WO2008072311A1 - Imaging device - Google Patents
Imaging device Download PDFInfo
- Publication number
- WO2008072311A1 WO2008072311A1 PCT/JP2006/324758 JP2006324758W WO2008072311A1 WO 2008072311 A1 WO2008072311 A1 WO 2008072311A1 JP 2006324758 W JP2006324758 W JP 2006324758W WO 2008072311 A1 WO2008072311 A1 WO 2008072311A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- line
- read
- time
- lines
- reading
- Prior art date
Links
- 238000003384 imaging method Methods 0.000 title claims abstract description 59
- 230000005855 radiation Effects 0.000 claims description 27
- 238000006243 chemical reaction Methods 0.000 claims description 11
- 238000009825 accumulation Methods 0.000 claims description 4
- 239000000969 carrier Substances 0.000 abstract description 33
- 230000003071 parasitic effect Effects 0.000 abstract description 27
- 238000000034 method Methods 0.000 description 25
- 238000001514 detection method Methods 0.000 description 19
- 239000004065 semiconductor Substances 0.000 description 19
- 239000003990 capacitor Substances 0.000 description 18
- 239000010408 film Substances 0.000 description 17
- 239000010409 thin film Substances 0.000 description 14
- 238000010586 diagram Methods 0.000 description 12
- 230000008859 change Effects 0.000 description 11
- 230000006870 function Effects 0.000 description 6
- 239000011669 selenium Substances 0.000 description 6
- 239000000758 substrate Substances 0.000 description 6
- BUGBHKTXTAQXES-UHFFFAOYSA-N Selenium Chemical compound [Se] BUGBHKTXTAQXES-UHFFFAOYSA-N 0.000 description 5
- 229910052711 selenium Inorganic materials 0.000 description 5
- 239000011159 matrix material Substances 0.000 description 4
- 230000029058 respiratory gaseous exchange Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 238000003745 diagnosis Methods 0.000 description 2
- 230000012447 hatching Effects 0.000 description 2
- 230000001678 irradiating effect Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 238000010408 sweeping Methods 0.000 description 2
- 230000000007 visual effect Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000002591 computed tomography Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 230000005251 gamma ray Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 230000003252 repetitive effect Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 238000001771 vacuum deposition Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03B—APPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
- G03B42/00—Obtaining records using waves other than optical waves; Visualisation of such records by using optical means
- G03B42/02—Obtaining records using waves other than optical waves; Visualisation of such records by using optical means using X-rays
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/42—Arrangements for detecting radiation specially adapted for radiation diagnosis
- A61B6/4208—Arrangements for detecting radiation specially adapted for radiation diagnosis characterised by using a particular type of detector
- A61B6/4233—Arrangements for detecting radiation specially adapted for radiation diagnosis characterised by using a particular type of detector using matrix detectors
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N25/00—Circuitry of solid-state image sensors [SSIS]; Control thereof
- H04N25/30—Circuitry of solid-state image sensors [SSIS]; Control thereof for transforming X-rays into image signals
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N25/00—Circuitry of solid-state image sensors [SSIS]; Control thereof
- H04N25/40—Extracting pixel data from image sensors by controlling scanning circuits, e.g. by modifying the number of pixels sampled or to be sampled
- H04N25/46—Extracting pixel data from image sensors by controlling scanning circuits, e.g. by modifying the number of pixels sampled or to be sampled by combining or binning pixels
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F39/00—Integrated devices, or assemblies of multiple devices, comprising at least one element covered by group H10F30/00, e.g. radiation detectors comprising photodiode arrays
- H10F39/10—Integrated devices
- H10F39/12—Image sensors
- H10F39/191—Photoconductor image sensors
- H10F39/195—X-ray, gamma-ray or corpuscular radiation imagers
Definitions
- the present invention relates to an imaging device used in the medical field, the industrial field, the nuclear field, and the like.
- An imaging device that performs imaging based on detected light or radiation includes a light or radiation detector that detects light or radiation.
- An X-ray detector will be described as an example.
- the X-ray detector has an X-ray sensitive X-ray conversion layer (semiconductor layer). When the X-ray is incident, the X-ray conversion layer converts it into carriers (charge information) and reads the converted carriers. so
- amorphous amorphous selenium (a-Se) film force S is used (for example, see Non-Patent Document 1).
- the radiation image force transmitted through the subject is projected onto the S amorphous selenium film, and carriers proportional to the density of the image are generated in the film. To do. After that, the carriers generated in the film are collected by the two-dimensionally arranged carrier collecting electrodes, integrated for a predetermined time (also called “accumulation time”), and then passed through the thin film transistor. Read out to the outside.
- a gate driver circuit for switching ON / OFF of a thin film transistor switch, an amplifier array circuit for reading carriers, and a peripheral circuit are arranged.
- the drive circuit gives a drive signal to the X-ray detector to drive the X-ray detector, and the amplifier array circuit receives the read carrier based on the read signal related to the carrier reading.
- the former method of reading out one line at a time is because the carrier is read out one line at a time, so it is suitable for low-speed but high-definition mode (for example, still image shooting), and the latter method is used for reading multiple lines. Since it can read faster than the former method of reading line by line, it is suitable for a mode that can read images at a high speed (for example, video shooting). There is also a shooting method in which the operation is switched during moving image shooting to perform still image shooting.
- Non-Patent Literature 1 W. Zhao, et al., A flat panel detector for digital radiology using acti ve matrix readout of amorphous selenium, Proc. SPIE Vol. 2708, pp. 523-531, 19 96.
- the present invention has been made in view of such circumstances, and an object thereof is to provide an imaging apparatus capable of preventing a fake image.
- the authors focused on the fact that the cause of the false image is a parasitic capacitance that is coupled between a given line and a line adjacent to the given line. This will be described with reference to FIG. 4 and FIG.
- the timing of a certain carrier is set to the time of the first reading and the power of the first reading is also set to the timing of the next reading
- the timing of the first reading is t as shown in FIGS. And t for the second readout
- L be a given line and L be a line adjacent to it.
- a plurality of lines including a predetermined line L are connected at the first reading t.
- Parasitic capacitance couples with 1 2 K K. In that state, change the number of lines to be driven simultaneously.
- the present invention based on such knowledge has the following configuration.
- the imaging apparatus of the present invention is an imaging apparatus that obtains an image by performing imaging with light or radiation, a conversion layer that converts light or radiation information into charge information by the incidence of the light or radiation, and the conversion Charge accumulation information converted in each layer is stored and read out via a plurality of lines arranged in a two-dimensional manner. The accumulation is based on the charge information read out by the readout circuit.
- the apparatus is configured to obtain the image, and the apparatus further reads the charge information by driving a predetermined line, and the charge information without driving a line adjacent to the predetermined line.
- the timing at the second reading is And it is characterized in that it comprises a driving control means for driving and controlling so that a constant line and said adjacent lines simultaneously driven to simultaneously read charge information, respectively.
- the charge information is read by driving a predetermined line, and the charge information is not read without driving a line adjacent to the predetermined line.
- the drive control means sets a predetermined line and an adjacent line during the second reading. Drive control is performed so that the charge information is read out simultaneously by driving simultaneously.
- a predetermined line is driven to read the charge information at the time of the first read, and the adjacent line is driven at the time of the second read without reading the charge information without driving the adjacent line.
- a parasitic capacitance is coupled between the predetermined line and the adjacent line.
- the charge information is simultaneously read by simultaneously driving a predetermined line and an adjacent line at the time of the first reading, and simultaneously driving a predetermined line and an adjacent line at the time of the second reading.
- the parasitic capacitance is not coupled between the predetermined line and the adjacent line.
- false images due to parasitic capacitance can be prevented.
- the above-described drive control unit drives and controls a plurality of lines including a predetermined line at the same time to read out charge information simultaneously. Therefore, the present invention can be applied to simultaneous driving imaging in which a plurality of lines including a predetermined line are simultaneously driven to simultaneously read out charge information.
- switching means for changing and switching the number of lines driven simultaneously.
- the number of lines to be driven at the same time and switching if parasitic capacitance occurs, it will appear as a fake image in the image after switching.
- the parasitic capacitance since the parasitic capacitance is not coupled, a false image does not appear in the image after switching by the switching means.
- Examples of switching by the switching means include the following.
- the switching means switches the number of lines to be driven simultaneously from a plurality to one to drive one line and simultaneously drive a plurality of lines to simultaneously read out charge information and drive one line.
- Switch to shooting that reads charge information for example, still image shooting. Even if it is switched to the shooting to read out the charge information by driving one line like this, since the parasitic capacitance is not coupled in the present invention, the fake image is displayed in the image (for example, still image) after the switching by the powerful switching means. Do not appear.
- the most opposite to the predetermined line is the most.
- the line to be positioned is set as a new predetermined line, and the second read time is set as the new first read time, the drive control at the first read time, the drive control at the second read time, and the above-mentioned It is to repeat the setting.
- the predetermined line is driven at the time of the first reading, and the adjacent line is driven at the same time at the time of the second reading without driving the adjacent line.
- the drive control can be performed as many times as it is repeated. Therefore, the parasitic capacitance is not coupled between the predetermined line and the adjacent line during the repetition, so that a false image due to the parasitic capacitance can be prevented.
- the drive control at the time of the first reading, the drive control at the time of the second read, and the above setting are repeated.
- the drive control at the first read time without changing the number of lines to be driven simultaneously at the first read time and the second read time except at the initial first read time Repeat the drive control at the time of reading and the setting described above, and control the drive by reducing the number of lines described above by 1 only at the time of the initial first reading described above.
- Still another example of the above-described invention is that only a predetermined line is driven at the time of the first reading and also driven at the time of the second reading.
- the lines driven during the first reading and also driven during the second reading may be a plurality of lines including a predetermined line.
- the drive control means performs the drive control so that the predetermined line and the adjacent line are simultaneously driven and the charge information is simultaneously read at the time of the second readout, thereby Since the parasitic capacitance is not coupled between the line and the adjacent line, a false image due to the parasitic capacitance can be prevented.
- FIG. 1 is a block diagram of an X-ray imaging apparatus according to each embodiment.
- FIG. 2 is an equivalent circuit of a flat panel X-ray detector used in an X-ray imaging apparatus as viewed from the side.
- FIG. 4 is a schematic diagram showing a change over time of driving of a conventional line for comparison with the principle of the present invention.
- FIG. 5 is a schematic diagram showing a change over time of line driving for explaining the principle of the present invention.
- FIG. 6 is a schematic diagram showing a change over time of driving of each conventional line for comparison with Example 1.
- FIG. 7 is a schematic diagram showing a change with time of driving of each line according to the first embodiment.
- FIG. 8 is a schematic diagram showing a change with time of driving of each line according to Example 2.
- FIG. 1 is a block diagram of the X-ray imaging apparatus according to each embodiment
- FIG. 2 is an equivalent circuit of a flat panel X-ray detector used in the X-ray imaging apparatus as viewed from the side. Is an equivalent circuit of a flat panel X-ray detector in plan view.
- a flat panel X-ray detector (hereinafter referred to as “FPD” as appropriate) is taken as an example of an optical or radiation detector, and X-ray imaging is used as an imaging device.
- FPD flat panel X-ray detector
- the apparatus will be described as an example.
- each example The X-ray equipment and FPD have the same configuration as in Figs.
- the X-ray imaging apparatus includes an X-ray tube 2 that irradiates the subject M with X-rays, and a subject.
- F PD3 that detects X-rays transmitted through M.
- the X-ray imaging apparatus includes an X-ray tube controller having an FPD controller 5 that controls scanning of the FPD 3 and a high-voltage generator 6 that generates tube voltage and tube current of the X-ray tube 2. 7 or an AZD converter 8 that digitally extracts an X-ray detection signal that is a charge signal from the FPD3, or an image processing unit 9 that performs various processes based on the X-ray detection signal output from the AZD converter 9 A controller 10 that controls these components, a memory unit 11 that stores processed images, an input unit 12 in which an operator makes input settings, and a monitor that displays processed images 13 Etc.
- the FPD control unit 5 performs control related to scanning by horizontally moving the FPD 3 or rotating it around the body axis of the subject M.
- the high voltage generator 6 generates a tube voltage and a tube current for irradiating X-rays and applies them to the X-ray tube 2.
- the X-ray tube controller 7 moves the X-ray tube 2 horizontally, Controls related to scanning by rotating around the body axis of the specimen M, and controls the setting of the irradiation field of the collimator (not shown) on the X-ray tube 3 side.
- the X-ray tube 2 and the FPD 3 move while facing each other so that the FPD 3 can detect the X-rays emitted from the X-ray tube 2.
- the controller 10 is composed of a central processing unit (CPU) and the like, and the memory unit 11 is a storage medium represented by ROM (Read-only Memory), RAM (Random-Access Memory), and the like. It is configured.
- the input unit 12 includes a pointing device represented by a mouse, a keyboard, a joystick, a trackball, and a touch panel.
- the FPD 3 detects X-rays that have passed through the subject M, and the image processing unit 9 performs image processing based on the detected X-rays to capture the subject M.
- the controller 10 reads a carrier by driving a predetermined line at the time of a first read to be described later, and reads a carrier without driving a line adjacent to the predetermined line. Without reading, at the time of the second reading, the specified line and the adjacent line Is also provided with a function of simultaneously driving and reading the carriers simultaneously.
- the controller 10 also has a function of changing and switching the number of lines to be driven simultaneously, that is, a function of switching a driving method.
- the controller 10 corresponds to drive control means and switching means in the present invention.
- the memory unit 11 uses a RAM for writing X-ray detection signals and processed images.
- ROM is used exclusively for reading the program related to the control sequence.
- Example 1 including Example 2 described later, in the first reading, a predetermined line is driven to read out the carrier, and the carrier adjacent to the predetermined line is not driven and the carrier is not read out.
- a program related to a control sequence for simultaneously reading a carrier by simultaneously driving a predetermined line and adjacent lines is stored in the memory unit 11, and the control sequence is executed by the controller 10 by reading the program.
- the FPD 3 includes a radiation-sensitive semiconductor thick film 31 in which carriers are generated by the incidence of radiation such as X-rays, and a voltage mark provided on the surface of the semiconductor thick film 31.
- TFT thin film transistor
- the semiconductor thick film 31 is formed of a radiation-sensitive material in which carriers are generated by the incidence of radiation, such as amorphous selenium. It may be a light-sensitive substance that is produced.
- the semiconductor thick film 31 corresponds to the conversion layer in this invention.
- Example 1 In addition to this, in Example 1, including Example 2 described later, in Example 1, the data line 34 connected to the source of the thin film transistor Tr and the gate line connected to the gate of the thin film transistor Tr
- the voltage application electrode 32, the semiconductor thick film 31, the carrier collection electrode 33, the capacitor Ca, the thin film transistor Tr, the data line 34, and the gate line 35 are stacked on the insulating substrate 36. .
