WO2009042463A1 - Integrated circuit packages including high density bump-less build up layers and a lesser density core or coreless substrate - Google Patents
Integrated circuit packages including high density bump-less build up layers and a lesser density core or coreless substrate Download PDFInfo
- Publication number
- WO2009042463A1 WO2009042463A1 PCT/US2008/076654 US2008076654W WO2009042463A1 WO 2009042463 A1 WO2009042463 A1 WO 2009042463A1 US 2008076654 W US2008076654 W US 2008076654W WO 2009042463 A1 WO2009042463 A1 WO 2009042463A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- microelectronic die
- conductive contacts
- layers
- dielectric material
- top surface
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L25/00—Assemblies consisting of a plurality of semiconductor or other solid state devices
- H01L25/03—Assemblies consisting of a plurality of semiconductor or other solid state devices all the devices being of a type provided for in a single subclass of subclasses H10B, H10F, H10H, H10K or H10N, e.g. assemblies of rectifier diodes
- H01L25/04—Assemblies consisting of a plurality of semiconductor or other solid state devices all the devices being of a type provided for in a single subclass of subclasses H10B, H10F, H10H, H10K or H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
- H01L25/065—Assemblies consisting of a plurality of semiconductor or other solid state devices all the devices being of a type provided for in a single subclass of subclasses H10B, H10F, H10H, H10K or H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H10D89/00
- H01L25/0652—Assemblies consisting of a plurality of semiconductor or other solid state devices all the devices being of a type provided for in a single subclass of subclasses H10B, H10F, H10H, H10K or H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H10D89/00 the devices being arranged next and on each other, i.e. mixed assemblies
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/52—Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
- H01L23/538—Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames the interconnection structure between a plurality of semiconductor chips being formed on, or in, insulating substrates
- H01L23/5389—Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames the interconnection structure between a plurality of semiconductor chips being formed on, or in, insulating substrates the chips being integrally enclosed by the interconnect and support structures
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L25/00—Assemblies consisting of a plurality of semiconductor or other solid state devices
- H01L25/03—Assemblies consisting of a plurality of semiconductor or other solid state devices all the devices being of a type provided for in a single subclass of subclasses H10B, H10F, H10H, H10K or H10N, e.g. assemblies of rectifier diodes
- H01L25/10—Assemblies consisting of a plurality of semiconductor or other solid state devices all the devices being of a type provided for in a single subclass of subclasses H10B, H10F, H10H, H10K or H10N, e.g. assemblies of rectifier diodes the devices having separate containers
- H01L25/105—Assemblies consisting of a plurality of semiconductor or other solid state devices all the devices being of a type provided for in a single subclass of subclasses H10B, H10F, H10H, H10K or H10N, e.g. assemblies of rectifier diodes the devices having separate containers the devices being integrated devices of class H10
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L25/00—Assemblies consisting of a plurality of semiconductor or other solid state devices
- H01L25/16—Assemblies consisting of a plurality of semiconductor or other solid state devices the devices being of types provided for in two or more different subclasses of H10B, H10D, H10F, H10H, H10K or H10N, e.g. forming hybrid circuits
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/50—Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the groups H01L21/18 - H01L21/326 or H10D48/04 - H10D48/07 e.g. sealing of a cap to a base of a container
- H01L21/56—Encapsulations, e.g. encapsulation layers, coatings
- H01L21/563—Encapsulation of active face of flip-chip device, e.g. underfilling or underencapsulation of flip-chip, encapsulation preform on chip or mounting substrate
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/02—Bonding areas; Manufacturing methods related thereto
- H01L2224/023—Redistribution layers [RDL] for bonding areas
- H01L2224/0237—Disposition of the redistribution layers
- H01L2224/02379—Fan-out arrangement
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/02—Bonding areas; Manufacturing methods related thereto
- H01L2224/04—Structure, shape, material or disposition of the bonding areas prior to the connecting process
- H01L2224/05—Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
- H01L2224/0554—External layer
- H01L2224/05541—Structure
- H01L2224/05548—Bonding area integrally formed with a redistribution layer on the semiconductor or solid-state body
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/02—Bonding areas; Manufacturing methods related thereto
- H01L2224/04—Structure, shape, material or disposition of the bonding areas prior to the connecting process
- H01L2224/05—Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
- H01L2224/0554—External layer
- H01L2224/05573—Single external layer
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2225/00—Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
- H01L2225/03—All the devices being of a type provided for in the same main group of the same subclass of class H10, e.g. assemblies of rectifier diodes
- H01L2225/10—All the devices being of a type provided for in the same main group of the same subclass of class H10, e.g. assemblies of rectifier diodes the devices having separate containers
- H01L2225/1005—All the devices being of a type provided for in the same main group of the same subclass of class H10, e.g. assemblies of rectifier diodes the devices having separate containers the devices being integrated devices of class H10
- H01L2225/1011—All the devices being of a type provided for in the same main group of the same subclass of class H10, e.g. assemblies of rectifier diodes the devices having separate containers the devices being integrated devices of class H10 the containers being in a stacked arrangement
- H01L2225/1017—All the devices being of a type provided for in the same main group of the same subclass of class H10, e.g. assemblies of rectifier diodes the devices having separate containers the devices being integrated devices of class H10 the containers being in a stacked arrangement the lowermost container comprising a device support
- H01L2225/1023—All the devices being of a type provided for in the same main group of the same subclass of class H10, e.g. assemblies of rectifier diodes the devices having separate containers the devices being integrated devices of class H10 the containers being in a stacked arrangement the lowermost container comprising a device support the support being an insulating substrate
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2225/00—Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
- H01L2225/03—All the devices being of a type provided for in the same main group of the same subclass of class H10, e.g. assemblies of rectifier diodes
- H01L2225/10—All the devices being of a type provided for in the same main group of the same subclass of class H10, e.g. assemblies of rectifier diodes the devices having separate containers
- H01L2225/1005—All the devices being of a type provided for in the same main group of the same subclass of class H10, e.g. assemblies of rectifier diodes the devices having separate containers the devices being integrated devices of class H10
- H01L2225/1011—All the devices being of a type provided for in the same main group of the same subclass of class H10, e.g. assemblies of rectifier diodes the devices having separate containers the devices being integrated devices of class H10 the containers being in a stacked arrangement
- H01L2225/1047—Details of electrical connections between containers
- H01L2225/1058—Bump or bump-like electrical connections, e.g. balls, pillars, posts
