[go: up one dir, main page]

WO2008075673A1 - 誘導加熱調理器 - Google Patents

誘導加熱調理器 Download PDF

Info

Publication number
WO2008075673A1
WO2008075673A1 PCT/JP2007/074297 JP2007074297W WO2008075673A1 WO 2008075673 A1 WO2008075673 A1 WO 2008075673A1 JP 2007074297 W JP2007074297 W JP 2007074297W WO 2008075673 A1 WO2008075673 A1 WO 2008075673A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
infrared
light guide
heating
center
Prior art date
Application number
PCT/JP2007/074297
Other languages
English (en)
French (fr)
Inventor
Kazuichi Okada
Masahiro Yokono
Original Assignee
Panasonic Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corporation filed Critical Panasonic Corporation
Priority to US12/519,586 priority Critical patent/US9565721B2/en
Priority to JP2008550150A priority patent/JP5047989B2/ja
Priority to CA2672788A priority patent/CA2672788C/en
Priority to ES07850785.2T priority patent/ES2659989T3/es
Priority to CN2007800461646A priority patent/CN101558682B/zh
Priority to HK10103525.6A priority patent/HK1136925B/xx
Priority to EP07850785.2A priority patent/EP2096897B1/en
Publication of WO2008075673A1 publication Critical patent/WO2008075673A1/ja

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/06Control, e.g. of temperature, of power
    • H05B6/062Control, e.g. of temperature, of power for cooking plates or the like
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2213/00Aspects relating both to resistive heating and to induction heating, covered by H05B3/00 and H05B6/00
    • H05B2213/07Heating plates with temperature control means

