WO2009052420A2 - Ofdm/ofdma frame structure for communication systems - Google Patents
Ofdm/ofdma frame structure for communication systems Download PDFInfo
- Publication number
- WO2009052420A2 WO2009052420A2 PCT/US2008/080361 US2008080361W WO2009052420A2 WO 2009052420 A2 WO2009052420 A2 WO 2009052420A2 US 2008080361 W US2008080361 W US 2008080361W WO 2009052420 A2 WO2009052420 A2 WO 2009052420A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- ofdm
- cyclic prefix
- sub
- communication system
- frame
- Prior art date
Links
- 238000004891 communication Methods 0.000 title claims abstract description 119
- 230000006854 communication Effects 0.000 title claims abstract description 119
- 125000004122 cyclic group Chemical group 0.000 claims abstract description 285
- 230000007704 transition Effects 0.000 claims abstract description 22
- 230000005540 biological transmission Effects 0.000 claims description 88
- 238000000034 method Methods 0.000 claims description 39
- 238000005070 sampling Methods 0.000 claims description 16
- 230000007774 longterm Effects 0.000 claims description 3
- 230000001131 transforming effect Effects 0.000 claims description 2
- 238000005516 engineering process Methods 0.000 abstract description 11
- 230000008569 process Effects 0.000 description 14
- 238000012545 processing Methods 0.000 description 12
- 239000000969 carrier Substances 0.000 description 10
- 238000013461 design Methods 0.000 description 8
- 239000013256 coordination polymer Substances 0.000 description 7
- 230000001934 delay Effects 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 230000006870 function Effects 0.000 description 5
- 230000008859 change Effects 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 238000004590 computer program Methods 0.000 description 3
- 238000007493 shaping process Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 2
- 230000008520 organization Effects 0.000 description 2
- 230000001360 synchronised effect Effects 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000007175 bidirectional communication Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 230000036039 immunity Effects 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000005055 memory storage Effects 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 238000010295 mobile communication Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000008054 signal transmission Effects 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 230000007480 spreading Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L27/00—Modulated-carrier systems
- H04L27/26—Systems using multi-frequency codes
- H04L27/2601—Multicarrier modulation systems
- H04L27/2602—Signal structure
- H04L27/2605—Symbol extensions, e.g. Zero Tail, Unique Word [UW]
- H04L27/2607—Cyclic extensions
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04J—MULTIPLEX COMMUNICATION
- H04J11/00—Orthogonal multiplex systems, e.g. using WALSH codes
- H04J11/0023—Interference mitigation or co-ordination
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L27/00—Modulated-carrier systems
- H04L27/26—Systems using multi-frequency codes
- H04L27/2601—Multicarrier modulation systems
- H04L27/2602—Signal structure
- H04L27/2603—Signal structure ensuring backward compatibility with legacy system
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L27/00—Modulated-carrier systems
- H04L27/26—Systems using multi-frequency codes
- H04L27/2601—Multicarrier modulation systems
- H04L27/2602—Signal structure
- H04L27/261—Details of reference signals
- H04L27/2613—Structure of the reference signals
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/0001—Arrangements for dividing the transmission path
- H04L5/0003—Two-dimensional division
- H04L5/0005—Time-frequency
- H04L5/0007—Time-frequency the frequencies being orthogonal, e.g. OFDM(A) or DMT
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/003—Arrangements for allocating sub-channels of the transmission path
- H04L5/0037—Inter-user or inter-terminal allocation
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/003—Arrangements for allocating sub-channels of the transmission path
- H04L5/0058—Allocation criteria
- H04L5/0064—Rate requirement of the data, e.g. scalable bandwidth, data priority
Definitions
- the present invention relates generally to digital communications and more particularly to Orthogonal Frequency Division Multiplexing (OFDM) and Orthogonal Frequency Division Multiple Access (OFDMA) systems.
- OFDM Orthogonal Frequency Division Multiplexing
- OFDMA Orthogonal Frequency Division Multiple Access
- ISI inter-symbol interference
- ICI inter-channel interference
- multipath is interference resulting from radio signals reaching the receiving antenna by two or more paths.
- causes of multipath include atmospheric ducting, ionospheric reflection and refraction, and reflection from terrestrial objects, such as mountains and buildings.
- ISI is a form of distortion of a signal in which one symbol interferes with subsequent symbols.
- ICI is a form of distortion of a signal caused by transmission of signals on adjacent channels that may interfere with one another.
- FIG. 1 illustrates a mobile radio channel operating environment 100.
- the mobile radio channel operating environment 100 may include a base station (BS) 102, a mobile station (MS) 104, various obstacles 106/108/110, and a cluster of notional hexagonal cells 126/130/132/134/136/138/140 overlaying a geographical area 101.
- Each cell 126/130/132/134/136/138/140 may include a base station operating at its allocated bandwidth to provide adequate radio coverage to its intended users.
- the base station 102 may operate at an allocated channel transmission bandwidth to provide adequate coverage to the mobile station 104.
- the base station 102 and the mobile station 104 may communicate via a downlink radio frame 118, and an uplink radio frame 124 respectively.
- Each radio frame 1 18/124 may be further divided into sub-frames 120/126 which may include data symbols 122/128.
- a signal transmitted from a base station 102 may suffer from the operating conditions mentioned above.
- multipath signal components 112 may occur as a consequence of reflections, scattering, and diffraction of the transmitted signal by natural and/or man-made objects 106/108/110.
- the receiver antenna 114 a multitude of signals may arrive from many different directions with different delays, attenuations, and phases.
- the time difference between the arrival moment of the first received multipath component 116 typically the line of sight component
- the last received multipath component is called delay spread.
- the combination of signals with various delays, attenuations, and phases may create distortions such as ISI and ICI in the received signal.
- the distortion may complicate reception and conversion of the received signal into useful information. For example, delay spread may cause ISI in the useful information (data symbols) contained in the radio frame 124.
- Orthogonal Frequency Division Multiplexing is one technique that is being developed for high speed communications that can mitigate delay spread and many other difficult operating conditions.
- OFDM divides an allocated radio communication channel into a number of orthogonal subchannels of equal bandwidth. Each subchannel is modulated by a unique group of subcarrier signals, whose frequencies are equally and minimally spaced for optimal bandwidth efficiency.
- the group of subcarrier signals are chosen to be orthogonal, meaning the inner product of any two of the subcarriers equals zero. In this manner, the entire bandwidth allocated to the system is divided into orthogonal subcarriers.
- Orthogonal Frequency Division Multiple Access is a multi-user version of OFDM.
- OFDM Orthogonal Frequency Division Multiple Access
- a subscriber device may be a mobile station 104 with which the base station 102 is communicating.
- An inverse fast Fourier transform is often used to form the subcarriers, and the number of orthogonal subcarriers determines the fast Fourier transform (FFT) size (N FFT ) to be used.
- An information symbol (e.g., data symbol) in the frequency domain of the IFFT is transformed into a time domain modulation of the orthogonal subcarriers.
- the modulation of the orthogonal subcarriers forms an information symbol in the time domain with a duration T 11 .
- Duration T u is generally referred to as the OFDM useful symbol duration.
- the spacing between the orthogonal subcarriers ⁇ / is chosen to be — , and vice versa the OFDM symbol duration T 11 is — .
- the number of available orthogonal subcarriers N c (an integer less than or equal to N FFT ) is the channel transmission bandwidth (BW) divided by the subcarrier spacing
- Figure 2 illustrates principles of an OFDM/OFDMA multicarrier transmission with four subcarriers.
- the principle of multi-carrier transmission is to convert a serial high-rate data stream 202 into multiple parallel low-rate sub-streams 204 by a serial-to-parallel converter.
- Each parallel sub-stream is modulated on to one of N c orthogonal sub-carriers
- N c is an integer that, for example, can be greater than or equal to 128.
- the N c sub-streams are modulated onto the N c sub-carriers 206 with a spacing of ⁇ / in order to achieve orthogonality between the signals on the N c sub-carriers 206.
- the resulting N c parallel modulated data symbols 210 are referred to as an OFDM symbol. Since the symbol rate on each sub-carrier 206 is much less than the symbol rate of the initial serial data 202, the OFDM symbols are less sensitive to timing. Thus, the effects of symbol overlap (i.e., ISI) caused by delay spread decrease for the channel.
- ISI symbol overlap
- FIG 3 illustrates ISI between OFDM/OFDMA symbols.
- OFDM/OFDMA symbols Sl - S3 may be transmitted on the sub-frame 120 of the downlink radio sub-frame 118 from the base station (BS) 102 to the mobile station (MS) 104 ( Figure 1).
- Multipath components 112 ( Figure 1) may cause a delay spread 302 of the symbols Sl - S3 .
- the delay spread may cause the OFDM/OFDMA symbols Sl - S3 to overlap each other, such that ISI 304 occurs between OFDM/OFDMA symbols S1-S2 and S2-S3. If the ISI is large enough, the signal reception may be disrupted.
- the cyclic prefix 402 is generally inserted between adjacent OFDM/OFDMA symbols as shown in Figure 4.
- the cyclic prefix 402 is typically pre-pended to each OFDM/OFDMA symbol and is used to compensate for the delay spread introduced by the radio channel as explained below.
- the cyclic prefix 402 can also compensate for other sources of delay spread such as that from pulse shaping filters often used in transmitters.
- the cyclic prefix 402 also helps to maintain orthogonally between the OFDM/OFDMA signals on the sub-carriers 206 ( Figure 2).
- the cyclic prefix 402 has a duration T G , which may be added to the useful symbol duration T 11 .
- T SYM may be T 11 + T G .
- the cyclic prefix 402 is a cyclic extension of each OFDM/OFDMA symbol, which is obtained by extending the duration of an OFDM/OFDMA symbol.
- Figure 5 shows an exemplary cyclic prefix.
- a sinusoidal curve 504 corresponds to an original sinusoid where one cycle of the sinusoid is of duration 3.2 ⁇ s (i.e., 64 samples with 20 MHz sampling rate).
- the subcarrier frequency is 312.5 KHz .
- a cyclic prefix 502 of 16 samples (0.8 ⁇ s) is pre- appended to the original subcarrier 504 which still has the original sinusoid of frequency 312.5 KHz .
- the sinusoid is now of duration 4.0 ⁇ s, which allows the receiver to choose one period (3.2 ⁇ s) of the subcarrier 504 from the bigger window (4.0 ⁇ s).
- the cyclic prefix 502 acts as a buffer region.
- the receiver at the mobile station 104 may exclude samples from the cyclic prefix 502/402 that are corrupted by the previous symbol when choosing samples for OFDM/OFDMA symbols (e.g., SI - S3 ( Figure 3)).
- the cyclic prefix 502/402 duration should be optimized to increase bandwidth efficiency (i.e., bit/Hz).
- a frame is a fixed or variable length packet of data, which has been encoded by a communications protocol for digital transmission.
- a frame structure is the way a communication channel is divided into frames (e.g., 118/124 in Figure 1) or sub-frames (e.g., 120/126 in Figure 1) for transmission.
- the frame structure of an OFDM or OFDMA system contributes to determining the performance of a communication system.
- the size and timing of a cyclic prefix in a frame is specified by a frame structure.
- the cyclic prefix is configurable, but it is fixed when a system is deployed. This limits configuration of the system for efficient bandwidth utilization since the cyclic prefix cannot be reconfigured.
- the OFDM/OFDMA frame structure technology comprises a variable length sub-frame structure with efficiently sized cyclic prefixes, and efficient transition gap durations operable to effectively utilize OFDM/OFDMA bandwidth. Furthermore, the frame structure provides compatibility with multiple wireless communication systems. An uplink frame structure and a downlink frame structure are provided.
- a first embodiment comprises an OFDM/OFDMA communication system.
- the OFDM/OFDMA communication system comprises a plurality of radio frequency (RF) channels, wherein the RF channels comprise dissimilar bandwidths.
- the system also comprises a transmitter for providing a plurality of OFDM subcarriers.
- the OFDM subcarriers comprise a fixed subcarrier spacing chosen such that the OFDM subcarriers are scalable in number to utilize any of the RF channels. In one embodiment, all RF channel bandwidths in the communication system can be divided evenly by the subcarrier spacing.