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/28—Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
- H01L23/31—Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
- H01L23/3107—Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed
- H01L23/3121—Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed a substrate forming part of the encapsulation
- H01L23/3128—Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed a substrate forming part of the encapsulation the substrate having spherical bumps for external connection
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/48—Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
- H01L23/488—Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
- H01L23/498—Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
- H01L23/49827—Via connections through the substrates, e.g. pins going through the substrate, coaxial cables
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L24/10—Bump connectors ; Manufacturing methods related thereto
- H01L24/12—Structure, shape, material or disposition of the bump connectors prior to the connecting process
- H01L24/13—Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L24/10—Bump connectors ; Manufacturing methods related thereto
- H01L24/15—Structure, shape, material or disposition of the bump connectors after the connecting process
- H01L24/16—Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/0001—Technical content checked by a classifier
- H01L2924/00014—Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/10—Details of semiconductor or other solid state devices to be connected
- H01L2924/11—Device type
- H01L2924/14—Integrated circuits
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/10—Details of semiconductor or other solid state devices to be connected
- H01L2924/11—Device type
- H01L2924/14—Integrated circuits
- H01L2924/143—Digital devices
- H01L2924/1433—Application-specific integrated circuit [ASIC]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/15—Details of package parts other than the semiconductor or other solid state devices to be connected
- H01L2924/151—Die mounting substrate
- H01L2924/1517—Multilayer substrate
- H01L2924/15172—Fan-out arrangement of the internal vias
- H01L2924/15174—Fan-out arrangement of the internal vias in different layers of the multilayer substrate
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/15—Details of package parts other than the semiconductor or other solid state devices to be connected
- H01L2924/151—Die mounting substrate
- H01L2924/153—Connection portion
- H01L2924/1531—Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
- H01L2924/15311—Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/15—Details of package parts other than the semiconductor or other solid state devices to be connected
- H01L2924/181—Encapsulation
- H01L2924/1815—Shape
- H01L2924/1816—Exposing the passive side of the semiconductor or solid-state body
- H01L2924/18161—Exposing the passive side of the semiconductor or solid-state body of a flip chip
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/19—Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
- H01L2924/1901—Structure
- H01L2924/1904—Component type
- H01L2924/19041—Component type being a capacitor
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/19—Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
- H01L2924/1901—Structure
- H01L2924/1904—Component type
- H01L2924/19042—Component type being an inductor
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/19—Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
- H01L2924/1901—Structure
- H01L2924/1904—Component type
- H01L2924/19043—Component type being a resistor
Definitions
- Embodiments of the present invention generally relate to the field of integrated circuit package design and, more particularly, to integrated circuit packages including high density bump-less build up layers and a lesser density core or coreless substrate.
- FIG. 1 is a graphical illustration of a cross-sectional view of a first package element including high density bump-less build up layers, in accordance with one example embodiment of the invention
- FIG. 2 is a graphical illustration of a cross-sectional view of a second package element including a lesser density core or coreless substrate, in accordance with one example embodiment of the invention
- FIG. 3 is a graphical illustration of an overhead view of an integrated circuit package, in accordance with one example embodiment of the invention.
- FIG. 4 is a block diagram of an example electronic appliance suitable for implementing an integrated circuit package, in accordance with one example embodiment of the invention.
- Fig. 1 is a graphical illustration of a cross-sectional view of a first package element including high density bump-less build up layers, in accordance with one example embodiment of the invention.
- first integrated circuit package element 100 includes one or more of microelectronic die 102, microelectronic die active surface 104, encapsulation material 106, microelectronic package core 108, first dielectric material layer 110, build-up layers 112, conductive traces 114, and conductive contacts 116.
- Microelectronic die 102 is intended to represent any type of integrated circuit die.
- microelectronic die 102 is a multi-core microprocessor.
- Microelectronic die 102 includes an active surface 104 which contains the electrical connections necessary to operate microelectronic die 102.
- Microelectronic die 102 is held in place on at least one side by encapsulation material 106.
- Encapsulation material 106 includes at least one surface substantially planar to active surface 104.
- active surface 104 is placed on a holding plate while encapsulation material 106 is disposed around microelectronic die 102.
- Encapsulation material 106 may extend over the back side (opposite active surface 104) of microelectronic die 102.
- Microelectronic package core 108 may be included in first integrated circuit package element 100 to provide mechanical support and stability during the build-up process. Microelectronic package core 108 may have an opening in which microelectronic die 102 is disposed. In one embodiment microelectronic package core 108 is not included in first integrated circuit package element 100, and encapsulation material 106 may be used to a greater extent. [0010] First dielectric material layer 110 is disposed on at least a portion of active surface 104 and encapsulation material 106. Build-up layers 112 are subsequently disposed on first dielectric material layer 110 using well known processing methods.
- Conductive traces 114 are disposed on first dielectric material layer 110 and build-up layers 112 and are in electrical contact with active surface 104. Conductive contacts 116 couple with conductive traces 114 and allow first integrated circuit package element 100 to be electrically coupled, for example by a solder connection, to second integrated circuit package element 200, which is described below. In one embodiment, conductive contacts 116 include solder bumps. In another embodiment, conductive contacts 116 include lands. [0012] Fig. 2 is a graphical illustration of a cross-sectional view of a second package element including a lesser density core or coreless substrate, in accordance with one example embodiment of the invention.
- second integrated circuit package element 200 includes one or more of substrate core 202, upper build-up layers 204, lower build-up layers 206, top surface 208, bottom surface 210, top conductive contacts 212, bottom conductive contacts 214, conductive traces 216, embedded components 218, top pitch 220, and bottom pitch 222.
- Second integrated circuit package element 200 is coupled with first integrated circuit package element 100 to form an integrated circuit package.
- Second integrated circuit package element 200 may include a substrate core 202 to provide mechanical support.
- Well known processing methods may be utilized to form upper build-up layers 204 and lower build-up layers 206.
- substrate core 202 is not included in second integrated circuit package element 200, and build-up layers alone, for example a multi-layer organic substrate, may be utilized.