- each of the carrier collection electrodes 33 formed in a large number (for example, 1024 ⁇ 1024 or 4096 ⁇ 4096) in a vertical and horizontal two-dimensional matrix arrangement is described above.
- Each capacitor Ca and thin film transistor Tr are connected to each other, and the carrier collection electrode 33, the capacitor Ca, and the thin film transistor Tr are separately formed as each detection element DU.
- the voltage application electrode 32 is formed over the entire surface as a common electrode of all the detection elements DU.
- the data lines 34 described above are arranged in parallel in the horizontal (X) direction, and the gate lines 35 described above are arranged vertically (Y) as shown in FIG.
- a plurality of data lines 34 and gate lines 35 are connected in parallel to each detection element DU.
- the data line 34 is connected to the amplifier array circuit 37, and the gate line 35 is connected to the gate driver circuit 38.
- the number of detector elements DU arranged can be changed according to the embodiment in which the number of detector elements DU is only 1024 ⁇ 1024 or 4096 ⁇ 4096. Therefore, it may be in the form of only one detection element DU.
- the detection elements DU are patterned on the insulating substrate 36 in a two-dimensional matrix arrangement, and the insulating substrate 36 on which the detection elements DU are formed is also called an “active matrix substrate”.
- the data line 34 and the surface of the insulating substrate 36 are formed on the surface of the insulating substrate 36 using various thin film formation techniques by vacuum deposition and pattern techniques by photolithography.
- a gate line 35 is provided, and a thin film transistor Tr, a capacitor Ca, a carrier collection electrode 33, a semiconductor thick film 31, a voltage application electrode 32, and the like are sequentially stacked.
- the semiconductor for forming the semiconductor thick film 31 can be appropriately selected according to the withstand voltage and the like, as exemplified by an amorphous semiconductor, a polycrystalline semiconductor, and the like.
- the amplifier array circuit 37 has a function of receiving a carrier including the AZD variable 8 outside the FPD 3. That is, the AZD conversion 8 and the amplifier array circuit 37 read the carrier converted by the semiconductor thick film 31 through the detection element DU of the FPD 3.
- Capacitor Ca corresponds to the storage circuit in the present invention
- AZD variable 8 and amplifier circuit 37 correspond to the readout circuit in the present invention. Therefore, capacitor C a.
- the image sensor S including the AZD converter 8 and the amplifier array circuit 37 corresponds to the storage / readout circuit in the present invention.
- AZD Transformation 8 may be provided in the FPD3 configuration.
- the gate driver circuit 38, the amplifier array circuit 37, and the AZD converter 8 are peripheral circuits of the FPD3.
- the FPD 3 includes a power source 39.
- the power source 39 supplies power to the readout circuit such as the amplifier array circuit 37 and the AZD converter 8.
- the image sensor S of FIG. 3 is configured by the FPD 3, the FPD control unit 5, and the AZD converter 8.
- the FPD controller also controls the application of this bias voltage V.
- Carriers are generated by the incidence of radiation, and the carriers are stored as charge information in a capacitor Ca for charge storage.
- the gate line 35 is selected by the scanning signal for extracting signals from the gate driver circuit 38 (that is, the gate drive signal), and the detection element DU connected to the selected gate line 35 is selected and designated.
- the carrier (charge) force accumulated in the capacitor Ca of the specified detection element DU is read out to the data line 34 via the thin film transistor Tr that has been turned on by the signal of the selected gate line 35.
- the address (address) designation of each detection element DU is a scanning signal for extracting signals from the data line 34 and the gate line 35 (in the case of the gate line 35, the gate drive signal, in the case of the data line 34) Based on the amplifier driving signal).
- each detection element DU is selected from the gate driver circuit 38 according to the scanning signal (gate driving signal) in the longitudinal (Y) direction.
- the amplifier array circuit 37 is switched in accordance with the scanning signal (amplifier drive signal) in the horizontal (X) direction, the carrier (charge) data line 34 accumulated in the capacitor Ca of the selected detection element DU.
- Anne Amplified by the pre-array circuit 37 output from the amplifier array circuit 37 as an X-ray detection signal, and sent to the AZD converter 8.
- the imaging sensor S including the FP D3 according to the first embodiment is used to detect an X-ray image of the X-ray imaging apparatus, the image is read out via the data line 34.
- the charge information (X-ray detection signal) is amplified as voltage by the amplifier array circuit 37, converted into image information, and output as an X-ray image.
- an X-ray image is obtained based on the charge information (X-ray detection signal) accumulated and read out by the imaging sensor S including the capacitor Ca, the AZD converter 8 and the amplifier array circuit 37.
- the X-ray equipment is configured.
- the imaging sensor S including the capacitor Ca, the AZD converter 8 and the amplifier array circuit 37 temporarily accumulates the carriers converted by the semiconductor thick film 31 by the capacitor Ca and arranges them in a two-dimensional form. In other words, it can be read out through the plurality of data lines 34.
- FIG. 4 is a schematic diagram showing the change over time of the conventional line drive for comparison with the principle of the present invention
- FIG. 5 shows the change over time of the line drive for explaining the principle of the present invention
- FIG. 6 is a schematic diagram showing a change over time in driving of each conventional line for comparison with Example 1
- FIG. 6 is a diagram showing each line according to Example 1.
- FIG. 6 is a schematic diagram showing a change over time in driving.
- the timing of a certain carrier is set to the time of the first reading, and the power of the first reading is set to the timing of the second reading. 4 and 5, the first read time is t, the second read time is t, and the predetermined line is L.
- L be the line adjacent to 2K.
- a given line is distinguished from an adjacent line.
- hatching is provided as shown in Figs. Also, as shown in Figs. 4 and 5, the line to be driven is separated by a frame F to distinguish it from the line that is not driven.
- This group is different from each other.
- a plurality of lines including the adjacent line L are simultaneously driven to shift the carrier.
- Loops and groups of lines, including adjacent line L, are different from each other.
- the carrier is not read without driving the predetermined line.
- the predetermined line L and the adjacent line are as follows.
- a predetermined line L is driven to read out the carrier and adjacent to the predetermined line L.
- the carrier L is not read without driving the line L. And at the second reading t
- n is the number of lines to be driven simultaneously
- r is the number of repetitions described later
- the target line of the predetermined line is sequentially changed for each readout, so that only the target line of the predetermined line is distinguished from the adjacent line and other lines in FIG. As shown in Fig. 7, it is painted black.
- the lines to be driven are separated by a frame to distinguish them from the lines not to be driven.
- the predetermined line at the initial first read time t is n
- the initial first read time t force is the timing of the next read.
- the predetermined line at the time of reading is 2 X n.
- the predetermined line at t is 2 X n.
- the predetermined line at the first reading t of the 14th number is 15 Xn. That is, repeat
- the predetermined line at t at the first reading of the number of times is (r + 1) Xn.
- the predetermined line at the first read t is the 8th (L in FIG.
- the predetermined line at t is 12th (in Fig. 6,
- the predetermined line at the initial first read t is the second (L in Fig. 6) and repeats.
- the predetermined line at the first read time t is the 4th (L in Fig. 6) and repeats.
- the predetermined line at t is the sixth (L in Fig. 6)
- the predetermined line at the initial first read t is the first (L in FIG. 6), and the number of repetitions is At the first read of the first time, the predetermined line at t is the second (L in Fig. 6) and repeats
- the predetermined line at the first read t is the third (L in Fig. 6).
- a predetermined line is driven to read a carrier, and a line adjacent to the predetermined line is not driven to read a carrier.
- the adjacent line is driven to read the carrier, and the carrier is not read without driving the predetermined line.
- the predetermined line among the simultaneously driven lines is Let the line located most on the opposite side be a new predetermined line. Then, the second read time is set as a new first read time. The drive control at the time of the first read, the drive control at the time of the second read and the above setting are repeated.
- the predetermined line at the initial first read time t is n
- the nth predetermined line is from the initial first read time t.
- the line located on the opposite side to the nth predetermined line is 2 X n ⁇ l, and the (2 X n 1) th line is the new predetermined line. Line.
- the second read time t is set as the new first read time t, the number of repetitions is the first (new
- the predetermined line at the first read t is 2 X n-l. Repeat the same in the following
- the predetermined line at t is (r + 1) X n-r r + 1
- the predetermined line at the initial first read t is the fifth (L in Fig. 7).
- the predetermined line at t is 9th (L in Fig. 7).
- the predetermined line at the initial first read t is the third (L in Fig. 7) and repeats.
- the predetermined line at the first read t is the fifth (L in Fig. 7) and the repetition is repeated.
- the predetermined line at t is the seventh (L in Fig. 7)
- the number of lines to be driven simultaneously is 2, so the predetermined line at the initial first read time t is the second (L in FIG. 7), and is repeated repeatedly.
- the predetermined line at the first read t at the first time is the third (L in Fig. 7) and repeats.
- the predetermined line at time t of the first read for the second time is the fourth (L in FIG. 7).
- a predetermined line is driven to read a carrier, and a carrier adjacent to the predetermined line is not driven and a carrier is not read. Then, at the time of each second reading, a predetermined line and an adjacent line are simultaneously driven to simultaneously read the carriers.
- the number of lines driven simultaneously is changed by the controller 10 (see FIG. 1) and switched. That is, the drive system is switched by the controller 10. Therefore, the drive methods shown in FIG. 7 may be switched to each other, or the drive methods shown in FIG. 7 may be changed to the drive methods shown in FIG.
- each drive system as shown in FIG. 7 when switching each drive system as shown in FIG. 7 to each drive system as shown in FIG. 6, for example, from the 5-line simultaneous drive in FIG. 7 to the 4-line simultaneous drive in FIG. You can switch to either simultaneous drive or 1-line drive, or switch from 3-line simultaneous drive in Figure 7 to 4-line simultaneous drive, 2-line simultaneous drive, or 1-line drive in Figure 6. You can also use the two-line simultaneous drive in Fig. 7, the four-line simultaneous drive in Fig. 6, the two-line simultaneous drive, Or you can switch to one line drive! /.
- the carrier is read by driving a predetermined line, and the carrier is not read without driving a line adjacent to the predetermined line.
- the controller 10 is connected to a predetermined line and adjacent to the second read time. Drive control is performed so that the lines are simultaneously driven and the carriers are read simultaneously.
- the carrier is read by driving a predetermined line at the time of the first read, and the carrier is not read by driving the adjacent line without driving the adjacent line.
- parasitic capacitance is coupled between the predetermined line and the adjacent line.
- the carrier is driven by simultaneously driving a predetermined line and an adjacent line at the time of the first reading in the same driving state as before and at the time of the second reading.
- parasitic capacitance is not coupled between a given line and the adjacent line. As a result, false images due to parasitic capacitance can be prevented.
- Example 1 including Example 2 described later, the controller 10 described above performs drive control so as to simultaneously drive a plurality of lines including a predetermined line and simultaneously read out the carriers. Yes. Therefore, the present invention can be applied to simultaneous drive photography in which a plurality of lines including a predetermined line are simultaneously driven to simultaneously read out carriers.
- the controller 10 When applied to such simultaneous driving imaging, as described above, the controller 10 has a function of changing and switching the number of lines driven simultaneously. By changing the number of lines driven simultaneously and switching, if parasitic capacitance occurs, it will appear as a false image in the image after switching. In the present invention, as described in the first embodiment, since the parasitic capacitance is not coupled, a false image does not appear in the image after switching by the powerful switching function.
- Simultaneous drive imaging in which a plurality of lines are simultaneously driven and the carriers are read simultaneously is suitable for moving image shooting. Even if you switch to still image shooting or movie shooting after switching the field-of-view size immediately after shooting such a movie, a fake image does not appear in the still image z movie image after switching. This can be done immediately and can improve the shooting response. Therefore, in the case where the subject is a patient, even if X-ray irradiation is performed in accordance with the patient's breathing timing while confirming with a moving image, the X-ray irradiation can be performed in accordance with the breathing timing.
- the line on the opposite side to the predetermined line is the most.
- the line located is set as a new predetermined line.
- the second read time is set as a new first read time.
- the drive control is performed such that the predetermined line is driven at the time of the first read and the adjacent line is not driven, and the predetermined line and the adjacent line are simultaneously driven at the time of the second read. This can be done for repeated times. Therefore, during repetition, the parasitic capacitance is not coupled between the predetermined line and the adjacent line, and a false image due to the parasitic capacitance can be prevented.
- FIG. 8 is a schematic diagram illustrating a change over time of driving of each line according to the second embodiment. Since the X-ray imaging apparatus and the FPD of the second embodiment are the same as those of the first embodiment, the description thereof will be omitted and only the differences will be described.
- the difference from the first embodiment is that the number of lines to be driven simultaneously is not changed at the time of each first reading and at the time of the second reading except for the initial first reading t (see FIG. 8). , Drive control at the time of the first read, drive control at the time of the second read, and the above-described setting (the second read time is set as the new first read time) are repeated, and the initial first read time described above is repeated. Only t is the point where the number of lines mentioned above is reduced by 1 and the drive is controlled. When a plurality of lines including adjacent lines are simultaneously driven at the time of the second reading, the line that is located on the opposite side to the predetermined line among the simultaneously driven lines is set as a new predetermined line. In addition, the second read time is set as the new first read time, and the drive control at the first read time, the drive control at the second read time, and the above settings are repeated. Same as 1.
- the predetermined line at the initial first reading t is n ⁇ 1
- the (n ⁇ 1) th predetermined line is the timing of the next reading at the initial first reading t force.
- the line located closest to the (n-1) th predetermined line is 2 Xn-2, and the (2Xn-2) th line is The line becomes a new predetermined line.
- the second read time t is set as a new first read time t, so the number of repetitions is
- the predetermined line at t is 2 ⁇ n ⁇ 2. same as below
- the predetermined line at t at the first read of the number of repetitions is (r + 1) r + 1
- Example 2 is obtained by lowering each corresponding line (predetermined line or adjacent line) one by one.
- the predetermined line at the initial first read time t is the fourth (in FIG. 8).
- the predetermined line at t is 8th (L in Fig. 8).
- the predetermined line at t is 12th (in Fig. 8,
- the predetermined line at the initial first read t is the second (L in FIG. 8) and repeats.
- the predetermined line at the first read t is the 4th (L in Fig. 8) and the repetition is repeated.
