[go: up one dir, main page]

WO2009021389A1 - Procédé de fusion d'un minerai des terres rares de type monazite riche en fe - Google Patents

Procédé de fusion d'un minerai des terres rares de type monazite riche en fe Download PDF

Info

Publication number
WO2009021389A1
WO2009021389A1 PCT/CN2008/000715 CN2008000715W WO2009021389A1 WO 2009021389 A1 WO2009021389 A1 WO 2009021389A1 CN 2008000715 W CN2008000715 W CN 2008000715W WO 2009021389 A1 WO2009021389 A1 WO 2009021389A1
Authority
WO
WIPO (PCT)
Prior art keywords
rare earth
iron
monazite
rich
ore
Prior art date
Application number
PCT/CN2008/000715
Other languages
English (en)
Chinese (zh)
Inventor
Xiaowei Huang
Hongwei Li
Zhiqi Long
Ying Liu
Na Zhao
Guocheng Zhang
Original Assignee
Grirem Advanced Materials Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CNA2007101462351A external-priority patent/CN101363079A/zh
Application filed by Grirem Advanced Materials Co., Ltd. filed Critical Grirem Advanced Materials Co., Ltd.
Priority to AU2008286599A priority Critical patent/AU2008286599B2/en
Publication of WO2009021389A1 publication Critical patent/WO2009021389A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B59/00Obtaining rare earth metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/02Roasting processes
    • C22B1/06Sulfating roasting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/04Extraction of metal compounds from ores or concentrates by wet processes by leaching
    • C22B3/06Extraction of metal compounds from ores or concentrates by wet processes by leaching in inorganic acid solutions, e.g. with acids generated in situ; in inorganic salt solutions other than ammonium salt solutions
    • C22B3/08Sulfuric acid, other sulfurated acids or salts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the invention relates to a method for smelting iron-rich monazite rare earth ore, in particular to a method for smelting a monazite rare earth ore containing 8% to 40% of iron, belonging to the field of rare earth ore smelting production.
  • Monazite is a kind of rare earth phosphate mineral. Generally, monazite minerals are easy to be selected, and concentrates with high rare earth grade can be obtained. The mineral content of monazite in the concentrate can reach more than 95%, and the concentrate also contains a small amount of rutile and titanium. Other minerals such as iron ore, zircon and quartz.
  • the content of impurities such as iron and silicon in the concentrate is high, it is easy to form sodium silicate, iron hydroxide and other glue.
  • the material, the precipitation filtration separation process is difficult to perform, and therefore, the process will not operate normally.
  • the Mt. Weld monazite mine in Australia the iron ore content in the ore is as high as 40%, and the monazite mineral and iron mineral are embedded together, the grain size is fine, it is difficult to sort, the concentrate grade can only reach 40%, and the ore dressing The yield is low.
  • the use of caustic soda decomposition does not work at all.
  • the leachate has high acidity, high impurity phosphorus and antimony content, and the rare earth and strontium are precipitated by sodium sulfate double salt, and then converted into hydroxide by alkali, then the rare earth is preferentially leached with acid, and the rare earth and strontium are separated by extraction.
  • the method is complicated in process, many solid-liquid separation steps, discontinuous process, low rare earth recovery rate; combined use of acid and alkali, high cost, in addition, phosphorus is difficult to be treated and recovered in wastewater, and radioactive cesium is difficult to be recycled in slag and wastewater. Summary of the invention
  • the object of the present invention is to provide a method for smelting iron-rich monazite rare earth ore which is simple in process, continuous and easy to control, low in chemical material consumption, high in rare earth recovery rate, and suitable for mass production.
  • the iron oxide content in the ore is as high as 40wt% or more, and the monazite minerals and iron minerals are embedded together, and the grain size is fine and difficult to select.
  • the concentrate grade can only reach 40wt%, and cannot be smelted by caustic soda decomposition method.
  • the present invention mixes 8wt%-40wt% iron-rich monazite rare earth ore and concentrated sulfuric acid into the roasting kiln at 231-600°C. Baked at a temperature, the rare earth reacts with sulfuric acid to form a rare earth salt of sulfuric acid soluble in water or a solution having a H+ concentration of less than 1.5 mol/L, and the iron forms at least one of iron sulfate, iron phosphate and iron pyrophosphate, and is used for roasting ore.