Definitions

  • the present invention relates to an induction heating cooker that induction-heats an object to be heated and controls the temperature of the object to be heated by an infrared sensor.
  • an infrared sensor is arranged in the center of the heating coil, and the output of the heating coil is controlled by controlling the inverter circuit by the control means according to the output from the infrared sensor (for example, see Patent Document 1.)
  • Patent Document 1 JP-A-2005-38660
  • the infrared sensor is arranged so that the temperature of the object to be heated can be measured not in the center of the heating coil but in the middle of the heating coil or in the vicinity of the inner circumference of the winding of the heating coil, the above-mentioned problem can be solved.
  • the infrared incident window hereinafter referred to as infrared incident area
  • the object to be heated is not necessarily placed above the infrared incident area.
  • the infrared sensor causes the object to be heated.
  • the temperature cannot be detected properly.
  • the surroundings of the induction heating cooker are dark, it is difficult to visually recognize the infrared incident area. There is a problem.
  • the present invention has been made in view of the above-described problems of the prior art, and improves the responsiveness to the temperature rise of the hot portion of the heated object, and the infrared rays emitted from the heated object. It is easy to visually recognize the incident area of the infrared sensor, and the temperature of the object to be heated can be reliably controlled by the infrared sensor! As a nephew!
  • an induction heating cooker includes a heating plate that is provided on the upper surface of the main body and has a heating part for placing and heating an object to be heated.
  • a heating coil that is provided below the top plate so as to face the heating unit and generates a magnetic field to inductively heat an object to be heated
  • an infrared sensor that is provided below the top plate and detects infrared rays
  • the top A light emitter provided below the plate, a light guide that guides infrared rays emitted from the object to be heated to the infrared sensor, and a control that controls the output of the heating coil based on an output signal from the infrared sensor
  • an infrared incident region for guiding the infrared ray radiated from the object to be heated to the light guide unit at a position outside the center of the heating coil inside the outer periphery of the heating coil of the top plate,
  • the light emitted from the light emitter is The light is e
  • the light emitted from the light emitter instead of emitting the light emitted from the light emitter in the infrared incident region so that the light can be seen in the heating portion when viewed from above the main body, the light emitted from the light emitter May be emitted in the vicinity of the infrared incident region so that the light can be visually recognized in the heating portion when viewed from above the main body.
  • the infrared incident region is provided only at one position inside the outer periphery of the heating coil, and the heating is performed on or near a straight line in the front-rear direction of the main body passing through the center of the heating coil as viewed from above the main body. You may arrange
  • the light guide unit guides light emitted from the light emitter toward the infrared incident region, and transmits light emitted from the light emitter and guided in the light guide unit to the opening of the light guide unit. Force A part or all of the infrared incident area is observed by irradiating the top plate. It ’s good to be shy.
  • the center of the heating coil and the center of the heating coil on or near a straight line passing through the center of the light emitting unit, which is a region where the light emitted from the light emitter can be seen.
  • the center of the infrared incident region may be disposed between the centers of the light emitting units.
  • the light-emitting body further includes a light guide that receives light from the light-emitting body and emits light in a ring shape, and guides light from the light-emitting body from the light-emitting surface of the light guide to the light guide section.
  • a light guide that receives light from the light-emitting body and emits light in a ring shape, and guides light from the light-emitting body from the light-emitting surface of the light guide to the light guide section.
  • the infrared light emitted from the object to be heated may be guided to the infrared sensor through the opening and through a through hole formed inside the light emitting surface.
  • the infrared sensor and the light emitter constitute a sensor unit, and the sensor unit fixes the infrared sensor and the light emitter and electrically connects them, and contains the printed wiring board and a conductive metal.
  • a housing formed of a material, the housing having a lower extension tube extending toward the infrared sensor and the light emitter, and housing the infrared sensor and the light emitter in the lower extension tube. it can.
  • a light diffusion ring having a through hole may be provided above the infrared sensor and the light emitter, and the infrared sensor may be disposed below the through hole.
  • the second light guide part separated by the light guide part and a light shielding wall is provided, and the light emitted from the light emitter passes through the second light guide part and in the vicinity of the infrared incident region. It's okay to irradiate.
  • the center of the heating coil is on or near a straight line passing through the center of the heating coil and the center of the light emitting section, which is a region where the light emitted from the light emitter can be seen when viewed from above the main body. Further, the infrared incident region can be disposed between the center of the light emitting unit and the light emitting unit.
  • an infrared sensor and a light emitter are provided below the top plate, and the infrared light incident on a part of the heating unit is formed by irradiating the top plate with light emitted from the light emitter. Since the region or its vicinity can be visually recognized, the user becomes the light emitting portion that is visually recognized. If the object to be heated is placed so as to cover the infrared incident area or the infrared incident area formed in the vicinity of the light emitting part, the infrared radiation emitted from the bottom surface of the heated object can be efficiently and reliably incident on the infrared sensor. The temperature of the object to be heated can be controlled by an infrared sensor. Moreover, even when the periphery of the induction heating cooker is dark, the infrared incident area can be easily seen.
  • FIG. 1 is an exploded perspective view of an induction heating cooker according to the present invention.
  • Fig. 2 is an exploded perspective view showing the heating coil provided in the induction heating cooker of Fig. 1 and its peripheral part.
  • Fig. 3 is a block diagram showing the control circuit of the heating coil.
  • FIG. 4 is a sectional view of the sensor unit provided in the induction heating cooker of FIG.
  • FIG. 5 is a sectional view of a modification of the sensor unit of FIG.
  • FIG. 6 is a cross-sectional view of another variation of the sensor unit of FIG.
  • FIG. 7 is a cross-sectional view of still another modification of the sensor unit of FIG.
  • FIG. 8 is a cross-sectional view of still another modification of the sensor unit of FIG.
  • Fig. 9 is an exploded perspective view of the induction heating cooker equipped with the sensor unit of Fig. 8.
  • FIG. 10 is a cross-sectional view of still another modification of the sensor unit of FIG.
  • FIG. 11 is an exploded perspective view showing the heating coil to which the sensor unit of FIG. 10 is attached and its peripheral portion.
  • FIG. 12 is a block diagram showing a control circuit when the sensor unit of FIG. 8 or FIG. 10 is provided.
  • Fig. 13A is a front view of a light diffusion layer formed in the light-emitting area provided on the top plate of an induction heating cooker.
  • Fig. 13B is a front view when another light diffusion layer is formed in the light emitting area provided on the top plate of the induction heating cooker.
  • Fig. 13C is a front view when another light diffusing layer is formed in the light emitting area provided on the top plate of the induction heating cooker.
  • Fig. 13D shows another light expansion in the light emitting area provided on the top plate of the induction heating cooker. Front view when a scattering layer is formed
  • FIG. 13E is a front view of the case where another light diffusion layer is formed in the light emitting region provided on the top plate of the induction heating cooker.
  • cooling fan 22 cooling fan, 24 air intake duct, 26 air intake, 28 air exhaust,
  • FIG. 1 shows an induction heating cooker C that is effective in the present invention.
  • the main body 2, a top plate 4a made of crystallized ceramic that is attached to the top of the main body 2 and transmits light, and a metal provided therearound are shown.
  • a top unit 4 having a frame 4b made of metal, and first and second heating coils 6 and 8 and a radial heater 10 provided at the rear thereof are provided below the front portion of the top plate 4a.
  • a roaster heating chamber 12 is provided below the second heating coil 8 located on the left side when the main body 2 is viewed from the front.
  • the roaster heating chamber 12 is attached to the front of the heating coil 12 so as to be freely opened and closed. It is opened and closed by the roaster door 14.
  • a tray (not shown), a grill (not shown), and heaters (not shown) provided above and below the grill are accommodated. Is configured.
  • an operation unit 16 for setting the output of the above-described heating means is provided, and behind the first operation coil 16 constituting a drive circuit for the first heating coil 6.
  • One printed circuit board 18 and a second printed circuit board 20 constituting a drive circuit for the second heating coil 8 are provided on the upper and lower sides.
  • a sirocco-type cooling fan 22 whose rotation axis is orthogonal to the printed circuit boards 18 and 20 and a motor (not shown) for driving the cooling fan 22 are located close to the back of these two printed circuit boards 18 and 20.
  • the cooling fan 22 and the motor are surrounded by the intake duct 24.
  • the driving circuit for the radial heater 10 and the roaster heater is configured in the printed circuit boards 18 and 20.
  • an intake port 26 communicating with the intake duct 24 and an exhaust port 28 adjacent to the intake port 26 are formed on the roaster heating chamber 12 side at the upper rear portion of the main body 2.
  • the main body 2 is an integral type that is integrally formed by an outer shell and is supported by a kitchen or the like by an upper flange 30 of the outer shell.
  • a relay terminal block for electrically connecting the thermal barrier 32, the support spring 34 of the second heating coil 8, and the second heating coil 8 and the second printed circuit board 20 is provided on the roaster heating chamber 12. Only structures with low temperature constraints (not shown) that are difficult to thermally break down are provided. Further, when the main body 2 is viewed from the upper side, the cooling fan 22, the first printed circuit board 18, and the second printed circuit board 20 are open.
  • the one-star heating chamber 12 is arranged on the side so as not to overlap.
  • the first heating coil 6, the second heating coil 8, or the radial heater 10 is positioned above any heating means.
  • Force to place the object to be heated A (see Fig. 3) on the top plate 4a or the roaster heating chamber 12 after storing the object to be cooked, operate the operation unit 16 to perform desired cooking. Is called.
  • a printed film 35c is formed in a circle on the back surface (bottom surface) of the top 4a so as to surround the portion facing the heating means 6, 8, 10
  • the heating unit 35 for placing the object A to be heated is displayed (see Fig. 4).
  • the heating unit need not be circular as long as it can roughly indicate the position of the calorie heating means that does not need to completely match the shape of the opposing portions of the heating means 6, 8, 10.
  • a black light absorption film 35d having substantially zero light transmittance is formed by printing on the outer side (lower surface) of the printing film 35c for displaying the heating unit 35.
  • the printed film 35c for displaying the heating unit 35 may be formed on the front surface, not the back surface of the top plate 4a. Further, the printed film 35c may be linear.
  • the internal temperature of the main body 2 rises, but the operation of the cooling fan 22 causes ambient air to be sucked into the main body 2 from the air intake 26, and the sucked air is It flows through the space above the lint substrates 18 and 20, and is discharged through the space on the roaster heating chamber 12 side in the main body 2 from the exhaust port 28.
  • the heating part in the main body 2 including the heating means 6, 8, and 10 is cooled, and the temperature is lowered.
  • the second heating coil 8 will be described as an example, particularly for the control systems of the first and second heating coils 6 and 8.
  • Fig. 2 shows the second heating coil 8 and its peripheral part.
  • the second heating coil 8 has a split winding configuration of an inner coil 8a and an outer coil 8b, and has an infrared transmittance. Low! /, Held on a heating coil support 36 made of resin material.
  • a ferrite 37 (see Fig. 3) for concentrating the magnetic flux from the second heating coil 8 to the back side of the heating coil support base 36 near the second heating coil 8 is attached to the lower surface of the heating coil support base 36.
  • infrared light emitted from the bottom of the object to be heated A see FIG.
  • a cylindrical light guide portion 36a for guiding the light is formed. Further, in the vicinity of the center of the second heating coil 8, A thermistor 38 for detecting the temperature of the bottom surface of the heated object A is fitted into and supported by a groove of a thermistor holder 38a made of a heat-resistant resin, and is attached to the top plate 4a by being pressed and closely adhered to a top plate 4a.
  • the infrared sensor described above is superior in temperature responsiveness to the force thermistor 38 provided for detecting the temperature of the object A to be heated.
  • the control circuit of the first heating coil 6 and the second heating coil 8 controlled accordingly will be described below with reference to FIG. 3 taking the second heating coil 8 as an example.
  • the infrared sensor 40 uses a magnetic path for magnetic flux shielding below the second heating coil 8 in order to receive the influence of the magnetic flux from the second heating coil 8. It is arranged below the ferrite 37 to be formed, below the lower opening 36c of the cylindrical light guide 36a formed integrally with the heating coil support 36, and is connected to the infrared sensor 4 from the bottom of the object A to be heated.
  • a convex lens 41 as a condensing means is disposed on the path of the infrared rays emitted toward 0, and the infrared rays emitted from the heated object A are collected.
  • the output of the infrared sensor 40 is input to the temperature detection means 42, and the temperature detection means 42 detects the temperature of the object A to be heated.
  • the output of the temperature detection means 42 is input to the control means 44, and the control means 44 controls the output of the inverter circuit 46 that supplies a high-frequency current to the second heating coil 8 in accordance with a signal from the temperature detection means 42.
  • the inverter circuit 46 supplies a high frequency current of 20 kHz or more to the second heating coil 8, and the object A to be heated is a vortex induced by the magnetic flux (magnetic field) from the second heating coil 8. Self-heating due to current.
  • the bottom temperature of the object to be heated A in the transition period after the start of heating is the temperature at the center of the second heating coil 8 near the inner edge of the outer coil 8b due to the influence of the magnetic flux density distribution from the second heating coil 8.
  • the infrared sensor 40 is disposed below the gap 8c between the inner coil 8a and the outer coil 8b of the second heating coil 8, and the infrared sensor 40
  • the detection output from is converted into the detection temperature by the temperature detection means 42 and output to the control means 44.
  • the inverter circuit 46 It is controlled by the control means 44 so that the output decreases.
  • the infrared sensor 40 is formed as a sensor unit having a light emitter disposed in the vicinity thereof, and the configuration of the sensor unit will be described below with reference to FIG.
  • a sensor unit 48 is disposed below the heating coil support 36, and the sensor unit 48 is a unit housing formed of a conductive metal material such as aluminum or brass. 50 and a printed wiring board 52 accommodated in the mute housing 50. On the printed wiring board 52, the infrared sensor 40 and the convex lens 41 described above, and a light emitter 54 such as a LED are fixed, and a connector 58 is provided for electrically connecting these elements and the connection line 56.
  • the unit housing 50 is provided on the second heating coil 8 side with respect to the printed wiring board 52, and includes a shielding part 50a for magnetically shielding the infrared sensor 40 and the light emitter 54, and an upper opening 60a on the upper part.
  • a cylindrical light guide tube 60 having a lower opening 60b at the bottom is integrally formed with the shielding portion 50a so as to protrude from the heating portion, and directly below the lower opening 60b of the light guide tube 60.
  • the convex lens 41 and the infrared sensor 40 are arranged.
  • the light emitter 54 is mounted on the printed wiring board 52 in the vicinity of the infrared sensor 40 so that the emitted light is directed toward the inner wall of the light guide tube 60.
  • a circular recess 36b is formed on the lower surface of the light guide portion 36a of the heating coil support base 36, and the inner diameter of the circular recess 36b is set to be larger than the outer diameter of the light guide tube 60.
  • the placing portion (heating unit 35) for the object A to be heated is formed in a circular shape by the printing film 35c on the top plate 4a, but a part of the printing film 35c has a circular shape.
  • the punched out part is formed as an infrared incident area 35a!
  • This infrared incident area 35a is guided by the heating coil support 36. It is positioned directly above the upper opening 36d of the light portion 36a so as to face the upper opening 36d, and is opposed to the upper opening 60a of the light guide tube 60, and the light transmittance of the infrared incident region 35a is around its circumference. It is set larger than the light transmittance of the enclosure (printed film 35c).
  • the infrared incident region 35a is for causing the infrared rays emitted from the portion facing the infrared incident region 35a on the bottom surface of the object to be heated A to enter the light guide unit 36a.
  • the power switch (not shown) of the induction heating cooker C When the food is put in the object A to be heated and cooked in the induction heating cooker C, which is effective in the present invention, when the power switch (not shown) of the induction heating cooker C is turned on, the light emitter 54 emits light. Then, the emitted light is reflected and guided by the inner wall of the light guide tube 60 and the inner wall of the light guide portion 36a, and is guided through the upper opening portion 60a of the light guide tube 60 and the upper opening portion 36d of the light guide portion 36a. Irradiated to the infrared incident area 35a of the top 4a.
  • the user can easily visually recognize the infrared incident area 35a by the light emitted from the light emitter 54, and the heating operation can be started by operating the cut-off key (not shown) of the operation unit 16. Therefore, when the second heating coil 8 is used, the infrared ray sensor 40 can be surely mounted by placing the object A to be heated on the top 4a so as to cover the light irradiation part (infrared incident area 35a). Infrared radiation emitted from the bottom surface of the object to be heated A can be received efficiently, and the temperature of the object to be heated A can be controlled by the infrared sensor 40. In addition, even when the periphery of the induction heating cooker C is dark, the infrared incident area 35a can be easily visually confirmed.
  • the infrared light emitted from the bottom of the object to be heated A passes through the infrared incident area 35a of the top plate 4a, and the light guide part of the heating coil support base 36 The light is guided to 36a and is further guided to the light guide tube 60 of the unit housing 50 which is in contact with the lower opening 36c at the lower end of the light guide 36a, and enters the infrared sensor 40.
  • the output of the infrared ray sensor 40 is input to the temperature detecting means 42, and the temperature of the object A to be heated is controlled as described above.
  • the light emitted from the light emitter 54 is guided to the top plate 4a via the light guide tube 60 and the light guide section 36a, and the infrared rays radiated from the heated object A are reversed in the same path. Since the light is guided to the infrared sensor 40 through the light guide 36a and the light guide tube 60 in the direction, the light guide tube 60 and the light guide 36a act as a bidirectional light guide.
  • the light guide tube 60 and the light guide part 36a which are light guide means, extend from the vicinity of the light receiving surface of the infrared sensor 40 to the upper surface of the second heating coil 8. Therefore, the structure is less susceptible to the effects of infrared radiation from the peripheral components of the infrared sensor 40, such as the second heating coil 8.
  • the force described with reference to the second heating coil 8 as an example can be applied to the first heating coil 6 in the same manner.
  • the infrared ray incident region 35a for guiding the infrared ray radiated from the object A to be heated into the light guide 36a is second heated inside the outer periphery of the second heating coil 8.
  • the light is emitted from the light emitter 54 in the infrared incident area 35a so that the light can be seen in the heating unit 35.
  • the object to be heated A is placed so as to cover the infrared incident area 35a, the infrared radiation emitted from the bottom surface of the object to be heated A can be incident on the infrared sensor 40 efficiently and reliably.
  • the temperature of the object A can be controlled by the infrared sensor 40. Further, even when the periphery of the induction heating cooker C is dark, the infrared incident area 35a can be easily visually confirmed.
  • the infrared incident region 35a is provided only at one position inside the outer periphery 8d of the second heating coil 8, and the center 8e of the second heating coil 8 (or the heating part 35) is viewed from above the main body 2.
  • the user placed the infrared incident area 35a at the bottom of the pan of the object to be heated A because it is placed on the near side of the center 8 e of the second heating coil 8 on or near the straight line in the front-rear direction of the main body 2 passing through the center 3 5e).
