WO2009027302A2 - Method and device for converting thermal energy into mechanical energy - Google Patents
Method and device for converting thermal energy into mechanical energy Download PDFInfo
- Publication number
- WO2009027302A2 WO2009027302A2 PCT/EP2008/060921 EP2008060921W WO2009027302A2 WO 2009027302 A2 WO2009027302 A2 WO 2009027302A2 EP 2008060921 W EP2008060921 W EP 2008060921W WO 2009027302 A2 WO2009027302 A2 WO 2009027302A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- phase
- working fluid
- liquid phase
- vapor phase
- condenser
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims description 24
- 239000012530 fluid Substances 0.000 claims abstract description 66
- 239000007791 liquid phase Substances 0.000 claims abstract description 63
- 239000012808 vapor phase Substances 0.000 claims abstract description 54
- 239000000203 mixture Substances 0.000 claims abstract description 26
- 238000009833 condensation Methods 0.000 claims abstract description 24
- 230000005494 condensation Effects 0.000 claims abstract description 24
- 238000009835 boiling Methods 0.000 claims abstract description 8
- 239000002440 industrial waste Substances 0.000 claims abstract description 8
- 239000002918 waste heat Substances 0.000 claims abstract description 6
- 238000002485 combustion reaction Methods 0.000 claims abstract description 5
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 claims description 48
- 229910021529 ammonia Inorganic materials 0.000 claims description 29
- 238000002156 mixing Methods 0.000 claims description 27
- 239000012071 phase Substances 0.000 claims description 24
- 239000003990 capacitor Substances 0.000 claims description 20
- 230000005514 two-phase flow Effects 0.000 claims description 12
- 239000000126 substance Substances 0.000 claims description 11
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 9
- 238000005507 spraying Methods 0.000 claims description 7
- 230000002040 relaxant effect Effects 0.000 claims description 5
- 238000000926 separation method Methods 0.000 claims description 4
- 238000006243 chemical reaction Methods 0.000 claims description 3
- 239000000463 material Substances 0.000 abstract description 4
- 230000007423 decrease Effects 0.000 abstract description 2
- 239000008240 homogeneous mixture Substances 0.000 abstract description 2
- 238000011144 upstream manufacturing Methods 0.000 abstract description 2
- 239000007788 liquid Substances 0.000 description 7
- 238000005204 segregation Methods 0.000 description 5
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 4
- 239000002826 coolant Substances 0.000 description 4
- 238000001704 evaporation Methods 0.000 description 4
- 230000008020 evaporation Effects 0.000 description 4
- 238000002347 injection Methods 0.000 description 4
- 239000007924 injection Substances 0.000 description 4
- 229920006395 saturated elastomer Polymers 0.000 description 4
- 235000011114 ammonium hydroxide Nutrition 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000004821 distillation Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01K—STEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
- F01K25/00—Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
- F01K25/06—Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using mixtures of different fluids
- F01K25/065—Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using mixtures of different fluids with an absorption fluid remaining at least partly in the liquid state, e.g. water for ammonia
Definitions
- the invention relates to a method and a device for converting thermal energy into mechanical energy according to the preamble of patent claim 1 and of patent claim 10 respectively; such a method and such a device are known for example from WO 2005/100755 Al.
- Kalina cycle process To convert efficiency into mechanical or electrical energy.
- ORC Organic Rankine Cycle
- Kalina cycle process To convert efficiency into mechanical or electrical energy.
- ORC Organic Rankine Cycle
- various circuits On the basis of the Kalina cycle, various circuits have already been developed for a wide variety of applications. These circuits use as working fluid instead of water a binary mixture (eg ammonia and water), wherein the different boiling and condensation temperatures of the two materials and the consequent non-isothermal boiling and condensation process of the mixture is utilized to the efficiency of the circuit compared to to increase a Rankine cycle.
- a binary mixture eg ammonia and water
- such a Kalina cycle comprises at least one pump for increasing the pressure of the working fluid, a heat exchanger for generating a vaporous phase of the working fluid by heat transfer from an external heat source, such as a geothermal fluid or industrial waste heat, and a relaxation device, preferably a turbine. for relaxing the vaporous phase and converting its thermal energy into mechanical ones Energy.
- the relaxed working fluid is then condensed in a condenser with the aid of a coolant.
- a separator can be arranged in the circuit between the heat exchanger and the expansion device, with which a liquid phase of the working medium still present in the heat exchanger during only partial evaporation of the working medium vapor phase before their supply to the expansion device can be separated.
- the separated liquid phase can then be combined with the relaxed vapor phase via a mixing device arranged in the circuit between the expansion device and the condenser.
- Further heat exchangers may be provided for transferring heat from the relaxed working fluid to the working fluid prior to its delivery to the heat exchanger.
- a Kalina cycle known from EP 0756069 B1 with an ammonia / water mixture as the working medium additionally has a distillation unit arranged between the condenser and the pump in the circuit for separating out a gaseous ammonia liquid from the working medium flow.
- This lean ammonia liquid is supplied to the relaxed in a turbine working fluid prior to its supply to the condenser.
- the working medium consists, for example, of an ammonia-water mixture
- the result is an inhomogeneous, partially segregated two-phase flow consisting of ammonia-rich saturated steam and low-ammonia condensate in the line connection.
- the condenser is partially flooded with the ammonia-lean condensate and the ammonia vapor fills only the remainder of the heat exchanger.
- the flooded portion reduces the effectiveness of the capacitor.
- the condensation pressure of the ammonia-rich vapor for example, consisting of 95% ammonia
- the higher the condensation pressure in the condenser the smaller the pressure gradient to be reduced via the turbine. The circuit thus generates less mechanical or electrical power at a lower efficiency.
- the solution of the object directed to the method is achieved by a method according to claim 1.
- Advantageous embodiments of the method are the subject of claims 2 to 9.
- the solution of the object directed to the device is achieved by a device according to claim 10.
- Advantageous embodiments of the device are the subject of claims 11 to 18.
- the inventive method for the conversion of thermal energy into mechanical energy using a working fluid which consists of a mixture of substances with at least two substances fen, which have different boiling and condensing temperatures, wherein the relaxed in a relaxation device working fluid is fed as a two-phase flow with a liquid phase and a vapor phase to a condenser and condensed therein, provides that in the two-phase flow before or during the condensation of Working fluid in the condenser, the liquid phase is mixed with the vapor phase.
- a homogeneous two-substance mixture condenses at a constant coolant temperature in the condenser even at lower pressure. With a lower condensation pressure in the condenser, however, the pressure gradient to be reduced via the turbine increases, so that more mechanical or electrical power can be generated at a higher efficiency.
- Phase is characterized very easily possible that in the two-phase flow, the liquid phase separated from the vapor phase and then the separated liquid phase is combined with the vapor phase again.
- the separated liquid phase is sprayed into the vaporous phase for the purpose of combining.
- a particularly good mixing of the liquid and the vapor phase can be achieved by increasing the pressure of the separated liquid phase to a value which is above the pressure of the vapor phase for the purpose of spraying.
- the separated liquid phase is thus supplied under an overpressure of the vapor phase.
- the separation of the liquid phase from the vaporous phase in this case preferably takes place immediately in front of the condenser in order to avoid renewed segregation of the binary mixture on the way to the condenser.
- the mixing itself can also be done directly in front of the capacitor, but also directly in the capacitor.
- the working fluid advantageously passes through the following process steps in a closed circuit after the condensation:
- the working fluid in this case can be completely vaporized by the heat transfer (i.e., there is only one vapor phase) or only partially vaporized (i.e., there is a vapor and a liquid phase).
- the liquid phase of the working medium is advantageously separated off from the vaporous phase before the vapor phase is expanded, and fed back to the vaporous phase after its expansion. The liquid phase is thus passed past a relaxation device for the relaxation of the vaporous phase.
- the working fluid can then be fed to the condenser directly or via one or more intermediate heat exchangers, which transfer the heat of the expanded vapor phase to the working fluid before its at least partial evaporation, after the expansion.
- Fluid, industrial waste heat or waste heat used in an internal combustion engine Fluid, industrial waste heat or waste heat used in an internal combustion engine.
- the device according to the invention for converting thermal energy into mechanical energy using a working medium which consists of a substance mixture with at least two substances which have different boiling and condensation temperatures comprises a condenser for condensing the working medium, the working medium being expanded in a pressure relief device before its supply to the condenser as a two-phase flow with a liquid phase and a vapor phase, and a mixing device for mixing the liquid phase of the two-phase flow with the vapor phase of the two-phase flow before or during the condensation of the working fluid in the condenser.
- the mixing device has a separator for
- the mixing device has a pump, by means of which the pressure of the separated liquid phase can be increased to a value which is above the pressure of the vapor phase, a particularly good mixing of the two phases can be achieved during the spraying.
- the separator is arranged in the direction of flow of the working fluid immediately in front of the condenser, a renewed segregation of the binary mixture on the way to the condenser can be prevented.
- the at least one nozzle itself can also be arranged directly in front of, or else in the condenser, in the flow direction of the working medium.
- the working fluid in the device can be guided in a closed circuit which has at least the following components in the direction of flow of the working fluid downstream of the condenser: a pump for increasing the pressure of the working fluid,
- a heat exchanger for generating a vaporous phase of the working fluid by heat transfer from an external heat source, and an expansion device, in particular a turbine, for relaxing the vaporous phase and converting its thermal energy into mechanical energy.
- the working fluid in this case can be completely vaporized by the heat transfer (i.e., there is only one vapor phase) or only partially vaporized (i.e., there is a vapor and a liquid phase).
