WO2009049549A1 - Method and device for validity negotiation of management information transport - Google Patents
Method and device for validity negotiation of management information transport Download PDFInfo
- Publication number
- WO2009049549A1 WO2009049549A1 PCT/CN2008/072659 CN2008072659W WO2009049549A1 WO 2009049549 A1 WO2009049549 A1 WO 2009049549A1 CN 2008072659 W CN2008072659 W CN 2008072659W WO 2009049549 A1 WO2009049549 A1 WO 2009049549A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- information
- management connection
- parameter
- validity
- arq
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 64
- 230000007246 mechanism Effects 0.000 claims abstract description 92
- 230000005540 biological transmission Effects 0.000 claims description 47
- 238000013467 fragmentation Methods 0.000 claims description 23
- 238000006062 fragmentation reaction Methods 0.000 claims description 23
- 230000004044 response Effects 0.000 claims description 20
- 238000012856 packing Methods 0.000 claims description 13
- 239000000284 extract Substances 0.000 claims description 6
- 238000005259 measurement Methods 0.000 claims description 2
- 230000008569 process Effects 0.000 description 23
- 239000012634 fragment Substances 0.000 description 20
- 238000004806 packaging method and process Methods 0.000 description 13
- 238000010586 diagram Methods 0.000 description 8
- 238000012545 processing Methods 0.000 description 7
- 239000002131 composite material Substances 0.000 description 6
- 230000001934 delay Effects 0.000 description 2
- 108700026140 MAC combination Proteins 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000001568 sexual effect Effects 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L12/00—Data switching networks
- H04L12/54—Store-and-forward switching systems
- H04L12/56—Packet switching systems
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L41/00—Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
Definitions
- Embodiments of the present invention relate to information transmission technologies, and in particular, to a method and apparatus for managing information transmission validity negotiation. Background technique
- the Institute of Electrical and Electronics Engineers (IEEE) 802.16 standard also known as the IEEE Wireless MAN air interface standard, is an air interface specification for 2 to 66 GHz. It stipulates that the wireless access system can cover up to 50km, so the 802.16 system is mainly used in the metropolitan area network, which is one of the "last mile" broadband access solutions.
- communication information is mainly classified into data information and management information. Data information is transmitted over unmanaged connections, and management information is transmitted over management connections.
- the Media Access Control (MAC) layer of the SS establishes two management connections: Basic Connection and Primary Management Connection.
- the basic connection is used by the MAC layer of the base station (BS) and the MAC layer of the SS to exchange short, delay-sensitive MAC layer management information;
- the primary management connection is used by the MAC layer of the BS and the MAC layer of the SS for long exchanges, MAC layer management information that can tolerate a certain time delay.
- the SS and BS transmit various management information on the management connection. Summary of the invention
- Embodiments of the present invention provide methods and apparatus for managing information transmission validity negotiation.
- the method for managing the validity negotiation of the information transmission according to the embodiment of the present invention includes: sending management connection validity information to the network side device;
- a validity mechanism for managing the connection is determined according to the management connection validity parameter.
- the device for managing the validity of the information transmission includes: a sending module, configured to send the management connection validity information to the network side device; and a receiving module, configured to receive the management connection validity sent by the network side device a parameter setting module configured to set a validity mechanism for managing the connection according to the management connection validity parameter.
- a method for negotiating validity of management information transmission includes: receiving management connection validity information sent by a user terminal;
- a receiving module configured to receive management connection validity information sent by the user terminal, and a selecting module, configured to determine a management connection validity parameter according to the management connection validity information;
- a sending module configured to send the management connection validity parameter to the user terminal.
- the management connection validity parameter is determined by sending the management connection validity information, thereby determining the validity mechanism of the management connection. Therefore, an effective mechanism is established on the management connection, so that the user terminal and the network side device can transmit various management information on the management connection supporting the validity mechanism, without using the method of waiting for the corresponding timer of the management information to expire. Ensure the correct transmission of management information, which greatly improves the effectiveness of management information transmission and saves access time.
- FIG. 1 is a schematic diagram of a process of establishing a management connection in the prior art.
- FIG. 2 is a schematic structural diagram of a system for improving the effectiveness of management information transmission in the present invention.
- Fig. 3 is a schematic view showing the structure of a user terminal for improving the effectiveness of management information transmission in the present invention.
- FIG. 4 is a schematic structural diagram of a network side device for improving the effectiveness of management information transmission in the present invention.
- FIG. 5 is a schematic flowchart of a negotiation management connection validity mechanism in the present invention.
- FIG. 6 is a schematic flowchart of a mechanism for negotiating a basic connection ARQ according to Embodiment 1 of the present invention.
- FIG. 7 is a schematic flowchart of a mechanism for negotiating a basic connection ARQ according to Embodiment 8 of the present invention.
- FIG. 1 is a schematic diagram of the process of establishing a management connection. The process includes the following steps:
- Step 101 The SS sends the RNG-REG information to the BS, where the information includes the negotiation parameters of the SS establishing the basic connection and the primary management connection.
- Step 102 The BS returns the RNG-RSP information to the SS, where the information includes feedback parameters that the BS establishes a basic connection and a primary management connection to the SS.
- the SS and BS transmit various management information on the newly created management connection.
- the SS sends management information such as a basic capability request (SBC-REQ) to the BS through the management connection, and waits for the BS to respond to the basic capability response through the management connection ( Management information such as SBC-RSP).
- the basic capability request information and the basic capability response information are information transmitted through the basic connection.
- the SS determines whether the SBC-RSP information of the BS response is received within a specified long period of time by starting the timer corresponding to the management information, and uses the cyclic redundancy check code (CRC) to determine the received SBC- Is the RSP information correct? If the SS does not receive the SBC-REQ message, or the received SBC-REQ message is incorrect, the SS must wait for the timer to expire before the SS can resend the SBC-REQ message.
- CRC cyclic redundancy check code
- Figure 2 is a block diagram showing the structure of a system for improving the effectiveness of management information transmission in the present invention.
- the system includes: a user terminal 201 and a network side device 202.
- the user terminal 201 is configured to generate management connection validity information, send the information to the network side device 202, and receive the management connection validity parameter returned by the network side device 202. According to this parameter, the effectiveness mechanism of managing the connection is set.
- the network side device 202 is configured to receive the management connection validity information sent by the user terminal 201, determine the validity parameter used for managing the connection, and return the determined management connection validity parameter to the user terminal 201.
- FIG. 3 is a schematic structural diagram of a user terminal for improving the effectiveness of management information transmission in the present invention.
- the user terminal includes: a generating module 301, a type length value (TLV) encoding module 302, a sending module 303, a receiving module 304, a TLV decoding module 305, and a setting module 306.
- TLV type length value
- the generating module 301 is configured to generate management connection validity information.
- the TLV encoding module 302 is configured to encode the management connection validity information generated by the generating module 301 in a TLV manner, and carry the encoded management connection validity information in a TLV encoding information field of the RNG-REQ information, and transmit the information to the sending.
- Module 303 is configured to encode the management connection validity information generated by the generating module 301 in a TLV manner, and carry the encoded management connection validity information in a TLV encoding information field of the RNG-REQ information, and transmit the information to the sending.
- the sending module 303 is configured to send the management connection validity information output by the TLV encoding module 302 to the network side device.
- the receiving module 304 is configured to receive a management connection validity parameter sent by the network side device.
- the TLV decoding module 305 is configured to receive the RNG-RSP information returned by the network side device from the receiving module 304, extract the management connection validity parameter from the TLV encoding information field of the RNG-RSP information, and use the management connection validity. The parameters are decoded in the TLV manner, and then the decoded management connection validity information is sent to the setting module 306.
- the setting module 306 is configured to set a validity mechanism of the SS new management connection according to the management connection validity parameter.
- the TLV encoding module 302 and the TLV decoding module 305 may not be provided.
- the sending module 303 directly receives the management connection validity information generated by the generating module 301 and sends the information to the network measuring device
- the setting module 305 directly receives the management connection validity parameter from the receiving module 304, and sets the SS according to the parameter. New effectiveness mechanism for managing connections.
- FIG. 4 is a schematic structural diagram of a network side device for improving the effectiveness of management information transmission in the present invention.
- the network side device includes: a receiving module 401, a TLV decoding module 402, a selecting module 403, a TLV encoding module 404, and a sending module 405.
- the receiving module 401 is configured to receive management connection validity information sent by the user terminal.
- the TLV decoding module 402 is configured to receive the RNG-REQ information sent by the SS from the receiving module 401, extract the management connection validity information from the TLV encoding information field of the RNG-REQ information, and use the management connection validity information to The TLV method performs decoding, and then the decoded management connection validity information is sent to the selection module 403.
- the selection module 403 is configured to determine the management connection validity parameter used according to the management connection validity information output by the TLV decoding module 402.
- the TLV encoding module 404 is configured to encode the management connection validity parameter determined by the selecting module 403 in a TLV manner, and carry the encoded management connection validity parameter in a TLV encoding information field of the RNG-RSP information, and send the same to the TLV encoding information field.
- the sending module 405 is configured to send the management connection validity parameter output by the TLV encoding module 404 to the user terminal.
- the TLV decoding module 402 and the TLV encoding mode may not be set.
- Block 404 the selection module 403 directly receives the management connection validity information from the receiving module 401, and the transmitting module 405 directly receives the management connection validity parameter from the selection module 403, and transmits the parameter to the user terminal.
- FIG. 5 is a schematic flow chart of a negotiation management connection validity mechanism in the present invention. As can be seen from Figure 5, the process includes the following steps:
- Step 501 The user terminal generates management connection validity information.
- Step 502 The user terminal sends the management connection validity information to the network side device.
- Step 503 The network side device determines, according to the received management connection validity information, the used management connection validity parameter.
- Step 504 The network side device sends the management connection validity parameter to the user terminal.
- Step 505 The user terminal sets a validity mechanism for managing the connection according to the received management connection validity parameter.
- the user terminal sets a validity mechanism for managing the connection according to the received management connection validity parameter, and transmits various management information to the network side device according to the selected effective mechanism on the newly created management connection.
- the validity negotiation method is:
- the effectiveness mechanism includes but is not limited to: basic connection ARQ mechanism, basic connection The fragmentation mechanism or the packaging mechanism of the basic connection; and the ARQ mechanism that mainly manages the connection.
- basic connection ARQ mechanism basic connection The fragmentation mechanism or the packaging mechanism of the basic connection
- ARQ mechanism that mainly manages the connection.
- the IEEE 802.16 standard specifies that the basic connection is established by the RNG-REG and RNG-RSP information handshake during the Ranging phase of the initial SS access.
- the RNG-REQ information structure is shown in Table 1
- the RNG-RSP information structure is shown in Table 2.
- This embodiment negotiates an automatic retransmission request (ARQ) mechanism of a basic connection by adding management connection validity information and managing connection validity parameters.
- ARQ automatic retransmission request
- the basic connection validity information or the basic connection validity parameter encoded by the TLV method is added to the TLV Encoded Information field of the RNG-REQ or RNG-RSP information, respectively.
- ARQ refers to the method by which the receiving device monitors errors and requests retransmissions.
- the receiver detects an error in the packet through the CRC, it will automatically request the sender to resend the packet. The process continues until the packet error is released, or the error continues to exceed the predetermined transmission value.
- the basic connection validity information added in the RNG-REQ information and the basic connection validity parameters added in the RNG-RSP information include: ARQ capability (ARQ support) information and basic connected ARQ parameters. (ARQ parameters for basic connection ).
- ARQ capability information encoded in TLV mode.
- the SS sends the parameter to the BS, it is used by the SS to inform the BS whether it supports the ARQ mechanism; the BS sends the parameter to the SS.
- the BS is used to inform the SS whether the ARQ mechanism is successfully negotiated.
- the RNG-REQ or RNG-RSP message type of this parameter is 39 and the length is 1 byte.
- the SS sends the parameter to the BS when the parameter is 1, it indicates that the SS supports the ARQ mechanism.
- the parameter indicates that the SS does not support the ARQ mechanism.
- the BS sends the parameter to the SS, when the parameter is 1, the ARQ mechanism negotiates successfully.
- the ARQ mechanism negotiation fails.
- connected ARQ parameters Encoded in TLV mode to determine various Service Flow parameters that are basically connected to the ARQ mechanism.
- the RNG-REQ or RNG-RSP message type of the basic connected ARQ parameter is 34, and the length is variable, which is determined according to the specific service flow.
- the parameter values include the following service flow parameters:
- ARQ Enabled TLV It is encoded in TLV mode to determine whether to apply for the ARQ mechanism when the connection is established. This parameter has a service flow type of 18 and a length of 1 byte. When this parameter is set to 1, it indicates that the connection request uses ARQ; when this parameter is set to 0, it indicates that the connection request does not use ARQ.
- ARQ window size (ARQ_Window_Size) TLV: Encoded in TLV mode to determine the maximum size of the ARQ window.
- the parameter has a service flow type of 19 and a length of 1 byte. The value of this parameter ranges from 0 to ARQ and the block number coefficient is divided by 2 (ARQ BSN MODULUS/2). Where ARQ BSN MODULUS and block number
- (BSN) is equal, and the value range of BSN is 1 ⁇ 2048.
- the value of this parameter ranges from 0 to 1024.
- ARQ Retry Waiting Interval - Transmitter Delay (ARQ_RETRY_TIMEOUT - Transmitter Delay) TLV: Encoded in TLV mode to determine the transmission management information Delay, including transmission delay and reception management information delay, and other related processing delays.
- the parameter has a service flow type of 20 and a length of 2 bytes. The value ranges from 0 to 6553500 ⁇ ⁇ (with a granularity of 100 ⁇ ⁇ ). If this parameter is 0, the time to continue to manage the ARQ data block is infinite.
