated kinematic chain of the present invention can comprise two first parallel bars joined at their ends by respective first rotation joints to two second parallel bars.
  • One of the first bars will be located in the vicinity of the mobile platform and the other in the vicinity of the fixed element.
  • the two second bars will join the first two bars in the direction of the fixed element to the mobile platform.
  • Said union of the first bars and the second bars forms an articulated parallelogram.
  • the sides of said articulated parallelogram, that is, the first bars and second bars are all contained in the same plane. This configuration is maintained both in the resting position and in the movement of the kinematic chain. This is because the axes of rotation of said first rotation joints are all parallel and in turn perpendicular to the plane containing the first and second bars.
  • the first two bars can comprise in their middle zone second rotation joints with their axis of rotation parallel to each other.
  • a first of the second rotation is configured to join the mobile platform and a second of the second rotation joints configured to join the fixed element.
  • the axes of rotation of the second rotation joints can be parallel to the axes formed by the first two bars, allowing a rotation movement around the axis defined by the first bars themselves.
  • the first of the second rotation joints, of each of the articulated kinematic chains can be connected to the mobile platform by means of an articulated bar and through a fourth rotation joint, the axes of rotation of each of the fourth joints being parallel rotation with each other.
  • the articulated bar is joined at one end to the mobile platform (through the fourth rotation joint) and at the other end to the articulated kinematic chain (through the first of the second rotation joints).
  • the axes of rotation of the fourth rotation joints can be perpendicular to the plane of the mobile platform. It is contemplated as the possibility that the second of the second rotation joints, of each articulated kinematic chain of the parallel robot is connected to the fixed element by means of a linear actuator or prismatic joint.
  • Said fixed element can be formed by four fixed bars in which the aforementioned prismatic joints slide.
  • Each articulated kinematic chain will be mounted by means of the second of the second rotation joints to the corresponding prismatic joint, along an axis parallel to the extension of one of the first bars.
  • the position of said fixed bars can be horizontal, vertical or inclined with respect to a horizontal or vertical plane.
  • the fixed element is constituted by bars and their union to the kinematic chains is through a prismatic joint that simultaneously allows the rotation of said bars with respect to the kinematic chains in the second of the second rotation joints
  • the possibility that the articulated kinematic chains are joined to the fixed element by means of articulated bars that are joined by a first end to the second of the second rotation joints of each second articulated kinematic chain and by a second end to third motorized rotation joints that are fixed to the fixed element.
  • each third rotation joint may be such that its axis of rotation is parallel to the axis of rotation of the second rotation joints.
  • the axes of rotation of the third rotation joints can be parallel to the axes of rotation of the fourth rotation joints.
  • Third rotation joints can be driven by rotary motors.
  • the four articulated kinematic chains of the parallel robot may be the same or the parallel robot may comprise a combination of the described kinematic chains.
  • Figure 1. Shows a perspective view of the mechanism object of the invention according to a first embodiment.
  • Figure 2. Shows a perspective view of the mechanism object of the invention according to a second embodiment.
  • Figure 3. Shows a perspective view of the mechanism object of
  • Figure 4.- Shows a perspective view of the mechanism object of the invention according to a fourth embodiment.
  • Figure 5. Shows a perspective view of the mechanism object of the invention according to a fifth embodiment.
  • Figure 6.- Shows a perspective view of the mechanism object of the invention according to a sixth embodiment.
  • Figure 7. Shows a perspective view of the mechanism object of the invention according to a seventh embodiment.
  • Figure 8. Shows a perspective view of the mechanism object of
  • the invention according to an eighth embodiment.
  • the parallel robot proposed in the present invention aims to move a mobile platform (3) that carries a tool (4) for the manipulation of objects or tasks of pick & place, with four degrees of freedom, three of translation and a rotation in around a vertical direction.
  • Said robot shall consist of a mobile platform (3), a platform capable of moving with the four degrees of freedom mentioned above, perfectly adapted to carry the tools (4) and / or objects deemed appropriate, which will be attached to a fixed element (5) by means of four articulated kinematic chains (1) of identical morphology, articulated kinematic chains (1) that will be composed of different elements joined together by lower kinematic joints (rotating or prismatic joints).
  • the mobile platform (3) will be attached to the fixed element (5), by means of four articulated kinematic chains (1) of identical PRPaRR morphology.
  • Said articulated kinematic chains (1) will be composed of a linear prismatic drive or prismatic joint (15), arranged on a fixed base and oriented in the direction shown in FIG 1.
  • Said linear actuator (15) will define the first kinematic joint that composes The PRPaRR chain, in this case a prismatic joint (P).
  • Said articulated parallelogram structure (Pa) (1) is formed by four articulated bars (6, 7, 9, 10) joined together by first rotation joints (R) (8), equipped with flat movement thanks to the fact that the axes (11) of the four rotation joints (R) (8) that define Ia are parallel.
  • the respective length of the first bars (6, 7) will be identical, in the same way that the length of the second bars (9, 10) will also be identical.
  • the first articulated bars (6, 7) are joined to the different elements of the kinematic chain by means of second rotation joints (R) (12, 13), prismatic joints (15) and an articulated bar (14).