- Top conductive contacts 212 are disposed on top surface 208. Top conductive contacts 212 allow second integrated circuit package element 200 to be electrically coupled, for example by a solder connection, to first integrated circuit package element 100. In one embodiment, top conductive contacts 212 include solder bumps. In another embodiment, top conductive contacts 212 include lands.
- Bottom conductive contacts 214 are disposed on bottom surface 208. Bottom conductive contacts 212 allow second integrated circuit package element 200 to be electrically coupled, for example by a socket connection, to other devices, for example a printed circuit board. In one embodiment, bottom conductive contacts 214 comprise a land grid array. In another embodiment, bottom conductive contacts 214 comprise a ball grid array. In another embodiment, bottom conductive contacts 214 comprise a pin grid array. [0016] Conductive traces 216 are routed through second integrated circuit package element 200 to conductively couple top conductive contacts 212 with bottom conductive contacts 214. [0017] Embedded components 218 may be included in the substrate of second integrated circuit package element 200. In one embodiment, embedded components 218 include at least one memory device.
- embedded components 218 include at least one discrete component such as a capacitor, inductor, resistor, logic device or the like.
- Second integrated circuit package element 200 is designed to transmit signals from a top pitch 220 to a bottom pitch 222.
- top pitch 220 is as fine as practicable to be able to form solder joint connections between first integrated circuit package element 100 and second integrated circuit package element 200.
- top pitch 220 is from about 80 to about 130 micrometers.
- bottom pitch 222 is from about 400 to about 800 micrometers.
- Fig. 3 is a graphical illustration of an overhead view of an integrated circuit package, in accordance with one example embodiment of the invention.
- integrated circuit package 300 includes a plurality of first package elements 100 coupled with a second package element 200. While shown as including four first package elements 100, any number may be included. In one embodiment, sixteen first package elements 100 are coupled with a second package element 200.
- An underfill material 302, such as an epoxy, may be flowed between first elements 100 and second element 200. Underfill material 302 may substantially fill the space between the connections, for example solder joint connections (not shown), between conductive contacts 116 and conductive contacts 212.
- solder joint connections not shown
- Electronic appliance 400 is intended to represent any of a wide variety of traditional and non-traditional electronic appliances, laptops, desktops, cell phones, wireless communication subscriber units, wireless communication telephony infrastructure elements, personal digital assistants, set-top boxes, or any electric appliance that would benefit from the teachings of the present invention.
- electronic appliance 400 may include one or more of processor(s) 402, memory controller 404, system memory 406, input/output controller 408, network controller 410, and input/output device(s) 412 coupled as shown in Fig. 4.
- Processor(s) 402, or other integrated circuit components of electronic appliance 400 may comprise a two element package as described previously as an embodiment of the present invention.
- Processor(s) 402 may represent any of a wide variety of control logic including, but not limited to one or more of a microprocessor, a programmable logic device (PLD), programmable logic array (PLA), application specific integrated circuit (ASIC), a microcontroller, and the like, although the present invention is not limited in this respect.
- processors(s) 402 are Intel® compatible processors.
- Processor(s) 402 may have an instruction set containing a plurality of machine level instructions that may be invoked, for example by an application or operating system.
- Memory controller 404 may represent any type of chipset or control logic that interfaces system memory 406 with the other components of electronic appliance 400.
- the connection between processor(s) 402 and memory controller 404 may be a point-to-point serial link.
- memory controller 404 may be referred to as a north bridge.
- System memory 406 may represent any type of memory device(s) used to store data and instructions that may have been or will be used by processor(s) 402. Typically, though the invention is not limited in this respect, system memory 406 will consist of dynamic random access memory (DRAM). In one embodiment, system memory 406 may consist of Rambus DRAM (RDRAM). In another embodiment, system memory 406 may consist of double data rate synchronous DRAM (DDRSDRAM).
- DRAM dynamic random access memory
- RDRAM Rambus DRAM
- DDRSDRAM double data rate synchronous DRAM
- I/O controller 408 may represent any type of chipset or control logic that interfaces I/O device(s) 412 with the other components of electronic appliance 400.
- I/O controller 408 may be referred to as a south bridge.
- I/O controller 408 may comply with the Peripheral Component Interconnect (PCI) ExpressTM Base Specification, Revision 1.0a, PCI Special Interest Group, released April 15, 2003.
- PCI Peripheral Component Interconnect
- Network controller 410 may represent any type of device that allows electronic appliance 400 to communicate with other electronic appliances or devices.
- network controller 410 may comply with a The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 802.11b standard (approved September 16, 1999, supplement to ANSI/IEEE Std 802.11, 1999 Edition).
- network controller 410 may be an Ethernet network interface card.
- I/O device(s) 412 may represent any type of device, peripheral or component that provides input to or processes output from electronic appliance 400.
