WO2009027674A1 - Inductive power supply - Google Patents
Inductive power supply Download PDFInfo
- Publication number
- WO2009027674A1 WO2009027674A1 PCT/GB2008/002906 GB2008002906W WO2009027674A1 WO 2009027674 A1 WO2009027674 A1 WO 2009027674A1 GB 2008002906 W GB2008002906 W GB 2008002906W WO 2009027674 A1 WO2009027674 A1 WO 2009027674A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- field generators
- secondary device
- primary unit
- power transfer
- field
- Prior art date
Links
- 230000001939 inductive effect Effects 0.000 title claims abstract description 31
- 238000012546 transfer Methods 0.000 claims abstract description 199
- 230000005291 magnetic effect Effects 0.000 claims abstract description 94
- 230000004907 flux Effects 0.000 claims abstract description 49
- 230000005672 electromagnetic field Effects 0.000 claims abstract description 22
- 238000000034 method Methods 0.000 claims description 73
- 239000000696 magnetic material Substances 0.000 claims description 25
- 230000003213 activating effect Effects 0.000 claims description 24
- 230000005674 electromagnetic induction Effects 0.000 claims description 24
- 238000004891 communication Methods 0.000 claims description 20
- 238000004590 computer program Methods 0.000 claims description 6
- 230000004913 activation Effects 0.000 claims 2
- 238000001514 detection method Methods 0.000 claims 2
- 230000008878 coupling Effects 0.000 description 20
- 238000010168 coupling process Methods 0.000 description 20
- 238000005859 coupling reaction Methods 0.000 description 20
- 230000008901 benefit Effects 0.000 description 13
- 229910000859 α-Fe Inorganic materials 0.000 description 11
- 230000001276 controlling effect Effects 0.000 description 8
- 239000003990 capacitor Substances 0.000 description 7
- 238000010586 diagram Methods 0.000 description 6
- 230000005540 biological transmission Effects 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- 229910052751 metal Inorganic materials 0.000 description 5
- 238000012360 testing method Methods 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 4
- 230000008859 change Effects 0.000 description 3
- 230000009977 dual effect Effects 0.000 description 3
- 239000005300 metallic glass Substances 0.000 description 3
- 230000004044 response Effects 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical group [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 238000004804 winding Methods 0.000 description 2
- 230000004075 alteration Effects 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000002500 effect on skin Effects 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000009738 saturating Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B5/00—Near-field transmission systems, e.g. inductive or capacitive transmission systems
- H04B5/70—Near-field transmission systems, e.g. inductive or capacitive transmission systems specially adapted for specific purposes
- H04B5/79—Near-field transmission systems, e.g. inductive or capacitive transmission systems specially adapted for specific purposes for data transfer in combination with power transfer
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F38/00—Adaptations of transformers or inductances for specific applications or functions
- H01F38/14—Inductive couplings
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J50/00—Circuit arrangements or systems for wireless supply or distribution of electric power
- H02J50/10—Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
- H02J50/12—Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B5/00—Near-field transmission systems, e.g. inductive or capacitive transmission systems
- H04B5/20—Near-field transmission systems, e.g. inductive or capacitive transmission systems characterised by the transmission technique; characterised by the transmission medium
- H04B5/24—Inductive coupling
- H04B5/26—Inductive coupling using coils
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F38/00—Adaptations of transformers or inductances for specific applications or functions
- H01F38/14—Inductive couplings
- H01F2038/146—Inductive couplings in combination with capacitive coupling
Definitions
- a recharging pad has been proposed in which there is a surface upon which devices may be placed in order to receive power wirelessly. This removes the need to physically connect a power cable to the portable device. It may also be designed such that a range of different models and types of device can share the same charger. Further, it may be large enough to accommodate more than one device, so that multiple devices can be recharged simultaneously. However, it is particularly advantageous if it is possible to simply drop the device onto the pad without having regard for the position or orientation of the device on the pad.
- both of the above systems achieve freedom of placement of the portable device by generating a uniform field across the full surface of the pad.
- This has two disadvantages: Firstly, since the whole device is in the magnetic field, the field will couple to metal in the portable device; this sets up Eddy currents which results in losses and consequently power dissipation causing the device to heat up. Secondly, generating a field over the entire surface results in a low coupling between the recharger and the device coils, and high losses. Again any losses present will result in power dissipation and heat generation.
- a system for transferring power from a primary unit to a secondary device, separable from the primary unit, by electromagnetic induction comprising: a power transfer surface; a plurality of field generators, each able to generate a field substantially perpendicular to the power transfer surface; at least one secondary device comprising: a power receiver comprising a secondary coil such that when the secondary device is in its working disposition the coil axis is substantially parallel to the power transfer surface; wherein magnetic flux from at least one field generator flows through the secondary coil, supplying power to the secondary device.
- a system for transferring power from a primary unit to a secondary device, separable from the primary unit, by electromagnetic induction comprising: a power transfer surface; a plurality of field generators, each able to generate a field substantially perpendicular to the power transfer surface; sensing means for determining the position of a power receiver within a secondary device relative to the power transfer surface; switching means for activating one or more field generators at least one secondary device comprising: a power receiver comprising a secondary coil such that when the secondary device is in its working disposition the coil axis is substantially parallel to the power transfer surface; wherein the sensing means determines the position of the power receiver, and in dependence the switching means acts to activate at least one field generator such that
- a system for transferring power from a primary unit to a secondary device, separable from the primary unit, by electromagnetic induction comprising: a power transfer surface; a plurality of field generators, each able to generate a field substantially perpendicular to the power transfer surface; sensing means for determining the position of a power receiver within a secondary device relative to the power transfer surface; switching means for activating the field generators at least one secondary device comprising: a power receiver comprising a secondary coil such that when the secondary device is in its working disposition the coil axis is substantially parallel to the power transfer surface; wherein the sensing means determines the position of the receiver; wherein the switching means acts to activate a first field generator; wherein the switching means acts
- This aspect has the advantage that the secondary device may be placed anywhere on or in proximity to the power transfer surface to receive power, but at the same time the field is localised to the vicinity of the power receiver within the secondary device such that coupling to the rest of the portable device is minimised.
- a system for transferring power from a primary unit to a secondary device, separable from the primary unit, by electromagnetic induction comprising: a power transfer surface; a plurality of field generators, each able to generate a field substantially perpendicular to the power transfer surface; sensing means for determining the position of a power receiver within a secondary device relative to the power transfer surface; switching means for supplying current from the current generator to the primary coils; at least one secondary device comprising: a power receiver comprising a core and a secondary coil wound around the core; wherein when the secondary device is in its working disposition the coil axis is substantially parallel to the power transfer surface; wherein the sensing means determines the position of the receiver, wherein the switching means acts to activate a first field generator in proximity to a first end of the power receiver; wherein the switching means acts to activate a second field generator in proximity to a second end of the power receiver such that the field generated is in the opposite sense to the first field generator; where
- This aspect has the advantage that the secondary device may be placed anywhere on or in proximity to the power transfer surface to receive power, but at the same time the field is localised to the vicinity of the power receiver within the secondary device such that coupling to the rest of the portable device is minimised.
- a system for transferring power from a primary unit to a secondary device, separable from the primary unit, by electromagnetic induction comprising: a power transfer surface; a plurality of primary coils, each with an axis substantially perpendicular to the power transfer surface; a current generator for supplying an alternating current to the primary coils; at least one secondary device comprising: a power receiver comprising a secondary coil such that when the secondary device is in its working disposition the coil axis is substantially parallel to the power transfer surface; wherein the current generator supplies current to at least one primary coil such that a magnetic flux flows through the secondary coil, supplying power to the secondary device.
- This aspect has the advantage that the secondary device may be placed anywhere on or in proximity to the power transfer surface to receive power, but at the same time the field is localised to the vicinity of the power receiver within the secondary device such that coupling to the rest of the portable device is minimised.
- a system for transferring power from a primary unit to a secondary device, separable from the primary unit, by electromagnetic induction comprising: a power transfer surface; a plurality of primary coils, each with an axis substantially perpendicular to the power transfer surface; a current generator for generating an alternating current; sensing means for determining the position of a power receiver within the secondary device relative to the power transfer surface; switching means for supplying current from the current generator to the primary coils; at least one secondary device comprising: a power receiver comprising a secondary coil such that when the secondary device is in its working disposition the coil axis is substantially parallel to the power transfer surface; wherein the sensing means determines the position of the receiver, and in dependence the switching means acts to supply current to at least one primary coil such that a magnetic flux flows through the secondary coil, supplying power to the secondary device.
- This aspect has the advantage that the secondary device may be placed anywhere on or in proximity to the power transfer surface to receive power, but at the same
- a system for transferring power from a primary unit to a secondary device, separable from the primary unit, by electromagnetic induction comprising: a power transfer surface; a plurality of primary coils, each with an axis substantially perpendicular to the power transfer surface; a current generator for generating an alternating current; sensing means for determining the position of a power receiver within a secondary device relative to the power transfer surface; switching means for supplying current from the current generator to the primary coils; the secondary device comprising: a power receiver comprising a secondary coil such that when the secondary device is in its working disposition the coil axis is substantially parallel to the power transfer surface; wherein the sensing means determines the position of the receiver, and in dependence the switching means acts to supply current in one sense to at least one primary coil and current in the opposite sense to at least one primary coil, such that a magnetic flux flows through the secondary coil, supplying power to the secondary device.
- This aspect has the advantage that the secondary device may be placed anywhere on or in proximity to the power transfer surface to receive power, but at the same time the field is localised to the vicinity of the power receiver within the secondary device such that coupling to the rest of the portable device is minimised.
- a system for transferring power from a primary unit to a secondary device, separable from the primary unit, by electromagnetic induction comprising: a power transfer surface; a plurality of primary coils, each with an axis substantially perpendicular to the power transfer surface; a current generator for generating an alternating current; sensing means for determining the position of a power receiver within a secondary device relative to the power transfer surface; switching means for supplying current from the current generator to the primary coils; the secondary device comprising: a power receiver comprising a core and a secondary coil wound around the core; wherein when the secondary device is in its working disposition the coil axis is substantially parallel to the power transfer surface; wherein the sensing means determines the position of the receiver, wherein the switching means acts to supply current to at least a first primary coil in proximity to a first end of the core; wherein the switching means acts to supply current to at least a second primary coil in proximity to a second end of the core, the direction
- This aspect has the advantage that the secondary device may be placed anywhere on or in proximity to the power transfer surface to receive power, but at the same time the field is localised to the vicinity of the power receiver within the secondary device such that coupling to the rest of the portable device is minimised.
- a primary unit for transferring power to a secondary device, separable from the primary unit, by electromagnetic induction
- the primary unit comprising: a power transfer surface; a plurality of field generators, each able to generate a field substantially perpendicular to the power transfer surface; sensing means for determining the position of a power receiver within a secondary device relative to the power transfer surface; switching means for activating the field generators; wherein the sensing means determines the position of the power receiver, and in dependence the switching means activates a field generator such that a magnetic flux flows through the secondary coil in a direction substantially parallel to the power transfer surface, thereby transferring power to the secondary device.
- This aspect has the advantage that the secondary device may be placed anywhere on or in proximity to the power transfer surface to receive power, but at the same time the field is localised to the vicinity of the power receiver within the secondary device such that coupling to the rest of the portable device is minimised.
- a method for transferring power from a primary unit to a secondary device, separable from the primary unit, by electromagnetic induction comprising the steps of: providing a power transfer surface; providing a plurality of field generators, each able to generate a field substantially perpendicular to the power transfer surface; providing at least one secondary device comprising a power receiver; sensing the position of the receiver relative to the power transfer surface activating at least one field generator such that a magnetic flux flows through the secondary coil in a direction substantially parallel to the power transfer surface thereby supplying power to the secondary device.
- Figure 1 shows a system for transferring power from a charger to a portable device according to the present invention.
- Figure 2 shows a system for transferring power from a charger to a portable device according to the present invention.
- Figure 3 shows a charger for transferring power according to the present invention.
- Figure 4 shows a configuration for transferring power to a power receiver.
- Figure 5 shows configurations for transferring power to a power receiver.
- Figure 6 shows configurations for transferring power to a power receiver.
- Figure 7 shows configurations for transferring power to a power receiver.
- Figure 8 shows portable devices being charged by the present invention.
- Figure 9 shows the electrical configuration of the charger.