  • the axes of both second rotation joints (R) (12, 13) are defined strictly parallel to each other.
  • the axes of the second rotation joints (12, 13) are perpendicular to each and every one of the axes (11) of the first rotation joints (R) (8) that define Ia articulated parallelogram structure.
  • Figure 7 shows an embodiment in which the axes of the second rotation joints (12, 13) are parallel to each other but are not perpendicular to the axes (11) of the first rotation joints (8).
  • the mobile platform (3) joins the parallelogram structure articulated by the first of the first bars (12).
  • the joint is made by an articulated bar (14), which joins the mobile platform (3) through a fourth rotary joint (R) (17), with its axis of rotation perpendicular to the plane of the mobile platform (3 ).
  • R fourth rotary joint
  • FIGS 6 and 7 an embodiment is shown in which the axes of rotation of the fourth rotation joints (17) are parallel to each other, but in this case their axes are not perpendicular to the plane of the mobile platform (3).
  • the structure of the robot is completed once the four articulated kinematic chains (3) that compose it are assembled.
  • Analyzing the mobility of the parallel robot it is possible to determine how each of the four articulated kinematic chains (3) that compose it restricts a degree of freedom to the mobile platform (3).
  • the mobility of the mobile platform (3) once the manipulator has been assembled is four degrees of freedom , three degrees of freedom of translation and one of rotation.
  • the correct location of the actuators can be defined in order to eliminate the appearance of singularities that impede its controllability, while maintaining its symmetry.
  • the location will consist of the positioning of the four actuators on the same plane in two orthogonal directions as shown in FIG 1, avoiding the collinearity of the actuators arranged in the same direction.
  • the performance of analogous analyzes will allow to determine in the same way the ideal location of the actuators for each and every one of the embodiments proposed below.
  • the mobile platform (3) will be attached to the fixed element (5), by means of four articulated kinematic chains (1) of identical PRPaRR morphology.
  • Said articulated kinematic chains (1) will be composed of a prismatic linear drive or linear actuator (15) arranged in a vertical direction as shown in FIG 2, a linear actuator (15) that will define the first kinematic joint that makes up the PRPaRR chain, in this case a prismatic joint (P).
  • P prismatic joint
  • an element provided with a second rotation joint (R) (13) will be placed whose axis is arranged perpendicularly to the direction of the linear actuator and parallel to the lower element of the articulated parallelogram structure (Pa) or second of the first bars (7), as can be seen in FIG 2.
  • the rest of the parallel robot assembly is identical to what has been commented upon when describing FIG 1.
  • the mobile platform (3) will be attached to the fixed element (5), by means of four articulated kinematic chains (1) of identical PRPaRR morphology.
  • Said articulated kinematic chains (1) will be composed of a prismatic linear drive or linear actuator (15) arranged in an inclined direction as shown in FIG 3, linear actuator (15) that will define the first kinematic joint that makes up the PRPaRR chain, in this case a prismatic joint (P).
  • P On said prismatic joint (P) an element with a second rotation joint (R) (13) will be placed whose axis is arranged perpendicular to the direction of the linear actuator and parallel to the lower element of the structure articulated parallelogram (Pa) or second of the first bars (7), as can be seen in FIG 3.
  • the rest of the assembly of the parallel robot is identical to what has been said when describing FIG 1.
  • the mobile platform (3) will be attached to the fixed element (5), by means of four articulated kinematic chains (1) of identical RRPaRR morphology.
  • Said articulated kinematic chains (1) will be composed of a third rotation joints (16), driven by a rotating motor, whose axis is oriented in a direction parallel to the axes of rotation of the second rotation joints (12, 13), as shown in Ia
  • third rotation joint (16) that will define the first kinematic joint that makes up the RRPaRR chain, in this case a rotation joint (R).
  • a rotation joint (R) (16) Attached to said rotation joint (R) (16) an articulated bar (18) provided with a rotation joint (R) (13) or second rotation joint of the second first bar, parallel to the third rotation joint (R) (16), whose axis is arranged parallel to the second first bar (7) of the structure of the articulated parallelogram (Pa), as can be seen in FIG 4.
  • Said second rotation joint (13) will serve to join the mobile element (18) with the structure of the articulated parallelogram.
  • the rest of the parallel robot assembly is identical to what has been commented when describing FIG 1.
  • the mobile platform (3) will be attached to the fixed element (5), by means of four articulated kinematic chains (1) of identical RRPaRR morphology.
  • Said articulated kinematic chains (1) will be composed of a third rotation joints (16), driven by a rotating motor, whose axis is parallel to the axes of rotation of the fourth rotation joints (17), as shown in FIG. 5, third rotation joint that will define the first kinematic joint that makes up the RRPaRR chain, in this case a rotation joint (R).
  • R rotation joint
  • Figure 6 shows an embodiment in which the axes of rotation of the fourth rotation joints (17) are parallel to each other but are arranged obliquely (not perpendicular) to the plane of the mobile platform (3).
  • the rest of the robot components are similar to those shown in Figure 1.
  • Figure 7 shows an embodiment in which the axes of the second rotation joints (12, 13) are parallel to each other but are arranged in an oblique direction (not parallel with respect to the axes formed by the first bars (6, 7 )
  • the rest of the robot components are similar to those shown in Figure 1.
  • Figure 8 shows a non-symmetrical configuration robot with two RRPaRR kinematic chains similar to one of the kinematic chains represented for example in Figure 4 and two PRPaRR kinematic chains similar to one of the kinematic chains represented for example in Figure 1 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Manipulator (AREA)