- ARQ Retry Waiting Interval - Receiver Delay (ARQ_RETRY_TIMEOUT - Receiver Delay) TLV: Encoded in TLV mode to determine the delay of receiving management information, including receiving delay and sending management information delay, and Other related processing delays.
- the parameter has a service flow type of 21 and a length of 2 bytes. The value ranges from 0 to 6553500 ⁇ ⁇ (with a granularity of 100 ⁇ ⁇ ). If this parameter is 0, the time to continue to manage the ARQ data block is infinite.
- ARQ BLOCK LIFETIME TLV Encoded in TLV mode to determine the maximum time that the ARQ state machine of the transmitting end can continue to manage the data block after the first transmission of an ARQ block.
- the parameter has a service flow type of 22 and a length of 2 bytes. The value ranges from 0 to 6553500 ⁇ ⁇ (with a granularity of 100 ⁇ ⁇ ). If this parameter is 0, the time to continue to manage the ARQ data block is infinite.
- ARQ Synchronization Hold Time (ARQ_SYNC_LOSS_TIMEOUT) TLV: Encoded in TLV mode to determine the synchronization time of the sender and receiver state machines when transmitting and receiving data transmission.
- the parameter has a service stream type of 23 and a length of 2 bytes. The value ranges from 0 to 6553500 ⁇ ⁇ (with a granularity of 100 ⁇ ⁇ ). If this parameter is 0, the synchronization time is infinite.
- Data block sequential transmission switch (ARQ DELIVER IN ORDER) TLV: Encoded in TLV mode to determine whether the data is received by the receiving MAC in the order in which it was originally transmitted. The layer is sent to the client application layer. The parameter has a service flow type of 24 and a length of 2 bytes. If this parameter is 0, it is not sent in the original sending order; if this parameter is 1, it is sent in the original sending order.
- Receive Wait Interval (ARQ_RX_PURGE_TIMEOUT) TLV Encoded in TLV mode to determine the waiting time interval before the receiver receives a data block after successfully receiving a data block.
- the parameter has a service flow type of 25 and a length of 2 bytes. The value ranges from 0 to 6553500 ⁇ ⁇ (variable by 100). If this parameter is 0, the interval is infinite.
- ARQ BLOCK SIZE TLV Encoded in TLV mode, used to determine the size of the ARQ data block before transmission. This parameter has a service stream type of 26 and a length of 2 bytes.
- bit of the parameter (Bit) 0-3 is used to propose the minimum ARQ block size parameter M
- Bit 4-7 is used to suggest the maximum ARQ block size parameter N
- Bit 8-15 is reserved and Set to 0 (M ⁇ 6, N ⁇ 6, M ⁇ N), so the BS knows that the minimum size of the SS recommended ARQ block is, and the maximum size is .
- Bit 0-3 of the parameter is used to determine the final ARQ block size parameter P
- Bit 4-15 is reserved and set to 0 (P ⁇ 6, M ⁇ P ⁇ N), so the SS It will be known that the BS determines the final value of the ARQ block size.
- ARQ processing time ( RECEIVER - ARQ - ACK - PROCESSING - TIME ) TLV: Encoded in TLV mode, this parameter is used to determine that the ARQ receiver processes the received ARQ block and the feedback acknowledges the received/not received (ACK/NAK) )
- the time interval between messages which is an optional parameter.
- the service stream type of this parameter is 27 and the length is 1 byte. The value ranges from 0 to 255. (Time granularity is determined by the device manufacturer).
- FIG. 6 is a schematic flowchart of a mechanism for negotiating a basic connection ARQ according to Embodiment 1 of the present invention. As can be seen from Figure 6, the process includes the following steps:
- Step 601 The SS generates basic connection validity information, encodes the generated basic connection validity information in a TLV manner, and carries the encoded basic connection validity information in a TLV Encoded Information field of the RNG-REQ information.
- Step 602 The SS sends the RNG-REQ information to the BS.
- Step 603 The BS receives the RNG-REQ information sent by the SS, extracts the encoded basic connection validity information from the TLV Encoded Information field of the information, and decodes the basic connection validity information by using a TLV method to solve the basic connection validity information. Determining the basic connection validity parameter used according to the basic connection validity information and the type of the management connection, and then encoding the parameter in a TLV manner, and carrying the encoded basic connection validity parameter in the RNG - The RTP information in the TLV Encoded Information field.
- the method for determining the validity parameter is determined by the type of management connection: for basic connections, the processing delay of the ARQ should be as small as possible, so the size of the ARQ block should be slightly smaller, and other validity parameters should also be reduced by ARQ.
- the delay is the principle.
- the processing time of the ARQ is not very strict, and the size of the ARQ block can be slightly larger.
- the BS considers that the validity parameter of the SS transmission is unreasonable, then the BS will adjust the parameter.
- the BS when determining the basic connection validity parameter, if the negotiated ARQ size sent by the SS is large, the BS will adjust the parameter to a reasonable value.
- the BS considers that the parameters of the negotiated ARQ sent by the SS are appropriate, the BS will return the parameter as it is. SS.
- the management connection type is a basic connection, so the validity parameter determination should be based on the principle of reducing the processing delay of the ARQ.
- Step 604 the BS sends the RNG-RSP information to the SS.
- Step 605 The SS receives the RNG-RSP information returned by the BS, extracts the encoded basic connection validity parameter from the TLV Encoded Information field of the information, and decodes the basic connection validity parameter by using a TLV method to solve the basic connection validity parameter.
- the validity mechanism of the basic connection is determined according to the basic connection validity parameter.
- the SS sets the basic connection ARQ mechanism according to the received basic connection validity parameter, and transmits various management information to the BS according to the selected ARQ mechanism on the newly established basic connection.
- the ARQ mechanism of the connection is negotiated during the basic connection establishment process.
- the transmitter can be automatically requested to retransmit the error information without waiting for the timer of the control management information to retransmit, thereby saving the error.
- Retransmission wait time improves the effectiveness of management information transmission.
- This embodiment negotiates a fragmentation mechanism of a basic connection by adding management connection validity information and managing connection validity parameters.
- the basic connection validity information or the basic connection validity parameter encoded in the TLV manner is added to the TLV Encoded Information field of the RNG-REQ or RNG-RSP information to negotiate the basic connection score.
- Slice mechanism. Fragmentation is the process of dividing MAC management information into one or more fragments.
- the basic connection validity information added in the RNG-REQ information, and the basic connection validity parameters added in the RNG-RSP information include: a fragment parameter for basic connection .
- the fragmentation parameter of the basic connection mainly refers to the fragment serial number size (FSN size).
- Slice serial number size Encoded in TLV mode to determine the size of the slice serial number.
- the RNG-REQ or RNG-RSP message type of this parameter is 40 and the length is 1 byte. When this parameter is set to 1, it indicates that the slice serial number is 3 bits; when this parameter is set to 0, it indicates that the slice serial number is 11 bits.
- the fragmentation mechanism of the connection is negotiated. Through this mechanism, the management information transmitted on the basic connection can be fragmented.
- the management information to be transmitted is relatively large, the management information can be divided into a plurality of small pieces, and the small pieces are transmitted in other management information packets, thereby saving the transmission time of the management information and improving the effectiveness of the management information transmission.
- the basic connection validity packet or the basic connection validity parameter encoded in the TLV manner is added to the TLV Encoded Information field of the RNG-REQ or RNG-RSP information to negotiate the basic connection packing. mechanism.
- Packaging is the process of wrapping multiple MAC management information into one MAC Protocol Data Unit (PDU). This embodiment is the same as the first embodiment.
- the basic connection validity information added in the RNG-REQ information, and the basic connection validity parameters added in the RNG-RSP information include: acking parameters for basic connection.
- the packet parameters of the basic connection are used to negotiate various service flow parameters of the basic connection packing mechanism.
- the RNG-REQ or RNG-RSP message type of the basic connection packing parameter is 41 and the length is 2 bytes.
- the parameter values include the following service flow parameters:
- TLV mode coding used to determine whether the packaged management information is fixed length or variable length.
- the service stream type of this parameter is 15 and the length is 1 byte. When this parameter is set to 1, it is expressed as a fixed length; when this parameter is set to 0, it is expressed as a variable length.
- SDU Size parameter Encoded in TLV format to determine the size of fixed length management information. This parameter has a service flow type of 16 and a length of 1 byte.
- the packaging mechanism of the connection is negotiated. Through this mechanism, management information transmitted on the basic connection can be packaged. When the management information to be transmitted is relatively small, several management information can be sent into one packet for transmission, thereby saving the transmission time of the management information and improving the effectiveness of the management information transmission.
- Embodiment 4 This embodiment negotiates the validity mechanism of the basic connection by adding management connection validity information and managing connection validity parameters.
- the basic connection validity information or the basic connection validity parameter encoded in the TLV manner is respectively added in the TLV Encoded Information field of the RNG-REQ or RNG-RSP information to negotiate the validity of the basic connection.
- Sexual mechanism This embodiment is the same as the first embodiment.
- the basic connection validity information added in the RNG-REQ information and the basic connection validity parameters added in the RNG-RSP information include: ARQ capability information, basic connected ARQ parameters, and basic connectivity.
- the fragmentation parameters and the packaging parameters of the basic connection Length Applicable Name Type Value (variable length)
- ARQ capability information 39 1 1 ARQ capable OFDM
- SC basically connected SCa
- Table 6 This embodiment negotiates the validity mechanism of the connection during the basic connection establishment process.
- the basic connection can support ARQ, fragmentation, and packaging mechanisms. Therefore, the sender may divide each MAC management information into a series of ARQ fragments with consecutive sequence numbers according to the ARQ block size parameter, or package several small MAC management information into one ARQ fragment, each ARQ fragments are transmitted to the receiver separately.
- the ARQ fragment transmitted on the basic connection performs the CRC check, once the transmission error is found, the transmitter can be automatically requested to retransmit the erroneous ARQ fragment without waiting for the timer of the control management information retransmission to expire, thereby saving the loyalty. Retransmission waiting time improves the effectiveness of management information transmission.
- the SS sends a relatively large message, such as an SBC-REQ message, which can be split into multiple small pieces, once a certain bit of information in a certain piece of the message is erroneous or not successfully transmitted.
- a relatively large message such as an SBC-REQ message
- the IEEE 802.16 standard specifies that the primary management connection is established by the RNG-REG and RNG-RSP information handshake during the measurement phase of the initial SS access.
- the ARQ mechanism of the primary management connection is negotiated by adding management connection validity information and managing connection validity parameters.
- the primary management is negotiated by adding the primary management connection validity information or the primary management connection validity parameter encoded in the TLV mode to the TLV Encoded Information field of the RNG-REQ or RNG-RSP information.
- the ARQ mechanism of the connection This embodiment is the same as the first embodiment except that the basic connection validity information and the basic connection validity parameter are replaced with the primary management connection validity information and the primary management connection validity parameter.
- the main management connection validity information added in the RNG-REQ information, and the main management connection validity parameters added in the RNG-RSP information include: ARQ capability information and ARQ parameters of the main management connection ( ARQ parameters for primary connection ).
- ARQ capability information and ARQ parameters of the main management connection ARQ parameters for primary connection .
- Length Applicable Name Name Value variable length
- the ARQ capability information used in the first embodiment is consistent with the ARQ capability information in the first embodiment.
- ARQ parameters for primary management connections Coded in TLV mode to determine the various service flow parameters that are primarily responsible for managing the ARQ mechanism.
- the RNG-REQ or RNG-RSP message type that mainly manages the connected ARQ parameters is 35, and the length is variable, which is determined according to the specific service flow.
- the parameter value includes the service flow parameter that is consistent with the basic connected ARQ parameter in the first embodiment.
- the ARQ mechanism of the connection is negotiated during the establishment of the primary management connection. Because of the IEEE 802.16 standard, the main management connection fragmentation and packaging mechanism. Therefore, the sender may divide each MAC management information into a series of ARQ fragments with consecutive sequence numbers according to the ARQ block size parameter, or package several small MAC management information into one ARQ fragment, each ARQ fragments are transmitted to the receiver separately.
- the ARQ fragment of the management information transmitted on the connection is mainly used for CRC check, once the transmission error is found, the sender can automatically request the transmitter to retransmit the error ARQ fragment without waiting for the timer of the control management information retransmission to expire. The retransmission waiting time improves the effectiveness of management information transmission.
- the message can be divided into multiple small pieces. If a certain bit of information in a certain piece of the message is erroneous or not successfully transmitted, only the ARQ needs to be utilized. The mechanism can resend the small piece. This effectively ensures successful receipt of management messages transmitted over the primary management connection.
- DSx dynamic service
- REQ/RSP/ACK request/response/acknowledgement
- this embodiment simultaneously negotiates the validity mechanisms of the basic connection and the primary management connection by adding management connection validity information and managing connection validity parameters.
- the basic connection is negotiated by adding the management connection validity information or the management connection validity parameter encoded by the TLV method in the TLV Encoded Information field of the RNG-REQ or RNG-RSP information.
- Validity mechanisms including: ARQ, fragmentation, and packaging mechanisms, and ARQ mechanisms that primarily manage connections.
- This embodiment is identical to the first embodiment except that the basic connection validity information and the basic connection validity parameter are replaced with the management connection validity information and the management connection validity parameter.
- the management connection validity information added in the RNG-REQ information and the management connection validity parameters added in the RNG-RSP information include: ARQ capability information, basic connected ARQ parameters, and basic connection The fragmentation parameters and the packaging parameters of the basic connection, as well as the ARQ parameters of the primary management connection. 0: No ARQ capability SCa,
- SC basically connected SCa
- Table 8 This embodiment negotiates the validity mechanism of the connection during the establishment of the basic connection and the primary management connection.