- Figure 10 shows a flow diagram for operating the charger.
- Figure 11 shows a flow diagram for calibrating the charger.
- Figure 12 shows a flow diagram for operating the charger.
- Figure 13 shows part of an electrical circuit diagram of the charger.
- Figure 14 shows a block diagram of the electronics within the portable device.
- Figure 15 shows an alternative charger configuration.
- Figure 16 shows an alternative charger configuration.
- Figure 17 shows an alternative charger configuration.
- Figure 18 shows an alternative charger configuration.
- Figure 19 shows different types of power receiver.
- Figure 20 shows a power receiver and coils within the charger.
- Figure 21 shows magnetic cores of different shapes.
- Figure 22 shows different types of power receiver on the charger.
- Figure 23 shows an alternative charger configuration.
- Figure 24 shows an alternative charger electrical configuration.
- Figure 25 shows an alternative charger electrical configuration.
- Figure 26 shows an alternative charger electrical configuration.
- Figure 27 shows an alternative charger configuration.
- Figure 1 shows a system for wirelessly charging a portable device.
- Figure l(a) shows a power receiver suitable for embedding in a portable device. It has a ferrite core and coil wound around the core.
- Figure l(b) shows part of a charging pad for transmitting power to the receiver.
- the pad consists of an array of coils, each wound around a ferrite core. These cores are attached to a ferrite backplate.
- a charging surface is formed across the ends of the cores, such that the coil axes are perpendicular to the charging surface. This would typically be covered by a plastic housing (not shown). Current is applied to the coils so as to generate a magnetic field in a direction perpendicular to the charging surface.
- Litz wire is used for both the primary and secondary coils.
- Litz wire has many strands of copper, each insulated from one another. This allows the copper losses to be reduced as at high frequencies the skin effect means that current is only carried in the outer skin of the conductors.
- Figure 2 illustrates the magnetic circuit formed when the power receiver is placed on the charging surface.
- a coil in proximity to one end of the receiver is driven with current in a positive sense and a coil in proximity to the other end is driven in a negative sense.
- the field is concentrated in the ferrite and forms a magnetic circuit from the first coil, through the receiver core, through the second coil and through the ferrite backplate to complete the circuit.
- There are small gaps in the circuit between the charging surface and the power receiver because of the plastic housings on both the charging pad and the portable device. The thickness of the plastic should be minimised to reduce this gap and gaps of 2 mm or less are achievable.
- a preferred design arrangement uses coils which are 12.7 mm high, have a diameter of 12.7 mm and are separated on a 15 mm pitch.
- the receiver is 25 mm long.
- Figure 3 shows a view of the top surface of the charging pad.
- An array of coils and cores are present, arranged with hexagonal symmetry as this gives the best packing to allow appropriate coils to be activated when the receiver is placed on the charging surface in an arbitrary position and orientation.
- Figure 4 illustrates the dimensional relationship between the power receiver and the charger coils.
- the coil positions are represented by hexagonal cells to reflect the hexagonal symmetry of the structure.
- the energised coils are represented by a '+' for current flowing in a counter clockwise direction and '-' for current flowing in a clockwise direction.
- the coils themselves could physically be a range of different structures as will be become apparent later.
- Dimensions which give good performance for powers of 2-5W are: a power receiver which is 30 mm long with a cross section of 2 mm x 6 mm; and a charging surface with a cell diameter of 15 mm.
- Figure 5 illustrates how a power receiver can be powered in different positions by activating just two coils on the pad. For the case of energising only 1 pair of coils (one positive and one negative), there are two distinct geometries, shown in Figures 5(a) and 5(b). The range of permutations of negative coils to energise with any given positive coil is limited to a maximum of twelve 'second nearest neighbour' cells.
- Figure 6 illustrates how a power receiver can be powered using two pairs of coils. Using two pairs, there are 10 distinct geometries, though only 5 or 6 are practical. Three of these are shown in Figures 6(a), 6(b) and 6(c).
- Figure 7 illustrates how a power receiver can be powered using three pairs of coils. With three pairs there are 4 distinct geometries, shown in Figures 7(a), 7(b), 7(c) and 7(d). In practice only 7(a) and 7(b) give good coupling.
- Figure 8 shows portable devices with integrated power receivers receiving power from the charging pad.
- the pad is large enough for multiple devices to be charged simultaneously. In the example one device is being charged by 1 pair of coils and another device is charged by 2 pairs.
- the two devices also have different sized receivers and may have different power requirements.
- the field is localised in the region of the active coils, such that the battery is not substantially within the magnetic field.
- FIG 9 shows an arrangement for sensing the position of the device coil and switching the appropriate coils on the charging pad.
- the array of coils on the charging pad are represented electrically (coil 1, coil 2, etc.).
- switches Connected to each coil, there are 3 switches (SWx- A, SWx-B, SWx-C), controlled by a microprocessor ( ⁇ P).
- the first two switches (SWx-A and SWx-B) are used to drive the coil.
- Switch SWx-A is used to connect the coil to a 'positive' alternating current, supplied by alternating supply +Vac.
- Switch SWx-B is used to connect the coil to a 'negative' alternating supply (-Vac).
- the third switch (SWx-C) is used for sensing which coils are to be activated.
- an inductance bridge is formed across a sense voltage source (Vsense), a sense inductor and the coil.
- a peak detector is used to determine the magnitude of the voltage at the midpoint of the bridge. This is in turn converted to a digital signal for the microprocessor with the analogue to digital converter (A/D).
- A/D analogue to digital converter
- the AC voltage used for the sensing is preferably at a different frequency to the power transmission. It is preferably at a submultiple of the power transmission frequency, such that the harmonics overly those of the power transmission. It is possible that there may be some 'breakthrough' of power at the power transmission frequency into the sense circuit. This arises because of stray coupling between individual coils in the system. This can be prevented by inserting a filter in the sense path after the peak detector.
- the power transmission switches need to be able carry large powers. However, they do not need to be switched very fast, as they will only switch when a device is moved onto, off or around on the pad.
- the switches used for sensing can be of a much lower power handling capability as they only need to pass the low level sense signal. It may be desirable to have faster switches for SWx-C so that the switches can be scanned fairly rapidly. This reduces the latency in the charger responding when a device is placed on the pad. Consequently, it may be desirable to use different technologies for the power switches and the sense switches. For instance relays (or MEMS) switches could be used for the power (as they need high current, but slow speed) and semiconductor MOSFET switches could be used for the sense (as low current but faster switches are needed).
- FIG. 10 shows an example top-level algorithm for activating the relevant coils. The system is powered up and all the coils are switched off. The inductance of each coil is measured. The calibration value is subtracted to obtain the inductance change. From the pattern in inductance changes observed over the pad, the microprocessor determines the position of the secondary coils within each device.
- each coil within each pair is assigned a different polarity.
- the microprocessor may determine that the size and/or position of an individual device requires more than one pair to be activated. A check is made to ensure that the proposed scheme is valid. If not, the entire process is repeated until a valid configuration is obtained. Once there is a valid configuration, each coil pair (that is not already powered up) is momentarily powered up to see how much power is taken. Coil pairs which take power above a certain threshold are powered. Coil pairs which take power below this threshold are switched off. This means that devices which are on the pad but do not require power (e.g. because they are fully charged) are switched off.
- Figure 11 shows a calibration algorithm. The algorithm switches all the switches off. It starts with the first coil. SWx-C is switched on. The voltage is measured at the peak detector. This information is stored in an array (Cal[]). It then moves onto the next coil. It finishes once all the coils have been measured.
- Figure 12 shows a detailed operation algorithm (it assumes that the calibration algorithm has already been carried out). First all the coils are switched off. It steps through each coil one by one. It first tests to see if the coil is already on. If it is it determines the power drawn and switches it off if below a certain threshold. If the coil is not on, it measures the inductance through the peak voltage detector and subtracts the calibration value.
- This information is stored in an array (Meas[]). Once all the coils have been tested/measured, it determines where the receivers are on the pad. It then determines the required coil pairs to be activated and assigns them polarity. If the arrangement is valid, it tests to determine which pairs require power. It identifies that this coil requires power in the Meas[] array, by giving it a token distinguishable from a measurement result. It then switches on the required coils. It would then have a test to determine if there was metal present which was drawing power from the system and presenting a hazard. If there is metal, an overload condition in which a coil was drawing higher power than allowable threshold, or if there was an invalid coil configuration, then all the coils are switched off, the user is alerted with a warning and after a wait period the system resets.
- Figure 9 requires AC voltage signals with high power and opposite polarity.
- Figure 13 shows a means of generating these signals.
- a DC power source which is coupled to an inverter to generate an AC signal at a reference oscillator frequency.
- This is in turn coupled to an inductor and capacitor resonant at the oscillator frequency.
- This is in turn coupled to a transformer, via a variable capacitor.
- the output of the transformer has a centre-tap referenced to ground.
- the two ends of the transformer output provide the positive and negative polarity inputs to the circuit of Figure 9.
- a variable capacitor is required because the inductance of the load on the transformer will vary as different coils are switched in and out. It may also varied with different device loads or at different device positions on the pad.
- the variable capacitor is therefore adjusted to ensure that the system is resonant at the oscillator frequency.
- the variable capacitor has been implemented using a switch network, though there are many methods of achieving this.
- Figure 14 shows an electrical equivalent diagram of a portable device for use with the charging pad.
- a secondary coil represented by the inductor
- a capacitor such that the combination is resonant at the oscillator frequency.
- This signal is converted to a DC voltage using a rectifier (which may be a bridge rectifier).
- the voltage is then converted to the required voltage level using a DC/DC converter.
- This is coupled to a charge controller, which is in turn coupled to a battery. It is sometimes possible to combine the DC/DC converter and charge- controller into a single element. So far only a single implementation of the system has been shown. In practice there are a variety of different magnetic arrangements that can be used; a variety of sensing methods and a variety of switching methods. To some extent these can be chosen independently from one another, though it is desirable to optimise the system as a whole.
- Figure 15 shows an alternative magnetic arrangement.
- the charger still has an array of vertical field generating elements.
- the actual coils driving them are arranged with their axes horizontal, parallel to the charging surface. Flux couples from the horizontal driven coil into the vertical pillars of magnetic material.
- a secondary device When a secondary device is placed on the charging surface, it completes the magnetic circuit, such that the magnetic material forms approximately a closed loop (apart from the gap between the device and charger plastic housings).
- the coil wound around the magnetic material within the secondary device, with an axis horizontal relative to the charging surface couples to the field generated, allowing power to be transferred.
- Figure 16 shows a charger formed using a PCB implementation.
- this arrangement there is an array of planar spiral coils used to generate the vertical fields.
- multiple PCB layers would be used, each having an array of coils. These coil arrays would be aligned with each other to enhance the magnitude to the field generated.
- a ferrite back plate would typically be required to complete the magnetic circuit. It may be desirable to have holes in the centre of the spiral, which could accommodate cylinders of magnetic material.
- FIG 17 shows another PCB implementation.
- this system uses an array of hexagonal coils which are close-packed together,
- Figure 18 shows a hybrid charger system.
- This system allows two different types of receiver within the portable device to be used.
- Device 1 has a horizontal coil axis, wound around magnetic material.
- device 2 uses a flat spiral coil as its power receiver.
- the two different types of coils are powered in different ways.
- Device 1 is powered by powering pairs of positive and negative polarity coils as before.
- Device 2 is powered by powering a group of coils with the same polarity.
- Device 2 therefore receives a vertical field directly.
- device 2 could simply have a wound coil, but with the coil axis perpendicular to the charger surface. It may be necessary to vary the number of coils powered for device 2. Using the same charger platform, it is possible to power different types of receiver either separately of simultaneously.
- the two different types of device could be used to accommodate different shaped portable devices.
- the system could be used to power devices from different manufacturers which operate on different standards. It may be necessary for the portable device to communicate what type of receiver it is to the charger, so that the charger can correctly determine which coils should be activated and with what polarity configuration.
- Figure 19 shows a range of different types of receiver, designed so that the coil axis is parallel to the charging surface, when the portable device is being powered.
- Figure 19(a) is a cylindrical rod structure;
- Figure 19(b) is a rectangular rod structure;
- Figure 19(c) is a thin sheet of amorphous metal, with coil wrapped around it. hi practice multiple sheets of amorphous metal would be used, preferably separated by insulating material.