- the circulation advantageously also comprises a separator arranged between the heat exchanger and the expansion device for separating the liquid phase from the vapor phase and a combination arranged between the expansion device and the mixing device for combining the separated liquid phase and the expanded one vapor phase.
- the liquid phase can thereby be guided past the expansion device.
- the heat source is a geothermal fluid, industrial waste heat or waste heat of a Verbrennungskraftma- machine.
- the working fluid is a mixture of ammonia and water.
- FIG. 2 shows an example of a demixing of a binary mixture in a line connection
- 3 shows a mixing device with a common injection for several capacitors
- FIG. 4 shows a mixing device with a spraying directly into the capacitors
- FIG. 5 shows a mixing device with a separate injection for each individual capacitor.
- a device 1 shown in FIG 1 for the conversion of thermal energy into mechanical energy comprises a circuit 2, wherein in the flow direction of a working fluid successively as essential components a pump 3 for increasing the pressure of the working fluid, a heat exchanger 4 for generating a vapor phase of the working medium Heat transfer from an external heat source 5, a turbine 6 for relaxing the vapor phase of the working fluid and converting its thermal energy into mechanical energy, a mixing device 7 for mixing a liquid and a vapor phase of the working fluid and a condenser 8 for complete condensation of the working fluid by means a coolant 9 are arranged.
- the external heat source 5 is, for example, a geothermal fluid, industrial waste heat or waste heat of an internal combustion engine.
- the turbine 6 drives, for example, a generator, not shown, which converts the mechanical energy into electrical energy.
- the working fluid consists of a mixture of substances with at least two substances which have different boiling and condensation temperatures. In the following, it is assumed that a mixture of ammonia and water is used as the working medium.
- the circuit 2 comprises a separator 15 arranged between the heat exchanger 4 and the turbine 6 for separating a liquid phase from the vaporous phase of the working medium and a junction arranged between the turbine 6 and the mixing device 7 16 for combining the separated liquid phase and the relaxed vapor phase.
- the working fluid after the capacitor 8 is present exclusively as a liquid.
- the liquid working fluid is pressurized by the pump 3 and then at least partially evaporated in the heat exchanger 4, i. After the heat exchanger, the working medium is present with a vaporous phase and possibly a low-ammonia liquid phase. In the separator 15, the possibly still existing liquid phase is separated from the vapor phase.
- the vaporous phase is relaxed in the turbine 6 and its thermal energy is converted into mechanical energy.
- the mechanical energy can then continue to be used, for example for power generation.
- the flooded portion would reduce the effectiveness of the condenser and thus increase the condensation pressure, since the condensation pressure of the ammonia-rich saturated steam (about 95% ammonia) compared to that of a homogeneous water-ammonia mixture is significantly higher. With increasing However, the condensation pressure in the condenser decreases the pressure gradient to be reduced via the turbine and thus the producible mechanical or electrical power.
- the mixing device 7 comprises a separator 20 for separating the low-ammonia liquid phase from the ammonia-rich vapor phase and a nozzle 21 for spraying the separated liquid phase in the vapor phase, the separator 20 and the nozzle 21 in the flow direction of the working fluid successively in the connecting line 10th between the turbine 6 and the condenser 8 after the merger 16 are arranged.
- the separated in the separator 20 liquid phase is supplied via a bypass line 14 of the nozzle 21.
- a pump 22 and a control valve 23 are connected.
- the pressure of the guided in the bypass line 14 separated liquid phase can be increased to a value which is above the pressure of the vapor phase after the separator 20.
- the control valve 23 the supply amount of liquid phase to the nozzle 21 is controllable.
- the separator 20 is arranged in the flow direction of the working fluid immediately in front of the condenser 8, in order to avoid a renewed segregation of the working fluid in its residual path to the condenser 8.
- the nozzle 21 may be arranged in the flow direction of the working fluid immediately before or in the condenser 8.
- the separator 20 thus the ammonia-rich vaporous phase is separated from the low-ammonia liquid phase.
- the ammonia-poor liquid phase is conducted via the bypass line 14 to the nozzle 21.
- the pressure of the ammonia-lean liquid phase is increased by the pump 22 to a value which is above the pressure of the ammonia-rich vaporous phase.
- the low-ammonia liquid phase is characterized in the nozzle 21 sprayed under pressure in the ammonia-rich vapor phase.
- a homogeneous mixture of ammonia and water can again be generated and fed to the condenser 8, which condenses at a constant coolant temperature in the condenser even at a lower pressure than the ammonia-rich vaporous phase.
- the pressure gradient to be reduced across the turbine increases and the circuit can thus produce more electrical power at a higher efficiency.
- Working means parallel capacitors 8 also a mixing device 7 with a single separator 20 and one or more nozzles 21 may be provided for each of the capacitors 8.
- the separator 20 is immediately upstream of the capacitors 8 and the nozzles 21 are arranged in the capacitors 8. The liquid phase is thus sprayed directly into the capacitors 8.
- the supply of liquid phase to the nozzles 21 in this case by means of a common control valve 23 is controllable.
- the nozzles 21 can also be arranged directly in front of the respective capacitors 8, i. There is a separate injection for each capacitor 8 before.
- the supply of liquid phase to each of the nozzles 21 is in this case controllable by means of its own control valve 23 for each of the capacitors 8.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Engine Equipment That Uses Special Cycles (AREA)
Abstract
Description
Beschreibungdescription
Verfahren und Vorrichtung zur Umwandlung thermischer Energie in mechanische EnergieMethod and device for converting thermal energy into mechanical energy
Die Erfindung betrifft ein Verfahren und eine Vorrichtung zur Umwandlung thermischer Energie in mechanische Energie gemäß Oberbegriff des Patentanspruchs 1 bzw. des Patentanspruchs 10; ein derartiges Verfahren bzw. eine derartige Vorrichtung sind beispielsweise aus der WO 2005/100755 Al bekannt.The invention relates to a method and a device for converting thermal energy into mechanical energy according to the preamble of patent claim 1 and of patent claim 10 respectively; such a method and such a device are known for example from WO 2005/100755 Al.
Für Niedertemperatur Wärmequellen mit Temperaturen bis maximal 400° C, z.B. geothermische Fluide oder industrieller Abwärme, wurden in den letzten Jahren verschiedenste Technolo- gien entwickelt, die es ermöglichen, deren Wärme mit gutemFor low temperature heat sources with temperatures up to a maximum of 400 ° C, e.g. Geothermal fluids or industrial waste heat, a variety of technologies have been developed in recent years, which allow their heat with good
Wirkungsgrad in mechanische bzw. elektrische Energie umzuwandeln. Neben dem Rankine-Prozess mit einem organischen Arbeitsmittel (Organic Rankine Cycle, ORC) zeichnet sich vor allem der sogenannte Kalina-Kreisprozess durch deutlich bes- sere Wirkungsgrade gegenüber dem klassischen Rankine-Prozess aus. Auf der Basis des Kalina-Kreisprozesses wurden bereits diverse Kreisläufe für unterschiedlichste Anwendungen entwickelt. Diese Kreisläufe verwenden als Arbeitsmittel anstatt Wasser ein Zweistoffgemisch (z.B. Ammoniak und Wasser), wobei die unterschiedlichen Siede- und Kondensationstemperaturen der beiden Stoffe und der dadurch bedingte nicht-isotherme Siede- und Kondensationsvorgang des Gemisches ausgenutzt wird, um den Wirkungsgrad des Kreislaufs im Vergleich zu einem Rankine-Kreislauf zu erhöhen.To convert efficiency into mechanical or electrical energy. In addition to the Rankine process with an organic working medium (Organic Rankine Cycle, ORC), the so-called Kalina cycle process is characterized by significantly better efficiencies compared to the classical Rankine process. On the basis of the Kalina cycle, various circuits have already been developed for a wide variety of applications. These circuits use as working fluid instead of water a binary mixture (eg ammonia and water), wherein the different boiling and condensation temperatures of the two materials and the consequent non-isothermal boiling and condensation process of the mixture is utilized to the efficiency of the circuit compared to to increase a Rankine cycle.
Üblicherweise umfasst ein derartiger Kalina-Kreislauf zumindest eine Pumpe zum Erhöhen des Drucks des Arbeitsmittels, einen Wärmetauscher zum Erzeugen einer dampfförmigen Phase des Arbeitsmittels durch Wärmeübertragung von einer externen Wärmequelle, wie z.B. einer geothermischen Flüssigkeiten oder industrieller Abwärme, und eine Entspannungseinrichtung, vorzugsweise eine Turbine, zum Entspannen der dampfförmigen Phase und Umwandeln ihrer thermischen Energie in mechanische Energie. Das entspannte Arbeitsmittel wird anschließend in einem Kondensator mit Hilfe eines Kühlmittels kondensiert.Typically, such a Kalina cycle comprises at least one pump for increasing the pressure of the working fluid, a heat exchanger for generating a vaporous phase of the working fluid by heat transfer from an external heat source, such as a geothermal fluid or industrial waste heat, and a relaxation device, preferably a turbine. for relaxing the vaporous phase and converting its thermal energy into mechanical ones Energy. The relaxed working fluid is then condensed in a condenser with the aid of a coolant.