Abstract

Robot paralelo con cuatro grados de libertad que comprende cuatro cadenas cinemáticas articuladas (1), estando cada una de dichas cadenas cinemáticas articuladas (1) unida por un primer extremo a una plataforma móvil (3) configurada para portar una herramienta (4) y por un segundo extremo a un elemento fijo (5). Dicha plataforma móvil (3) está constituida por un elemento rígido, es decir, no flexible, o un elemento formado por la unión de una serie de miembros de tal modo que dicha unión sea rígida y no permita un movimiento relativo entre los diferentes miembros, formando por lo tanto un único elemento desde un punto de vista mecánico.

Description

ROBOT PARALELO CON CUATRO GRADOS DE LIBERTAD
D E S C R I P C I Ó N
OBJETO DE LA INVENCIÓN
El robot de Ia invención tiene por objeto mover una plataforma que porta una herramienta para Ia manipulación de objetos o para Ia realización de acciones pick & place, con cuatro grados de libertad (tres traslaciones y un giro en torno a una dirección vertical), con aceleraciones y velocidades muy altas en cualquier dirección.
ANTECEDENTES DE LA INVENCIÓN
Un robot paralelo comprende un soporte fijo o placa base sobre el cual se montan unos actuadores que, actúan sobre unos brazos articulados o cadenas cinemáticas que se unen a una plataforma móvil, en Ia cual se dispone Ia correspondiente herramienta.
En las publicaciones de patente estadounidenses US-A-4976582 y
US 6729202 se describen robots paralelos con tres grados de libertad y en Ia publicación de patente europea EP-A-1084802 se describe un robot paralelo con cuatro grados de libertad, en concreto, tres traslaciones y un giro.
Los robots paralelos con cuatro grados de libertad, tres traslaciones y un giro en torno a una dirección principal, son muy adecuados para realizar tareas de manipulación o ensamblaje de piezas, y son mas sencillos, rápidos y baratos que robots paralelos más complejos, por ejemplo con 6 grados de libertad. A priori, se podría pensar en Ia definición de un robot paralelo de cuatro grados de libertad a partir de uno de complejidad inferior, como podría ser un robot de tres grados de libertad. Por ejemplo, en Ia publicación de Patente US 4.976.582 se describe Ia posibilidad de obtener un cuarto grado de libertad mediante Ia incorporación de una cuarta cadena cinemática que acciona directamente el cuarto grado de libertad (el giro de Ia herramienta), pero una solución de este tipo hace que este robot no presente una estructura paralela, por Io que queda fuera del campo de aplicación de Ia invención.
EP-A-1084802 describe un robot paralelo en el cual las uniones de Ia plataforma móvil son del tipo articulación, Io que permite alcanzar altas velocidades y aceleraciones. En concreto comprende cuatro cadenas cinemáticas, unidas por un lado a Ia plataforma móvil y por el otro, a través de actuadores rotativos, a Ia placa base. La plataforma móvil esta constituida por dos barras que se unen en sus extremos a las cuatro cadenas cinemáticas y una barra adicional, montada entre las dos primeras barras a través de uniones articuladas. La barra adicional es Ia que porta Ia herramienta. Con esta plataforma móvil se puede obtener una rotación de Ia herramienta de ± 45°. Para conseguir una rotación mayor, es preciso incorporar elementos adicionales, por ejemplo, coronas dentadas.
Además, este diseño tiene un comportamiento poco homogéneo. Para compensar esta limitación, el propio titular de Ia Patente EP 1 084 802 desarrolló una nueva configuración descrita en Ia publicación: "14: a new parallel mechanism for SCARA motions" Proc. of IEEE ICRA: Int. Conf. on Robotics and Automation, Taipei, Taiwan, September 14-19, 2003. En esta nueva configuración, Ia plataforma móvil comprende uniones prismáticas en lugar de uniones articuladas y las coronas dentadas se sustituyen por piñones-cremallera, reduciendo así los riesgos de colisión entre los elementos de Ia plataforma móvil. La publicación WO-A-2006/087399 propone una solución a los problemas antes mencionados mediante una plataforma móvil constituida por cuatro elementos vinculados entre sí por uniones articuladas y cuatro cadenas cinemáticas formadas por cuatro barras paralelas siendo al menos dos paralelas y unidas mediante juntas de rotación esféricas.
Dicha solución presenta como desventajas el hecho de que Ia plataforma móvil debe ser montada uniendo los diferentes elementos que Ia constituyen, así como que el funcionamiento y realización de las juntas de rotación esféricas difícilmente corresponden con los valores teóricos.
DESCRIPCIÓN DE LA INVENCIÓN
La invención se refiere a un robot paralelo, capaz de mover una plataforma en Ia que porta una herramienta con cuatro grados de libertad, tres traslaciones y un giro en torno a una dirección vertical, el cual comprende cuatro cadenas cinemáticas articuladas o brazos articulados, pudiendo ser éstos iguales. Cada una de estas cadenas cinemáticas está unida por un primer extremo a una plataforma móvil, por ejemplo de forma poligonal, preferentemente de forma cuadrada. En dicha plataforma móvil puede situarse una herramienta. Por un segundo extremo las cadenas cinemáticas articuladas se unen a un elemento fijo.