- system can further comprises a processor coupled to the transmitter and operable to provide a flexible radio frame structure comprising a plurality of variable length cyclic prefixes operable for the RF channels.
- a second embodiment comprises a communication system.
- the communication system comprises at least one base station supporting variable cyclic prefix durations.
- the variable cyclic prefix durations are chosen based on a cell coverage area of the at least one base station.
- the system also comprises a processor for providing a flexible radio frame structure utilizing the variable size cyclic prefix durations.
- the flexible radio frame structure is used by the at least one base station for transmitting data to a mobile station.
- the processor may also be operable to calculate a plurality of timing gaps associated with at least one of the sub-frames, wherein the timing gaps are calculated based in part on the variable cyclic prefix durations.
- a third embodiment comprises an OFDM/OFDMA radio frame structure for communication in an RF channel in a wireless network.
- the radio frame structure comprises a plurality of OFDM symbols each comprising a variable cyclic prefix duration and at least one OFDM data symbol.
- the frame structure also comprises a plurality of variable size sub-frames formed from a subset of the OFDM symbols, and a plurality of radio frames for transmitting a subset of the variable sub-frames through the RF channel.
- the frame structure further comprises a plurality of timing gaps associated with the radio frames for providing a protection for timing variations at signal reception. The timing gaps are calculated based, at least in part, on the variable cyclic prefix duration.
- a fourth embodiment comprises a communication system.
- the communication system comprises a plurality of RF channels, wherein a subset of the RF channels have dissimilar channel bandwidths.
- the system also comprises an inverse fast Fourier transform (IFFT) module operable for transforming a plurality of frequency domain data symbols into a plurality of time domain data symbols respectively.
- the system further comprises a cyclic prefix selector operable for selecting a cyclic prefix from a plurality of variable length cyclic prefixes to obtain a selected cyclic prefix.
- the system also comprises an add cyclic prefix module operable for adding the selected cyclic prefix to each of the time domain data symbols to obtain a plurality of OFDM frames.
- the system may also comprise a processor operable for providing a plurality of variable size sub-frames formed from a subset of the OFDM frames.
- the processor is also operable for providing a plurality of radio frames for transmitting a subset of the variable size sub-frames through at least one of the RF channels.
- the processor is further operable for calculating a plurality of timing gaps associated with at least one of the variable size sub-frames for providing a protection for timing variations at signal reception. The timing gap is calculated based, at least in part, on a cyclic prefix duration of the selected cyclic prefix.
- a fifth embodiment comprises a method for communication in a communication system.
- the method comprises receiving a time domain data symbol for transmission on a radio channel, and selecting a cyclic prefix from a plurality of variable length cyclic prefixes to obtain a selected cyclic prefix.
- the method also comprises adding the selected cyclic prefix into each of the time domain data symbols to obtain a plurality of OFDM frames.
- a sixth embodiment comprises a computer-readable medium for a communication system.
- the computer-readable medium comprises program code for receiving a time domain data symbol for transmission on a radio channel.
- the program code also selects a cyclic prefix from a plurality of variable length cyclic prefixes for the radio channel to obtain a selected cyclic prefix.
- the program code also adds the selected cyclic prefix into each of the time domain data symbols to obtain a plurality of OFDM frames.
- the computer-readable medium may further comprise program code for adding the OFDM frames to a flexible sub-frame prior to transmitting the OFDM frames on the radio channel.
- the program code may also provide a plurality of variable size sub-frames formed from a subset of the OFDM frames, and provide a plurality of radio frames for transmitting a subset of the variable size sub-frames through the radio channel.
- the program code may also calculate a plurality of timing gaps associated with at least one of the variable size sub-frames for providing a protection for timing variations at signal reception. The timing gap is calculated based, at least in part, on a cyclic prefix duration of the selected cyclic prefix.
- Figure 1 is an illustration of an OFDM/OFDMA mobile radio channel operating environment.
- Figure 2 is an illustration of principles of an OFDM/OFDMA multicarrier transmission with four subcarriers.
- Figure 3 is an illustration of exemplary OFDM/OFDMA symbols distorted due to ISI.
- Figure 4 is an illustration of exemplary OFDM/OFDMA symbols with cyclic prefix insertions in the time domain.
- Figure 5 is an illustration of an exemplary cyclic prefix extension to an OFDM/OFDMA symbol in the frequency domain.
- Figure 6 is an illustration of an exemplary OFDM/OFDMA exemplary communication system according to an embodiment of the invention.
- Figure 7 is an illustration of an exemplary OFDM/OFDMA digital transceiver according to an embodiment of the invention.
- Figure 8 is an illustration of an exemplary OFDM/OFDMA signal definition in the frequency domain.
- Figure 9 is an illustration of an exemplary OFDM /OFDMA symbol structure in the time domain.
- Figure 10 is an illustration of an exemplary OFDM/OFDMA sub frame structure according to an embodiment of the invention.
- Figure 11 is an illustration of an exemplary OFDM/OFDMA uplink and downlink radio frame structure according to an embodiment of the invention.
- Figure 12 is an illustration of an exemplary OFDM/OFDMA uplink and downlink sub-frame structure according to an embodiment of the invention.
- Figure 13 is an illustration of an exemplary OFDM/OFDMA optional radio frame structure according to an embodiment of the invention.
- Figure 14 is an illustration of an exemplary table of basic OFDM/OFDMA parameters for a n* l.25 MHz bandwidth series according to an embodiment of the invention.
- Figure 15 is an illustration of an exemplary table of basic OFDM/OFDMA parameters for a n*3.5 MHz bandwidth series according to an embodiment of the invention.
- Figure 16 is an illustration of an exemplary table of basic OFDM/OFDMA parameters for a n ⁇ l.25 MHz bandwidth series for 0.5, 0.675, 1, 1.5, 2, and 2.5 ms sub- frames according to an embodiment of the invention.
- Figure 17 is an illustration of an exemplary table of basic OFDM/OFDMA parameters for a r ⁇ ⁇ 3.5 MHz bandwidth series according to an embodiment of the invention.
- Figure 22 is an illustration of an exemplary table of basic OFDM/OFDMA parameters for a 2 ms sub-frame for a r ⁇ ⁇ l.25 MHz bandwidth series, with a subcarrier frequency spacing ⁇ / « 12.5KHz, according to an embodiment of the invention.
- Figure 23 is an illustration of an exemplary table of basic OFDM/OFDMA parameters for a 2.5 ms sub-frame for a r ⁇ ⁇ l .25 MHz bandwidth series, with a subcarrier frequency spacing ⁇ / « 12.5 KHz , according to an embodiment of the invention.
- Figure 24 is an illustration of an exemplary table of basic OFDM/OFDMA parameters for a 5 MHz bandwidth series, with a subcarrier frequency spacing ⁇ / « 10.94KHz according to an embodiment of the invention.
- Figure 25 is an illustration of exemplary table of basic OFDM/OFDMA parameters for a 5 MHz bandwidth series, with a subcarrier frequency spacing ⁇ / « 12.5 KHz, according to an embodiment of the invention.
- Figure 26 is an illustration of an exemplary table of basic OFDM/OFDMA parameters for a 5 MHz bandwidth series, with a subcarrier frequency spacing ⁇ / w 25KHz , according to an embodiment of the invention.
- Figure 27 is an illustration of a flowchart showing an OFDM/OFDMA process for creating a frame structure with a variable cyclic prefix, according to embodiments of the invention.
- the present disclosure is directed toward systems and methods for OFDM/OFDMA frame structure technology for communication systems.
- Embodiments of the invention are described herein in the context of one practical application, namely, communication between a base station and a plurality of mobile devices.
- the example system is applicable to provide data communications between a base station and a plurality of mobile devices.
- Embodiments of the disclosure are not limited to such base station and mobile device communication applications, and the methods described herein may also be utilized in other applications such as mobile-to- mobile communications, or wireless local loop communications.
- these are merely examples and the invention is not limited to operating in accordance with these examples.
- the OFDM/OFDMA frame structure comprises a variable length sub-frame structure with an efficiently sized cyclic prefix operable to effectively utilize OFDM/OFDMA bandwidth.
- the frame structure provides compatibility with multiple wireless communication systems.
- FIG. 6 shows an exemplary wireless communication system 600 for transmitting and receiving OFDM/OFDMA transmissions in accordance with the present invention.
- the system 600 may include components and elements configured to support known or conventional operating features that need not be described in detail herein.
- system 600 can be used to transmit and receive OFDM/OFDMA data symbols in a wireless communication environment such as the wireless communication environment 100 ( Figure 1).
- System 600 generally comprises a base station transceiver module 602, a base station antenna 606, a mobile station transceiver module 608, a mobile station antenna 612, a base station processor module 616, a base station memory module 618, a mobile station memory module 620, a mobile station processor module 622, and a network communication module 626.
- System 600 may comprise any number of modules other the modules shown in Figure 6. Furthermore, these and other elements of system 600 may be interconnected together using a data communication bus (e.g., 628, 630), or any suitable interconnection arrangement. Such interconnection facilitates communication between the various elements of wireless system 600.
- a data communication bus e.g., 628, 630
- interconnection facilitates communication between the various elements of wireless system 600.
- Those skilled in the art will understand that the various illustrative blocks, modules, circuits, and processing logic described in connection with the embodiments disclosed herein may be implemented in hardware, computer-readable software, firmware, or any practical combination thereof. To clearly illustrate this interchangeability and compatibility of hardware, firmware, and software, various illustrative components, blocks, modules, circuits, and steps are described generally in terms of their functionality.
- the base station transceiver 602 and the mobile station transceiver 608 each comprise a transmitter module and a receiver module (not shown in Figure 6). Operation of the transmitter and receiver modules is explained in more detail in the context of the discussion of Figure 7.
- the transmitter and receiver modules are coupled to a shared antenna to form a time division duplex (TDD) system.
- the base station transceiver 602 is coupled to the base station antenna 606 and the mobile station transceiver 608 is coupled to the base station antenna 612.
- TDD time division duplex
- a transmitter may transmit to more than one receiver, and that multiple transmitters may transmit to the same receiver.
- transmit and receive timing gaps exist as guard bands to protect against transitions from transmit to receive and vice versa.
- a transmission timing gap (TTG) is designed to separate the downlink transmission period TTG(DL) from uplink transmission period TTG(UL).
- TTG(DL) provides a protection for timing variations at signal reception in downlink transmission.
- the TTG(DL) portion of timing gap is also used to prevent the downlink radio signal colliding with uplink signals due to propagation delay.
- the TTG(UL) portion of timing gap is used to offset uplink radio signal propagation delay so that all uplink signals synchronized at the base station (BS) receiver(s).
- the TTG(DL) may allow sufficient time for a TDD system to transition from a downlink to an uplink.
- a TTG for the uplink TTG(UL) may allow sufficient time for a TDD system to transition from an uplink to a downlink.
- the TTG(DL) and TTG(UL) can be calculated based on the cyclic prefix duration as explained in more detail in the context of discussing of Figure 14.
- an "uplink" transceiver 608 includes an OFDM/OFDMA transmitter that shares an antenna with an uplink receiver.
- a duplex switch may alternatively couple the uplink transmitter or receiver to the uplink antenna in time duplex fashion.
- a "downlink" transceiver includes an OFDM/OFDMA receiver which shares a downlink antenna with a downlink transmitter.
- a downlink duplex switch may alternatively couple the downlink transmitter or receiver to the downlink antenna in time duplex fashion.
- the operation of the two transceivers 602/608 is coordinated in time such that the uplink OFDM/OFDMA receiver is coupled to the uplink antenna 612 for reception of transmissions over the wireless transmission link 614 at the same time that the downlink OFDM/OFDMA transmitter is coupled to the downlink antenna 606.
- OFDM/OFDMA frequency division duplex
- the mobile station transceiver 608 and the base station transceiver 602 are configured to communicate via a wireless data communication link 614.
- the mobile station transceiver 608 and the base station transceiver 602 cooperate with a suitably configured RF antenna arrangement 606/612 that can support a particular wireless communication protocol and modulation scheme.
- the mobile station transceiver 608 and the base station transceiver 602 are configured to support industry standards such as the Third Generation Partnership Project Long Term Evolution (3GPP LTE), Third Generation Partnership Project 2 Ultra Mobile Broadband (3Gpp2 UMB), Time Division-Synchronous Code Division Multiple Access (TD- SCDMA), and Wireless Interoperability for Microwave Access (WiMAX), and the like.