- Figure 20 shows a plan view of a receiver, which could relate to any of the configurations in Figure 19. It is preferable that the coil winding does not go all the way to the ends of the magnetic material. When the device is placed on the charger, it is desirable to power elements which overlap the edge portions (without the coil). This ensures that there is no voltage generated at the ends of the coil which opposes the main voltage received.
- Figure 21 shows that it is possible to use either a simple cuboid core (a), or with some advantage a U-shaped core (b).
- the U-shaped core allows the magnetic material of the device to get closer to the magnetic material of the charger, thereby reducing the reluctance of the magnetic circuit.
- the U-shaped core does this by providing room for the coil winding.
- the use of a horizontal secondary is advantageous for several reasons. Firstly, the form factor is convenient for integration either on the base or back of a mobile device. Secondly, the elongated shape enables concentration of the magnetic field. This relates to the high effective permeability due to high shape-factor/low self-demagnetisation. This enables a smaller secondary to be used for a given power loss.
- magnetic cores for the array of coils in the charger, it is not essential. It is possible to omit these cores to get a lighter and cheaper system, but at the expense of reduced magnetic efficiency.
- Figure 23 shows a simpler and lower cost alternative to a flat pad charger.
- This system requires only a single line of coils.
- the charger is in the form of a shelf, such that device stand upright on a ledge.
- the ledge may tilt back slightly to prevent the devices from falling off.
- the receiver is positioned in the portable device a set distance away from the bottom edge. Thus there is always alignment in one dimension. Depending on which part of the shelf the device is placed, different coils are accordingly activated.
- the shelf allows devices to be placed anywhere along a line. Further, it allows multiple devices to be charged simultaneously,
- Wound Litz-wire primaries are the ultimate solution for low primary losses.
- Wound components with or without ferrite cores can be used. Ferrite cores can be added to give a small shape-factor benefit (if cost-effective) and to produce an even flatter coupling factor. However, overall cost and manufacturability is less attractive.
- Other planar coil technologies such as PCB coils or watch-spring coils can be used to reduce cost, but typically exhibit higher losses (lower coil Qs).
- the vertical cores can be hollow, to reduce cost and weight, as the overall flux density is not high enough to require a solid part.
- a ferrite back-plate may be used behind the vertical cores to act as a flux return path, and this improves the coupling factor. However the system can operate without this back-plate, and doing so reduces cost and weight.
- the permeable material from which the cores and/or back-plate are manufactured is preferably Mn-Zn ferrite, but other magnetic materials such as iron powder cores, carbonyl iron, amorphous metal, nanocrystalline metal or magnetic composites could be used.
- a key feature of this invention is that it uses a highly localised field to reduce unwanted inductive heating of nearby metal parts and interference with other electronic systems. It also provides a scalable system that can be extended to almost any pad size by tessellation of the selectable drive coils.
- the system can also be configured to operate with pancake-type secondary coils, without changing the primary magnetics and switching hardware.
- Such a system allows third- party manufacturers to choose a secondary type that fits with available space and power requirements of their product.
- Sensing of the location and orientation of one or more receiver coils within a portable device may be accomplished, for example, by one of the following methods:
- the portable device emits a test signal which is picked up by the charger at multiple points.
- the charger determines the receiver's position by triangulation.
- the portable device picks up test signal from the charger and reports back the signal strength via a separate communications channel (e.g. Bluetooth), which reveals its location.
- a separate communications channel e.g. Bluetooth
- Inductive communications using the primary and secondary coils For example, secondary has dual use as an RFID tag antenna, and the position is detected using the RFID channel.
- the resonance of the secondary circuit (e.g. a tuned LC resonator) produces a detectable response to a pulse from the primary (e.g. by a ringing oscillation)
- a non-linearity in the signal is detected, e.g. from saturating the secondary core with a large DC field, or due to secondary rectification circuits.
- the secondary coil in the receiver produces an occasional load modulation, which can be detected by the primary circuit
- a separate sensing method e.g. using a magnetic tagging technology, optical markers, a touch-screen position sensing technology, capacitive sensing etc.
- the position of the secondary is sensed and then power is transferred by switching on the appropriate primaries.
- the sensing may be performed by switching on each of the primaries in turn and looking for a characteristic response from the secondary circuit or it could be achieved by some separate means.
- the primary coils would typically be driven from a half-bridge drive, to generate a square-wave at the required frequency. This may be 'routed' to the appropriate coils using a matrix of MOSFET switches. This means that a single high-frequency square-wave driver can be shared amongst all the coils. The routing switches will be very low frequency and static as long as the device is stationary on the surface. The negative phase can be achieved by routing it in the opposite direction or by using a second square-wave driver with an output complimentary to the first.
- each coil could have its own high frequency power MOSFET which is driven directly. This means that different modules could be driven with different amplitude signals in order to reduce the voltage variation seen on the secondary side.
- Each device could be powered by driving just two primary coils, those being the nearest to each end of the module. However, it may desirable to drive more than two coils, particularly where one end does not precisely align to a single coil. In order to further refine the coupling it may be desirable to have different amplitude signals to different primary coils that are coupled to a single module. Yet further refinement is possible if the phase can be independently adjusted between coils.
- Figure 24 shows an alternative arrangement for providing the two signals of opposite polarity. Instead of using a transformer, there are two separate inverters. These are both fed to a common oscillator, except that one oscillator input is inverted (or 180 degrees out of phase).
- Figure 25 shows a series coil arrangement for driving the coils with constant current.
- switches per coil provide the ability to connect any coil into the chain with any polarity.
- switches SWl-I, SW1-4 would be connected and SW1-2 and SWl -3 would be left open.
- SW2-1 and SW2-2 would also be connected, and other series coils would be similarly bypassed.
- SWl -3 and SWl -2 would be connected (and SWl- 1 and SW1-4 left open), so that current flows through coil 1 in the opposite direction. Again other coils present must be bypassed.
- positive current is applied to coil 2 by connecting SW2-1 and SW2-4 (with SW2-2 and SW2-3 open); negative current is applied to coil 2 by connecting SW2-2 and SW2-3 (with SW2-1 and SW2-4 left open).
- SW-bypass 'zone bypass' switch
- Figure 26 shows a system for driving multiple devices which is particularly good for when the devices have different power requirements.
- There is a switch matrix which can connect any input to any output.
- Each coil is connected to a pair of outputs.
- a resonant capacitor may be placed at either the driver side or the coil side of the switch.
- Each driver is used to drive a pair of coils: one coil in the positive polarity and the other in the negative polarity.
- the positive terminal of the AC driver is connected to the positive terminal of the coil (and likewise the negative source terminal is connected to the negative coil terminal.
- To drive the negative coil the positive driver terminal is connected to the negative coil terminal (and likewise the negative driver terminal is connected to the positive coil terminal).
- driver 1 provides positive current to coil 1 and negative current to coil 4
- driver 2 provides positive current to coil 2 and negative current to coil 6.
- Each driver can be regulated independently from the others, to match the load seen the device. Further it may be desirable to allow the drivers to selectively connect to more than one pair of coils, depending on how the device is positioned on the charging surface, or the device's load requirements. Instead of using the same driver for both positive and negative current, it is also possible to use 2 separate sources or a dual source (for example as in Figures 13 or 24). This may reduce the complexity of the switching arrangement.
- Figure 27 shows an arrangement which may be used to reduce the complexity of the switching system.
- the device is insensitive as to which end of the receiver is positive and which is negative (the polarity is only a convenient reference notation). It is therefore possible to pre-assign a fixed polarity to some coils. If one of the fixed coils is in proximity to one end of the receiver, then the system must ensure that the other end of the receiver is driven with a coil of opposite polarity.
- Figure 27 shows a quarter of the coils having a fixed polarity without any loss in functionality.
- the coils with fixed polarities are marked with plus and minus signs to indicate the polarity. As some coils are fixed polarity, it means these coils require fewer switches as they are never require the opposite polarity.
- the coils can be assigned a fixed polarity relative to nearby coils. Further, local connections between the coils can be used to reduce switch count.
- Switches can be constructed from FETs, IGBTs, triacs, relays, MEMS (micro- electro-mechanical systems) switches or other electronic switches well-known to those skilled in the art.
- FETs field-effect transistors
- IGBTs interconnects
- triacs triacs
- relays MEMS (micro- electro-mechanical systems) switches or other electronic switches well-known to those skilled in the art.
- MEMS micro- electro-mechanical systems
- An inductive power transfer system comprising a primary unit and a secondary device separable from the primary unit, the primary unit including a power transfer surface and more than two field generators each operable to generate an electromagnetic field, the field generators being located at different positions relative to the power transfer surface, the secondary device comprising a power receiver having a secondary coil, the system further comprising: means for determining at least one of the position and the orientation of the power receiver relative to the power transfer surface; and means for controlling the field generators such that at least one first field generator and at least one second field generator, selected in dependence upon such determination, are active in a substantially opposite sense to one another so as to direct magnetic flux through the secondary coil thereby supplying power to the secondary device, and further such that a third one of the field generators is inactive so that fewer than all of the field generators are active simultaneously.
- a system as defined in statement 1 further comprising: a plurality of the secondary devices; and a pair of the first and second field generators for each of the secondary devices.
- the secondary coil includes first and second portions; and the first generator is proximate the first portion, and the second generator is proximate the second portion.
- a system as defined in statement 3 further comprising a plurality of at least one of the first and second field generators.
- each field generator comprises a coil.
- switching means includes means for measuring the power consumption of the field generators.
- a system as defined in statement 1 further comprising a plurality of the third field generators.
- a system as defined in statement 1 further comprising a plurality of the first field generators and a plurality of the second field generators.
- a system as defined in statement 1 further comprising means for enabling communication between the secondary device and the primary unit.
- An inductive power transfer system comprising a primary unit and a secondary device separable from the primary unit, the primary unit including a power transfer surface and a plurality of field generators each operable to generate an electromagnetic field, the field generators being located at different positions relative to the power transfer surface, the secondary device including a power receiver having a generally elongated core and a secondary coil wound around the core, the system further comprising: means for determining at least one of the position and the orientation of the core relative to the power transfer surface; and means for controlling the field generators such that first and second ones of the field generators, selected in dependence upon such determination, are active in an opposite sense to one another so as to direct magnetic flux through the secondary coil thereby supplying power to the secondary device.
- a system as defined in statement 14 further comprising a plurality of the secondary devices.
- each field generator comprises a coil.
- one of the first and second field generators has a fixed sense.
- determining means includes means for sensing the inductance of the field generators.
- switching means includes means for measuring the power consumption of the field generators.
- a system as defined in statement 20 further comprising a plurality of the third field generators.
- a system as defined in statement 14 further comprising a plurality of at least one of the first field generators and the second field generators.
- a system as defined in statement 14 further comprising magnetic material proximate the field generators opposite the magnetic core.
- a system as defined in statement 14 further comprising means for enabling communication between the secondary device and the primary unit.
- a system for transferring power from a primary unit to a secondary device, separable from the primary unit, by electromagnetic induction comprising: the primary unit including a power transfer surface and more than two primary coils; the secondary device including a power receiver including a secondary coil; a current generator for generating an alternating current; determining means for determining the position of the power receiver relative to the power transfer surface; and switching means responsive to the determining means for supplying current from the current generator to a first primary coil in one sense and to a second primary coil in the opposite sense such that a magnetic flux flows through the secondary coil, supplying power to the secondary device, the switching means further for deactivating a third primary coil so that fewer than all of the coils are activated simultaneously.
- a system as defined in statement 26 further comprising a plurality of the secondary devices.
- the secondary coil includes first and second portions; and the first generator is proximate the first portion, and the second generator is proximate the second portion.
- switching means includes means for measuring the power consumption of the primary coils.
- a system as defined in statement 26 further comprising a plurality of the third primary coils.
- a system as defined in statement 26 further comprising a plurality of at least one of the first primary coils and the second primary coils.
- a system as defined in statement 26 further comprising means for enabling communication between the secondary device and the primary unit.
- a system for transferring power from a primary unit to a secondary device, separable from the primary unit, by electromagnetic induction comprising: the primary unit including a power transfer surface and more than two primary coils; the secondary device including a power receiver including a magnetic core and a secondary coil wound around the core; a current generator for generating an alternating current; determining means for determining the position of the power receiver relative to the power transfer surface; and switching means for supplying current from the current generator to at least a first primary coil in proximity to a first portion of the magnetic core and to at least a second primary coil in proximity to a second portion of the magnetic core, the direction of the current supplied to the second coil being in the opposite direction to the current supplied to the first primary coil, wherein magnetic flux flows through the secondary coil, supplying power to the secondary device.