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Production Of Multi-Layered Print Wiring Board (AREA)
- Structures For Mounting Electric Components On Printed Circuit Boards (AREA)
- Semiconductor Memories (AREA)
Abstract
Description
Claims
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE112008002459.6T DE112008002459B4 (en) | 2007-09-25 | 2008-09-17 | Integrated circuit devices with high-density bumpless picture-up layers and a substrate with a reduced-density core or a coreless substrate |
JP2010523204A JP2010538478A (en) | 2007-09-25 | 2008-09-17 | IC package with high density BLBU layer and low density or coreless substrate |
CN200880106620.6A CN101802991B (en) | 2007-09-25 | 2008-09-17 | Integrated circuit packages including high density bump-less build up layers and a lesser density core or coreless substrate |
KR1020107006459A KR101160405B1 (en) | 2007-09-25 | 2008-09-17 | Integrated circuit packages including high density bump-less build up layers and a lesser density core or coreless substrate |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/860,922 | 2007-09-25 | ||
US11/860,922 US9941245B2 (en) | 2007-09-25 | 2007-09-25 | Integrated circuit packages including high density bump-less build up layers and a lesser density core or coreless substrate |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2009042463A1 true WO2009042463A1 (en) | 2009-04-02 |
Family
ID=40511803
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2008/076654 WO2009042463A1 (en) | 2007-09-25 | 2008-09-17 | Integrated circuit packages including high density bump-less build up layers and a lesser density core or coreless substrate |
Country Status (7)
Country | Link |
---|---|
US (1) | US9941245B2 (en) |
JP (1) | JP2010538478A (en) |
KR (1) | KR101160405B1 (en) |
CN (1) | CN101802991B (en) |
DE (1) | DE112008002459B4 (en) |
TW (2) | TWI506744B (en) |
WO (1) | WO2009042463A1 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011116106A2 (en) | 2010-03-17 | 2011-09-22 | Intel Corporation | System-in-package using embedded-die coreless substrates, and processes of forming same |
WO2012061091A3 (en) * | 2010-11-05 | 2012-08-23 | Intel Corporation | Encapsulated die, microelectronic package containing same, and method of manufacturing said microelectronic package |
WO2014093317A1 (en) * | 2012-12-10 | 2014-06-19 | Invensas Corporation | High performance package on package |
CN105047630A (en) * | 2015-07-08 | 2015-11-11 | 华进半导体封装先导技术研发中心有限公司 | Chip back assembly active buried structure and manufacturing process thereof |
US9941245B2 (en) | 2007-09-25 | 2018-04-10 | Intel Corporation | Integrated circuit packages including high density bump-less build up layers and a lesser density core or coreless substrate |
Families Citing this family (70)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090079064A1 (en) * | 2007-09-25 | 2009-03-26 | Jiamiao Tang | Methods of forming a thin tim coreless high density bump-less package and structures formed thereby |
US8742561B2 (en) | 2009-12-29 | 2014-06-03 | Intel Corporation | Recessed and embedded die coreless package |
US8901724B2 (en) | 2009-12-29 | 2014-12-02 | Intel Corporation | Semiconductor package with embedded die and its methods of fabrication |
US8535989B2 (en) | 2010-04-02 | 2013-09-17 | Intel Corporation | Embedded semiconductive chips in reconstituted wafers, and systems containing same |
US8319318B2 (en) | 2010-04-06 | 2012-11-27 | Intel Corporation | Forming metal filled die back-side film for electromagnetic interference shielding with coreless packages |
US8618652B2 (en) | 2010-04-16 | 2013-12-31 | Intel Corporation | Forming functionalized carrier structures with coreless packages |
US8939347B2 (en) | 2010-04-28 | 2015-01-27 | Intel Corporation | Magnetic intermetallic compound interconnect |
US9847308B2 (en) | 2010-04-28 | 2017-12-19 | Intel Corporation | Magnetic intermetallic compound interconnect |
US8434668B2 (en) | 2010-05-12 | 2013-05-07 | Intel Corporation | Magnetic attachment structure |
US8313958B2 (en) | 2010-05-12 | 2012-11-20 | Intel Corporation | Magnetic microelectronic device attachment |
US8609532B2 (en) | 2010-05-26 | 2013-12-17 | Intel Corporation | Magnetically sintered conductive via |
US20120001339A1 (en) | 2010-06-30 | 2012-01-05 | Pramod Malatkar | Bumpless build-up layer package design with an interposer |
US8372666B2 (en) | 2010-07-06 | 2013-02-12 | Intel Corporation | Misalignment correction for embedded microelectronic die applications |
US8754516B2 (en) | 2010-08-26 | 2014-06-17 | Intel Corporation | Bumpless build-up layer package with pre-stacked microelectronic devices |
US8304913B2 (en) | 2010-09-24 | 2012-11-06 | Intel Corporation | Methods of forming fully embedded bumpless build-up layer packages and structures formed thereby |
US8937382B2 (en) | 2011-06-27 | 2015-01-20 | Intel Corporation | Secondary device integration into coreless microelectronic device packages |
US8848380B2 (en) | 2011-06-30 | 2014-09-30 | Intel Corporation | Bumpless build-up layer package warpage reduction |
US9490196B2 (en) | 2011-10-31 | 2016-11-08 | Intel Corporation | Multi die package having a die and a spacer layer in a recess |
WO2013172814A1 (en) | 2012-05-14 | 2013-11-21 | Intel Corporation | Microelectronic package utilizing multiple bumpless build-up structures and through-silicon vias |
US9685390B2 (en) | 2012-06-08 | 2017-06-20 | Intel Corporation | Microelectronic package having non-coplanar, encapsulated microelectronic devices and a bumpless build-up layer |
US20140091440A1 (en) * | 2012-09-29 | 2014-04-03 | Vijay K. Nair | System in package with embedded rf die in coreless substrate |
US9496195B2 (en) | 2012-10-02 | 2016-11-15 | STATS ChipPAC Pte. Ltd. | Semiconductor device and method of depositing encapsulant along sides and surface edge of semiconductor die in embedded WLCSP |