- 3GPP LTE Third Generation Partnership Project Long Term Evolution
- 3Gpp2 UMB Third Generation Partnership Project 2 Ultra Mobile Broadband
- TD- SCDMA Time Division-Synchronous Code Division Multiple Access
- WiMAX Wireless Interoperability for Microwave Access
- the mobile station transceiver 608 and the base station transceiver 602 may be configured to support alternate, or additional, wireless data communication protocols, including future variations of IEEE 802.16, such as 802.16e, 802.16m, and so on.
- a mobile station transceiver 608 may be used in a user device such as a mobile phone.
- the mobile station transceiver 608 may be used in a personal digital assistant (PDA) such as a Blackberry device, Palm Treo, MP3 player, or other similar portable device.
- PDA personal digital assistant
- the mobile station transceiver 608 may be a personal wireless computer such as a wireless notebook computer, a wireless palmtop computer, or other mobile computer devices.
- the invention can be implemented in a mobile station as well as a base station.
- the transmitter at the mobile station can add the variable length cyclic prefixes and understand the changes of the timing gaps accordingly.
- the dynamic configuration of the variable length cyclic prefixes of mobile stations is set by the base station.
- the mobile stations can negotiate with the base station for the preferred cyclic prefix.
- the base station can assign it to a particular uplink sub-frame to transmit with the preferred cyclic prefix.
- Processor modules 616/622 may be implemented, or realized, with a general purpose processor, a content addressable memory, a digital signal processor, an application specific integrated circuit, a field programmable gate array, any suitable programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof, designed to perform the functions described herein.
- a processor may be realized as a microprocessor, a controller, a microcontroller, a state machine, or the like.
- a processor may also be implemented as a combination of computing devices, e.g., a combination of a digital signal processor and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a digital signal processor core, or any other such configuration.
- Processor modules 616/622 comprise processing logic that is configured to carry out the functions, techniques, and processing tasks associated with the operation of OFDM/OFDMA system 600.
- the processing logic is configured to support the OFDM/OFDMA frame structure parameters described herein.
- the processor modules 616/612 may be suitably configured to compute cyclic prefix durations and timing transitions (TDD (UL) and TDD (DL)), as explained below, to provide a flexible size frame structure.
- TDD UL
- DL TDD
- a frame may be constructed from one or multiple sub-frames, each sub-frame is consisted of one or multiple symbols and timing gaps.
- a timing gap is the period of idle transmission time, such as TTG(DL), TTG(UL), or RTG.
- the gap time periods, TTG and RTG have been included in the sub-frames.
- This way to define a frame and sub-frame (also known as "slot" in LTE) has greatly simply the design of a frame, and make it much more flexible for different sub-frame designs.
- the newly defined sub-frame has been self-contained within its time period and boundary.
- Sub-frames with different cyclic prefixes can co-exist in the same system and the same deployment.
- the processing logic may be resident in the base station and/or may be part of a network architecture that communicates with the base station transceiver 602.
- a software module may reside in memory modules 618/620, which may be realized as RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, registers, a hard disk, a removable disk, a CD-ROM, or any other form of storage medium known in the art.
- memory modules 618/620 may be coupled to the processor modules 618/622 respectively such that the processors modules 616/620 can read information from, and write information to, memory modules 618/620.
- processor module 616, and memory modules 618, processor module 622, and memory module 620 may reside in their respective ASICs.
- the memory modules 618/620 may also be integrated into the processor modules 616/620.
- the memory module 618/620 may include a cache memory for storing temporary variables or other intermediate information during execution of instructions to be executed by processor modules 616/622.
- Memory modules 618/620 may also include non- volatile memory for storing instructions to be executed by the processor modules 616/620.
- Memory modules 618/620 may include a frame structure database (not shown) in accordance with an exemplary embodiment of the invention.
- Frame structure parameter databases may be configured to store, maintain, and provide data as needed to support the functionality of system 600 in the manner described below.
- a frame structure database may be a local database coupled to the processors 616/622, or may be a remote database, for example, a central network database, and the like.
- a frame structure database may be configured to maintain, without limitation, frame structure parameters as explained below. In this manner, a frame structure database may include a lookup table for purposes of storing frame structure parameters.
- the network communication module 626 generally represents the hardware, software, firmware, processing logic, and/or other components of system 600 that enable bi-directional communication between base station transceiver 602, and network components to which the base station transceiver 602 is connected.
- network communication module 626 may be configured to support internet or WiMAX traffic.
- network communication module 626 provides an 802.3 Ethernet interface such that base station transceiver 602 can communicate with a conventional Ethernet based computer network.
- the network communication module 626 may include a physical interface for connection to the computer network (e.g., Mobile Switching Center (MSC)).
- MSC Mobile Switching Center
- Figure 7 is a block diagram of an exemplary OFDM/OFDMA transceiver system 700 (e.g., transceivers 602 or 608 in Figure 6) that can be configured in accordance with an exemplary embodiment of the invention.
- Figure 7 represents a method for adding an efficiently sized cyclic prefix to an OFDM/OFDMA frame structure operable to effectively utilize OFDM/OFDMA channel transmission bandwidth. It is understood that, the system 700 may include additional components and elements configured to support known or conventional operating features.
- the OFDM/OFDMA system 700 digitally transmits and receives data wirelessly to and from infrastructure devices using IFFT/FFT techniques.
- a discrete Fourier transform (DFT) and an inverse discrete Fourier transform (IDFT) may be used as an alternative to an FFT and IFFT respectively.
- the OFDM/OFDMA digital transceiver system 700 includes a transmitter 701 and a receiver 703.
- the transmitter 701 further includes a serial-to-parallel converter 702, an OFDM/OFDMA module 704, and a digital-to-analog converter (D/A) module 712.
- the OFDM/OFDMA module 704 includes an IDFT/IFFT module 706, a parallel-to-serial converter 708, and an add cyclic prefix module 710 coupled to a cyclic prefix selector 709.
- the receiver 703 includes an analog-to-digital converter (AfD) module 716, an inverse OFDM/OFDMA receiver module 718, and a parallel-to-serial converter 726.
- AfD analog-to-digital converter
- the inverse OFDM/OFDMA receiver module 718 includes a remove cyclic prefix module 720, a serial-to-parallel converter 722, and a DFT/FFT module 724.
- the transmitter 701 and the receiver 703 can send and receive data and other communication signals via a multipath propagation channel 714 or other channels (e.g., 614 in Figure 6).
- a serial stream of N c source data symbols D n (corresponding to serial data symbols 202 in Figure 2) is converted into N c parallel data symbols (corresponding to parallel data symbols 210 in Figure 2) by the serial -to-parallel converter 702.
- the source data symbols D n may, for example, be obtained from an original data source (e.g., a text message) after source and channel coding, interleaving, and symbol mapping.
- the source data symbol duration T d of the N c serial data symbols results in the OFDM/OFDMA symbol duration -
- the parallel data symbols are then modulated on to N c different sub-carriers (206 in Figure 2) via the IDFT/IFFT module 706.
- an OFDM system modulates the N c parallel data sub-streams on to N c sub-carriers (206 in Figure 2).
- the N c parallel modulated signals form an
- OFDM symbol (210 in Figure 2).
- system 700 can employ, for example, 64 to 4096 subcarriers as explained in more detail below.
- the add cyclic prefix module 710 is then used to add a cyclic prefix to the output of the parallel-to-serial converter 708.
- a cyclic prefix of duration T G may be inserted between adjacent
- the cyclic prefix duration parameter T G may be set to various values in order to efficiently size the cyclic prefix to effectively utilize OFDM/OFDMA bandwidth.
- the cyclic prefix values are selected based on RF channel conditions.
- the cyclic prefix is configurable even if a system is deployed, thereby allowing efficient use of bandwidth.
- a communication system can select various effective cyclic prefix lengths for the base stations in a network, and may support different cyclic prefix lengths for different base stations in the network.
- a communication system may support different cyclic prefix lengths in different downlink and/or uplink sub-frames for the same base station.
- a variable cyclic prefix length allows a base station to change or configure the cyclic prefix duration for different communication usage scenarios, thereby increasing the bandwidth efficiency (bit/Hz) of the system.
- cyclic prefixes when communication is in a channel with a severe multipath (i.e., larger delay spread), longer cyclic prefixes can be used to eliminate the ISI and ICI. In less severe channel conditions with fewer multipaths, a short cyclic prefix can be used in order to increase data rate (bits/sec), and to reduce overhead and transmission power.
- the add cyclic prefix module 710 may receive the cyclic prefix values from the cyclic prefix selector 709.
- the cyclic prefix selector 709 may communicate with the processor 622 and or the memory module 620 to obtain values for the cyclic prefix.
- the value may correspond to the cyclic prefix duration needed for base station coverage.
- the cyclic prefix selector 709 will then provide the appropriate cyclic prefix value to the add cyclic prefix module 710.
- the cyclic prefix duration can be associated with multipath delay spread.
- the delay spread becomes very small and therefore this Femto BS and the associated mobile stations should select a small cyclic prefix (out of the different length options) for the downlink and uplink sub-frames transmission.
- the base station can group the serving mobile stations into different groups by their delay spreads (determined by base station or requested by individual mobile station).
- the base station can allocate these different groups of mobile stations into different sub-frames with appropriate settings of cyclic prefixes.
- the cyclic prefix is just a copy of the end portion of the useful symbol ( T 11 ), it is calculated and copied on the fly.
- the cyclic prefix values may be chosen to efficiently size the cyclic prefix to effectively utilize OFDM/OFDMA bandwidth, while providing a frame structure compatible with multiple wireless communication systems.
- the specific cyclic prefix values that are used are discussed below in the context of discussion of Figures 14-26.
- the output of the add cyclic prefix module 710 is then passed through the D/A 712 to create an analog signal for transmission.
- the output of D/A 712 comprises the signal waveform X(t) with duration T SYM .
- the signal waveform X(t) is up converted (not shown) and the RF signal is transmitted to the channel 714.
- the output of the channel 714 is the received signal waveform Y(t) which may include ISI from the channel and RF processing.
- the received signal Y(t) is passed through analog-to-digital convert 716, whose output sequence Y v is the received signal Y(t) sampled at rate — .
- cyclic prefix samples are removed via remove cyclic prefix module 720 before DFT/FFT demodulation.
- the ISI-free part of Y(t) may be converted to parallel data symbols via serial-to-parallel converter 722, and demodulated by DFT/FFT module 724.
- the output of the DFT/FFT module 724 is a sequence R n , which is the received replica of the original data symbols
- the receiver may incorporate other techniques which are not illustrated here, such as channel estimation, maximum receive ratio combining, etc.
- FIG 8 is an illustration of an exemplary OFDM/OFDMA signal frequency domain definition 800.
- the OFDM/OFDMA signal frequency domain definition 800 may comprise a nominal channel transmission bandwidth (BW ) 802, a subset of signal subcarriers ( Ns 70 )
- DC sub-carrier 804
- F s sampling frequency 814
- the DC sub-carrier may not be defined.
- a subset of signal subcarriers 804 out of a plurality of subcarriers 806 may be used to match the bandwidth of the subcarriers 804 to the channel transmission bandwidth BW 802.
- the subset of signal subcarriers 804 is referred as signal bandwidth (BW SIG ) 808.
- the plurality of subcarriers 806 may include the DC sub-carrier (DC) 810, which contains no data.
- Subcarriers outside the signal bandwidth ( BW S1G ) 808 that are not used may serve as guard subcarriers 812.
- the purpose of the guard subcarriers 812 is to enable the signal to have a smooth roll off in the time domain.
- FIG 9 is an illustration of an exemplary time domain symbol structure of an OFDM/OFDMA signal.
- Figure 9 illustrates the positioning of a cyclic prefix in the exemplary time domain OFDM symbol.
- the time domain symbol structure 900 comprises a useful symbol time (T 11 or T IFFT ) 902, a cyclic prefix 904, a windowing period (T wm )
- a time duration of a set of OFDM data symbols to be transmitted by an OFDM/OFDMA system is referred to as the useful symbol time (T 11 or T IFFT ) 902.