- a system as defined in statement 37 further comprising a plurality of the secondary devices.
- determining means includes means for sensing the inductance of the primary coils.
- switching means includes means for measuring the power consumption of the primary coils.
- a system as defined in statement 42 further comprising a plurality of the third primary coils.
- a system as defined in statement 37 further comprising a plurality of at least one of the first primary coils and the second primary coils.
- a system as defined in statement 37 further comprising magnetic material proximate the primary coils opposite the magnetic core.
- a system as defined in statement 37 further comprising means for enabling communication between the secondary device and the primary unit.
- 48. A primary unit for transferring power to a secondary device, separable from the primary unit, by electromagnetic induction, the secondary device including a secondary coil, the primary unit comprising: a power transfer surface and more than two field generators, each able to generate a field; determining means for determining the position of the secondary coil relative to the power transfer surface; and switching means responsive to the determining means for activating first and second ones of the field generators such that the field generated by the second field generator is in the opposite sense to the field generated by the first field generator, whereby magnetic flux from the first and second field generators flows through the secondary coil, supplying power to the secondary device, the switching means further for deactivating a third one of the field generators so that fewer than all of the field generators are activated simultaneously.
- a primary unit as defined in statement 49 further comprising a plurality of at least one of the first and second field generators.
- each field generator comprises a coil.
- the determining means includes means for sensing the inductance of the field generators.
- a primary unit as defined in statement 48 further comprising means for enabling communication between the secondary device and the primary unit.
- a primary unit as defined in statement 57 further comprising a plurality of the secondary devices.
- each field generator comprises a coil.
- a primary unit as defined in statement 63 further comprising a plurality of the third field generators.
- a primary unit as defined in statement 57 further comprising a plurality of at least one of the first field generators and the second field generators.
- a primary unit as defined in statement 57 further comprising magnetic material proximate the field generators opposite the magnetic core.
- a primary unit as defined in statement 57 further comprising means for enabling communication between the secondary device and the primary unit.
- a method for transferring power from a primary unit to a secondary device, separable from the primary unit, by electromagnetic induction comprising: providing a power transfer surface; providing more than two field generators, each able to generate a field; providing the secondary device including a power receiver; positioning the secondary device relative to the power transfer surface; determining the position of the power receiver relative to the power transfer surface; and activating first and second ones of the field generators such that the field generated by the second field generator is in the opposite sense to the field generated by the first field generator, whereby magnetic flux from the first and second field generators flows through the power receiver supplying power to the secondary device, the activating step further including deactivating a third one of the field generators so that fewer than all of the field generators are activated simultaneously.
- a method as defined in statement 69 further including providing a plurality of the secondary devices.
- the secondary power receiver includes first and second portions; and the first generator is proximate the first portion, and the second generator is proximate the second portion.
- each field generator comprises a coil.
- a method as defined in statement 69 further comprising a plurality of the third field generators.
- a method as defined in statement 69 further comprising a plurality of at least one of the first field generators and the second field generators.
- a method as defined in statement 69 further comprising means for enabling communication between the secondary device and the primary unit.
- a method for transferring power from a primary unit to a secondary device, separable from the primary unit, by electromagnetic induction comprising: providing a power transfer surface; providing a plurality of field generators, each able to generate a field; providing the secondary device including a power receiver having a magnetic core and a coil wound about the core; positioning the secondary device relative to the power transfer surface; determining the position of the core relative to the power transfer surface; and activating a first field generator in proximity to a first portion of the core, the switching means activating a second field generator in proximity to a second portion of the core, the field generated by the second field generator being opposite sense to the field generated by the first field generator, whereby magnetic flux from the first and second field generators flows through the secondary core, supplying power to the secondary device.
- a method as defined in statement 81 further including providing a plurality of the secondary devices.
- the secondary power receiver includes first and second portions; and the first generator is proximate the first portion, and the second generator is proximate the second portion.
- each field generator comprises a coil.
- a method as defined in statement 81 further comprising a plurality of at least one of the first field generators and the second field generators.
- a method as defined in statement 81 further comprising providing magnetic material proximate the field generators opposite the magnetic core.
- a system as defined in statement 81 further comprising means for enabling communication between the secondary device and the primary unit.
- An inductive power transfer system comprising a primary unit and a secondary device separable from the primary unit, the primary unit including a power transfer surface and a plurality of field generators each operable to generate an electromagnetic field, the field generators being located in different respective positions relative to the power transfer surface, the secondary device comprising a power receiver having a generally elongated core and a secondary coil wound around the core, the system further comprising: means for controlling the field generators such that first and second ones of the field generators are active in an opposite sense to one another so as to direct magnetic flux through the secondary coil thereby supplying power to the secondary device.
- An inductive power transfer system comprising: a primary unit including a power transfer surface and a plurality of field generators each operable to generate an electromagnetic field, the field generators being located at different positions relative to the power transfer surface; first and second secondary devices separable from the primary unit, the first secondary device including a power receiver having a coil having an axis that is generally parallel to the power transfer surface when the first secondary device is in an operative position with respect to the power transfer surface, the second secondary device including a power receiver having a coil having an axis that is generally perpendicular to the power transfer surface when the second secondary device is in an operative position with respect to the power transfer surface; means for determining the presence and the type of at least one secondary device in an operative position with respect to the power transfer surface; and means for at least one of (a) controlling the field generators such that first and second ones of the field generators, selected in dependence upon the determination, are active in an opposite sense to one another when one of the at least one secondary devices is the first secondary device so as to direct magnetic flux through
- a primary unit for transferring power independently to first and second secondary devices separable from the primary unit the first secondary device including a power receiver having a coil having an axis that is generally parallel to a power transfer surface when the first secondary device is in an operative position with respect to the power transfer surface
- the second secondary device including a power receiver having a coil having an axis that is generally perpendicular to the power transfer surface when the second secondary device is in an operative position with respect to the power transfer surface
- the primary unit comprising: the power transfer surface; a plurality of field generators each operable to generate an electromagnetic field, the field generators being located at different positions relative to the power transfer surface; means for determining the presence and the type of at least one secondary device in an operative position with respect to the power transfer surface; and means for at least one of (a) controlling the field generators such that first and second ones of the field generators, selected in dependence upon the determination, are active in an opposite sense to one another when one of the at least one secondary devices is the first secondary device so as to direct magnetic flux
- An inductive power transfer system comprising a primary unit and a secondary device separable from the primary unit, the primary unit including a power transfer surface and more than two field generators each operable to generate an electromagnetic field, the field generators being located at different positions relative to the power transfer surface, the secondary device comprising a power receiver having a secondary coil, the system further comprising: means for determining at least one of the position and the orientation of the power receiver relative to the power transfer surface; and means for controlling the field generators such that at least one first one of the field generators and at least one second one of the field generators, are active in a substantially opposite sense to one another so as to direct magnetic flux through the secondary coil thereby supplying power to the secondary device, the number of the first field generators and the number of the second field generators selected in dependence upon such determination.
- the invention also provides a computer program or a computer program product for carrying out any of the methods described herein, and a computer readable medium having stored thereon a program for carrying out any of the methods described herein.
- a computer program embodying the invention may be stored on a computer-readable medium, or it could, for example, be in the form of a signal such as a downloadable data signal provided from an Internet website, or it could be in any other form.
- the present invention extends to system aspects, and corresponding primary unit aspects, method aspects, and computer-program aspects.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
- Current-Collector Devices For Electrically Propelled Vehicles (AREA)
- Supply And Distribution Of Alternating Current (AREA)
Abstract
Description
Claims
Priority Applications (10)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AU2008291960A AU2008291960B2 (en) | 2007-08-28 | 2008-08-28 | Inductive power supply |