De acuerdo con Ia invención dicha plataforma móvil está constituida por un elemento rígido. Por elemento rígido se entiende un único elemento no flexible, o un elemento formado por Ia unión de una serie de miembros de tal modo que dicha unión sea rígida y no permita un movimiento relativo entre los diferentes miembros, formando por Io tanto un único elemento desde un punto de vista mecánico. De esta manera se consigue que Ia realización sea más sencilla al evitar Ia unión de los diferentes elementos de Ia plataforma móvil mediante juntas esféricas u otro tipo de juntas. Como ya se ha mencionado, Ia plataforma de Ia presente invención es rígida, es decir, constituida por un único elemento rígido o por una pluralidad de ellos unidos sin que exista ningún grado de libertad en Ia unión. El modelado cinemático de Ia plataforma, por Io tanto, se simplifica al no tener ésta ningún grado de libertad. Por último, el desgaste o riesgo de rotura de Ia plataforma móvil queda minimizado por Ia ausencia de movimiento relativo entre los diferentes elementos de Ia misma.
Cada cadena cinemática articulada de Ia presente invención puede comprender dos primeras barras paralelas unidas por sus extremos mediante respectivas primeras juntas de rotación a dos segundas barras paralelas. Una de las primeras barras estará situada en Ia proximidad de Ia plataforma móvil y Ia otra en Ia proximidad del elemento fijo. Las dos segundas barras unirán las dos primeras barras en Ia dirección del elemento fijo a Ia plataforma móvil. Dicha unión de las primeras barras y las segundas barras forma un paralelogramo articulado. Los lados de dicho paralelogramo articulado, es decir, las primeras barras y segundas barras, quedan todos contenidos en un mismo plano. Esta configuración se mantiene tanto en Ia posición de reposo como en el movimiento de Ia cadena cinemática. Esto es debido a que los ejes de giro de las citadas primeras juntas de rotación son todos paralelos y a su vez perpendiculares al plano que contiene las primeras y segundas barras.
Las dos primeras barras pueden comprender en su zona media unas segundas juntas de rotación con sus ejes de giro paralelos entre sí. Una primera de las segundas de rotación está configurada para unirse a Ia plataforma móvil y una segunda de las segundas juntas de rotación configurada para unirse al elemento fijo. Los ejes de giro de las segundas juntas de rotación pueden ser paralelos a los ejes formados por las dos primeras barras, permitiendo un movimiento de rotación en torno al eje que definen las propias primeras barras.
La primera de las segundas juntas de rotación, de cada una de las cadenas cinemáticas articuladas puede estar unida a Ia plataforma móvil mediante una barra articulada y a través de una cuarta junta de rotación, siendo los ejes de giro de cada una de las cuartas juntas de rotación paralelos entre sí. De esta forma, Ia barra articulada se une por un extremo a Ia plataforma móvil (a través de Ia cuarta junta de rotación) y por otro extremo a Ia cadena cinemática articulada (a través de Ia primera de las segundas juntas de rotación).
Los ejes de giro de las cuartas juntas de rotación pueden ser perpendiculares al plano de Ia plataforma móvil. Se contempla como posibilidad de que Ia segunda de las segundas juntas de rotación, de cada cadena cinemática articulada del robot paralelo esté unida al elemento fijo mediante un actuador lineal o junta prismática.
Dicho elemento fijo puede estar formado por cuatro barras fijas en las que deslizan las juntas prismáticas mencionadas anteriormente. Cada cadena cinemática articulada estará montada mediante Ia segunda de las segundas juntas de rotación a Ia junta prismática correspondiente, según un eje paralelo a Ia extensión de una de las primeras barras. La posición de dichas barras fijas puede ser horizontal, vertical o inclinada respecto a un plano horizontal o vertical.
Frente a Ia configuración en Ia que el elemento fijo esté constituido por barras y su unión a las cadenas cinemáticas sea a través de una junta prismática que simultáneamente permite el giro de dichas barras respecto a las cadenas cinemáticas en las segundas de las segundas juntas de rotación, se contempla adicionalmente Ia posibilidad de que las cadenas cinemáticas articuladas estén unidas al elemento fijo mediante barras articuladas que se unen por un primer extremo a Ia segunda de las segundas juntas de rotación de cada cadena cinemática articulada y por un segundo extremo a terceras juntas de rotación motorizadas que están fijadas al elemento fijo.
La posición de cada tercera junta de rotación puede ser tal que su eje de rotación sea paralelo al eje de giro de las segundas juntas de rotación.
Alternativamente, los ejes de rotación de las terceras juntas de rotación pueden ser paralelos a los ejes de giro de las cuartas juntas de rotación.
Las terceras juntas de rotación pueden ser accionadas por motores rotativos.
Las cuatro cadenas cinemáticas articuladas del robot paralelo pueden ser iguales o bien el robot paralelo puede comprender una combinación de las cadenas cinemáticas descritas.
DESCRIPCIÓN DE LOS DIBUJOS
Para complementar Ia descripción que se está realizando y con objeto de ayudar a una mejor comprensión de las características de Ia invención, se acompaña como parte integrante de dicha descripción, un juego de dibujos en donde con carácter ilustrativo y no limitativo, se ha representado Io siguiente: Figura 1.- Muestra una vista en perspectiva del mecanismo objeto de Ia invención según una primera realización.