- the basic connection can support ARQ, fragmentation, and packaging mechanisms.
- the main management connection can support the ARQ mechanism and improve the effectiveness of management information transmission.
- Embodiment 7 When the ARQ parameters of the basic connection and the primary management connection are the same, the embodiment combines the ARQ parameters of the basic connection and the primary management connection into one based on the sixth embodiment.
- the ARQ parameter is used to reduce the overhead for negotiating the ARQ mechanism in RNG-REQ and RNG-RSP.
- the management connection validity information added in the RNG-REQ information and the management connection validity parameters added in the RNG-RSP information include: ARQ capability information, ARQ parameters, and basic connection fragmentation parameters. And the packaging parameters of the basic connection.
- the ARQ capability information used in the first embodiment and the ARQ capability information in the first embodiment are an ARQ parameter: encoded in a TLV manner for determining a basic connection and a primary management connection.
- Various service flow parameters connected to the ARQ mechanism are 42 and the length is variable, which is determined according to the specific service flow.
- the parameter value includes the service flow parameter that is consistent with the basic connected ARQ parameter in the first embodiment.
- the embodiment further saves the overhead of negotiating ARQ parameters on the basis of the sixth embodiment, and makes the transmission of management information more efficient.
- the ARQ, fragmentation, or packing mechanism is controlled based on a single connection, which is an optional function of the MAC layer.
- a connection cannot have both ARQ, fragmented or packetized traffic, and non-ARQ, fragmentation or packing mechanisms.
- the feedback information for establishing an ARQ, fragmentation or packing mechanism can be transmitted as a separate MAC layer management message on the basic connection or piggybacked to the receiving end on the existing connection. All ARQ-enabled connections use a 32-bit CRC to detect possible errors in the PDU. After the ARQ mechanism for managing the connection is established, the ARQ feedback information used to feedback whether the ARQ block is correctly transmitted cannot be fragmented.
- the ARQ mechanism of the primary management connection is negotiated by adding the management connection validity information and the management connection validity parameter.
- the main management is negotiated by adding the main management connection validity information or the main management connection validity parameter encoded by the TLV method in the TLV Encoded Information field of the SBC-REQ or SBC-RSP information.
- the ARQ mechanism of the connection is negotiated by adding the management connection validity information and the management connection validity parameter.
- FIG. 7 is a main management unit of negotiation in the eighth embodiment of the present invention.
- the SBC-REQ is information that the user terminal sends to the network side device
- the SBC-RSP is information that the network side device sends to the user terminal.
- the main management connection validity information added in the SBC-REQ information, and the main management connection validity parameters added in the SBC-RSP information include: ARQ capability information and ARQ parameters of the main management connection ( ARQ parameters for primary connection ).
- the ARQ capability information used in the first embodiment is consistent with the ARQ capability information in the first embodiment.
- ARQ parameters for primary management connections Coded in TLV mode to determine the various service flow parameters that are primarily responsible for managing the ARQ mechanism.
- the SBC-REQ or SBC-RSP message type that mainly manages the connected ARQ parameters is 206, and the length is variable, which is determined according to the specific service flow.
- the parameter value includes the service flow parameter that is consistent with the basic connected ARQ parameter in the first embodiment.
- the connected ARQ machine is negotiated. System. Due to the IEEE 802.16 standard, the main connection fragmentation and packing mechanism is managed. Therefore, the sender may divide each MAC management information into a series of ARQ fragments with consecutive sequence numbers according to the ARQ block size parameter, or package several small MAC management information into one ARQ fragment, each ARQ fragments are transmitted to the receiver separately.
- the ARQ fragment of the management information transmitted on the connection is mainly used for CRC check, once the transmission error is found, the sender can automatically request the transmitter to retransmit the error ARQ fragment without waiting for the timer of the control management information retransmission to expire. The retransmission waiting time improves the effectiveness of management information transmission.
- the message can be divided into multiple small pieces. If a certain bit of information in a certain piece of the message is erroneous or not successfully transmitted, only the ARQ needs to be utilized. The mechanism can resend the small piece. This effectively ensures successful receipt of management messages transmitted over the primary management connection.
- the management message transmitted on the connection is mainly managed, such as Dynamic Service (DSx) message, the three-way handshake process with request/response/acknowledgement (REQ/RSP/ACK) during transmission, there is ACK message for acknowledgement protection, but three-way handshake
- DSx Dynamic Service
- REQ/RSP/ACK request/response/acknowledgement
- receiving in this embodiment may be understood as actively acquiring information from other modules or receiving information sent by other modules.
- the above modules may be distributed in one device or distributed in multiple devices. Combined into one module, it can be further split into multiple sub-modules.
- the present invention can be implemented by hardware, or can be implemented by means of software plus necessary general hardware platform, and the technical solution of the present invention. It can be embodied in the form of a software product that can be stored in a non-volatile storage medium (which can be a CD-ROM, a USB flash drive, a mobile hard disk, etc.), including a number of instructions for making a computer device (may It is a personal computer, a server, or a network device, etc.) that performs the methods described in various embodiments of the present invention.
- a non-volatile storage medium which can be a CD-ROM, a USB flash drive, a mobile hard disk, etc.
- a computer device may It is a personal computer, a server, or a network device, etc.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Mobile Radio Communication Systems (AREA)
- Communication Control (AREA)
Abstract
Description
管理信息传输有效性协商的方法和装置 技术领域 Method and apparatus for managing information transmission validity negotiation
本发明实施例涉及信息传输技术,特别涉及管理信息传输有效性 协商的方法和装置。 背景技术 Embodiments of the present invention relate to information transmission technologies, and in particular, to a method and apparatus for managing information transmission validity negotiation. Background technique
美国电气与电子工程师学会(IEEE ) 802.16标准又称为 IEEE无 线城域网 ( Wireless MAN ) 空中接口标准, 是适用于 2~66 GHz的空 中接口规范。 它所规定的无线接入系统覆盖范围可达 50km, 因此 802.16系统主要应用于城域网,是"最后一公里"宽带接入的解决方案 之一„ The Institute of Electrical and Electronics Engineers (IEEE) 802.16 standard, also known as the IEEE Wireless MAN air interface standard, is an air interface specification for 2 to 66 GHz. It stipulates that the wireless access system can cover up to 50km, so the 802.16 system is mainly used in the metropolitan area network, which is one of the "last mile" broadband access solutions.
在 IEEE 802.16标准中, 通信的信息主要分为数据信息和管理信 息。 数据信息通过非管理连接传输, 而管理信息通过管理连接传输。 用户终端 (SS )初始接入时, SS的媒体访问控制 (MAC )层要建立 两个管理连接:基本连接( Basic Connection )和主要管理连接( Primary Management Connection )。 基本连接被基站( BS ) 的 MAC层和 SS 的 MAC层用于交换短的、 时延敏感的 MAC层管理信息; 主要管理 连接被 BS的 MAC层和 SS的 MAC层用于交换较长的、 可以容忍一 定时间延迟的 MAC层管理信息。 SS和 BS在管理连接上传输各种管 理信息。 发明内容 In the IEEE 802.16 standard, communication information is mainly classified into data information and management information. Data information is transmitted over unmanaged connections, and management information is transmitted over management connections. When the user terminal (SS) is initially accessed, the Media Access Control (MAC) layer of the SS establishes two management connections: Basic Connection and Primary Management Connection. The basic connection is used by the MAC layer of the base station (BS) and the MAC layer of the SS to exchange short, delay-sensitive MAC layer management information; the primary management connection is used by the MAC layer of the BS and the MAC layer of the SS for long exchanges, MAC layer management information that can tolerate a certain time delay. The SS and BS transmit various management information on the management connection. Summary of the invention
本发明的实施例提供了管理信息传输有效性协商的方法和装置。 根据本发明实施例的管理信息传输有效性协商的方法, 包括: 向网络侧设备发送管理连接有效性信息; Embodiments of the present invention provide methods and apparatus for managing information transmission validity negotiation. The method for managing the validity negotiation of the information transmission according to the embodiment of the present invention includes: sending management connection validity information to the network side device;
接收网络侧设备发送的管理连接有效性参数; Receiving a management connection validity parameter sent by the network side device;
根据所述管理连接有效性参数确定管理连接的有效性机制。 根据本发明实施例的管理信息传输有效性协商的装置, 包括: 发送模块, 用于向网络侧设备发送所述管理连接有效性信息; 接收模块, 用于接收网络侧设备发送的管理连接有效性参数; 设置模块,用于根据所述管理连接有效性参数设置管理连接的有 效性机制。 A validity mechanism for managing the connection is determined according to the management connection validity parameter. The device for managing the validity of the information transmission according to the embodiment of the present invention includes: a sending module, configured to send the management connection validity information to the network side device; and a receiving module, configured to receive the management connection validity sent by the network side device a parameter setting module configured to set a validity mechanism for managing the connection according to the management connection validity parameter.
本发明另一实施例的管理信息传输有效性协商的方法, 包括: 接收用户终端发送的管理连接有效性信息; A method for negotiating validity of management information transmission according to another embodiment of the present invention includes: receiving management connection validity information sent by a user terminal;
根据所述管理连接有效性信息确定管理连接有效性参数; 向用户终端发送所述管理连接有效性参数。 Determining a management connection validity parameter according to the management connection validity information; and transmitting the management connection validity parameter to the user terminal.
根据本发明另一实施例的管理信息传输有效性协商的装置, 包 括: An apparatus for managing information transmission validity negotiation according to another embodiment of the present invention includes:
接收模块, 用于接收用户终端发送的管理连接有效性信息; 选择模块,用于根据所述管理连接有效性信息确定管理连接有效 性参数; a receiving module, configured to receive management connection validity information sent by the user terminal, and a selecting module, configured to determine a management connection validity parameter according to the management connection validity information;
发送模块, 用于向用户终端发送所述管理连接有效性参数。 由上述的技术方案可见, 相比现有技术, 本发明在建立管理连接 过程中, 通过发送管理连接有效性信息, 确定管理连接有效性参数, 从而确定管理连接的有效性机制。 因此, 在管理连接上建立了有效性 机制,进一步使得用户终端和网络侧设备可以在支持有效性机制的管 理连接上传输各种管理信息,而不必釆用等待管理信息相应定时器超 时的方法来保证管理信息的正确发送,从而大大提高了管理信息传输 的有效性, 节省了接入时间。 附图说明 And a sending module, configured to send the management connection validity parameter to the user terminal. It can be seen from the above technical solution that the present invention establishes a management connection compared to the prior art. In the process, the management connection validity parameter is determined by sending the management connection validity information, thereby determining the validity mechanism of the management connection. Therefore, an effective mechanism is established on the management connection, so that the user terminal and the network side device can transmit various management information on the management connection supporting the validity mechanism, without using the method of waiting for the corresponding timer of the management information to expire. Ensure the correct transmission of management information, which greatly improves the effectiveness of management information transmission and saves access time. DRAWINGS
图 1为现有技术中建立管理连接的流程示意图。 FIG. 1 is a schematic diagram of a process of establishing a management connection in the prior art.
图 2为本发明中提高管理信息传输有效性的系统的结构示意图。 图 3 为本发明中提高管理信息传输有效性的用户终端的结构示 意图。 FIG. 2 is a schematic structural diagram of a system for improving the effectiveness of management information transmission in the present invention. Fig. 3 is a schematic view showing the structure of a user terminal for improving the effectiveness of management information transmission in the present invention.
图 4 为本发明中提高管理信息传输有效性的网络侧设备的结构 示意图。 FIG. 4 is a schematic structural diagram of a network side device for improving the effectiveness of management information transmission in the present invention.
图 5为本发明中协商管理连接有效性机制的流程示意图。 FIG. 5 is a schematic flowchart of a negotiation management connection validity mechanism in the present invention.
图 6为本发明实施例一中协商基本连接 ARQ机制的流程示意图。 图 7为本发明实施例八中协商基本连接 ARQ机制的流程示意图。 具体实施方式 FIG. 6 is a schematic flowchart of a mechanism for negotiating a basic connection ARQ according to Embodiment 1 of the present invention. FIG. 7 is a schematic flowchart of a mechanism for negotiating a basic connection ARQ according to Embodiment 8 of the present invention. detailed description
为使本发明的目的、 技术方案和优点更加清楚, 下面将结合附图 及具体实施例对本发明作进一步地详细描述。 The present invention will be further described in detail below with reference to the drawings and specific embodiments.
基本连接和主要管理连接由测距请求 (RNG-REQ )信息和测距 响应(RNG-RSP )信息握手建立。 参见图 1 , 图 1为建立管理连接的 流程示意图。 该流程包括以下步骤: Basic connection and primary management connection by Ranging Request (RNG-REQ) information and ranging The response (RNG-RSP) information handshake is established. Referring to Figure 1, Figure 1 is a schematic diagram of the process of establishing a management connection. The process includes the following steps:
步骤 101 , SS发送 RNG-REG信息给 BS ,该信息中包含 SS建立 基本连接和主要管理连接的协商参数。 Step 101: The SS sends the RNG-REG information to the BS, where the information includes the negotiation parameters of the SS establishing the basic connection and the primary management connection.
步骤 102, BS返回 RNG-RSP信息给 SS, 该信息中包含 BS对 SS建立基本连接和主要管理连接的反馈参数。 Step 102: The BS returns the RNG-RSP information to the SS, where the information includes feedback parameters that the BS establishes a basic connection and a primary management connection to the SS.
上述流程结束后, SS和 BS在新建的管理连接上传输各种管理信 息。 After the above process ends, the SS and BS transmit various management information on the newly created management connection.