  • H 2 S0 4 S0 3 t +H 2 0 t
  • Fe 2 (S0 4 ) 3 decomposes into a salt-insoluble iron sulfate which is hardly soluble in water, and pyrophosphoric acid is further dehydrated.
  • the rare earth ore is calcined with a certain amount of concentrated sulfuric acid, it is necessary to control the appropriate temperature and baking time to obtain a high rare earth decomposition rate.
  • the calcination temperature is lower than 230 ° C, the mineral decomposition ability is weak; but the calcination temperature is too high, sulfur The acid is easily decomposed, and it is easy to burn the ore, the solubility of the rare earth sulfate is weakened, and the rare earth leaching rate is lowered.
  • the calcination temperature is low, the calcination time is longer.
  • the method is also applicable to the treatment of other phosphate-containing rare earth ores such as xenotime or its mixed rare earth ore.
  • a method for smelting iron-rich monazite rare earth ore, using iron-rich monazite rare earth ore as raw material, containing 8 wt% to 40 wt% of iron in the ore, and the smelting method comprises the following technical features:
  • roasting ore water or a solution with a H+ concentration of less than 1.5 mol/L to obtain a rare earth water immersion slurry containing iron and phosphorus, the rare earth concentration REO is 20-55 g/L, the H+ concentration is less than 1.5 mol/L, and the rare earth The decomposition rate is greater than 95%.
  • the smelting method of the iron-rich monazite rare earth ore according to the present invention is based on the Australian Mt. Weld monazite ore or concentrate, and the iron content in the ore is 15wt%-40wt%, REO 18wt-60wt%.
  • the solution is leached with water or a solution having a H+ concentration of less than 1.5 mol/L to obtain a rare earth decomposition rate of more than 97% in a rare earth water immersion slurry containing iron and phosphorus.
  • the calcined ore is leached with water or a solution having a H+ concentration of preferably less than 1.0 mol/L, and the solid-liquid weight ratio is 1:5 - 1:12, and filtered to obtain a rare earth solution containing iron and phosphorus, and the rare earth concentration thereof is REO. It is 25-55g/L and the acidity is 0.05-1.0 mol/L.
  • the optimum conditions are a solid-liquid ratio of 1: 7 - 1: 10, and the rare earth concentration REO is 30-50 g/L and the acidity is 0.1-0.5 mol/L.
  • the iron or phosphorus-containing rare earth water immersion slurry or the iron and phosphorus-containing rare earth solution is neutralized with at least one of magnesium, calcium, aluminum oxides, hydroxides and carbonates to recover iron and phosphorus.
  • a pure rare earth sulfate solution is obtained, wherein Fe ⁇ 0.05g/L, P ⁇ 0.001 g/L, Th ⁇ 0.1 mg/L, pH 3-5.
  • the optimized condition is that the rare earth aqueous immersion liquid containing iron or phosphorus or the rare earth sulfuric acid solution of iron or phosphorus is used in at least one of magnesium oxide, magnesium hydroxide, magnesium carbonate, calcium oxide, calcium carbonate, calcium hydroxide and calcium carbide slag.
  • iron and phosphorus are recovered in the form of iron phosphate to obtain a pure rare earth sulfuric acid solution, wherein Fe ⁇ 0.005g/L, P ⁇ 0.0005g/L, Th ⁇ 0.05 mg/L, pH 3.5-4.5.
  • the above pure rare earth sulfuric acid solution is directly extracted by an acidic phosphorus extracting agent or separately to prepare a single or mixed rare earth compound; or the acidic rare earth extracting agent or the carboxylic acid extracting agent is used to extract all the rare earths, and then is prepared by stripping with hydrochloric acid or nitric acid. Mixing rare earth chloride or rare earth nitrate, or further extracting and separating to prepare a single or mixed rare earth compound.
  • the above pure rare earth sulfuric acid solution can also be used to produce mixed rare earth carbonate by ammonium bicarbonate, sodium carbonate or sodium hydrogencarbonate precipitation.
  • the mixed rare earth carbonate can be subjected to extraction by hydrochloric acid or nitric acid, an acidic phosphorus extractant or a carboxylic acid extractant to prepare a single or mixed rare earth compound.
  • the tail gas generated is subjected to leaching to recover sulfuric acid, or discharged by using an alkali liquid absorption treatment.