US9620413B2 (en) | 2012-10-02 | 2017-04-11 | STATS ChipPAC Pte. Ltd. | Semiconductor device and method of using a standardized carrier in semiconductor packaging |
US9721862B2 (en) | 2013-01-03 | 2017-08-01 | STATS ChipPAC Pte. Ltd. | Semiconductor device and method of using a standardized carrier to form embedded wafer level chip scale packages |
US9704824B2 (en) | 2013-01-03 | 2017-07-11 | STATS ChipPAC Pte. Ltd. | Semiconductor device and method of forming embedded wafer level chip scale packages |
US9583414B2 (en) | 2013-10-31 | 2017-02-28 | Qorvo Us, Inc. | Silicon-on-plastic semiconductor device and method of making the same |
US9812350B2 (en) | 2013-03-06 | 2017-11-07 | Qorvo Us, Inc. | Method of manufacture for a silicon-on-plastic semiconductor device with interfacial adhesion layer |
KR101488608B1 (en) | 2013-07-19 | 2015-02-02 | 앰코 테크놀로지 코리아 주식회사 | Semiconductor device and manufacturing method thereof |
US10085352B2 (en) | 2014-10-01 | 2018-09-25 | Qorvo Us, Inc. | Method for manufacturing an integrated circuit package |
US10121718B2 (en) | 2014-11-03 | 2018-11-06 | Qorvo Us, Inc. | Printed circuit module having a semiconductor device with a protective layer in place of a low-resistivity handle layer |
US9613831B2 (en) | 2015-03-25 | 2017-04-04 | Qorvo Us, Inc. | Encapsulated dies with enhanced thermal performance |
US20160343604A1 (en) | 2015-05-22 | 2016-11-24 | Rf Micro Devices, Inc. | Substrate structure with embedded layer for post-processing silicon handle elimination |
US10276495B2 (en) | 2015-09-11 | 2019-04-30 | Qorvo Us, Inc. | Backside semiconductor die trimming |
US10020405B2 (en) | 2016-01-19 | 2018-07-10 | Qorvo Us, Inc. | Microelectronics package with integrated sensors |
US10062583B2 (en) | 2016-05-09 | 2018-08-28 | Qorvo Us, Inc. | Microelectronics package with inductive element and magnetically enhanced mold compound component |
US10468329B2 (en) | 2016-07-18 | 2019-11-05 | Qorvo Us, Inc. | Thermally enhanced semiconductor package having field effect transistors with back-gate feature |
US10773952B2 (en) | 2016-05-20 | 2020-09-15 | Qorvo Us, Inc. | Wafer-level package with enhanced performance |
US10784149B2 (en) | 2016-05-20 | 2020-09-22 | Qorvo Us, Inc. | Air-cavity module with enhanced device isolation |
US10103080B2 (en) | 2016-06-10 | 2018-10-16 | Qorvo Us, Inc. | Thermally enhanced semiconductor package with thermal additive and process for making the same |
US10109550B2 (en) | 2016-08-12 | 2018-10-23 | Qorvo Us, Inc. | Wafer-level package with enhanced performance |
WO2018031994A1 (en) | 2016-08-12 | 2018-02-15 | Qorvo Us, Inc. | Wafer-level package with enhanced performance |
SG11201901196RA (en) * | 2016-08-12 | 2019-03-28 | Qorvo Us Inc | Wafer-level package with enhanced performance |
US10109502B2 (en) | 2016-09-12 | 2018-10-23 | Qorvo Us, Inc. | Semiconductor package with reduced parasitic coupling effects and process for making the same |
US10090339B2 (en) | 2016-10-21 | 2018-10-02 | Qorvo Us, Inc. | Radio frequency (RF) switch |
US10749518B2 (en) | 2016-11-18 | 2020-08-18 | Qorvo Us, Inc. | Stacked field-effect transistor switch |
US10068831B2 (en) | 2016-12-09 | 2018-09-04 | Qorvo Us, Inc. | Thermally enhanced semiconductor package and process for making the same |
US10755992B2 (en) | 2017-07-06 | 2020-08-25 | Qorvo Us, Inc. | Wafer-level packaging for enhanced performance |
CN109300794B (en) * | 2017-07-25 | 2021-02-02 | 中芯国际集成电路制造(上海)有限公司 | Package structure and method for forming the same |
US10366972B2 (en) | 2017-09-05 | 2019-07-30 | Qorvo Us, Inc. | Microelectronics package with self-aligned stacked-die assembly |
US10784233B2 (en) | 2017-09-05 | 2020-09-22 | Qorvo Us, Inc. | Microelectronics package with self-aligned stacked-die assembly |
US11152363B2 (en) | 2018-03-28 | 2021-10-19 | Qorvo Us, Inc. | Bulk CMOS devices with enhanced performance and methods of forming the same utilizing bulk CMOS process |
WO2019195428A1 (en) | 2018-04-04 | 2019-10-10 | Qorvo Us, Inc. | Gallium-nitride-based module with enhanced electrical performance and process for making the same |
US12046505B2 (en) | 2018-04-20 | 2024-07-23 | Qorvo Us, Inc. | RF devices with enhanced performance and methods of forming the same utilizing localized SOI formation |
US10804246B2 (en) | 2018-06-11 | 2020-10-13 | Qorvo Us, Inc. | Microelectronics package with vertically stacked dies |
WO2020009759A1 (en) | 2018-07-02 | 2020-01-09 | Qorvo Us, Inc. | Rf semiconductor device and manufacturing method thereof |
US11069590B2 (en) | 2018-10-10 | 2021-07-20 | Qorvo Us, Inc. | Wafer-level fan-out package with enhanced performance |
US10964554B2 (en) | 2018-10-10 | 2021-03-30 | Qorvo Us, Inc. | Wafer-level fan-out package with enhanced performance |
US11646242B2 (en) | 2018-11-29 | 2023-05-09 | Qorvo Us, Inc. | Thermally enhanced semiconductor package with at least one heat extractor and process for making the same |
KR102595864B1 (en) * | 2018-12-07 | 2023-10-30 | 삼성전자주식회사 | Semiconductor package |
US12046483B2 (en) | 2019-01-23 | 2024-07-23 | Qorvo Us, Inc. | RF devices with enhanced performance and methods of forming the same |
KR102771428B1 (en) | 2019-01-23 | 2025-02-26 | 코르보 유에스, 인크. | RF semiconductor device and method for forming the same |
US12046570B2 (en) | 2019-01-23 | 2024-07-23 | Qorvo Us, Inc. | RF devices with enhanced performance and methods of forming the same |
US11387157B2 (en) | 2019-01-23 | 2022-07-12 | Qorvo Us, Inc. | RF devices with enhanced performance and methods of forming the same |
US12057374B2 (en) | 2019-01-23 | 2024-08-06 | Qorvo Us, Inc. | RF devices with enhanced performance and methods of forming the same |
US12125825B2 (en) | 2019-01-23 | 2024-10-22 | Qorvo Us, Inc. | RF devices with enhanced performance and methods of forming the same |
US12074086B2 (en) | 2019-11-01 | 2024-08-27 | Qorvo Us, Inc. | RF devices with nanotube particles for enhanced performance and methods of forming the same |