- the predetermined line at t is the sixth (L in Fig. 7)
- the number of lines to be driven simultaneously is 2, so the predetermined line at the initial first read time t is the first (L in FIG. 8), and the number of repetitions is At the first read time of the first time, the predetermined line at t is the second (L in Fig. 8) and repeats
- the predetermined line at the first read t is the third (L in Fig. 7).
- a predetermined line is driven to read a carrier, and a carrier adjacent to the predetermined line is not driven and a carrier is not read out.
- a predetermined line and an adjacent line are simultaneously driven to simultaneously read the carriers.
- the predetermined line at t at the first read of the number of repetitions ⁇ is r + 1
- the number of lines that are driven simultaneously is the same as the number of lines that are simultaneously driven in FIG. Therefore, in the case of 4-line simultaneous drive as shown in FIG. 6, in Example 2, 5-line simultaneous drive as shown in FIG. 8 is performed, and in the case of 2-line simultaneous drive as shown in FIG. In Example 2, 3-line simultaneous drive as shown in FIG. 8 is performed, and in the case of 1-line drive as shown in FIG. 6, 2-line simultaneous drive as shown in FIG. 8 is performed in Example 2.
- the second embodiment by increasing the number of simultaneously driven lines by one as compared with the conventional case, the number of lines to be advanced can be made the same, and the predetermined lines can also be made the same.
- each drive system as shown in Fig. 8 can be switched to each drive system as shown in Fig. 6.
- the present invention also applies to, for example, an X-ray imaging apparatus disposed on a C-type arm. You may apply.
- the present invention may also be applied to an X-ray fluoroscopic apparatus and an X-ray CT apparatus.
- the present invention is applied to a “direct conversion type” radiation detector in which incident radiation is directly converted into charge information by the semiconductor thick film 31 (semiconductor layer).
- the present invention applies an “indirect conversion type” radiation detector that converts incident radiation into light by a conversion layer such as a scintillator and converts the light into charge information by a semiconductor layer formed of a photosensitive material. May be.
- Photosensitive semiconductor layers may be formed with photodiodes.
- an X-ray detector for detecting X-rays has been described as an example.
- the present invention is not limited to a radioisotope (RI) as in an ECT (Emission Computed Tomography) apparatus.
- RI radioisotope
- ECT Electronicd Tomography
- the present invention is not particularly limited as long as it is a radiation detector that detects radiation, as exemplified by a ⁇ -ray detector that detects y-rays radiated from a subject administered.
- the present invention is not particularly limited as long as it is an apparatus that detects an image by detecting radiation as exemplified by the ECT apparatus described above.
- the radiation detector typified by X-rays has been described as an example.
- the present invention can also be applied to a photodetector that detects light. Therefore, the device is not particularly limited as long as the device detects light and performs imaging.
- the present invention can be applied to the case where the number of lines to be simultaneously driven exceeds two, such as the 5-line simultaneous drive and 3-line simultaneous drive shown in FIGS.
- the present invention may be applied to the case where the number of lines to be driven simultaneously is two, such as the two-line simultaneous driving shown in FIGS.
- the lines that are driven during the first reading and that are also driven during the second reading include a plurality of lines including a predetermined line. Indicates a line.
- the number of lines to be driven simultaneously is 2 as is clear from FIGS. 7 and 8, the line force that is driven at the time of the first reading and is driven at the time of the second reading is only a predetermined line. It shows that.
- the present invention can also be applied to a case where unnecessary carriers are simultaneously read out by a plurality of lines and discharged at high speed in order to release a leakage current at the time of non-irradiation. It can also be applied to cases where unnecessary carriers outside the field of view are simultaneously read out by multiple lines and swept out at high speed.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Signal Processing (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Multimedia (AREA)
- Medical Informatics (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Optics & Photonics (AREA)
- Pathology (AREA)
- Radiology & Medical Imaging (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Molecular Biology (AREA)
- Surgery (AREA)
- Veterinary Medicine (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- High Energy & Nuclear Physics (AREA)
- Animal Behavior & Ethology (AREA)
- Biophysics (AREA)
- Mathematical Physics (AREA)
- General Physics & Mathematics (AREA)
- Transforming Light Signals Into Electric Signals (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
- Radiography Using Non-Light Waves (AREA)
- Apparatus For Radiation Diagnosis (AREA)
- Solid State Image Pick-Up Elements (AREA)
- Measurement Of Radiation (AREA)
Abstract
Description
撮像装置 Imaging device
技術分野 Technical field
[0001] この発明は、医療分野、工業分野、さらには原子力分野などに用いられる撮像装置 に関する。 [0001] The present invention relates to an imaging device used in the medical field, the industrial field, the nuclear field, and the like.
背景技術 Background art
[0002] 検出された光または放射線に基づいて撮像を行う撮像装置は、光または放射線を 検出する光または放射線検出器を備えている。 X線検出器を例に採って説明する。 X線検出器は X線感応型の X線変換層(半導体層)を備えており、 X線の入射により X 線変換層はキャリア (電荷情報)に変換し、その変換されたキャリアを読み出すことで [0002] An imaging device that performs imaging based on detected light or radiation includes a light or radiation detector that detects light or radiation. An X-ray detector will be described as an example. The X-ray detector has an X-ray sensitive X-ray conversion layer (semiconductor layer). When the X-ray is incident, the X-ray conversion layer converts it into carriers (charge information) and reads the converted carriers. so
X線を検出する。 X線変換層としては例えば非晶質のアモルファスセレン (a— Se)膜 力 S用いられる (例えば、非特許文献 1参照)。 Detect X-rays. As the X-ray conversion layer, for example, amorphous amorphous selenium (a-Se) film force S is used (for example, see Non-Patent Document 1).
[0003] 被検体に X線を照射して放射線撮像を行う場合には、被検体を透過した放射線像 力 Sアモルファスセレン膜上に投影されて、像の濃淡に比例したキャリアが膜内に発生 する。その後、膜内で生成されたキャリアが、 2次元状に配列されたキャリア収集電極 に収集されて、所定時間 (『蓄積時間』とも呼ばれる)分だけ積分された後、薄膜トラン ジスタを経由して外部に読み出される。 [0003] When radiation imaging is performed by irradiating a subject with X-rays, the radiation image force transmitted through the subject is projected onto the S amorphous selenium film, and carriers proportional to the density of the image are generated in the film. To do. After that, the carriers generated in the film are collected by the two-dimensionally arranged carrier collecting electrodes, integrated for a predetermined time (also called “accumulation time”), and then passed through the thin film transistor. Read out to the outside.
[0004] このような X線検出器の周辺には、薄膜トランジスタのスィッチの ONZOFFの切り 換えを行うゲートドライバ回路や、キャリアを読み出すためのアンプアレイ回路といつ た周辺回路が配設されている。駆動回路は X線検出器に駆動信号を与えて X線検出 器を駆動させ、キャリアの読み出しに関連する読み出し信号に基づいて、読み出され たキャリアをアンプアレイ回路が受け取る。これらの回路と X線検出器とを含めて撮像 センサを構成している。 [0004] Around such an X-ray detector, a gate driver circuit for switching ON / OFF of a thin film transistor switch, an amplifier array circuit for reading carriers, and a peripheral circuit are arranged. The drive circuit gives a drive signal to the X-ray detector to drive the X-ray detector, and the amplifier array circuit receives the read carrier based on the read signal related to the carrier reading. These circuits and an X-ray detector are included in the imaging sensor.
[0005] ところで、キャリアを読み出す際には、データ線を介して 1ラインずつ読み出す方法 と、データ線を介して複数ラインで読み出す方法がある。前者の 1ラインずつ読み出 す方法の場合には、薄膜トランジスタのスィッチを 1つずつ ON (あるいは 1つずつ OF F)にして駆動し、駆動されたスィッチに接続されたコンデンサにー且蓄積されたキヤ リアを、スィッチに接続されたデータ線を介して 1ラインずつ読み出す。一方、後者の 複数ラインで読み出す方法の場合には、薄膜トランジスタのスィッチを複数に同時に[0005] By the way, when reading carriers, there are a method of reading one line at a time via a data line and a method of reading data at a plurality of lines via a data line. In the former method of reading one line at a time, the thin film transistor switches are turned on one by one (or one by one OF F) and driven, and then stored in the capacitor connected to the driven switch. Kiya Read the rear one line at a time via the data line connected to the switch. On the other hand, in the case of the latter method of reading with a plurality of lines, a plurality of thin film transistor switches are simultaneously provided.
ON (あるいは複数に同時に OFF)にして駆動し、同時に駆動されたスィッチに接続 されたコンデンサに一旦蓄積されたキャリアを、それらスィッチに接続されたデータ線 を介して一括して読み出す。 Drives ON (or turns OFF simultaneously) and reads the carriers once stored in the capacitors connected to the simultaneously driven switches via the data lines connected to those switches.
[0006] 前者の 1ラインずつ読み出す方法は、キャリアを 1ラインずつ逐次に読み出すので、 低速であるが高精細に画像を得るモード (例えば静止画撮影)に適し、後者の複数ラ インで読み出す方法は、前者の 1ラインずつ読み出す方法よりも高速に読み出せる ので、解像度は落ちるが高速に画像を読み出せるモード (例えば動画撮影)に適して いる。また、動画撮影中に動作を切り換えて、静止画撮影を行う撮影方法もある。 [0006] The former method of reading out one line at a time is because the carrier is read out one line at a time, so it is suitable for low-speed but high-definition mode (for example, still image shooting), and the latter method is used for reading multiple lines. Since it can read faster than the former method of reading line by line, it is suitable for a mode that can read images at a high speed (for example, video shooting). There is also a shooting method in which the operation is switched during moving image shooting to perform still image shooting.
[0007] なお、 X線が照射されていないときでも、アモルファスセレン膜のリーク電流 (『暗電 流』または『ダーク電流』とも呼ばれる)などによりキャリアがコンデンサに蓄積される。 したがって、静止画撮影しか行わない場合でも、非照射時におけるリーク電流を放出 するために、不必要なキャリアを複数ラインで同時に読み出して高速に掃き出す場合 がある。また、動画撮影で視野範囲 (画像サイズ)を切り換えたときに、大きな視野の ときに同時に読み出すラインを増やすことで読み出しを高速ィ匕し、フレームレートを落 とさずに動画撮影を切り換えて撮影を行う撮影方法がある。なお、視野外の不必要な キャリアを複数ラインで同時に読み出して高速に掃き出す場合もある。 [0007] Even when X-rays are not irradiated, carriers are accumulated in the capacitor due to the leakage current (also referred to as "dark current" or "dark current") of the amorphous selenium film. Therefore, even when only taking a still image is taken, unnecessary carriers may be simultaneously read out by a plurality of lines and swept out at a high speed in order to release a leakage current at the time of non-irradiation. Also, when the field of view range (image size) is switched during movie shooting, the number of lines to be read at the same time for a large field of view is increased to speed up readout, and movie shooting is switched without reducing the frame rate. There is a shooting method to do. In some cases, unnecessary carriers outside the field of view are simultaneously read out by multiple lines and swept at high speed.
非特干文献 1: W. Zhao, et al. , A flat panel detector for digital radiology using acti ve matrix readout of amorphous selenium, Proc. SPIE Vol. 2708, pp. 523 - 531, 19 96. Non-Patent Literature 1: W. Zhao, et al., A flat panel detector for digital radiology using acti ve matrix readout of amorphous selenium, Proc. SPIE Vol. 2708, pp. 523-531, 19 96.
発明の開示 Disclosure of the invention
発明が解決しょうとする課題 Problems to be solved by the invention
[0008] し力しながら、このような従来の方法では、読み出しに上述した薄膜トランジスタを用 いた場合には偽画像として現れる問題点がある。例えば、同時に駆動するライン数を 変更して切り換えた後の数百 msec程度に、切り換え前の駆動方式の影響が切り換 え後の画像に偽画像として現れる。したがって、上述した動画撮影あるいは不必要な キャリアを高速に掃き出す処理から 1ラインずつ読み出す静止画撮影に切り換えた場 合にぉ 、ても切り換え後の静止画画像に偽画像が現れる。この偽画像が現れること により切り換え後の数百 msec間は画像診断を行うことができないという問題が生じる However, such a conventional method has a problem that it appears as a false image when the above-described thin film transistor is used for reading. For example, the effect of the driving method before switching appears as a false image in the image after switching about several hundred msec after switching by changing the number of lines driven simultaneously. Therefore, when switching from the above-mentioned movie shooting or the process of sweeping out unnecessary carriers to still image shooting that reads out one line at a time, Even in this case, a fake image appears in the still image after switching. The appearance of this fake image causes the problem that image diagnosis cannot be performed for several hundreds of milliseconds after switching.
[0009] また、一般的に、大きな視野サイズでは撮影のフレームレートを維持するために、上 述したように同時に駆動するライン数を増やす。このような視野サイズを切り換えなが ら動画撮影を行う場合においても、偽画像が現れることにより切り換え後の数百 msec 間は画像診断を行うことができな 、という問題が生じる。 [0009] In general, in order to maintain the shooting frame rate at a large visual field size, the number of lines driven simultaneously is increased as described above. Even when moving images are shot while switching the visual field size, there is a problem that image diagnosis cannot be performed for several hundred msec after switching because of the appearance of a fake image.
[0010] このように、動画撮影または不必要なキャリアを掃き出す処理の直後に、静止画撮 影または視野サイズ切り換え後の動画撮影を行うことができずに撮影応答性に問題 力 S生じる。したがって、被検体が患者の場合において、動画で確認しながら患者の呼 吸タイミングに合わせた X線照射を行う場合に、呼吸タイミングに合わせた X線照射が 行い難いという問題が生じる。 [0010] Thus, immediately after the moving image shooting or the process of sweeping out unnecessary carriers, still image shooting or moving image shooting after switching the field of view size cannot be performed, causing a problem S in shooting response. Therefore, in the case where the subject is a patient, when performing X-ray irradiation that matches the patient's breathing timing while confirming with a moving image, there is a problem that it is difficult to perform X-ray irradiation that matches the breathing timing.
[0011] この発明は、このような事情に鑑みてなされたものであって、偽画像を防止すること ができる撮像装置を提供することを目的とする。 [0011] The present invention has been made in view of such circumstances, and an object thereof is to provide an imaging apparatus capable of preventing a fake image.
課題を解決するための手段 Means for solving the problem
[0012] 発明者は、上記問題を解決するために鋭意研究した結果、次のような知見を得た。 [0012] As a result of intensive studies to solve the above problems, the inventors have obtained the following knowledge.