- a copy of the end section of the symbol period 906 is used to produce the cyclic prefix (CP) 904.
- CP cyclic prefix
- T WIN small windowing period
- the total symbol time (T SYM ) 910 may include the useful symbol time (T u or T IFFT ) 902, the cyclic prefix duration T 0 904, and a windowing period (T WIN ) 908.
- An inverse Fourier transform (IFFT) of a set of OFDM data symbols in the time duration T SYM creates an OFDM/OFDMA waveform.
- FIG 10 is an illustration of an exemplary OFDM/OFDMA sub-frame structure according to an embodiment of the invention.
- the OFDM/OFDMA sub- frame structure comprises a short sub-frame 1002, a regular sub-frame 1004, a long sub- frame 1006, and an optional low chip rate (LCR) sub-frame 1008.
- a 10 ms radio frame may be divided into twenty or more short sub-frames 1002, ten regular sub-frames 1004, or five long sub-frames 1006.
- a short sub-frame 1002 has a duration of 0.5 ms
- a regular sub-frame 1004 has a duration of 1 ms
- a long sub-frame 1006 has a duration of 2 ms.
- Other numbers of sub-frames that don't necessarily divide the 10 ms radio frame evenly may also be used.
- a gap remains in the radio frame.
- a long sub-frame may have six long sub-frames each with a duration of 1.5 ms. Then, the total time of the sub-frames is 9 ms, which leaves a gap of 1 ms in the radio frame.
- the optional low chip rate sub-frame 1008 may also be used.
- a low chip rate sub-frame 1008 may have a duration of 0.675 ms, and a 10 ms radio frame may be divided into 14 or more low chip rate sub-frames 1008 with a 0.55 ms gap. These sub-frame duration options may allow a communication system such as the system 600 to reduce interference with other systems that are based on various industry standards as mentioned in the context of Figure 6 above.
- the frame structure provides compatibility with multiple wireless communication systems.
- the low chip rate sub-frame 1008 duration of 0.675 ms may allow compatibility with the Time Division-Synchronous Code Division Multiple Access (TD- SCDMA) OFDM/OFDMA radio frame structure.
- the long sub-frame 1006 duration of 2 ms may allow compatibility with the Third Generation Partnership Project Long Term Evolution (3GPP LTE) OFDM/OFDMA radio frame structure, and the like.
- 3GPP LTE Third Generation Partnership Project Long Term Evolution
- FIG 11 is an illustration of an exemplary OFDM/OFDMA radio frame structure 1100 according to an embodiment of the invention.
- the OFDM/OFDMA radio frame structure 1100 may include five exemplary frame structures 1102, 1104, 1106, 1108, and 1112.
- the sub-frames may be allocated for uplink or downlink transmission.
- the first frame structure 1 102 illustrates a series of alternating uplink regular sub-frames (shown by arrows pointing up) and downlink regular sub-frames (shown by arrows pointing down).
- the second exemplary frame structure 1104 illustrates a series of alternating uplink short sub-frames and downlink short sub-frames.
- the second exemplary frame structure 1104 would have a lower overall data rate (bits/sec) because of an increase in overhead, and a lower latency because of the delay between sub-frames. Lower latency is useful for some applications like vocoders, where time delay is critical.
- the third exemplary frame structure 1106 illustrates a series of alternating uplink regular sub-frames and downlink long sub-frames. This can give a greater downlink data rate than uplink data rate.
- the fourth exemplary frame structure 1108 illustrates a series of alternating uplink short sub-frames and downlink long sub-frames. This can give an even greater downlink data rate than uplink data rate.
- the fifth exemplary frame structure 1110 illustrates a series of alternating downlink long sub-frames with a uplink short sub-frame and a downlink short sub-frame. This would be useful, for applications like an internet download, where small control commands alternate with large webpage downloads. In many real world situations, and particularly for multiple access systems like OFDMA, the frame synchronization on uplinks and downlinks to the various communicating devices may have timing variations.
- FIG 12 is an illustration of an exemplary OFDM/OFDMA uplink and downlink frame structure 1200 according to an embodiment of the invention.
- the OFDM/OFDMA uplink and downlink frame structure 1200 includes a downlink sub-frame 1202, a single uplink sub-frame 1204, a last uplink sub-frame 1206, and an uplink sub-frame 1208.
- Each sub-frame 1202/1204/1206/1208 includes a plurality of symbols 1210.
- the downlink sub-frame 1202 has a transmission timing gap (TTG) for the downlink (TTG(DL)) 1212. Transmit and receive timing gaps exist as guard periods to protect against transitions from transmit to receive and vice versa in a TDD system.
- TTG(DL) 1212 provides a protection for timing variations at signal reception, and allows sufficient time for a TDD system to transition from a downlink to an uplink.
- a TTG(DL) is a portion of the transmit/receive transition gap contributed from the downlink sub- frame.
- the single uplink sub-frame 1204 has a transmission timing gap for the uplink (TTG(UL)) 1214 and a receive-transmit transition gap (RTG) 1216 according to an embodiment of this invention.
- TTG(UL) 1214 and RTG 1216 provide a protection for timing variations at signal reception, and the TTG(UL) 1214 allows sufficient time for a TDD system to transition from a downlink to an uplink.
- a TTG(UL) is the portion of the transmit/receive transition gap contributed from the uplink sub-frame.
- the RTG 1216 allows a TDD system ( Figure 6) time to transition from an uplink back to a downlink. Since the necessary timing gap period for RTG is often very short, it is optional in the system design. In some systems, RTG can be set to 0. In theory the base station may take up very small portion of the cyclic prefix time for switching from transmitting to receiving mode, but it is typically up to the base station to adjust when the uplink frame starts. In one embodiment, the uplink frame is sent in advance in time to offset propagation delay, therefore there is more than sufficient time for the mobile station to switch from transmitting mode to receiving mode without sacrificing the cyclic prefix for transaction. When RTG is set to 0, then the system design is further simplified, then "single uplink sub-frame" 1204 and “last uplink sub-frame” 1206 become the same design as "uplink sub-frame" with only TTG(UL) 1208.
- uplink sub-frame 1208 starts the series and the last uplink sub-frame 1206 ends the series.
- the uplink sub-frame 1208 begins the series with a TTG(UL) 1214, which provides a time gap to allow a TDD radio system base station to transition from transmit mode to receive mode, and a TDD radio system mobile station to transition from receive mode to transmit mode.
- subsequent sub-frames transmitted on the uplink may be sub-frames without time gaps.
- a last uplink sub-frame 1206 is transmitted as explained above, which ends the series with the RTG 1216.
- the RTG 1216 provides a time gap to allow a TDD radio system base station to transition from receive mode to transmit mode, and a TDD radio system mobile station to transition from transmit mode to receive mode.
- values for the TTG(DL) and TTG (UL) can be calculated based on the cyclic prefix duration as explained below in the context of discussion of Figure 14.
- FIG. 13 is an illustration of an exemplary OFDM/OFDMA optional radio frame 1300 according to an embodiment of the invention.
- the optional radio frame 1300 is 5 ms in length 1302. It starts with a 0.675 ms optional sub-frame 1304. Then a 75 ⁇ s downlink pilot (DwPTS) 1306 is transmitted. A 75 ⁇ s gap period (GP) 1308 is allowed between transmissions, and then a 125 ⁇ s transmitted uplink pilot (UpPTS) 1310 is transmitted. Then 0.675 ms optional sub-frame 1312 is transmitted up to the end of the frame 1300.
- DwPTS downlink pilot
- GP 75 ⁇ s gap period
- UpPTS transmitted uplink pilot
- the DwPTS, GP, UpPTS are used to provide downlink and uplink transmission periods that are synchronized/lined-up with the TD-SCDMA for adjacent RF channel deployment.
- Figures 14-26 illustrate exemplary tables of basic OFDM/OFDMA parameters for several channel transmission bandwidth series according to various embodiments of the invention.
- the OFDM/OFDMA parameters detail the variable length sub-frame parameters of the OFDM/OFDMA frame structure.
- the frame structure may provide compatibility with multiple wireless communication systems using an efficiently sized cyclic prefix to efficiently utilize OFDM/OFDMA bandwidth.
- numerology specified in these tables is for exemplary purposes only and other values for the OFDM/OFDMA parameters may be used.
- Figure 14 illustrates an exemplary table of basic OFDM/OFDMA parameters for a « x 1.25 MHz bandwidth series according to an embodiment of the invention.
- a r ⁇ ⁇ l.25 bandwidth series includes channel transmission bandwidths of 1.25, 2.5, 5, 10, 20, and 40 MHz based on multiples of 1.25 MHz .
- Figure 14 shows sub-frame duration, subcarrier spacing, sampling frequency, FFT size N FFT , number of occupied subcarriers, number of OFDM/OFDMA symbols per sub-frame, cyclic prefix durations of each of the sub-frames, and the cyclic prefix duration of the TTG(DL), TTG(UL), and RTG of each the sub- frames.
- the FFT size N FFT may be the smallest power of two that is greater than the required number of signal subcarriers (804 in Figure 8) needed for the sampling frequency F s (814 in Figure 8) for the OFDM/OFDMA system.
- the required number of signal subcarriers (804 in Figure 8) can be 100.
- the FFT size N FFT is equal to 128 which is the smallest power of two (i.e., 2 7 ) that is less than 100.
- the FFT size N FFT is scalable from 128 to 4096.
- the N FFT also increases such that ⁇ / is constant. This keeps the OFDM/OFDMA symbol duration T 11 fixed, which is independent of channel system bandwidth BW.
- a 5MHz system can migrate to a 10MHz system by adding another 5MHz channel BW right next to it without a guard band and without causing adjacent channel interference by simply making all subcarriers orthogonal to each other.
- the migration can be done with the same base station and mobile station, as long the bandwidth filter has been designed for a 10MHz channel. All frequency bands and rasters (200KHz and 250KHz) in the world can be divided by 12.5KHz evenly, with no extra bandwidth and banding constraints.
- a scalable design also keeps the costs low.
- the ⁇ / 12.5&Hzis chosen because it can not only divide the common channel raster of 200K ⁇ z evenly, but also divide the alternative common channel raster of 250KHz evenly.
- the adjacent bands that are adopting the same technology will have minimum inter- channel interference (ICI), simply all adjacent sub-carriers are orthogonal to each other.
- ICI inter- channel interference
- an OFDM or OFDMA signal is made up of orthogonal subcarriers, and the number of used subcarriers may be less than or equal to the FFT size (N FFT ).
- the FFT size (N FFT ) may be in a range comprising 128, 256, 512, 1024, 2048, or 4096 subcarriers.
- RF channels with different channel transmission bandwidths are scalable. They can be defined with accordant used subcarriers within a fast Fourier transform size N FFT .
- N SIG out of N FFT is occupied for signal bandwidth BW SIG .
- the number of occupied subcarriers for a channel transmission bandwidth BW of 1.25, 2.5, 5, 10, 20, and 40 MHz can be 20, 100, 200, 400, 800, 1600 and 3200 respectively.
- an additional period of time T G can be used for transmission of a cyclic prefix.
- the cyclic prefix duration is prepended to each useful symbol duration T 11 and is used to compensate for the dispersion introduced by the channel response and by the pulse shaping filter used at the transmitter.
- T 11 — is available for user
- T 11 is therefore called the useful OFDM/OFDMA symbol duration.
- the windowing time period T mN is optional, it can be set to 0 in some communication systems, such as the IEEE 802.16e version of WiMAX.
- cyclic prefix is configurable, but it is fixed when a system is deployed, thereby constraining system configuration for efficient bandwidth utilization.
- cyclic prefix length may not be variable and one type of cyclic prefix may exist. In this manner, existing systems may not allow a base station to change or configure the cyclic prefix duration to adjust to varying channel conditions.
- a longer cyclic prefix duration can be used to eliminate the ISI.
- a short cyclic prefix can be used in order to reduce radio overhead and improve overall throughput and spectral efficiency.
- various cyclic prefix types may be used for small, regular, and large cell site deployment as explained in more detail below.
- the various cyclic prefix types are referred to as Short, Normal, and Long respectively.