Figura 2.- Muestra una vista en perspectiva del mecanismo objeto de Ia invención según una segunda realización. Figura 3.- Muestra una vista en perspectiva del mecanismo objeto de
Ia invención según una tercera realización.
Figura 4.- Muestra una vista en perspectiva del mecanismo objeto de Ia invención según una cuarta realización.
Figura 5.- Muestra una vista en perspectiva del mecanismo objeto de Ia invención según una quinta realización.
Figura 6.- Muestra una vista en perspectiva del mecanismo objeto de Ia invención según una sexta realización.
Figura 7.- Muestra una vista en perspectiva del mecanismo objeto de Ia invención según una séptima realización. Figura 8.- Muestra una vista en perspectiva del mecanismo objeto de
Ia invención según una octava realización.
REALIZACIÓN PREFERENTE DE LA INVENCIÓN
El robot paralelo propuesto en Ia presente invención tiene por objeto mover una plataforma móvil (3) que porta una herramienta (4) para Ia manipulación de objetos o tareas de pick & place, con cuatro grados de libertad, tres de traslación y un giro en torno a una dirección vertical.
Dicho robot se compondrá de una plataforma móvil (3), plataforma capaz de desplazarse con los cuatro grados de libertad anteriormente citados, perfectamente adaptada para portar las herramientas (4) y/u objetos que se consideren oportunos, que se unirá a un elemento fijo (5) por medio de cuatro cadenas cinemáticas articuladas (1 ) de idéntica morfología, cadenas cinemáticas articuladas (1) que estarán compuestas por diferentes elementos unidos entre sí por juntas cinemáticas inferiores (juntas de rotación o prismáticas).
Refiriéndonos a Ia FIG 1 , Ia plataforma móvil (3) se unirá al elemento fijo (5), mediante cuatro cadenas cinemáticas articuladas (1 ) de idéntica morfología PRPaRR. Dichas cadenas cinemáticas articuladas (1 ) estarán compuestas por un accionamiento lineal prismático o junta prismática (15), dispuestos sobre una base fija y orientados en Ia dirección mostrada en Ia FIG 1. Dicho actuador lineal (15) definirá Ia primera junta cinemática que compone Ia cadena PRPaRR, en este caso una junta prismática (P).
Sobre dicha junta prismática (P) se situará un elemento dotado de una segunda junta de rotación (R) (13) cuyo eje está dispuesto perpendicularmente a Ia dirección del actuador lineal y paralelo a Ia segunda de las primeras barras (7), según se puede observar en Ia FIG 1. Dicha segunda junta de rotación (13) de Ia segunda primera barra (7) servirá para unir el actuador lineal (15) con Ia estructura de paralelogramo articulado (1 ).
Dicha estructura paralelogramo articulado (Pa) (1 ) está formada por cuatro barras articuladas (6, 7, 9, 10) unidas entre sí por primeras juntas de rotación (R) (8), dotadas de movimiento plano gracias al hecho de que los ejes (11 ) de las cuatro juntas de rotación (R) (8) que Ia definen son paralelos. La longitud respectiva de las primeras barras (6, 7) será idéntica, del mismo modo que también será idéntica Ia longitud de las segundas barras (9, 10). Según puede observarse en Ia FIG 1 , las primeras barras articuladas (6, 7) se unen a los diferentes elementos de Ia cadena cinemática por medio de segundas juntas de rotación (R) (12, 13), las juntas prismáticas (15) y una barra articulada (14). Los ejes de ambas segundas juntas de rotación (R) (12, 13) se definen estrictamente paralelos entre sí. En Ia realización mostrada en Ia mencionada figura 1 , los ejes de las segundas juntas de rotación (12, 13) son perpendiculares a todos y cada uno de los ejes (11 ) de las primeras juntas de rotación (R) (8) que definen Ia estructura paralelogramo articulado. En Ia figura 7 se ha representado una realización en Ia cual los ejes de las segundas juntas de rotación (12, 13) son paralelos entre sí pero no son perpendiculares a los ejes (11 ) de las primeras juntas de rotación (8).
La plataforma móvil (3), sobre Ia que se situará el objeto y/o herramienta (4) a desplazar, se une a Ia estructura paralelogramo articulado por Ia primera de las primeras barras (12). La unión se realiza mediante una barra articulada (14), que se une a Ia plataforma móvil (3) a través de una cuarta junta rotativa (R) (17), con su eje de giro perpendicular al plano de Ia plataforma móvil (3). En las figuras 6 y 7 se representa una realización en Ia cual los ejes de giro de las cuartas juntas de rotación (17) son paralelos entre sí, pero en este caso sus ejes no son perpendiculares al plano de Ia plataforma móvil (3).
La estructura del robot queda completada una vez son ensambladas las cuatro cadenas cinemáticas articuladas (3) que Io componen.
Analizando Ia movilidad del robot paralelo es posible determinar como cada una de las cuatro cadenas cinemáticas articuladas (3) que Io componen restringen un grado de libertad a Ia plataforma móvil (3). Sin embargo, gracias a Ia particular morfología de las cadenas cinemáticas articuladas (3) empleadas y a Ia orientación de las diferentes juntas que las componen, Ia movilidad de Ia plataforma móvil (3) una vez ha sido ensamblado el manipulador es de cuatro grados de libertad, tres grados de libertad de traslación y uno de rotación.