在 SS初始化( Initialization )阶段的协商基本能力( Negotiate Basic Capabilities )过程中, SS 会通过管理连接向 BS发送基本能力请求 ( SBC-REQ )等管理信息, 并等待 BS通过管理连接回应基本能力响 应(SBC-RSP )等管理信息。 基本能力请求信息和基本能力响应信息 是通过基本连接传送的信息。 原标准中 SS通过启动管理信息对应的 定时器, 来判断在指定长时间内是否收到 BS回应的 SBC-RSP信息, 并釆用循环冗余校验码 ( CRC )来判断收到的 SBC-RSP信息是否正 确。若 SS未收到 SBC-REQ信息, 或者收到的 SBC-REQ信息发生错 误, 那么必须等待定时器超时后, SS才能重新发送 SBC-REQ信息。 During the Negotiate Basic Capabilities of the Initialization phase, the SS sends management information such as a basic capability request (SBC-REQ) to the BS through the management connection, and waits for the BS to respond to the basic capability response through the management connection ( Management information such as SBC-RSP). The basic capability request information and the basic capability response information are information transmitted through the basic connection. In the original standard, the SS determines whether the SBC-RSP information of the BS response is received within a specified long period of time by starting the timer corresponding to the management information, and uses the cyclic redundancy check code (CRC) to determine the received SBC- Is the RSP information correct? If the SS does not receive the SBC-REQ message, or the received SBC-REQ message is incorrect, the SS must wait for the timer to expire before the SS can resend the SBC-REQ message.
参见图 2, 图 2为本发明中提高管理信息传输有效性的系统的结 构示意图。 由图 2可见, 该系统包括: 用户终端 201 和网络侧设备 202。 Referring to Figure 2, Figure 2 is a block diagram showing the structure of a system for improving the effectiveness of management information transmission in the present invention. As can be seen from FIG. 2, the system includes: a user terminal 201 and a network side device 202.
其中, 用户终端 201用于生成管理连接有效性信息, 向网络侧设 备 202发送该信息,接收网络侧设备 202返回的管理连接有效性参数, 并根据该参数设置管理连接的有效性机制。 The user terminal 201 is configured to generate management connection validity information, send the information to the network side device 202, and receive the management connection validity parameter returned by the network side device 202. According to this parameter, the effectiveness mechanism of managing the connection is set.
网络侧设备 202用于接收用户终端 201发送的管理连接有效性信 息, 确定管理连接所釆用的有效性参数, 并将确定的管理连接有效性 参数返回给用户终端 201。 The network side device 202 is configured to receive the management connection validity information sent by the user terminal 201, determine the validity parameter used for managing the connection, and return the determined management connection validity parameter to the user terminal 201.
参见图 3 , 图 3为本发明中提高管理信息传输有效性的用户终端 的结构示意图。 由图 3可见, 该用户终端包括: 生成模块 301、 类型 长度值(TLV )编码模块 302、 发送模块 303、 接收模块 304、 TLV 解码模块 305、 设置模块 306。 Referring to FIG. 3, FIG. 3 is a schematic structural diagram of a user terminal for improving the effectiveness of management information transmission in the present invention. As shown in FIG. 3, the user terminal includes: a generating module 301, a type length value (TLV) encoding module 302, a sending module 303, a receiving module 304, a TLV decoding module 305, and a setting module 306.
其中, 生成模块 301用于生成管理连接有效性信息。 The generating module 301 is configured to generate management connection validity information.
TLV编码模块 302用于将生成模块 301生成的管理连接有效性信 息以 TLV方式进行编码, 并将编码后的管理连接有效性信息携带在 RNG-REQ信息的 TLV编码信息字段之中, 传送给发送模块 303。 The TLV encoding module 302 is configured to encode the management connection validity information generated by the generating module 301 in a TLV manner, and carry the encoded management connection validity information in a TLV encoding information field of the RNG-REQ information, and transmit the information to the sending. Module 303.
发送模块 303用于向网络侧设备发送 TLV编码模块 302输出的 管理连接有效性信息。 The sending module 303 is configured to send the management connection validity information output by the TLV encoding module 302 to the network side device.
接收模块 304用于接收网络侧设备发送的管理连接有效性参数。 The receiving module 304 is configured to receive a management connection validity parameter sent by the network side device.
TLV解码模块 305用于从接收模块 304接收网络侧设备返回的 RNG-RSP信息, 将管理连接有效性参数从该 RNG-RSP信息的 TLV 编码信息字段之中提取出来, 并将该管理连接有效性参数以 TLV方 式进行解码, 然后将解码后的管理连接有效性信息发送给设置模块 306。 The TLV decoding module 305 is configured to receive the RNG-RSP information returned by the network side device from the receiving module 304, extract the management connection validity parameter from the TLV encoding information field of the RNG-RSP information, and use the management connection validity. The parameters are decoded in the TLV manner, and then the decoded management connection validity information is sent to the setting module 306.
设置模块 306用于根据管理连接有效性参数, 设置 SS新建管理 连接的有效性机制。 在实际应用中 , 也可以不设置 TLV编码模块 302和 TLV解码模 块 305。 在这种情况下, 发送模块 303直接接收生成模块 301生成的 管理连接有效性信息并向网络测设备发送,设置模块 305直接接收来 自接收模块 304的管理连接有效性参数, 并根据该参数设置 SS新建 管理连接的有效性机制。 The setting module 306 is configured to set a validity mechanism of the SS new management connection according to the management connection validity parameter. In practical applications, the TLV encoding module 302 and the TLV decoding module 305 may not be provided. In this case, the sending module 303 directly receives the management connection validity information generated by the generating module 301 and sends the information to the network measuring device, and the setting module 305 directly receives the management connection validity parameter from the receiving module 304, and sets the SS according to the parameter. New effectiveness mechanism for managing connections.
参见图 4 , 图 4为本发明中提高管理信息传输有效性的网络侧设 备的结构示意图。 由图 4可见, 该网络侧设备包括: 接收模块 401、 TLV解码模块 402、选择模块 403、 TLV编码模块 404和发送模块 405。 Referring to FIG. 4, FIG. 4 is a schematic structural diagram of a network side device for improving the effectiveness of management information transmission in the present invention. As shown in FIG. 4, the network side device includes: a receiving module 401, a TLV decoding module 402, a selecting module 403, a TLV encoding module 404, and a sending module 405.
其中,接收模块 401用于接收用户终端发送的管理连接有效性信 息。 The receiving module 401 is configured to receive management connection validity information sent by the user terminal.
TLV解码模块 402用于从接收模块 401接收 SS发送的 RNG-REQ 信息, 将管理连接有效性信息从该 RNG-REQ信息的 TLV编码信息 字段之中提取出来, 并将该管理连接有效性信息以 TLV方式进行解 码, 然后将解码后的管理连接有效性信息发送给选择模块 403。 The TLV decoding module 402 is configured to receive the RNG-REQ information sent by the SS from the receiving module 401, extract the management connection validity information from the TLV encoding information field of the RNG-REQ information, and use the management connection validity information to The TLV method performs decoding, and then the decoded management connection validity information is sent to the selection module 403.
选择模块 403用于根据 TLV解码模块 402输出的管理连接有效 性信息, 确定所釆用的管理连接有效性参数。 The selection module 403 is configured to determine the management connection validity parameter used according to the management connection validity information output by the TLV decoding module 402.
TLV编码模块 404用于将选择模块 403确定的管理连接有效性参 数以 TLV方式进行编码, 并将编码后的管理连接有效性参数携带在 RNG-RSP信息的 TLV编码信息字段之中, 发送给发送模块 405。 The TLV encoding module 404 is configured to encode the management connection validity parameter determined by the selecting module 403 in a TLV manner, and carry the encoded management connection validity parameter in a TLV encoding information field of the RNG-RSP information, and send the same to the TLV encoding information field. Module 405.
发送模块 405用于将 TLV编码模块 404输出的管理连接有效性 参数发送给用户终端。 The sending module 405 is configured to send the management connection validity parameter output by the TLV encoding module 404 to the user terminal.
在实际应用中, 也可以不设置 TLV解码模块 402和 TLV编码模 块 404。 在这种情况下, 选择模块 403直接接收来自接收模块 401的 管理连接有效性信息,发送模块 405直接接收来自选择模块 403的管 理连接有效性参数, 并将该参数向用户终端发送。 In practical applications, the TLV decoding module 402 and the TLV encoding mode may not be set. Block 404. In this case, the selection module 403 directly receives the management connection validity information from the receiving module 401, and the transmitting module 405 directly receives the management connection validity parameter from the selection module 403, and transmits the parameter to the user terminal.
参见图 5 , 图 5为本发明中协商管理连接有效性机制的流程示意 图。 由图 5可见, 该流程包括以下步骤: Referring to FIG. 5, FIG. 5 is a schematic flow chart of a negotiation management connection validity mechanism in the present invention. As can be seen from Figure 5, the process includes the following steps:
步骤 501 , 用户终端生成管理连接有效性信息。 Step 501: The user terminal generates management connection validity information.
步骤 502 , 用户终端将所述管理连接有效性信息发送给网络侧设 备。 Step 502: The user terminal sends the management connection validity information to the network side device.
步骤 503 , 网络侧设备根据接收到的管理连接有效性信息, 确定 所釆用的管理连接有效性参数。 Step 503: The network side device determines, according to the received management connection validity information, the used management connection validity parameter.
步骤 504 , 网络侧设备将所述管理连接有效性参数发送给用户终 端。 Step 504: The network side device sends the management connection validity parameter to the user terminal.
步骤 505 , 用户终端根据接收到的管理连接有效性参数, 设置管 理连接的有效性机制。 Step 505: The user terminal sets a validity mechanism for managing the connection according to the received management connection validity parameter.
上述流程结束后, 用户终端根据接收到的管理连接有效性参数, 设置管理连接的有效性机制, 并在新建的管理连接上, 按照选定的有 效性机制与网络侧设备传输各种管理信息。 After the foregoing process ends, the user terminal sets a validity mechanism for managing the connection according to the received management connection validity parameter, and transmits various management information to the network side device according to the selected effective mechanism on the newly created management connection.
对于网络侧, 有效性协商方法为: For the network side, the validity negotiation method is:
接收用户终端发送的管理连接有效性信息; Receiving management connection validity information sent by the user terminal;
根据所述管理连接有效性信息确定管理连接有效性参数; 向用户终端发送所述管理连接有效性参数。 Determining a management connection validity parameter according to the management connection validity information; and transmitting the management connection validity parameter to the user terminal.
其中有效性机制包括但不限于: 基本连接的 ARQ机制、 基本连 接的分片机制或基本连接的打包机制; 以及主要管理连接的 ARQ机 制。 下面, 通过实施例对本发明提供的管理信息传输有效性协商的方 法进行详细说明。 The effectiveness mechanism includes but is not limited to: basic connection ARQ mechanism, basic connection The fragmentation mechanism or the packaging mechanism of the basic connection; and the ARQ mechanism that mainly manages the connection. Hereinafter, a method for negotiating management information transmission validity provided by the present invention will be described in detail by way of embodiments.
实施例一 Embodiment 1
IEEE 802.16标准中规定, 基本连接是在 SS初始接入时的测距 ( Ranging ) 阶段由 RNG-REG和 RNG-RSP信息握手建立的。 其中 RNG-REQ信息结构如表 1所示, RNG-RSP信息结构如表 2所示。 The IEEE 802.16 standard specifies that the basic connection is established by the RNG-REG and RNG-RSP information handshake during the Ranging phase of the initial SS access. The RNG-REQ information structure is shown in Table 1, and the RNG-RSP information structure is shown in Table 2.
表 2 本实施例通过加入管理连接有效性信息和管理连接有效性参数 , 来协商基本连接的自动重传请求( ARQ )机制。 具体来说, 本实施例 通过在 RNG-REQ或 RNG-RSP信息的 TLV编码信息 ( TLV Encoded Information )字段之中,分别加入以 TLV方式编码的基本连接有效性 信息或基本连接有效性参数, 来协商基本连接的 ARQ机制。 Table 2 This embodiment negotiates an automatic retransmission request (ARQ) mechanism of a basic connection by adding management connection validity information and managing connection validity parameters. Specifically, in this embodiment, the basic connection validity information or the basic connection validity parameter encoded by the TLV method is added to the TLV Encoded Information field of the RNG-REQ or RNG-RSP information, respectively. Negotiate the ARQ mechanism of the basic connection.
ARQ是指接收设备监测错误和请求重发的方法。 当接收机通过 CRC检测到分组中的差错, 它将自动请求发送机重发该分组。 该过 程会不断进行, 直至分组差错释放, 或差错继续超出预定传输值。 ARQ refers to the method by which the receiving device monitors errors and requests retransmissions. When the receiver detects an error in the packet through the CRC, it will automatically request the sender to resend the packet. The process continues until the packet error is released, or the error continues to exceed the predetermined transmission value.
如表 3所示, 在 RNG-REQ信息中加入的基本连接有效性信息, 和在 RNG-RSP信息中加入的基本连接有效性参数均包括: ARQ能力 ( ARQ support )信息和基本连接的 ARQ参数 ( ARQ parameters for basic connection )。 As shown in Table 3, the basic connection validity information added in the RNG-REQ information and the basic connection validity parameters added in the RNG-RSP information include: ARQ capability (ARQ support) information and basic connected ARQ parameters. (ARQ parameters for basic connection ).