Zur Verbesserung des Wirkungsgrades können noch weitere Kom- ponenten in den Kreislauf geschaltet sein. Beispielsweise kann - wie in der WO 2005/100755 Al gezeigt - in dem Kreislauf zwischen dem Wärmetauscher und der Entspannungseinrichtung ein Separator angeordnet sein, mit dem eine bei einer nur teilweisen Verdampfung des Arbeitsmittels in dem Wärme- tauscher noch vorliegende flüssige Phase des Arbeitsmittels von der dampfförmigen Phase vor deren Zufuhr zur der Entspannungseinrichtung abgetrennt werden kann. Die abgetrennte flüssige Phase kann anschließend über eine zwischen der Entspannungseinrichtung und dem Kondensator in dem Kreislauf an- geordnete Mischeinrichtung mit der entspannten dampfförmigen Phase zusammengeführt werden. Weitere Wärmetauscher können zur Übertragung von Wärme von dem entspannten Arbeitsmittel zu dem Arbeitsmittel vor dessen Zufuhr zu dem Wärmetauscher vorgesehen sein.To improve the efficiency, additional components can be connected in the circuit. For example, as shown in WO 2005/100755 A1, a separator can be arranged in the circuit between the heat exchanger and the expansion device, with which a liquid phase of the working medium still present in the heat exchanger during only partial evaporation of the working medium vapor phase before their supply to the expansion device can be separated. The separated liquid phase can then be combined with the relaxed vapor phase via a mixing device arranged in the circuit between the expansion device and the condenser. Further heat exchangers may be provided for transferring heat from the relaxed working fluid to the working fluid prior to its delivery to the heat exchanger.
Ein aus der EP 0756069 Bl bekannter Kalina-Kreislauf mit einem Ammonik/Wasser-Gemisch als Arbeitsmittel weist zusätzlich eine zwischen dem Kondensator und der Pumpe in dem Kreislauf angeordnete Destillationseinheit zur Heraustrennung einer ma- geren Ammoniakflüssigkeit aus dem Arbeitsmittelstrom auf. Diese magere Ammoniakflüssigkeit wird dem in einer Turbine entspannten Arbeitsmittel vor dessen Zufuhr zu dem Kondensator zugeführt.A Kalina cycle known from EP 0756069 B1 with an ammonia / water mixture as the working medium additionally has a distillation unit arranged between the condenser and the pump in the circuit for separating out a gaseous ammonia liquid from the working medium flow. This lean ammonia liquid is supplied to the relaxed in a turbine working fluid prior to its supply to the condenser.
In einer Leitungsverbindung zwischen der Entspannungseinrichtung und dem Kondensator kann es aufgrund einer teilweisen Kondensation des Arbeitsmittels zu einem stetig steigenden Anteil an flüssiger Phase in dem Arbeitsmittel kommen. Auch eine Einspeisung von beispielsweise vor der Entspannungsein- richtung abgetrennter flüssiger Phase des Arbeitsmittels in die entspannte dampfförmige Phase führt zu einem Anstieg des Anteils an flüssiger Phase in dem Arbeitsmittel vor dessen Zufuhr zu dem Kondensator. Der steigende Anteil an flüssiger Phase führt zu einer „Entmischung" des Stoffgemisches und zur Herausbildung einer inhomogenen, teilweise entmischten Zweiphasenströmung in der Leitungsverbindung.In a line connection between the expansion device and the condenser, it may be due to a partial condensation of the working fluid to a steadily increasing proportion of liquid phase in the working fluid. A feed of liquid phase of the working fluid separated, for example, before the expansion device into the relaxed vapor phase also leads to an increase in the proportion of liquid phase in the working fluid before it is fed to the condenser. The rising share of liquid Phase leads to a "segregation" of the mixture and the formation of an inhomogeneous, partially segregated two-phase flow in the line connection.
Wenn das Arbeitsmittel beispielsweise aus einem Ammoniak- Wasser-Gemisch besteht, dann entsteht in der Leitungsverbindung dadurch eine inhomogene, teilweise entmischte Zweiphasenströmung bestehend aus ammoniakreichen Sattdampf und ammoniakarmen Kondensat. Dies hat zur Folge, dass der Kondensator teilweise mit dem ammoniakarmen Kondensat geflutet wird und der Ammoniakdampf nur den verbleibenden Rest des Wärmetauschers füllt. Der geflutete Anteil verringert die Effektivität des Kondensators. Zudem ist der Kondensationsdruck des ammoniakreichen Dampfes (beispielsweise bestehend aus 95 % Ammoniak) verglichen mit dem eines homogenen Wasser-Ammoniak- Gemisches deutlich höher. Je höher der Kondensationsdruck im Kondensator ist, umso kleiner ist aber das über die Turbine abzubauende Druckgefälle. Der Kreislauf generiert folglich weniger mechanische bzw. elektrische Leistung bei einem schlechteren Wirkungsgrad.If the working medium consists, for example, of an ammonia-water mixture, the result is an inhomogeneous, partially segregated two-phase flow consisting of ammonia-rich saturated steam and low-ammonia condensate in the line connection. As a result, the condenser is partially flooded with the ammonia-lean condensate and the ammonia vapor fills only the remainder of the heat exchanger. The flooded portion reduces the effectiveness of the capacitor. In addition, the condensation pressure of the ammonia-rich vapor (for example, consisting of 95% ammonia) compared to that of a homogeneous water-ammonia mixture is significantly higher. The higher the condensation pressure in the condenser, the smaller the pressure gradient to be reduced via the turbine. The circuit thus generates less mechanical or electrical power at a lower efficiency.
Es ist deshalb Aufgabe vorliegender Erfindung, ein Verfahren gemäß Oberbegriff des Patentanspruchs 1 bzw. eine Vorrichtung gemäß Oberbegriff des Patentanspruchs 10 derart weiterzubil- den, dass solche Wirkungsgradverluste vermieden werden können .It is therefore an object of the present invention, a method according to the preamble of claim 1 and a device according to the preamble of claim 10 weiterzubil- such that such efficiency losses can be avoided.
Die Lösung der auf das Verfahren gerichteten Aufgabe gelingt durch ein Verfahren gemäß Patentanspruch 1. Vorteilhafte Aus- gestaltungen des Verfahrens sind Gegenstand der Patentansprüche 2 bis 9. Die Lösung der auf die Vorrichtung gerichteten Aufgabe gelingt durch eine Vorrichtung gemäß Patentanspruch 10. Vorteilhafte Ausgestaltungen der Vorrichtung sind Gegenstand der Patentansprüche 11 bis 18.The solution of the object directed to the method is achieved by a method according to claim 1. Advantageous embodiments of the method are the subject of claims 2 to 9. The solution of the object directed to the device is achieved by a device according to claim 10. Advantageous embodiments of the device are the subject of claims 11 to 18.
Das erfindungsgemäße Verfahren zur Umwandlung thermischer Energie in mechanische Energie unter Nutzung eines Arbeitsmittels, das aus einem Stoffgemisch mit zumindest zwei Stof- fen besteht, die unterschiedliche Siede- und Kondensationstemperaturen aufweisen, wobei das in einer Entspannungseinrichtung entspannte Arbeitsmittel als ein Zweiphasenstrom mit einer flüssigen Phase und einer dampfförmigen Phase einem Kondensator zugeführt und darin kondensiert wird, sieht vor, dass in dem Zweiphasenstrom vor oder bei der Kondensation des Arbeitsmittels in dem Kondensator die flüssige Phase mit der dampfförmigen Phase vermischt wird.The inventive method for the conversion of thermal energy into mechanical energy using a working fluid, which consists of a mixture of substances with at least two substances fen, which have different boiling and condensing temperatures, wherein the relaxed in a relaxation device working fluid is fed as a two-phase flow with a liquid phase and a vapor phase to a condenser and condensed therein, provides that in the two-phase flow before or during the condensation of Working fluid in the condenser, the liquid phase is mixed with the vapor phase.
Hierdurch kann eine Entmischung des Zweistoffgemisches beseitigt und wieder ein homogenes Zweistoffgemisch in dem Zweiphasenstrom erzeugt werden. Ein homogenes Zweistoffgemisch kondensiert bei gleichbleibender Kühlmitteltemperatur im Kondensator schon bei niedrigerem Druck. Mit niedrigerem Konden- sationsdruck im Kondensator steigt jedoch das über die Turbine abzubauende Druckgefälle, so dass mehr mechanische bzw. elektrische Leistung bei einem höheren Wirkungsgrad erzeugt werden kann.In this way, a separation of the two-component mixture can be eliminated and again a homogeneous two-substance mixture can be generated in the two-phase stream. A homogeneous two-substance mixture condenses at a constant coolant temperature in the condenser even at lower pressure. With a lower condensation pressure in the condenser, however, the pressure gradient to be reduced via the turbine increases, so that more mechanical or electrical power can be generated at a higher efficiency.
Eine Vermischung der flüssigen Phase mit der dampfförmigenA mixing of the liquid phase with the vaporous
Phase ist dadurch sehr einfach möglich, dass in dem Zweiphasenstrom die flüssige Phase von der dampfförmigen Phase getrennt und anschließend die abgetrennte flüssige Phase mit der dampfförmigen Phase wieder zusammengeführt wird. Vorzugs- weise wird dabei zur Zusammenführung die abgetrennte flüssige Phase in die dampfförmige Phase eingesprüht.Phase is characterized very easily possible that in the two-phase flow, the liquid phase separated from the vapor phase and then the separated liquid phase is combined with the vapor phase again. Preferably, the separated liquid phase is sprayed into the vaporous phase for the purpose of combining.
Eine besonders gute Vermischung der flüssigen und der dampfförmigen Phase kann hierbei dadurch erzielt werden, dass zum Einsprühen der Druck der abgetrennten flüssigen Phase auf einen Wert erhöht wird, der über dem Druck der dampfförmigen Phase liegt. Die abgetrennte flüssige Phase wird somit unter einem Überdruck der dampfförmigen Phase zugeführt.A particularly good mixing of the liquid and the vapor phase can be achieved by increasing the pressure of the separated liquid phase to a value which is above the pressure of the vapor phase for the purpose of spraying. The separated liquid phase is thus supplied under an overpressure of the vapor phase.