- a cyclic prefix duration T 0 may be calculated based on the following relationship:
- T a — samples , where F s is the sampling frequency as shown above and CP samples is the
- CP samples T O * F S can be obtained from knowing T 0 and F s .
- T 0 is selected in the particular sub-frame configuration, such as Short, Normal, or Long.
- An initial T 0 (plus T WIN ) value may be selected for an initial channel.
- Normal CP Normal Cyclic Prefix
- Short CP Short Cyclic Prefix
- T 0 3.125 ⁇ s
- CP samples may comprise only 40 samples.
- an initial Normal T 0 10 ⁇ s is selected based on a typical cell site coverage, and the downlink control channel, multicast and broadcast sub-frames and the Normal T 0 is used so that all mobile stations are able to listen to the base station.
- the base station can allocate these mobile stations to transmit in the uplink sub-frames with Short Cyclic Prefix (Short CP) T 0 -3.125 ⁇ s.
- Short CP Short Cyclic Prefix
- T 0 3.125 ⁇ s.
- CP samples may be scaled by the sampling frequencies so as to keep the cyclic prefix duration T 0 constant.
- CP samples may be 5/10/20/40/80/160 for channel transmission bandwidth of 1.25/2.5/5/10/20/40 MHz respectively, while T 0 remains at 3.125 ⁇ s.
- a system with different bandwidths will have the same performance and user experience.
- IEEE 802.16e version of WIMAX a subscriber moves from a 7MHz system to a 10MHz system, T 0 is reduced accordingly with the bandwidth increase. The same subscriber may experience more dropped calls in the 10MHz system. It has imposed great constraints on the cell site planning, and it is hard to maintain the same user experience across different bandwidth systems.
- cyclic prefix durations of TQ «3.125/10/16.875 ⁇ s may be chosen for the Short, Normal, and Long cyclic prefixes respectively.
- These cyclic prefix durations can be used for small, regular, and large cell site deployment as explained above. Selecting different cyclic prefixes for OFDM/OFDMA symbols in a sub-frame for a base station allows for supporting different types of base station cells and cell coverage areas. Thereby, network deployment may be simplified by eliminating the need for the entire network to select the same cyclic prefixes regardless of the different requirements on each base station for its cell coverage area.
- the base stations can detect and determine whether a smaller size of cyclic prefix is sufficient for a particular mobile station.
- a mobile station also can measure the downlink signals from a base station to determine what size of cyclic prefix is sufficient for the uplink transmission. The mobile station can report to the base station the preferred size of the cyclic prefix.
- T Sub _ frame can be designed based on different cyclic prefix durations such as Short, Normal, and Long cyclic prefix durations.
- the cyclic prefix duration T G + T wm for a 1.25 MHz channel transmission bandwidth may be approximately 3.125/10/16.875 ⁇ s for Short, Normal, and Long cyclic prefix durations respectively. Accordingly, useful bandwidth can be allocated for data transmission instead of cyclic prefix transmission, thereby increasing the bandwidth efficiency (bits/Hz). In this manner, the overhead from the cyclic prefix duration can be minimized.
- the number of OFDM/OFDMA symbols per sub-frame can be a function of the sampling frequency F s and FFT size N FPT .
- F s and N FFT may be chosen so that N SYM can remain the same across the bandwidth series. For example, for a 1.25 MHz transmission bandwidth N SYM may be calculated based on the following relationship:
- the T Sub _ Frame comprises transmission time and idle time.
- the transmission time is occupied by radio signal of multiple of symbols, N SYM x T sm .
- the leftover idle time is used for transmit transition gap (TTG) time
- TTG Sub _ Frame and receive transition gap (RTG) time RTG Sub _ Fr ⁇ me the latter is typically applicable to only uplink sub-frame.
- RTG transition gap
- N OFDM/OFDM A symbols per sub-frame ( sm ) can be calculated as following:
- the number of symbols in the sub-frame is 16, as shown in the table of Figure 25.
- the delay spreads and round trip delays are often small, so the base station and the associated mobile stations can be configured to transmit with short cyclic prefixes (Short CP) to improve frequency efficiency.
- Short CP short cyclic prefixes
- the coverage is often the important limitation. Due to high transmit RF power, Macro cell naturally have large cell site, which has increased the delay spreads and round trip delays for most radio signals.
- the Femto Cells, Pico Cells, and Macro Cells can be deployed simultaneously and each can have optimized CP selections and frequency efficiency.
- the TTG(DL), TTG(UL), and RTG may vary based upon to the size of the sub-frame and the corresponding cyclic prefix.
- the processor modules 616/622 may be suitably configured to compute TTG (DL), TTG(UL) and the RTG values as follows:
- the TTG (DL) may be calculated by using the following relationship:
- TTG(DL) (DL sub-frame duration) - (num of symbols in the DL sub-frame) * (OFDM/OFDM A symbol duration (7 ⁇ )), where
- OFDM/OFDMA symbol duration (cyclic prefix duration (T 0 )) + (IFFT time (T 11 )) + (Windowing time ( T WIN ) ) [0105]
- TTG (UL) may be calculated by using the following relationship:
- TTG(UL) (UL sub-frame duration) - (num of symbols in the UL sub- frame) * (OFDM/OFDM A symbol duration (T SYM )), where T SYM is calculated as shown above.
- Normal CP sub-frame is 1.25 ⁇ s in this particular example.
- RTG can also be set to zero for the sub-frame.
- the TTG(DL), TTG(UL), and RTG, for a Long sub-frame and a Short cyclic prefix (CP), may be 3.75 ⁇ s, 2.5 ⁇ s, and 1.25 ⁇ s respectively.
- the TTG(DL), TTG(UL), and RTG, for the Long sub-frame and a Normal cyclic prefix may be 60 ⁇ s, 58.75 ⁇ s, and 1.25 ⁇ s respectively, and so on.
- OFDM/OFDMA parameters in Figures 15-26 may share same OFDM/OFDMA parameters definition and functionality as Figure 14, therefore these definitions and the functionalities are not redundantly explained herein.
- Figure 15 illustrates an exemplary table of basic OFDMA parameters for a 3.5 bandwidth series (channel transmission bandwidths 3.25, 7, 14, 28, 56, and 112 MHz ) according to an embodiment of the invention.
- the sampling frequencies can be 6.4, 12.8, 25.6, 51.2, 102.4, and 204.8 MHz .
- the number of occupied subcarriers for channel transmission bandwidth BW of 3.25, 7, 14, 28, 56, and 112 MHz are 281, 561, 201, 1121, 2241, 4481 and 8961 respectively.
- Variable cyclic prefix durations plus a windowing time can be chosen based on the same ⁇ / » 12.5AHz condition.
- the variable cyclic prefix durations are referred to as Short, Normal, and Long cyclic prefix respectively, and can be used for small, regular, and large cell site ( Figure 1) deployment.
- Different cyclic prefixes may be selected for OFDM/OFDMA symbols in a sub-frame (e.g., short, large, and long).
- T s ub - f r ame can t> e designed based on different cyclic prefix durations such as Short, Normal, and Long cyclic prefix durations respectively.
- T Sub _ frame 0.5, 1, and 1.5 ms ( Figure 8)
- MHz 5 the T 0 + T WIN duration (overhead) for a 3.5 MHz channel transmission bandwidth may be about 2.96/10/16.875 ⁇ s respectively.
- the TTG(DL), TTG(UL), and RTG may vary based upon to the size of the sub-frame and the corresponding cyclic prefixes.
- the cyclic prefix duration of the TTG(DL), TTG(UL), and RTG, for a Long sub-frame and a Short cyclic prefix may be about6.56, 6.25, and 0.31 ⁇ s respectively.
- the cyclic prefix duration of the TTG(DL), TTG(UL), and RTG, for the Long sub-frame and a Normal cyclic prefix may be about 60 ⁇ s, 59.68 ⁇ s, and 0.31 ⁇ s respectively, and so on.
- Figure 16 illustrates an exemplary table of basic OFDM/OFDMA parameters for a 1.25 MHz bandwidth series showing additional optimized overhead (T G + T wm ) values that may be used according to embodiments of the invention.
- overhead values for a 1.25 MHz channel transmission bandwidth BW may be about 2.5/9.3716.87 for a Short cyclic prefix, Normal cyclic prefix, and Long cyclic prefix respectively (compared to 3.125/10/16.875 ⁇ s in Figure 14), and so on.
- Figure 17 illustrates an exemplary table of basic OFDMA parameters for a 3.5 bandwidth series showing additional overhead values that may be used according to embodiments of the invention. For example, T 0 + T WJN durations that are similar to the
- Figures 18-23 are extensions of Figure 16 showing values for the TTG (DL), TTG(UL) and RTG for 0.5, 0.675, 1, 1.25 , 2, and 2.5 sub-frames according to various embodiments of the invention.
- Figure 18 illustrates an exemplary table of basic OFDM/OFDMA parameters for a 1.25 MHz bandwidth series with a 0.5 ms sub-frame according to an embodiment of the invention.
- the duration for the TTG(DL), TTG(UL), and RTG for a 0.5 ms sub-frame and a Short cyclic prefix (2.5 ⁇ s) may be 5, 2.5, and 2.5 ⁇ s respectively.
- the duration for the TTG(DL), TTG(UL), and RTG for a 0.5 ms sub-frame and a Long cyclic prefix (15 ⁇ s) may be about 112.5, 110, and 2.5 ⁇ s respectively, and so on.
- Figure 19 illustrates an exemplary table of basic OFDM/OFDMA parameters for a 1.25 MHz bandwidth series with a 0.675 ms sub-frame according to an embodiment of the invention.
- the duration for the TTG(DL), TTG(UL), and RTG for a 0.675 ms sub-frame and a Short cyclic prefix (2.5 ⁇ s) may be 15, 12.5, and 2.5 ⁇ s respectively.
- the duration for the TTG(DL), TTG(UL), and RTG for a 0.675 ms sub-frame and a Long cyclic prefix (15 ⁇ s) may be 93.75, 91.25, and 2.5 ⁇ s respectively, and so on.
- Figure 20 illustrates an exemplary table of basic OFDM/OFDMA parameters for a 1.25 MHz bandwidth series with a 1 ms sub-frame according to an embodiment of the invention.
- the duration for the TTG(DL), TTG(UL), and RTG for a 1 ms sub-frame with a Short cyclic prefix (2.5 ⁇ s) may be 10, 7.5, and 2.5 ⁇ s respectively.
- the duration for the TTG(DL), TTG(UL), and RTG for a 0.675 ms sub-frame and a Long cyclic prefix (15 ⁇ s) may be 31.25, 28,75, and 2.5 ⁇ s respectively, and so on.
- Figure 21 illustrates an exemplary table of basic OFDM/OFDMA parameters for a 1.25 MHz bandwidth series with a 1.5 ms sub frame according to an embodiment of the invention.
- the TTG(DL), TTG(UL), and RTG for a 1.5 ms sub-frame with a Short cyclic prefix (2.5 ⁇ s) may be 15, 12.5, and 2.5 ⁇ s respectively.
- the duration for the TTG(DL), TTG(UL), and RTG for a 1.5 ms sub-frame and a Long cyclic prefix (15 ⁇ s) may be 46.875, 44.375, and 2.5 ⁇ s respectively, and so on.
- Figure 22 illustrates an exemplary table of basic OFDM/OFDMA parameters for a 1.25 MHz bandwidth series with a 2 ms sub frame according to an embodiment of the invention.
- the duration of the TTG(DL), TTG(UL), and RTG for a 2 ms sub-frame with a Short cyclic prefix (2.5 ⁇ s) may be 20, 17.5, and 2.5 ⁇ s respectively.
- the duration for the TTG(DL), TTG(UL), and RTG for a 2 ms sub-frame and a Long cyclic prefix (15 ⁇ s) may be about 62.5, 60, and 2.5 ⁇ s respectively, and so on.
- Figure 23 illustrates an exemplary table of basic OFDM/OFDMA parameters for a 5 MHz bandwidth series with a 2.5 ms sub-frame for transmission in a channel with a channel transmission bandwidth BW o ⁇ 20 MHz according to an embodiment of the invention.
- the duration of the TTG(DL), TTG(UL), and RTG for a 2.5 ms sub-frame with a Short cyclic prefix (2.5 ⁇ s) may be 25, 22.5, and 2.5 ⁇ s respectively.