CA2697947A CA2697947A1 (en) | 2007-08-28 | 2008-08-28 | Inductive power supply |
EP08788462A EP2183754A1 (en) | 2007-08-28 | 2008-08-28 | Inductive power supply |
CN200880105039.2A CN101836272B (en) | 2007-08-28 | 2008-08-28 | Inductive power supply |
JP2010522437A JP5689682B2 (en) | 2007-08-28 | 2008-08-28 | Inductive power supply device |
US12/672,691 US8587154B2 (en) | 2007-08-28 | 2008-08-28 | Inductive power supply |
KR1020107004507A KR101492296B1 (en) | 2007-08-28 | 2008-08-28 | Inductive power supply |
RU2010111552/07A RU2488906C2 (en) | 2007-08-28 | 2008-08-28 | Inductive power supply |
HK11102351.6A HK1148383A1 (en) | 2007-08-28 | 2011-03-08 | Inductive power supply |
US14/054,109 US9948358B2 (en) | 2007-08-28 | 2013-10-15 | Inductive power supply |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GBGB0716679.6A GB0716679D0 (en) | 2007-08-28 | 2007-08-28 | Inductive power supply |
GB0716679.6 | 2007-08-28 |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/672,691 A-371-Of-International US8587154B2 (en) | 2007-08-28 | 2008-08-28 | Inductive power supply |
US14/054,109 Continuation US9948358B2 (en) | 2007-08-28 | 2013-10-15 | Inductive power supply |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2009027674A1 true WO2009027674A1 (en) | 2009-03-05 |
Family
ID=38599332
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/GB2008/002906 WO2009027674A1 (en) | 2007-08-28 | 2008-08-28 | Inductive power supply |
Country Status (11)
Country | Link |
---|---|
US (2) | US8587154B2 (en) |
EP (1) | EP2183754A1 (en) |
JP (1) | JP5689682B2 (en) |
KR (1) | KR101492296B1 (en) |
CN (1) | CN101836272B (en) |
AU (1) | AU2008291960B2 (en) |
CA (1) | CA2697947A1 (en) |
GB (1) | GB0716679D0 (en) |
HK (1) | HK1148383A1 (en) |
RU (1) | RU2488906C2 (en) |
WO (1) | WO2009027674A1 (en) |
Cited By (33)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010105758A1 (en) * | 2009-03-20 | 2010-09-23 | Paul Vahle Gmbh & Co. Kg | Energy transfer system comprising several primary coils |
US7847664B2 (en) | 2009-05-06 | 2010-12-07 | Verde Power Supply, Inc. | Electromagnetic apparatus using shared flux in a multi-load parallel magnetic circuit and method of operation |
CN103081293A (en) * | 2010-09-03 | 2013-05-01 | 富士通株式会社 | Wireless power transmission device |
WO2013062427A1 (en) * | 2011-10-28 | 2013-05-02 | Auckland Uniservices Limited | Non-ferrite structures for inductive power transfer |
WO2013074332A1 (en) * | 2011-11-15 | 2013-05-23 | Qualcomm Incorporated | Systems and methods for induction charging with a closed magnetic loop |
DE102011090131A1 (en) * | 2011-12-29 | 2013-07-04 | Conti Temic Microelectronic Gmbh | Charger for charging the energy storage of a portable electrical device |
JPWO2011135722A1 (en) * | 2010-04-30 | 2013-07-18 | 富士通株式会社 | Power receiving device and power receiving method |
EP2749445A1 (en) | 2012-12-28 | 2014-07-02 | Hitachi Power Solutions Co., Ltd. | Inductive power supply system for electric operation machine |
DE102013100175A1 (en) * | 2013-01-09 | 2014-07-10 | Epcos Ag | Coil arrangement for inducing and providing voltage for charging electrical charge storage in passenger car, has conductors, and bus bars providing voltage between conductors, where ends of conductors are connected with respective bus bars |
US8884468B2 (en) | 2007-12-21 | 2014-11-11 | Access Business Group International Llc | Circuitry for inductive power transfer |
WO2014197235A1 (en) * | 2013-06-07 | 2014-12-11 | Qualcomm Incorporated | Primary power supply tuning network for two coil device and method of operation |
CN104242479A (en) * | 2013-06-11 | 2014-12-24 | 佳能株式会社 | Power supply apparatus and power supply method |
EP2852027A4 (en) * | 2012-05-18 | 2015-06-03 | Panasonic Ip Man Co Ltd | Non-contact power supply system, non-contact power supply device, and power supply target device |
WO2014181268A3 (en) * | 2013-05-07 | 2015-07-02 | Brusa Elektronik Ag | Arrangement and method for inductive charging of mobile devices |
WO2016007023A1 (en) * | 2014-07-08 | 2016-01-14 | Auckland Uniservices Limited | Inductive power transfer apparatus |
US9425644B1 (en) | 2015-06-03 | 2016-08-23 | Thor Charger Company | Method and apparatus for charging an electrically chargeable device utilizing resonating magnetic oscillations in the apparatus |
US9496081B2 (en) | 2011-04-08 | 2016-11-15 | Access Business Group International Llc | Counter wound inductive power supply |
US9711277B2 (en) | 2011-07-20 | 2017-07-18 | Panasonic Intellectual Property Management Co., Ltd. | Non-contact power supply system |
EP3352529A1 (en) * | 2017-01-24 | 2018-07-25 | E.G.O. ELEKTRO-GERÄTEBAU GmbH | Hotplate |
KR101923741B1 (en) * | 2010-04-08 | 2018-11-29 | 퀄컴 인코포레이티드 | Wireless power transmission in electric vehicles |
EP3308388A4 (en) * | 2015-03-29 | 2018-12-19 | ChargEdge, Inc. | Wireless power transfer using multiple coil arrays |
US10343535B2 (en) | 2010-04-08 | 2019-07-09 | Witricity Corporation | Wireless power antenna alignment adjustment system for vehicles |
US10461813B2 (en) | 2016-04-04 | 2019-10-29 | Apple Inc. | Inductive power transmitter |
US10601251B2 (en) | 2014-08-12 | 2020-03-24 | Apple Inc. | System and method for power transfer |
US10601264B2 (en) | 2012-05-02 | 2020-03-24 | Apple Inc. | Methods for detecting and identifying a receiver in an inductive power transfer system |
DE102018216916A1 (en) * | 2018-10-02 | 2020-04-02 | Universität Stuttgart | Device for contactless inductive energy transmission, in particular for inductive charging processes in motor vehicles |
US10840744B2 (en) | 2015-03-04 | 2020-11-17 | Apple Inc. | Inductive power transmitter |
US10840748B2 (en) | 2012-11-05 | 2020-11-17 | Apple Inc. | Inductively coupled power transfer systems |
US10923956B2 (en) | 2015-11-19 | 2021-02-16 | Apple Inc. | Inductive power transmitter |
US11239027B2 (en) | 2016-03-28 | 2022-02-01 | Chargedge, Inc. | Bent coil structure for wireless power transfer |
EP3129286B1 (en) * | 2014-04-07 | 2022-03-23 | Safran Seats USA LLC | Inductive power transmission in aircraft seats |
US11329519B2 (en) | 2015-04-02 | 2022-05-10 | Apple Inc. | Inductive power transmitter |
WO2024035704A1 (en) * | 2022-08-09 | 2024-02-15 | Apple Inc. | Wireless power transfer structure |
Families Citing this family (151)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090284369A1 (en) | 2008-05-13 | 2009-11-19 | Qualcomm Incorporated | Transmit power control for a wireless charging system |
US8878393B2 (en) * | 2008-05-13 | 2014-11-04 | Qualcomm Incorporated | Wireless power transfer for vehicles |
CN101828320B (en) | 2008-12-12 | 2013-04-10 | 郑春吉 | Contactless charging station, contactless power receiving apparatus, and method for controlling same |
US9312924B2 (en) | 2009-02-10 | 2016-04-12 | Qualcomm Incorporated | Systems and methods relating to multi-dimensional wireless charging |
US20100201312A1 (en) | 2009-02-10 | 2010-08-12 | Qualcomm Incorporated | Wireless power transfer for portable enclosures |
US8854224B2 (en) * | 2009-02-10 | 2014-10-07 | Qualcomm Incorporated | Conveying device information relating to wireless charging |
US11476566B2 (en) | 2009-03-09 | 2022-10-18 | Nucurrent, Inc. | Multi-layer-multi-turn structure for high efficiency wireless communication |
EP2417686A1 (en) | 2009-04-08 | 2012-02-15 | Access Business Group International LLC | Selectable coil array |
JP5499534B2 (en) * | 2009-07-07 | 2014-05-21 | ソニー株式会社 | Non-contact power receiving apparatus, power receiving method in non-contact power receiving apparatus, and non-contact power feeding system |
WO2011016737A1 (en) | 2009-08-07 | 2011-02-10 | Auckland Uniservices Limited | Inductive power transfer system |
JP5362037B2 (en) * | 2009-12-24 | 2013-12-11 | 株式会社東芝 | Wireless power transmission device |
US20110278957A1 (en) * | 2010-05-11 | 2011-11-17 | Searete Llc, A Limited Liability Corporation Of The State Of Delaware | Wearable power source |
US20110278942A1 (en) * | 2010-05-11 | 2011-11-17 | Searete Llc, A Limited Liability Corporation Of The State Of Delaware | Wearable power source carryable by a health care provider |
US8841881B2 (en) | 2010-06-02 | 2014-09-23 | Bryan Marc Failing | Energy transfer with vehicles |
US9093216B2 (en) | 2010-09-16 | 2015-07-28 | Nec Casio Mobile Communications, Ltd. | Non-contact power transmission apparatus |
NZ589312A (en) * | 2010-11-16 | 2013-03-28 | Powerbyproxi Ltd | Battery having inductive power pickup coils disposed within the battery casing and at an angle to the casing axis |
JP2013027074A (en) * | 2011-07-15 | 2013-02-04 | Panasonic Corp | Non-contact power supply device |
JP5688546B2 (en) * | 2011-07-25 | 2015-03-25 | パナソニックIpマネジメント株式会社 | Contactless power supply system |
JP6065838B2 (en) * | 2011-09-21 | 2017-01-25 | 日本電気株式会社 | Wireless power feeding system and wireless power feeding method |
CN103827998B (en) * | 2011-09-29 | 2017-11-17 | 鲍尔拜普罗克西有限公司 | Wireless rechargeable battery and its part |
US9577713B2 (en) * | 2011-09-29 | 2017-02-21 | Konica Minolta Laboratory U.S.A., Inc. | Method and system for aligning conductors for capacitive wireless power transmission |
US20150295416A1 (en) * | 2011-10-07 | 2015-10-15 | Powerbyproxi Limited | Transmitter for an inductive power transfer |
KR101349551B1 (en) | 2011-11-02 | 2014-01-08 | 엘지이노텍 주식회사 | A wireless power transmission apparatus and method thereof |
KR101356623B1 (en) * | 2011-11-10 | 2014-02-03 | 주식회사 스파콘 | Power transmission coil and wireless power transmission apparatus |
CN103138357A (en) * | 2011-11-25 | 2013-06-05 | 宏碁股份有限公司 | Wireless charging device, electronic device, wireless charging system and charging method |
DE102012000408A1 (en) * | 2012-01-12 | 2013-07-18 | Phoenix Contact Gmbh & Co. Kg | Resonant inductive power supply device |
DE102012000409A1 (en) | 2012-01-12 | 2013-07-18 | Phoenix Contact Gmbh & Co. Kg | Modular data system with inductive energy transfer |
WO2013122483A1 (en) * | 2012-02-16 | 2013-08-22 | Auckland Uniservices Limited | Multiple coil flux pad |
CN107370249B (en) * | 2012-03-14 | 2020-06-09 | 索尼公司 | Power transmitting device and non-contact power supply system |
JP5749208B2 (en) * | 2012-03-26 | 2015-07-15 | 株式会社東芝 | Power transmission device, power reception device, control device, and wireless power transmission system |
KR101341510B1 (en) * | 2012-05-14 | 2013-12-13 | 전자부품연구원 | Magnetic energy beamforming method and apparatus for wireless power transmission |
GB2502084A (en) * | 2012-05-14 | 2013-11-20 | Bombardier Transp Gmbh | Arrangement for providing vehicles with energy comprising magnetisable material |
JP2013243431A (en) * | 2012-05-17 | 2013-12-05 | Equos Research Co Ltd | Antenna coil |
US11502551B2 (en) | 2012-07-06 | 2022-11-15 | Energous Corporation | Wirelessly charging multiple wireless-power receivers using different subsets of an antenna array to focus energy at different locations |
JP5253607B1 (en) * | 2012-07-13 | 2013-07-31 | 株式会社日立パワーソリューションズ | Wireless power supply apparatus and wireless power supply system |
US10291067B2 (en) | 2012-07-27 | 2019-05-14 | Tc1 Llc | Computer modeling for resonant power transfer systems |
US10383990B2 (en) | 2012-07-27 | 2019-08-20 | Tc1 Llc | Variable capacitor for resonant power transfer systems |
WO2014018967A1 (en) | 2012-07-27 | 2014-01-30 | Thoratec Corporation | Self-tuning resonant power transfer systems |
EP4257174A3 (en) | 2012-07-27 | 2023-12-27 | Tc1 Llc | Thermal management for implantable wireless power transfer systems |
WO2014018969A2 (en) | 2012-07-27 | 2014-01-30 | Thoratec Corporation | Resonant power transfer system and method of estimating system state |
EP2878062A4 (en) | 2012-07-27 | 2016-04-20 | Thoratec Corp | Resonant power transmission coils and systems |