  • the infrared sensor 40 and the illuminant can be inexpensively configured as a pair.
  • the user can easily check from the cooking work position whether the infrared incident area 35a is covered with the object A to be heated. Easy to do.
  • the user can cover the infrared incident area 35a on the bottom surface of the heated object A while observing the infrared incident area 35a by moving the heated object A on the heating unit 35 from the rear to the front. .
  • the infrared incident area 35a is hidden by the object A, and the position of the infrared incident area 35a can be confirmed.
  • infrared rays are incident on the front side from the center 8e of the second heating coil on the longitudinal center line Y, which is a straight line passing through the center 8e of the second heating coil 8 when viewed from above.
  • the area 35a By arranging the area 35a, the user can easily perform the work of covering the infrared incident area 35a, and the usability is remarkably improved.
  • the infrared radiation region 35a is covered with the bottom surface of the object A to be heated in a state where the center 8e of the second heating coil 8 (the center 35e of the hot portion 35) and the center position of the pan bottom of the object A are aligned.
  • the infrared incident area 35a is provided at the same distance from the center 8e in the other direction with respect to the center 8e of the second heating coil 8.
  • the infrared incident area 35a moves while facing the center line passing through the center of the heated object A by the work of pulling the heated object A toward the near side, and the infrared incident area 35a is stably heated. It can be covered with the bottom of object A.
  • the infrared incident area 35a is covered with the bottom surface of the object A to be heated! Compared with the case where the infrared incident area 35a is provided at the same distance from the center 8e in the other direction with respect to the center 8e of the second heating coil 8, the heated object A is moved directly behind.
  • the infrared incident region 35a can be made to appear closest to the user.
  • the center of the object to be heated A is moved back and forth on the straight line in the front-rear direction passing through the center 8e of the second heating coil 8, and the infrared incident region 35a is covered with the object A to be heated! /
  • the position of the infrared incident area 35a is most visually recognized! /
  • the state of the infrared incident area 35a is covered with the heated object A! /, Na! / Since it can be covered stably, it can be used!
  • the center 35e of the heating unit 35 is located immediately above the center 8e of the second heating coil 8.
  • the infrared rays emitted from the object A to be heated are guided to the infrared sensor 40, and the light emitter 5 4 is provided with a light guide means (light guide tube 60 and light guide section 36a) for guiding the light emitted from 4 toward the infrared incident region 35a, and the light emitted from the light emitter 54 and guided by the light guide means 60, 36a.
  • a light guide means light guide tube 60 and light guide section 36a
  • the incident area 35a itself emits light
  • the infrared incident area 35a can be reliably covered with the object A to be heated.
  • light emitted from the light emitter 54 is guided to the top plate 4a through the light guide tube 60 and the light guide part 36a, while infrared light emitted from the heated object A is guided in the reverse direction through the same path.
  • the light guide tube 60 and the light guide section 36a act as bidirectional light guide means, the light guide tube 60 and the light guide section 36a are configured to be simple and space-saving. it can. If the light from the light emitter 54 affects the detection operation of the infrared sensor 40, the detection operation of the infrared sensor 40 should not be performed when the light emitter 54 emits light! /, Or the detection wavelength range of the infrared sensor 40. Should be different from the light wavelength of the light emitter 54! /.
  • the infrared sensor 40 and the light emitter 54 constitute a sensor unit 48.
  • the sensor unit 48 includes a printed wiring board 52 that fixes and electrically connects the infrared sensor 40 and the light emitter 54, and a printed wiring board. 52 and a unit housing 50 made of a conductive metal material.
  • the unit housing 50 is provided on the second heating coil 8 side of the printed wiring board 52 and includes an infrared sensor 40 and a light emitter 54. Since it has a shielding part 50a for electromagnetic shielding, the light guide means (light guide tube 60 and light guide part 36a) are formed integrally with the shielding part 50a so as to protrude toward the heating part 35. If the sensor unit 48 can be miniaturized, the force and the assembly can be simplified, and the infrared sensor 40 and the light emitter 54 can be made less susceptible to the noise of the second heating coil 8 in the inverter.
  • FIG. 5 shows a modification of the sensor unit 48 of FIG. 4.
  • the sensor unit 48A shown in FIG. 5 does not include the light guide tube 60 of the sensor unit 48 of FIG.
  • the light guide 36a is extended downward, and the lower opening 36c is brought close to the vicinity of the infrared sensor 40.
  • a step 36i is formed in the vicinity of the lower end of the light guide portion 36a.
  • convex lens 41 (light condensing means) is arranged on the upper side so that the infrared rays emitted from the heated object A incident from the infrared incidence region 35a are guided to the infrared sensor 40.
  • the inner wall of the light guide 36a is black and absorbs light, the field of view of the infrared sensor 40 is limited by the upper opening 36d.
  • the light guide path through which infrared rays pass can be formed with one component of the light guide portion 36a, which is a resin component, and the configuration can be simplified, and the second heating coil 8 and the heated object A can be connected to the infrared sensor 40. Heat to be transmitted can be reduced.
  • a rod-shaped light guide 67 is fixed eccentrically on the front direction side of the main body 2 of the inner wall of the light guide portion 36a.
  • the light incident surface 67a at the lower end of the light guide 67 faces the light emitter 54, and the light emitting surface 67b at the upper end faces the infrared incident region 35a of the top plate 4a. Since the light emitted from the light emitting surface 67b irradiates the infrared ray incident area 35a, the user can see the light within the infrared incident area 35a.
  • the center 8e of the second heating coil 8 and a straight line passing through the center of the light emitting surface 67b of the light guide which is an area where the light emitted from the light emitter 54 can be visually recognized.
  • the approximate center 33 ⁇ 4 of the infrared incident region 35 is arranged in the vicinity and between the center 8e of the second heating coil 8 and the approximate center 67c of the light emitting surface 67b, the light emitting portion 67b is covered with the bottom surface of the object A to be heated.
  • the force S can be ensured that the bottom surface of the object to be heated A is disposed on the infrared incident region 35.
  • a black light-shielding film is formed on the side surface of the light guide 67 so that light does not leak from the side surface.
  • FIG. 6 shows another modification of the sensor unit 48 of FIG. 4.
  • a light guide 68 is disposed above the infrared sensor 40 and the light emitter 54. Is.
  • the light guide 68 is formed in an annular shape having a circular through hole 68a at the center thereof, and a bent portion 68b facing the light emitting portion of the light emitter 54 is formed in a part thereof. .
  • the light emitted from the light emitter 54 is incident on the light guide 68 from the end surface of the bent portion 68b, and the entire light guide 68 having the through hole 68a in the central portion shines, and its upper surface is annular ( It becomes a light emitting surface that emits light in a donut shape, and annular light is emitted toward the object A to be heated.
  • the infrared rays from the heated object A enter the infrared sensor 40 through the through hole 68a of the light guide 68.
  • This configuration further includes a light guide 68 that receives light from the light emitter 54 and emits light in a ring shape on the light emitting surface. Since the annular light guided from the light emitting surface of the light guide 68 to the light guide means (the light guide tube 60 and the light guide 36a) is emitted toward the object A, the infrared incident region 35a There are advantages such as being able to irradiate the infrared incident region 35a uniformly rather than force and power if the amount of light to be irradiated is large.
  • the infrared radiation radiated from the object A to be heated is guided to the infrared sensor 40 through the through hole 68a formed inside the light emitting surface of the light emitter 54 through the upper opening 36d of the light guide 36a. Therefore, it is possible not to disturb the light collecting property of the infrared rays from the object A to be heated.
  • FIG. 7 shows still another modified example of the sensor unit 48 of FIG. 4.
  • the sensor unit 48C shown in FIG. 7 is configured to connect the light guide tube 60 of the unit nosing 50 to the printed wiring board 52 or
  • the infrared sensor 40 and the light emitter 54, which are arranged close to each other, are accommodated in a lower extension cylinder 60c connected to the light guide cylinder 60.
  • a light diffusion ring 70 having a circular through hole 70a is provided above the infrared sensor 40 and the light emitter 54, the infrared sensor 40 is disposed below the through hole 7 Oa, and the light emitter 54 is disposed at a portion other than the through hole 70a. It is arranged below
  • the unit housing 50 has the lower extension cylinder 60c extending toward the printed wiring board 52, and the infrared sensor 40 and the light emitter 54 are accommodated in the lower extension cylinder 60c. This prevents external light or light inside the device from entering the infrared sensor 40 through the gap of the unit housing 50 of the unit housing 50, thereby improving infrared light collection and reducing light leakage from the light emitter 54. It is possible to increase the brightness of the emitted light from the top plate 4a visible to the user.
  • a light diffusing ring 70 having a through hole 70a is provided above the infrared sensor 40 and the light emitter 54, and the infrared sensor 40 is disposed below the through hole 70a, so that light emission from the light emitter 54 is point emission. Instead of surface light emission, the power S improves the uniformity of light emission.
  • FIG. 8 shows still another modification of the sensor unit 48 of FIG. 4.
  • the sensor unit 48D shown in FIG. 8 is provided with a lightness and glue sensor 72 in the vicinity of the infrared sensor 40,
  • a partition wall 74 that divides the infrared sensor 40 and the light / light sensor 72 and the light emitter 54 is formed integrally with the unit housing 50.
  • a partition wall 36e that bisects the interior of the light guide portion 36a of the heating coil support base 36 is formed in a body-like manner.
  • An upper opening 36d and an emission port 36f are formed in the part.
  • a silver-colored printing film 35c is printed on the back surface of the top plate 4, and the light-diffusing layer 76 is formed in the light emitting region 35b without printing the coloring print film 35c.
  • the coloring printing film 35c is not printed.
  • the infrared incident area 35a is usually formed with a printing film that transmits black or dark brown infrared rays so that the inside of the infrared incident area 35a is not visible, so that the user can make the coloring printing film 35c bright such as silver. If it is a color, the infrared incident area 35a can be recognized as a black window.
  • FIG. 9 shows an induction heating cooker C1 having the sensor unit 48D of FIG. 8, and the light guide part 36a and the light guide tube 60 of the heating coil support base 36 constituting the light guide means have the entire outer shape.
  • the cross-sectional shape is formed into an approximately oval shape, and the infrared light passing path (light guide 36a) incident on the infrared sensor 40 partitioned by the partition walls 36e and 74 and the light passing path (the first light path from the light emitter 54)
  • the horizontal cross section of the second light guide part 36h) is substantially circular.
  • the horizontal cross sections of the light guide tube 60 and the second light guide tube 60d have the same shape as the light guide part 36a and the second light guide part 36h.
  • the infrared incident region 35a and the light emitting region 35b are viewed from above the main body 2 and are located inside the heating unit 35, that is, inside the outermost periphery of the second heating coil 8 and at the center of the second heating coil 8. 8e from the front of the main unit 2 in the front-rear direction (in Fig. 9, the direction perpendicular to the front edge 4c of the top unit 4 or the direction perpendicular to the front surface 14a of the main unit 2). They are arranged in the left-right (lateral) direction.
  • the infrared incident region 35a and the light emitting region 35b pass through the center of the second heating coil 8 (center of the heating unit 35) when viewed from above (in the plan view), and the longitudinal direction (vertical direction) of the body 2 It is provided close to both sides of the vertical center line Y, which is a straight line.
  • the horizontal center line X is a straight line that passes through the center 35e of the heating unit 35 (the center 8e of the second heating coil 8 when viewed from above) and is parallel to the front surface 14a of the main body 2.
  • the region 35a and the light emitting region 35b are arranged in parallel with the straight line X.
  • the top plate 4a includes the light emitting area 35b corresponding to the passage path of the light emitted from the light emitter 54 and the infrared incident area corresponding to the passage path of the infrared light incident on the infrared sensor 40. Since 35a is close! /, But formed separately! /, The field of view of the infrared sensor 40 can be narrowed, and the emitted light from the light emitter 54 can be efficiently emitted. Can lead to 35b. In addition, the influence of the light emitted from the light emitter 54 on the infrared sensor 40 is suppressed. That's the power S.
  • FIG. 10 shows still another modification of the sensor unit of FIG. 4 and the light guide section 36a.
  • the sensor unit 48E force shown in FIG. 10 is different from the sensor unit 48D shown in FIG.
  • the light guide part 36a of FIG. 8 is extended downward, and the lower opening part 36c is positioned in the vicinity of the infrared sensor 40, and as shown in FIG. 35b and the infrared ray incident area 35a are shifted from the center of the second heating coil 8 in the front-rear direction (vertical) and toward the front.
  • a step 36i is formed near the lower end of the light guide 36a.
  • the fitting portion 36g below the step 36i is fitted to the shielding portion 50a.
  • the infrared light guide path that limits the field of view of the infrared sensor 40 and the light guide path of the light emitted from the light emitter 54 are formed as a single component for simplification, and the second heating coil 8 and the object to be heated.
  • the power S can be reduced by reducing the heat transferred from the object A to the infrared sensor 40.
  • the rod-shaped light guide 67 is fitted and fixed on the inner wall of the second light guide 36h so that the light guide 67 is positioned above the light emitter 54, and the lower end is an incident surface 67a facing the light emitter 54, and the upper end becomes the light emitting surface 67b. Since the light emitted from the light emitting surface 67b irradiates the light emitting region 35b, the user can visually recognize the light in the light emitting region 35b.
  • FIG. 11 shows the second heating coil 8 to which the sensor unit E of FIG. 10 is attached and its peripheral portion.
  • the light emitting area 35b and the infrared incident area 35a are arranged side by side in the front-rear direction (vertical) from the center of the second heating coil 8 and in the left-right (horizontal) direction when viewed from the front.
  • the usability of the heated object A is improved.
  • the object to be heated A can be heated so as to cover the incident region 35a.
  • the user normally places the center of the bottom surface of the article A to be heated so that the center 8e of the second heating coil 8 is matched.
  • the heated object A is laterally viewed from the position of the infrared incident area 35a (viewed from the front).
  • the distance to the edge of the bottom surface of the heater is the same in both the left and right directions. it can.
  • the bottom diameter of the object to be heated A is not sufficiently large, so that the center of the bottom surface of the object to be heated A is aligned with the center 8e of the second heating coil 8. If placed, the infrared incident area 35a cannot be covered! / In some cases!
  • the object A is moved to the near side while looking at the infrared incident area 35a.
  • the distance from the position of the incident area 35a to the edge of the bottom of the heated object A in the horizontal direction (viewed from the front) is the same in both the left and right directions.
  • the force S can be placed on the object to be heated A at a position where the region 35a can be stably covered with the bottom surface of the object to be heated A.
  • the infrared ray incident region 35a is provided between the light emitting region 35b and the center 8e of the second heating coil 8, the light emitting region 35b is mounted on the heated portion 35 so as to be covered with the heated object A. Therefore, the infrared incident area 35a can be reliably covered with the object A to be heated.
  • the light emitting area 35b and the infrared incident area 35a are not limited to the case where the light emitting area 35b and the infrared incident area 35a are shifted from the center of the second heating coil 8 in the front-rear direction (vertical) and the front side. Is displaced from the center 8e of the second heating coil 8, the light emitting region 35b is covered with the object A to be heated when the light emitting region 35b is positioned radially outward from the center 8e of the second heating coil 8. This is preferable in that the infrared incident region 35a can be stably covered with the heated object A.
  • FIG. 12 shows a control circuit of the second heating coil 8 when the sensor unit 48D of FIG. 8 or the sensor unit 48E of FIG. 10 is provided.
  • An illuminance detection means 73 for receiving the output of the sensor 72 is provided, and the control means 44 applies a high frequency current to the second heating coil 8 in accordance with the output from the temperature detection means 42 and the output from the illuminance detection means 73.
  • the output of the supplied inverter circuit 46 is controlled.
  • the brightness / light sensor 72 is for detecting the illuminance (or luminance) of the normal light in the room, and the illuminance detection means 73 is detected by the light sensor 72 in response to the output signal from the light sensor 72. If the illuminance detected by the light intensity sensor 72 is equal to or greater than the predetermined value, the heated object A covers the infrared incident area 35a! / ,! Thus, the control means 44 disallows the heating control of the second heating coil 8 by the inverter circuit 46 or suppresses the output of the second heating coil 8, while the illuminance detected by the light sensor 72 is reduced. If it is less than the predetermined value, it is determined that the object to be heated A covers the infrared incident area 35a, and the control means 44 controls the heating of the second heating coil 8 by the inverter circuit 46. I do.
  • control means 44 performs the output control of the inverter circuit 46 according to the output signal of the infrared sensor 40 only when the illuminance detected by the light intensity sensor 72 is equal to or less than the predetermined value, and is heated.
  • the heating output by the second heating coil 8 is controlled so that the temperature of the object A or the temperature gradient is below a predetermined value.
  • the light intensity sensor 72 can detect the illuminance in the room, it can detect that the object to be heated A does not cover the infrared incident area 35a. It becomes difficult to detect that the object to be heated A does not cover the infrared incident area 35a by the light intensity sensor 72. However, even in such a case, the light emitting area 35b is easily visible by light emission. Therefore, if the infrared incident area 35a can be covered by covering the light emitting area 35b, the infrared sensor 40 can stably operate. Can control temperature of object A
  • the translucent light diffusion layer 76 is provided over the entire area of the light emitting region 35b, whereas the configurations of FIGS. 13B to 13E have the light diffusion layer 76 and the light emitting region 35b. A portion having a higher light transmittance than the light diffusion layer 76 is provided in a mixed manner.
  • the central region of the light emitting region 35b is a transparent portion 78 in which no light diffusion layer is present, and a peripheral region is provided in a strip shape radially outward of the central region.
  • the side region is formed of a translucent annular light diffusion layer 76, and the light transmittance in the central region is set larger than the light transmittance in the peripheral region.
  • a plurality of semitransparent and circular light diffusion layers 76 are scattered in the light emitting region 35b, and portions other than the light diffusion layer 76 are transparent portions 78.
  • the central region of the light emitting region 35b is a transparent portion 78 in which no light diffusion layer is present, and a first peripheral region is provided in a strip shape radially outward of the central region.
  • 1 is formed of a translucent annular light diffusing layer 76, and a second peripheral region is provided in a strip shape outside the first peripheral region in the radial direction. It is formed of a colored light transmission layer 80 that is smaller than the light transmittance of the peripheral region.
  • FIG. 13E The configuration of FIG. 13E is such that a translucent light diffusion layer 76 is formed in a lattice shape in a transparent portion 78 provided in the light emitting region 35b.
  • a transparent portion 78 is provided in a part of the light emitting region 35b. Instead of the transparent portion 78, the light transmittance is higher than that of the light diffusion layer 76.
  • the light diffusion layer may be provided.
  • the induction heating cooker according to the present invention can easily visually recognize the incident area of the infrared ray sensor radiated from the heated object such as a pan, so that the user covers the infrared incident area. It is useful as an induction heating cooker for home use that is built into a kitchen or the like if the heated object is placed on the top board.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Induction Heating Cooking Devices (AREA)
  • Radiation Pyrometers (AREA)
  • Electric Stoves And Ranges (AREA)