- the duration for the TTG(DL), TTG(UL), and RTG for a 2.5 ms sub-frame and a Long cyclic prefix (15 ⁇ s), may be about 78.125,75.625, and 2.5 ⁇ s respectively, and so on.
- the FFT size N FFT is scalable from 512 to 2048.
- the number of occupied subcarriers for channel transmission bandwidths of 5, 7, 8.75, 10, 14, and 20 MHz may be 421, 589, 735, 841, 1177, 1681 respectively in this example.
- a Short cyclic prefix , a Normal cyclic prefix, a Long cyclic prefix , and another Long cyclic prefix (CP2) durations of 2.857, 11.428, 17.142, and 22.857 ⁇ s can be chosen for the 5 MHz bandwidth series.
- Different sub-frames durations T Sub _ frame can be designed based on different cyclic prefix durations such as Short, Long, and Normal cyclic prefix durations.
- a Short cyclic prefix of 2.857 ⁇ s can be selected thereby allowing 5 OFDM/OFDMA symbol per frame to be transmitted.
- the duration for the TTG(DL), TTG(UL), and RTG may vary based upon to the size of the sub-frames and the corresponding cyclic prefixes. For example, as shown in Figure 25, for the 5 MHz bandwidth series, the duration for the TTG(DL) or TTG(UL), for a 0.5 ms sub-frame and a Short cyclic prefix (2.857 ⁇ s), may be 28.571 ⁇ s. Similarly, the duration for the TTG(DL) or TTG(UL), for a 0.5 ms sub-frame and a Long cyclic prefix (17.142 ⁇ s), may be 65.71 ⁇ s, and so on.
- Figure 25 illustrates an exemplary table of basic OFDM/OFDMA parameters for a 5 MHz bandwidth series according to an embodiment of the invention.
- the FFT size N FFT is scalable from 512 to 2048.
- a fixed subcarrier spacing value Af 12.5 kHz (similar to the 1.25 bandwidth series) may be used for the 5 MHz bandwidth series.
- the number of occupied subcarriers for channel transmission bandwidth BW of 5, 7, 8.75, 10, 14, and 20 MHz is 401, 561, 701, 801, 1121, 4481 and 1601 respectively.
- a Short cyclic prefix, a Normal cyclic prefix, a Long cyclic prefix, and another Long cyclic prefix (CP2) durations of 2.5, 10, 15, and 20 ⁇ s can be chosen for these channel transmission bandwidths.
- Different sub-frames durations T Sub _ frame can be designed based on different cyclic prefix durations such as Short, Long, and Normal cyclic prefix durations.
- T s ub - f r ame 0-5, 0.675, 1, 1.5, 2, and 2.5
- the cyclic prefix duration for these sub- frames may be selected from 2.5, 10, 15, and 20 ⁇ s cyclic prefix duration T G values.
- a cyclic prefix duration of 2.5 ⁇ s can be selected.
- the TTG(DL), TTG(UL), and RTG may vary based upon to the size of the sub-frame and the corresponding cyclic prefixes.
- the duration for the TTG(DL) or TTG(UL), for a 0.5 ms sub- frame and a Short cyclic prefix (2.5 ⁇ s) may be 5 ⁇ s.
- the duration for the TTG(DL) or TTG(UL), for a 0.5 ms sub-frame and a Long cyclic prefix (15 ⁇ s) may be 120 ⁇ s, and so on.
- Figure 26 illustrates an exemplary table of basic OFDM/OFDMA parameters for a 5 MHz bandwidth series with a subcarrier spacing Af « 25 KHz according to an embodiment of the invention.
- the FFT size N FFT is scalable from 256 to 1024 (e.g., 256, 512, 512, 512, 1024, and 1024).
- 25.6, and 25.6 MHz is calculated for the 5, 7, 8.75, 10, 14, and 20 MHz channel transmission bandwidths BW respectively as explained above.
- the number of occupied subcarriers for these channel transmission bandwidths can be 201, 281, 351, 401, 561, and 801 respectively.
- a Short cyclic prefix , a Normal cyclic prefix , a Long cyclic prefix, and another Long cyclic prefix (CP2) durations of 2.857 ⁇ s, 11.428 ⁇ s, 17.142 ⁇ s, and 22.857 ⁇ s can be chosen for these channel transmission bandwidths.
- Different sub-frames durations T Sub _ /rame can be designed based on different cyclic prefix durations such as Short, Long, and Normal cyclic prefix durations.
- a Short cyclic prefix of 2.5 ⁇ s can be selected thereby allowing 11 OFDM/OFDMA symbols per frame to be transmitted in this frame.
- the duration for the TTG(DL), TTG(UL), and RTG may vary based upon to the size of the sub-frames and the corresponding cyclic prefixes. For example, as shown in Figure 26, for a channel transmission bandwidth of 5 MHz , the duration for the TTG(DL), or TTG(UL), for a 0.5 ms sub-frame and a Short cyclic prefix (2.5 ⁇ s), may be 32.5 ⁇ s. Similarly, the duration for the TTG(DL), or TTG(UL), for a 0.5 ms sub-frame and a Long cyclic prefix (15 ⁇ s), may be 60 ⁇ s, and so on.
- FIG. 27 illustrates a flowchart showing an OFDM/OFDMA process 2700 for creating a frame structure with a variable cyclic prefix according to embodiments of the invention.
- the various tasks performed in connection with these processes may be performed by software, hardware, firmware, a computer-readable medium having computer executable instructions for performing the process method, or any combination thereof. It should be appreciated that process 2700 may include any number of additional or alternative tasks.
- the tasks shown in Figures 27 need not be performed in the illustrated order, and these processes may be incorporated into a more comprehensive procedure or process having additional functionality not described in detail herein.
- the following description of process 2700 may refer to elements mentioned above in connection with Figures 6-26.
- portions of process 2700 may be performed by different elements of systems 600-700 e.g., transceivers and processors.
- OFDM/OFDMA process 2700 may share same OFDM/OFDMA definitions and functionalities as explained above in the context of Figures 6-26, therefore these definitions and the functionalities are not redundantly explained herein.
- Process 2700 may begin with the OFDM/OFDMA transmitter 701 receiving time domain OFDM data symbols for transmission on an RF channel (task 2702).
- the cyclic prefix selector 709 selects a cyclic prefix from a plurality of variable length cyclic prefixes (task 2704).
- the cyclic prefix may be selected from a plurality of cyclic prefixes available for the RF channel.
- the RF channel may comprise a plurality of variable length cyclic prefixes that range from 5-864 samples for various channel transmission bandwidths in the RF channel.
- a set of variable length cyclic prefix comprises a Short, a Normal and a Long cyclic prefix length comprising 5, 16, and 27 samples respectively.
- These cyclic prefixes may be scaled to obtain the set of cyclic prefixes for each of the other channel transmission BW (RF channels).
- a short cyclic prefix e.g., 5 samples
- the cyclic prefix duration of 3.125 ⁇ s can then be calculated as explained above in the context of discussion of Figure 14.
- Process 2700 then adds the selected cyclic prefix into each of the time domain OFDM/OFDMA data symbols to obtain a plurality of OFDM frames (task 2706) using the add cyclic prefix module 710.
- the selected cyclic prefix may be in the form of digital samples of the corresponding cyclic prefix duration.
- Process 2700 may then transmits the OFDM frames on the radio channel such as the radio channel 714 (task 2708). In this manner, process 2700 adds the OFDM frames to a variable size sub-frame prior to transmitting the OFDM frames on the channel.
- variable length cyclic prefixes can be used for small, regular, and large cell site deployment as explained above to improve bandwidth efficiency (bit/Hz) of the system. Furthermore, selecting different cyclic prefixes for OFDM/OFDMA symbols in a sub-frame for a base station allows for supporting different types of base station cells and cell coverage areas. Thereby, network deployment may be simplified and made more flexible by eliminating the need for the entire network to select the same cyclic prefixes regardless of the different requirements on each base station for its cell coverage area.
- module refers to software, firmware, hardware, and any combination of these elements for performing the associated functions described herein. Additionally, for purpose of discussion, the various modules are described as discrete modules; however, as would be apparent to one of ordinary skill in the art, two or more modules may be combined to form a single module that performs the associated functions according embodiments of the invention.
- computer program product may be used generally to refer to media such as, memory storage devices, or storage unit. These, and other forms of computer-readable media, may be involved in storing one or more instructions for use by processor to cause the processor to perform specified operations. Such instructions, generally referred to as "computer program code” (which may be grouped in the form of computer programs or other groupings), when executed, enable the computing system.
- memory or other storage may be employed in embodiments of the invention.
- memory or other storage may be employed in embodiments of the invention.
- any suitable distribution of functionality between different functional units, processing logic elements or domains may be used without detracting from the invention.
- functionality illustrated to be performed by separate processing logic elements, or controllers may be performed by the same processing logic element, or controller.
- references to specific functional units are only to be seen as references to suitable means for providing the described functionality, rather than indicative of a strict logical or physical structure or organization.