Die Trennung der flüssigen Phase von der dampfförmigen Phase erfolgt hierbei vorzugsweise unmittelbar vor dem Kondensator, um eine neuerliche Entmischung des Zweistoffgemisches auf dem Weg zum Kondensator zu vermeiden. Die Vermischung selbst kann ebenfalls unmittelbar vor dem Kondensator, aber auch direkt in dem Kondensator erfolgen.The separation of the liquid phase from the vaporous phase in this case preferably takes place immediately in front of the condenser in order to avoid renewed segregation of the binary mixture on the way to the condenser. The mixing itself can also be done directly in front of the capacitor, but also directly in the capacitor.
Von Vorteil durchläuft das Arbeitsmittel hierbei in einem ge- schlossenen Kreislauf nach der Kondensation zumindest die folgenden Verfahrensschritte:In this case, the working fluid advantageously passes through the following process steps in a closed circuit after the condensation:
- Erhöhen des Drucks des Arbeitsmittels,Increasing the pressure of the working fluid,
- Erzeugen einer dampfförmigen Phase des Arbeitsmittels durch Wärmeübertragung von einer externen Wärmequelle und - Entspannen der dampfförmigen Phase und Umwandeln ihrer thermischen Energie in mechanische Energie.- Generating a vapor phase of the working fluid by heat transfer from an external heat source and - Relax the vapor phase and converting their thermal energy into mechanical energy.
Das Arbeitsmittel kann hierbei durch die Wärmeübertragung vollständig verdampft (d.h. es liegt nur eine dampfförmige Phase vor) oder nur teilweise verdampft (d.h. es liegt eine dampfförmige und eine flüssige Phase vor) werden. Bei einer nur teilweisen Verdampfung wird von Vorteil vor dem Entspannen der dampfförmigen Phase die flüssige Phase des Arbeitsmittels von der dampfförmigen Phase abgetrennt und der dampf- förmigen Phase nach deren Entspannung wieder zugeführt. Die flüssige Phase wird somit an einer Entspannungseinrichtung zur Entspannung der dampfförmigen Phase vorbeigeführt.The working fluid in this case can be completely vaporized by the heat transfer (i.e., there is only one vapor phase) or only partially vaporized (i.e., there is a vapor and a liquid phase). In the case of only partial evaporation, the liquid phase of the working medium is advantageously separated off from the vaporous phase before the vapor phase is expanded, and fed back to the vaporous phase after its expansion. The liquid phase is thus passed past a relaxation device for the relaxation of the vaporous phase.
Das Arbeitsmittel kann dann nach der Entspannung direkt oder über einen oder mehrere zwischengeschaltete Wärmetauscher, die Wärme der entspannten dampfförmigen Phase an das Arbeitsmittel vor dessen zumindest teilweiser Verdampfung übertragen, dem Kondensator zugeführt werden.The working fluid can then be fed to the condenser directly or via one or more intermediate heat exchangers, which transfer the heat of the expanded vapor phase to the working fluid before its at least partial evaporation, after the expansion.
Bevorzugt wird als externe Wärmequelle ein geothermischesPreference is given to a geothermal as external heat source
Fluid, industrielle Abwärme oder Abwärme einer Verbrennungskraftmaschine verwendet.Fluid, industrial waste heat or waste heat used in an internal combustion engine.
Besonders gute Wirkungsgrade sind hierbei erzielbar, wenn als Arbeitsmittel ein Gemisch aus Ammoniak und Wasser verwendet wird. Die erfindungsgemäße Vorrichtung zur Umwandlung thermischer Energie in mechanische Energie unter Nutzung eines Arbeitsmittels, das aus einem Stoffgemisch mit zumindest zwei Stoffen besteht, die unterschiedliche Siede- und Kondensations- temperaturen aufweisen, umfasst einen Kondensator zur Kondensation des Arbeitsmittels, wobei das in einer Entspannungseinrichtung entspannte Arbeitsmittel vor seiner Zufuhr zu dem Kondensator als ein Zweiphasenstrom mit einer flüssigen Phase und einer dampfförmigen Phase vorliegt, und eine Mischein- richtung zur Vermischung der flüssigen Phase des Zweiphasenstromes mit der dampfförmigen Phase des Zweiphasenstromes vor oder bei der Kondensation des Arbeitsmittels in dem Kondensator .Particularly good efficiencies can be achieved if a mixture of ammonia and water is used as the working medium. The device according to the invention for converting thermal energy into mechanical energy using a working medium which consists of a substance mixture with at least two substances which have different boiling and condensation temperatures, comprises a condenser for condensing the working medium, the working medium being expanded in a pressure relief device before its supply to the condenser as a two-phase flow with a liquid phase and a vapor phase, and a mixing device for mixing the liquid phase of the two-phase flow with the vapor phase of the two-phase flow before or during the condensation of the working fluid in the condenser.
Von Vorteil weist die Mischeinrichtung einen Separator zurAdvantageously, the mixing device has a separator for
Trennung der flüssigen Phase von der dampfförmigen Phase und zumindest eine Düse zum Einsprühen der abgetrennten flüssigen Phase in die dampfförmige Phase auf.Separation of the liquid phase from the vapor phase and at least one nozzle for spraying the separated liquid phase in the vapor phase.
Wenn die Mischeinrichtung eine Pumpe aufweist, durch die der Druck der abgetrennten flüssigen Phase auf einen Wert erhöhbar ist, der über dem Druck der dampfförmigen Phase liegt, kann beim Einsprühen eine besonders gute Vermischung der beiden Phasen erzielbar.If the mixing device has a pump, by means of which the pressure of the separated liquid phase can be increased to a value which is above the pressure of the vapor phase, a particularly good mixing of the two phases can be achieved during the spraying.
Wenn der Seperator in Strömungsrichtung des Arbeitsmittels unmittelbar vor dem Kondensator angeordnet ist, kann eine neuerliche Entmischung des Zweistoffgemisches auf dem Weg zum Kondensator verhindert werden.If the separator is arranged in the direction of flow of the working fluid immediately in front of the condenser, a renewed segregation of the binary mixture on the way to the condenser can be prevented.
Die zumindest eine Düse selbst kann in Strömungsrichtung des Arbeitsmittels ebenfalls unmittelbar vor oder aber auch in dem Kondensator angeordnet sein.The at least one nozzle itself can also be arranged directly in front of, or else in the condenser, in the flow direction of the working medium.
Gemäß einer besonders vorteilhaften Ausgestaltung ist das Arbeitsmittel in der Vorrichtung in einem geschlossenen Kreislauf führbar, der in Strömungsrichtung des Arbeitsmittels nach dem Kondensator zumindest folgende Komponenten aufweist: - eine Pumpe zum Erhöhen des Drucks des Arbeitsmittels,According to a particularly advantageous embodiment, the working fluid in the device can be guided in a closed circuit which has at least the following components in the direction of flow of the working fluid downstream of the condenser: a pump for increasing the pressure of the working fluid,
- einen Wärmetauscher zum Erzeugen einer dampfförmigen Phase des Arbeitsmittels durch Wärmeübertragung von einer externen Wärmequelle und - eine Entspannungseinrichtung, insbesondere eine Turbine, zum Entspannen der dampfförmigen Phase und Umwandeln ihrer thermischen Energie in mechanische Energie.a heat exchanger for generating a vaporous phase of the working fluid by heat transfer from an external heat source, and an expansion device, in particular a turbine, for relaxing the vaporous phase and converting its thermal energy into mechanical energy.
Das Arbeitsmittel kann hierbei durch die Wärmeübertragung vollständig verdampft (d.h. es liegt nur eine dampfförmige Phase vor) oder nur teilweise verdampft (d.h. es liegt eine dampfförmige und eine flüssige Phase vor) werden. Bei einer nur teilweisen Verdampfung umfasst der Kreislauf von Vorteil noch einen zwischen dem Wärmetauscher und der Entspannungs- einrichtung angeordneten Separator zum Trennen der flüssigen Phase von der dampfförmigen Phase und eine zwischen die Entspannungseinrichtung und die Mischeinrichtung angeordnete Zusammenführung zur Zusammenführung der abgetrennten flüssigen Phase und der entspannten dampfförmigen Phase. Die flüssige Phase kann hierdurch an der Entspannungseinrichtung vorbeigeführt werden.The working fluid in this case can be completely vaporized by the heat transfer (i.e., there is only one vapor phase) or only partially vaporized (i.e., there is a vapor and a liquid phase). In the case of only partial evaporation, the circulation advantageously also comprises a separator arranged between the heat exchanger and the expansion device for separating the liquid phase from the vapor phase and a combination arranged between the expansion device and the mixing device for combining the separated liquid phase and the expanded one vapor phase. The liquid phase can thereby be guided past the expansion device.
Bevorzugt ist die Wärmequelle ein geothermisches Fluid, industrielle Abwärme oder Abwärme einer Verbrennungskraftma- schine.Preferably, the heat source is a geothermal fluid, industrial waste heat or waste heat of a Verbrennungskraftma- machine.
Von Vorteil ist das Arbeitsmittel ein Gemisch aus Ammoniak und Wasser.Advantageously, the working fluid is a mixture of ammonia and water.