WO2014018974A1 (en) | 2012-07-27 | 2014-01-30 | Thoratec Corporation | Magnetic power transmission utilizing phased transmitter coil arrays and phased receiver coil arrays |
US9825471B2 (en) | 2012-07-27 | 2017-11-21 | Thoratec Corporation | Resonant power transfer systems with protective algorithm |
JP6053439B2 (en) | 2012-10-05 | 2016-12-27 | キヤノン株式会社 | Power supply apparatus and program |
DE102012020885A1 (en) * | 2012-10-24 | 2014-04-24 | Panasonic Corporation | Contactless power supply system for charging rechargeable battery of portable terminal, has power supply control and/or monitoring unit selecting power supply pattern, and power supply control unit supplying power into selected pattern |
US9660478B2 (en) | 2012-12-12 | 2017-05-23 | Qualcomm Incorporated | System and method for facilitating avoidance of wireless charging cross connection |
US9831705B2 (en) | 2012-12-12 | 2017-11-28 | Qualcomm Incorporated | Resolving communcations in a wireless power system with co-located transmitters |
CN103904943B (en) * | 2012-12-25 | 2018-02-02 | 周春大 | A kind of power supply and its fill method of supplying power to |
US11928537B2 (en) * | 2013-01-18 | 2024-03-12 | Amatech Group Limited | Manufacturing metal inlays for dual interface metal cards |
JP5687719B2 (en) | 2013-01-31 | 2015-03-18 | トヨタ自動車株式会社 | Power receiving device, power transmitting device, and power transmission system |
US9270797B2 (en) | 2013-02-27 | 2016-02-23 | Nokia Technologies Oy | Reducing inductive heating |
US20140266018A1 (en) * | 2013-03-12 | 2014-09-18 | Qualcomm Incorporated | Systems and methods for extending the power capability of a wireless charger |
US9680310B2 (en) | 2013-03-15 | 2017-06-13 | Thoratec Corporation | Integrated implantable TETS housing including fins and coil loops |
WO2014145895A1 (en) | 2013-03-15 | 2014-09-18 | Thoratec Corporation | Malleable tets coil with improved anatomical fit |
US9837846B2 (en) | 2013-04-12 | 2017-12-05 | Mojo Mobility, Inc. | System and method for powering or charging receivers or devices having small surface areas or volumes |
US9509375B2 (en) * | 2013-08-01 | 2016-11-29 | SK Hynix Inc. | Wireless transceiver circuit with reduced area |
KR101875974B1 (en) * | 2013-08-14 | 2018-07-06 | 엘지이노텍 주식회사 | A wireless power transmission apparatus and method thereof |
DE102013219542A1 (en) * | 2013-09-27 | 2015-04-02 | Siemens Aktiengesellschaft | Charging device for inductive wireless delivery of energy |
JP6521992B2 (en) | 2013-11-11 | 2019-05-29 | ティーシー1 エルエルシー | Resonance power transmission system having communication |
WO2015070202A2 (en) | 2013-11-11 | 2015-05-14 | Thoratec Corporation | Hinged resonant power transfer coil |
EP3072210B1 (en) | 2013-11-11 | 2023-12-20 | Tc1 Llc | Resonant power transfer systems with communications |
JP6156115B2 (en) * | 2013-12-13 | 2017-07-05 | トヨタ自動車株式会社 | Power transmission equipment |
JP6162609B2 (en) * | 2014-01-07 | 2017-07-12 | 昭和飛行機工業株式会社 | Non-contact power feeding device |
JP6410287B2 (en) * | 2014-02-10 | 2018-10-24 | 国立大学法人埼玉大学 | Contactless power supply system |
US10610692B2 (en) | 2014-03-06 | 2020-04-07 | Tc1 Llc | Electrical connectors for implantable devices |
US10664772B1 (en) | 2014-03-07 | 2020-05-26 | Steelcase Inc. | Method and system for facilitating collaboration sessions |
US9716861B1 (en) | 2014-03-07 | 2017-07-25 | Steelcase Inc. | Method and system for facilitating collaboration sessions |
US9601933B2 (en) | 2014-03-25 | 2017-03-21 | Apple Inc. | Tessellated inductive power transmission system coil configurations |
JP6432366B2 (en) * | 2014-03-31 | 2018-12-05 | Tdk株式会社 | Coil for wireless power transmission and wireless power transmission device |
US10135303B2 (en) | 2014-05-19 | 2018-11-20 | Apple Inc. | Operating a wireless power transfer system at multiple frequencies |
US9449754B2 (en) | 2014-05-30 | 2016-09-20 | Apple Inc. | Coil constructions for improved inductive energy transfer |
US9955318B1 (en) | 2014-06-05 | 2018-04-24 | Steelcase Inc. | Space guidance and management system and method |
US9766079B1 (en) | 2014-10-03 | 2017-09-19 | Steelcase Inc. | Method and system for locating resources and communicating within an enterprise |
US9380682B2 (en) | 2014-06-05 | 2016-06-28 | Steelcase Inc. | Environment optimization for space based on presence and activities |
US10433646B1 (en) | 2014-06-06 | 2019-10-08 | Steelcaase Inc. | Microclimate control systems and methods |
US11744376B2 (en) | 2014-06-06 | 2023-09-05 | Steelcase Inc. | Microclimate control systems and methods |
US10614694B1 (en) | 2014-06-06 | 2020-04-07 | Steelcase Inc. | Powered furniture assembly |
SG11201700790XA (en) | 2014-08-03 | 2017-02-27 | Pogotec Inc | Wearable camera systems and apparatus and method for attaching camera systems or other electronic devices to wearable articles |
CN107210126A (en) * | 2014-09-11 | 2017-09-26 | 奥克兰联合服务有限公司 | Flux coupled structures with controlled flux cancellation |
US10243411B2 (en) | 2014-09-18 | 2019-03-26 | Qualcomm Incorporated | Wireless charger with uniform H-field generator and EMI reduction |
EP3198677B1 (en) | 2014-09-22 | 2021-03-03 | Tc1 Llc | Antenna designs for communication between a wirelessly powered implant to an external device outside the body |
JP2017530557A (en) | 2014-09-26 | 2017-10-12 | パワーバイプロキシ リミテッド | Transmitter for inductive power transmission system |
US9852388B1 (en) | 2014-10-03 | 2017-12-26 | Steelcase, Inc. | Method and system for locating resources and communicating within an enterprise |
US9583874B2 (en) | 2014-10-06 | 2017-02-28 | Thoratec Corporation | Multiaxial connector for implantable devices |
JP2017220958A (en) * | 2014-10-24 | 2017-12-14 | パナソニックIpマネジメント株式会社 | Power supply device |
US10283997B2 (en) | 2014-12-19 | 2019-05-07 | Mediatek Inc. | Wireless power transmission structures |
SG11201705196QA (en) | 2014-12-23 | 2017-07-28 | Pogotec Inc | Wireless camera system and methods |
WO2016108949A1 (en) * | 2014-12-31 | 2016-07-07 | Massachusetts Institute Of Technology | Adaptive control of wireless power transfer |
US10559971B2 (en) * | 2015-04-10 | 2020-02-11 | Ossia Inc. | Wirelessly chargeable battery apparatus |
GB2537827A (en) * | 2015-04-23 | 2016-11-02 | Bombardier Transp Gmbh | A circuit arrangement and a method of operating a circuit arrangement for a system for inductive power transfer |
US10733371B1 (en) | 2015-06-02 | 2020-08-04 | Steelcase Inc. | Template based content preparation system for use with a plurality of space types |
BR112017026524A2 (en) | 2015-06-10 | 2018-08-14 | Pogotec Inc | ? eyepiece system, and portable device adapter? |
US9767951B2 (en) * | 2015-07-07 | 2017-09-19 | The Boeing Company | Liquid crystal inductor enhanced with magnetic nanoparticles |
CN106410991B (en) * | 2015-07-30 | 2021-08-27 | 松下知识产权经营株式会社 | Foreign object detection device, wireless power transmission device, and wireless power transmission system |
CN105098897A (en) * | 2015-07-30 | 2015-11-25 | 京东方科技集团股份有限公司 | Wearable device and terminal |
JP6278012B2 (en) * | 2015-08-28 | 2018-02-14 | トヨタ自動車株式会社 | Non-contact power transmission system and power transmission device |
CN105406606A (en) * | 2015-08-30 | 2016-03-16 | 电子科技大学 | Wireless charging method and wireless charging emission device |
US10148126B2 (en) | 2015-08-31 | 2018-12-04 | Tc1 Llc | Wireless energy transfer system and wearables |
US10790699B2 (en) | 2015-09-24 | 2020-09-29 | Apple Inc. | Configurable wireless transmitter device |
US10477741B1 (en) | 2015-09-29 | 2019-11-12 | Apple Inc. | Communication enabled EMF shield enclosures |
US10651685B1 (en) * | 2015-09-30 | 2020-05-12 | Apple Inc. | Selective activation of a wireless transmitter device |
EP3902100A1 (en) | 2015-10-07 | 2021-10-27 | Tc1 Llc | Resonant power transfer systems having efficiency optimization based on receiver impedance |
US10341787B2 (en) * | 2015-10-29 | 2019-07-02 | PogoTec, Inc. | Hearing aid adapted for wireless power reception |
US10038332B1 (en) | 2015-12-24 | 2018-07-31 | Energous Corporation | Systems and methods of wireless power charging through multiple receiving devices |
US20170256990A1 (en) * | 2016-03-03 | 2017-09-07 | Sanjaya Maniktala | Receiver Coil Arrangements for Inductive Wireless Power Transfer for Portable Devices |
US11558538B2 (en) | 2016-03-18 | 2023-01-17 | Opkix, Inc. | Portable camera system |
US9921726B1 (en) | 2016-06-03 | 2018-03-20 | Steelcase Inc. | Smart workstation method and system |
WO2018016976A1 (en) * | 2016-07-19 | 2018-01-25 | Auckland Uniservices Limited | Electric vehicle detection for roadway wireless power transfer |
US10734840B2 (en) | 2016-08-26 | 2020-08-04 | Apple Inc. | Shared power converter for a wireless transmitter device |
WO2018048312A1 (en) | 2016-09-06 | 2018-03-15 | Powerbyproxi Limited | An inductive power transmitter |
DE102016218026A1 (en) * | 2016-09-20 | 2018-03-22 | Laird Dabendorf Gmbh | Device and method for generating an electromagnetic field for inductive energy transmission |
US10898292B2 (en) | 2016-09-21 | 2021-01-26 | Tc1 Llc | Systems and methods for locating implanted wireless power transmission devices |
JP6821400B2 (en) * | 2016-11-10 | 2021-01-27 | ローム株式会社 | Wireless power transmission device and power transmission control circuit |
US10264213B1 (en) | 2016-12-15 | 2019-04-16 | Steelcase Inc. | Content amplification system and method |
EP3346581B1 (en) * | 2017-01-04 | 2023-06-14 | LG Electronics Inc. | Wireless charger for mobile terminal in vehicle |
US10594160B2 (en) | 2017-01-11 | 2020-03-17 | Apple Inc. | Noise mitigation in wireless power systems |
US11197990B2 (en) | 2017-01-18 | 2021-12-14 | Tc1 Llc | Systems and methods for transcutaneous power transfer using microneedles |
JP6702440B2 (en) * | 2017-01-30 | 2020-06-03 | 日産自動車株式会社 | Contactless power supply coil unit |
US10505401B2 (en) * | 2017-02-02 | 2019-12-10 | Apple Inc. | Wireless charging system with receiver locating circuitry and foreign object detection |
US10326316B2 (en) * | 2017-02-10 | 2019-06-18 | Apple Inc. | Wireless charging system with inductance imaging |
US11146093B2 (en) | 2017-03-31 | 2021-10-12 | Ossia Inc. | Actively modifying output voltage of a wirelessly chargeable energy storage apparatus |
US11177680B2 (en) * | 2017-04-04 | 2021-11-16 | Intel Corporation | Field shaper for a wireless power transmitter |
US12074460B2 (en) | 2017-05-16 | 2024-08-27 | Wireless Electrical Grid Lan, Wigl Inc. | Rechargeable wireless power bank and method of using |
US11462949B2 (en) | 2017-05-16 | 2022-10-04 | Wireless electrical Grid LAN, WiGL Inc | Wireless charging method and system |
US12074452B2 (en) | 2017-05-16 | 2024-08-27 | Wireless Electrical Grid Lan, Wigl Inc. | Networked wireless charging system |
US11043853B2 (en) | 2017-05-17 | 2021-06-22 | Apple Inc. | Wireless charging system having measurement circuitry with foreign object detection capabilities |
US10320241B2 (en) * | 2017-05-17 | 2019-06-11 | Apple Inc. | Wireless charging system with object recognition |
WO2018222758A1 (en) | 2017-05-30 | 2018-12-06 | Wireless Advanced Vehicle Electrification, Inc. | Single feed multi-pad wireless charging |
DE102017210226A1 (en) * | 2017-06-20 | 2018-12-20 | Robert Bosch Gmbh | Energy transfer system for charging rechargeable energy storage |
US20190027966A1 (en) * | 2017-07-18 | 2019-01-24 | Korea Advanced Institute Of Science And Technology (Kaist) | Wireless power transfer system including primary coil unit having a plurality of independently controllable coils and receiver coil unit having a plurality of coils |
US10236725B1 (en) | 2017-09-05 | 2019-03-19 | Apple Inc. | Wireless charging system with image-processing-based foreign object detection |