表 3 table 3
其中, ARQ 能力信息: 以 TLV方式编码。 SS向 BS发送该参数 时, 用于 SS向 BS告知自己是否支持 ARQ机制; BS向 SS发送该参 数时, 用于 BS 向 SS 告知 ARQ 机制是否协商成功。 该参数的 RNG-REQ或 RNG-RSP消息类型为 39 , 长度为 1字节。 SS向 BS发 送该参数时, 当该参数为 1时表示该 SS支持 ARQ机制, 当该参数 为 0时, 表示该 SS不支持 ARQ机制。 BS向 SS发送该参数时, 当 该参数为 1时表示 ARQ机制协商成功, 当该参数为 0时, 表示 ARQ 机制协商失败。 Among them, ARQ capability information: encoded in TLV mode. When the SS sends the parameter to the BS, it is used by the SS to inform the BS whether it supports the ARQ mechanism; the BS sends the parameter to the SS. When the number is used, the BS is used to inform the SS whether the ARQ mechanism is successfully negotiated. The RNG-REQ or RNG-RSP message type of this parameter is 39 and the length is 1 byte. When the SS sends the parameter to the BS, when the parameter is 1, it indicates that the SS supports the ARQ mechanism. When the parameter is 0, it indicates that the SS does not support the ARQ mechanism. When the BS sends the parameter to the SS, when the parameter is 1, the ARQ mechanism negotiates successfully. When the parameter is 0, the ARQ mechanism negotiation fails.
基本连接的 ARQ参数: 以 TLV方式编码, 用于确定基本连接 ARQ机制的各种服务流( Service Flow )参数。 基本连接的 ARQ参 数的 RNG-REQ或 RNG-RSP消息类型为 34, 长度可变, 根据具体服 务流决定。 该参数值包括以下服务流参数: Basically connected ARQ parameters: Encoded in TLV mode to determine various Service Flow parameters that are basically connected to the ARQ mechanism. The RNG-REQ or RNG-RSP message type of the basic connected ARQ parameter is 34, and the length is variable, which is determined according to the specific service flow. The parameter values include the following service flow parameters:
1. ARQ使能 ( ARQ Enabled ) TLV: 以 TLV方式编码, 用于确 定连接建立时是否申请使用 ARQ机制。 该参数的服务流类型为 18, 长度为 1字节。 当该参数设置为 1时表示该连接申请使用 ARQ; 当 该参数设置为 0时, 表示该连接申请不使用 ARQ。 ARQ Enabled TLV: It is encoded in TLV mode to determine whether to apply for the ARQ mechanism when the connection is established. This parameter has a service flow type of 18 and a length of 1 byte. When this parameter is set to 1, it indicates that the connection request uses ARQ; when this parameter is set to 0, it indicates that the connection request does not use ARQ.
2. ARQ窗口尺寸( ARQ_Window_Size ) TLV: 以 TLV方式编码, 用于确定 ARQ窗口的最大尺寸。 该参数的服务流类型为 19 , 长度为 1 字节。 该参数的取值范围为 0 ~ ARQ 的块序号系数除以 2 (ARQ BSN MODULUS/2) 。 其中 ARQ BSN MODULUS与块序号 2. ARQ window size (ARQ_Window_Size) TLV: Encoded in TLV mode to determine the maximum size of the ARQ window. The parameter has a service flow type of 19 and a length of 1 byte. The value of this parameter ranges from 0 to ARQ and the block number coefficient is divided by 2 (ARQ BSN MODULUS/2). Where ARQ BSN MODULUS and block number
( BSN )的值相等, 而 BSN的取值范围是 1 ~ 2048, 则该参数的取值 范围为 0 ~ 1024。 The value of (BSN) is equal, and the value range of BSN is 1 ~ 2048. The value of this parameter ranges from 0 to 1024.
3. ARQ重试等待间隔 -发送机延时 ( ARQ— RETRY— TIMEOUT - Transmitter Delay ) TLV: 以 TLV方式编码, 用于确定发送管理信息 延时, 包括发送延时和接收管理信息延时, 以及其他相关处理延时。 该参数的服务流类型为 20 , 长度为 2 字节, 取值范围为 0 ~ 6553500μδ (以 100 μδ为粒度变化),如果此参数为 0,则继续管理 ARQ 数据块的时间为无穷。 3. ARQ Retry Waiting Interval - Transmitter Delay (ARQ_RETRY_TIMEOUT - Transmitter Delay) TLV: Encoded in TLV mode to determine the transmission management information Delay, including transmission delay and reception management information delay, and other related processing delays. The parameter has a service flow type of 20 and a length of 2 bytes. The value ranges from 0 to 6553500μ δ (with a granularity of 100 μ δ ). If this parameter is 0, the time to continue to manage the ARQ data block is infinite.
4. ARQ重试等待间隔 -接收机延时 ( ARQ— RETRY— TIMEOUT - Receiver Delay ) TLV: 以 TLV方式编码, 用于确定接收管理信息延 时, 包括接收延时和发送管理信息延时, 以及其他相关处理延时。 该 参数的服务流类型为 21 ,长度为 2字节,取值范围为 0 ~ 6553500μδ (以 100 μδ为粒度变化), 如果此参数为 0 , 则继续管理 ARQ数据块的时 间为无穷。 4. ARQ Retry Waiting Interval - Receiver Delay (ARQ_RETRY_TIMEOUT - Receiver Delay) TLV: Encoded in TLV mode to determine the delay of receiving management information, including receiving delay and sending management information delay, and Other related processing delays. The parameter has a service flow type of 21 and a length of 2 bytes. The value ranges from 0 to 6553500μ δ (with a granularity of 100 μ δ ). If this parameter is 0, the time to continue to manage the ARQ data block is infinite.
5. ARQ数据块管理时间 ( ARQ BLOCK LIFETIME ) TLV: 以 TLV方式编码, 用于确定发送端 ARQ状态机在一个 ARQ块第一次 发送以后,还可以继续管理该数据块的最大时间。 该参数的服务流类 型为 22, 长度为 2字节,取值范围为 0 ~ 6553500μδ (以 100 μδ为粒度 变化), 如果此参数为 0, 则继续管理 ARQ数据块的时间为无穷。 5. ARQ BLOCK LIFETIME TLV: Encoded in TLV mode to determine the maximum time that the ARQ state machine of the transmitting end can continue to manage the data block after the first transmission of an ARQ block. The parameter has a service flow type of 22 and a length of 2 bytes. The value ranges from 0 to 6553500μ δ (with a granularity of 100 μ δ ). If this parameter is 0, the time to continue to manage the ARQ data block is infinite.
6. ARQ 同步保持时间 ( ARQ_SYNC_LOSS_TIMEOUT ) TLV: 以 TLV方式编码, 用于确定收发双方在进行数据传输时, 需要保证 发送端状态机和接收端状态机的同步时间。 该参数的服务流类型为 23 ,长度为 2字节,取值范围为 0 ~ 6553500μδ (以 100 μδ为粒度变化), 如果此参数为 0 , 则同步时间为无穷。 6. ARQ Synchronization Hold Time (ARQ_SYNC_LOSS_TIMEOUT) TLV: Encoded in TLV mode to determine the synchronization time of the sender and receiver state machines when transmitting and receiving data transmission. The parameter has a service stream type of 23 and a length of 2 bytes. The value ranges from 0 to 6553500μ δ (with a granularity of 100 μ δ ). If this parameter is 0, the synchronization time is infinite.
7.数据块顺序发送开关( ARQ DELIVER IN ORDER ) TLV: 以 TLV方式编码, 用于确定数据是否按原始发送的顺序由接收端 MAC 层发给客户端应用层。 该参数的服务流类型为 24, 长度为 2字节。 如果此参数为 0 , 则不按照原始发送顺序发送; 如果此参数为 1 , 则 按照原始发送顺序发送。 7. Data block sequential transmission switch (ARQ DELIVER IN ORDER) TLV: Encoded in TLV mode to determine whether the data is received by the receiving MAC in the order in which it was originally transmitted. The layer is sent to the client application layer. The parameter has a service flow type of 24 and a length of 2 bytes. If this parameter is 0, it is not sent in the original sending order; if this parameter is 1, it is sent in the original sending order.
8.接收等待间隔 ( ARQ_RX_PURGE_TIMEOUT ) TLV: 以 TLV 方式编码, 用于确定接收机在成功接受一个数据块以后,接收下一个 数据块前需要等待时间间隔。 该参数的服务流类型为 25 , 长度为 2 字节,取值范围为 0 ~ 6553500μδ (以 100 为粒度变化),如果此参数 为 0 , 则此时间间隔为无穷。 8. Receive Wait Interval (ARQ_RX_PURGE_TIMEOUT) TLV: Encoded in TLV mode to determine the waiting time interval before the receiver receives a data block after successfully receiving a data block. The parameter has a service flow type of 25 and a length of 2 bytes. The value ranges from 0 to 6553500μ δ (variable by 100). If this parameter is 0, the interval is infinite.
9. ARQ块尺寸 ( ARQ BLOCK SIZE ) TLV: 以 TLV方式编码, 在传输之前, 用于确定 ARQ的数据块的尺寸。 该参数的服务流类型 为 26, 长度为 2字节。 SS向 BS发送该参数时, 该参数的比特(Bit ) 0-3用于建议最小的 ARQ块尺寸参数 M, Bit 4-7用于建议最大的 ARQ 块尺寸参数 N, Bit 8-15保留并设置为 0 ( M≤6, N<6, M≤N ), 这样 BS就会得知 SS建议 ARQ块的最小尺寸为 , 最大尺寸为 。 BS向 SS发送该参数时, 该参数的 Bit 0-3用于确定最终的 ARQ块尺寸参 数 P, Bit 4-15保留并设置为 0 ( P≤6 , M<P<N ), 因此 SS就会得知 BS确定 ARQ块尺寸的最终值为 。 9. ARQ BLOCK SIZE TLV: Encoded in TLV mode, used to determine the size of the ARQ data block before transmission. This parameter has a service stream type of 26 and a length of 2 bytes. When the SS sends this parameter to the BS, the bit of the parameter (Bit) 0-3 is used to propose the minimum ARQ block size parameter M, and Bit 4-7 is used to suggest the maximum ARQ block size parameter N, Bit 8-15 is reserved and Set to 0 (M≤6, N<6, M≤N), so the BS knows that the minimum size of the SS recommended ARQ block is, and the maximum size is . When the BS sends this parameter to the SS, Bit 0-3 of the parameter is used to determine the final ARQ block size parameter P, Bit 4-15 is reserved and set to 0 (P≤6, M<P<N), so the SS It will be known that the BS determines the final value of the ARQ block size.
10. ARQ 处 理 时 间 ( RECEIVER— ARQ—ACK— PROCESSING— TIME ) TLV: 以 TLV方式 编码, 该参数用于确定 ARQ接收机处理接收到的 ARQ块和反馈确 认收到 /未收到 ( ACK/NAK )信息之间的时间间隔, 该参数为可选的 参数。该参数的服务流类型为 27 ,长度为 1字节,取值范围为 0 ~ 255 (时间粒度由设备制造商决定 )。 10. ARQ processing time ( RECEIVER - ARQ - ACK - PROCESSING - TIME ) TLV: Encoded in TLV mode, this parameter is used to determine that the ARQ receiver processes the received ARQ block and the feedback acknowledges the received/not received (ACK/NAK) ) The time interval between messages, which is an optional parameter. The service stream type of this parameter is 27 and the length is 1 byte. The value ranges from 0 to 255. (Time granularity is determined by the device manufacturer).
参见图 6, 图 6为本发明实施例一中协商基本连接 ARQ机制的 流程示意图。 由图 6可见, 该流程包括以下步骤: Referring to FIG. 6, FIG. 6 is a schematic flowchart of a mechanism for negotiating a basic connection ARQ according to Embodiment 1 of the present invention. As can be seen from Figure 6, the process includes the following steps:
步骤 601 , SS生成基本连接有效性信息,将生成的基本连接有效 性信息以 TLV方式进行编码, 并将编码后的基本连接有效性信息携 带在 RNG-REQ信息的 TLV Encoded Information字段之中。 Step 601: The SS generates basic connection validity information, encodes the generated basic connection validity information in a TLV manner, and carries the encoded basic connection validity information in a TLV Encoded Information field of the RNG-REQ information.
步骤 602, SS将 RNG-REQ信息发送给 BS。 Step 602: The SS sends the RNG-REQ information to the BS.
步骤 603 , BS接收 SS发送的 RNG-REQ信息, 从该信息的 TLV Encoded Information字段之中提取出编码后的基本连接有效性信息, 以 TLV方式对其进行解码, 解出基本连接有效性信息, 根据基本连 接有效性信息, 以及所述管理连接所属的类型, 确定所釆用的基本连 接有效性参数, 再将该参数以 TLV方式进行编码, 并将编码后的基 本连接有效性参数携带在 RNG-RSP信息的 TLV Encoded Information 字段之中。 Step 603: The BS receives the RNG-REQ information sent by the SS, extracts the encoded basic connection validity information from the TLV Encoded Information field of the information, and decodes the basic connection validity information by using a TLV method to solve the basic connection validity information. Determining the basic connection validity parameter used according to the basic connection validity information and the type of the management connection, and then encoding the parameter in a TLV manner, and carrying the encoded basic connection validity parameter in the RNG - The RTP information in the TLV Encoded Information field.