すなわち、偽画像が生じる原因が、あるラインを所定のラインとしたときにその所定 のラインとそれに隣接したラインとの間に結合する寄生容量であることに着目してみ た。図 4および図 5を参照して説明する。あるキャリアのタイミングを第 1読み出し時と するとともに、その第 1読み出し時力も次の読み出しのタイミングを第 2読み出し時とし たときに、図 4、図 5に示すように、第 1読み出し時を tとし、第 2読み出し時を tとし、 In other words, the authors focused on the fact that the cause of the false image is a parasitic capacitance that is coupled between a given line and a line adjacent to the given line. This will be described with reference to FIG. 4 and FIG. When the timing of a certain carrier is set to the time of the first reading and the power of the first reading is also set to the timing of the next reading, the timing of the first reading is t as shown in FIGS. And t for the second readout,
1 2 所定のラインを Lとし、それに隣接したラインを L とする。なお、所定のラインには 1 2 Let L be a given line and L be a line adjacent to it. The predetermined line
K K+ 1 K K + 1
、隣接したラインと区別するために、図 4、図 5に示すようにハッチングを入れている。 また、図 4、図 5に示すように、駆動するラインを枠 Fで区切って、駆動しないラインと 区別する。 In order to distinguish from adjacent lines, hatching is added as shown in Figs. Also, as shown in Fig. 4 and Fig. 5, the line to be driven is separated by a frame F to distinguish it from the line that is not driven.
[0013] 図 4に示すように、第 1読み出し時 tには所定のライン Lを含めて複数のラインを同 [0013] As shown in FIG. 4, a plurality of lines including a predetermined line L are connected at the first reading t.
1 K 1 K
時に駆動してキャリアをそれぞれ同時に読み出したとする。このとき、隣接したライン L を駆動せずにキャリアを読み出していないとする。つまり、所定のライン Lを含め た複数のラインのグループと、隣接したライン L を含めた複数のラインのグループ Suppose that it is sometimes driven and the carriers are read simultaneously. At this time, it is assumed that the carrier is not read without driving the adjacent line L. In other words, including the predetermined line L Multiple line groups and multiple line groups including adjacent line L
K+ 1 K + 1
とは互いに別のグループになる。次に、図 4に示すように、第 2読み出し時 tには隣接 Are in different groups. Next, as shown in FIG.
2 したライン L を含めて複数のラインを同時に駆動してキャリアをそれぞれ同時に読 2) Drive multiple lines at the same time including line L
K+ 1 K + 1
み出したとする。このとき、所定のライン Lを含めた複数のラインのグループと、隣接 Let ’s say that it ’s out. At this time, a group of a plurality of lines including a predetermined line L and adjacent
K K
したライン L を含めた複数のラインのグループとは互いに別のグループになるので Since the group of multiple lines including line L is different from each other,
K+ 1 K + 1
、所定ラインを駆動せずにキャリアを読み出して 、な 、。 Read the carrier without driving the specified line.
[0014] 第 1読み出し時 tから第 2読み出し時 tを経て、所定のライン Lと隣接したライン L [0014] A line L adjacent to a predetermined line L after the first read time t through the second read time t
1 2 K K との間に寄生容量が結合する。その状態で、同時に駆動するライン数を変更して Parasitic capacitance couples with 1 2 K K. In that state, change the number of lines to be driven simultaneously.
+ 1 + 1
切り換えると、寄生容量による偽画像が生じる。 When switched, a false image is generated due to parasitic capacitance.
[0015] そこで、図 5に示すように、第 1読み出し時 tでは図 4と同じ駆動状態にして、第 2読 み出し時には所定のライン Lおよび隣接したライン L を同時に駆動してキャリアを Therefore, as shown in FIG. 5, at the time of the first reading t, the same driving state as in FIG. 4 is set, and at the time of the second reading, the predetermined line L and the adjacent line L are simultaneously driven to drive the carrier.
K K + 1 K K + 1
それぞれ同時に読み出せば、所定のライン Lと隣接したライン L との間に寄生容 If they are read at the same time, the parasitic capacitance between a given line L and the adjacent line L
K K+ 1 K K + 1
量が結合せずに駆動方式を切り換えたとしても偽画像を防止することができるという 知見を得た。 We obtained knowledge that false images can be prevented even if the driving method is switched without combining the quantities.
[0016] このような知見に基づくこの発明は、次のような構成をとる。 [0016] The present invention based on such knowledge has the following configuration.
すなわち、この発明の撮像装置は、光または放射線による撮像を行って画像を得る 撮像装置であって、前記光または放射線の入射により光または放射線の情報を電荷 情報に変換する変換層と、その変換層で変換された電荷情報を蓄積して、 2次元状 に配列された複数のラインを介して、読み出す蓄積'読み出し回路とを備え、その蓄 積'読み出し回路で読み出された電荷情報に基づいて前記画像を得るように前記装 置は構成されており、装置は、さらに、所定のラインを駆動して電荷情報を読み出し て、かつその所定のラインに隣接したラインを駆動せずに電荷情報を読み出さないタ イミングを第 1読み出し時とするとともに、その第 1読み出し時力も次の読み出しのタイ ミングを第 2読み出し時としたときに、その第 2読み出し時には前記所定のラインおよ び前記隣接したラインを同時に駆動して電荷情報をそれぞれ同時に読み出すように 駆動制御する駆動制御手段を備えていることを特徴とするものである。 That is, the imaging apparatus of the present invention is an imaging apparatus that obtains an image by performing imaging with light or radiation, a conversion layer that converts light or radiation information into charge information by the incidence of the light or radiation, and the conversion Charge accumulation information converted in each layer is stored and read out via a plurality of lines arranged in a two-dimensional manner. The accumulation is based on the charge information read out by the readout circuit. The apparatus is configured to obtain the image, and the apparatus further reads the charge information by driving a predetermined line, and the charge information without driving a line adjacent to the predetermined line. When the first reading is performed at the time of the first reading and the timing of the first reading is set at the second reading, the timing at the second reading is And it is characterized in that it comprises a driving control means for driving and controlling so that a constant line and said adjacent lines simultaneously driven to simultaneously read charge information, respectively.
[0017] この発明の撮像装置によれば、所定のラインを駆動して電荷情報を読み出して、か つその所定のラインに隣接したラインを駆動せずに電荷情報を読み出さないタイミン グを第 1読み出し時とするとともに、その第 1読み出し時力も次の読み出しのタイミン グを第 2読み出し時としたときに、駆動制御手段は、その第 2読み出し時には所定の ラインおよび隣接したラインを同時に駆動して電荷情報をそれぞれ同時に読み出す ように駆動制御する。従来のように、第 1読み出し時には所定のラインを駆動して電 荷情報を読み出して、かつ隣接したラインを駆動せずに電荷情報を読み出さずに、 第 2読み出し時には隣接したラインを駆動して電荷情報を読み出して、かつ所定のラ インを駆動せずに電荷情報を読み出さない場合には、所定のラインと隣接したライン との間に寄生容量が結合する。これに対して、この発明の撮像装置の場合には、第 1 読み出し時では従来と同じ駆動状態で、第 2読み出し時には所定のラインおよび隣 接したラインを同時に駆動して電荷情報をそれぞれ同時に読み出すことで、所定の ラインと隣接したラインとの間に寄生容量が結合しない。その結果、寄生容量による 偽画像を防止することができる。 [0017] According to the imaging apparatus of the present invention, the charge information is read by driving a predetermined line, and the charge information is not read without driving a line adjacent to the predetermined line. When the first reading is performed and the first reading force is also set to the second reading, the drive control means sets a predetermined line and an adjacent line during the second reading. Drive control is performed so that the charge information is read out simultaneously by driving simultaneously. As in the prior art, a predetermined line is driven to read the charge information at the time of the first read, and the adjacent line is driven at the time of the second read without reading the charge information without driving the adjacent line. When the charge information is read and the charge information is not read without driving the predetermined line, a parasitic capacitance is coupled between the predetermined line and the adjacent line. In contrast, in the case of the imaging apparatus of the present invention, the charge information is simultaneously read by simultaneously driving a predetermined line and an adjacent line at the time of the first reading, and simultaneously driving a predetermined line and an adjacent line at the time of the second reading. As a result, the parasitic capacitance is not coupled between the predetermined line and the adjacent line. As a result, false images due to parasitic capacitance can be prevented.
[0018] 上述した発明の一例は、上述した駆動制御手段は、所定のラインを含めて複数の ラインを同時に駆動して電荷情報をそれぞれ同時に読み出すように駆動制御するこ とである。したがって、この発明は、所定のラインを含めて複数のラインを同時に駆動 して電荷情報をそれぞれ同時に読み出す同時駆動の撮影に適用することができる。 An example of the above-described invention is that the above-described drive control unit drives and controls a plurality of lines including a predetermined line at the same time to read out charge information simultaneously. Therefore, the present invention can be applied to simultaneous driving imaging in which a plurality of lines including a predetermined line are simultaneously driven to simultaneously read out charge information.
[0019] このような同時駆動の撮影に適用した場合には、例えば、同時に駆動するライン数 を変更して切り換える切換手段を備える場合がある。同時に駆動するライン数を変更 して切り換えることで、もし寄生容量が発生して 、たら切り換え後の画像に偽画像とし て現れる。この発明では寄生容量が結合しないので、かかる切り換え手段による切り 換え後の画像に偽画像が現れることがな 、。 [0019] When applied to such simultaneous driving imaging, for example, there may be provided switching means for changing and switching the number of lines driven simultaneously. By changing the number of lines to be driven at the same time and switching, if parasitic capacitance occurs, it will appear as a fake image in the image after switching. In the present invention, since the parasitic capacitance is not coupled, a false image does not appear in the image after switching by the switching means.
[0020] また、切換手段による切り換えの一例として、以下のようなものがある。すなわち、切 換手段は、同時に駆動するライン数を複数から 1つに切り換えることで、複数のライン を同時に駆動して電荷情報をそれぞれ同時に読み出す同時駆動の撮影から、 1つ のラインを駆動して電荷情報を読み出す撮影 (例えば静止画撮影)に切り換える。こ のような 1つのラインを駆動して電荷情報を読み出す撮影に切り換えたとしても、この 発明では寄生容量が結合しないので、力かる切り換え手段による切り換え後の画像( 例えば静止画像)に偽画像が現れることがな 、。 [0021] 上述した発明の他の一例は、第 2読み出し時に隣接したラインを含めて複数のライ ンを同時に駆動したときに、その同時に駆動したラインのうち、所定のラインとは逆側 に最も位置するラインを新たなる所定のラインとするとともに、その第 2読み出し時を 新たなる第 1読み出し時と設定して、第 1読み出し時での駆動制御、第 2読み出し時 での駆動制御および上述した設定を繰り返して行うことである。 [0020] Examples of switching by the switching means include the following. In other words, the switching means switches the number of lines to be driven simultaneously from a plurality to one to drive one line and simultaneously drive a plurality of lines to simultaneously read out charge information and drive one line. Switch to shooting that reads charge information (for example, still image shooting). Even if it is switched to the shooting to read out the charge information by driving one line like this, since the parasitic capacitance is not coupled in the present invention, the fake image is displayed in the image (for example, still image) after the switching by the powerful switching means. Do not appear. [0021] In another example of the above-described invention, when a plurality of lines including adjacent lines are simultaneously driven at the time of the second reading, among the simultaneously driven lines, the most opposite to the predetermined line is the most. The line to be positioned is set as a new predetermined line, and the second read time is set as the new first read time, the drive control at the first read time, the drive control at the second read time, and the above-mentioned It is to repeat the setting.
[0022] この他の一例によれば、第 1読み出し時には所定のラインを駆動して、隣接したライ ンを駆動せずに、第 2読み出し時には所定のラインおよび隣接したラインを同時に駆 動するという駆動制御を繰り返した回数分行うことができる。したがって、繰り返してい る間には所定のラインと隣接したラインとの間に寄生容量が結合せずに、寄生容量 による偽画像を防止することができる。このように繰り返して行う場合には、例えば下 記のようなさらなる一例やさらなる他の一例などがある。 According to another example, the predetermined line is driven at the time of the first reading, and the adjacent line is driven at the same time at the time of the second reading without driving the adjacent line. The drive control can be performed as many times as it is repeated. Therefore, the parasitic capacitance is not coupled between the predetermined line and the adjacent line during the repetition, so that a false image due to the parasitic capacitance can be prevented. In this case, there are a further example as described below and another example.
[0023] すなわち、さらなる一例として、同時に駆動するライン数を変更せずに、第 1読み出 し時での駆動制御、第 2読み出し時での駆動制御および上述した設定を繰り返して 行う。また、さらなる他の一例として、初期の第 1読み出し時を除いて各第 1読み出し 時および第 2読み出し時で同時に駆動するライン数を変更せずに、第 1読み出し時 での駆動制御、第 2読み出し時での駆動制御および上述した設定を繰り返して行 ヽ 、上述した初期の第 1読み出し時のみ上述したライン数を 1つ減らして駆動制御する That is, as a further example, without changing the number of lines to be driven simultaneously, the drive control at the time of the first reading, the drive control at the time of the second read, and the above setting are repeated. As yet another example, the drive control at the first read time without changing the number of lines to be driven simultaneously at the first read time and the second read time except at the initial first read time, Repeat the drive control at the time of reading and the setting described above, and control the drive by reducing the number of lines described above by 1 only at the time of the initial first reading described above.
[0024] また、上述した発明のさらなる他の一例は、第 1読み出し時に駆動し、かつ第 2読み 出し時にも駆動するラインは、所定のラインのみであることである。もちろん、第 1読み 出し時に駆動し、かつ第 2読み出し時にも駆動するラインは、所定のラインを含む複 数のラインであってもよ 、。 [0024] Still another example of the above-described invention is that only a predetermined line is driven at the time of the first reading and also driven at the time of the second reading. Of course, the lines driven during the first reading and also driven during the second reading may be a plurality of lines including a predetermined line.
発明の効果 The invention's effect
[0025] この発明に係る撮像装置によれば、駆動制御手段は、第 2読み出し時には所定の ラインおよび隣接したラインを同時に駆動して電荷情報をそれぞれ同時に読み出す ように駆動制御することで、所定のラインと隣接したラインとの間に寄生容量が結合せ ずに、寄生容量による偽画像を防止することができる。 [0025] According to the imaging apparatus of the present invention, the drive control means performs the drive control so that the predetermined line and the adjacent line are simultaneously driven and the charge information is simultaneously read at the time of the second readout, thereby Since the parasitic capacitance is not coupled between the line and the adjacent line, a false image due to the parasitic capacitance can be prevented.
図面の簡単な説明 [0026] [図 1]各実施例に係る X線撮影装置のブロック図である。 Brief Description of Drawings FIG. 1 is a block diagram of an X-ray imaging apparatus according to each embodiment.