KR20190060531A (en) * | 2017-11-24 | 2019-06-03 | 경희대학교 산학협력단 | Method and apparatus for driving of a wireless charging pad including plurality of power transfer coil |
EP3735733B1 (en) | 2018-01-04 | 2024-01-17 | Tc1 Llc | Systems and methods for elastic wireless power transmission devices |
KR20190087761A (en) * | 2018-01-17 | 2019-07-25 | 현대자동차주식회사 | Wireless charging pad incorporating ferrite of various structure in wireless power transfer system of electric system |
US11462943B2 (en) | 2018-01-30 | 2022-10-04 | Wireless Advanced Vehicle Electrification, Llc | DC link charging of capacitor in a wireless power transfer pad |
JP7144192B2 (en) * | 2018-05-29 | 2022-09-29 | ローム株式会社 | Wireless power transmission device and its control circuit |
KR102241360B1 (en) * | 2018-07-12 | 2021-04-15 | 연세대학교 산학협력단 | Apparatus for transmitting wireless power and system for transmitting wireless power with the apparatus, and apparatus for receiving wireless power |
US11142084B2 (en) * | 2018-07-31 | 2021-10-12 | Witricity Corporation | Extended-range positioning system based on foreign-object detection |
WO2020102237A1 (en) | 2018-11-13 | 2020-05-22 | Opkix, Inc. | Wearable mounts for portable camera |
US10594368B1 (en) * | 2019-01-31 | 2020-03-17 | Capital One Services, Llc | Array and method for improved wireless communication |
CN113661660B (en) | 2019-02-06 | 2023-01-24 | 艾诺格思公司 | Method of estimating optimal phase, wireless power transmitting apparatus, and storage medium |
CN109904938B (en) * | 2019-03-06 | 2020-10-16 | 哈尔滨工业大学 | Matrix network type wireless power supply system for mobile equipment and charging method thereof |
EP3836347B1 (en) * | 2019-12-13 | 2022-01-19 | Wiferion GmbH | Wireless power transmission with modular output |
US12046910B2 (en) | 2020-02-24 | 2024-07-23 | Ossia Inc. | Devices and systems for providing wirelessly chargeable batteries with improved charge capacities |
US11228210B2 (en) * | 2020-03-05 | 2022-01-18 | Renesas Electronics America Inc. | Multi-coil wireless power transmitter |
US12118178B1 (en) | 2020-04-08 | 2024-10-15 | Steelcase Inc. | Wayfinding services method and apparatus |
US11469040B2 (en) * | 2020-06-04 | 2022-10-11 | Apple Inc. | Wireless magnetic charger with solenoids |
US11984739B1 (en) | 2020-07-31 | 2024-05-14 | Steelcase Inc. | Remote power systems, apparatus and methods |
KR102731154B1 (en) | 2021-03-30 | 2024-11-18 | 애플 인크. | Shielding structures for wireless charging systems |
US20220416576A1 (en) * | 2021-06-25 | 2022-12-29 | Apple Inc. | Nanocrystalline structures for wireless charging systems |
US11715979B2 (en) * | 2021-07-23 | 2023-08-01 | Renesas Electronics America, Inc. | Multi-element driver topology for element selection |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0298707A2 (en) * | 1987-07-10 | 1989-01-11 | Seiko Epson Corporation | Charging device for electronic apparatus |
GB2388716A (en) * | 2002-05-13 | 2003-11-19 | Splashpower Ltd | Contactless power transfer area |
WO2003105308A1 (en) * | 2002-01-11 | 2003-12-18 | City University Of Hong Kong | Planar inductive battery charger |
Family Cites Families (59)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SU542666A1 (en) * | 1974-06-07 | 1977-01-15 | Device for transmitting electricity to the transport crew | |
US4556837A (en) | 1982-03-24 | 1985-12-03 | Terumo Kabushiki Kaisha | Electronic clinical thermometer |
SU1721643A1 (en) * | 1990-01-04 | 1992-03-23 | Ленинградский Электротехнический Институт Связи Им.Проф.М.А.Бонч-Бруевича | Device for non-contact transmission of electric power to rotatable object |
EP0491214A1 (en) * | 1990-12-19 | 1992-06-24 | Asea Brown Boveri Ag | Transformer, in particulier switch mode transformer |
KR950004749B1 (en) * | 1991-10-25 | 1995-05-06 | 삼성전자주식회사 | Solid-state digital power transmission and reception system for cordless phones |
US5311973A (en) * | 1992-07-31 | 1994-05-17 | Ling-Yuan Tseng | Inductive charging of a moving electric vehicle's battery |
US5519262A (en) | 1992-11-17 | 1996-05-21 | Wood; Mark B. | Near field power coupling system |
US5821638A (en) * | 1993-10-21 | 1998-10-13 | Auckland Uniservices Limited | Flux concentrator for an inductive power transfer system |
JP2671809B2 (en) * | 1994-06-30 | 1997-11-05 | 日本電気株式会社 | Non-contact charging device |
US6459218B2 (en) | 1994-07-13 | 2002-10-01 | Auckland Uniservices Limited | Inductively powered lamp unit |
GB2314470A (en) * | 1996-06-18 | 1997-12-24 | Tien Chung Lung | Battery charging arrangement with inductively coupled charging device and rechargeable battery device |
US5821728A (en) * | 1996-07-22 | 1998-10-13 | Schwind; John P. | Armature induction charging of moving electric vehicle batteries |
JPH1092673A (en) * | 1996-07-26 | 1998-04-10 | Tdk Corp | Non-contact power transmission device |
US5734254A (en) * | 1996-12-06 | 1998-03-31 | Hewlett-Packard Company | Battery pack and charging system for a portable electronic device |
JP4067595B2 (en) * | 1997-02-20 | 2008-03-26 | 富士通株式会社 | Non-contact charging device compatible with multiple devices |
JP4280313B2 (en) | 1997-10-16 | 2009-06-17 | 株式会社日立国際電気 | IC card system |
DE69841810D1 (en) | 1997-12-05 | 2010-09-16 | Auckland Uniservices Ltd | POWER SUPPLY TO PRIMARY LADDER |
US6570541B2 (en) * | 1998-05-18 | 2003-05-27 | Db Tag, Inc. | Systems and methods for wirelessly projecting power using multiple in-phase current loops |
CN2341281Y (en) * | 1998-07-28 | 1999-09-29 | 赵文忠 | Charging device for mobile phone |
US6212430B1 (en) | 1999-05-03 | 2001-04-03 | Abiomed, Inc. | Electromagnetic field source with detection of position of secondary coil in relation to multiple primary coils |
US7212414B2 (en) * | 1999-06-21 | 2007-05-01 | Access Business Group International, Llc | Adaptive inductive power supply |
US7522878B2 (en) * | 1999-06-21 | 2009-04-21 | Access Business Group International Llc | Adaptive inductive power supply with communication |
US7612528B2 (en) | 1999-06-21 | 2009-11-03 | Access Business Group International Llc | Vehicle interface |
US6442434B1 (en) | 1999-10-19 | 2002-08-27 | Abiomed, Inc. | Methods and apparatus for providing a sufficiently stable power to a load in an energy transfer system |
US6803744B1 (en) | 1999-11-01 | 2004-10-12 | Anthony Sabo | Alignment independent and self aligning inductive power transfer system |
US6650213B1 (en) * | 2000-06-02 | 2003-11-18 | Yamatake Corporation | Electromagnetic-induction coupling apparatus |
JP2002008996A (en) * | 2000-06-23 | 2002-01-11 | Mitsubishi Heavy Ind Ltd | Feed antenna and feed method |
CN1373530A (en) * | 2001-02-28 | 2002-10-09 | 陈怡铭 | Mobile phone charging system for various mobile phones |
DE10119283A1 (en) | 2001-04-20 | 2002-10-24 | Philips Corp Intellectual Pty | System for wireless transmission of electric power, item of clothing, a system of clothing items and method for transmission of signals and/or electric power |
JP2003011734A (en) | 2001-04-26 | 2003-01-15 | Denso Corp | Mounting structure of electrical apparatus for vehicle |
JP4011875B2 (en) * | 2001-09-04 | 2007-11-21 | 富士フイルム株式会社 | Mobile device with built-in image sensor |
TW535341B (en) | 2001-09-07 | 2003-06-01 | Primax Electronics Ltd | Wireless peripherals charged by electromagnetic induction |
JP4212279B2 (en) * | 2002-02-08 | 2009-01-21 | シャープ株式会社 | Spherical substrate, semiconductor device, spherical semiconductor device manufacturing apparatus, identification device, and spherical substrate manufacturing method |
AU2003240999A1 (en) * | 2002-05-13 | 2003-11-11 | Splashpower Limited | Improvements relating to the transfer of electromagnetic power |
JP2004096852A (en) * | 2002-08-30 | 2004-03-25 | Aichi Electric Co Ltd | Non-contact feeder device |
DE10393604T5 (en) * | 2002-10-28 | 2005-11-03 | Splashpower Ltd. | Improvements in non-contact power transmission |
US7932638B2 (en) | 2002-12-10 | 2011-04-26 | Pure Energy Solutions, Inc. | Reliable contact and safe system and method for providing power to an electronic device |
US8183827B2 (en) | 2003-01-28 | 2012-05-22 | Hewlett-Packard Development Company, L.P. | Adaptive charger system and method |
US7233137B2 (en) * | 2003-09-30 | 2007-06-19 | Sharp Kabushiki Kaisha | Power supply system |
JP4036813B2 (en) * | 2003-09-30 | 2008-01-23 | シャープ株式会社 | Non-contact power supply system |
JP2005160253A (en) | 2003-11-27 | 2005-06-16 | Seiko Epson Corp | Charger, electronic watch, and method of using electronic watch |
US7211986B1 (en) * | 2004-07-01 | 2007-05-01 | Plantronics, Inc. | Inductive charging system |
KR20040072581A (en) | 2004-07-29 | 2004-08-18 | (주)제이씨 프로텍 | An amplification relay device of electromagnetic wave and a radio electric power conversion apparatus using the above device |
JP4318044B2 (en) | 2005-03-03 | 2009-08-19 | ソニー株式会社 | Power supply system, power supply apparatus and method, power reception apparatus and method, recording medium, and program |
US7262700B2 (en) * | 2005-03-10 | 2007-08-28 | Microsoft Corporation | Inductive powering surface for powering portable devices |
KR100819604B1 (en) * | 2005-07-27 | 2008-04-03 | 엘에스전선 주식회사 | Wireless Charger Decreased in Variation of Charging Efficiency |
US7521890B2 (en) * | 2005-12-27 | 2009-04-21 | Power Science Inc. | System and method for selective transfer of radio frequency power |
US7952322B2 (en) | 2006-01-31 | 2011-05-31 | Mojo Mobility, Inc. | Inductive power source and charging system |
US8169185B2 (en) | 2006-01-31 | 2012-05-01 | Mojo Mobility, Inc. | System and method for inductive charging of portable devices |
KR100792308B1 (en) | 2006-01-31 | 2008-01-07 | 엘에스전선 주식회사 | Solid state charging device with coil array, solid state charging system and charging method |
US9129741B2 (en) * | 2006-09-14 | 2015-09-08 | Qualcomm Incorporated | Method and apparatus for wireless power transmission |
US7880337B2 (en) * | 2006-10-25 | 2011-02-01 | Laszlo Farkas | High power wireless resonant energy transfer system |
MX2010003273A (en) * | 2007-09-25 | 2010-05-13 | Powermat Ltd | Inductive power transmission platform. |
US8193769B2 (en) * | 2007-10-18 | 2012-06-05 | Powermat Technologies, Ltd | Inductively chargeable audio devices |
JP4962322B2 (en) | 2008-01-11 | 2012-06-27 | ソニー株式会社 | ANTENNA MODULE, COMMUNICATION DEVICE, AND COMMUNICATION SYSTEM |
KR101593250B1 (en) * | 2008-03-13 | 2016-02-18 | 액세스 비지니스 그룹 인터내셔날 엘엘씨 | Inductive power supply system with multiple coil primary |
KR101604600B1 (en) * | 2008-04-03 | 2016-03-18 | 코닌클리케 필립스 엔.브이. | Wireless power transmission system |
KR101659080B1 (en) * | 2009-11-13 | 2016-09-23 | 삼성전자주식회사 | Wireless charging device and method for controlling charging |
KR101356623B1 (en) * | 2011-11-10 | 2014-02-03 | 주식회사 스파콘 | Power transmission coil and wireless power transmission apparatus |
-
2007
- 2007-08-28 GB GBGB0716679.6A patent/GB0716679D0/en not_active Ceased
-
2008
- 2008-08-28 CN CN200880105039.2A patent/CN101836272B/en active Active
- 2008-08-28 RU RU2010111552/07A patent/RU2488906C2/en not_active IP Right Cessation
- 2008-08-28 KR KR1020107004507A patent/KR101492296B1/en active IP Right Grant
- 2008-08-28 WO PCT/GB2008/002906 patent/WO2009027674A1/en active Application Filing
- 2008-08-28 CA CA2697947A patent/CA2697947A1/en not_active Abandoned
- 2008-08-28 EP EP08788462A patent/EP2183754A1/en not_active Withdrawn
- 2008-08-28 AU AU2008291960A patent/AU2008291960B2/en not_active Ceased
- 2008-08-28 JP JP2010522437A patent/JP5689682B2/en active Active
- 2008-08-28 US US12/672,691 patent/US8587154B2/en active Active
-
2011
- 2011-03-08 HK HK11102351.6A patent/HK1148383A1/en unknown
-
2013
- 2013-10-15 US US14/054,109 patent/US9948358B2/en active Active - Reinstated
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0298707A2 (en) * | 1987-07-10 | 1989-01-11 | Seiko Epson Corporation | Charging device for electronic apparatus |