其中有效性参数的确定方法由管理连接的类型决定:对于基本连 接来说, ARQ的处理时延要尽量小,因此 ARQ块的尺寸就应该稍小, 其他有效性参数也应该以缩小 ARQ的处理时延为原则。 对于主要管 理连接, ARQ的处理时间要求不很严格, ARQ块的尺寸可以稍大一 些。 当 BS认为 SS的发送的有效性参数不合理时, 那么 BS就会对该 参数进行调整。 例如, 在确定基本连接有效性参数的时候, 若 SS发 送的协商 ARQ尺寸较大时, BS就会调整该参数为合理值。 当 BS认 为 SS发送的协商 ARQ的参数合适时, BS就会将该参数原样返回给 SS。 The method for determining the validity parameter is determined by the type of management connection: for basic connections, the processing delay of the ARQ should be as small as possible, so the size of the ARQ block should be slightly smaller, and other validity parameters should also be reduced by ARQ. The delay is the principle. For the main management connection, the processing time of the ARQ is not very strict, and the size of the ARQ block can be slightly larger. When the BS considers that the validity parameter of the SS transmission is unreasonable, then the BS will adjust the parameter. For example, when determining the basic connection validity parameter, if the negotiated ARQ size sent by the SS is large, the BS will adjust the parameter to a reasonable value. When the BS considers that the parameters of the negotiated ARQ sent by the SS are appropriate, the BS will return the parameter as it is. SS.
在本实施例中, 管理连接类型为基本连接, 因此有效性参数的确 定应该以缩小 ARQ的处理时延为原则。 In this embodiment, the management connection type is a basic connection, so the validity parameter determination should be based on the principle of reducing the processing delay of the ARQ.
步骤 604, BS发送 RNG-RSP信息给 SS。 Step 604, the BS sends the RNG-RSP information to the SS.
步骤 605 , SS接收 BS返回的 RNG-RSP信息, 从该信息的 TLV Encoded Information字段之中提取出编码后的基本连接有效性参数, 以 TLV方式对其进行解码, 解出基本连接有效性参数, 并根据基本 连接有效性参数确定基本连接的有效性机制。 Step 605: The SS receives the RNG-RSP information returned by the BS, extracts the encoded basic connection validity parameter from the TLV Encoded Information field of the information, and decodes the basic connection validity parameter by using a TLV method to solve the basic connection validity parameter. The validity mechanism of the basic connection is determined according to the basic connection validity parameter.
上述流程结束后, SS 根据接收到的基本连接有效性参数, 设置 基本连接的 ARQ机制, 并在新建的基本连接上, 按照选定的 ARQ 机制与 BS传输各种管理信息。 After the foregoing process ends, the SS sets the basic connection ARQ mechanism according to the received basic connection validity parameter, and transmits various management information to the BS according to the selected ARQ mechanism on the newly established basic connection.
本实施例在基本连接建立过程中, 协商了该连接的 ARQ机制。 通过该机制, 对基本连接上传输的管理信息进行 CRC校验时, 一旦 发现传输错误, 不用等待控制管理信息重传的定时器超时, 就可以自 动请求发送机重传该错误信息,从而节省了重传等待时间,提高了管 理信息传输的有效性。 In this embodiment, the ARQ mechanism of the connection is negotiated during the basic connection establishment process. Through the mechanism, when the CRC check is performed on the management information transmitted on the basic connection, once the transmission error is found, the transmitter can be automatically requested to retransmit the error information without waiting for the timer of the control management information to retransmit, thereby saving the error. Retransmission wait time improves the effectiveness of management information transmission.
实施例二 Embodiment 2
本实施例通过加入管理连接有效性信息和管理连接有效性参数 , 来协商基本连接的分片机制。 具体来说, 本实施例通过在 RNG-REQ 或 RNG-RSP信息的 TLV Encoded Information字段之中, 分别加入以 TLV方式编码的基本连接有效性信息或基本连接有效性参数,来协商 基本连接的分片机制。 分片就是将 MAC管理信息划分为一个或多个片段的过程。 This embodiment negotiates a fragmentation mechanism of a basic connection by adding management connection validity information and managing connection validity parameters. Specifically, in this embodiment, the basic connection validity information or the basic connection validity parameter encoded in the TLV manner is added to the TLV Encoded Information field of the RNG-REQ or RNG-RSP information to negotiate the basic connection score. Slice mechanism. Fragmentation is the process of dividing MAC management information into one or more fragments.
本实施例与实施例一步骤相同。 如表 4所示, 在 RNG-REQ信息 中加入的基本连接有效性信息, 和在 RNG-RSP信息中加入的基本连 接有效性参数均包括: 基本连接的分片参数 ( fragment parameter for basic connection )。 This embodiment is the same as the first embodiment. As shown in Table 4, the basic connection validity information added in the RNG-REQ information, and the basic connection validity parameters added in the RNG-RSP information include: a fragment parameter for basic connection .
表 4 Table 4
其中, 基本连接的分片参数主要是指分片序号尺寸 (FSN size )。 分片序号尺寸: 以 TLV方式编码, 用于确定分片序号的尺寸。 该参数的 RNG-REQ或 RNG-RSP消息类型为 40, 长度为 1字节。 当 该参数设置为 1时表示该分片序号尺寸为 3比特; 当该参数设置为 0 时, 表示该分片序号尺寸为 11比特。 The fragmentation parameter of the basic connection mainly refers to the fragment serial number size (FSN size). Slice serial number size: Encoded in TLV mode to determine the size of the slice serial number. The RNG-REQ or RNG-RSP message type of this parameter is 40 and the length is 1 byte. When this parameter is set to 1, it indicates that the slice serial number is 3 bits; when this parameter is set to 0, it indicates that the slice serial number is 11 bits.
本实施例在基本连接建立过程中, 协商了该连接的分片机制。 通 过该机制, 可以对基本连接上传输的管理信息进行分片。 当要传输的 管理信息比较大时, 可以把管理信息分成多个小片, 并将小片捎带在 其他管理信息包中传输, 这样就节省了管理信息的传输时间, 提高了 管理信息传输的有效性。 In this embodiment, during the basic connection establishment process, the fragmentation mechanism of the connection is negotiated. Through this mechanism, the management information transmitted on the basic connection can be fragmented. When the management information to be transmitted is relatively large, the management information can be divided into a plurality of small pieces, and the small pieces are transmitted in other management information packets, thereby saving the transmission time of the management information and improving the effectiveness of the management information transmission.
实施例三 Embodiment 3
本实施例通过加入管理连接有效性信息和管理连接有效性参数 , 来协商基本连接的打包机制。 具体来说, 本实施例通过在 RNG-REQ 或 RNG-RSP信息的 TLV Encoded Information字段之中, 分别加入以 TLV方式编码的基本连接有效性信息或基本连接有效性参数,来协商 基本连接的打包机制。 In this embodiment, by adding management connection validity information and managing connection validity parameters, To negotiate the packaging mechanism of the basic connection. Specifically, in this embodiment, the basic connection validity packet or the basic connection validity parameter encoded in the TLV manner is added to the TLV Encoded Information field of the RNG-REQ or RNG-RSP information to negotiate the basic connection packing. mechanism.
打包是把多个 MAC 管理信息包装为一个 MAC 协议数据单元 ( PDU ) 的过程。 本实施例与实施例一步骤相同。 Packaging is the process of wrapping multiple MAC management information into one MAC Protocol Data Unit (PDU). This embodiment is the same as the first embodiment.
如表 5所示, 在 RNG-REQ信息中加入的基本连接有效性信息, 和在 RNG-RSP信息中加入的基本连接有效性参数均包括: 基本连接 的打包参数 ( acking parameters for basic connection )。 As shown in Table 5, the basic connection validity information added in the RNG-REQ information, and the basic connection validity parameters added in the RNG-RSP information include: acking parameters for basic connection.
其中,基本连接的打包参数用于协商基本连接打包机制的各种服 务流参数。 基本连接的打包参数的 RNG-REQ或 RNG-RSP消息类型 为 41 , 长度为 2字节。 该参数值包括以下服务流参数: The packet parameters of the basic connection are used to negotiate various service flow parameters of the basic connection packing mechanism. The RNG-REQ or RNG-RSP message type of the basic connection packing parameter is 41 and the length is 2 bytes. The parameter values include the following service flow parameters:
1. 固定长度或可变长度服务数据单元 ( SDU ) 指示器 ( Fixed-Length Versus Variable-Length SDU Indicator parameter ): 以 1. Fixed-Length Versus Variable-Length SDU Indicator parameter:
TLV方式编码, 用于确定打包的管理信息是固定长度还是可变长度。 该参数的服务流类型为 15 , 长度为 1字节。 当该参数设置为 1时表 示为固定长度; 当该参数设置为 0时, 表示为可变长度。 2. SDU尺寸 ( SDU Size parameter ): 以 TLV方式编码, 用于确 定固定长度管理信息的尺寸。 该参数的服务流类型为 16, 长度为 1 字节。 本实施例在基本连接建立过程中, 协商了该连接的打包机制。 通 过该机制, 可以对基本连接上传输的管理信息进行打包。 当要传输的 管理信息比较小时, 可以把几个管理信息打成一个包进行发送, 这样 就节省了管理信息的传输时间, 提高了管理信息传输的有效性。 实施例四 本实施例通过加入管理连接有效性信息和管理连接有效性参数 , 来协商基本连接的有效性机制。具体来说,本实施例通过在 RNG-REQ 或 RNG-RSP信息的 TLV Encoded Information字段之中, 分别加入以 TLV方式编码的基本连接有效性信息或基本连接有效性参数,来协商 基本连接的有效性机制。 本实施例与实施例一步骤相同。 如表 6所示, 在 RNG-REQ信息 中加入的基本连接有效性信息, 和在 RNG-RSP信息中加入的基本连 接有效性参数均包括: ARQ能力信息、 基本连接的 ARQ参数、 基本 连接的分片参数和基本连接的打包参数。 长度 可应用物 名称 类型 值(可变长度) TLV mode coding, used to determine whether the packaged management information is fixed length or variable length. The service stream type of this parameter is 15 and the length is 1 byte. When this parameter is set to 1, it is expressed as a fixed length; when this parameter is set to 0, it is expressed as a variable length. 2. SDU Size parameter: Encoded in TLV format to determine the size of fixed length management information. This parameter has a service flow type of 16 and a length of 1 byte. In this embodiment, during the basic connection establishment process, the packaging mechanism of the connection is negotiated. Through this mechanism, management information transmitted on the basic connection can be packaged. When the management information to be transmitted is relatively small, several management information can be sent into one packet for transmission, thereby saving the transmission time of the management information and improving the effectiveness of the management information transmission. Embodiment 4 This embodiment negotiates the validity mechanism of the basic connection by adding management connection validity information and managing connection validity parameters. Specifically, in this embodiment, the basic connection validity information or the basic connection validity parameter encoded in the TLV manner is respectively added in the TLV Encoded Information field of the RNG-REQ or RNG-RSP information to negotiate the validity of the basic connection. Sexual mechanism. This embodiment is the same as the first embodiment. As shown in Table 6, the basic connection validity information added in the RNG-REQ information and the basic connection validity parameters added in the RNG-RSP information include: ARQ capability information, basic connected ARQ parameters, and basic connectivity. The fragmentation parameters and the packaging parameters of the basic connection. Length Applicable Name Type Value (variable length)
( bytes ) 理层 ( bytes )
0: 无 ARQ能力 SCa , 0: no ARQ capability SCa,
ARQ能力信息 39 1 1: 有 ARQ能力 OFDM , ARQ capability information 39 1 1: ARQ capable OFDM,
2-255: 保留 OFDMA 基本连接的 34 可变 复合值 SCa , ARQ参数 OFDM , 2-255: The 34 variable composite value SCa of the OFDMA basic connection is reserved, ARQ parameter OFDM,
OFDMA OFDMA
SC,SC,
0: 3-bit分片序号 0: 3-bit slice number
基本连接的 SCa , Basically connected SCa,
40 1 1 : 11 -bit分片序号 40 1 1 : 11 -bit fragment number
分片序号尺寸 OFDM , Slice serial number size OFDM,
预设 = 1 Default = 1
OFDMA OFDMA
SC, 基本连接的 SCa , SC, basically connected SCa,
41 2 复合值 41 2 composite value
打包参数 OFDM , Packing parameters OFDM,
OFDMA OFDMA
表 6 本实施例在基本连接建立过程中, 协商了该连接的有效性机制。 通过该机制, 基本连接可以支持 ARQ、 分片和打包机制。 因此, 发 送端可以根据 ARQ块尺寸这一参数, 将每个 MAC管理信息划分为 一系列具有连续序列编号的 ARQ分片, 或者将几个小的 MAC管理 信息打包为一个 ARQ分片, 每个 ARQ分片都会被单独传输到接收 端。基本连接上传输的管理信息 ARQ分片进行 CRC校验时,一旦发 现传输错误, 不用等待控制管理信息重传的定时器超时, 就可以自动 请求发送机重传该错误 ARQ分片, 从而节省了重传等待时间, 提高 了管理信息传输的有效性。 例如, 在 SS初始化阶段, SS发送比较大的消息, 如 SBC-REQ 消息时, 可以将该消息分成多个小片发送, 一旦该消息中的某个小片 中的某几比特信息出错或者没有发送成功时, 只需要利用 ARQ机制 重新发送该小片即可。这样就有效地保证了基本连接上传输的管理消 息的成功接收。 实施例五 Table 6 This embodiment negotiates the validity mechanism of the connection during the basic connection establishment process. With this mechanism, the basic connection can support ARQ, fragmentation, and packaging mechanisms. Therefore, the sender may divide each MAC management information into a series of ARQ fragments with consecutive sequence numbers according to the ARQ block size parameter, or package several small MAC management information into one ARQ fragment, each ARQ fragments are transmitted to the receiver separately. When the ARQ fragment transmitted on the basic connection performs the CRC check, once the transmission error is found, the transmitter can be automatically requested to retransmit the erroneous ARQ fragment without waiting for the timer of the control management information retransmission to expire, thereby saving the loyalty. Retransmission waiting time improves the effectiveness of management information transmission. For example, in the SS initialization phase, the SS sends a relatively large message, such as an SBC-REQ message, which can be split into multiple small pieces, once a certain bit of information in a certain piece of the message is erroneous or not successfully transmitted. When you only need to resend the small piece using the ARQ mechanism. This effectively ensures the management of the transmission on the basic connection. Successful reception of interest. Embodiment 5
IEEE 802.16标准中规定,主要管理连接是在 SS初始接入时的测 距阶段由 RNG-REG和 RNG-RSP信息握手建立的。 本实施例通过加入管理连接有效性信息和管理连接有效性参数 , 来协商主要管理连接的 ARQ 机制。 具体来说, 本实施例通过在 RNG-REQ或 RNG-RSP信息的 TLV Encoded Information字段之中, 分别加入以 TLV方式编码的主要管理连接有效性信息或主要管理连 接有效性参数, 来协商主要管理连接的 ARQ机制。 本实施例与实施例一步骤相同,只是将基本连接有效性信息和基 本连接有效性参数替换为主要管理连接有效性信息和主要管理连接 有效性参数。 如表 7所示,在 RNG-REQ信息中加入的主要管理连接有效性信 息, 和在 RNG-RSP信息中加入的主要管理连接有效性参数均包括: ARQ 能力信息和主要管理连接的 ARQ 参数(ARQ parameters for primary connection )。 长度 可应用物 名称 类型 值(可变长度) The IEEE 802.16 standard specifies that the primary management connection is established by the RNG-REG and RNG-RSP information handshake during the measurement phase of the initial SS access. In this embodiment, the ARQ mechanism of the primary management connection is negotiated by adding management connection validity information and managing connection validity parameters. Specifically, in this embodiment, the primary management is negotiated by adding the primary management connection validity information or the primary management connection validity parameter encoded in the TLV mode to the TLV Encoded Information field of the RNG-REQ or RNG-RSP information. The ARQ mechanism of the connection. This embodiment is the same as the first embodiment except that the basic connection validity information and the basic connection validity parameter are replaced with the primary management connection validity information and the primary management connection validity parameter. As shown in Table 7, the main management connection validity information added in the RNG-REQ information, and the main management connection validity parameters added in the RNG-RSP information include: ARQ capability information and ARQ parameters of the main management connection ( ARQ parameters for primary connection ). Length Applicable Name Name Value (variable length)
( bytes ) 理层 ( bytes )
0: 无 ARQ能力 SCa , 0: no ARQ capability SCa,
ARQ能力信 ARQ capability letter
39 1 1: 有 ARQ能力 OFDM , 息 39 1 1: ARQ capable OFDM, interest
2-255: 保留 OFDMA 主要管理连 SCa, 2-255: Keep OFDMA main management with SCa,
35 可变 复合值 35 variable composite value
接的 ARQ参 OFDM , 数 OFDMA Connected ARQ to OFDM, Number OFDMA
表 7 Table 7
其中,所釆用的 ARQ能力信息与实施例一中的 ARQ能力信息一 致。 The ARQ capability information used in the first embodiment is consistent with the ARQ capability information in the first embodiment.