US11646289B2 (en) | 2019-12-02 | 2023-05-09 | Qorvo Us, Inc. | RF devices with enhanced performance and methods of forming the same |
US11923238B2 (en) | 2019-12-12 | 2024-03-05 | Qorvo Us, Inc. | Method of forming RF devices with enhanced performance including attaching a wafer to a support carrier by a bonding technique without any polymer adhesive |
US12129168B2 (en) | 2019-12-23 | 2024-10-29 | Qorvo Us, Inc. | Microelectronics package with vertically stacked MEMS device and controller device |
WO2022186857A1 (en) | 2021-03-05 | 2022-09-09 | Qorvo Us, Inc. | Selective etching process for si-ge and doped epitaxial silicon |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020074641A1 (en) * | 2000-12-15 | 2002-06-20 | Steven Towle | Microelectronic package having a bumpless laminated interconnection layer |
US6970362B1 (en) * | 2000-07-31 | 2005-11-29 | Intel Corporation | Electronic assemblies and systems comprising interposer with embedded capacitors |
US20070057375A1 (en) * | 2005-09-14 | 2007-03-15 | Shinko Electric Industries Co., Ltd. | Multilayered wiring substrate and manufacturing method thereof |
US20070074900A1 (en) * | 2005-10-04 | 2007-04-05 | Samsung Electro-Mechanics Co., Ltd. | Printed circuit board and manufacturing method thereof |
Family Cites Families (71)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2636777B2 (en) * | 1995-02-14 | 1997-07-30 | 日本電気株式会社 | Semiconductor module for microprocessor |
US6461895B1 (en) * | 1999-01-05 | 2002-10-08 | Intel Corporation | Process for making active interposer for high performance packaging applications |
US7382142B2 (en) * | 2000-05-23 | 2008-06-03 | Nanonexus, Inc. | High density interconnect system having rapid fabrication cycle |
US6271469B1 (en) * | 1999-11-12 | 2001-08-07 | Intel Corporation | Direct build-up layer on an encapsulated die package |
US6154366A (en) * | 1999-11-23 | 2000-11-28 | Intel Corporation | Structures and processes for fabricating moisture resistant chip-on-flex packages |
US6586836B1 (en) * | 2000-03-01 | 2003-07-01 | Intel Corporation | Process for forming microelectronic packages and intermediate structures formed therewith |
EP1150152A1 (en) | 2000-04-25 | 2001-10-31 | Hewlett-Packard Company, A Delaware Corporation | Optical assembly mounting |
US7579848B2 (en) * | 2000-05-23 | 2009-08-25 | Nanonexus, Inc. | High density interconnect system for IC packages and interconnect assemblies |
US20020020898A1 (en) * | 2000-08-16 | 2002-02-21 | Vu Quat T. | Microelectronic substrates with integrated devices |
US6734534B1 (en) * | 2000-08-16 | 2004-05-11 | Intel Corporation | Microelectronic substrate with integrated devices |
US6586822B1 (en) * | 2000-09-08 | 2003-07-01 | Intel Corporation | Integrated core microelectronic package |
US6713859B1 (en) * | 2000-09-13 | 2004-03-30 | Intel Corporation | Direct build-up layer on an encapsulated die package having a moisture barrier structure |
US6489185B1 (en) * | 2000-09-13 | 2002-12-03 | Intel Corporation | Protective film for the fabrication of direct build-up layers on an encapsulated die package |
US6617682B1 (en) * | 2000-09-28 | 2003-09-09 | Intel Corporation | Structure for reducing die corner and edge stresses in microelectronic packages |
US6709898B1 (en) * | 2000-10-04 | 2004-03-23 | Intel Corporation | Die-in-heat spreader microelectronic package |
US6423570B1 (en) * | 2000-10-18 | 2002-07-23 | Intel Corporation | Method to protect an encapsulated die package during back grinding with a solder metallization layer and devices formed thereby |
US20020070443A1 (en) * | 2000-12-08 | 2002-06-13 | Xiao-Chun Mu | Microelectronic package having an integrated heat sink and build-up layers |
US6706553B2 (en) * | 2001-03-26 | 2004-03-16 | Intel Corporation | Dispensing process for fabrication of microelectronic packages |
US6888240B2 (en) * | 2001-04-30 | 2005-05-03 | Intel Corporation | High performance, low cost microelectronic circuit package with interposer |
US6894399B2 (en) * | 2001-04-30 | 2005-05-17 | Intel Corporation | Microelectronic device having signal distribution functionality on an interfacial layer thereof |
US7071024B2 (en) * | 2001-05-21 | 2006-07-04 | Intel Corporation | Method for packaging a microelectronic device using on-die bond pad expansion |
US6586276B2 (en) * | 2001-07-11 | 2003-07-01 | Intel Corporation | Method for fabricating a microelectronic device using wafer-level adhesion layer deposition |
US7183658B2 (en) * | 2001-09-05 | 2007-02-27 | Intel Corporation | Low cost microelectronic circuit package |
US7045890B2 (en) * | 2001-09-28 | 2006-05-16 | Intel Corporation | Heat spreader and stiffener having a stiffener extension |
US7173329B2 (en) * | 2001-09-28 | 2007-02-06 | Intel Corporation | Package stiffener |
US6535388B1 (en) | 2001-10-04 | 2003-03-18 | Intel Corporation | Wirebonded microelectronic packages including heat dissipation devices for heat removal from active surfaces thereof |
US6504242B1 (en) | 2001-11-15 | 2003-01-07 | Intel Corporation | Electronic assembly having a wetting layer on a thermally conductive heat spreader |
JP2003163323A (en) | 2001-11-27 | 2003-06-06 | Sony Corp | Circuit module and manufacturing method thereof |
US20050136640A1 (en) * | 2002-01-07 | 2005-06-23 | Chuan Hu | Die exhibiting an effective coefficient of thermal expansion equivalent to a substrate mounted thereon, and processes of making same |
US6841413B2 (en) * | 2002-01-07 | 2005-01-11 | Intel Corporation | Thinned die integrated circuit package |
US6710444B2 (en) * | 2002-03-21 | 2004-03-23 | Intel Corporation | Molded substrate stiffener with embedded capacitors |
US7102367B2 (en) * | 2002-07-23 | 2006-09-05 | Fujitsu Limited | Probe card and testing method of semiconductor chip, capacitor and manufacturing method thereof |
US7371975B2 (en) * | 2002-12-18 | 2008-05-13 | Intel Corporation | Electronic packages and components thereof formed by substrate-imprinting |