Die Erfindung sowie weitere vorteilhafte Ausgestaltungen der Erfindung gemäß Merkmalen der Unteransprüche werden im Folgenden anhand von Ausführungsbeispielen in den Figuren näher erläutert. Darin zeigen:The invention and further advantageous embodiments of the invention according to features of the subclaims are explained in more detail below with reference to exemplary embodiments in the figures. Show:
FIG 1 einen Kreislauf gemäß einer besonders vorteilhaften1 shows a circuit according to a particularly advantageous
Ausgestaltung der Erfindung,Embodiment of the invention,
FIG 2 ein Beispiel für eine Entmischung eines Zweistoffgemisches in einer Leitungsverbindung, FIG 3 eine Mischeinrichtung mit einer gemeinsamen Einsprü- hung für mehrere Kondensatoren, FIG 4 eine Mischeinrichtung mit einer Einsprühung direkt in die Kondensatoren und FIG 5 eine Mischeinrichtung mit einer separaten Einsprühung für jeden einzelnen Kondensator.2 shows an example of a demixing of a binary mixture in a line connection, 3 shows a mixing device with a common injection for several capacitors, FIG. 4 shows a mixing device with a spraying directly into the capacitors, and FIG. 5 shows a mixing device with a separate injection for each individual capacitor.
Eine in FIG 1 gezeigte Vorrichtung 1 zur Umwandlung thermischer Energie in mechanische Energie umfasst einen Kreislauf 2, bei dem in Strömungsrichtung eines Arbeitsmittels nacheinander als wesentliche Komponenten eine Pumpe 3 zum Erhöhen des Drucks des Arbeitsmittels, ein Wärmetauscher 4 zum Erzeugen einer dampfförmigen Phase des Arbeitsmittels durch Wärmeübertragung von einer externen Wärmequelle 5, eine Turbine 6 zum Entspannen der dampfförmigen Phase des Arbeitsmittels und Umwandeln ihrer thermischen Energie in mechanische Energie, eine Mischeinrichtung 7 zum Vermischen einer flüssigen und einer dampfförmigen Phase des Arbeitsmittels und einen Kondensator 8 zur vollständigen Kondensation des Arbeitsmittels mit Hilfe eines Kühlmittels 9 angeordnet sind. Bei der externen Wärmequelle 5 handelt es sich beispielsweise um ein geo- thermisches Fluid, um industrielle Abwärme oder um Abwärme einer Verbrennungskraftmaschine. Die Turbine 6 treibt beispielsweise einen nicht näher dargestellten Generator an, der die mechanische Energie in elektrische Energie umwandelt.A device 1 shown in FIG 1 for the conversion of thermal energy into mechanical energy comprises a circuit 2, wherein in the flow direction of a working fluid successively as essential components a pump 3 for increasing the pressure of the working fluid, a heat exchanger 4 for generating a vapor phase of the working medium Heat transfer from an external heat source 5, a turbine 6 for relaxing the vapor phase of the working fluid and converting its thermal energy into mechanical energy, a mixing device 7 for mixing a liquid and a vapor phase of the working fluid and a condenser 8 for complete condensation of the working fluid by means a coolant 9 are arranged. The external heat source 5 is, for example, a geothermal fluid, industrial waste heat or waste heat of an internal combustion engine. The turbine 6 drives, for example, a generator, not shown, which converts the mechanical energy into electrical energy.
Das Arbeitsmittel besteht aus einem Stoffgemisch mit zumindest zwei Stoffen, die unterschiedliche Siede- und Kondensationstemperaturen aufweisen. Im Folgenden wird davon ausge- gangen, dass als Arbeitsmittel ein Gemisch aus Ammoniak und Wasser verwendet wird.The working fluid consists of a mixture of substances with at least two substances which have different boiling and condensation temperatures. In the following, it is assumed that a mixture of ammonia and water is used as the working medium.
Als weitere Komponenten umfasst der Kreislauf 2 einen zwischen dem Wärmetauscher 4 und der Turbine 6 angeordneten Se- parator 15 zum Trennen einer flüssigen Phase von der dampfförmigen Phase des Arbeitsmittels und eine zwischen der Turbine 6 und der Mischeinrichtung 7 angeordnete Zusammenführung 16 zur Zusammenführung der abgetrennten flüssigen Phase und der entspannten dampfförmigen Phase.As a further component, the circuit 2 comprises a separator 15 arranged between the heat exchanger 4 and the turbine 6 for separating a liquid phase from the vaporous phase of the working medium and a junction arranged between the turbine 6 and the mixing device 7 16 for combining the separated liquid phase and the relaxed vapor phase.
Beim Betrieb des Kreislaufes 2 liegt das Arbeitsmittel nach dem Kondensator 8 ausschließlich als Flüssigkeit vor. Das flüssige Arbeitsmittel wird mittels der Pumpe 3 auf erhöhten Druck gebracht und anschließend in dem Wärmetauscher 4 zumindest teilweise verdampft, d.h. nach dem Wärmetauscher liegt das Arbeitsmittel mit einer dampfförmigen Phase und ggf. ei- ner ammoniakarmen flüssigen Phase vor. In dem Separator 15 wird die ggf. noch vorhandene flüssige Phase von der dampfförmigen Phase abgetrennt.When operating the circuit 2, the working fluid after the capacitor 8 is present exclusively as a liquid. The liquid working fluid is pressurized by the pump 3 and then at least partially evaporated in the heat exchanger 4, i. After the heat exchanger, the working medium is present with a vaporous phase and possibly a low-ammonia liquid phase. In the separator 15, the possibly still existing liquid phase is separated from the vapor phase.
Die dampfförmige Phase wird in der Turbine 6 entspannt und ihre thermische Energie in mechanische Energie umgewandelt.The vaporous phase is relaxed in the turbine 6 and its thermal energy is converted into mechanical energy.
Die mechanische Energie kann anschließend weiter genutzt werden, beispielsweise zur Stromerzeugung.The mechanical energy can then continue to be used, for example for power generation.
In der Zusammenführung 16 wird die nunmehr entspannte dampf- förmige Phase mit der ggf. vorher abgetrennten flüssigen Phase wieder zusammengeführt.In the merger 16, the now relaxed vaporous phase is brought together again with the possibly previously separated liquid phase.
In der Leitungsverbindung 10 zwischen der Turbine 6 und dem Kondensator 8 kommt es aufgrund einer teilweisen Kondensation der entspannten dampfförmigen Phase und ggf. über die Zusammenführung 16 zugeführter flüssiger Phase zu einem steigenden Flüssigkeitsanteil in dem Ammoniak-Wasser-Gemisch und zu einer Entmischung in ammoniakreichen Sattdampf 11 und ammoniakarmes Kondensat 12 (siehe FIG 2) . Dem Kondensator 8 würde so- mit ein inhomogener, teilweise entmischter Arbeitsmittelstrom zugeführt werden. Dies hätte zur Folge, dass der Kondensator 8 teilweise mit dem ammoniakarmen Kondensat 12 geflutet würde und der ammoniakreiche Sattdampf 11 den restlichen Kondensator füllen würde. Der geflutete Anteil würde die Effektivität des Kondensators verringern und damit den Kondensationsdruck erhöhen, da der Kondensationsdruck des ammoniakreichen Sattdampfes (ca. 95 % Ammoniak) verglichen mit dem eines homogenen Wasser-Ammoniak-Gemisch deutlich höher ist. Mit steigen- dem Kondensationsdruck im Kondensator sinkt jedoch das über die Turbine abzubauende Druckgefälle und somit die erzeugbare mechanische bzw. elektrische Leistung.In the line connection 10 between the turbine 6 and the condenser 8, due to a partial condensation of the relaxed vapor phase and possibly via the merger 16 supplied liquid phase to an increasing liquid content in the ammonia-water mixture and segregation in ammonia-rich saturated steam 11 and low ammonia condensate 12 (see FIG 2). The condenser 8 would thus be supplied with an inhomogeneous, partially demixed working medium flow. This would mean that the condenser 8 would be partially flooded with the ammonia-poor condensate 12 and the ammonia-rich saturated steam 11 would fill the remaining condenser. The flooded portion would reduce the effectiveness of the condenser and thus increase the condensation pressure, since the condensation pressure of the ammonia-rich saturated steam (about 95% ammonia) compared to that of a homogeneous water-ammonia mixture is significantly higher. With increasing However, the condensation pressure in the condenser decreases the pressure gradient to be reduced via the turbine and thus the producible mechanical or electrical power.
Um derartige Wirkungsgradeinbußen zu vermeiden, weist derTo avoid such loss of efficiency, the
Kreislauf 2 die Mischeinrichtung 7 auf. Die Mischeinrichtung 7 umfasst einen Separator 20 zur Trennung der ammoniakarmen flüssigen Phase von der ammoniakreichen dampfförmigen Phase und eine Düse 21 zum Einsprühen der abgetrennten flüssigen Phase in die dampfförmige Phase, wobei der Separator 20 und die Düse 21 in Strömungsrichtung des Arbeitsmittels nacheinander in der Verbindungsleitung 10 zwischen der Turbine 6 und dem Kondensator 8 nach der Zusammenführung 16 angeordnet sind. Die in dem Separator 20 abgetrennte flüssige Phase wird über einer Bypassleitung 14 der Düse 21 zugeführt. In die By- passleitung 14 sind eine Pumpe 22 und ein Regelventil 23 geschaltet .Circuit 2, the mixing device 7 on. The mixing device 7 comprises a separator 20 for separating the low-ammonia liquid phase from the ammonia-rich vapor phase and a nozzle 21 for spraying the separated liquid phase in the vapor phase, the separator 20 and the nozzle 21 in the flow direction of the working fluid successively in the connecting line 10th between the turbine 6 and the condenser 8 after the merger 16 are arranged. The separated in the separator 20 liquid phase is supplied via a bypass line 14 of the nozzle 21. In the bypass line 14, a pump 22 and a control valve 23 are connected.