主要管理连接的 ARQ参数: 以 TLV方式编码, 用于确定主要管 理连接 ARQ机制的各种服务流参数。 主要管理连接的 ARQ参数的 RNG-REQ或 RNG-RSP消息类型为 35 , 长度可变, 根据具体服务流 决定。 该参数值包括的服务流参数与实施例一中的基本连接的 ARQ 参数一致。 ARQ parameters for primary management connections: Coded in TLV mode to determine the various service flow parameters that are primarily responsible for managing the ARQ mechanism. The RNG-REQ or RNG-RSP message type that mainly manages the connected ARQ parameters is 35, and the length is variable, which is determined according to the specific service flow. The parameter value includes the service flow parameter that is consistent with the basic connected ARQ parameter in the first embodiment.
本实施例在主要管理连接建立过程中, 协商了该连接的 ARQ机 制。 由于 IEEE 802.16标准中, 主要管理连接分片和打包机制。 因此, 发送端可以根据 ARQ块尺寸这一参数, 将每个 MAC管理信息划分 为一系列具有连续序列编号的 ARQ分片, 或者将几个小的 MAC管 理信息打包为一个 ARQ分片, 每个 ARQ分片都会被单独传输到接 收端。 主要管理连接上传输的管理信息 ARQ分片进行 CRC校验时, 一旦发现传输错误, 不用等待控制管理信息重传的定时器超时, 就可 以自动请求发送机重传该错误 ARQ分片 ,从而节省了重传等待时间 , 提高了管理信息传输的有效性。 In this embodiment, the ARQ mechanism of the connection is negotiated during the establishment of the primary management connection. Because of the IEEE 802.16 standard, the main management connection fragmentation and packaging mechanism. Therefore, the sender may divide each MAC management information into a series of ARQ fragments with consecutive sequence numbers according to the ARQ block size parameter, or package several small MAC management information into one ARQ fragment, each ARQ fragments are transmitted to the receiver separately. When the ARQ fragment of the management information transmitted on the connection is mainly used for CRC check, once the transmission error is found, the sender can automatically request the transmitter to retransmit the error ARQ fragment without waiting for the timer of the control management information retransmission to expire. The retransmission waiting time improves the effectiveness of management information transmission.
例如, 在 SS初始化阶段, SS发送比较大的消息时, 可以将该消 息分成多个小片发送,一旦该消息中的某个小片中的某几比特信息出 错或者没有发送成功时 ,只需要利用 ARQ机制重新发送该小片即可。 这样就有效地保证了主要管理连接上传输的管理消息的成功接收。虽 然主要管理连接上传输的管理消息, 如动态服务(DSx ) 消息, 在传 输过程中具有请求 /响应 /确认(REQ/RSP/ACK )的三次握手过程, 有 ACK消息进行确认保护,但是三次握手过程是 MAC层以上的保护机 制与 MAC层的 ARQ机制并不冲突。 For example, in the SS initialization phase, when the SS sends a relatively large message, the message can be divided into multiple small pieces. If a certain bit of information in a certain piece of the message is erroneous or not successfully transmitted, only the ARQ needs to be utilized. The mechanism can resend the small piece. This effectively ensures successful receipt of management messages transmitted over the primary management connection. Though However, it mainly manages management messages transmitted on the connection, such as dynamic service (DSx) messages, with a three-way handshake process of request/response/acknowledgement (REQ/RSP/ACK) during transmission, with ACK message for acknowledgement protection, but three-way handshake The process is that the protection mechanism above the MAC layer does not conflict with the ARQ mechanism of the MAC layer.
实施例六 Embodiment 6
由于在大多数情况下,基本连接和主要管理连接所传输的信息同 样重要, 一般我们希望在基本连接和主要管理连接上同时启用 ARQ 机制。 因此, 本实施例通过加入管理连接有效性信息和管理连接有效 性参数, 来同时协商基本连接和主要管理连接的有效性机制。 具体来 说, 本实施例通过在 RNG-REQ或 RNG-RSP信息的 TLV Encoded Information字段之中, 分别加入以 TLV方式编码的管理连接有效性 信息或管理连接有效性参数, 来同时协商基本连接的有效性机制 (包 括: ARQ、 分片和打包机制), 以及主要管理连接的 ARQ机制。 Since in most cases the information transmitted by the basic connection and the primary management connection is equally important, we generally want to enable the ARQ mechanism on both the basic connection and the primary management connection. Therefore, this embodiment simultaneously negotiates the validity mechanisms of the basic connection and the primary management connection by adding management connection validity information and managing connection validity parameters. Specifically, in this embodiment, the basic connection is negotiated by adding the management connection validity information or the management connection validity parameter encoded by the TLV method in the TLV Encoded Information field of the RNG-REQ or RNG-RSP information. Validity mechanisms (including: ARQ, fragmentation, and packaging mechanisms), and ARQ mechanisms that primarily manage connections.
本实施例与实施例一步骤相同,只是将基本连接有效性信息和基 本连接有效性参数替换为管理连接有效性信息和管理连接有效性参 数。 This embodiment is identical to the first embodiment except that the basic connection validity information and the basic connection validity parameter are replaced with the management connection validity information and the management connection validity parameter.
如表 8所示, 在 RNG-REQ信息中加入的管理连接有效性信息, 和在 RNG-RSP信息中加入的管理连接有效性参数均包括: ARQ能力 信息、 基本连接的 ARQ参数、 基本连接的分片参数和基本连接的打 包参数, 以及主要管理连接的 ARQ参数。 0: 无 ARQ能力 SCa ,As shown in Table 8, the management connection validity information added in the RNG-REQ information and the management connection validity parameters added in the RNG-RSP information include: ARQ capability information, basic connected ARQ parameters, and basic connection The fragmentation parameters and the packaging parameters of the basic connection, as well as the ARQ parameters of the primary management connection. 0: No ARQ capability SCa,
ARQ 能力信 ARQ capability letter
39 1 1 : 有 ARQ能力 OFDM , 息 39 1 1 : ARQ capable OFDM, interest
2-255: 保留 OFDMA 2-255: Reserved OFDMA
SCa , 基本连接的 SCa, basically connected
34 可变 复合值 OFDM , ARQ参数 34 variable composite value OFDM, ARQ parameters
OFDMA OFDMA
SCa , 主要管理连接 SCa, main management connection
35 可变 复合值 OFDM , 的 ARQ参数 35 variable composite value OFDM, ARQ parameters
OFDMA OFDMA
SC,SC,
0: 3-bit分片序号 0: 3-bit slice number
基本连接的 SCa , Basically connected SCa,
40 1 1 : 11 -bit分片序号 40 1 1 : 11 -bit fragment number
分片序号尺寸 OFDM , 预设 = 1 Slice serial number size OFDM, preset = 1
OFDMA OFDMA
SC, 基本连接的 SCa , SC, basically connected SCa,
41 2 复合值 41 2 composite value
打包参数 OFDM , Packing parameters OFDM,
OFDMA OFDMA
表 8 本实施例在基本连接和主要管理连接建立过程中,协商了连接的 有效性机制。 通过该机制, 基本连接可以支持 ARQ、 分片和打包机 制。 主要管理连接可以支持 ARQ机制, 提高了管理信息传输的有效 性。 实施例七 当基本连接和主要管理连接的 ARQ参数相同时, 本实施例在实 施例六的基础上将基本连接和主要管理连接的 ARQ参数合并为一个 ARQ参数, 以减少 RNG-REQ和 RNG-RSP中用于协商 ARQ机制的 开销。 Table 8 This embodiment negotiates the validity mechanism of the connection during the establishment of the basic connection and the primary management connection. With this mechanism, the basic connection can support ARQ, fragmentation, and packaging mechanisms. The main management connection can support the ARQ mechanism and improve the effectiveness of management information transmission. Embodiment 7 When the ARQ parameters of the basic connection and the primary management connection are the same, the embodiment combines the ARQ parameters of the basic connection and the primary management connection into one based on the sixth embodiment. The ARQ parameter is used to reduce the overhead for negotiating the ARQ mechanism in RNG-REQ and RNG-RSP.
如表 9所示, 在 RNG-REQ信息中加入的管理连接有效性信息, 和在 RNG-RSP信息中加入的管理连接有效性参数均包括: ARQ能力 信息、 ARQ参数、 基本连接的分片参数和基本连接的打包参数。 As shown in Table 9, the management connection validity information added in the RNG-REQ information and the management connection validity parameters added in the RNG-RSP information include: ARQ capability information, ARQ parameters, and basic connection fragmentation parameters. And the packaging parameters of the basic connection.
表 9 Table 9
其中,所釆用的 ARQ能力信息与实施例一中的 ARQ能力信息一 ARQ参数: 以 TLV方式编码, 用于确定基本连接和主要管理连 接 ARQ机制的各种服务流参数。 ARQ参数的 RNG-REQ或 RNG-RSP 消息类型为 42, 长度可变, 根据具体服务流决定。 该参数值包括的 服务流参数与实施例一中的基本连接的 ARQ参数一致。 The ARQ capability information used in the first embodiment and the ARQ capability information in the first embodiment are an ARQ parameter: encoded in a TLV manner for determining a basic connection and a primary management connection. Various service flow parameters connected to the ARQ mechanism. The RNG-REQ or RNG-RSP message type of the ARQ parameter is 42 and the length is variable, which is determined according to the specific service flow. The parameter value includes the service flow parameter that is consistent with the basic connected ARQ parameter in the first embodiment.
由此可见,本实施例在实施例六的基础上进一步节约了协商 ARQ 参数的开销, 使管理信息的传输更加有效率。 It can be seen that the embodiment further saves the overhead of negotiating ARQ parameters on the basis of the sixth embodiment, and makes the transmission of management information more efficient.
在上述所有实施例中, ARQ、分片或打包机制基于单个连接进行 控制, 都是 MAC层可选的功能。 在连接建立的过程中, 可以为一个 连接指定或者协商是否使用 ARQ、 分片或打包机制。 一个连接不可 能既有 ARQ、 分片或打包流量, 又有非 ARQ、 分片或打包机制的流 量。 建立 ARQ、 分片或打包机制的反馈信息可以在基本连接上作为 单独的 MAC层管理消息来传送, 或者在现有的连接上捎带传递到接 收端。所有支持 ARQ的连接都釆用 32位的 CRC来检测 PDU中可能 存在的错误。 管理连接的 ARQ机制建立后, 用于反馈 ARQ块是否 传送正确的 ARQ反馈信息不能被分片。 In all of the above embodiments, the ARQ, fragmentation, or packing mechanism is controlled based on a single connection, which is an optional function of the MAC layer. During the connection establishment process, you can specify or negotiate whether to use ARQ, fragmentation or packaging mechanism for a connection. A connection cannot have both ARQ, fragmented or packetized traffic, and non-ARQ, fragmentation or packing mechanisms. The feedback information for establishing an ARQ, fragmentation or packing mechanism can be transmitted as a separate MAC layer management message on the basic connection or piggybacked to the receiving end on the existing connection. All ARQ-enabled connections use a 32-bit CRC to detect possible errors in the PDU. After the ARQ mechanism for managing the connection is established, the ARQ feedback information used to feedback whether the ARQ block is correctly transmitted cannot be fragmented.