Realizando un análisis cinemático convencional del robot paralelo representado en Ia FIG 1 , se puede definir el correcto emplazamiento de los actuadores con objeto de eliminar Ia aparición de singularidades que impidan su controlabilidad, pero manteniendo su simetría. Este emplazamiento consistirá en el posicionamiento de los cuatro actuadores sobre un mismo plano en dos direcciones ortogonales según se muestra en Ia FIG 1 , evitando Ia colinealidad de los actuadores dispuestos en Ia misma dirección. La realización de análisis análogos permitirá determinar de igual forma el emplazamiento idóneo de los actuadores para todas y cada una de las realizaciones que se proponen a continuación.
Refiriéndonos a Ia FIG 2, Ia plataforma móvil (3) se unirá al elemento fijo (5), mediante cuatro cadenas cinemáticas articuladas (1 ) de idéntica morfología PRPaRR. Dichas cadenas cinemáticas articuladas (1) estarán compuestas por un accionamiento lineal prismático o actuador lineal (15) dispuesto en una dirección vertical según se muestra en Ia FIG 2, actuador lineal (15) que definirá Ia primera junta cinemática que compone Ia cadena PRPaRR, en este caso una junta prismática (P). Sobre dicha junta prismática (15) se situará un elemento dotado de una segunda junta de rotación (R) (13) cuyo eje está dispuesto perpendicularmente a Ia dirección del actuador lineal y paralelo al elemento inferior de Ia estructura paralelogramo articulado (Pa) o segunda de las primeras barras (7), según se puede observar en Ia FIG 2. El resto del montaje del robot paralelo es idéntico a Io comentado al describir Ia FIG 1.
Refiriéndonos a Ia FIG 3, Ia plataforma móvil (3) se unirá al elemento fijo (5), mediante cuatro cadenas cinemáticas articuladas (1 ) de idéntica morfología PRPaRR. Dichas cadenas cinemáticas articuladas (1) estarán compuestas por un accionamiento lineal prismático o actuador lineal (15) dispuesto en una dirección inclinada según se muestra en Ia FIG 3, actuador lineal (15) que definirá Ia primera junta cinemática que compone Ia cadena PRPaRR, en este caso una junta prismática (P). Sobre dicha junta prismática (P) se situará un elemento dotado de una segunda junta de rotación (R) (13) cuyo eje está dispuesto perpendicularmente a Ia dirección del actuador lineal y paralelo al elemento inferior de Ia estructura paralelogramo articulado (Pa) o segunda de las primeras barras (7), según se puede observar en Ia FIG 3. El resto del montaje del robot paralelo es idéntico a Io comentado al describir Ia FIG 1.
Refiriéndonos a Ia FIG 4, Ia plataforma móvil (3) se unirá al elemento fijo (5), mediante cuatro cadenas cinemáticas articuladas (1 ) de idéntica morfología RRPaRR. Dichas cadenas cinemáticas articuladas (1) estarán compuestas por unas terceras juntas de rotación (16), accionadas por un motor rotativo, cuyo eje está orientado en una dirección paralela a los ejes de giro de las segundas juntas de rotación (12, 13), según se muestra en Ia
FIG 4, tercera junta de rotación (16) que definirá Ia primera junta cinemática que compone Ia cadena RRPaRR, en este caso una junta de rotación (R). Unida a dicha junta de rotación (R) (16) se situará una barra articulada (18) dotada de una junta de rotación (R) (13) o segunda junta de rotación de Ia segunda primera barra, paralela a Ia tercera junta de rotación (R) (16), cuyo eje está dispuesto paralelamente a Ia segunda primera barra (7) de Ia estructura del paralelogramo articulado (Pa), según se puede observar en Ia FIG 4. Dicha segunda junta de rotación (13) servirá para unir el elemento móvil (18) con Ia estructura del paralelogramo articulado. El resto del montaje del robot paralelo es idéntico a Io comentado al describir Ia FIG 1.
Refiriéndonos a Ia FIG 5, Ia plataforma móvil (3) se unirá al elemento fijo (5), mediante cuatro cadenas cinemáticas articuladas (1) de idéntica morfología RRPaRR. Dichas cadenas cinemáticas articuladas (1 ) estarán compuestas por unas terceras juntas de rotación (16), accionadas por un motor rotativo, cuyo eje es paralelo a los ejes de giro de las cuartas juntas de rotación (17), según se muestra en Ia FIG 5, tercera junta de rotación que definirá Ia primera junta cinemática que compone Ia cadena RRPaRR, en este caso una junta de rotación (R). El resto del montaje del robot paralelo es idéntico a Io comentado al describir Ia FIG 1. En Ia figura 6 se representa una realización en Ia cual los ejes de giro de las cuartas juntas de rotación (17) son paralelos entre sí pero están dispuestos oblicuamente (no perpendiculares) al plano de Ia plataforma móvil (3). El resto de los componentes del robot son similares a los mostrados en Ia figura 1.
En Ia figura 7 se representa una realización en Ia cual los ejes de las segundas juntas de rotación (12, 13) son paralelos entre sí pero están dispuestos en dirección oblicua (no paralela respecto de los ejes formados por las primeras barras (6, 7). El resto de los componentes del robot son similares a los mostrados en Ia figura 1.
En Ia figura 8 se representa un robot de configuración no simétrica con dos cadenas cinemáticas RRPaRR similares a una de las cadenas cinemáticas representadas por ejemplo en Ia figura 4 y dos cadenas cinemáticas PRPaRR similares a una de las cadenas cinemáticas representadas por ejemplo en Ia figura 1.