  • the invention is an effective smelting method for treating iron-rich low-grade monazite rare earth ore.
  • the method comprises the following steps: extracting and separating various rare earth compounds by concentrated sulfuric acid roasting, water immersion, impurity removal, and effectively solving the influence of iron on the rare earth extraction process, the process
  • the process is simple, continuous and easy to control, low consumption of chemical materials, high recovery rate of rare earth, suitable for large-scale production. detailed description:
  • the iron-rich monazite concentrate is used as raw material, and the Fe 20.6 wt REO is 41.8 wt%, P 7.5 wt%.
  • a rare earth water immersion slurry was obtained, the rare earth concentration REO was 44.6 g/L, the acidity was 0.2 mol/L, and the rare earth decomposition rate was 95.5 %.
  • a rare earth solution containing iron and phosphorus is obtained, and iron and phosphorus are neutralized by magnesium oxide, and then filtered to obtain a pure rare earth sulfuric acid solution, wherein REO is 44.3 g/L, Fe 0.03 g/L, P ⁇ 0.001 g/L, Th ⁇ 0.05 mg/L, pH 3.6.
  • the pure rare earth sulfuric acid solution is directly extracted by using the non-saponified P507 extractant, and then the mixed rare earth chloride solution is obtained by reverse stripping with hydrochloric acid, and then the P507 or P204 extractant is used to extract the group or separate the single rare earth.
  • the iron content in the ore is 27.3 wt%, REO 25.2 wt%> P 6.6 wt%.
  • the rare earth concentration REO of the water immersion slurry is 47.16g/L, the acidity is 0.43 mol/L, and the rare earth decomposition rate is 98.2%.
  • the water immersion slurry is neutralized with magnesium oxide and calcium oxide to recover iron and phosphorus, and filtered to obtain a pure rare earth sulfate solution (Fe 0.01 g/L, P 0.0007 g/L, One
  • the pure rare earth sulfate solution is produced by ammonium bicarbonate precipitation to produce mixed rare earth carbonate, then dissolved in hydrochloric acid, and P507 or P204 is extracted and separated to prepare a single rare earth compound.
  • the iron content in the mine is 19.7 wt%, REO 41.3 wt%, P 7.8 wt%.
  • a rare earth water immersion slurry is obtained, wherein the rare earth concentration REO is 36.61 g/L, the acidity is 0.15 mol/L, and the rare earth decomposition rate is 97.5%.
  • a rare earth solution containing iron and phosphorus is obtained, and iron and phosphorus are recovered by neutralizing the precipitate with magnesium hydroxide, and then filtered to obtain a pure rare earth sulfate solution (Fe 0.008g/L, P 0.0005 g/L, Th ⁇ 0.01 mg/L, pH 4.3) and iron phosphate concentrate.
  • the pure rare earth sulfate solution is directly extracted or separated from the single rare earth by a non-saponified mixed extractant of P204 and P507.
  • the iron content of the mine is 37.3 wt%, REO 22.2 wt%, P6.6 wt%)
  • the solid-liquid ratio is 1: 7, the water-immersed slurry is rare earth.
  • the concentration REO was 46.2 g/L, the acidity was 0.15 mol/L, and the rare earth decomposition rate was 95.6%.
  • the aqueous immersion slurry is neutralized with calcium oxide to recover iron and phosphorus, and filtered to obtain a pure rare earth sulfuric acid solution (Fe ⁇ 0.05 g/L, P ⁇ 0.001 g/L, Th ⁇ 0.08 mg/L, pH 4). Pure rare earth sulfuric acid solution is directly extracted with non-saponified P204 and P507 mixed extractant, and then stripped with hydrochloric acid to obtain mixed rare earth chloride solution, and then extracted by non-saponified P507, ?272, naphthenic acid extractant or Separate a single rare earth.
  • the iron content in the ore is 23.5 wt%, REO 44.6 wt%, P8.1 wt%.
  • the liquid ratio is 1:10
  • the rare earth concentration REO of the water immersion slurry is 42.4 g/L
  • the acidity is 0.12 mol/L
  • the rare earth decomposition rate is 95.0%.
  • the aqueous immersion slurry is neutralized with magnesium oxide to recover iron and phosphorus, and then filtered to obtain a pure rare earth sulfate solution (Fe 0.005 g / L, P 0.0005 g / L, Th ⁇ 0.01 mg / L, pH 4.5).
  • the pure rare earth sulfate solution is produced by the sodium carbonate precipitation method to produce mixed rare earth carbonate.
  • the mixed rare earth carbonate is dissolved in hydrochloric acid and extracted by P507 to prepare a single or complex rare earth compound.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Environmental & Geological Engineering (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