实施例八 Example eight
本实施例通过加入管理连接有效性信息和管理连接有效性参数, 来协商主要管理连接的 ARQ 机制。 具体来说, 本实施例通过在 SBC-REQ或 SBC-RSP信息的 TLV Encoded Information字段之中,分 别加入以 TLV方式编码的主要管理连接有效性信息或主要管理连接 有效性参数, 来协商主要管理连接的 ARQ机制。 In this embodiment, the ARQ mechanism of the primary management connection is negotiated by adding the management connection validity information and the management connection validity parameter. Specifically, in this embodiment, the main management is negotiated by adding the main management connection validity information or the main management connection validity parameter encoded by the TLV method in the TLV Encoded Information field of the SBC-REQ or SBC-RSP information. The ARQ mechanism of the connection.
本实施例与实施例五步骤相同, 只是将 RNG-REQ和 RNG-RSP 替换为 SBC-REQ和 SBC-RSP。图 7为本发明实施例八中协商主要管 理连接 ARQ机制的流程示意图。 其中 SBC-REQ是用户终端向网络 侧设备发送的信息, SBC-RSP是网络侧设备向用户终端发送的信息。 This embodiment is the same as the fifth embodiment except that RNG-REQ and RNG-RSP are replaced with SBC-REQ and SBC-RSP. FIG. 7 is a main management unit of negotiation in the eighth embodiment of the present invention; A schematic diagram of the process of connecting the ARQ mechanism. The SBC-REQ is information that the user terminal sends to the network side device, and the SBC-RSP is information that the network side device sends to the user terminal.
如表 10所示,在 SBC-REQ信息中加入的主要管理连接有效性信 息, 和在 SBC-RSP信息中加入的主要管理连接有效性参数均包括: ARQ 能力信息和主要管理连接的 ARQ 参数(ARQ parameters for primary connection )。 As shown in Table 10, the main management connection validity information added in the SBC-REQ information, and the main management connection validity parameters added in the SBC-RSP information include: ARQ capability information and ARQ parameters of the main management connection ( ARQ parameters for primary connection ).
表 10 Table 10
其中,所釆用的 ARQ能力信息与实施例一中的 ARQ能力信息一 致。 The ARQ capability information used in the first embodiment is consistent with the ARQ capability information in the first embodiment.
主要管理连接的 ARQ参数: 以 TLV方式编码, 用于确定主要管 理连接 ARQ机制的各种服务流参数。 主要管理连接的 ARQ参数的 SBC-REQ或 SBC-RSP消息类型为 206, 长度可变, 根据具体服务流 决定。 该参数值包括的服务流参数与实施例一中的基本连接的 ARQ 参数一致。 ARQ parameters for primary management connections: Coded in TLV mode to determine the various service flow parameters that are primarily responsible for managing the ARQ mechanism. The SBC-REQ or SBC-RSP message type that mainly manages the connected ARQ parameters is 206, and the length is variable, which is determined according to the specific service flow. The parameter value includes the service flow parameter that is consistent with the basic connected ARQ parameter in the first embodiment.
本实施例在主要管理连接建立过程中, 协商了该连接的 ARQ机 制。 由于 IEEE 802.16标准中, 主要管理连接分片和打包机制。 因此, 发送端可以根据 ARQ块尺寸这一参数, 将每个 MAC管理信息划分 为一系列具有连续序列编号的 ARQ分片, 或者将几个小的 MAC管 理信息打包为一个 ARQ分片, 每个 ARQ分片都会被单独传输到接 收端。 主要管理连接上传输的管理信息 ARQ分片进行 CRC校验时, 一旦发现传输错误, 不用等待控制管理信息重传的定时器超时, 就可 以自动请求发送机重传该错误 ARQ分片 ,从而节省了重传等待时间 , 提高了管理信息传输的有效性。 In this embodiment, during the establishment of the primary management connection, the connected ARQ machine is negotiated. System. Due to the IEEE 802.16 standard, the main connection fragmentation and packing mechanism is managed. Therefore, the sender may divide each MAC management information into a series of ARQ fragments with consecutive sequence numbers according to the ARQ block size parameter, or package several small MAC management information into one ARQ fragment, each ARQ fragments are transmitted to the receiver separately. When the ARQ fragment of the management information transmitted on the connection is mainly used for CRC check, once the transmission error is found, the sender can automatically request the transmitter to retransmit the error ARQ fragment without waiting for the timer of the control management information retransmission to expire. The retransmission waiting time improves the effectiveness of management information transmission.
例如, 在 SS初始化阶段, SS发送比较大的消息时, 可以将该消 息分成多个小片发送,一旦该消息中的某个小片中的某几比特信息出 错或者没有发送成功时 ,只需要利用 ARQ机制重新发送该小片即可。 这样就有效地保证了主要管理连接上传输的管理消息的成功接收。虽 然主要管理连接上传输的管理消息, 如动态服务(DSx ) 消息, 在传 输过程中具有请求 /响应 /确认(REQ/RSP/ACK )的三次握手过程, 有 ACK消息进行确认保护,但是三次握手过程是 MAC层以上的保护机 制与 MAC层的 ARQ机制并不冲突。 For example, in the SS initialization phase, when the SS sends a relatively large message, the message can be divided into multiple small pieces. If a certain bit of information in a certain piece of the message is erroneous or not successfully transmitted, only the ARQ needs to be utilized. The mechanism can resend the small piece. This effectively ensures successful receipt of management messages transmitted over the primary management connection. Although the management message transmitted on the connection is mainly managed, such as Dynamic Service (DSx) message, the three-way handshake process with request/response/acknowledgement (REQ/RSP/ACK) during transmission, there is ACK message for acknowledgement protection, but three-way handshake The process is that the protection mechanism above the MAC layer does not conflict with the ARQ mechanism of the MAC layer.
上述实施例只是讨论了本发明的几种应用方式, 当然, 在实际应 用中, 根据具体情况, 我们也可以对基本连接的 ARQ、 分片、 打包 机制或主要管理连接的 ARQ机制的任意组合进行协商, 比如: 我们 可以单独对基本连接的 ARQ和分片机制进行协商, 也可以单独对基 本连接的 ARQ和主要管理连接的 ARQ机制进行协商等。 我们也可 以单独对主要管理连接的 ARQ机制进行协商。 上述"有效性信息,,和"有效性参数,,二词仅为了更好理解本发明 上述各实施例, 本领域技术人员也可以釆用其他术语。 The above embodiments only discuss several application modes of the present invention. Of course, in practical applications, depending on the specific situation, we can also perform any combination of the basic connection ARQ, the fragmentation, the packaging mechanism, or the ARQ mechanism of the main management connection. Negotiation, for example: We can negotiate the ARQ and fragmentation mechanism of the basic connection separately, or negotiate the ARQ of the basic connection and the ARQ mechanism of the main management connection separately. We can also negotiate the ARQ mechanism of the main management connection separately. The above-mentioned "validity information," and "validity parameters" are merely used to better understand the above embodiments of the present invention, and other terms may be used by those skilled in the art.
该实施例中的"接收,,一词可以理解为主动从其他模块获取也可 以是接收其他模块发送来的信息。 上述的模块可以分布于一个装置, 也可以分布于多个装置。 上述模块可以合并为一个模块, 也可以进一 步拆分成多个子模块。 The term "receiving" in this embodiment may be understood as actively acquiring information from other modules or receiving information sent by other modules. The above modules may be distributed in one device or distributed in multiple devices. Combined into one module, it can be further split into multiple sub-modules.
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解 到本发明可以通过硬件实现,也可以可借助软件加必要的通用硬件平 台的方式来实现基于这样的理解,本发明的技术方案可以以软件产品 的形式体现出来, 该软件产品可以存储在一个非易失性存储介质(可 以是 CD-ROM, U盘, 移动硬盘等) 中, 包括若干指令用以使得一 台计算机设备(可以是个人计算机, 服务器, 或者网络设备等)执行 本发明各个实施例所述的方法。 Through the description of the above embodiments, those skilled in the art can clearly understand that the present invention can be implemented by hardware, or can be implemented by means of software plus necessary general hardware platform, and the technical solution of the present invention. It can be embodied in the form of a software product that can be stored in a non-volatile storage medium (which can be a CD-ROM, a USB flash drive, a mobile hard disk, etc.), including a number of instructions for making a computer device (may It is a personal computer, a server, or a network device, etc.) that performs the methods described in various embodiments of the present invention.
总之, 以上所述仅为本发明的较佳实施例而已, 并非用于限定本 发明的保护范围。 凡在本发明的精神和原则之内, 所作的任何修改、 等同替换、 改进等, 均应包含在本发明的保护范围之内。 In conclusion, the above description is only a preferred embodiment of the present invention and is not intended to limit the scope of the present invention. Any modifications, equivalent substitutions, improvements, etc. made within the spirit and scope of the present invention are intended to be included within the scope of the present invention.
Claims
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN200710181828.1 | 2007-10-15 | ||
CN200710181828 | 2007-10-15 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2009049549A1 true WO2009049549A1 (en) | 2009-04-23 |
Family
ID=40567027
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2008/072659 WO2009049549A1 (en) | 2007-10-15 | 2008-10-10 | Method and device for validity negotiation of management information transport |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN101415019A (en) |
WO (1) | WO2009049549A1 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8437258B2 (en) * | 2009-07-06 | 2013-05-07 | Samsung Electronics Co., Ltd. | Method and system for transmitting and receiving management message in communication network |
CN108023688A (en) * | 2016-11-03 | 2018-05-11 | 中兴通讯股份有限公司 | A kind of data transmission method and device |
CN109729039B (en) * | 2017-10-27 | 2022-05-13 | 中兴通讯股份有限公司 | Negotiated fragmentation method and device for link management protocol |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6704311B1 (en) * | 1999-06-25 | 2004-03-09 | Lucent Technologies Inc. | Application-level switching server for internet protocol (IP) based networks |
CN1501627A (en) * | 2002-11-15 | 2004-06-02 | 中国移动通信集团公司 | A network management interface information access control system and its control method |
CN1777137A (en) * | 2005-12-02 | 2006-05-24 | 浙江中控技术有限公司 | A data forwarding device and system based on Ethernet and serial communication technology |
-
2008
- 2008-01-18 CN CNA200810005107XA patent/CN101415019A/en active Pending
- 2008-10-10 WO PCT/CN2008/072659 patent/WO2009049549A1/en active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6704311B1 (en) * | 1999-06-25 | 2004-03-09 | Lucent Technologies Inc. | Application-level switching server for internet protocol (IP) based networks |
CN1501627A (en) * | 2002-11-15 | 2004-06-02 | 中国移动通信集团公司 | A network management interface information access control system and its control method |
CN1777137A (en) * | 2005-12-02 | 2006-05-24 | 浙江中控技术有限公司 | A data forwarding device and system based on Ethernet and serial communication technology |
Also Published As
Publication number | Publication date |
---|---|
CN101415019A (en) | 2009-04-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101216100B1 (en) | Method and Apparatus of transmitting MAC PDU with a Fragmentation and packing Extended Header | |
JP4015557B2 (en) | Method and system for inter-layer control between re-sequencing entity and re-transmission entity | |
RU2461147C2 (en) | Method of processing radio protocol in mobile communication system and mobile communication transmitter | |
KR101653310B1 (en) | Method and Apparatus of transmitting and receiving MAC PDU using a MAC header | |
CN1204724C (en) | Acknowledgment method for data transmission in wireless communication system | |
JP6092265B2 (en) | Apparatus and method for block acknowledgment compression | |
JP6165859B2 (en) | Apparatus and method for block acknowledgment compression | |
US20090319850A1 (en) | Local drop control for a transmit buffer in a repeat transmission protocol device | |
JP2011517162A (en) | Adding hybrid ARQ to the WLAN protocol using MAC-based feedback | |
TW201630376A (en) | Shortened block confirmation with split acknowledgment signal delivery | |
KR20100053625A (en) | Layer 2 tunneling of data during handover in a wireless communication system | |
WO2010121467A1 (en) | Communication method and equipment of the header compression | |
WO2007104261A1 (en) | A method and system for supporting packet retransmission segmentation cascading | |
WO2014110773A1 (en) | Data packet processing method and device | |
WO2011020233A1 (en) | Method and apparatus for downlink data transmission control in multi-hop relay communication system | |
TW200910816A (en) | Re-using sequence number by multiple protocols for wireless communication | |
TW200816700A (en) | Method and apparatus of adaptive sequence numbering in a wireless communication system | |
JP2012533259A (en) | Method and system for encoding and decoding length information of a media connection control protocol data unit | |
WO2015006896A1 (en) | Data processing apparatus and method | |
RU2460214C2 (en) | Status message initiation in wireless communication system | |
BR112016010139A2 (en) | APPLIANCE AND METHODS FOR MAC HEADER COMPRESSION | |
WO2014186944A1 (en) | Acknowledgement packet transmission method and device thereof | |
WO2010108353A1 (en) | Transmitting/receiving method and device for a pdu | |
WO2011079785A1 (en) | Method and apparatus for transmitting data packets | |
JP4755173B2 (en) | Method and apparatus for generating a compressed status report updated to indicate data to be received later |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 08839310 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 08839310 Country of ref document: EP Kind code of ref document: A1 |