Abstract

 被加熱物Aを載置して加熱するための加熱部を有し光を透過する天板4aの下方に、赤外線を検知する赤外線センサ40と発光体54とを隣接配置し、被加熱物Aから放射される赤外線を赤外線センサ40に導くとともに、発光体54から出射された光を天板4aの加熱部に向かって導く導光部36aを設け、発光体54から出射され導光部36aにより導かれた光を導光部36aの上部開口部36dから天板4aに照射することにより加熱部35内でその光を視認できるようにした。

Description

明 細 書
誘導加熱調理器
技術分野
[0001] 本発明は、被加熱物を誘導加熱するとともに赤外線センサにより被加熱物の温度 を制御する誘導加熱調理器に関するものである。
背景技術
[0002] 従来の誘導加熱調理器は、加熱コイルの中央に赤外線センサを配置し、赤外線セ ンサからの出力に応じて制御手段によりインバータ回路を制御して加熱コイルの出力 を制御している(例えば、特許文献 1参照。)。
[0003] 特許文献 1:特開 2005— 38660号公報
発明の開示
発明が解決しょうとする課題
[0004] しかしながら、上記構成の誘導加熱調理器にお!/、ては、空の (被調理物が収容さ れていない)鍋等の被加熱物を加熱すると、被加熱物は、最も磁束密度が高く加熱 時の発熱が大きい加熱コイル巻線の最外周と最内周の中間部の上方部分が急激に 温度上昇するため、被加熱物の高温部分に対する加熱出力制御の応答が遅れ、熱 伝導が悪く熱容量の低レ、薄手のステンレス鍋等を被加熱物として使用すると、鍋底 が赤熱して鍋が変形したり、あるいは油等の少量の被調理物が高温となる場合があ つた。
[0005] 赤外線センサを加熱コイルの中央でなく加熱コイル中間部や、あるいは加熱コイル の巻線内周近傍の被加熱物の温度が測定できるように配置すれば上述した課題は 解決できるが、赤外線センサを天板下方に設ける場合には、天板に設ける被加熱物 から赤外線センサへの赤外線の入射窓(以下、赤外線入射領域という。)を加熱コィ ルの中心を外した位置に配置することとなる。この場合、必ずしも被加熱物は赤外線 入射領域の上方に載置されるとは限らず、ユーザが間違って赤外線入射領域を塞が ないように被加熱物を載置すると、赤外線センサで被加熱物の温度を適正に検知で きない。特に、誘導加熱調理器の周囲が暗い場合は、赤外線入射領域を視認しづら いという問題がある。
[0006] 本発明は、従来技術の有するこのような問題点に鑑みてなされたものであり、被カロ 熱物の高温部分の温度上昇に対する応答性を高めるとともに、被加熱物から放射さ れる赤外線の赤外線センサへの入射領域を容易に視認できるようにして、確実に赤 外線センサによる被加熱物の温度制御ができる使!/、勝手の良!/、誘導加熱調理器を 提供することを目白勺として!/、る。
課題を解決するための手段
[0007] 上記目的を達成するため、本発明に係る誘導加熱調理器は、本体上面に設けられ 被加熱物を載置して加熱するための加熱部を有し光を透過する天板と、前記加熱部 に対向して前記天板の下方に設けられ磁界を発生して被加熱物を誘導加熱する加 熱コイルと、前記天板の下方に設けられ赤外線を検知する赤外線センサと、前記天 板の下方に設けられた発光体と、被加熱物から放射される赤外線を前記赤外線セン サに導く導光部と、前記赤外線センサからの出力信号に基づいて前記加熱コイルの 出力を制御する制御手段と、を備え、被加熱物から放射される赤外線を前記導光部 に導くための赤外線入射領域を前記天板の前記加熱コイルの外周より内側で前記 加熱コイル中心を外した位置に設け、前記発光体から出射された光を前記赤外線入 射領域内で発光させ前記光が前記本体上方から見て前記加熱部内で視認できるよ うにしたことを特徴とする。
[0008] 前記発光体から出射された光を前記赤外線入射領域内で発光させ前記光が前記 本体上方から見て前記加熱部内で視認できるようにすることに代え、前記発光体から 出射された光を前記赤外線入射領域の近傍で発光させ前記光が前記本体上方から 見て前記加熱部内で視認できるようにしてもよい。
[0009] 前記赤外線入射領域は、前記加熱コイルの外周より内側に 1箇所のみ設けられ、 前記本体上方から見て前記加熱コイルの中心を通る前記本体の前後方向の直線上 またはその近傍で前記加熱コイルの中心より手前側に配置してもよい。
[0010] 前記導光部は、前記発光体から出射された光を前記赤外線入射領域に向かって 導き、前記発光体から出射され前記導光部内で導かれた光を前記導光部の開口部 力 前記天板に向け照射することにより前記赤外線入射領域の一部または全部を視 言忍でさるようにしてあよい。
[0011] 前記本体上方から見て前記加熱コイルの中心と前記発光体から出射された光が視 認できる領域である発光部の中心を通る直線上またはその近傍でかつ前記加熱コィ ルの中心と前記発光部の中心の間に前記赤外線入射領域の中心を配置してもよい
[0012] 前記発光体の光が入射され、発光面が環状に発光する導光体をさらに備え、前記 発光体からの光を前記導光体の発光面から前記導光部に導くようにすることもできる
[0013] 被加熱物から放射された赤外線は、前記開口部を介して前記発光面の内側に形 成された貫通孔を通り前記赤外線センサに導かれるようにしてもよい。
[0014] 前記赤外線センサと前記発光体とでセンサユニットを構成し、前記センサユニットが 、前記赤外線センサと前記発光体を固定し電気接続する印刷配線板と、該印刷配線 板を収容し導電金属材料で形成されたハウジングとを有し、前記ハウジングが前記 赤外線センサと前記発光体に向かって延びる下方延長筒を有し、前記赤外線センサ と前記発光体を前記下方延長筒内に収容することもできる。この場合、前記赤外線 センサと前記発光体の上方に貫通孔を有する光拡散リングを設け、前記赤外線セン サを前記貫通孔の下方に配置することもできる。
[0015] 前記導光部と遮光壁で分離された第 2の導光部を有し、前記発光体から出射され た光を、前記第 2の導光部を通り前記赤外線入射領域の近傍に照射するようにして あよい。
[0016] 前記本体上方から見て前記加熱コイルの中心と前記発光体から出射された光が視 認できる領域である前記発光部の中心を通る直線上またはその近傍でかつ前記加 熱コイルの中心と前記発光部の中心の間に前記赤外線入射領域を配置することもで きる。
発明の効果
[0017] 本発明によれば、天板の下方に赤外線センサと発光体を設け、この発光体から出 射された光を天板に照射することにより加熱部の一部に形成された赤外線入射領域 またはその近傍を視認できるようにしたので、ユーザは視認した発光部となっている 赤外線入射領域または発光部の近傍に形成された赤外線入射領域を覆うように被 加熱物を載置すれば、被加熱物の底面から放射される赤外線を赤外線センサに効 率良く確実に入射させることができ、被加熱物の温度を赤外線センサにより制御する ことができる。また、誘導加熱調理器の周囲が暗い場合でも、赤外線入射領域を容 易に視認することができる。
図面の簡単な説明
[図 1]図 1は本発明にかかる誘導加熱調理器の分解斜視図
園 2]図 2は図 1の誘導加熱調理器に設けられた加熱コイルとその周辺部を示す分解 斜視図
[図 3]図 3は加熱コイルの制御回路を示すブロック図
[図 4]図 4は図 1の誘導加熱調理器に設けられたセンサユニットの断面図
[図 5]図 5は図 4のセンサユニットの変形例の断面図
[図 6]図 6は図 4のセンサユニットの別の変形例の断面図
[図 7]図 7は図 4のセンサユニットのさらに別の変形例の断面図
[図 8]図 8は図 4のセンサユニットのさらに別の変形例の断面図
園 9]図 9は図 8のセンサユニットを備えた誘導加熱調理器の分解斜視図
[図 10]図 10は図 4のセンサユニットのさらに別の変形例の断面図
[図 11]図 11は図 10のセンサユニットが取り付けられた加熱コイルとその周辺部を示 す分解斜視図
[図 12]図 12は図 8または図 10のセンサユニットを設けた場合の制御回路を示すブロ ック図
園 13A]図 13Aは誘導加熱調理器の天板に設けられた発光領域に光拡散層を形成 した場合の正面図
園 13B]図 13Bは誘導加熱調理器の天板に設けられた発光領域に別の光拡散層を 形成した場合の正面図
園 13C]図 13Cは誘導加熱調理器の天板に設けられた発光領域にさらに別の光拡 散層を形成した場合の正面図
園 13D]図 13Dは誘導加熱調理器の天板に設けられた発光領域にさらに別の光拡 散層を形成した場合の正面図
[図 13E]図 13Eは誘導加熱調理器の天板に設けられた発光領域にさらに別の光拡 散層を形成した場合の正面図
符号の説明
2 本体、 4 トップユニット、 4a 天板、 4b フレーム、
4c 前縁、 6 第 1の加熱コイル、 8 第 2の加熱コイル、 8a 内コィノレ、 8b 外コ ィル、 8c 空隙部、 8d 外周、 8e 中心、
10 ラジェントヒータ、 12 ロースター加熱室、 14 ロースター扉、
16 操作部、 18 第 1のプリント基板、 20 第 2のプリント基板、
22 冷却ファン、 24 吸気ダクト、 26 吸気口、 28 排気口、
30 フランジ、 32 遮熱隔壁、 34 支持バネ、 35 加熱部、
35a 赤外線入射領域、 35b 発光領域、 35c 印刷膜、
35d 光吸収膜、 35e 中心、 36 加熱コイル支持台、
36a 導光部、 36b 凹部、 36c 下部開口部、 36d 上部開口部、
36e 仕切り壁、 36f 出射口、 36g 嵌合部、
36h 第 2の導光部、 36i 段差、 3¾ 中心、 37 フェライト、
38 サーミスタ、 38a サーミスタホルダー、 40 赤外線センサ、
41 凸レンズ、 42 温度検知手段、 44 制御手段、
46 インバータ回路、
48 , 48A, 48B, 48C, 48D, 48E センサユニット、
50 ユニットハウジング、 50a 遮蔽部、 52 印刷配線板、
54 発光体、 56 接続線、 58 コネクタ、 59 センサカバー、
60 導光筒(導光部)、 60a 上部開口部、 60b 下部開口部、
60c 下方延長筒、 60d 第 2の導光筒(第 2の導光部)、 62 ねじ、
67 導光体、 67b 発光部、 67c 中心、 68 導光体、
68a 貫通孔、 68b 折曲部、 70 光拡散リング、 70a 貫通孔、
72 明かりセンサ、 73 照度検知手段、 74 仕切り壁、
76 光拡散層、 78 透明部、 80 有色光透過層、 A 被加熱物、 C, CI 誘導加熱調理器、 X 横方向中心線、 Y 縦方向中心線。
発明を実施するための最良の形態
[0020] 以下、本発明の実施の形態について、図面を参照しながら説明する。
図 1は本発明に力、かる誘導加熱調理器 Cを示しており、本体 2と、本体 2の上部に 取り付けられ光を透過する結晶化セラミック製の天板 4a及びその周囲に設けられた 金属製のフレーム 4bを有するトップユニット 4と、天板 4aの前部下方には、第 1及び 第 2の加熱コイル 6, 8と、その後方に設けられたラジェントヒータ 10とを備えている。 また、本体 2を前面から見て左側に位置する第 2の加熱コイル 8の下方には、ロースタ 一加熱室 12が設けられており、ロースター加熱室 12は、その前面に開閉自在に取り 付けられたロースター扉 14により開閉される。ロースター加熱室 12の内部には、受け 皿(図示せず)と、焼き網(図示せず)と、焼き網の上下に設けられたヒータ(図示せず )が収容されており、両面焼きロースターを構成している。
[0021] また、本体 2の前面右側には、上述した加熱手段の出力を設定する操作部 16が設 けられており、その後方には、第 1の加熱コイル 6の駆動回路を構成する第 1のプリン ト基板 18と、第 2の加熱コイル 8の駆動回路を構成する第 2のプリント基板 20とが上 下に設けられている。これら二つのプリント基板 18, 20の後方の近接位置には、回 転軸がプリント基板 18, 20と直交するシロッコ型冷却ファン 22と、冷却ファン 22を駆 動するためのモータ(図示せず)が設けられており、冷却ファン 22とモータは吸気ダク ト 24により囲繞されている。なお、ラジェントヒータ 10とロースターヒータの駆動回路は プリント基板 18, 20の中に構成されている。
[0022] また、本体 2の上面後部には、吸気ダクト 24に連通する吸気口 26と、ロースター加 熱室 12側に吸気口 26に隣接して排気口 28が形成されている。
[0023] 図 1に示されるように、本体 2は全体が外郭により一体的に形成され、外郭の上部フ ランジ 30によりキッチン等に支えられる組み込み式のものである。そして、ロースター 加熱室 12の上には、遮熱隔壁 32や第 2の加熱コイル 8の支持バネ 34や第 2の加熱 コイル 8と第 2のプリント基板 20とを電気的に接続する中継端子台(図示せず)等の温 度制約が緩く熱的に破壊しにくい構造物のみが配設されている。さらに、本体 2を上 面側から見たとき、冷却ファン 22、第 1のプリント基板 18、第 2のプリント基板 20は口 一スター加熱室 12とは重ならない位置でその側方に配設されている。
[0024] 上記構成の本発明に力、かる誘導加熱調理器 Cの使用に際し、第 1の加熱コイル 6、 第 2の加熱コイル 8あるいはラジェントヒータ 10のうち、任意の加熱手段の上方に位置 する天板 4a上に被加熱物 A (図 3参照)を載置する力、、あるいは、ロースター加熱室 1 2に被調理物を収容した後、操作部 16を操作して所望の調理が行われる。被加熱物 Aを載置すべき場所を表示するため、加熱手段 6 , 8, 10に対向する部分を囲むよう に、天板 4aの裏面(下面)に印刷膜 35cを円形に形成することにより被加熱物 Aを載 置するための加熱部 35が表示されている(図 4参照)。なお、加熱部は、円形でなく てもよく加熱手段 6, 8, 10の対向する部分の形状と完全に一致する必要はなぐカロ 熱手段の位置を概略示すことができるものであればよい。また、加熱部 35を表示する ための印刷膜 35cの外側(下面)に、光透過率が略ゼロの黒色の光吸収膜 35dが印 刷により形成されている。なお、加熱部 35を表示する印刷膜 35cは、天板 4aの裏面 ではなく表面に形成してもよい。また、印刷膜 35cは、線状としてもよい。
[0025] 誘導加熱調理器 Cの使用時、本体 2の内部温度は上昇するが、冷却ファン 22の作 動により周囲の空気が吸気口 26から本体 2内に吸い込まれ、吸い込まれた空気はプ リント基板 18, 20の上の空間を流れ、本体 2内のロースター加熱室 12側の空間を経 由して、排気口 28力、ら排出される。その結果、加熱手段 6, 8, 10を含む本体 2内の 加熱部が冷却され、その温度が低下する。
[0026] 次に、誘導加熱調理器 Cの制御系のうち、特に第 1及び第 2の加熱コイル 6, 8の制 御系につき第 2の加熱コイル 8を例に取り説明する。
[0027] 図 2は、第 2の加熱コイル 8及びその周辺部を示しており、第 2の加熱コイル 8は、内 コイル 8aと外コイル 8bの分割巻き構成を有し、赤外線の透過率が低!/、樹脂材料で 作製された加熱コイル支持台 36上に保持されている。また、加熱コイル支持台 36の 下面には、第 2の加熱コイル 8からその裏面側への磁束を第 2の加熱コイル 8近傍に 集中するためのフェライト 37 (図 3参照)が取り付けられており、内コイル 8aと外コイル 8bの間の空隙部 8cには、被加熱物 A (図 3参照)の底部から放射され後述する赤外 線センサへ入射させる赤外線あるいは後述する発光体から出射させる光を導く円筒 状の導光部 36aが形成されている。さらに、第 2の加熱コイル 8の中央近傍には、被 加熱物 Aの底面の温度を検知するサーミスタ 38が耐熱樹脂製のサーミスタホルダー 38aの溝に嵌め込まれ支持されて天板 4aにバネ(図示せず)で押しつけられ密着し て取り付けられている。