[図 2]X線撮影装置に用いられて 、る側面視したフラットパネル型 X線検出器の等価 回路である。 FIG. 2 is an equivalent circuit of a flat panel X-ray detector used in an X-ray imaging apparatus as viewed from the side.
[図 3]平面視したフラットパネル型 X線検出器の等価回路である。 [Fig. 3] Equivalent circuit of flat panel X-ray detector in plan view.
[図 4]この発明の原理との比較のための従来のラインの駆動の経時的変化を示す模 式図である。 FIG. 4 is a schematic diagram showing a change over time of driving of a conventional line for comparison with the principle of the present invention.
[図 5]この発明の原理を説明するためのラインの駆動の経時的変化を示す模式図で ある。 FIG. 5 is a schematic diagram showing a change over time of line driving for explaining the principle of the present invention.
[図 6]実施例 1との比較のための従来の各々のラインの駆動の経時的変化を示す模 式図である。 FIG. 6 is a schematic diagram showing a change over time of driving of each conventional line for comparison with Example 1.
[図 7]実施例 1に係る各々のラインの駆動の経時的変化を示す模式図である。 FIG. 7 is a schematic diagram showing a change with time of driving of each line according to the first embodiment.
[図 8]実施例 2に係る各々のラインの駆動の経時的変化を示す模式図である。 FIG. 8 is a schematic diagram showing a change with time of driving of each line according to Example 2.
符号の説明 Explanation of symbols
8 … AZD変 8… AZD strange
10 ·■ '· コントローラ 10
31 ·■ . 半導体厚膜 31 .. Semiconductor thick film
37 ·■ - アンプアレイ回路 37 · ■-Amplifier array circuit
Ca · ' '· コンデンサ Ca · '' · Capacitor
L · · L · ·
K - 所定のライン K-predetermined line
L … 隣接したライン L… Adjacent line
K + 1 K + 1
S … 撮像センサ S… Imaging sensor
実施例 1 Example 1
[0028] 以下、図面を参照してこの発明の実施例 1を説明する。図 1は、各実施例に係る X 線撮影装置のブロック図であり、図 2は、 X線撮影装置に用いられている側面視した フラットパネル型 X線検出器の等価回路であり、図 3は、平面視したフラットパネル型 X線検出器の等価回路である。本実施例 1では、後述する実施例 2も含めて、光また は放射線検出器としてフラットパネル型 X線検出器 (以下、適宜「FPD」という)を例に 採るとともに、撮像装置として X線撮影装置を例に採って説明する。また、各実施例 の X線撮影装置および FPDは、図 1〜図 3と同じ構成である。 [0028] Embodiment 1 of the present invention will be described below with reference to the drawings. FIG. 1 is a block diagram of the X-ray imaging apparatus according to each embodiment, and FIG. 2 is an equivalent circuit of a flat panel X-ray detector used in the X-ray imaging apparatus as viewed from the side. Is an equivalent circuit of a flat panel X-ray detector in plan view. In Example 1, including Example 2 described later, a flat panel X-ray detector (hereinafter referred to as “FPD” as appropriate) is taken as an example of an optical or radiation detector, and X-ray imaging is used as an imaging device. The apparatus will be described as an example. In addition, each example The X-ray equipment and FPD have the same configuration as in Figs.
[0029] 後述する実施例 2も含めて、本実施例 1に係る X線撮影装置は、図 1に示すように、 被検体 Mに向けて X線を照射する X線管 2と、被検体 Mを透過した X線を検出する F PD3とを備えている。 As shown in FIG. 1, the X-ray imaging apparatus according to the first embodiment including the second embodiment described later includes an X-ray tube 2 that irradiates the subject M with X-rays, and a subject. F PD3 that detects X-rays transmitted through M.
[0030] X線撮影装置は、他に、 FPD3の走査を制御する FPD制御部 5や、 X線管 2の管電 圧や管電流を発生させる高電圧発生部 6を有する X線管制御部 7や、 FPD3から電 荷信号である X線検出信号をディジタルィ匕して取り出す AZD変換器 8や、 AZD変 8から出力された X線検出信号に基づいて種々の処理を行う画像処理部 9や、 これらの各構成部を統括するコントローラ 10や、処理された画像などを記憶するメモ リ部 11や、オペレータが入力設定を行う入力部 12や、処理された画像などを表示す るモニタ 13などを備えている。 [0030] The X-ray imaging apparatus includes an X-ray tube controller having an FPD controller 5 that controls scanning of the FPD 3 and a high-voltage generator 6 that generates tube voltage and tube current of the X-ray tube 2. 7 or an AZD converter 8 that digitally extracts an X-ray detection signal that is a charge signal from the FPD3, or an image processing unit 9 that performs various processes based on the X-ray detection signal output from the AZD converter 9 A controller 10 that controls these components, a memory unit 11 that stores processed images, an input unit 12 in which an operator makes input settings, and a monitor that displays processed images 13 Etc.
[0031] FPD制御部 5は、 FPD3を水平移動させたり、被検体 Mの体軸の軸心周りに回転 移動させることによる走査に関する制御などを行う。高電圧発生部 6は、 X線を照射さ せるための管電圧や管電流を発生して X線管 2に与え、 X線管制御部 7は、 X線管 2 を水平移動させたり、被検体 Mの体軸の軸心周りに回転移動させることによる走査に 関する制御や、 X線管 3側のコリメータ(図示省略)の照視野の設定の制御などを行う 。なお、 X線管 2や FPD3の走査の際には、 X線管 2から照射された X線を FPD3が検 出できるように X線管 2および FPD3が互いに対向しながらそれぞれの移動を行う。 [0031] The FPD control unit 5 performs control related to scanning by horizontally moving the FPD 3 or rotating it around the body axis of the subject M. The high voltage generator 6 generates a tube voltage and a tube current for irradiating X-rays and applies them to the X-ray tube 2. The X-ray tube controller 7 moves the X-ray tube 2 horizontally, Controls related to scanning by rotating around the body axis of the specimen M, and controls the setting of the irradiation field of the collimator (not shown) on the X-ray tube 3 side. When scanning the X-ray tube 2 or the FPD 3, the X-ray tube 2 and the FPD 3 move while facing each other so that the FPD 3 can detect the X-rays emitted from the X-ray tube 2.
[0032] コントローラ 10は、中央演算処理装置 (CPU)などで構成されており、メモリ部 11は 、 ROM (Read-only Memory)や RAM (Random— Access Memory)などに代表される 記憶媒体などで構成されている。また、入力部 12は、マウスやキーボードやジョイス ティックゃトラックボールゃタツチパネルなどに代表されるポインティングデバイスで構 成されている。 X線撮影装置では、被検体 Mを透過した X線を FPD3が検出して、検 出された X線に基づいて画像処理部 9で画像処理を行うことで被検体 Mの撮像を行 The controller 10 is composed of a central processing unit (CPU) and the like, and the memory unit 11 is a storage medium represented by ROM (Read-only Memory), RAM (Random-Access Memory), and the like. It is configured. The input unit 12 includes a pointing device represented by a mouse, a keyboard, a joystick, a trackball, and a touch panel. In the X-ray imaging apparatus, the FPD 3 detects X-rays that have passed through the subject M, and the image processing unit 9 performs image processing based on the detected X-rays to capture the subject M.
[0033] また、本実施例 1では、コントローラ 10は、後述する第 1読み出し時には所定のライ ンを駆動してキャリアを読み出して、かつその所定のラインに隣接したラインを駆動せ ずにキャリアを読み出さずに、第 2読み出し時には所定のラインおよび隣接したライン を同時に駆動してキャリアをそれぞれ同時に読み出す機能をも備えている。また、コ ントローラ 10は、同時に駆動するライン数を変更して切り換える機能、すなわち駆動 方式を切り換える機能をも備えている。コントローラ 10は、この発明における駆動制 御手段および切換手段に相当する。 [0033] In the first embodiment, the controller 10 reads a carrier by driving a predetermined line at the time of a first read to be described later, and reads a carrier without driving a line adjacent to the predetermined line. Without reading, at the time of the second reading, the specified line and the adjacent line Is also provided with a function of simultaneously driving and reading the carriers simultaneously. The controller 10 also has a function of changing and switching the number of lines to be driven simultaneously, that is, a function of switching a driving method. The controller 10 corresponds to drive control means and switching means in the present invention.
[0034] また、メモリ部 11は、 X線検出信号や処理された画像などの書き込みには RAMが 用いられ、例えば制御シーケンスに関するプログラムの読み出しによって制御シーケ ンスをコントローラ 10に実行させる場合には、制御シーケンスに関するプログラムの 読み出し専用には ROMが用いられる。後述する実施例 2も含めて、本実施例 1では 、第 1読み出し時には所定のラインを駆動してキャリアを読み出して、かつその所定 のラインに隣接したラインを駆動せずにキャリアを読み出さずに、第 2読み出し時には 所定のラインおよび隣接したラインを同時に駆動してキャリアをそれぞれ同時に読み 出す制御シーケンスに関するプログラムをメモリ部 11に記憶させ、そのプログラムの 読み出しによって制御シーケンスをコントローラ 10に実行させる。 [0034] Further, the memory unit 11 uses a RAM for writing X-ray detection signals and processed images. For example, when the controller 10 executes the control sequence by reading a program related to the control sequence, ROM is used exclusively for reading the program related to the control sequence. In Example 1, including Example 2 described later, in the first reading, a predetermined line is driven to read out the carrier, and the carrier adjacent to the predetermined line is not driven and the carrier is not read out. During the second reading, a program related to a control sequence for simultaneously reading a carrier by simultaneously driving a predetermined line and adjacent lines is stored in the memory unit 11, and the control sequence is executed by the controller 10 by reading the program.
[0035] FPD3は、図 2に示すように、 X線などの放射線が入射することによりキャリアが生成 される放射線感応型の半導体厚膜 31と、半導体厚膜 31の表面に設けられた電圧印 加電極 32と、半導体厚膜 31の放射線入射側とは反対側にある裏面に設けられたキ ャリア収集電極 33と、キャリア収集電極 33への収集キャリアを溜める電荷蓄積用のコ ンデンサ Caと、コンデンサ Caに蓄積されたキャリア (電荷)を取り出すための通常時 OFF (遮断)の電荷取り出し用のスィッチ素子である薄膜トランジスタ (TFT) Trとを 備えている。後述する実施例 2も含めて、本実施例 1では、半導体厚膜 31は放射線 の入射によりキャリアが生成される放射線感応型の物質、例えばアモルファスセレン で形成されている力 光の入射によりキャリアが生成される光感応型の物質であって もよい。半導体厚膜 31は、この発明における変換層に相当する。 As shown in FIG. 2, the FPD 3 includes a radiation-sensitive semiconductor thick film 31 in which carriers are generated by the incidence of radiation such as X-rays, and a voltage mark provided on the surface of the semiconductor thick film 31. An additional electrode 32, a carrier collection electrode 33 provided on the back surface opposite to the radiation incident side of the semiconductor thick film 31, a charge storage capacitor Ca for accumulating collected carriers to the carrier collection electrode 33, and It is provided with a thin film transistor (TFT) Tr, which is a switching element for taking off charges (normally OFF) for taking out the carriers (charges) accumulated in the capacitor Ca. In Example 1, including Example 2 which will be described later, the semiconductor thick film 31 is formed of a radiation-sensitive material in which carriers are generated by the incidence of radiation, such as amorphous selenium. It may be a light-sensitive substance that is produced. The semiconductor thick film 31 corresponds to the conversion layer in this invention.
[0036] この他に、後述する実施例 2も含めて、本実施例 1では、薄膜トランジスタ Trのソー スに接続されているデータ線 34と、薄膜トランジスタ Trのゲートに接続されているゲ ート線 35とを備えており、電圧印加電極 32,半導体厚膜 31,キャリア収集電極 33, コンデンサ Ca,薄膜トランジスタ Tr,データ線 34およびゲート線 35が絶縁基板 36の 上に積層されて構成されて 、る。 [0037] 図 2、図 3に示すように、縦'横式 2次元マトリックス状配列で多数個(例えば、 1024 個 X 1024個や 4096 X 4096個)形成されたキャリア収集電極 33ごとに、上述した各々 のコンデンサ Caおよび薄膜トランジスタ Trがそれぞれ接続されており、それらキャリア 収集電極 33,コンデンサ Ca,および薄膜トランジスタ Trが各検出素子 DUとしてそれ ぞれ分離形成されている。また、電圧印加電極 32は、全検出素子 DUの共通電極と して全面にわたって形成されている。また、上述したデータ線 34は、図 3に示すように 、横 (X)方向に複数本に並列されているとともに、上述したゲート線 35は、図 3に示 すように、縦 (Y)方向に複数本に並列されており、各々のデータ線 34およびゲート線 35は各検出素子 DUに接続されている。また、データ線 34はアンプアレイ回路 37に 接続されており、ゲート線 35はゲートドライバ回路 38に接続されている。なお、検出 素子 DUの配列個数は上述の 1024個 X 1024個や 4096 X 4096個だけでなぐ実施形 態に応じて配列個数を変更して使用することができる。したがって、検出素子 DUが 1 個のみの形態であってもよ 、。 In addition to this, in Example 1, including Example 2 described later, in Example 1, the data line 34 connected to the source of the thin film transistor Tr and the gate line connected to the gate of the thin film transistor Tr The voltage application electrode 32, the semiconductor thick film 31, the carrier collection electrode 33, the capacitor Ca, the thin film transistor Tr, the data line 34, and the gate line 35 are stacked on the insulating substrate 36. . [0037] As shown in FIG. 2 and FIG. 3, each of the carrier collection electrodes 33 formed in a large number (for example, 1024 × 1024 or 4096 × 4096) in a vertical and horizontal two-dimensional matrix arrangement is described above. Each capacitor Ca and thin film transistor Tr are connected to each other, and the carrier collection electrode 33, the capacitor Ca, and the thin film transistor Tr are separately formed as each detection element DU. In addition, the voltage application electrode 32 is formed over the entire surface as a common electrode of all the detection elements DU. Further, as shown in FIG. 3, the data lines 34 described above are arranged in parallel in the horizontal (X) direction, and the gate lines 35 described above are arranged vertically (Y) as shown in FIG. A plurality of data lines 34 and gate lines 35 are connected in parallel to each detection element DU. The data line 34 is connected to the amplifier array circuit 37, and the gate line 35 is connected to the gate driver circuit 38. Note that the number of detector elements DU arranged can be changed according to the embodiment in which the number of detector elements DU is only 1024 × 1024 or 4096 × 4096. Therefore, it may be in the form of only one detection element DU.