Claims

R E I V I N D I C A C I O N E S
1. -Robot paralelo con cuatro grados de libertad que comprende cuatro cadenas cinemáticas articuladas (1 ), estando cada una de dichas cadenas cinemáticas articuladas (1 ) unida por un primer extremo a una plataforma móvil (3) configurada para portar una herramienta (4) y por un segundo extremo a un elemento fijo (5) caracterizado porque dicha plataforma móvil (3) está constituida por un elemento rígido.
2.-Robot paralelo con cuatro grados de libertad según Ia reivindicación 1 , caracterizado porque cada cadena cinemática articulada (1 ) comprende dos primeras barras (6, 7) paralelas, unidas por sus extremos mediante respectivas primeras juntas de rotación (8) a dos segundas barras
(9, 10) paralelas, formando dichas primeras barras (6, 7) y segundas barras (9, 10) un paralelogramo articulado de manera que las primeras barras y segundas barras quedan todas en un mismo plano, siendo los ejes de giro (11 ) de dichas primeras juntas de rotación (8) paralelos y perpendiculares al plano formado por las primeras barras (6, 7) y segundas barras (9, 10).
3.-Robot paralelo con cuatro grados de libertad según Ia reivindicación 2, caracterizado porque las dos primeras barras (6, 7) comprenden cada una en una zona media de dichas primeras barras unas segundas juntas de rotación (12, 13), con sus ejes de giro paralelos entre sí, estando una primera de las segundas juntas de rotación (12) configurada para unirse a Ia plataforma móvil (3) y una segunda de las segundas juntas de rotación (13) configurada para unirse al elemento fijo (5).
4.- Robot paralelo con cuatro grados de libertad según reivindicación 3, en el cual los ejes de giro de las segundas juntas de rotación (12, 13) son paralelos a los ejes formados por las propias primeras barras (6, 7).
5.-Robot paralelo con cuatro grados de libertad según reivindicaciones 2 y 3, caracterizado porque Ia primera de las segundas juntas de rotación (12), de cada una de las cadenas cinemáticas articuladas (1 ), está unida a Ia plataforma móvil (3) mediante una barra articulada (14) a través de una cuarta junta de rotación (17, siendo los ejes de giro de cada una de las cuartas juntas de rotación (17) paralelos entre sí.
6.- Robot paralelo con cuatro grados de libertad según reivindicación 5 en el cual los ejes de giro de las cuartas juntas de rotación (17) son perpendiculares al plano de Ia plataforma móvil (3).
7.-Robot paralelo con cuatro grados de libertad según una cualquiera de las reivindicaciones 2-6, caracterizado porque Ia segunda de las segundas juntas de rotación (13), de cada cadena cinemática articulada (1 ), está unida al elemento fijo (5) mediante juntas prismáticas (15).
8.-Robot paralelo con cuatro grados de libertad según Ia reivindicación 7, caracterizado porque el elemento fijo (5) comprende cuatro barras fijas sobre las que están montados de forma deslizable las juntas prismáticas (15) para cada una de las cadenas cinemáticas articuladas (1 ), estando cada cadena cinemática articulada (1 ) montada mediante Ia segunda de las segundas juntas de rotación (13) a Ia junta prismática (15) correspondiente, según un eje paralelo a Ia extensión de una de las primeras barras (6, 7).
9.-Robot paralelo con cuatro grados de libertad según una cualquiera de las reivindicaciones 7-8, caracterizado porque las cuatro barras fijas son horizontales.
10.- Robot paralelo con cuatro grados de libertad según una cualquiera de las reivindicaciones 7-8, caracterizado porque las cuatro barras fijas son verticales.
11.- Robot paralelo con cuatro grados de libertad según una cualquiera de las reivindicaciones 7-8, caracterizado porque las cuatro barras fijas son inclinadas respecto un plano horizontal y un plano vertical.
12.- Robot paralelo con cuatro grados de libertad según una cualquiera de las reivindicaciones 2-6, caracterizado porque las cadenas cinemáticas articuladas (1 ) están unidas al elemento fijo (5) mediante barras articuladas (18) que se unen por un primer extremo a Ia segunda de las segundas juntas de rotación (13), de cada cadena cinemática articulada (1 ) y por un segundo extremo a terceras juntas de rotación (16) motorizadas, fijadas dichas terceras juntas de rotación (16) motorizadas al elemento fijo
(5).
13.- Robot paralelo con cuatro grados de libertad según Ia reivindicación 12, caracterizado porque los ejes de rotación de las terceras juntas de rotación (16) motorizadas de cada cadena cinemática articulada
(1 ) es paralelo a los ejes de giro de las segundas juntas de rotación (12, 13).
14.- Robot paralelo con cuatro grados de libertad según Ia reivindicación 12, caracterizado porque los ejes de rotación de las terceras juntas de rotación (16) son paralelos a los ejes de giro de las cuartas juntas de rotación (17).
15.- Robot paralelo con cuatro grados de libertad según cualquiera de las reivindicaciones 1-14, caracterizado porque las cuatro cadenas cinemáticas articuladas (1 ) son iguales.
16.- Robot paralelo con cuatro grados de libertad según cualquiera de las reivindicaciones 1-15, caracterizado porque Ia plataforma móvil (3) porta una herramienta (4).
PCT/ES2008/000647 2007-10-24 2008-10-16 Robot paralelo con cuatro grados de libertad WO2009053506A1 (es)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP08840817A EP2221153A4 (en) 2007-10-24 2008-10-16 PARALLEL ROBOT WITH FOUR FREQUENCY GRADES

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES200702793A ES2333930B1 (es) 2007-10-24 2007-10-24 Robot paralelo con cuatro grados de libertad.
ESP200702793 2007-10-24

Publications (1)

Publication Number Publication Date
WO2009053506A1 true WO2009053506A1 (es) 2009-04-30

Family

ID=40579112

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2008/000647 WO2009053506A1 (es) 2007-10-24 2008-10-16 Robot paralelo con cuatro grados de libertad

Country Status (3)

Country Link
EP (1) EP2221153A4 (es)
ES (1) ES2333930B1 (es)
WO (1) WO2009053506A1 (es)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107127741A (zh) * 2017-07-10 2017-09-05 勃肯特(北京)机器人技术有限公司 四轴并联活动盘和四轴并联机器人
WO2019196421A1 (zh) * 2018-04-10 2019-10-17 苏州迈澜医疗科技有限公司 多自由度并联机构