Landscapes
- Engineering & Computer Science (AREA)
- Signal Processing (AREA)
- Computer Networks & Wireless Communication (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
Description
Claims
Priority Applications (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
BRPI0818547-6A BRPI0818547A2 (en) | 2007-10-17 | 2008-10-17 | Ofdm / ofdma frame structure for communications systems |
EP08839861A EP2210383A4 (en) | 2007-10-17 | 2008-10-17 | Ofdm/ofdma frame structure for communication systems |
CA2702444A CA2702444A1 (en) | 2007-10-17 | 2008-10-17 | Ofdm/ofdma frame structure for communication systems |
CN200880111899.7A CN101855880A (en) | 2007-10-17 | 2008-10-17 | Ofdm/ofdma frame structure for communication systems |
MX2010004141A MX2010004141A (en) | 2007-10-17 | 2008-10-17 | Ofdm/ofdma frame structure for communication systems. |
AU2008312350A AU2008312350B2 (en) | 2007-10-17 | 2008-10-17 | OFDM/OFDMA frame structure for communication systems |
JP2010530155A JP2011502386A (en) | 2007-10-17 | 2008-10-17 | OFDM / OFDMA frame structure for communication system |
IL205026A IL205026A0 (en) | 2007-10-17 | 2010-04-12 | Ofdm/ofdma frame structure for communication systems |
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US98076007P | 2007-10-17 | 2007-10-17 | |
US60/980,760 | 2007-10-17 | ||
US2037808P | 2008-01-10 | 2008-01-10 | |
US61/020,378 | 2008-01-10 | ||
US3203208P | 2008-02-27 | 2008-02-27 | |
US61/032,032 | 2008-02-27 |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2009052420A2 true WO2009052420A2 (en) | 2009-04-23 |
WO2009052420A3 WO2009052420A3 (en) | 2009-06-11 |
Family
ID=40568087
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2008/080361 WO2009052420A2 (en) | 2007-10-17 | 2008-10-17 | Ofdm/ofdma frame structure for communication systems |
Country Status (10)
Country | Link |
---|---|
EP (1) | EP2210383A4 (en) |
JP (1) | JP2011502386A (en) |
KR (1) | KR20100075642A (en) |
CN (1) | CN101855880A (en) |
AU (1) | AU2008312350B2 (en) |
BR (1) | BRPI0818547A2 (en) |
CA (1) | CA2702444A1 (en) |
IL (1) | IL205026A0 (en) |
MX (1) | MX2010004141A (en) |
WO (1) | WO2009052420A2 (en) |
Cited By (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011022567A1 (en) * | 2009-08-20 | 2011-02-24 | Qualcomm Incorporated | Communication system in which a length of a cyclic prefix portion of an information unit is adjusted to time-align the boundary of the information unit with the boundary of the adjacent information unit |
CN102025478A (en) * | 2009-09-15 | 2011-04-20 | 华为技术有限公司 | Method and device for transmitting and receiving data |
JP2012529193A (en) * | 2009-05-29 | 2012-11-15 | ゼットティーイー(ユーエスエー) インコーポレイテッド | Signal transmission at fixed subcarrier intervals in an OFDMA communication system |
WO2012158378A1 (en) * | 2011-05-18 | 2012-11-22 | Marvell World Trade Ltd. | Short guard interval with green field preamble |
JP2013510467A (en) * | 2009-11-03 | 2013-03-21 | インテル・コーポレーション | Frame structure that supports scenarios with large delay spread |
RU2501175C2 (en) * | 2009-07-06 | 2013-12-10 | Интел Корпорейшн | Base station and method for reducing asynchronous interference in multi-tier ofdma overlay network |
CN104734826A (en) * | 2013-12-20 | 2015-06-24 | 中兴通讯股份有限公司 | Extremely big bandwidth data sending control method and extremely big bandwidth data sending equipment |
US9210001B2 (en) | 2010-12-17 | 2015-12-08 | Lg Electronics Inc. | Method and apparatus for transmitting aperiodic sounding reference signal in wireless communication system |
WO2016146165A1 (en) * | 2015-03-17 | 2016-09-22 | Nokia Solutions And Networks Oy | Method, apparatus, system and computer program for lte carrier bandwidth extension using increased subcarrier spacing |
US9667460B2 (en) | 2013-10-25 | 2017-05-30 | Marvell World Trade Ltd. | Range extension mode for WiFi |
US20170331658A1 (en) * | 2016-05-11 | 2017-11-16 | Qualcomm Incorporated | Dynamic cyclic prefix (cp) length in wireless communication |
CN107810616A (en) * | 2015-06-22 | 2018-03-16 | Lg 电子株式会社 | Send the method and NB IOT equipment of uplink channel |
US10020974B2 (en) | 2013-03-11 | 2018-07-10 | Futurewei Technologies, Inc. | Upstream pilot structures in point-to-multipoint orthogonal frequency-division multiplexing (OFDM) communication systems |
US10033563B2 (en) | 2013-09-10 | 2018-07-24 | Marvell World Trade Ltd. | Extended guard interval for outdoor WLAN |
US10038518B1 (en) | 2015-06-11 | 2018-07-31 | Marvell International Ltd. | Signaling phy preamble formats |
US10181966B1 (en) | 2015-05-01 | 2019-01-15 | Marvell International Ltd. | WiFi classification by pilot sequences |
US10194006B2 (en) | 2013-10-25 | 2019-01-29 | Marvell World Trade Ltd. | Physical layer frame format for WLAN |
US10218822B2 (en) | 2013-10-25 | 2019-02-26 | Marvell World Trade Ltd. | Physical layer frame format for WLAN |
US10237032B2 (en) | 2017-01-06 | 2019-03-19 | At&T Intellectual Property I, L.P. | Adaptive channel state information reference signal configurations for a 5G wireless communication network or other next generation network |
US10320512B2 (en) | 2017-01-08 | 2019-06-11 | At&T Intellectual Property I, L.P. | Interference cancelation for 5G or other next generation network |
US10334533B2 (en) | 2016-11-02 | 2019-06-25 | At&T Intellectual Property I, L.P. | Non-orthogonal design for channel state information reference signals for a 5G air interface or other next generation network interfaces |
US10348467B2 (en) | 2013-03-11 | 2019-07-09 | Qualcomm Incorporated | Effective utilization of cyclic prefix in OFDM systems under benign channel conditions |
US10382598B1 (en) | 2015-05-01 | 2019-08-13 | Marvell International Ltd. | Physical layer frame format for WLAN |
US10397033B2 (en) | 2011-02-04 | 2019-08-27 | Marvell World Trade Ltd. | Method and apparatus for generating a PHY data unit |
US10547480B2 (en) | 2015-06-01 | 2020-01-28 | Huawei Technologies Co., Ltd. | System and scheme of scalable OFDM numerology |
US11616584B2 (en) | 2015-02-13 | 2023-03-28 | Samsung Electronics Co., Ltd. | Transmitting apparatus and receiving apparatus and controlling method thereof |
US11855818B1 (en) | 2014-04-30 | 2023-12-26 | Marvell Asia Pte Ltd | Adaptive orthogonal frequency division multiplexing (OFDM) numerology in a wireless communication network |
Families Citing this family (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9635666B2 (en) | 2010-12-22 | 2017-04-25 | Lg Electronics Inc. | Method for reporting channel state information requiring sequential transmission in wireless communication system and apparatus for same |
KR101859594B1 (en) * | 2011-03-10 | 2018-06-28 | 삼성전자 주식회사 | Method and Apparatus for Supporting Flexible Time Division Duplex in Communication System |
CN102548018A (en) * | 2011-03-25 | 2012-07-04 | 北京新岸线无线技术有限公司 | Wireless communication system and communication method thereof |
JP5704709B2 (en) * | 2011-03-31 | 2015-04-22 | 独立行政法人情報通信研究機構 | OFDMA system for long delay spread environment |
CN102790736B (en) * | 2011-04-07 | 2015-04-01 | 中兴通讯股份有限公司 | Methods for transmitting and receiving data and devices for transmitting and receiving data based on orthogonal frequency division multiplexing technology |
CN102739594A (en) * | 2011-04-12 | 2012-10-17 | 中兴通讯股份有限公司 | Radio frame parameter configuration and signal transmission method and apparatus thereof |
KR101975903B1 (en) | 2011-07-28 | 2019-05-08 | 삼성전자주식회사 | Apparatus and method for beamforming in wireless communication system |
US9160511B2 (en) * | 2012-01-30 | 2015-10-13 | Qualcomm Incorporated | Cyclic prefix in evolved multimedia broadcast multicast service with high transmit power |
WO2013191420A1 (en) | 2012-06-17 | 2013-12-27 | Lg Electronics Inc. | An apparatus for transceiving signals using a tdd (time division duplex) frame structure in a wireless communication system and method thereof |
KR102324176B1 (en) | 2013-08-19 | 2021-11-09 | 코히어런트 로직스, 인코포레이티드 | Parameterized radio waveform for operating in multiple wireless environments |
US9325552B2 (en) * | 2013-09-13 | 2016-04-26 | Qualcomm Incorporated | Extended duration cyclic prefix with low overhead for LTE broadcast |
US10772092B2 (en) * | 2013-12-23 | 2020-09-08 | Qualcomm Incorporated | Mixed numerology OFDM design |
US10084586B2 (en) * | 2014-03-13 | 2018-09-25 | Lg Electronics Inc. | Method for transmitting and receiving signal for low latency in wireless communication system and apparatus therefor |
US10051634B2 (en) * | 2014-06-10 | 2018-08-14 | Qualcomm Incorporated | Devices and methods for facilitating non-orthogonal wireless communications |
CN105743823B (en) * | 2014-12-10 | 2018-11-16 | 联芯科技有限公司 | A kind of channel estimation methods and device |
US9985760B2 (en) | 2015-03-31 | 2018-05-29 | Huawei Technologies Co., Ltd. | System and method for an adaptive frame structure with filtered OFDM |
JP2018532339A (en) * | 2015-10-30 | 2018-11-01 | 富士通株式会社 | Multi-carrier modulation apparatus, multi-carrier demodulation apparatus, method and system |
CN110809319B (en) * | 2018-08-06 | 2023-10-31 | 黎光洁 | Data transmission method and data transmission system in Internet of things |
CN110858788B (en) * | 2018-08-07 | 2023-04-07 | 黎光洁 | Data symbol configuration method |
CN110086569B (en) * | 2019-04-03 | 2022-04-15 | 上海无线通信研究中心 | Internet of vehicles variable frame communication method, terminal and system |
US11616594B2 (en) | 2021-05-04 | 2023-03-28 | Qualcomm Incorporated | Utilizing padding duration at start of a half subframe |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6175550B1 (en) * | 1997-04-01 | 2001-01-16 | Lucent Technologies, Inc. | Orthogonal frequency division multiplexing system with dynamically scalable operating parameters and method thereof |
EP0938208A1 (en) * | 1998-02-22 | 1999-08-25 | Sony International (Europe) GmbH | Multicarrier transmission, compatible with the existing GSM system |
KR20060008576A (en) * | 2004-07-21 | 2006-01-27 | 삼성전자주식회사 | Multi-carrier transmission system and method for performing adaptive modulation using known cyclic prefix |
KR100590486B1 (en) * | 2004-07-29 | 2006-06-19 | 에스케이 텔레콤주식회사 | Method and system for generating switching timing signal for separating transmission signal in optical repeater of mobile communication network using TD and OPM modulation method |
US7573944B2 (en) * | 2004-10-21 | 2009-08-11 | Samsung Electronics Co., Ltd | Apparatus and method for canceling inter-symbol interference in a broadband wireless communication system |
US20060176966A1 (en) * | 2005-02-07 | 2006-08-10 | Stewart Kenneth A | Variable cyclic prefix in mixed-mode wireless communication systems |
US8031583B2 (en) * | 2005-03-30 | 2011-10-04 | Motorola Mobility, Inc. | Method and apparatus for reducing round trip latency and overhead within a communication system |
JP2007159066A (en) * | 2005-12-08 | 2007-06-21 | Sanyo Electric Co Ltd | Radio communication apparatus and radio communication control method |
-
2008
- 2008-10-17 KR KR1020107010685A patent/KR20100075642A/en not_active Ceased
- 2008-10-17 CN CN200880111899.7A patent/CN101855880A/en active Pending
- 2008-10-17 WO PCT/US2008/080361 patent/WO2009052420A2/en active Application Filing
- 2008-10-17 BR BRPI0818547-6A patent/BRPI0818547A2/en not_active Application Discontinuation
- 2008-10-17 JP JP2010530155A patent/JP2011502386A/en active Pending
- 2008-10-17 AU AU2008312350A patent/AU2008312350B2/en not_active Expired - Fee Related
- 2008-10-17 MX MX2010004141A patent/MX2010004141A/en active IP Right Grant
- 2008-10-17 CA CA2702444A patent/CA2702444A1/en not_active Abandoned
- 2008-10-17 EP EP08839861A patent/EP2210383A4/en not_active Withdrawn
-
2010
- 2010-04-12 IL IL205026A patent/IL205026A0/en unknown
Non-Patent Citations (1)
Title |
---|
See references of EP2210383A4 * |
Cited By (68)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9219581B2 (en) | 2006-10-17 | 2015-12-22 | Intel Corporation | Base station and method for configuring sub-frames for relay-node operations |
US8634334B2 (en) | 2006-10-17 | 2014-01-21 | Intel Corporation | Base station and method for configuring sub-frames for relay-node operations |
US8917638B2 (en) | 2006-10-17 | 2014-12-23 | Intel Corporation | Base station and method for configuring sub-frames for relay-node operations |
JP2012529193A (en) * | 2009-05-29 | 2012-11-15 | ゼットティーイー(ユーエスエー) インコーポレイテッド | Signal transmission at fixed subcarrier intervals in an OFDMA communication system |
RU2501175C2 (en) * | 2009-07-06 | 2013-12-10 | Интел Корпорейшн | Base station and method for reducing asynchronous interference in multi-tier ofdma overlay network |