[0028] なお、上述した赤外線センサは、サーミスタ 38と同様、被加熱物 Aの温度を検知す るために設けられている力 サーミスタ 38より温度応答性に優れており、この赤外線 センサの出力に応じて制御される第 1の加熱コイル 6,第 2の加熱コイル 8の制御回路 にっき、図 3を参照して第 2の加熱コイル 8を例に取り以下説明する。
[0029] 図 3に示されるように、赤外線センサ 40は、第 2の加熱コイル 8からの磁束の影響を 受けに《するため、第 2の加熱コイル 8下方への磁束シールド用の磁路を形成する フェライト 37より下方で、加熱コイル支持台 36と一体に形成された筒状の導光部 36a の下部開口部 36cの下方に配設されており、被加熱物 Aの底面から赤外線センサ 4 0に向かって放射される赤外線の経路上には集光手段としての凸レンズ 41が配置さ れ、被加熱物 Aから放射される赤外線を集光している。赤外線センサ 40の出力は、 温度検知手段 42に入力されて、温度検知手段 42により被加熱物 Aの温度を検知す る。温度検知手段 42の出力は、制御手段 44に入力され、制御手段 44は温度検知 手段 42からの信号に応じて第 2の加熱コイル 8に高周波電流を供給するインバータ 回路 46の出力を制御する。
[0030] 以上のように構成された第 2の加熱コイル 8による加熱動作を以下説明する。
加熱を開始すると、インバータ回路 46は第 2の加熱コイル 8に 20kHz以上の高周 波電流を供給して、被加熱物 Aは第 2の加熱コイル 8からの磁束 (磁界)で誘導された 渦電流により自己発熱する。加熱開始後の過渡期の被加熱物 Aの底部温度は、第 2 の加熱コイル 8からの磁束密度分布の影響から、外コイル 8bの内縁近傍が第 2の加 熱コイル 8の略中心の温度に比べ高温となる。したがって、被加熱物 Aの高温部で温 度を検知するために、赤外線センサ 40を第 2の加熱コイル 8の内コイル 8aと外コイル 8bの間の空隙部 8c下方に配置し、赤外線センサ 40からの検知出力を温度検知手 段 42により検知温度に換算して制御手段 44に出力し、検知温度が所定温度を超え ると、あるいは検知温度の傾きが所定値を超えると、インバータ回路 46はその出力が 減少するように制御手段 44により制御される。 [0031] 本発明においては、赤外線センサ 40は、その近傍に発光体が配設されたセンサュ ニットとして形成されており、センサユニットの構成について図 4を参照しながら以下 説明する。
[0032] 図 4に示されるように、加熱コイル支持台 36の下方には、センサユニット 48が配設 されており、センサユニット 48は、アルミニウムや黄銅等の導電金属材料で形成され たユニットハウジング 50と、ュュットハウジング 50内に収容された印刷配線板 52とを 備えている。印刷配線板 52上には、上述した赤外線センサ 40及び凸レンズ 41と、 L ED等の発光体 54が固定され、これらの素子と接続線 56とを電気接続するコネクタ 5 8が設けられている。また、凸レンズ 41の上方の被加熱物 Aの赤外線が入射する赤 外線入射面を除く凸レンズ 41の下部及び赤外線センサ 40の周囲は、被加熱物 Aの 赤外線以外の光が凸レンズ 41に入射するのを防止できるように、遮光機能を有する 筒状のセンサカバー 59により囲繞されている。
[0033] ユニットハウジング 50は、印刷配線板 52よりも第 2の加熱コイル 8側に設けられ赤外 線センサ 40と発光体 54を磁気遮蔽する遮蔽部 50aを有し、上部に上部開口部 60a を有し下部に下部開口部 60bを有する円筒状の導光筒 60が加熱部に突出するよう に遮蔽部 50aと一体的に形成されており、この導光筒 60の下部開口部 60bの真下に 凸レンズ 41と赤外線センサ 40は配置されている。また、発光体 54は、その出射光が 導光筒 60の内壁に向かって方向付けられるように赤外線センサ 40近傍の印刷配線 板 52上に取り付けられて!/、る。
[0034] また、加熱コイル支持台 36の導光部 36aの下面には円形凹部 36bが形成されてお り、円形凹部 36bの内径は導光筒 60の外径より大きく設定され、導光筒 60の上端面 が円形凹部 36bの端面に密着して導光筒 60の上端部が円形凹部 36bに収容された 状態で、ユニットハウジング 50はねじ 62により加熱コイル支持台 36の導光部 36a近 傍に螺着されている。なお、導光部 36aの内径と導光筒 60の内径は等しく設定され ており、導光部 36aの内面と導光筒 60の内面は面一になつている。
[0035] また、上述したように、天板 4aには被加熱物 Aの載置部 (加熱部 35)が円形に印刷 膜 35cにより形成されているが、印刷膜 35cの一部には円形抜き部が赤外線入射領 域 35aとして形成されて!/、る。この赤外線入射領域 35aは加熱コイル支持台 36の導 光部 36aの上部開口部 36dの真上に上部開口部 36dに対向するように位置し、導光 筒 60の上部開口部 60aと対向しており、赤外線入射領域 35aの光透過率はその周 囲(印刷膜 35c)の光透過率より大きく設定されている。なお、この赤外線入射領域 3 5aは、被加熱物 A底面の赤外線入射領域 35aに対向する部分から放射される赤外 線を導光部 36aに入射させるためのものである。
[0036] 食材を被加熱物 Aに入れて本発明に力、かる誘導加熱調理器 Cで調理するに際し、 誘導加熱調理器 Cの電源スィッチ (図示せず)を投入すると、発光体 54が発光してそ の出射光が導光筒 60の内壁、導光部 36aの内壁を反射し導かれて、導光筒 60の上 部開口部 60aと導光部 36aの上部開口部 36dを介して天板 4aの赤外線入射領域 35 aに照射される。したがって、ユーザは発光体 54の出射光により赤外線入射領域 35a を容易に視認することができ、操作部 16の切入りキー(図示せず)を操作することで 加熱動作が開始可能な状態となるので、第 2の加熱コイル 8を使用する場合、光の照 射部(赤外線入射領域 35a)を覆うように被加熱物 Aを天板 4a上に載置すれば赤外 線センサ 40が確実に被加熱物 Aの底面から放射される赤外線を効率良く受光するこ とができ、被加熱物 Aの温度を赤外線センサ 40により制御することができる。また、誘 導加熱調理器 Cの周囲が喑!、場合でも、赤外線入射領域 35aを容易に視認すること ができる。
[0037] 第 2の加熱コイル 8により被加熱物 Aが加熱されると、被加熱物 Aの底部より発する 赤外線が天板 4aの赤外線入射領域 35aを介して加熱コイル支持台 36の導光部 36a に導かれ、さらに導光部 36aの下端の下部開口部 36cに当接するユニットハウジング 50の導光筒 60に導かれて赤外線センサ 40に入射する。この入射光を受けて、赤外 線センサ 40の出力は温度検知手段 42に入力され、上述したように被加熱物 Aの温 度が制御される。
[0038] このように、発光体 54からの出射光は導光筒 60及び導光部 36aを介して天板 4aに 導かれ、被加熱物 Aから放射された赤外線は、同様の経路で逆方向に導光部 36a 及び導光筒 60を介して赤外線センサ 40に導かれるので、導光筒 60及び導光部 36 aは、双方向の導光手段として作用する。また、導光手段である導光筒 60,及び導光 部 36aは、赤外線センサ 40の受光面近傍から第 2の加熱コイル 8の上面まで延在し て!/、るので、第 2の加熱コイル 8等の赤外線センサ 40の周辺部品からの赤外線放射 の影響を受けにくい構成となってレ、る。
[0039] 以上、第 2の加熱コイル 8を例に取り説明した力 第 1の加熱コイル 6に付いても同 様に上記構成を適用することができる。
[0040] 以上のように、被加熱物 Aから放射される赤外線を導光部 36a内に導くための赤外 線入射領域 35aを、第 2の加熱コイル 8の外周より内側で第 2の加熱コイル 8中心を外 した位置に対応する天板 4aに設け、発光体 54から出射された光を赤外線入射領域 35aで発光させ加熱部 35内で視認できるようにしたので、ユーザは視認した発光部 となっている赤外線入射領域 35aを覆うように被加熱物 Aを載置すれば、被加熱物 A の底面から放射される赤外線を赤外線センサ 40に効率良く確実に入射させることが でき、被加熱物 Aの温度を赤外線センサ 40により制御することができる。また、誘導 加熱調理器 Cの周囲が暗い場合でも、赤外線入射領域 35aを容易に視認することが できる。
[0041] なお、上記のように発光体 54から出射された光を赤外線入射領域 35a内で発光さ せ、光が本体 2上方から見て加熱部 35内で視認できるようにすることに代え、後述す るように(図 8〜図 10参照)、発光体 54から出射された光を赤外線入射領域 35aの近 傍で発光させ光が本体上方から見て加熱部 35内で視認できるようにすることで、同 様の効果を得ることができる。
[0042] また、赤外線入射領域 35aは、第 2の加熱コイル 8の外周 8dより内側に 1箇所のみ 設けられ、本体 2上方から見て第 2の加熱コイル 8の中心 8e (又は加熱部 35の中心 3 5e)を通る本体 2の前後方向の直線上またはその近傍で第 2の加熱コイル 8の中心 8 eより手前側に配置したので、ユーザが赤外線入射領域 35aを被加熱物 Aの鍋底で 覆い隠し易くなるとともに、赤外線センサ 40及び発光体を 1組として安価に構成する こと力 Sできる。また、赤外線入射領域 35aは、第 2の加熱コイル 8の中心 8eより手前側 としたので、ユーザは容易に赤外線入射領域 35aが被加熱物 Aで覆われているか否 かを調理作業位置から確認し易い。ユーザは、被加熱物 Aを加熱部 35に載置した 状態で後方から前方に移動することにより、赤外線入射領域 35aを見ながら被加熱 物 Aの底面で赤外線入射領域 35aを覆い隠すことができる。逆に、手前から後方に 被加熱物 Aを移動させることにより赤外線入射領域 35aが被加熱物 Aで隠れた状態 力、ら見える状態にして赤外線入射領域 35aの位置を確認することができる。
[0043] また、上方から見て第 2の加熱コイル 8の中心 8eを通る前後方向の直線である縦方 向の中心線 Y上で、第 2の加熱コイルの中心 8eより手前側に赤外線入射領域 35aを 配置することにより、ユーザの赤外線入射領域 35aを覆う作業が行いやすくなり使い 勝手が格段に向上する。
[0044] 以下、この理由について説明する。被加熱物 Aを移動させる際に、加熱部 35の中 心 35eと被加熱物 Aの底面中心とを合わせた状態から前後方向に移動させる作業が 最も行いやすく安定的に行うことができる。そこで、第 2の加熱コイル 8の中心 8e (カロ 熱部 35の中心 35e)と被加熱物 Aの鍋底の中心位置とを合わせた状態で赤外線入 射領域 35aが被加熱物 Aの底面で覆われて!/、な!/、場合にお!/、て、赤外線入射領域 35aが第 2の加熱コイル 8の中心 8eに対して、他の方向で当該中心 8eから同一距離 離れた位置に設けられた場合に比べ、被加熱物 Aを手前側に引き寄せる作業により 赤外線入射領域 35aが被加熱物 Aの中心を通る中心線と対向しながら移動すること となり安定して赤外線入射領域 35aを被加熱物 Aの底面で覆うことができる。逆に、 第 2の加熱コイル 8の中心 8eと被加熱物 Aの鍋底の中心位置とを合わせた状態で赤 外線入射領域 35aが被加熱物 Aの底面で覆われて!/、る場合に、赤外線入射領域 35 aが第 2の加熱コイル 8の中心 8eに対して、他の方向で当該中心 8eから同一距離離 れた位置に設けられた場合に比べ、被加熱物 Aを真後ろに動かすことにより最もュ 一ザの近くに赤外線入射領域 35aが現れるようにさせることができる。このように、被 加熱物 Aの中心を第 2の加熱コイル 8の中心 8eを通る前後方向の直線上を前後に移 動させて、赤外線入射領域 35aが被加熱物 Aで覆われて!/、た場合にお!/、て赤外線 入射領域 35aの位置を最も視認しゃす!/、状態で確認したり、赤外線入射領域 35aが 被加熱物 Aで覆われて!/、な!/、場合に、安定して覆ったりすることができるので使!/、勝 手を良くすること力できる。なお、図 1の横方向中心線 Xは、加熱部 35の中心 35eを 通り本体 2の前面 14a (又はトップユニット 4の前縁 4c)に平行な直線である。加熱部 3 5の中心 35eは第 2の加熱コイル 8の中心 8eの真上に位置する。
[0045] また、被加熱物 Aから放射される赤外線を赤外線センサ 40に導くとともに、発光体 5 4から出射された光を赤外線入射領域 35aに向かって導く導光手段(導光筒 60及び 導光部 36a)を備え、発光体 54から出射され導光手段 60, 36aにより導かれた光を 導光手段 60, 36aの開口部である導光部 36aの上部開口部 36dから天板 4aに照射 することにより赤外線入射領域 35aの一部または全部を視認できるようにしたことによ り、赤外線入射領域 35a自体が発光するので、赤外線入射領域 35aを被加熱物 Aで 確実に覆うことができる。また、発光体 54からの出射光は導光筒 60及び導光部 36a を介して天板 4aに導かれる一方、被加熱物 Aから放射された赤外線は、同様の経路 で逆方向に導光部 36a及び導光筒 60を介して赤外線センサ 40に導かれるので、導 光筒 60及び導光部 36aは、双方向の導光手段として作用し、簡単でかつ省スペース な構成とすること力できる。なお、発光体 54の光が赤外線センサ 40の検知動作に影 響を与える場合には、発光体 54の発光時に赤外線センサ 40の検知動作をしな!/、か 、赤外線センサ 40の検出波長域を発光体 54の光の波長と異ならせればよ!/、。
[0046] また、赤外線センサ 40と発光体 54とでセンサユニット 48を構成し、センサユニット 4 8は、赤外線センサ 40と発光体 54を固定し電気接続する印刷配線板 52と、印刷配 線板 52を収容し導電金属材料で形成されたユニットハウジング 50とを有し、ユニット ノ、ウジング 50は印刷配線板 52よりも第 2の加熱コイル 8側に設けられ赤外線センサ 4 0と発光体 54を電磁遮蔽する遮蔽部 50aを有し、導光手段(導光筒 60及び導光部 3 6a)は加熱部 35に向かって突出するように遮蔽部 50aと一体的に形成されているの で、センサユニット 48の小型化が可能となるば力、りでなぐ組立が簡単で、赤外線セ ンサ 40及び発光体 54がインバータゃ第 2の加熱コイル 8のノイズを受けにくくするこ と力 Sできる。
[0047] 図 5は、図 4のセンサユニット 48の変形例を示しており、図 5に示されるセンサュニッ ト 48Aは、図 4のセンサユニット 48の導光筒 60を設けていない。導光部 36aを下方に 延長して下部開口部 36cを赤外線センサ 40の近傍まで近づけたものである。導光部 36aの下端近傍には段差 36iが形成されており、ユニットノヽウジング 50が加熱コイル 支持台 36にねじ 62で螺着されると、段差 36iの下方の嵌合部 36gが遮蔽部 50aに設 けられた穴 50bを貫通して導光部 36aが遮蔽部 50aと嵌合する。導光部 36aの内壁 は黒色で光を吸収する。被加熱物 Aから赤外線センサ 40に導かれる赤外線の経路 上に凸レンズ 41 (集光手段)を配置し、赤外線入射領域 35aから入射した被加熱物 Aから放射された赤外線を赤外線センサ 40に導くようにしている。
[0048] 導光部 36aの内壁は黒色で光を吸収するので、赤外線センサ 40の視野は、上部 開口部 36dにより限定される。この構成により、赤外線の通る導光路を樹脂部品であ る導光部 36aの一部品で形成して、構成を簡素化できるとともに第 2の加熱コイル 8 や被加熱物 Aから赤外センサ 40に伝達する熱を低減することができる。