[0038] 検出素子 DUは 2次元マトリックス状配列で絶縁基板 36にパターン形成されており 、検出素子 DUがノターン形成された絶縁基板 36は『アクティブ 'マトリクス基板』とも 呼ばれている。 The detection elements DU are patterned on the insulating substrate 36 in a two-dimensional matrix arrangement, and the insulating substrate 36 on which the detection elements DU are formed is also called an “active matrix substrate”.
[0039] また、 FPD3の検出素子 DU周辺を作成する場合には、絶縁基板 36の表面に、各 種真空蒸着法による薄膜形成技術やフォトリソグラフィ法によるパターン技術を利用 して、データ線 34およびゲート線 35を配線し、薄膜トランジスタ Tr,コンデンサ Ca, キャリア収集電極 33,半導体厚膜 31,電圧印加電極 32などを順に積層形成する。 なお、半導体厚膜 31を形成する半導体については、アモルファス型の半導体や多 結晶型の半導体などに例示されるように、用途ゃ耐電圧などに応じて適宜選択する ことができる。 [0039] When the periphery of the detection element DU of the FPD3 is created, the data line 34 and the surface of the insulating substrate 36 are formed on the surface of the insulating substrate 36 using various thin film formation techniques by vacuum deposition and pattern techniques by photolithography. A gate line 35 is provided, and a thin film transistor Tr, a capacitor Ca, a carrier collection electrode 33, a semiconductor thick film 31, a voltage application electrode 32, and the like are sequentially stacked. The semiconductor for forming the semiconductor thick film 31 can be appropriately selected according to the withstand voltage and the like, as exemplified by an amorphous semiconductor, a polycrystalline semiconductor, and the like.
[0040] アンプアレイ回路 37は、 FPD3外の AZD変 8を含めて、キャリアを受け取る機 能を備えている。つまり、 AZD変翻8およびアンプアレイ回路 37は、半導体厚膜 3 1で変換されたキャリアを、 FPD3の検出素子 DUを介して読み出すことになる。コン デンサ Caは、この発明における蓄積回路に相当し、 AZD変 8およびアンプァレ ィ回路 37は、この発明における読み出し回路に相当する。したがって、コンデンサ C a、 AZD変換器 8およびアンプアレイ回路 37などを含む撮像センサ Sは、この発明 における蓄積'読み出し回路に相当する。なお、 AZD変翻8については、 FPD3 の構成内に備えてもよい。これらのゲートドライバ回路 38やアンプアレイ回路 37や A ZD変換器 8は、 FPD3の周辺回路である。 [0040] The amplifier array circuit 37 has a function of receiving a carrier including the AZD variable 8 outside the FPD 3. That is, the AZD conversion 8 and the amplifier array circuit 37 read the carrier converted by the semiconductor thick film 31 through the detection element DU of the FPD 3. Capacitor Ca corresponds to the storage circuit in the present invention, and AZD variable 8 and amplifier circuit 37 correspond to the readout circuit in the present invention. Therefore, capacitor C a. The image sensor S including the AZD converter 8 and the amplifier array circuit 37 corresponds to the storage / readout circuit in the present invention. Note that AZD Transformation 8 may be provided in the FPD3 configuration. The gate driver circuit 38, the amplifier array circuit 37, and the AZD converter 8 are peripheral circuits of the FPD3.
[0041] この他に、 FPD3は電源 39を備えている。後述する実施例 2も含めて、本実施例 1 では、電源 39は、アンプアレイ回路 37や AZD変換器 8などの読み出し回路に電力 を供給する。 FPD3や FPD制御部 5や AZD変換器 8で、図 3の撮像センサ Sを構成 する。 In addition to this, the FPD 3 includes a power source 39. In the first embodiment including the second embodiment described later, the power source 39 supplies power to the readout circuit such as the amplifier array circuit 37 and the AZD converter 8. The image sensor S of FIG. 3 is configured by the FPD 3, the FPD control unit 5, and the AZD converter 8.
[0042] 続、て、後述する実施例 2も含めて、本実施例 1に係る X線撮影装置およびフラット パネル型 X線検出器 (FPD)の作用につ 、て説明する。電圧印加電極 32に高電圧 ( 例えば数 100V〜数 10kV程度)のノィァス電圧 Vを印加した状態で、検出対象で Next, the operation of the X-ray imaging apparatus and flat panel X-ray detector (FPD) according to the first embodiment will be described, including a second embodiment to be described later. With a high voltage (for example, several hundred volts to several tens of kV) applied to the voltage application electrode 32,
A A
ある放射線を入射させる。このバイアス電圧 Vの印加の制御についても FPD制御部 A certain radiation is incident. The FPD controller also controls the application of this bias voltage V.
A A
5から行う。 Start from 5.
[0043] 放射線の入射によってキャリアが生成されて、そのキャリアが電荷情報として電荷蓄 積用のコンデンサ Caに蓄積される。ゲートドライバ回路 38の信号取り出し用の走査 信号 (すなわちゲート駆動信号)によって、ゲート線 35が選択されて、さらに選択され たゲート線 35に接続されている検出素子 DUが選択指定される。その指定された検 出素子 DUのコンデンサ Caに蓄積されたキャリア (電荷)力 選択されたゲート線 35 の信号によって ON状態に移行した薄膜トランジスタ Trを経由して、データ線 34に読 み出される。 [0043] Carriers are generated by the incidence of radiation, and the carriers are stored as charge information in a capacitor Ca for charge storage. The gate line 35 is selected by the scanning signal for extracting signals from the gate driver circuit 38 (that is, the gate drive signal), and the detection element DU connected to the selected gate line 35 is selected and designated. The carrier (charge) force accumulated in the capacitor Ca of the specified detection element DU is read out to the data line 34 via the thin film transistor Tr that has been turned on by the signal of the selected gate line 35.
[0044] また、各検出素子 DUのアドレス (番地)指定は、データ線 34およびゲート線 35の 信号取り出し用の走査信号 (ゲート線 35の場合にはゲート駆動信号、データ線 34の 場合にはアンプ駆動信号)に基づいて行われる。アンプアレイ回路 37やゲートドライ バ回路 38に信号取り出し用の走査信号が送り込まれると、ゲートドライバ回路 38から 縦 (Y)方向の走査信号 (ゲート駆動信号)に従って各検出素子 DUが選択される。そ して、横 (X)方向の走査信号 (アンプ駆動信号)に従ってアンプアレイ回路 37が切り 換えられることによって、選択された検出素子 DUのコンデンサ Caに蓄積されたキヤリ ァ(電荷) データ線 34を介してアンプアレイ回路 37に送り出される。そして、アン プアレイ回路 37で増幅されて、 X線検出信号としてアンプアレイ回路 37から出力され て AZD変換器 8に送り込まれる。 [0044] Further, the address (address) designation of each detection element DU is a scanning signal for extracting signals from the data line 34 and the gate line 35 (in the case of the gate line 35, the gate drive signal, in the case of the data line 34) Based on the amplifier driving signal). When a scanning signal for signal extraction is sent to the amplifier array circuit 37 and the gate driver circuit 38, each detection element DU is selected from the gate driver circuit 38 according to the scanning signal (gate driving signal) in the longitudinal (Y) direction. Then, when the amplifier array circuit 37 is switched in accordance with the scanning signal (amplifier drive signal) in the horizontal (X) direction, the carrier (charge) data line 34 accumulated in the capacitor Ca of the selected detection element DU. To the amplifier array circuit 37. And Anne Amplified by the pre-array circuit 37, output from the amplifier array circuit 37 as an X-ray detection signal, and sent to the AZD converter 8.
[0045] 上述の動作によって、例えば X線撮影装置の X線像の検出に本実施例 1に係る FP D3を備えた撮像センサ Sを用いた場合、データ線 34を介して外部に読み出された 電荷情報 (X線検出信号)がアンプアレイ回路 37で電圧として増幅された状態で画 像情報に変換されて、 X線画像として出力される。このように、コンデンサ Ca、 AZD 変換器 8およびアンプアレイ回路 37などを含む撮像センサ Sで蓄積して読み出され た電荷情報 (X線検出信号)に基づ 、て X線画像が得るように X線撮影装置は構成さ れている。 [0045] With the above-described operation, for example, when the imaging sensor S including the FP D3 according to the first embodiment is used to detect an X-ray image of the X-ray imaging apparatus, the image is read out via the data line 34. The charge information (X-ray detection signal) is amplified as voltage by the amplifier array circuit 37, converted into image information, and output as an X-ray image. Thus, an X-ray image is obtained based on the charge information (X-ray detection signal) accumulated and read out by the imaging sensor S including the capacitor Ca, the AZD converter 8 and the amplifier array circuit 37. The X-ray equipment is configured.
[0046] なお、コンデンサ Ca、 AZD変換器 8およびアンプアレイ回路 37などを含む撮像セ ンサ Sは、半導体厚膜 31で変換されたキャリアをコンデンサ Caで一旦蓄積して、 2次 元状に配列された複数のデータ線 34を介して読み出すと言い換えることもできる。 [0046] The imaging sensor S including the capacitor Ca, the AZD converter 8 and the amplifier array circuit 37 temporarily accumulates the carriers converted by the semiconductor thick film 31 by the capacitor Ca and arranges them in a two-dimensional form. In other words, it can be read out through the plurality of data lines 34.
[0047] 次に、本実施例 1に係るキャリアの読み出しについて、図 5、図 7を参照して説明す る。従来との比較のために図 4、図 6をも併せて参照して説明する。図 4は、この発明 の原理との比較のための従来のラインの駆動の経時的変化を示す模式図であり、図 5は、この発明の原理を説明するためのラインの駆動の経時的変化を示す模式図で あり、図 6は、実施例 1との比較のための従来の各々のラインの駆動の経時的変化を 示す模式図であり、図 6は、実施例 1に係る各々のラインの駆動の経時的変化を示す 模式図である。 Next, carrier reading according to the first embodiment will be described with reference to FIG. 5 and FIG. For comparison with the prior art, description will be made with reference to FIGS. FIG. 4 is a schematic diagram showing the change over time of the conventional line drive for comparison with the principle of the present invention, and FIG. 5 shows the change over time of the line drive for explaining the principle of the present invention. FIG. 6 is a schematic diagram showing a change over time in driving of each conventional line for comparison with Example 1, and FIG. 6 is a diagram showing each line according to Example 1. FIG. 6 is a schematic diagram showing a change over time in driving.
[0048] 先ず、この発明の原理について説明する。「課題を解決するための手段」の段落で も述べたように、あるキャリアのタイミングを第 1読み出し時とするとともに、その第 1読 み出し時力 次の読み出しのタイミングを第 2読み出し時としたときに、図 4、図 5に示 すように、第 1読み出し時を tとし、第 2読み出し時を tとし、所定のラインを Lとし、そ [0048] First, the principle of the present invention will be described. As described in the paragraph “Means for Solving the Problems”, the timing of a certain carrier is set to the time of the first reading, and the power of the first reading is set to the timing of the second reading. 4 and 5, the first read time is t, the second read time is t, and the predetermined line is L.
1 2 K れに隣接したラインを L とする。なお、所定のラインには、隣接したラインと区別す 1 Let L be the line adjacent to 2K. A given line is distinguished from an adjacent line.
K+ 1 K + 1
るために、図 4、図 5に示すようにハッチングを入れている。また、図 4、図 5に示すよう に、駆動するラインを枠 Fで区切って、駆動しないラインと区別する。 For this purpose, hatching is provided as shown in Figs. Also, as shown in Figs. 4 and 5, the line to be driven is separated by a frame F to distinguish it from the line that is not driven.
[0049] 従来では、図 4に示すように、第 1読み出し時 tには所定のライン Lを含めて複数 [0049] Conventionally, as shown in FIG. 4, at the first reading time t, a plurality of lines including a predetermined line L are included.
1 K 1 K
のラインを同時に駆動してキャリアをそれぞれ同時に読み出したとする。このとき、隣 接したライン L を駆動せずにキャリアを読み出していないとする。つまり、所定のラAre simultaneously driven and carriers are read simultaneously. At this time, next Assume that the carrier L is not read without driving the line L in contact. In other words, the predetermined
K+ 1 K + 1
イン L を含めた複数のラインのグループと、隣接したライン L を含めた複数のライ Multiple line groups including In L and multiple lines including adjacent Line L
K K + 1 K K + 1
ンのグループとは互いに別のグループになる。次に、図 4に示すように、第 2読み出し 時 tには隣接したライン L を含めて複数のラインを同時に駆動してキャリアをそれ This group is different from each other. Next, as shown in FIG. 4, at the second read time t, a plurality of lines including the adjacent line L are simultaneously driven to shift the carrier.
2 K+ 1 2 K + 1
ぞれ同時に読み出したとする。このとき、所定のライン Lを含めた複数のラインのグ Assume that the data are read simultaneously. At this time, the group of multiple lines including the predetermined line L
K K
ループと、隣接したライン L を含めた複数のラインのグループとは互いに別のダル Loops and groups of lines, including adjacent line L, are different from each other.
K + 1 K + 1
ープになるので、所定ラインを駆動せずにキャリアを読み出していない。 Therefore, the carrier is not read without driving the predetermined line.
[0050] 以上をまとめると、従来の場合には、図 4に示すように、第 1読み出し時 tには所定 のライン Lを駆動してキャリアを読み出して、かつその所定のライン L に隣接したライ Summarizing the above, in the conventional case, as shown in FIG. 4, at the first read time t, a predetermined line L is driven to read out a carrier and adjacent to the predetermined line L. Rye
K K K K
ン L を駆動せずにキャリアを読み出さない。そして、第 2読み出し時 tには隣接し Do not read carrier without driving L. And at the second reading t
K + 1 2 たライン L を駆動してキャリアを読み出して、かつ所定のライン Lを駆動せずにキ K + 1 2 Line L is driven to read the carrier, and the key is not driven without driving the predetermined line L.
K+ 1 K ャリアを読み出さない。その結果、第 1読み出し時 tから第 2読み出し時 tを経て、所 K + 1 Do not read K area. As a result, after the first reading t to the second reading t
1 2 定のライン L と隣接したライン L との間に寄生容量が結合する。その状態で、同時 1 2 Parasitic capacitance is coupled between a constant line L and an adjacent line L. In that state, at the same time
K K+ 1 K K + 1
に駆動するライン数を変更して切り換えると、寄生容量による偽画像が生じる。 If the number of lines to be driven is changed and switched, a false image is generated due to parasitic capacitance.
[0051] これに対して、ここの発明では、以下のように所定のライン Lおよび隣接したライン [0051] On the other hand, in the present invention, the predetermined line L and the adjacent line are as follows.
K K
L を駆動する。すなわち、図 5に示すように、第 1読み出し時 tでは図 4と同じ駆動 Drive L. That is, as shown in FIG. 5, at the first read time t, the same drive as in FIG.