JP2004327940A (en) | 2003-04-28 | 2004-11-18 | Ngk Spark Plug Co Ltd | Wiring board and its manufacturing process |
JP2005011837A (en) * | 2003-06-16 | 2005-01-13 | Nippon Micron Kk | Semiconductor device, substrate therefor, and its manufacturing method |
FI20031201L (en) | 2003-08-26 | 2005-02-27 | Imbera Electronics Oy | Method for manufacturing an electronic module and electronic module |
CN100485913C (en) * | 2004-02-24 | 2009-05-06 | 揖斐电株式会社 | Substrate for mounting semiconductor |
US7095108B2 (en) * | 2004-05-05 | 2006-08-22 | Intel Corporation | Array capacitors in interposers, and methods of using same |
US7391110B2 (en) * | 2004-06-17 | 2008-06-24 | Apple Inc. | Apparatus for providing capacitive decoupling between on-die power and ground conductors |
US7446389B2 (en) * | 2004-06-17 | 2008-11-04 | Apple Inc. | Semiconductor die package with internal bypass capacitors |
US7335979B2 (en) * | 2004-06-28 | 2008-02-26 | Intel Corporation | Device and method for tilted land grid array interconnects on a coreless substrate package |
US20050287714A1 (en) * | 2004-06-29 | 2005-12-29 | Michael Walk | Enhancing epoxy strength using kaolin filler |
US7390740B2 (en) * | 2004-09-02 | 2008-06-24 | Micron Technology, Inc. | Sloped vias in a substrate, spring-like contacts, and methods of making |
US7335608B2 (en) * | 2004-09-22 | 2008-02-26 | Intel Corporation | Materials, structures and methods for microelectronic packaging |
US7613007B2 (en) * | 2004-12-21 | 2009-11-03 | E. I. Du Pont De Nemours And Company | Power core devices |
KR100716815B1 (en) * | 2005-02-28 | 2007-05-09 | 삼성전기주식회사 | Chip embedded printed circuit board and its manufacturing method |
JP2006351565A (en) * | 2005-06-13 | 2006-12-28 | Shinko Electric Ind Co Ltd | Stacked semiconductor package |
JP5021472B2 (en) * | 2005-06-30 | 2012-09-05 | イビデン株式会社 | Method for manufacturing printed wiring board |
US7932471B2 (en) * | 2005-08-05 | 2011-04-26 | Ngk Spark Plug Co., Ltd. | Capacitor for incorporation in wiring board, wiring board, method of manufacturing wiring board, and ceramic chip for embedment |
US20070057475A1 (en) | 2005-09-09 | 2007-03-15 | Polymer Logistics B.V. | Combination dolly-pallet |
US7456459B2 (en) * | 2005-10-21 | 2008-11-25 | Georgia Tech Research Corporation | Design of low inductance embedded capacitor layer connections |
JP2007123524A (en) * | 2005-10-27 | 2007-05-17 | Shinko Electric Ind Co Ltd | Substrate with built-in electronic part |
KR101248738B1 (en) * | 2005-12-07 | 2013-03-28 | 엔지케이 스파크 플러그 캄파니 리미티드 | Dielectric lamination structure, manufacturing method of a dielectric lamination structure, and wiring board including a dielectric lamination structure |
EP1962342A4 (en) * | 2005-12-14 | 2010-09-01 | Shinko Electric Ind Co | Substrate with built-in chip and method for manufacturing substrate with built-in chip |
US7279795B2 (en) * | 2005-12-29 | 2007-10-09 | Intel Corporation | Stacked die semiconductor package |
US7863727B2 (en) * | 2006-02-06 | 2011-01-04 | Micron Technology, Inc. | Microelectronic devices and methods for manufacturing microelectronic devices |
JP4912716B2 (en) * | 2006-03-29 | 2012-04-11 | 新光電気工業株式会社 | Wiring substrate manufacturing method and semiconductor device manufacturing method |
US7353591B2 (en) * | 2006-04-18 | 2008-04-08 | Kinsus Interconnect Technology Corp. | Method of manufacturing coreless substrate |
US7902660B1 (en) * | 2006-05-24 | 2011-03-08 | Amkor Technology, Inc. | Substrate for semiconductor device and manufacturing method thereof |
US7999383B2 (en) * | 2006-07-21 | 2011-08-16 | Bae Systems Information And Electronic Systems Integration Inc. | High speed, high density, low power die interconnect system |
KR100796523B1 (en) * | 2006-08-17 | 2008-01-21 | 삼성전기주식회사 | Electronic component embedded multilayer printed circuit board and its manufacturing method |
US7749882B2 (en) * | 2006-08-23 | 2010-07-06 | Micron Technology, Inc. | Packaged microelectronic devices and methods for manufacturing packaged microelectronic devices |
WO2008032620A1 (en) * | 2006-09-13 | 2008-03-20 | Sumitomo Bakelite Co., Ltd. | Semiconductor device |
SG143098A1 (en) * | 2006-12-04 | 2008-06-27 | Micron Technology Inc | Packaged microelectronic devices and methods for manufacturing packaged microelectronic devices |
US7808797B2 (en) * | 2006-12-11 | 2010-10-05 | Intel Corporation | Microelectronic substrate including embedded components and spacer layer and method of forming same |
US20080145622A1 (en) * | 2006-12-14 | 2008-06-19 | Roy Mihir K | Polymer-based integrated thin film capacitors, packages containing same and methods related thereto |
US8476735B2 (en) * | 2007-05-29 | 2013-07-02 | Taiwan Semiconductor Manufacturing Company, Ltd. | Programmable semiconductor interposer for electronic package and method of forming |
US20090001528A1 (en) * | 2007-06-27 | 2009-01-01 | Henning Braunisch | Lowering resistance in a coreless package |
US20090072382A1 (en) * | 2007-09-18 | 2009-03-19 | Guzek John S | Microelectronic package and method of forming same |
US20090079064A1 (en) * | 2007-09-25 | 2009-03-26 | Jiamiao Tang | Methods of forming a thin tim coreless high density bump-less package and structures formed thereby |
US9941245B2 (en) | 2007-09-25 | 2018-04-10 | Intel Corporation | Integrated circuit packages including high density bump-less build up layers and a lesser density core or coreless substrate |
-
2007
- 2007-09-25 US US11/860,922 patent/US9941245B2/en active Active
-
2008
- 2008-09-17 DE DE112008002459.6T patent/DE112008002459B4/en active Active
- 2008-09-17 JP JP2010523204A patent/JP2010538478A/en active Pending
- 2008-09-17 WO PCT/US2008/076654 patent/WO2009042463A1/en active Application Filing
- 2008-09-17 CN CN200880106620.6A patent/CN101802991B/en active Active
- 2008-09-17 KR KR1020107006459A patent/KR101160405B1/en active IP Right Grant