L'invention porte sur un procédé de fusion d'un minerai des terres rares de type monazite riche en Fe qui comprend en particulier les étapes consistant à : mélanger un minerai des terres rares de type monazite riche en Fe contenant 8 à 40 % de Fe avec de l'acide sulfurique concentré et ajouter le mélange dans un four de calcination; calciner, entre 231 °C et 600 °C, les terres rares réagissant avec l'acide sulfurique pour produire un sulfate de terres rares qui se dissout dans l'eau ou une solution ayant une concentration en H+ inférieure à 1,5 mole/l, et le Fe étant transformé en au moins un composé parmi le sulfate de fer, le phosphate de fer et le pyrophosphate de fer; lixivier le minerai calciné avec de l'eau ou une solution ayant une concentration en H+ inférieure à 1,5 mole/l et filtrer pour obtenir une solution de sulfate de terres rares contenant Fe et P; neutraliser la solution pour récupérer Fe et P et pour obtenir une solution pure de sulfate de terres rares; produire un composé de terres rares unique ou mixte par extraction et séparation de la solution pure directement, ou produire des carbonates de terres rares mixtes par un procédé de précipitation. Le procédé permettrait d'éviter l'influence du Fe sur l'extraction des terres rares. Le procédéest simple, continu, facile à contrôler, montre une faible consommation de matériaux d'ingénierie chimique et un rapport élevé de récupération des terres rares, et il est approprié pour une production à grande échelle.
PCT/CN2008/000715 2007-08-10 2008-04-08 Procédé de fusion d'un minerai des terres rares de type monazite riche en fe WO2009021389A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2008286599A AU2008286599B2 (en) 2007-08-10 2008-04-08 A metallurgical process for iron-rich monazite rare earth ore or concentrate