WO2011022567A1 (en) * | 2009-08-20 | 2011-02-24 | Qualcomm Incorporated | Communication system in which a length of a cyclic prefix portion of an information unit is adjusted to time-align the boundary of the information unit with the boundary of the adjacent information unit |
US8730854B2 (en) | 2009-08-20 | 2014-05-20 | Qualcomm Incorporated | Timing adjustments in a communication system |
US8891352B2 (en) | 2009-09-15 | 2014-11-18 | Huawei Technologies Co., Ltd. | Data transmission and receiving method and apparatus |
CN102025478A (en) * | 2009-09-15 | 2011-04-20 | 华为技术有限公司 | Method and device for transmitting and receiving data |
JP2013510467A (en) * | 2009-11-03 | 2013-03-21 | インテル・コーポレーション | Frame structure that supports scenarios with large delay spread |
US9210001B2 (en) | 2010-12-17 | 2015-12-08 | Lg Electronics Inc. | Method and apparatus for transmitting aperiodic sounding reference signal in wireless communication system |
US10397033B2 (en) | 2011-02-04 | 2019-08-27 | Marvell World Trade Ltd. | Method and apparatus for generating a PHY data unit |
US8873680B2 (en) | 2011-05-18 | 2014-10-28 | Marvell World Trade Ltd. | Short guard interval with green field preamble |
CN103609057A (en) * | 2011-05-18 | 2014-02-26 | 马维尔国际贸易有限公司 | Short guard interval with green field preamble |
US10291453B2 (en) | 2011-05-18 | 2019-05-14 | Marvell World Trade Ltd. | Mixed guard intervals in OFDM signal data segments |
CN103609057B (en) * | 2011-05-18 | 2016-12-21 | 马维尔国际贸易有限公司 | There is the short protection interval of greenery patches lead code |
US9306786B2 (en) | 2011-05-18 | 2016-04-05 | Marvell World Trade Ltd. | Short guard interval with green field preamble |
WO2012158378A1 (en) * | 2011-05-18 | 2012-11-22 | Marvell World Trade Ltd. | Short guard interval with green field preamble |
US10020974B2 (en) | 2013-03-11 | 2018-07-10 | Futurewei Technologies, Inc. | Upstream pilot structures in point-to-multipoint orthogonal frequency-division multiplexing (OFDM) communication systems |
US10348467B2 (en) | 2013-03-11 | 2019-07-09 | Qualcomm Incorporated | Effective utilization of cyclic prefix in OFDM systems under benign channel conditions |
US10033563B2 (en) | 2013-09-10 | 2018-07-24 | Marvell World Trade Ltd. | Extended guard interval for outdoor WLAN |
US11671296B2 (en) | 2013-09-10 | 2023-06-06 | Marvell Asia Pte Ltd | Extended guard interval for outdoor WLAN |
US11165892B2 (en) | 2013-10-25 | 2021-11-02 | Marvell Asia Pte, Ltd. | Physical layer frame format for WLAN |
US11146434B2 (en) | 2013-10-25 | 2021-10-12 | Marvell Asia Pte, Ltd. | Range extension mode for WiFi |
US11962444B2 (en) | 2013-10-25 | 2024-04-16 | Marvell Asia Pte Ltd | Physical layer frame format for WLAN |
US9667460B2 (en) | 2013-10-25 | 2017-05-30 | Marvell World Trade Ltd. | Range extension mode for WiFi |
US10389562B2 (en) | 2013-10-25 | 2019-08-20 | Marvell World Trade Ltd. | Range extension mode for WiFi |
US10153930B2 (en) | 2013-10-25 | 2018-12-11 | Marvell World Trade Ltd. | Range extension mode for WiFi |
US9712358B2 (en) | 2013-10-25 | 2017-07-18 | Marvell World Trade Ltd. | Range extension mode for WiFi |
US10291752B2 (en) | 2013-10-25 | 2019-05-14 | Marvell World Trade Ltd. | Physical layer frame format for WLAN |
US10194006B2 (en) | 2013-10-25 | 2019-01-29 | Marvell World Trade Ltd. | Physical layer frame format for WLAN |
US10218822B2 (en) | 2013-10-25 | 2019-02-26 | Marvell World Trade Ltd. | Physical layer frame format for WLAN |
EP3086501A4 (en) * | 2013-12-20 | 2016-11-23 | Zte Corp | METHOD FOR TRANSMITTING ULTRA-WIDE BANDWIDTH DATA, DEVICE AND COMPUTER STORAGE MEDIUM |
CN104734826A (en) * | 2013-12-20 | 2015-06-24 | 中兴通讯股份有限公司 | Extremely big bandwidth data sending control method and extremely big bandwidth data sending equipment |
US10477547B2 (en) | 2013-12-20 | 2019-11-12 | Zte Corporation | Ultra-large bandwidth data transmission method, device and computer storage medium |
CN104734826B (en) * | 2013-12-20 | 2020-08-11 | 中兴通讯股份有限公司 | Ultra-large bandwidth data sending control method and ultra-large bandwidth data sending equipment |
US11855818B1 (en) | 2014-04-30 | 2023-12-26 | Marvell Asia Pte Ltd | Adaptive orthogonal frequency division multiplexing (OFDM) numerology in a wireless communication network |
US11616584B2 (en) | 2015-02-13 | 2023-03-28 | Samsung Electronics Co., Ltd. | Transmitting apparatus and receiving apparatus and controlling method thereof |
WO2016146165A1 (en) * | 2015-03-17 | 2016-09-22 | Nokia Solutions And Networks Oy | Method, apparatus, system and computer program for lte carrier bandwidth extension using increased subcarrier spacing |
US10420098B2 (en) | 2015-03-17 | 2019-09-17 | Nokia Solutions And Networks Oy | Method, apparatus, system and computer program for LTE carrier bandwidth extension using increased subcarrier spacing |
US10382598B1 (en) | 2015-05-01 | 2019-08-13 | Marvell International Ltd. | Physical layer frame format for WLAN |
US10181966B1 (en) | 2015-05-01 | 2019-01-15 | Marvell International Ltd. | WiFi classification by pilot sequences |
US11632203B2 (en) | 2015-06-01 | 2023-04-18 | Huawei Technologies Co., Ltd. | System and scheme of scalable OFDM numerology |
US11102039B2 (en) | 2015-06-01 | 2021-08-24 | Huawei Technologies Co., Ltd. | System and scheme of scalable OFDM numerology |
US10680864B2 (en) | 2015-06-01 | 2020-06-09 | Huawei Technologies Co., Ltd. | System and scheme of scalable OFDM numerology |
US10547480B2 (en) | 2015-06-01 | 2020-01-28 | Huawei Technologies Co., Ltd. | System and scheme of scalable OFDM numerology |
US10348446B1 (en) | 2015-06-11 | 2019-07-09 | Marvell International Ltd. | Signaling PHY preamble formats |
US10038518B1 (en) | 2015-06-11 | 2018-07-31 | Marvell International Ltd. | Signaling phy preamble formats |
US10797821B1 (en) | 2015-06-11 | 2020-10-06 | Nxp Usa, Inc. | Signaling PHY preamble formats |
US10389496B2 (en) | 2015-06-22 | 2019-08-20 | Lg Electronics Inc. | Apparatus and method for determining a time resource unit |
US10778383B2 (en) | 2015-06-22 | 2020-09-15 | Lg Electronics Inc. | Apparatus and method for determining a time resource unit |
EP3313015A4 (en) * | 2015-06-22 | 2019-02-27 | LG Electronics Inc. | Method for transmitting uplink channel and nb-iot device |
CN107810616B (en) * | 2015-06-22 | 2021-01-26 | Lg 电子株式会社 | Method for transmitting uplink channel and NB-IOT device |
CN107810616A (en) * | 2015-06-22 | 2018-03-16 | Lg 电子株式会社 | Send the method and NB IOT equipment of uplink channel |
WO2017196684A1 (en) * | 2016-05-11 | 2017-11-16 | Qualcomm Incorporated | Dynamic cyclic prefix (cp) length in wireless communication |
US10461975B2 (en) | 2016-05-11 | 2019-10-29 | Qualcomm Incorporated | Dynamic cyclic prefix (CP) length in wireless communication |
CN109155773A (en) * | 2016-05-11 | 2019-01-04 | 高通股份有限公司 | Dynamic circulation prefix (CP) length in wireless communication |
US20170331658A1 (en) * | 2016-05-11 | 2017-11-16 | Qualcomm Incorporated | Dynamic cyclic prefix (cp) length in wireless communication |
AU2017264592B2 (en) * | 2016-05-11 | 2021-05-27 | Qualcomm Incorporated | Dynamic cyclic prefix (CP) length in wireless communication |
CN109155773B (en) * | 2016-05-11 | 2021-08-17 | 高通股份有限公司 | Dynamic Cyclic Prefix (CP) length in wireless communications |
US11558822B2 (en) | 2016-11-02 | 2023-01-17 | At&T Intellectual Property I, L.P. | Non-orthogonal design for channel state information reference signals for a 5G air interface or other next generation network interfaces |
US10834679B2 (en) | 2016-11-02 | 2020-11-10 | At&T Intellectual Property I, L.P. | Non-orthogonal design for channel state information reference signals for a 5G air interface or other next generation network interfaces |
US10334533B2 (en) | 2016-11-02 | 2019-06-25 | At&T Intellectual Property I, L.P. | Non-orthogonal design for channel state information reference signals for a 5G air interface or other next generation network interfaces |
US10237032B2 (en) | 2017-01-06 | 2019-03-19 | At&T Intellectual Property I, L.P. | Adaptive channel state information reference signal configurations for a 5G wireless communication network or other next generation network |
US10812237B2 (en) | 2017-01-06 | 2020-10-20 | At&T Intellectual Property I, L.P. | Adaptive channel state information reference signal configurations for a 5G wireless communication network or other next generation network |
US10432376B2 (en) | 2017-01-06 | 2019-10-01 | At&T Intellectual Property I, L.P. | Adaptive channel state information reference signal configurations for a 5G wireless communication network or other next generation network |
US10742343B2 (en) | 2017-01-08 | 2020-08-11 | At&T Intellectual Property I, L.P. | Interference cancelation for 5G or other next generation network |
US10320512B2 (en) | 2017-01-08 | 2019-06-11 | At&T Intellectual Property I, L.P. | Interference cancelation for 5G or other next generation network |
Also Published As
Publication number | Publication date |
---|---|
KR20100075642A (en) | 2010-07-02 |
CA2702444A1 (en) | 2009-04-23 |
CN101855880A (en) | 2010-10-06 |
EP2210383A4 (en) | 2012-09-12 |
AU2008312350B2 (en) | 2013-09-19 |
JP2011502386A (en) | 2011-01-20 |
AU2008312350A1 (en) | 2009-04-23 |
EP2210383A2 (en) | 2010-07-28 |
IL205026A0 (en) | 2010-11-30 |
BRPI0818547A2 (en) | 2015-06-16 |
WO2009052420A3 (en) | 2009-06-11 |
MX2010004141A (en) | 2010-08-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8369301B2 (en) | OFDM/OFDMA frame structure for communication systems | |
AU2008312350B2 (en) | OFDM/OFDMA frame structure for communication systems | |
US8638652B2 (en) | Signal transmission with fixed subcarrier spacing within OFDMA communication systems | |
US8913479B2 (en) | Flexible time-frequency multiplexing structure for wireless communication | |
CN110393030B (en) | OFDM communication system with determination method of subcarrier offset for OFDM symbol generation | |
CN1808961B (en) | Uplink multi-user pilot method for interference depression between cells | |
US20090196163A1 (en) | Bandwidth asymmetric communication system based on ofdm and tdma | |
JP2015136163A (en) | Scalable ofdm and ofdma bandwidth allocation in communication systems | |
US8630212B2 (en) | Apparatus and method for data transmission in wireless communication system | |
CN105075167A (en) | Base station and method for controlling radio resource allocation | |
JP2009543405A (en) | Bandwidth asymmetric communication system | |
CN101902427B (en) | Frame structure and configuration method and communication method thereof | |
CN102577169A (en) | Method and device for sending and receiving a reference signal | |
US9628232B2 (en) | Method of and a radio transmission system and radio access equipment for cellular wireless radio transmission | |
Thirunavukkarasu et al. | A Comprehensive Survey on Air-Interfaces for 5G and beyond | |
KR20110040628A (en) | Preamble sequence subblock allocation method for supporting irregular system bandwidth in wireless communication system and apparatus therefor | |
Ahamed | PERFORMANCE ANALYSIS OF OFDM. | |
Singh | Multiple access techniques for 4G mobile wireless networks | |
CN102170343B (en) | Uplink multi-user pilot frequency method for reducing interference among cells | |
Öztürk | On the Waveform Design for 5G | |
KR20080030475A (en) | Method and apparatus for frame composition in communication system | |
KR20080011007A (en) | Pilot Arrangement Method and Apparatus in Orthogonal Frequency Multiple Access Mobile Communication System |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200880111899.7 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 08839861 Country of ref document: EP Kind code of ref document: A2 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2008312350 Country of ref document: AU |
|
WWE | Wipo information: entry into national phase |
Ref document number: 205026 Country of ref document: IL Ref document number: 2702444 Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: MX/A/2010/004141 Country of ref document: MX |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010530155 Country of ref document: JP Ref document number: 2629/DELNP/2010 Country of ref document: IN |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2008312350 Country of ref document: AU Date of ref document: 20081017 Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2008839861 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 20107010685 Country of ref document: KR Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: PI0818547 Country of ref document: BR Kind code of ref document: A2 Effective date: 20100416 |