K + 1 1 K + 1 1
状態にして、第 2読み出し時には所定のライン Lおよび隣接したライン L を同時に In the second read, the predetermined line L and the adjacent line L are simultaneously
K K + 1 駆動してキャリアをそれぞれ同時に読み出す。 K K + 1 Drives and reads each carrier simultaneously.
[0052] 以上をまとめると、この発明の場合には、図 5に示すように、第 1読み出し時 tには 所定のライン Lを駆動してキャリアを読み出して、かつその所定のライン L に隣接し Summarizing the above, in the case of the present invention, as shown in FIG. 5, at the first read time t, a predetermined line L is driven to read out the carrier and adjacent to the predetermined line L. Shi
K K K K
たライン L を駆動せずにキャリアを読み出さない。そして、第 2読み出し時 tには所 The carrier L is not read without driving the line L. And at the second reading t
K+ 1 2 定のライン Lおよび隣接したライン L を同時に駆動してキャリアをそれぞれ同時に K + 1 2 Constant line L and adjacent line L are driven at the same time and carriers are simultaneously
K K+ 1 K K + 1
読み出す。このようにキャリアを読み出すことで所定のライン Lと隣接したライン L read out. By reading the carrier in this way, the line L adjacent to the predetermined line L
K K+ 1 との間に寄生容量が結合せずに駆動方式を切り換えたとしても偽画像を防止するこ とがでさる。 Even if the driving method is switched without coupling parasitic capacitance to K K + 1, false images can be prevented.
[0053] 続いて、本実施例 1に適用した場合について説明する。ここで、同時に駆動するラ イン数を nとするとともに、後述する繰り返し回数を rとし、各読み出し時を順に t , t , [0053] Next, a case where the present invention is applied to the first embodiment will be described. Here, n is the number of lines to be driven simultaneously, r is the number of repetitions described later, and t, t,
1 2 1 2
…, t , t とし、各ラインを川頁に L, L,…, L , L とする。なお、各ライン L, L, ..., t, t, and L, L, ..., L, L for each line on the river page. Each line L, L,
15 16 1 2 15 16 1 2 · ··, L , L は、ゲート線 35 (図 2、図 3を参照)をそれぞれ示す。また、後述する繰り15 16 1 2 15 16 1 2 ···, L and L indicate gate lines 35 (see Fig. 2 and Fig. 3), respectively. In addition, the repetitive steps described later
15 16 15 16
返しによって、所定のラインの対象となるラインが読み出しごとに逐次に変更されるの で、所定のラインの対象となったラインのみ、隣接したラインや他のラインと区別する ために、図 6、図 7に示すように黒塗りにしている。また、図 4、図 5と同様に、図 6、図 7 に示すように、駆動するラインを枠で区切って、駆動しないラインと区別する。 As a result of the return, the target line of the predetermined line is sequentially changed for each readout, so that only the target line of the predetermined line is distinguished from the adjacent line and other lines in FIG. As shown in Fig. 7, it is painted black. Similarly to FIGS. 4 and 5, as shown in FIGS. 6 and 7, the lines to be driven are separated by a frame to distinguish them from the lines not to be driven.
[0054] 初期の第 1読み出し時は tとなり、繰り返し回数が 1回目の第 1読み出し時は tとな [0054] t at the initial first read and t at the first read of the first repetition.
1 2 る。以下、同じように繰り返すと、繰り返し回数が 15回目の第 1読み出し時は t となる 1 2 Hereinafter, if it is repeated in the same way, the number of repetitions is t at the first reading of the 15th time.
16 16
。つまり、繰り返し回数カ^の第 1読み出し時は t となる。 . That is, t at the first reading of the repetition count.
r+ 1 r + 1
[0055] 従来では、同時に駆動するライン数力 の場合には、初期の第 1読み出し時 tでの 所定のラインは nとなり、初期の第 1読み出し時 t力 次の読み出しのタイミングである 第 2読み出し時での所定のラインは 2 X nとなる。第 2読み出し時を新たなる第 1読み 出し時と設定すると、初期の第 1読み出し時 t力 次の読み出しのタイミングである第 2読み出し時と新たなる第 1読み出し時 tとは等しくなる。したがって、新たなる第 1読 [0055] Conventionally, in the case of the number of lines that are driven simultaneously, the predetermined line at the initial first read time t is n, and the initial first read time t force is the timing of the next read. The predetermined line at the time of reading is 2 X n. When the second read time is set as the new first read time, the initial first read time t force is equal to the second read time, which is the next read timing, and the new first read time t. Therefore, the new first reading
2 2
み出し時 tでの所定のラインは 2 X nとなる。以下、同じように繰り返すと、繰り返し回 The predetermined line at t is 2 X n. Hereafter, if you repeat in the same way,
2 2
数が 14回目の第 1読み出し時 t での所定のラインは 15 X nとなる。つまり、繰り返し The predetermined line at the first reading t of the 14th number is 15 Xn. That is, repeat
15 15
回数カ^の第 1読み出し時 t での所定のラインは (r+ 1) X nとなる。 The predetermined line at t at the first reading of the number of times is (r + 1) Xn.
r+ 1 r + 1
[0056] 図 6に示すように、例えば、 4ライン同時駆動の場合には同時に駆動するライン数が 4になるので、初期の第 1読み出し時 tでの所定のラインは 4番目(図 6では L )となり [0056] As shown in FIG. 6, for example, in the case of four-line simultaneous driving, the number of lines to be driven simultaneously is four, so the predetermined line at the initial first read time t is the fourth (in FIG. 6). L)
1 4 14
、繰り返し回数が 1回目の第 1読み出し時 tでの所定のラインは 8番目(図 6では L )と The predetermined line at the first read t is the 8th (L in FIG.
2 8 なり、繰り返し回数が 2回目の第 1読み出し時 tでの所定のラインは 12番目(図 6では When the first read time is 2nd, the predetermined line at t is 12th (in Fig. 6,
3 Three
L )となる。例えば、 2ライン同時駆動の場合には同時に駆動するライン数が 2になる L). For example, in the case of 2-line simultaneous drive, the number of lines driven simultaneously is 2.
12 12
ので、初期の第 1読み出し時 tでの所定のラインは 2番目(図 6では L )となり、繰り返 Therefore, the predetermined line at the initial first read t is the second (L in Fig. 6) and repeats.
1 2 1 2
し回数が 1回目の第 1読み出し時 tでの所定のラインは 4番目(図 6では L )となり、繰 The predetermined line at the first read time t is the 4th (L in Fig. 6) and repeats.
2 4 り返し回数が 2回目の第 1読み出し時 tでの所定のラインは 6番目(図 6では L )となる 2 4 When the first read is the second repeat count The predetermined line at t is the sixth (L in Fig. 6)
3 6 3 6
。また、例えば、 1ライン駆動の場合には同時に駆動するライン数が 1のみになるので 、初期の第 1読み出し時 tでの所定のラインは 1番目(図 6では L )となり、繰り返し回 数が 1回目の第 1読み出し時 tでの所定のラインは 2番目(図 6では L )となり、繰り返 . Also, for example, in the case of one line drive, the number of lines driven simultaneously is only 1, so the predetermined line at the initial first read t is the first (L in FIG. 6), and the number of repetitions is At the first read of the first time, the predetermined line at t is the second (L in Fig. 6) and repeats
2 2 twenty two
し回数が 2回目の第 1読み出し時 tでの所定のラインは 3番目(図 6では L )となる。 [0057] これら各々の第 1読み出し時には所定のラインを駆動してキャリアを読み出して、か つその所定のラインに隣接したラインを駆動せずにキャリアを読み出さない。そして、 各々の第 2読み出し時には隣接したラインを駆動してキャリアを読み出して、かつ所 定のラインを駆動せずにキャリアを読み出さない。 However, the predetermined line at the first read t is the third (L in Fig. 6). [0057] At the time of each first reading, a predetermined line is driven to read a carrier, and a line adjacent to the predetermined line is not driven to read a carrier. In each second read, the adjacent line is driven to read the carrier, and the carrier is not read without driving the predetermined line.
[0058] これに対して、本実施例 1では、第 2読み出し時に所定のラインに隣接したラインを 含めて複数のラインを同時に駆動したときに、その同時に駆動したラインのうち、所定 のラインとは逆側に最も位置するラインを新たなる所定のラインとする。そして、その 第 2読み出し時を新たなる第 1読み出し時と設定する。第 1読み出し時での駆動制御 、第 2読み出し時での駆動制御および上述した設定を繰り返して行う。 In contrast, in the first embodiment, when a plurality of lines including a line adjacent to a predetermined line are simultaneously driven at the time of the second reading, the predetermined line among the simultaneously driven lines is Let the line located most on the opposite side be a new predetermined line. Then, the second read time is set as a new first read time. The drive control at the time of the first read, the drive control at the time of the second read and the above setting are repeated.
[0059] したがって、同時に駆動するライン数力 の場合には、初期の第 1読み出し時 tで の所定のラインは nとなり、その n番目の所定のラインは、初期の第 1読み出し時 tか ら次の読み出しのタイミングである第 2読み出し時 tにおいても、(n+ 1)番目の隣接 [0059] Therefore, in the case of the number of lines driven simultaneously, the predetermined line at the initial first read time t is n, and the nth predetermined line is from the initial first read time t. Even at the second read time t, which is the next read timing, the (n + 1) th neighbor
2 2
したラインとともに同時に駆動される。このとき、その同時に駆動したラインのうち、そ の n番目の所定のラインとは逆側に最も位置するラインは 2 X n—lとなり、その(2 X n 1)番目のラインが新たなる所定のラインとなる。以上の理由により、その第 2読み出 し時 tを新たなる第 1読み出し時 tと設定しているので、繰り返し回数が 1回目の (新 Are driven simultaneously with the selected line. At this time, of the simultaneously driven lines, the line located on the opposite side to the nth predetermined line is 2 X n−l, and the (2 X n 1) th line is the new predetermined line. Line. For the above reason, since the second read time t is set as the new first read time t, the number of repetitions is the first (new
2 2 twenty two
たなる)第 1読み出し時 tでの所定のラインは 2 X n—lとなる。以下、同じように繰り返 The predetermined line at the first read t is 2 X n-l. Repeat the same in the following
2 2
すと、繰り返し回数カ^の第 1読み出し時 t での所定のラインは (r+ 1) X n— rとなる r+1 Then, at the first reading of the number of repetitions ^, the predetermined line at t is (r + 1) X n-r r + 1
[0060] 図 6では、同時に駆動するライン数力 の場合には、繰り返すごとに nずつ繰り上が る力 本実施例 1のように図 7の場合には、繰り返すごとに (n—l)ずつ繰り上がる。し たがって、図 6のような 4ライン同時駆動の場合には、本実施例 1では図 7に示すよう な 5ライン同時駆動を行い、図 6のような 2ライン同時駆動の場合には、本実施例 1で は図 7に示すような 3ライン同時駆動を行い、図 6のような 1ライン駆動の場合には、本 実施例 1では図 7に示すような 2ライン同時駆動を行う。このように本実施例 1では同 時に駆動するライン数を従来よりも 1つ増やすことで、繰り上がる数を同じにすること ができる。 In FIG. 6, in the case of the number of lines that are driven simultaneously, the force that is increased by n each time it is repeated. In the case of FIG. 7 as in Example 1, (n−l) It moves up one by one. Therefore, in the case of 4-line simultaneous drive as shown in Fig. 6, in Example 1, 5-line simultaneous drive as shown in Fig. 7 is performed, and in the case of 2-line simultaneous drive as shown in Fig. 6, In the first embodiment, three lines are simultaneously driven as shown in FIG. 7, and in the case of one line as shown in FIG. 6, two lines are simultaneously driven as shown in FIG. As described above, in the first embodiment, the number of lines to be driven simultaneously is increased by one as compared with the conventional case, so that the number to be advanced can be made equal.
[0061] 図 7に示すように、例えば、 5ライン同時駆動の場合には同時に駆動するライン数が 5になるので、初期の第 1読み出し時 tでの所定のラインは 5番目(図 7では L )となり [0061] As shown in FIG. 7, for example, in the case of 5-line simultaneous drive, the number of lines to be driven simultaneously is Therefore, the predetermined line at the initial first read t is the fifth (L in Fig. 7).
1 5 1 5
、繰り返し回数が 1回目の第 1読み出し時 tでの所定のラインは 9番目(図 7では L )と When the first reading is the first iteration, the predetermined line at t is 9th (L in Fig. 7).
2 9 なり、繰り返し回数が 2回目の第 1読み出し時 tでの所定のラインは 13番目(図 7では 2 9 and the number of repetitions for the first read at the second read time is 13th (in Fig. 7,
3 Three
L )となる。例えば、 3ライン同時駆動の場合には同時に駆動するライン数が 3になる L). For example, if 3 lines are driven simultaneously, the number of lines to be driven simultaneously is 3.
13 13
ので、初期の第 1読み出し時 tでの所定のラインは 3番目(図 7では L )となり、繰り返 Therefore, the predetermined line at the initial first read t is the third (L in Fig. 7) and repeats.
1 3 13
し回数が 1回目の第 1読み出し時 tでの所定のラインは 5番目(図 7では L )となり、繰 The predetermined line at the first read t is the fifth (L in Fig. 7) and the repetition is repeated.
2 5 り返し回数が 2回目の第 1読み出し時 tでの所定のラインは 7番目(図 7では L )となる 2 5 When the first read is the second repeat count The predetermined line at t is the seventh (L in Fig. 7)
3 7 3 7
。また、例えば、 2ライン同時駆動の場合には同時に駆動するライン数が 2になるので 、初期の第 1読み出し時 tでの所定のラインは 2番目(図 7では L )となり、繰り返し回 . In addition, for example, in the case of two-line simultaneous driving, the number of lines to be driven simultaneously is 2, so the predetermined line at the initial first read time t is the second (L in FIG. 7), and is repeated repeatedly.
1 2 1 2
数が 1回目の第 1読み出し時 tでの所定のラインは 3番目(図 7では L )となり、繰り返 The predetermined line at the first read t at the first time is the third (L in Fig. 7) and repeats.
2 3 twenty three
し回数が 2回目の第 1読み出し時 tでの所定のラインは 4番目(図 7では L )となる。 However, the predetermined line at time t of the first read for the second time is the fourth (L in FIG. 7).