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN200710143582.9 2007-08-10
CN200710143582 2007-08-10
CNA2007101462351A CN101363079A (zh) 2007-08-10 2007-08-29 一种富铁独居石稀土矿的冶炼方法
CN200710146235.1 2007-08-29

Publications (1)

Publication Number Publication Date
WO2009021389A1 true WO2009021389A1 (fr) 2009-02-19

Family

ID=40350354

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2008/000715 WO2009021389A1 (fr) 2007-08-10 2008-04-08 Procédé de fusion d'un minerai des terres rares de type monazite riche en fe

Country Status (1)

Country Link
WO (1) WO2009021389A1 (fr)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013163711A1 (fr) 2012-05-04 2013-11-07 Vale S.A. Système et procédé pour l'extraction de terres rares
CN106460087A (zh) * 2014-05-15 2017-02-22 淡水河谷公司 用于选择性稀土提取与硫回收的系统和方法
CN109735705A (zh) * 2019-01-31 2019-05-10 湖南省欧华科技有限公司 一种利用二段连续作业热碱分解工艺处理稀土精矿的方法
CN109735706A (zh) * 2019-01-31 2019-05-10 湖南中核金原新材料有限责任公司 一种利用二段热碱分解工艺处理独居石的方法
RU2704677C1 (ru) * 2019-05-17 2019-10-30 Александр Сергеевич Буйновский Способ переработки монацита
CN111498820A (zh) * 2020-04-26 2020-08-07 贵州省化工研究院 一种由中低品位磷矿或磷尾矿富集磷精矿同时制取高品质硫酸钙晶须的工艺
CN112534072A (zh) * 2018-08-10 2021-03-19 有研稀土新材料股份有限公司 一种联合法处理稀土精矿的冶炼分离工艺
RU2746867C1 (ru) * 2017-07-17 2021-04-21 Чайна Энфи Инжиниринг Корпорейшн Способ и система для обработки концентратов редкоземельных элементов
CN113247875A (zh) * 2021-05-24 2021-08-13 中国恩菲工程技术有限公司 磷酸铁渣中磷和铁的提取方法
CN113373326A (zh) * 2020-03-09 2021-09-10 有研稀土新材料股份有限公司 一种制备纯净硫酸稀土溶液的方法
CN114182113A (zh) * 2021-12-14 2022-03-15 上海理工大学 一种含氟混合氯化稀土溶液高效除氟的方法
CN114249308A (zh) * 2021-11-19 2022-03-29 四川大学 一种含磷混合稀土精矿中的磷资源和稀土资源提取方法
CN114703366A (zh) * 2022-04-24 2022-07-05 中南大学 一种浓硫酸定向转型处理废crt荧光粉的方法
CN115029546A (zh) * 2022-05-07 2022-09-09 包头稀土研究院 混合稀土矿的处理方法
US11447397B1 (en) 2021-03-19 2022-09-20 Lynas Rare Earths Limited Materials, methods and techniques for generating rare earth carbonates
CN115927840A (zh) * 2022-11-30 2023-04-07 核工业北京化工冶金研究院 一种高铁含量稀土矿石中综合回收稀土和铁的方法
CN115992310A (zh) * 2022-11-29 2023-04-21 包头稀土研究院 含独居石的萤石精矿的处理方法
CN116590547A (zh) * 2023-05-29 2023-08-15 山东域潇有色新材料有限公司 一种独居石矿粉碱法分解溶出装置及工艺
CN117626012A (zh) * 2023-12-11 2024-03-01 包头稀土研究院 一种混合稀土精矿的盐酸处理工艺
CN117821783A (zh) * 2024-03-05 2024-04-05 矿冶科技集团有限公司 一种离子型稀土矿的绿色开采方法
CN118854050A (zh) * 2024-06-24 2024-10-29 湖南中核金原新材料有限责任公司 一种湿法磨浸工艺处理独居石的方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1009332B (zh) * 1986-08-23 1990-08-29 北京有色金属研究总院 从硫酸体系中萃取分离稀土元素
CN1075171A (zh) * 1992-02-02 1993-08-11 包头钢铁稀土企业集团稀土冶炼厂 氢氧化铈的生产方法
RU2151206C1 (ru) * 1999-06-28 2000-06-20 Институт химии и технологии редких элементов и минерального сырья им. И.В. Тананаева Кольского научного центра Российской академии наук Способ переработки монацитового концентрата
FR2826667A1 (fr) * 2001-06-29 2003-01-03 Rhodia Elect & Catalysis Procede de traitement d'un minerai de terres rares a teneur elevee en fer
CN1405337A (zh) * 2002-09-25 2003-03-26 包头稀土研究院 稀土精矿浓硫酸低温焙烧分解工艺
CN1721559A (zh) * 2004-12-15 2006-01-18 北京有色金属研究总院 从稀土矿中综合回收稀土和钍工艺方法
CN1804063A (zh) * 2005-09-05 2006-07-19 有研稀土新材料股份有限公司 一种非皂化磷类混合萃取剂萃取分离稀土元素的工艺