[0049] また、棒状の導光体 67が導光部 36aの内壁の本体 2の正面方向側に偏心して固 定されている。導光体 67の下端の入射面 67aは発光体 54と対向し、上端の発光面 6 7bは天板 4aの赤外線入射領域 35aに対向する。発光面 67bから出射した光は赤外 線入射領域 35aを照射するので、ユーザは赤外線入射領域 35a内でその光を視認 すること力 Sできる。このように、本体 2上方から見て第 2の加熱コイル 8の中心 8eと、発 光体 54から出射された光が視認できる領域である導光体の発光面 67bの中心を通 る直線上またはその近傍でかつ第 2の加熱コイル 8の中心 8eと発光面 67bの略中心 67cの間に赤外線入射領域 35の略中心 3¾を配置したので、被加熱物 Aの底面で 発光部 67bを覆うことで確実に赤外線入射領域 35の上に被加熱物 Aの底面が配置 されるようにすること力 Sできる。なお、導光体 67の側面に、例えば黒色の遮光性の皮 膜を形成して側面から光が漏れなレ、ようにしてもょレ、。
[0050] 図 6は、図 4のセンサユニット 48の別の変形例を示しており、図 6に示されるセンサ ユニット 48Bは、赤外線センサ 40及び発光体 54の上方に導光体 68を配置したもの である。
[0051] 導光体 68は、その中央部に円形の貫通孔 68aを有する環状に形成されるとともに 、その一部には発光体 54の発光部に対向する折曲部 68bが形成されている。発光 体 54からの出射光は、折曲部 68bの端面より導光体 68に入射して、中央部に貫通 孔 68aを有する導光体 68の全体が光ることになり、その上面が環状(ドーナツ状)に 発光する発光面となって環状の光が被加熱物 Aに向力 て出射される。また、被カロ 熱物 Aからの赤外線は導光体 68の貫通孔 68aを介して赤外線センサ 40に入射する
[0052] この構成は、発光体 54の光が入射され、発光面が環状に発光する導光体 68をさら に備え、導光体 68の発光面から導光手段(導光筒 60及び導光部 36a)に導かれた 環状の光が被加熱物 Aに向かって出射されることから、赤外線入射領域 35aを照射 する光量が多いば力、りでなく均一に赤外線入射領域 35aを照射することができる等 の利点がある。
[0053] また、被加熱物 Aから放射された赤外線は、導光部 36aの上部開口部 36dを介して 発光体 54の発光面の内側に形成された貫通孔 68aを通り赤外線センサ 40に導かれ るので、被加熱物 Aからの赤外線の集光性を妨げないようにすることができる。
[0054] 図 7は、図 4のセンサユニット 48のさらに別の変形例を示しており、図 7に示されるセ ンサユニット 48Cは、ユニットノヽウジング 50の導光筒 60を印刷配線板 52またはその 近傍まで延長して、近接配置した赤外線センサ 40と発光体 54を導光筒 60と連なる 下方延長筒 60cの内部に収容したものである。また、赤外線センサ 40と発光体 54の 上方に円形貫通孔 70aを有する光拡散リング 70を設け、赤外線センサ 40を貫通孔 7 Oaの下方に配置するとともに、発光体 54を貫通孔 70a以外の部位の下方に配置し ている。
[0055] この構成は、ユニットハウジング 50が印刷配線板 52に向かって延びる下方延長筒 60cを有し、赤外線センサ 40と発光体 54を下方延長筒 60c内に収容したので、例え ばコネクタ 58近傍のユニットハウジング 50の隙間から外部光または機器内部の光が 赤外線センサ 40に入射するのを防止して赤外光の集光性を向上できるとともに、発 光体 54からの発光漏れが減少するのでユーザが視認できる天板 4aからの出射光の 明るさを増大すること力できる。また、赤外線センサ 40と発光体 54の上方に貫通孔 7 0aを有する光拡散リング 70を設け、赤外線センサ 40を貫通孔 70aの下方に配置し たことで、発光体 54からの発光が点発光ではなく面発光となり発光の均一性を向上 すること力 Sでさる。
[0056] 図 8は、図 4のセンサユニット 48のさらに別の変形例を示しており、図 8に示されるセ ンサユニット 48Dは、赤外線センサ 40の近傍に明力、りセンサ 72を設け、赤外線セン サ 40及び明力、りセンサ 72と、発光体 54とを仕切る仕切り壁 74をユニットハウジング 5 0に一体的に形成したものである。また、加熱コイル支持台 36の導光部 36aにも同様 に、その内部を二分する仕切り壁 36eがー体的に形成されており、導光部 36aの上 部には、上部開口部 36dと出射口 36fが形成されている。天板 4の裏面には、例えば 銀色の着色用印刷膜 35cが印刷されており、発光領域 35bには、着色用印刷膜 35c が印刷されず光拡散層 76が形成されている。赤外線入射領域 35aは、着色用印刷 膜 35cが印刷されていない。赤外線入射領域 35aは、通常、図示していないが内部 を見えなくするように黒色や濃い茶色の赤外線を透過する印刷膜が形成されるので 、ユーザは、着色用印刷膜 35cが銀色などの明るい色であれば赤外線入射領域 35a を黒色の窓として認識することができる。
[0057] 図 9は、図 8のセンサユニット 48Dを有する誘導加熱調理器 C1を示しており、導光 手段を構成する加熱コイル支持台 36の導光部 36aと導光筒 60は全体の外形断面 形状が略長円形に形成されるとともに、仕切り壁 36e, 74で仕切られた赤外線センサ 40に入射する赤外線の通過経路(導光部 36a)及び発光体 54からの出射光の通過 経路(第 2の導光部 36h)の水平断面はともに略円形となっている。導光筒 60、第 2 の導光筒 60dの水平断面は導光部 36a及び第 2の導光部 36hと同一の形状である。 赤外線入射領域 35a及び発光領域 35bは、本体 2の上方から見て、加熱部 35の内 側、すなわち第 2の加熱コイル 8の最外周部より内側で、かつ第 2の加熱コイル 8の中 心 8eから前後方向(図 9ではトップユニット 4の前縁 4cに垂直な方向、又は本体 2の 前面 14aに垂直な方向をいう)の手前側にずらせた位置に設けられ、本体 2の正面か ら見て左右 (横)方向に並べられている。つまり、赤外線入射領域 35a及び発光領域 35bは、上方から見た場合に(平面図において)第 2の加熱コイル 8の中心(加熱部 3 5の中心)を通り本体 2の前後方向(縦方向 )の直線である縦方向中心線 Yの両側に 近接して設けられている。図 9で横方向中心線 Xは、加熱部 35の中心 35e (上方から 見た場合の第 2の加熱コイル 8の中心 8e)を通り本体 2の前面 14aに平行な直線であ り、赤外線入射領域 35aと発光領域 35bは直線 Xと平行に並べられている。
[0058] 以上のように、天板 4aには、発光体 54からの出射光の通過経路に対応する発光領 域 35bと、赤外線センサ 40に入射する赤外線の通過経路に対応する赤外線入射領 域 35aが近接しては!/、るが分離して形成されて!/、るので、赤外線センサ 40の視野範 囲を狭くすることができるとともに、発光体 54からの出射光を効率よく発光領域 35bに 導くこと力 Sできる。また、発光体 54の出射光の赤外線センサ 40への影響を抑制する こと力 Sでさる。
[0059] 図 10は、図 4のセンサユニットと導光部 36aのさらに別の変形例を示しており、図 10 に示されるセンサユニット 48E力 図 8に示されるセンサユニット 48Dと相違するのは 、図 5の構成と同様に、図 8の導光部 36aを下方に延長し、下部開口部 36cが赤外線 センサ 40の近傍に位置するようにした点と、図 11に示すように、発光領域 35bと赤外 線入射領域 35aを第 2の加熱コイル 8の中心から前後方向(縦)でかつ手前側にずら せた点である。導光部 36aの下端近傍には段差 36iが形成されている。ユニットハウ ジング 50が加熱コイル支持台 36にねじ 62で螺着されると、段差 36iの下方の嵌合部 36gが遮蔽部 50aと嵌合する。この構成により、赤外線センサ 40の視野を限定する 赤外線の通る導光路及び発光体 54の出射する光の導光路を、一部品で形成して簡 素化するとともに第 2の加熱コイル 8や被加熱物 Aから赤外線センサ 40に伝達する熱 を低減すること力 Sできる。また、棒状の導光体 67が発光体 54の上部に位置するよう に第 2の導光部 36hの内壁に嵌め込まれて固定されており、下端が発光体 54と対向 する入射面 67a、上端が発光面 67bとなる。発光面 67bから出射した光は発光領域 3 5bを照射するのでユーザは発光領域 35b内でその光を視認することができる。
[0060] 図 11は、図 10のセンサユニット Eが装着された第 2の加熱コイル 8及びその周辺部 を示している。図 9では、発光領域 35bと赤外線入射領域 35aを、第 2の加熱コイル 8 の中心から前後方向(縦)でかつ手前側にずらせた位置で正面から見て左右 (横)方 向に並べる構成であった力 図 11に示すように、第 2の加熱コイル 8の中心から前後 (縦)方向でかつ発光領域 35bを手前にして並べると、さらに、使い勝手を良くして被 加熱物 Aで赤外線入射領域 35aを覆って被加熱物 Aを加熱することができる。すな わち、通常、ユーザは被加熱物 Aの底面の中心と第 2の加熱コイル 8の中心 8eを一 致させるように載置する。この状態で被加熱物 Aの底径が十分大きく赤外線入射領 域 35aを当該底面で覆うことができる場合においては、赤外線入射領域 35aの位置 から横方向(正面から見て)に被加熱物 Aの底面の端までの距離は、左右いずれの 方向においても同じで、左右の被加熱物 Aのずれに対して赤外線入射領域 35aを被 加熱物 Aの底面で安定して覆うようにすることができる。被加熱物 Aの底径が十分大 きくなく、被加熱物 Aの底面の中心と第 2の加熱コイル 8の中心 8eを一致させるように 載置すると赤外線入射領域 35aを覆うことができな!/、場合にお!/、ては、赤外線入射 領域 35aを見ながら手前側に被加熱物 Aを移動することで、上記のような赤外線入射 領域 35aの位置から横方向(正面から見て)に被加熱物 Aの底面の端までの距離が 左右いずれの方向においても同じで、左右の被加熱物 Aのずれに対して赤外線入 射領域 35aを被加熱物 Aの底面で安定して覆うことができる位置に被加熱物 Aを載 置すること力 Sできる。また、発光領域 35bと第 2の加熱コイル 8の中心 8eとの間に赤外 線入射領域 35aが設けられているので、発光領域 35bを被加熱物 Aで覆うようにカロ 熱部 35に載置することで、赤外線入射領域 35aを被加熱物 Aで確実に覆うことがで きる。
[0061] 同様に、発光領域 35bと赤外線入射領域 35aを第 2の加熱コイル 8の中心から前後 方向(縦)でかつ手前側にずらせる場合に限らず、発光領域 35bと赤外線入射領域 3 5aを第 2の加熱コイル 8の中心 8eからずらせた場合には、第 2の加熱コイル 8の中心 8eから半径方向で外側に発光領域 35bを位置させると、発光領域 35bを被加熱物 A で覆うことにより安定的に赤外線入射領域 35aを被加熱物 Aにより覆うことができる点 において好ましい。
[0062] 図 12は、図 8のセンサユニット 48Dまたは図 10のセンサユニット 48Eを設けた場合 の、第 2の加熱コイル 8の制御回路を示しており、図 3の制御回路に加えて、明かりセ ンサ 72の出力が入力される照度検知手段 73を設け、制御手段 44は温度検知手段 42からの出力及び照度検知手段 73からの出力に応じて第 2の加熱コイル 8に高周 波電流を供給するインバータ回路 46の出力を制御する。
[0063] すなわち、明力、りセンサ 72は室内の通常光の照度(あるいは輝度)を検知するため のもので、明かりセンサ 72からの出力信号を受けて照度検知手段 73は明かりセンサ 72で検知した照度と所定の閾値とを比較し、明力、りセンサ 72で検知した照度が所定 値以上の場合には、被加熱物 Aが赤外線入射領域 35aを覆って!/、な!/、と判断して、 制御手段 44はインバータ回路 46による第 2の加熱コイル 8の加熱制御を不許可にし たり、あるいは第 2の加熱コイル 8の出力を抑制する一方、明かりセンサ 72で検知し た照度が所定値以下の場合には、被加熱物 Aが赤外線入射領域 35aを覆って!/、る と判断して、制御手段 44はインバータ回路 46による第 2の加熱コイル 8の加熱制御 を行う。
[0064] したがって、制御手段 44は、明力、りセンサ 72で検知した照度が所定値以下の場合 にのみ、赤外線センサ 40の出力信号に応じて、インバータ回路 46の出力制御を行 つて被加熱物 Aの温度または温度勾配が所定値以下となるように第 2の加熱コイル 8 による加熱出力の制御を行う。
[0065] 上記構成により、赤外線入射領域 35aの近傍で発光領域 35bが光るので、赤外線 入射領域 35aの位置を視認しゃすくなり、室内が喑!/、場合にお!/、ても赤外線入射領 域 35aを容易に視認することができるようになる。
[0066] また、明力、りセンサ 72は、室内の照度を検知できるので、被加熱物 Aが赤外線入射 領域 35aを覆っていないことを検知することができる力 室内が喑ぃ場合には、明力、り センサ 72により被加熱物 Aが赤外線入射領域 35aを覆っていないことを検知すること が困難となる。し力もながら、このような場合でも、発光領域 35bが発光により視認し 易くなるので、発光領域 35bを覆うことで赤外線入射領域 35aを覆うことができるよう にすれば、安定して赤外線センサ 40による被加熱物 Aの温度制御を行うことができる
[0067] なお、発光領域 35bの面積は狭ぐ光を照射する上部開口部 36dと発光部 35bとの 位置ずれが目立ちやすいが、上述したように発光領域 35bに光拡散層を設けること により、上記位置ずれが目立たないようにすることもできる。光拡散層を設けた構成に ついて、図 13A〜図 13Eを参照しながら以下説明する。
[0068] 図 13Aの構成は、発光領域 35bの全域に半透明の光拡散層 76を設けているのに 対し、図 13B〜図 13Eの構成は、発光領域 35bに、光拡散層 76と、光拡散層 76より 光透過率の大きい部位を混在して設けたものである。
[0069] さらに詳述すると、図 13Bの構成は、発光領域 35bの中央領域を光拡散層が存在 しない透明部 78とし、この中央領域の径方向外方に周辺領域を帯状に設け、この周 辺領域を半透明の環状光拡散層 76で形成し、中央領域の光透過率を周辺領域の 光透過率より大きく設定して!/、る。
[0070] また、図 13Cの構成は、半透明で円形の複数の光拡散層 76を発光領域 35bに点 在させ、光拡散層 76以外の部分は透明部 78になっている。 [0071] さらに、図 13Dの構成は、発光領域 35bの中央領域を光拡散層が存在しない透明 部 78とし、この中央領域の径方向外方に第 1の周辺領域を帯状に設け、この第 1の 周辺領域を半透明の環状光拡散層 76で形成するとともに、第 1の周辺領域の径方 向外方に第 2の周辺領域を帯状に設け、この第 2の周辺領域を第 1の周辺領域の光 透過率より小さい有色光透過層 80で形成したものである。
[0072] また、図 13Eの構成は、発光領域 35bに設けられた透明部 78に半透明の光拡散 層 76を格子状に形成したものである。
[0073] なお、図 13B〜図 13Eの構成では、発光領域 35bの一部に透明部 78が設けられ ているが、この透明部 78に代えて、光拡散層 76より光透過率が大きい別の光拡散層 を設けるようにしてもよい。
産業上の利用可能性
[0074] 本発明にかかる誘導加熱調理器は、鍋等の被加熱物から放射される赤外線の赤 外線センサへの入射領域を容易に視認できるので、ユーザはこの赤外線入射領域 を覆うように被加熱物を天板に載置すればよぐキッチン等に組み込まれる家庭用の 誘導加熱調理器として有用である。