Durch die Pumpe 22 ist der Druck der in der Bypassleitung 14 geführten abgetrennten flüssigen Phase auf einen Wert erhöhbar, der über dem Druck der dampfförmigen Phase nach dem Separator 20 liegt. Mittels des Regelventiles 23 ist die Zufuhrmenge an flüssiger Phase zu der Düse 21 steuerbar.By the pump 22, the pressure of the guided in the bypass line 14 separated liquid phase can be increased to a value which is above the pressure of the vapor phase after the separator 20. By means of the control valve 23, the supply amount of liquid phase to the nozzle 21 is controllable.
Der Separator 20 ist in Strömungsrichtung des Arbeitsmittels unmittelbar vor dem Kondensator 8 angeordnet, um eine neuerliche Entmischung des Arbeitsmittels auf dessen Restweg bis zum Kondensator 8 zu vermeiden. Die Düse 21 kann in Strömungsrichtung des Arbeitsmittels unmittelbar vor oder in dem Kondensator 8 angeordnet sein.The separator 20 is arranged in the flow direction of the working fluid immediately in front of the condenser 8, in order to avoid a renewed segregation of the working fluid in its residual path to the condenser 8. The nozzle 21 may be arranged in the flow direction of the working fluid immediately before or in the condenser 8.
Durch den Separator 20 wird somit die ammoniakreiche dampfförmige Phase von der ammoniakarmen flüssigen Phase getrennt. Die ammoniakarmen flüssige Phase wird über die Bypassleitung 14 zu der Düse 21 geführt. Dabei wird durch die Pumpe 22 der Druck der ammoniakarmen flüssigen Phase auf einen Wert erhöht, der über dem Druck der ammoniakreichen dampfförmigen Phase liegt. Die ammoniakarme flüssige Phase wird dadurch in der Düse 21 unter Überdruck in die ammoniakreiche dampfförmige Phase gesprüht. Hierdurch kann wieder ein homogenes Ammoniak-Wasser-Gemisch erzeugt und dem Kondensator 8 zugeführt werden, das bei gleichbleibender Kühlmitteltemperatur im Kon- densator schon bei niedrigerem Druck als die ammoniakreiche dampfförmige Phase kondensiert. Mit einem niedrigerem Kondensationsdruck im Kondensator steigt jedoch das über die Turbine abzubauende Druckgefälle und der Kreislauf kann somit mehr elektrische Leistung bei einem höheren Wirkungsgrad erzeugen.By the separator 20 thus the ammonia-rich vaporous phase is separated from the low-ammonia liquid phase. The ammonia-poor liquid phase is conducted via the bypass line 14 to the nozzle 21. In this case, the pressure of the ammonia-lean liquid phase is increased by the pump 22 to a value which is above the pressure of the ammonia-rich vaporous phase. The low-ammonia liquid phase is characterized in the nozzle 21 sprayed under pressure in the ammonia-rich vapor phase. As a result, a homogeneous mixture of ammonia and water can again be generated and fed to the condenser 8, which condenses at a constant coolant temperature in the condenser even at a lower pressure than the ammonia-rich vaporous phase. However, with a lower condensing pressure in the condenser, the pressure gradient to be reduced across the turbine increases and the circuit can thus produce more electrical power at a higher efficiency.
Im Fall mehrerer, in Strömungsrichtung des Arbeitsmittels parallel geschalteter Kondensatoren 8 kann - wie in FIG 3 dargestellt - eine Mischeinrichtung 7 mit einem einzigen Separator 20 und einer einzigen Düse 21 für sämtliche Kondensatoren 8 vorgesehen sein. Der Separator 20 und die Düse 21 sind dann bevorzugt unmittelbar vor den Kondensatoren 8 angeordnet. Es liegt somit eine gemeinsamen Einsprühung der flüssigen Phase in die dampfförmige Phase für sämtliche Kondensatoren 8 vor.In the case of a plurality of capacitors 8, which are connected in parallel in the flow direction of the working medium, it is possible, as shown in FIG. 3, to provide a mixing device 7 with a single separator 20 and a single nozzle 21 for all capacitors 8. The separator 20 and the nozzle 21 are then preferably arranged directly in front of the capacitors 8. Thus, there is a common injection of the liquid phase in the vapor phase for all capacitors 8.
Alternativ kann im Fall mehrerer, in Strömungsrichtung desAlternatively, in the case of several, in the flow direction of
Arbeitsmittels parallel geschalteter Kondensatoren 8 auch eine Mischeinrichtung 7 mit einem einzigen Separator 20 und jeweils einer oder mehreren Düsen 21 für jeden der Kondensatoren 8 vorgesehen sein. Im Ausführungsbeispiel gemäß FIG 4 ist der Separator 20 unmittelbar vor den Kondensatoren 8 und die Düsen 21 sind in den Kondensatoren 8 angeordnet. Die flüssige Phase wird somit direkt in die Kondensatoren 8 eingesprüht. Die Zufuhr an flüssiger Phase zu den Düsen 21 ist hierbei mittels eines gemeinsamen Regelventiles 23 steuerbar.Working means parallel capacitors 8 also a mixing device 7 with a single separator 20 and one or more nozzles 21 may be provided for each of the capacitors 8. In the embodiment shown in FIG 4, the separator 20 is immediately upstream of the capacitors 8 and the nozzles 21 are arranged in the capacitors 8. The liquid phase is thus sprayed directly into the capacitors 8. The supply of liquid phase to the nozzles 21 in this case by means of a common control valve 23 is controllable.
Die Düsen 21 können aber auch - wie in FIG 5 dargestellt- unmittelbar vor den jeweiligen Kondensatoren 8 angeordnet sein, d.h. es liegt eine separate Einsprühung für jeden einzelnen Kondensator 8 vor. Die Zufuhr an flüssiger Phase zu jeder der Düsen 21 ist hierbei mittels jeweils eines eigenen Regelventiles 23 für jeden der Kondensatoren 8 steuerbar. However, as shown in FIG. 5, the nozzles 21 can also be arranged directly in front of the respective capacitors 8, i. There is a separate injection for each capacitor 8 before. The supply of liquid phase to each of the nozzles 21 is in this case controllable by means of its own control valve 23 for each of the capacitors 8.
Claims
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN200880113544A CN101842558A (en) | 2007-08-31 | 2008-08-21 | Method and device for converting thermal energy into mechanical energy |
AU2008291094A AU2008291094A1 (en) | 2007-08-31 | 2008-08-21 | Method and device for converting thermal energy into mechanical energy |
EP08787367A EP2188500A2 (en) | 2007-08-31 | 2008-08-21 | Method and device for converting thermal energy into mechanical energy |
RU2010112413/06A RU2479727C2 (en) | 2007-08-31 | 2008-08-21 | Method and device to convert thermal energy into mechanical energy |
US12/675,791 US20110000205A1 (en) | 2007-08-31 | 2008-08-21 | Method and device for converting thermal energy into mechanical energy |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102007041458 | 2007-08-31 | ||
DE102007041458.9 | 2007-08-31 |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2009027302A2 true WO2009027302A2 (en) | 2009-03-05 |
WO2009027302A3 WO2009027302A3 (en) | 2010-03-25 |
Family
ID=40387915
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2008/060921 WO2009027302A2 (en) | 2007-08-31 | 2008-08-21 | Method and device for converting thermal energy into mechanical energy |
Country Status (7)
Country | Link |
---|---|
US (1) | US20110000205A1 (en) |
EP (1) | EP2188500A2 (en) |
KR (1) | KR20100074166A (en) |
CN (1) | CN101842558A (en) |
AU (1) | AU2008291094A1 (en) |
RU (1) | RU2479727C2 (en) |
WO (1) | WO2009027302A2 (en) |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110011089A1 (en) * | 2009-07-17 | 2011-01-20 | Lockheed Martin Corporation | Working-Fluid Power System for Low-Temperature Rankine Cycles |
US20130174602A1 (en) * | 2011-11-23 | 2013-07-11 | Tenoroc Llc | Aerodynamic separation nozzle |
WO2019224209A1 (en) * | 2018-05-23 | 2019-11-28 | Gios Bart | Closed-cycle absorption system and method for cooling and generating power |
US11480074B1 (en) | 2021-04-02 | 2022-10-25 | Ice Thermal Harvesting, Llc | Systems and methods utilizing gas temperature as a power source |
US11486370B2 (en) | 2021-04-02 | 2022-11-01 | Ice Thermal Harvesting, Llc | Modular mobile heat generation unit for generation of geothermal power in organic Rankine cycle operations |
US11486330B2 (en) | 2021-04-02 | 2022-11-01 | Ice Thermal Harvesting, Llc | Systems and methods utilizing gas temperature as a power source |
US11493029B2 (en) | 2021-04-02 | 2022-11-08 | Ice Thermal Harvesting, Llc | Systems and methods for generation of electrical power at a drilling rig |
US11578706B2 (en) | 2021-04-02 | 2023-02-14 | Ice Thermal Harvesting, Llc | Systems for generating geothermal power in an organic Rankine cycle operation during hydrocarbon production based on wellhead fluid temperature |
US11592009B2 (en) | 2021-04-02 | 2023-02-28 | Ice Thermal Harvesting, Llc | Systems and methods for generation of electrical power at a drilling rig |
US11644015B2 (en) | 2021-04-02 | 2023-05-09 | Ice Thermal Harvesting, Llc | Systems and methods for generation of electrical power at a drilling rig |