- 2008-09-19 TW TW097136112A patent/TWI506744B/en active
- 2008-09-19 TW TW104112066A patent/TWI637472B/en active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6970362B1 (en) * | 2000-07-31 | 2005-11-29 | Intel Corporation | Electronic assemblies and systems comprising interposer with embedded capacitors |
US20020074641A1 (en) * | 2000-12-15 | 2002-06-20 | Steven Towle | Microelectronic package having a bumpless laminated interconnection layer |
US20070057375A1 (en) * | 2005-09-14 | 2007-03-15 | Shinko Electric Industries Co., Ltd. | Multilayered wiring substrate and manufacturing method thereof |
US20070074900A1 (en) * | 2005-10-04 | 2007-04-05 | Samsung Electro-Mechanics Co., Ltd. | Printed circuit board and manufacturing method thereof |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9941245B2 (en) | 2007-09-25 | 2018-04-10 | Intel Corporation | Integrated circuit packages including high density bump-less build up layers and a lesser density core or coreless substrate |
EP2548225A4 (en) * | 2010-03-17 | 2013-12-25 | Intel Corp | PACKAGED SYSTEM WITH CORELESS SUBSTRATES WITH EMBEDDED MATRICES AND PROCESS FOR THEIR FORMATION |
CN102812550A (en) * | 2010-03-17 | 2012-12-05 | 英特尔公司 | System-in-package using embedded-die coreless substrates, and processes of forming same |
EP2548225A2 (en) * | 2010-03-17 | 2013-01-23 | Intel Corporation | System-in-package using embedded-die coreless substrates, and processes of forming same |
WO2011116106A2 (en) | 2010-03-17 | 2011-09-22 | Intel Corporation | System-in-package using embedded-die coreless substrates, and processes of forming same |
US8891246B2 (en) | 2010-03-17 | 2014-11-18 | Intel Corporation | System-in-package using embedded-die coreless substrates, and processes of forming same |
WO2011116106A3 (en) * | 2010-03-17 | 2012-01-12 | Intel Corporation | System-in-package using embedded-die coreless substrates, and processes of forming same |
WO2012061091A3 (en) * | 2010-11-05 | 2012-08-23 | Intel Corporation | Encapsulated die, microelectronic package containing same, and method of manufacturing said microelectronic package |
CN103201833A (en) * | 2010-11-05 | 2013-07-10 | 英特尔公司 | Encapsulated die, microelectronic package containing same, and method of manufacturing said microelectronic package |
WO2014093317A1 (en) * | 2012-12-10 | 2014-06-19 | Invensas Corporation | High performance package on package |
CN104937716A (en) * | 2012-12-10 | 2015-09-23 | 伊文萨思公司 | High performance package on package |
US9165906B2 (en) | 2012-12-10 | 2015-10-20 | Invensas Corporation | High performance package on package |
CN104937716B (en) * | 2012-12-10 | 2018-06-19 | 伊文萨思公司 | Packaging body is laminated in high-performance |
CN105047630A (en) * | 2015-07-08 | 2015-11-11 | 华进半导体封装先导技术研发中心有限公司 | Chip back assembly active buried structure and manufacturing process thereof |
Also Published As
Publication number | Publication date |
---|---|
TW201535642A (en) | 2015-09-16 |
DE112008002459T5 (en) | 2010-11-25 |
US9941245B2 (en) | 2018-04-10 |
DE112008002459B4 (en) | 2021-07-22 |
KR20100050556A (en) | 2010-05-13 |
KR101160405B1 (en) | 2012-07-13 |
CN101802991B (en) | 2014-04-02 |
TW200933843A (en) | 2009-08-01 |
TWI506744B (en) | 2015-11-01 |
US20110101491A1 (en) | 2011-05-05 |
TWI637472B (en) | 2018-10-01 |
JP2010538478A (en) | 2010-12-09 |
CN101802991A (en) | 2010-08-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9941245B2 (en) | Integrated circuit packages including high density bump-less build up layers and a lesser density core or coreless substrate | |
US8093704B2 (en) | Package on package using a bump-less build up layer (BBUL) package | |
US20080315388A1 (en) | Vertical controlled side chip connection for 3d processor package | |
US20150022985A1 (en) | Device-embedded package substrate and semiconductor package including the same | |
US10784202B2 (en) | High-density chip-to-chip interconnection with silicon bridge | |
US8084856B2 (en) | Thermal spacer for stacked die package thermal management | |
WO2021040877A1 (en) | Molded silicon interconnects in bridges for integrated-circuit packages | |
CN111095549A (en) | Patch accommodating embedded die with different thicknesses | |
US20140374900A1 (en) | Semiconductor package and method of fabricating the same | |
US20080079139A1 (en) | Micro-via structure design for high performance integrated circuits | |
US8723315B2 (en) | Flip chip package | |
US11410981B2 (en) | Graphics processing unit and high bandwidth memory integration using integrated interface and silicon interposer | |
US11328997B2 (en) | Through-core via | |
US20080128854A1 (en) | Embedded array capacitor with top and bottom exterior surface metallization | |
US20080157313A1 (en) | Array capacitor for decoupling multiple voltages | |
CN112786529A (en) | High density pillar interconnect conversion with stack-to-substrate connection | |
US20080079147A1 (en) | Embedded array capacitor with side terminals | |
US20120168937A1 (en) | Flip chip package and method of manufacturing the same | |
US20090321925A1 (en) | Injection molded metal ic package stiffener and package-to-package interconnect frame | |
TW202504045A (en) | Semiconductor device, electronic device and electronic system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200880106620.6 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 08833493 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2010523204 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1120080024596 Country of ref document: DE |
|
ENP | Entry into the national phase |
Ref document number: 20107006459 Country of ref document: KR Kind code of ref document: A |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 08833493 Country of ref document: EP Kind code of ref document: A1 |
|
RET | De translation (de og part 6b) |
Ref document number: 112008002459 Country of ref document: DE Date of ref document: 20101125 Kind code of ref document: P |