WO2003105308A1 (en) * | 2002-01-11 | 2003-12-18 | City University Of Hong Kong | Planar inductive battery charger |
GB2388716A (en) * | 2002-05-13 | 2003-11-19 | Splashpower Ltd | Contactless power transfer area |
Cited By (65)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9906047B2 (en) | 2007-12-21 | 2018-02-27 | Access Business Group International Llc | Circuitry for inductive power transfer |
US8884469B2 (en) | 2007-12-21 | 2014-11-11 | Access Business Group International Llc | Circuitry for inductive power transfer |
US8884468B2 (en) | 2007-12-21 | 2014-11-11 | Access Business Group International Llc | Circuitry for inductive power transfer |
WO2010105758A1 (en) * | 2009-03-20 | 2010-09-23 | Paul Vahle Gmbh & Co. Kg | Energy transfer system comprising several primary coils |
US7847664B2 (en) | 2009-05-06 | 2010-12-07 | Verde Power Supply, Inc. | Electromagnetic apparatus using shared flux in a multi-load parallel magnetic circuit and method of operation |
KR101923741B1 (en) * | 2010-04-08 | 2018-11-29 | 퀄컴 인코포레이티드 | Wireless power transmission in electric vehicles |
US11938830B2 (en) | 2010-04-08 | 2024-03-26 | Witricity Corporation | Wireless power antenna alignment adjustment system for vehicles |
US11491882B2 (en) | 2010-04-08 | 2022-11-08 | Witricity Corporation | Wireless power antenna alignment adjustment system for vehicles |
US10343535B2 (en) | 2010-04-08 | 2019-07-09 | Witricity Corporation | Wireless power antenna alignment adjustment system for vehicles |
US10493853B2 (en) | 2010-04-08 | 2019-12-03 | Witricity Corporation | Wireless power transmission in electric vehicles |
US9831681B2 (en) | 2010-04-30 | 2017-11-28 | Fujitsu Limited | Power reception apparatus and power receiving method |
JP5527407B2 (en) * | 2010-04-30 | 2014-06-18 | 富士通株式会社 | Wireless power receiving apparatus and power receiving method |
KR101391487B1 (en) * | 2010-04-30 | 2014-05-07 | 후지쯔 가부시끼가이샤 | Power receiving device and power receiving method |
JPWO2011135722A1 (en) * | 2010-04-30 | 2013-07-18 | 富士通株式会社 | Power receiving device and power receiving method |
EP2613424A4 (en) * | 2010-09-03 | 2014-04-23 | Fujitsu Ltd | WIRELESS CURRENT TRANSMISSION DEVICE |
EP2613424A1 (en) * | 2010-09-03 | 2013-07-10 | Fujitsu Limited | Wireless power transmission device |
CN103081293A (en) * | 2010-09-03 | 2013-05-01 | 富士通株式会社 | Wireless power transmission device |
US9496081B2 (en) | 2011-04-08 | 2016-11-15 | Access Business Group International Llc | Counter wound inductive power supply |
US9520226B2 (en) | 2011-04-08 | 2016-12-13 | Access Business Group International Llc | Counter wound inductive power supply |
US9711277B2 (en) | 2011-07-20 | 2017-07-18 | Panasonic Intellectual Property Management Co., Ltd. | Non-contact power supply system |
WO2013062427A1 (en) * | 2011-10-28 | 2013-05-02 | Auckland Uniservices Limited | Non-ferrite structures for inductive power transfer |
CN104428852A (en) * | 2011-10-28 | 2015-03-18 | 奥克兰联合服务有限公司 | Non-ferrite structures for inductive power transfer |
US9406436B2 (en) | 2011-10-28 | 2016-08-02 | Auckland Uniservices Limited | Non-ferrite structures for inductive power transfer |
US9118203B2 (en) | 2011-11-15 | 2015-08-25 | Qualcomm Incorporated | Systems and methods for induction charging with a closed magnetic loop |
US9899878B2 (en) | 2011-11-15 | 2018-02-20 | Qualcomm Incorporated | Systems and methods for induction charging with a closed magnetic loop |
WO2013074332A1 (en) * | 2011-11-15 | 2013-05-23 | Qualcomm Incorporated | Systems and methods for induction charging with a closed magnetic loop |
DE102011090131A1 (en) * | 2011-12-29 | 2013-07-04 | Conti Temic Microelectronic Gmbh | Charger for charging the energy storage of a portable electrical device |
DE102011090131B4 (en) * | 2011-12-29 | 2017-07-20 | Conti Temic Microelectronic Gmbh | Charger for charging the energy storage of a portable electrical device |
US9509172B2 (en) | 2011-12-29 | 2016-11-29 | Conti Temic Microelectronic Gmbh | Charging device for charging the energy store of a portable electric device |
US11283308B2 (en) | 2012-05-02 | 2022-03-22 | Apple Inc. | Methods for detecting and identifying a receiver in an inductive power transfer system |
US10601264B2 (en) | 2012-05-02 | 2020-03-24 | Apple Inc. | Methods for detecting and identifying a receiver in an inductive power transfer system |
US9735626B2 (en) | 2012-05-18 | 2017-08-15 | Panasonic Intellectual Property Management Co., Ltd. | Non-contact power supply system, non-contact power supply device, and power supply target device |
EP2852027A4 (en) * | 2012-05-18 | 2015-06-03 | Panasonic Ip Man Co Ltd | Non-contact power supply system, non-contact power supply device, and power supply target device |
US10840748B2 (en) | 2012-11-05 | 2020-11-17 | Apple Inc. | Inductively coupled power transfer systems |
EP2749445A1 (en) | 2012-12-28 | 2014-07-02 | Hitachi Power Solutions Co., Ltd. | Inductive power supply system for electric operation machine |
DE102013100175A1 (en) * | 2013-01-09 | 2014-07-10 | Epcos Ag | Coil arrangement for inducing and providing voltage for charging electrical charge storage in passenger car, has conductors, and bus bars providing voltage between conductors, where ends of conductors are connected with respective bus bars |
WO2014181268A3 (en) * | 2013-05-07 | 2015-07-02 | Brusa Elektronik Ag | Arrangement and method for inductive charging of mobile devices |
WO2014197235A1 (en) * | 2013-06-07 | 2014-12-11 | Qualcomm Incorporated | Primary power supply tuning network for two coil device and method of operation |
JP2016533145A (en) * | 2013-06-07 | 2016-10-20 | クアルコム,インコーポレイテッド | Primary power tuning network and method of operation for a two coil device |
CN105229896B (en) * | 2013-06-07 | 2019-03-08 | 高通股份有限公司 | Main power supply tuning network and its operating method for coil arrangement |
CN105229896A (en) * | 2013-06-07 | 2016-01-06 | 高通股份有限公司 | For main supply of electric power tuning network and the method for operation thereof of coil arrangement |
US9431169B2 (en) | 2013-06-07 | 2016-08-30 | Qualcomm Incorporated | Primary power supply tuning network for two coil device and method of operation |
CN104242479A (en) * | 2013-06-11 | 2014-12-24 | 佳能株式会社 | Power supply apparatus and power supply method |
US9829942B2 (en) | 2013-06-11 | 2017-11-28 | Canon Kabushiki Kaisha | Method, apparatus and recording medium for detecting change of position of wirelessly chargeable electronic device |
EP3129286B1 (en) * | 2014-04-07 | 2022-03-23 | Safran Seats USA LLC | Inductive power transmission in aircraft seats |
US11577636B2 (en) | 2014-04-07 | 2023-02-14 | Safran Seats Usa Llc | Inductive power transmission in aircraft seats |
WO2016007023A1 (en) * | 2014-07-08 | 2016-01-14 | Auckland Uniservices Limited | Inductive power transfer apparatus |
US10673279B2 (en) | 2014-07-08 | 2020-06-02 | Auckland Uniservices Limited | Inductive power transfer apparatus |
US10601251B2 (en) | 2014-08-12 | 2020-03-24 | Apple Inc. | System and method for power transfer |
US11374431B2 (en) | 2014-08-12 | 2022-06-28 | Apple Inc. | System and method for power transfer |
US10840744B2 (en) | 2015-03-04 | 2020-11-17 | Apple Inc. | Inductive power transmitter |
EP3308388A4 (en) * | 2015-03-29 | 2018-12-19 | ChargEdge, Inc. | Wireless power transfer using multiple coil arrays |
US10374459B2 (en) | 2015-03-29 | 2019-08-06 | Chargedge, Inc. | Wireless power transfer using multiple coil arrays |
US11133712B2 (en) | 2015-03-29 | 2021-09-28 | Chargedge, Inc. | Wireless power transfer using multiple coil arrays |
US11329519B2 (en) | 2015-04-02 | 2022-05-10 | Apple Inc. | Inductive power transmitter |
US9425644B1 (en) | 2015-06-03 | 2016-08-23 | Thor Charger Company | Method and apparatus for charging an electrically chargeable device utilizing resonating magnetic oscillations in the apparatus |
US10923956B2 (en) | 2015-11-19 | 2021-02-16 | Apple Inc. | Inductive power transmitter |
US11791659B2 (en) | 2015-11-19 | 2023-10-17 | Apple Inc. | Inductive power transmitter |
US11239027B2 (en) | 2016-03-28 | 2022-02-01 | Chargedge, Inc. | Bent coil structure for wireless power transfer |
US10771114B2 (en) | 2016-04-04 | 2020-09-08 | Apple Inc. | Inductive power transmitter |
US10461813B2 (en) | 2016-04-04 | 2019-10-29 | Apple Inc. | Inductive power transmitter |
EP3352529A1 (en) * | 2017-01-24 | 2018-07-25 | E.G.O. ELEKTRO-GERÄTEBAU GmbH | Hotplate |
DE102018216916A1 (en) * | 2018-10-02 | 2020-04-02 | Universität Stuttgart | Device for contactless inductive energy transmission, in particular for inductive charging processes in motor vehicles |
WO2024035704A1 (en) * | 2022-08-09 | 2024-02-15 | Apple Inc. | Wireless power transfer structure |
US12249839B2 (en) | 2022-08-09 | 2025-03-11 | Apple Inc. | Wireless power transfer structure |
Also Published As
Publication number | Publication date |
---|---|
AU2008291960A1 (en) | 2009-03-05 |
JP5689682B2 (en) | 2015-03-25 |
EP2183754A1 (en) | 2010-05-12 |
JP2010538596A (en) | 2010-12-09 |
CA2697947A1 (en) | 2009-03-05 |
CN101836272B (en) | 2014-08-20 |
AU2008291960B2 (en) | 2014-02-13 |
US8587154B2 (en) | 2013-11-19 |
GB0716679D0 (en) | 2007-10-03 |
US20120007437A1 (en) | 2012-01-12 |
RU2488906C2 (en) | 2013-07-27 |
HK1148383A1 (en) | 2011-09-02 |
KR101492296B1 (en) | 2015-02-11 |
US9948358B2 (en) | 2018-04-17 |
US20140042824A1 (en) | 2014-02-13 |
RU2010111552A (en) | 2011-10-10 |
CN101836272A (en) | 2010-09-15 |
KR20100047303A (en) | 2010-05-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9948358B2 (en) | Inductive power supply | |
KR101604600B1 (en) | Wireless power transmission system | |
EP3355083B1 (en) | Foreign-object detecting device, wireless electric-power transmitting device, and wireless electric-power transmission system | |
CN101978571B (en) | Circuitry for inductive power transfer | |
JP6585104B2 (en) | Inductive power transfer system | |
CN106464030B (en) | Wireless energy transfer for mobile device application | |
EP3093958B1 (en) | Foreign object detecting device, wireless power transmitting apparatus, and wireless power transfer system | |
JP5362568B2 (en) | Apparatus, system and method for electromagnetic energy transfer | |
CN107370249B (en) | Power transmitting device and non-contact power supply system | |
CN112510849A (en) | Inductive power transmitter | |
KR102630557B1 (en) | Wireless power transmission apparatus | |
KR101875974B1 (en) | A wireless power transmission apparatus and method thereof | |
KR102675983B1 (en) | Wireless power transmission apparatus | |
CN107005097A (en) | Contactless power transmission device and wireless power charging system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200880105039.2 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 08788462 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2008291960 Country of ref document: AU Ref document number: 498/KOLNP/2010 Country of ref document: IN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 12672691 Country of ref document: US Ref document number: 2008788462 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 583577 Country of ref document: NZ |
|
ENP | Entry into the national phase |
Ref document number: 2010522437 Country of ref document: JP Kind code of ref document: A Ref document number: 20107004507 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2697947 Country of ref document: CA |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2008291960 Country of ref document: AU Date of ref document: 20080828 Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: PI 2010000651 Country of ref document: MY |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010111552 Country of ref document: RU |