Claims

請求の範囲
[1] 本体上面に設けられ被加熱物を載置して加熱するための加熱部を有し光を透過す る天板と、前記加熱部に対向して前記天板の下方に設けられ磁界を発生して被加熱 物を誘導加熱する加熱コイルと、前記天板の下方に設けられ赤外線を検知する赤外 線センサと、前記天板の下方に設けられた発光体と、被加熱物から放射される赤外 線を前記赤外線センサに導く導光部と、前記赤外線センサからの出力信号に基づい て前記加熱コイルの出力を制御する制御手段と、を備え、被加熱物から放射される 赤外線を前記導光部に導くための赤外線入射領域を前記天板の前記加熱コイルの 外周より内側で前記加熱コイル中心を外した位置に設け、前記発光体から出射され た光を前記赤外線入射領域内で発光させ前記光が前記本体上方から見て前記加 熱部内で視認できるようにしたことを特徴とする誘導加熱調理器。
[2] 前記発光体から出射された光を前記赤外線入射領域内で発光させ前記光が前記 本体上方から見て前記加熱部内で視認できるようにすることに代え、前記発光体から 出射された光を前記赤外線入射領域の近傍で発光させ前記光が前記本体上方から 見て前記加熱部内で視認できるようにした特徴とする請求項 1に記載の誘導加熱調 理器。
[3] 前記赤外線入射領域は、前記加熱コイルの外周より内側に 1箇所のみ設けられ、 前記本体上方から見て前記加熱コイルの中心を通る前記本体の前後方向の直線上 またはその近傍で前記加熱コイルの中心より手前側に配置したことを特徴とする請求 項 1または 2に記載の誘導加熱調理器。
[4] 前記導光部は、前記発光体から出射された光を前記赤外線入射領域に向かって 導き、前記発光体から出射され前記導光部内で導かれた光を前記導光部の開口部 力 前記天板に向け照射することにより前記赤外線入射領域の一部または全部を視 認できるようにしたことを特徴とする請求項 1または 2に記載の誘導加熱調理器。
[5] 前記本体上方から見て前記加熱コイルの中心と前記発光体から出射された光が視 認できる領域である発光部の中心を通る直線上またはその近傍でかつ前記加熱コィ ルの中心と前記発光部の中心の間に前記赤外線入射領域の中心を配置したことを 特徴とする請求項 1または 2に記載の誘導加熱調理器。
[6] 前記発光体の光が入射され、発光面が環状に発光する導光体をさらに備え、前記 発光体からの光を前記導光体の発光面から前記導光部に導くようにしたことを特徴と する請求項 5に記載の誘導加熱調理器。
[7] 被加熱物から放射された赤外線は、前記開口部を介して前記発光面の内側に形 成された貫通孔を通り前記赤外線センサに導かれることを特徴とする請求項 6に記載 の誘導加熱調理器。
[8] 前記赤外線センサと前記発光体とでセンサユニットを構成し、前記センサユニットが 、前記赤外線センサと前記発光体を固定し電気接続する印刷配線板と、該印刷配線 板を収容し導電金属材料で形成されたハウジングとを有し、前記ハウジングが前記 赤外線センサと前記発光体に向かって延びる下方延長筒を有し、前記赤外線センサ と前記発光体を前記下方延長筒内に収容したことを特徴とする請求項 5に記載の誘 導加熱調理器。
[9] 前記赤外線センサと前記発光体の上方に貫通孔を有する光拡散リングを設け、前 記赤外線センサを前記貫通孔の下方に配置したことを特徴とする請求項 8に記載の 誘導加熱調理器。
[10] 前記導光部と遮光壁で分離された第 2の導光部を有し、前記発光体から出射され た光は、前記第 2の導光部を通り前記赤外線入射領域の近傍に照射されることを特 徴とする請求項 2に記載の誘導加熱調理器。
[11] 前記本体上方から見て前記加熱コイルの中心と前記発光体から出射された光が視 認できる領域である前記発光部の中心を通る直線上またはその近傍でかつ前記加 熱コイルの中心と前記発光部の中心の間に前記赤外線入射領域を配置したことを特 徴とする請求項 1、 2または 10に記載の誘導加熱調理器。
PCT/JP2007/074297 2006-12-18 2007-12-18 誘導加熱調理器 WO2008075673A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
US12/519,586 US9565721B2 (en) 2006-12-18 2007-12-18 Induction heating appliance for cooking
JP2008550150A JP5047989B2 (ja) 2006-12-18 2007-12-18 誘導加熱調理器
CA2672788A CA2672788C (en) 2006-12-18 2007-12-18 Induction heating appliance for cooking
ES07850785.2T ES2659989T3 (es) 2006-12-18 2007-12-18 Dispositivo de cocina de calentamiento por inducción
CN2007800461646A CN101558682B (zh) 2006-12-18 2007-12-18 感应加热烹调器
HK10103525.6A HK1136925B (en) 2006-12-18 2007-12-18 Induction heating cooking device
EP07850785.2A EP2096897B1 (en) 2006-12-18 2007-12-18 Induction heating cooking device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-339593 2006-12-18
JP2006339593 2006-12-18