US11644014B2 (en) | 2021-04-02 | 2023-05-09 | Ice Thermal Harvesting, Llc | Systems and methods for generation of electrical power in an organic Rankine cycle operation |
US11959466B2 (en) | 2021-04-02 | 2024-04-16 | Ice Thermal Harvesting, Llc | Systems and methods for generation of electrical power in an organic Rankine cycle operation |
US12180861B1 (en) | 2022-12-30 | 2024-12-31 | Ice Thermal Harvesting, Llc | Systems and methods to utilize heat carriers in conversion of thermal energy |
US12312981B2 (en) | 2021-04-02 | 2025-05-27 | Ice Thermal Harvesting, Llc | Systems and methods utilizing gas temperature as a power source |
Families Citing this family (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102008045450B4 (en) * | 2008-02-01 | 2010-08-26 | Siemens Aktiengesellschaft | Method for operating a thermodynamic cycle and thermodynamic cycle |
US8991181B2 (en) * | 2011-05-02 | 2015-03-31 | Harris Corporation | Hybrid imbedded combined cycle |
US9038389B2 (en) | 2012-06-26 | 2015-05-26 | Harris Corporation | Hybrid thermal cycle with independent refrigeration loop |
US9284857B2 (en) * | 2012-06-26 | 2016-03-15 | The Regents Of The University Of California | Organic flash cycles for efficient power production |
US20140124443A1 (en) * | 2012-11-07 | 2014-05-08 | Robert L. McGinnis | Systems and Methods for Integrated Heat Recovery in Thermally Separable Draw Solute Recycling in Osmotically Driven Membrane Processes |
US9303514B2 (en) | 2013-04-09 | 2016-04-05 | Harris Corporation | System and method of utilizing a housing to control wrapping flow in a fluid working apparatus |
US9297387B2 (en) | 2013-04-09 | 2016-03-29 | Harris Corporation | System and method of controlling wrapping flow in a fluid working apparatus |
US9574563B2 (en) | 2013-04-09 | 2017-02-21 | Harris Corporation | System and method of wrapping flow in a fluid working apparatus |
US9303533B2 (en) | 2013-12-23 | 2016-04-05 | Harris Corporation | Mixing assembly and method for combining at least two working fluids |
BR112018002719B1 (en) * | 2015-08-13 | 2023-04-04 | Gas Expansion Motors Limited | THERMODYNAMIC ENGINE |
KR101827460B1 (en) * | 2016-12-14 | 2018-02-08 | 재단법인 건설기계부품연구원 | Warm-up system by recovering waste heat of construction machinery |
CN107120150B (en) * | 2017-04-29 | 2019-03-22 | 天津大学 | Thermodynamic cycle based on non-azeotropic working medium rises dimension construction method |
US10494958B2 (en) | 2017-08-08 | 2019-12-03 | Saudi Arabian Oil Company | Natural gas liquid fractionation plant waste heat conversion to simultaneous power and cooling capacities using integrated organic-based compressor-ejector-expander triple cycles system |
US10690407B2 (en) | 2017-08-08 | 2020-06-23 | Saudi Arabian Oil Company | Natural gas liquid fractionation plant waste heat conversion to simultaneous power and potable water using organic Rankine cycle and modified multi-effect-distillation systems |
US10684079B2 (en) | 2017-08-08 | 2020-06-16 | Saudi Arabian Oil Company | Natural gas liquid fractionation plant waste heat conversion to simultaneous power and cooling capacities using modified goswami system |
US10451359B2 (en) | 2017-08-08 | 2019-10-22 | Saudi Arabian Oil Company | Natural gas liquid fractionation plant waste heat conversion to power using Kalina cycle |
US10443453B2 (en) | 2017-08-08 | 2019-10-15 | Saudi Araabian Oil Company | Natural gas liquid fractionation plant cooling capacity and potable water generation using integrated vapor compression-ejector cycle and modified multi-effect distillation system |
US10677104B2 (en) | 2017-08-08 | 2020-06-09 | Saudi Arabian Oil Company | Natural gas liquid fractionation plant waste heat conversion to simultaneous power, cooling and potable water using integrated mono-refrigerant triple cycle and modified multi-effect-distillation system |
US10480354B2 (en) | 2017-08-08 | 2019-11-19 | Saudi Arabian Oil Company | Natural gas liquid fractionation plant waste heat conversion to simultaneous power and potable water using Kalina cycle and modified multi-effect-distillation system |
US10436077B2 (en) | 2017-08-08 | 2019-10-08 | Saudi Arabian Oil Company | Natural gas liquid fractionation plant waste heat conversion to potable water using modified multi-effect distillation system |
US10626756B2 (en) | 2017-08-08 | 2020-04-21 | Saudi Arabian Oil Company | Natural gas liquid fractionation plant waste heat conversion to power using dual turbines organic Rankine cycle |
US10663234B2 (en) | 2017-08-08 | 2020-05-26 | Saudi Arabian Oil Company | Natural gas liquid fractionation plant waste heat conversion to simultaneous cooling capacity and potable water using kalina cycle and modified multi-effect distillation system |
US10480355B2 (en) | 2017-08-08 | 2019-11-19 | Saudi Arabian Oil Company | Natural gas liquid fractionation plant waste heat conversion to simultaneous power, cooling and potable water using modified goswami cycle and new modified multi-effect-distillation system |
US10487699B2 (en) | 2017-08-08 | 2019-11-26 | Saudi Arabian Oil Company | Natural gas liquid fractionation plant waste heat conversion to cooling capacity using kalina cycle |
US10662824B2 (en) | 2017-08-08 | 2020-05-26 | Saudi Arabian Oil Company | Natural gas liquid fractionation plant waste heat conversion to power using organic Rankine cycle |
US11761355B2 (en) * | 2021-09-29 | 2023-09-19 | Linden Noble | Vapor-powered liquid-driven turbine |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4769593A (en) * | 1986-06-10 | 1988-09-06 | Conoco Inc. | Method and apparatus for measurement of steam quality |
US4732005A (en) * | 1987-02-17 | 1988-03-22 | Kalina Alexander Ifaevich | Direct fired power cycle |
EP0485596A1 (en) * | 1989-01-31 | 1992-05-20 | Tselevoi Nauchno-Tekhnichesky Kooperativ "Stimer" | Method for converting thermal energy of a working medium into mechanical energy in a steam plant |
JP3011669B2 (en) * | 1997-01-21 | 2000-02-21 | 株式会社東芝 | Mixed media cycle power generation system |
US5953918A (en) * | 1998-02-05 | 1999-09-21 | Exergy, Inc. | Method and apparatus of converting heat to useful energy |
US7654100B2 (en) * | 2001-04-26 | 2010-02-02 | Rini Technologies, Inc. | Method and apparatus for high heat flux heat transfer |
US6820421B2 (en) * | 2002-09-23 | 2004-11-23 | Kalex, Llc | Low temperature geothermal system |
DE10335134A1 (en) * | 2003-07-31 | 2005-02-17 | Siemens Ag | Method and device for carrying out a thermodynamic cycle |
RS50517B (en) * | 2004-04-16 | 2010-05-07 | Siemens Aktiengesellschaft | Method and device for carrying out a thermodynamic cyclic process |
DE102006036122A1 (en) * | 2005-08-03 | 2007-02-08 | Amovis Gmbh | Power system for vehicles has an IC engine cooled by two coolant circuits and with some of the coolant converted into a gas phase to drive an expansion engine |
EP1910650A2 (en) * | 2005-08-03 | 2008-04-16 | AMOVIS GmbH | Drive device |
-
2008
- 2008-08-21 WO PCT/EP2008/060921 patent/WO2009027302A2/en active Application Filing
- 2008-08-21 KR KR1020107006991A patent/KR20100074166A/en not_active Withdrawn
- 2008-08-21 CN CN200880113544A patent/CN101842558A/en active Pending
- 2008-08-21 AU AU2008291094A patent/AU2008291094A1/en not_active Abandoned
- 2008-08-21 US US12/675,791 patent/US20110000205A1/en not_active Abandoned
- 2008-08-21 EP EP08787367A patent/EP2188500A2/en not_active Withdrawn
- 2008-08-21 RU RU2010112413/06A patent/RU2479727C2/en not_active IP Right Cessation
Cited By (42)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110011089A1 (en) * | 2009-07-17 | 2011-01-20 | Lockheed Martin Corporation | Working-Fluid Power System for Low-Temperature Rankine Cycles |
US8578714B2 (en) * | 2009-07-17 | 2013-11-12 | Lockheed Martin Corporation | Working-fluid power system for low-temperature rankine cycles |
US20130174602A1 (en) * | 2011-11-23 | 2013-07-11 | Tenoroc Llc | Aerodynamic separation nozzle |
WO2019224209A1 (en) * | 2018-05-23 | 2019-11-28 | Gios Bart | Closed-cycle absorption system and method for cooling and generating power |
BE1026296B1 (en) * | 2018-05-23 | 2019-12-23 | B Gios | ABSORPTION SYSTEM WITH CLOSED CYCLE AND METHOD FOR COOLING AND GENERATING POWER |
US11732697B2 (en) | 2021-04-02 | 2023-08-22 | Ice Thermal Harvesting, Llc | Systems for generating geothermal power in an organic Rankine cycle operation during hydrocarbon production based on wellhead fluid temperature |
US11879409B2 (en) | 2021-04-02 | 2024-01-23 | Ice Thermal Harvesting, Llc | Systems and methods utilizing gas temperature as a power source |
US11486330B2 (en) | 2021-04-02 | 2022-11-01 | Ice Thermal Harvesting, Llc | Systems and methods utilizing gas temperature as a power source |
US11493029B2 (en) | 2021-04-02 | 2022-11-08 | Ice Thermal Harvesting, Llc | Systems and methods for generation of electrical power at a drilling rig |
US11542888B2 (en) | 2021-04-02 | 2023-01-03 | Ice Thermal Harvesting, Llc | Systems and methods utilizing gas temperature as a power source |