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102441889A (zh) * 2010-09-30 2012-05-09 鸿富锦精密工业(深圳)有限公司 并联机器人
CN201907121U (zh) * 2010-12-29 2011-07-27 天津大学 一种具有三维平动一维转动的并联机构
CN102152306B (zh) * 2011-04-27 2012-05-23 天津大学 杆轮组合式三平一转并联机构
CN102229141B (zh) * 2011-04-27 2013-08-28 天津大学 一种可实现四自由度运动的并联机构
CN102161201B (zh) * 2011-04-27 2012-05-16 天津大学 上下伸缩式三平一转并联机构
CN102161200B (zh) * 2011-04-27 2012-05-16 天津大学 平行错动式三平一转并联机构
CN102488557B (zh) * 2011-11-25 2013-09-25 华东交通大学 可实现3puu机构和3upu机构的组合运动输出装置
CN102975196B (zh) * 2012-12-04 2015-04-01 天津大学 一种两转动自由度并联机构
CN103009376B (zh) * 2012-12-04 2015-01-14 天津大学 一种空间三转动并联机构
CN102990674B (zh) * 2012-12-04 2015-01-14 天津大学 一种a/b轴并联机构
CN102968665B (zh) * 2012-12-05 2015-11-25 苏州大学 并联机器人的正运动学求解方法
CN103846909B (zh) * 2014-02-28 2016-08-24 天津大学 可实现四自由度高速并联机械手
CN104875185A (zh) * 2015-05-19 2015-09-02 江南大学 一种完全解耦3t1r并联机器人机构
CN105127979A (zh) * 2015-09-08 2015-12-09 常州大学 一种三平移一转动并联机器人机构
CN105619387B (zh) * 2016-03-12 2017-09-08 常州大学 一种单输入三平移一转动并联机器人装置
CN105904441B (zh) * 2016-06-07 2017-11-17 浙江理工大学 一种两移动两转动四自由度全对称并联机构
CN106272412B (zh) * 2016-08-25 2018-11-06 芜湖瑞思机器人有限公司 一种齿轮齿条式四自由度并联机器人的零点标定方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4976582A (en) 1985-12-16 1990-12-11 Sogeva S.A. Device for the movement and positioning of an element in space
EP1084802A2 (en) 1999-09-17 2001-03-21 Toyoda Koki Kabushiki Kaisha Four-degree-of-freedom parallel robot
EP1129829A1 (en) * 2000-03-01 2001-09-05 SIG Pack Systems AG Robot for handling products in a three-dimensional space
US6729202B2 (en) 2001-05-31 2004-05-04 UNIVERSITé LAVAL Cartesian parallel manipulators
US20040086351A1 (en) * 2002-11-06 2004-05-06 Kim Jong Won Micro-motion machine and micro-element fabricating machine using a 3 degree of freedom parallel mechanism
US20040126198A1 (en) * 2002-12-27 2004-07-01 Jeng-Shyong Chen Multi-axis cartesian guided parallel kinematic machine
WO2006087399A1 (es) 2005-02-17 2006-08-24 Fundacion Fatronik Robot paralelo con cuatro grados de libertad de alta velocidad

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4976582A (en) 1985-12-16 1990-12-11 Sogeva S.A. Device for the movement and positioning of an element in space
EP1084802A2 (en) 1999-09-17 2001-03-21 Toyoda Koki Kabushiki Kaisha Four-degree-of-freedom parallel robot
EP1129829A1 (en) * 2000-03-01 2001-09-05 SIG Pack Systems AG Robot for handling products in a three-dimensional space
US6729202B2 (en) 2001-05-31 2004-05-04 UNIVERSITé LAVAL Cartesian parallel manipulators
US20040086351A1 (en) * 2002-11-06 2004-05-06 Kim Jong Won Micro-motion machine and micro-element fabricating machine using a 3 degree of freedom parallel mechanism
US20040126198A1 (en) * 2002-12-27 2004-07-01 Jeng-Shyong Chen Multi-axis cartesian guided parallel kinematic machine
WO2006087399A1 (es) 2005-02-17 2006-08-24 Fundacion Fatronik Robot paralelo con cuatro grados de libertad de alta velocidad

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"14: a new parallel mechanism for SCARA motions", PROC. OF IEEE ICRA: INT. CONF. ON ROBOTICS AND AUTOMATION, 14 September 2003 (2003-09-14)
See also references of EP2221153A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107127741A (zh) * 2017-07-10 2017-09-05 勃肯特(北京)机器人技术有限公司 四轴并联活动盘和四轴并联机器人
WO2019196421A1 (zh) * 2018-04-10 2019-10-17 苏州迈澜医疗科技有限公司 多自由度并联机构

Also Published As

Publication number Publication date
EP2221153A1 (en) 2010-08-25
ES2333930B1 (es) 2010-12-28
ES2333930A1 (es) 2010-03-02
EP2221153A4 (en) 2011-08-10

Similar Documents

Publication Publication Date Title
WO2009053506A1 (es) Robot paralelo con cuatro grados de libertad
ES2354566T3 (es) Robot paralelo de alta velocidad con cuatro grados de libertad.
WO2006106165A1 (es) Robot paralelo de cuatro grados de libertad con rotación ilimitada
ES2982531T3 (es) Un brazo robótico industrial
ES2375074T3 (es) Dispositivo de manipulación paralela con dos grados de libertad.
ES2359366T3 (es) Robot manipulador compacto.
CN102395449B (zh) 用于机器人臂的设备
ES2397940T3 (es) Procedimiento de calibración para robots gemelos
ES2311232T3 (es) Robot en paralelo que comprende medios de puesta en movimiento de un elemento movil descompuesto en dos subconjuntos.
ES2382307T3 (es) Robot humanoide que implementa una articulación esférica con accionadores acoplados
CN102441889A (zh) 并联机器人
ES2388029A1 (es) Sistema robótico para cirugia laparoscópica.
WO2016104807A1 (ja) ロボットアーム機構及び直動伸縮機構
TW201632326A (zh) 連結鏈節、直動伸縮機構及機械臂機構
ES2357881T3 (es) Módulo para la fabricación de estructuras móviles automatizadas y a una estructura modular móvil.
JP5527299B2 (ja) ギヤユニットおよびロボット
KR101870629B1 (ko) 로봇 목 관절 구조
ES2283742T3 (es) Brazo de robot con dispositivo motriz integrado.
ES2360680A1 (es) Brazo poliarticulado.
CN109476025A (zh) 用于关节式机械手的连杆
ES2207476T3 (es) Manipulador paralelo provisto de un mecanismo pasico de guia.
ES2684377B2 (es) Modulo robotico y robot modular que comprende dicho modulo robotico
ES2273525B1 (es) Posicionador plano de dos grados de libertad con actuadores estaticos y confinados.
JP2016168646A (ja) 直動伸縮機構及びロボットアーム機構
ES2399438B1 (es) Dispositivo de movimiento para robots.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08840817

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2008840817

Country of ref document: EP