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1009332B (zh) * 1986-08-23 1990-08-29 北京有色金属研究总院 从硫酸体系中萃取分离稀土元素
CN1075171A (zh) * 1992-02-02 1993-08-11 包头钢铁稀土企业集团稀土冶炼厂 氢氧化铈的生产方法
RU2151206C1 (ru) * 1999-06-28 2000-06-20 Институт химии и технологии редких элементов и минерального сырья им. И.В. Тананаева Кольского научного центра Российской академии наук Способ переработки монацитового концентрата
FR2826667A1 (fr) * 2001-06-29 2003-01-03 Rhodia Elect & Catalysis Procede de traitement d'un minerai de terres rares a teneur elevee en fer
CN1405337A (zh) * 2002-09-25 2003-03-26 包头稀土研究院 稀土精矿浓硫酸低温焙烧分解工艺
CN1721559A (zh) * 2004-12-15 2006-01-18 北京有色金属研究总院 从稀土矿中综合回收稀土和钍工艺方法
CN1804063A (zh) * 2005-09-05 2006-07-19 有研稀土新材料股份有限公司 一种非皂化磷类混合萃取剂萃取分离稀土元素的工艺

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102090348B1 (ko) * 2012-05-04 2020-03-18 발레 에스.에이. 희토류 추출을 위한 시스템 및 방법
US20130336856A1 (en) * 2012-05-04 2013-12-19 Vale S/A System and method for rare earths extraction
JP2015519474A (ja) * 2012-05-04 2015-07-09 ヴァーレ、ソシエダージ、アノニマVale S.A. 希土類抽出のシステムおよび方法
KR20150114383A (ko) * 2012-05-04 2015-10-12 발레 에스.에이. 희토류 추출을 위한 시스템 및 방법
AU2013255066B2 (en) * 2012-05-04 2015-11-05 Vale S.A. System and method for rare earths extraction
RU2618975C2 (ru) * 2012-05-04 2017-05-11 Вале С.А. Система и способ извлечения редкоземельных элементов
US9663842B2 (en) * 2012-05-04 2017-05-30 Vale S.A. System and method for rare earths extraction
WO2013163711A1 (fr) 2012-05-04 2013-11-07 Vale S.A. Système et procédé pour l'extraction de terres rares
CN106460087A (zh) * 2014-05-15 2017-02-22 淡水河谷公司 用于选择性稀土提取与硫回收的系统和方法
RU2746867C1 (ru) * 2017-07-17 2021-04-21 Чайна Энфи Инжиниринг Корпорейшн Способ и система для обработки концентратов редкоземельных элементов
CN112534072A (zh) * 2018-08-10 2021-03-19 有研稀土新材料股份有限公司 一种联合法处理稀土精矿的冶炼分离工艺
CN109735705A (zh) * 2019-01-31 2019-05-10 湖南省欧华科技有限公司 一种利用二段连续作业热碱分解工艺处理稀土精矿的方法
CN109735706A (zh) * 2019-01-31 2019-05-10 湖南中核金原新材料有限责任公司 一种利用二段热碱分解工艺处理独居石的方法
CN109735705B (zh) * 2019-01-31 2021-08-06 湖南欧华科技有限公司 一种利用二段连续作业热碱分解工艺处理稀土精矿的方法
RU2704677C1 (ru) * 2019-05-17 2019-10-30 Александр Сергеевич Буйновский Способ переработки монацита
CN113373326A (zh) * 2020-03-09 2021-09-10 有研稀土新材料股份有限公司 一种制备纯净硫酸稀土溶液的方法
CN111498820A (zh) * 2020-04-26 2020-08-07 贵州省化工研究院 一种由中低品位磷矿或磷尾矿富集磷精矿同时制取高品质硫酸钙晶须的工艺
US11447397B1 (en) 2021-03-19 2022-09-20 Lynas Rare Earths Limited Materials, methods and techniques for generating rare earth carbonates
US12098080B2 (en) 2021-03-19 2024-09-24 Lynas Rare Earths Limited Materials, methods and techniques for generating rare earth carbonates
CN113247875A (zh) * 2021-05-24 2021-08-13 中国恩菲工程技术有限公司 磷酸铁渣中磷和铁的提取方法
CN114249308A (zh) * 2021-11-19 2022-03-29 四川大学 一种含磷混合稀土精矿中的磷资源和稀土资源提取方法
CN114249308B (zh) * 2021-11-19 2023-09-08 四川大学 一种含磷混合稀土精矿中的磷资源和稀土资源提取方法
CN114182113A (zh) * 2021-12-14 2022-03-15 上海理工大学 一种含氟混合氯化稀土溶液高效除氟的方法
CN114703366A (zh) * 2022-04-24 2022-07-05 中南大学 一种浓硫酸定向转型处理废crt荧光粉的方法
CN115029546B (zh) * 2022-05-07 2024-01-23 包头稀土研究院 混合稀土矿的处理方法
CN115029546A (zh) * 2022-05-07 2022-09-09 包头稀土研究院 混合稀土矿的处理方法
CN115992310A (zh) * 2022-11-29 2023-04-21 包头稀土研究院 含独居石的萤石精矿的处理方法
CN115927840A (zh) * 2022-11-30 2023-04-07 核工业北京化工冶金研究院 一种高铁含量稀土矿石中综合回收稀土和铁的方法
CN116590547A (zh) * 2023-05-29 2023-08-15 山东域潇有色新材料有限公司 一种独居石矿粉碱法分解溶出装置及工艺
CN117626012A (zh) * 2023-12-11 2024-03-01 包头稀土研究院 一种混合稀土精矿的盐酸处理工艺
CN117821783A (zh) * 2024-03-05 2024-04-05 矿冶科技集团有限公司 一种离子型稀土矿的绿色开采方法
CN117821783B (zh) * 2024-03-05 2024-05-31 矿冶科技集团有限公司 一种离子型稀土矿的绿色开采方法
CN118854050A (zh) * 2024-06-24 2024-10-29 湖南中核金原新材料有限责任公司 一种湿法磨浸工艺处理独居石的方法