Publications (1)

Publication Number Publication Date
WO2008075673A1 true WO2008075673A1 (ja) 2008-06-26

Family

ID=39536303

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/074297 WO2008075673A1 (ja) 2006-12-18 2007-12-18 誘導加熱調理器

Country Status (9)

Country Link
US (1) US9565721B2 (ja)
EP (1) EP2096897B1 (ja)
JP (1) JP5047989B2 (ja)
CN (1) CN101558682B (ja)
CA (1) CA2672788C (ja)
ES (1) ES2659989T3 (ja)
MY (1) MY155927A (ja)
RU (1) RU2449509C2 (ja)
WO (1) WO2008075673A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009059592A (ja) * 2007-08-31 2009-03-19 Panasonic Corp 誘導加熱調理器
WO2009144916A1 (ja) * 2008-05-27 2009-12-03 パナソニック株式会社 誘導加熱調理器
JP2011007537A (ja) * 2009-06-23 2011-01-13 Shibaura Electronics Co Ltd 温度センサ
US20120018419A1 (en) * 2009-04-02 2012-01-26 Trimech Technology Pte. Ltd. Thermode assembly
JP2016157548A (ja) * 2015-02-24 2016-09-01 日立アプライアンス株式会社 誘導加熱調理器
RU2689410C2 (ru) * 2014-06-23 2019-05-28 Бревилл Пти Лимитед Мультиплита

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101965484B (zh) * 2008-03-11 2012-06-27 松下电器产业株式会社 加热烹调器
US9055615B2 (en) 2008-12-26 2015-06-09 Panasonic Corporation Induction heating cooker
CN102077685B (zh) * 2009-03-13 2014-03-19 松下电器产业株式会社 感应加热烹调器及厨房装置
US9867237B2 (en) * 2009-03-19 2018-01-09 Panasonic Intellectual Property Management Co., Ltd. Induction heating cooker
JPWO2012073517A1 (ja) * 2010-12-02 2014-05-19 パナソニック株式会社 誘導加熱コイルおよび誘導加熱装置
US9565970B2 (en) * 2011-04-14 2017-02-14 Electrodomesticos Taurus Sl Cooking system including a cooking hob and a cooking vessel
DE202012003287U1 (de) * 2012-04-02 2013-07-05 Electrolux Home Products Corporation N.V. Kochfeld mit einer Platte und einem Leuchtmittel
WO2014033593A2 (de) * 2012-09-03 2014-03-06 BSH Bosch und Siemens Hausgeräte GmbH Hausgerätevorrichtung
US20150257576A1 (en) * 2012-10-11 2015-09-17 Arcelik Anonim Sirketi Wireless cooking appliance operated on an induction heating cooktop
DE102013102107A1 (de) * 2013-03-04 2014-09-18 Miele & Cie. Kg Kocheinrichtung und Verfahren zum Betreiben
DE102013102115A1 (de) * 2013-03-04 2014-09-18 Miele & Cie. Kg Kocheinrichtung und Verfahren zur Montage
FR3006425B1 (fr) * 2013-06-03 2017-10-13 Fagorbrandt Sas Dispositif de chauffage par induction et table de cuisson a induction associee
JP6219229B2 (ja) * 2014-05-19 2017-10-25 東京エレクトロン株式会社 ヒータ給電機構
EP3082380B1 (en) 2015-04-16 2020-04-08 LG Electronics Inc. Cooking apparatus
EP3139702B1 (en) * 2015-09-02 2018-11-14 Electrolux Appliances Aktiebolag Induction coil assembly for an induction cooking hob
US20170071034A1 (en) * 2015-09-09 2017-03-09 Cooktek Induction Systems, Llc Induction holding, warming, and cooking system having in-unit magnetic control
DE102016208233B4 (de) 2016-05-12 2025-02-06 E.G.O. Elektro-Gerätebau GmbH Induktionsheizeinrichtung und Induktionskochfeld mit einer solchen Induktionsheizeinrichtung
KR101971765B1 (ko) 2016-07-04 2019-04-23 엘지전자 주식회사 광원유닛 및 이를 구비하는 조리기기
KR102713158B1 (ko) * 2016-12-08 2024-10-07 삼성전자주식회사 조리 장치
US11665790B2 (en) * 2016-12-22 2023-05-30 Whirlpool Corporation Induction burner element having a plurality of single piece frames
IT201700060684A1 (it) * 2017-06-01 2018-12-01 Caffitaly System Spa Dispositivo di acquisizione di immagini e apparecchiatura per la preparazione di una bevanda, comprendente detto dispositivo di acquisizione di immagini
US10993292B2 (en) * 2017-10-23 2021-04-27 Whirlpool Corporation System and method for tuning an induction circuit
DE102017221341A1 (de) * 2017-11-28 2019-05-29 E.G.O. Elektro-Gerätebau GmbH Topferkennungssensor für ein Induktionskochfeld und Induktionskochfeld
KR102665228B1 (ko) * 2019-05-07 2024-05-09 엘지전자 주식회사 조립성 및 냉각 성능이 개선된 유도 가열 장치
CN113825267B (zh) * 2020-06-19 2024-03-22 广东美的白色家电技术创新中心有限公司 电磁加热装置
USD1000206S1 (en) 2021-03-05 2023-10-03 Tramontina Teec S.A. Cooktop or portion thereof
USD1000205S1 (en) 2021-03-05 2023-10-03 Tramontina Teec S.A. Cooktop or portion thereof
EP4240108A1 (en) * 2022-03-04 2023-09-06 Whirlpool Corporation Method of controlling a cooking system and related cooking system

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003133044A (ja) * 2001-10-25 2003-05-09 Matsushita Electric Ind Co Ltd 誘導加熱調理器
US20030206572A1 (en) 2000-12-21 2003-11-06 Ralf Dorwarth Method and device for determining the temperature of a cooking vessel
JP2005038660A (ja) 2003-07-17 2005-02-10 Matsushita Electric Ind Co Ltd 誘導加熱調理器
JP2005317305A (ja) * 2004-04-28 2005-11-10 Mitsubishi Electric Corp 加熱調理器
JP2006294286A (ja) * 2005-04-06 2006-10-26 Matsushita Electric Ind Co Ltd 加熱調理器
JP2006331910A (ja) 2005-05-27 2006-12-07 Matsushita Electric Ind Co Ltd 誘導加熱調理器
JP2008027730A (ja) * 2006-07-21 2008-02-07 Matsushita Electric Ind Co Ltd 誘導加熱調理器

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3719789A (en) * 1971-12-29 1973-03-06 Gen Electric Induction cooking appliance including temperature sensing of inductively heated cooking vessel by"modulated"light
IT1291005B1 (it) 1997-01-13 1998-12-14 Merloni Elettrodomestici Spa Sistema di controllo per un apparato elettrodomestico.
JP3128524B2 (ja) 1997-01-31 2001-01-29 三洋電機株式会社 電子レンジ
RU2145040C1 (ru) * 1997-01-31 2000-01-27 Санио Электрик Ко., Лтд. Устройство для приготовления пищи
US7327254B2 (en) * 2005-02-02 2008-02-05 Chen Kai-Po Bulb with sensing function
JP4251174B2 (ja) * 2005-10-28 2009-04-08 パナソニック株式会社 加熱調理器

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030206572A1 (en) 2000-12-21 2003-11-06 Ralf Dorwarth Method and device for determining the temperature of a cooking vessel
JP2003133044A (ja) * 2001-10-25 2003-05-09 Matsushita Electric Ind Co Ltd 誘導加熱調理器
JP2005038660A (ja) 2003-07-17 2005-02-10 Matsushita Electric Ind Co Ltd 誘導加熱調理器
JP2005317305A (ja) * 2004-04-28 2005-11-10 Mitsubishi Electric Corp 加熱調理器
JP2006294286A (ja) * 2005-04-06 2006-10-26 Matsushita Electric Ind Co Ltd 加熱調理器
JP2006331910A (ja) 2005-05-27 2006-12-07 Matsushita Electric Ind Co Ltd 誘導加熱調理器
US20070278216A1 (en) 2005-05-27 2007-12-06 Hiroshi Tominaga Induction Heating Cooker
JP2008027730A (ja) * 2006-07-21 2008-02-07 Matsushita Electric Ind Co Ltd 誘導加熱調理器

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009059592A (ja) * 2007-08-31 2009-03-19 Panasonic Corp 誘導加熱調理器
WO2009144916A1 (ja) * 2008-05-27 2009-12-03 パナソニック株式会社 誘導加熱調理器
US8853599B2 (en) 2008-05-27 2014-10-07 Panasonic Corporation Induction heating cooking apparatus
US20120018419A1 (en) * 2009-04-02 2012-01-26 Trimech Technology Pte. Ltd. Thermode assembly
JP2011007537A (ja) * 2009-06-23 2011-01-13 Shibaura Electronics Co Ltd 温度センサ
RU2689410C2 (ru) * 2014-06-23 2019-05-28 Бревилл Пти Лимитед Мультиплита
US10582573B2 (en) 2014-06-23 2020-03-03 Breville Pty Limited Multi cooker
US11849522B2 (en) 2014-06-23 2023-12-19 Breville Pty Limited Multi cooker
JP2016157548A (ja) * 2015-02-24 2016-09-01 日立アプライアンス株式会社 誘導加熱調理器

Also Published As

Publication number Publication date
CA2672788A1 (en) 2008-06-26
US9565721B2 (en) 2017-02-07
JP5047989B2 (ja) 2012-10-10
US20090314771A1 (en) 2009-12-24
CN101558682A (zh) 2009-10-14
EP2096897B1 (en) 2017-11-22
EP2096897A1 (en) 2009-09-02
RU2009127767A (ru) 2011-01-27
CN101558682B (zh) 2012-05-09
JPWO2008075673A1 (ja) 2010-04-15
ES2659989T3 (es) 2018-03-20
HK1136925A1 (zh) 2010-07-09
EP2096897A4 (en) 2012-04-04
RU2449509C2 (ru) 2012-04-27
MY155927A (en) 2015-12-31
CA2672788C (en) 2016-08-30

Similar Documents

Publication Publication Date Title
JP5047989B2 (ja) 誘導加熱調理器
JP4896695B2 (ja) 誘導加熱調理器
US8058594B2 (en) Door for a cooking apparatus
US8203106B2 (en) Induction heating appliance for cooking
WO2014123083A1 (ja) 加熱調理器
KR20180017665A (ko) 조리기기
CN101690392B (zh) 感应加热烹调器
JP4389878B2 (ja) 加熱調理器
HK1136925B (en) Induction heating cooking device
JP5500281B2 (ja) 電磁誘導加熱調理器
KR20250044091A (ko) 조리기기
JP2001355852A (ja) 加熱調理装置
KR20250052190A (ko) 가전기기 및 그 제어방법
JP2017003153A (ja) 高周波加熱調理器
JP5272979B2 (ja) 電磁誘導加熱調理器
JP2000104930A (ja) 加熱調理装置
KR20250103328A (ko) 조리 기기
JP6258238B2 (ja) 誘導加熱調理器
JP2003065540A (ja) 加熱調理装置
KR20240157943A (ko) 조리기기 및 그 제어방법
JP2001355850A (ja) 加熱調理装置
JP2001349550A (ja) 加熱調理装置
JP2001132954A (ja) 加熱調理装置
WO2009122465A1 (ja) 誘導加熱調理器
JP2001355851A (ja) 加熱調理装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780046164.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07850785

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2008550150

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2672788

Country of ref document: CA

REEP Request for entry into the european phase

Ref document number: 2007850785

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12519586

Country of ref document: US

Ref document number: 2007850785

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2009127767

Country of ref document: RU

Kind code of ref document: A

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)