US11549402B2 (en) | 2021-04-02 | 2023-01-10 | Ice Thermal Harvesting, Llc | Systems and methods utilizing gas temperature as a power source |
US11572849B1 (en) | 2021-04-02 | 2023-02-07 | Ice Thermal Harvesting, Llc | Systems and methods utilizing gas temperature as a power source |
US11578706B2 (en) | 2021-04-02 | 2023-02-14 | Ice Thermal Harvesting, Llc | Systems for generating geothermal power in an organic Rankine cycle operation during hydrocarbon production based on wellhead fluid temperature |
US11592009B2 (en) | 2021-04-02 | 2023-02-28 | Ice Thermal Harvesting, Llc | Systems and methods for generation of electrical power at a drilling rig |
US11598320B2 (en) | 2021-04-02 | 2023-03-07 | Ice Thermal Harvesting, Llc | Systems and methods for generation of electrical power at a drilling rig |
US11624355B2 (en) | 2021-04-02 | 2023-04-11 | Ice Thermal Harvesting, Llc | Modular mobile heat generation unit for generation of geothermal power in organic Rankine cycle operations |
US11644015B2 (en) | 2021-04-02 | 2023-05-09 | Ice Thermal Harvesting, Llc | Systems and methods for generation of electrical power at a drilling rig |
US11644014B2 (en) | 2021-04-02 | 2023-05-09 | Ice Thermal Harvesting, Llc | Systems and methods for generation of electrical power in an organic Rankine cycle operation |
US11668209B2 (en) | 2021-04-02 | 2023-06-06 | Ice Thermal Harvesting, Llc | Systems and methods utilizing gas temperature as a power source |
US11680541B2 (en) | 2021-04-02 | 2023-06-20 | Ice Thermal Harvesting, Llc | Systems and methods utilizing gas temperature as a power source |
US11480074B1 (en) | 2021-04-02 | 2022-10-25 | Ice Thermal Harvesting, Llc | Systems and methods utilizing gas temperature as a power source |
US11761433B2 (en) | 2021-04-02 | 2023-09-19 | Ice Thermal Harvesting, Llc | Systems and methods for generation of electrical power in an organic Rankine cycle operation |
US11761353B2 (en) | 2021-04-02 | 2023-09-19 | Ice Thermal Harvesting, Llc | Systems and methods utilizing gas temperature as a power source |
US11773805B2 (en) | 2021-04-02 | 2023-10-03 | Ice Thermal Harvesting, Llc | Systems and methods utilizing gas temperature as a power source |
US11486370B2 (en) | 2021-04-02 | 2022-11-01 | Ice Thermal Harvesting, Llc | Modular mobile heat generation unit for generation of geothermal power in organic Rankine cycle operations |
US11905934B2 (en) | 2021-04-02 | 2024-02-20 | Ice Thermal Harvesting, Llc | Systems and methods for generation of electrical power at a drilling rig |
US11933279B2 (en) | 2021-04-02 | 2024-03-19 | Ice Thermal Harvesting, Llc | Systems and methods for generation of electrical power at a drilling rig |
US11933280B2 (en) | 2021-04-02 | 2024-03-19 | Ice Thermal Harvesting, Llc | Modular mobile heat generation unit for generation of geothermal power in organic Rankine cycle operations |
US11946459B2 (en) | 2021-04-02 | 2024-04-02 | Ice Thermal Harvesting, Llc | Systems and methods for generation of electrical power at a drilling rig |
US11959466B2 (en) | 2021-04-02 | 2024-04-16 | Ice Thermal Harvesting, Llc | Systems and methods for generation of electrical power in an organic Rankine cycle operation |
US11971019B2 (en) | 2021-04-02 | 2024-04-30 | Ice Thermal Harvesting, Llc | Systems for generating geothermal power in an organic Rankine cycle operation during hydrocarbon production based on wellhead fluid temperature |
US12049875B2 (en) | 2021-04-02 | 2024-07-30 | Ice Thermal Harvesting, Llc | Systems and methods for generation of electrical power in an organic Rankine cycle operation |
US12060867B2 (en) | 2021-04-02 | 2024-08-13 | Ice Thermal Harvesting, Llc | Systems for generating geothermal power in an organic Rankine cycle operation during hydrocarbon production based on working fluid temperature |
US12104553B2 (en) | 2021-04-02 | 2024-10-01 | Ice Thermal Harvesting, Llc | Systems and methods utilizing gas temperature as a power source |
US12110878B2 (en) | 2021-04-02 | 2024-10-08 | Ice Thermal Harvesting, Llc | Systems and methods for generation of electrical power at a drilling rig |
US12135016B2 (en) | 2021-04-02 | 2024-11-05 | Ice Thermal Harvesting, Llc | Systems for generating geothermal power in an organic Rankine cycle operation during hydrocarbon production based on wellhead fluid temperature |
US12140124B2 (en) | 2021-04-02 | 2024-11-12 | Ice Thermal Harvesting, Llc | Systems and methods for generation of electrical power at a drilling rig |
US12146475B2 (en) | 2021-04-02 | 2024-11-19 | Ice Thermal Harvesting, Llc | Systems and methods for generation of electrical power in an organic rankine cycle operation |
US12163485B2 (en) | 2021-04-02 | 2024-12-10 | Ice Thermal Harvesting, Llc | Systems and methods utilizing gas temperature as a power source |
US12312981B2 (en) | 2021-04-02 | 2025-05-27 | Ice Thermal Harvesting, Llc | Systems and methods utilizing gas temperature as a power source |
US12305624B2 (en) | 2021-04-02 | 2025-05-20 | Ice Thermal Harvesting, Llc | Modular mobile heat generation unit for generation of geothermal power in organic rankine cycle operations |
US12180861B1 (en) | 2022-12-30 | 2024-12-31 | Ice Thermal Harvesting, Llc | Systems and methods to utilize heat carriers in conversion of thermal energy |
Also Published As
Publication number | Publication date |
---|---|
CN101842558A (en) | 2010-09-22 |
KR20100074166A (en) | 2010-07-01 |
WO2009027302A3 (en) | 2010-03-25 |
AU2008291094A1 (en) | 2009-03-05 |
RU2479727C2 (en) | 2013-04-20 |
RU2010112413A (en) | 2011-10-10 |
US20110000205A1 (en) | 2011-01-06 |
EP2188500A2 (en) | 2010-05-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2188500A2 (en) | Method and device for converting thermal energy into mechanical energy | |
DE69935087T2 (en) | Intake air cooling for gas-steam combined cycle power plant | |
EP2347102B1 (en) | Method for operating a thermodynamic cycle, and thermodynamic cycle | |
DE69218484T2 (en) | Method and device for converting thermal energy into electrical energy | |
DE10335143B4 (en) | Method for increasing the efficiency of a gas turbine plant and suitable gas turbine plant | |
DE69032108T2 (en) | Method and device for thermodynamic cycle | |
EP1613841B1 (en) | Method and device for carrying out a thermodynamic cyclic process | |
DE69932766T2 (en) | A method of preheating fuel for a gas turbine in a combined cycle power plant having a flow of multi-component mixtures | |
WO2009030283A2 (en) | Method and device for converting thermal energy of a low temperature heat source into mechanical energy | |
EP1649147B1 (en) | Method and device for carrying out a thermodynamic cycle | |
DE102004037417B3 (en) | Method and device for transferring heat from a heat source to a thermodynamic cycle with a working medium comprising at least two substances with non-isothermal evaporation and condensation | |
DE112011100603T5 (en) | Exhaust heat recovery system, energy supply system and exhaust heat recovery process | |
DE202008018661U1 (en) | Device for generating energy | |
EP1706598B1 (en) | Method and installation for converting heat energy from refrigerating machines | |
WO1985004216A1 (en) | Method and plant intended to a thermodynamic cycle process | |
DE19957874A1 (en) | Combined power plant | |
DE102012110579B4 (en) | Plant and process for generating process steam | |
DE102013223661B4 (en) | Method and device for energy conversion | |
DE102016220634A1 (en) | Waste heat power plant with gradual heat supply | |
DE102011106423B4 (en) | Working method of a sorption plant for the two-substance mixture ammonia and water | |
WO2008031613A2 (en) | Current generation in the base load region with geothermal energy | |
DE102023122824A1 (en) | Method and arrangement for using cold potentials to generate electrical energy by means of an ORC cycle | |
WO2024223360A1 (en) | Method and assembly for using cooling potentials for generating electric energy using an orc circuit process | |
WO2019227117A1 (en) | Method and device for converting thermal energy into mechanical or electrical energy | |
EP2243934A1 (en) | Thermodynamic multi-phase method for gaining exergy |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200880113544.1 Country of ref document: CN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2008787367 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 12010500387 Country of ref document: PH |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2008291094 Country of ref document: AU Ref document number: 665/KOLNP/2010 Country of ref document: IN |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2008291094 Country of ref document: AU Date of ref document: 20080821 Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 20107006991 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010112413 Country of ref document: RU |
|
WWE | Wipo information: entry into national phase |
Ref document number: 12675791 Country of ref document: US |