Similar Documents

Publication Publication Date Title
WO2009021389A1 (fr) Procédé de fusion d'un minerai des terres rares de type monazite riche en fe
AU2008286599B2 (en) A metallurgical process for iron-rich monazite rare earth ore or concentrate
Sinha et al. Metallurgical processes for the recovery and recycling of lanthanum from various resources—A review
AU2016200606B2 (en) A method for recovering phosphorus and rare earth from rare earth containing phosphorite
JP5894262B2 (ja) 種々の鉱石から希土類元素を回収する方法
CA2829049C (fr) Procedes permettant de recuperer des elements de terres rares a partir de materiaux renfermant de l'aluminium
CN101239740B (zh) 含钒石煤矿和萤石联合制取五氧化二钒的方法
CN106319247B (zh) 从含稀土磷矿中回收磷和稀土的方法
US8721998B2 (en) Use of Mg(HCO3)2 and/or Ca(HCO3)2 aqueous solution in metal extractive separation and purification
CN105293564A (zh) 一种钢铁厂含锌烟尘灰循环利用的方法
KR20190084081A (ko) 리튬 회수 방법
WO2010057412A1 (fr) Procédé de fabrication d’oxyde de vanadium utilisant une extraction
CN102747225A (zh) 一种石煤提钒酸浸液中铜、硒、铀综合回收方法
CN101831542B (zh) 一种从钼选矿尾矿中提取金属元素铁、镁、钙的方法
CN102876889A (zh) 一种从含稀土磷灰石矿中提取稀土的方法
WO2018218294A1 (fr) Procédé de production d'oxyde de magnésium à partir de cendres volantes ou de scories alcalines
CN109666801A (zh) 一种高硅低含量钕铁硼废料中回收稀土元素的方法
CN103397209A (zh) 一种高钙高磷钒渣提钒的方法
CN102134649A (zh) 一种钒渣的综合利用方法
CN110790312A (zh) 利用含钨废料制备仲钨酸铵的方法
CN115537580B (zh) 一种提取锂矿石中锂的方法
AU2016279392B2 (en) Method for recovering phosphorus and rare earth from rare earth-containing phosphate ore, and substance containing rare earth phosphate
CA2834151C (fr) Procedes d'extraction d'elements de terres rares dans divers minerais
CN102154546A (zh) 湿法冶炼钼镍共生矿的方法
CN109777972A (zh) 一种从煤矸石中浓硫酸活化浸出提取钪的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08748384

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008286599

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 2008286599

Country of ref document: AU

Date of ref document: 20080408

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08748384

Country of ref document: EP

Kind code of ref document: A1