3 4 3 4
[0062] これら各々の第 1読み出し時には所定のラインを駆動してキャリアを読み出して、か つその所定のラインに隣接したラインを駆動せずにキャリアを読み出さない。そして、 各々の第 2読み出し時には所定のラインおよび隣接したラインを同時に駆動してキヤ リアをそれぞれ同時に読み出す。 [0062] At the time of each first reading, a predetermined line is driven to read a carrier, and a carrier adjacent to the predetermined line is not driven and a carrier is not read. Then, at the time of each second reading, a predetermined line and an adjacent line are simultaneously driven to simultaneously read the carriers.
[0063] 上述したように、本実施例 1では、同時に駆動するライン数をコントローラ 10 (図 1を 参照)によって変更して切り換えている。すなわち、駆動方式をコントローラ 10によつ て切り換えている。したがって、図 7の各駆動方式間で互いに切り換えてもよいし、図 7のような各駆動方式を図 6のような各駆動方式に切り換えてもよい。 As described above, in the first embodiment, the number of lines driven simultaneously is changed by the controller 10 (see FIG. 1) and switched. That is, the drive system is switched by the controller 10. Therefore, the drive methods shown in FIG. 7 may be switched to each other, or the drive methods shown in FIG. 7 may be changed to the drive methods shown in FIG.
[0064] 図 7の各駆動方式間で互いに切り換える場合には、例えば、 5ライン同時駆動から 3 ライン同時駆動または 2ライン同時駆動に切り換えてもよいし、 3ライン同時駆動から 2 ライン同時駆動または 5ライン同時駆動に切り換えてもよいし、 2ライン同時駆動から 5 ライン同時駆動または 3ライン同時駆動に切り換えてもよい。 [0064] In the case of switching between the respective driving methods in FIG. 7, for example, switching from 5 line simultaneous driving to 3 line simultaneous driving or 2 line simultaneous driving may be performed, or from 3 line simultaneous driving to 2 line simultaneous driving or You can switch to 5-line simultaneous drive, or you can switch from 2-line simultaneous drive to 5-line simultaneous drive or 3-line simultaneous drive.
[0065] また、図 7のような各駆動方式を図 6のような各駆動方式に切り換える場合には、例 えば、図 7の 5ライン同時駆動から、図 6の 4ライン同時駆動、 2ライン同時駆動、ある いは 1ライン駆動のいずれかに切り換えてもよいし、図 7の 3ライン同時駆動から、図 6 の 4ライン同時駆動、 2ライン同時駆動、あるいは 1ライン駆動のいずれかに切り換え てもよいし、図 7の 2ライン同時駆動から、図 6の 4ライン同時駆動、 2ライン同時駆動、 あるいは 1ライン駆動の 、ずれかに切り換えてもよ!/、。 [0065] In addition, when switching each drive system as shown in FIG. 7 to each drive system as shown in FIG. 6, for example, from the 5-line simultaneous drive in FIG. 7 to the 4-line simultaneous drive in FIG. You can switch to either simultaneous drive or 1-line drive, or switch from 3-line simultaneous drive in Figure 7 to 4-line simultaneous drive, 2-line simultaneous drive, or 1-line drive in Figure 6. You can also use the two-line simultaneous drive in Fig. 7, the four-line simultaneous drive in Fig. 6, the two-line simultaneous drive, Or you can switch to one line drive! /.
[0066] 上述した本実施例 1に係る X線撮影装置によれば、所定のラインを駆動してキャリア を読み出して、かつその所定のラインに隣接したラインを駆動せずにキャリアを読み 出さないタイミングを第 1読み出し時とするとともに、その第 1読み出し時力も次の読 み出しのタイミングを第 2読み出し時としたときに、コントローラ 10は、その第 2読み出 し時には所定のラインおよび隣接したラインを同時に駆動してキャリアをそれぞれ同 時に読み出すように駆動制御する。従来のように、第 1読み出し時には所定のライン を駆動してキャリアを読み出して、かつ隣接したラインを駆動せずにキャリアを読み出 さずに、第 2読み出し時には隣接したラインを駆動してキャリアを読み出して、かつ所 定のラインを駆動せずにキャリアを読み出さない場合には、所定のラインと隣接したラ インとの間に寄生容量が結合する。これに対して、本実施例 1に係る X線撮影装置の 場合には、第 1読み出し時では従来と同じ駆動状態で、第 2読み出し時には所定の ラインおよび隣接したラインを同時に駆動してキャリアをそれぞれ同時に読み出すこ とで、所定のラインと隣接したラインとの間に寄生容量が結合しない。その結果、寄生 容量による偽画像を防止することができる。 [0066] According to the X-ray imaging apparatus according to the first embodiment described above, the carrier is read by driving a predetermined line, and the carrier is not read without driving a line adjacent to the predetermined line. When the timing is the first read time and the first read power is the second read timing, the controller 10 is connected to a predetermined line and adjacent to the second read time. Drive control is performed so that the lines are simultaneously driven and the carriers are read simultaneously. As in the prior art, the carrier is read by driving a predetermined line at the time of the first read, and the carrier is not read by driving the adjacent line without driving the adjacent line. In the case where the carrier is not read without driving the predetermined line, parasitic capacitance is coupled between the predetermined line and the adjacent line. On the other hand, in the case of the X-ray imaging apparatus according to the first embodiment, the carrier is driven by simultaneously driving a predetermined line and an adjacent line at the time of the first reading in the same driving state as before and at the time of the second reading. By reading each simultaneously, parasitic capacitance is not coupled between a given line and the adjacent line. As a result, false images due to parasitic capacitance can be prevented.
[0067] 後述する実施例 2も含めて、本実施例 1では、上述したコントローラ 10は、所定のラ インを含めて複数のラインを同時に駆動してキャリアをそれぞれ同時に読み出すよう に駆動制御している。したがって、この発明は、所定のラインを含めて複数のラインを 同時に駆動してキャリアをそれぞれ同時に読み出す同時駆動の撮影に適用すること ができる。 [0067] In Example 1, including Example 2 described later, the controller 10 described above performs drive control so as to simultaneously drive a plurality of lines including a predetermined line and simultaneously read out the carriers. Yes. Therefore, the present invention can be applied to simultaneous drive photography in which a plurality of lines including a predetermined line are simultaneously driven to simultaneously read out carriers.
[0068] このような同時駆動の撮影に適用した場合には、上述したように、同時に駆動する ライン数を変更して切り換える機能をコントローラ 10は備えている。同時に駆動するラ イン数を変更して切り換えることで、もし寄生容量が発生して 、たら切り換え後の画像 に偽画像として現れる。この発明では、本実施例 1でも述べたように寄生容量が結合 しないので、力かる切り換えの機能による切り換え後の画像に偽画像が現れることが ない。 When applied to such simultaneous driving imaging, as described above, the controller 10 has a function of changing and switching the number of lines driven simultaneously. By changing the number of lines driven simultaneously and switching, if parasitic capacitance occurs, it will appear as a false image in the image after switching. In the present invention, as described in the first embodiment, since the parasitic capacitance is not coupled, a false image does not appear in the image after switching by the powerful switching function.
[0069] また、上述したように図 7のような各駆動方式を図 6のような各駆動方式に切り換え る場合で、図 7の 5ライン同時駆動、 3ライン同時駆動あるいは 2ライン同時駆動のい ずれかから、図 6の 1ライン駆動に切り換える場合について説明する。すなわち、同時 に駆動するライン数を複数から 1つに切り換えることで、複数のラインを同時に駆動し てキャリアをそれぞれ同時に読み出す同時駆動の撮影から、 1つのラインを駆動して キャリアを読み出す撮影 (例えば静止画撮影)に切り換える。このような 1つのラインを 駆動してキャリアを読み出す撮影に切り換えたとしても、この発明では、本実施例 1で も述べたように寄生容量が結合しな 、ので、力かる切り換えの機能による切り換え後 の画像 (例えば静止画像)に偽画像が現れることがな 、。 [0069] Further, as described above, when each drive method as shown in FIG. 7 is switched to each drive method as shown in FIG. 6, the 5-line simultaneous drive, 3-line simultaneous drive, or 2-line simultaneous drive shown in FIG. No The case of switching to the one-line drive shown in FIG. 6 will be described. In other words, by switching the number of lines to be driven simultaneously from multiple to one, from simultaneous drive shooting that simultaneously drives multiple lines and simultaneously reads each carrier, shooting that drives one line and reads carriers (for example, Switch to still image shooting. Even if it is switched to the shooting to read the carrier by driving one such line, in this invention, the parasitic capacitance is not coupled as described in the first embodiment. No fake image will appear in later images (eg still images).
[0070] 複数のラインを同時に駆動してキャリアをそれぞれ同時に読み出す同時駆動の撮 影は、動画撮影に適している。このような動画撮影の直後に静止画撮影または視野 サイズ切り換え後の動画撮影に切り換えたとしても、切り換え後の静止画画像 z動画 画像に偽画像が現れな 、ので、静止画撮影/動画画像を即座に行うことができて撮 影応答性を上げることができる。したがって、被検体が患者の場合において、動画で 確認しながら患者の呼吸タイミングに合わせた X線照射を行う場合でも、呼吸タイミン グに合わせた X線照射を行うことができるという効果をも奏する。 [0070] Simultaneous drive imaging in which a plurality of lines are simultaneously driven and the carriers are read simultaneously is suitable for moving image shooting. Even if you switch to still image shooting or movie shooting after switching the field-of-view size immediately after shooting such a movie, a fake image does not appear in the still image z movie image after switching. This can be done immediately and can improve the shooting response. Therefore, in the case where the subject is a patient, even if X-ray irradiation is performed in accordance with the patient's breathing timing while confirming with a moving image, the X-ray irradiation can be performed in accordance with the breathing timing.
[0071] 本実施例 1では、第 2読み出し時に所定のラインに隣接したラインを含めて複数の ラインを同時に駆動したときに、その同時に駆動したラインのうち、所定のラインとは 逆側に最も位置するラインを新たなる所定のラインとする。そして、その第 2読み出し 時を新たなる第 1読み出し時と設定する。第 1読み出し時での駆動制御、第 2読み出 し時での駆動制御および上述した設定を繰り返して行っている。 In the first embodiment, when a plurality of lines including a line adjacent to a predetermined line are simultaneously driven at the time of the second reading, among the simultaneously driven lines, the line on the opposite side to the predetermined line is the most. The line located is set as a new predetermined line. The second read time is set as a new first read time. The drive control at the time of the first reading, the drive control at the time of the second read, and the above setting are repeated.
[0072] この場合によれば、第 1読み出し時には所定のラインを駆動して、隣接したラインを 駆動せずに、第 2読み出し時には所定のラインおよび隣接したラインを同時に駆動す るという駆動制御を繰り返した回数分行うことができる。したがって、繰り返している間 には所定のラインと隣接したラインとの間に寄生容量が結合せずに、寄生容量による 偽画像を防止することができる。 [0072] According to this case, the drive control is performed such that the predetermined line is driven at the time of the first read and the adjacent line is not driven, and the predetermined line and the adjacent line are simultaneously driven at the time of the second read. This can be done for repeated times. Therefore, during repetition, the parasitic capacitance is not coupled between the predetermined line and the adjacent line, and a false image due to the parasitic capacitance can be prevented.
[0073] 本実施例 1では、図 7に示すように各ライン同時駆動では、最後の読み出しを除け ば、同時に駆動するライン数を変更せずに、第 1読み出し時での駆動制御、第 2読み 出し時での駆動制御および (第 2読み出し時を新たなる第 1読み出し時とする)設定 を繰り返して行っている。 実施例 2 In the first embodiment, as shown in FIG. 7, in the simultaneous driving of each line, except for the last reading, the number of lines to be driven at the same time is not changed, and the driving control at the first reading is performed. Drive control at the time of reading and setting (when the second reading is the new first reading) are repeated. Example 2
[0074] 次に、図面を参照してこの発明の実施例 2を説明する。図 8は、実施例 2に係る各 々のラインの駆動の経時的変化を示す模式図である。実施例 2の X線撮影装置およ び FPDも、上述した実施例 1と同じ構成なので、その説明を省略して、相違点のみに ついて説明する。 Next, Embodiment 2 of the present invention will be described with reference to the drawings. FIG. 8 is a schematic diagram illustrating a change over time of driving of each line according to the second embodiment. Since the X-ray imaging apparatus and the FPD of the second embodiment are the same as those of the first embodiment, the description thereof will be omitted and only the differences will be described.
[0075] 実施例 1との相違点は、初期の第 1読み出し時 t (図 8を参照)を除いて各第 1読み 出し時および第 2読み出し時で同時に駆動するライン数を変更せずに、第 1読み出し 時での駆動制御、第 2読み出し時での駆動制御および上述した (第 2読み出し時を 新たなる第 1読み出し時とする)設定を繰り返して行い、上述した初期の第 1読み出し 時 tのみ上述したライン数を 1つ減らして駆動制御する点である。なお、第 2読み出し 時に隣接したラインを含めて複数のラインを同時に駆動したときに、その同時に駆動 したラインのうち、所定のラインとは逆側に最も位置するラインを新たなる所定のライン とするとともに、その第 2読み出し時を新たなる第 1読み出し時と設定して、第 1読み 出し時での駆動制御、第 2読み出し時での駆動制御および上述した設定を繰り返し て行う点では、実施例 1と同じである。 [0075] The difference from the first embodiment is that the number of lines to be driven simultaneously is not changed at the time of each first reading and at the time of the second reading except for the initial first reading t (see FIG. 8). , Drive control at the time of the first read, drive control at the time of the second read, and the above-described setting (the second read time is set as the new first read time) are repeated, and the initial first read time described above is repeated. Only t is the point where the number of lines mentioned above is reduced by 1 and the drive is controlled. When a plurality of lines including adjacent lines are simultaneously driven at the time of the second reading, the line that is located on the opposite side to the predetermined line among the simultaneously driven lines is set as a new predetermined line. In addition, the second read time is set as the new first read time, and the drive control at the first read time, the drive control at the second read time, and the above settings are repeated. Same as 1.
[0076] 具体的には、本実施例 2では、同時に駆動するライン数力 の場合には、初期の第 1読み出し時 tのみライン数 nを 1つ減らしている。したがって、初期の第 1読み出し時 tでの所定のラインは n— 1となり、その (n— 1)番目の所定のラインは、初期の第 1読 み出し時 t力も次の読み出しのタイミングである第 2読み出し時 tにおいても、 n番目 Specifically, in the second embodiment, in the case of the number of lines that are driven simultaneously, the number of lines n is reduced by 1 only at the time of initial first reading t. Therefore, the predetermined line at the initial first reading t is n−1, and the (n−1) th predetermined line is the timing of the next reading at the initial first reading t force. At the second read time t
1 2 の隣接したラインとともに同時に駆動される。このとき、その同時に駆動したラインのう ち、その (n— 1)番目の所定のラインとは逆側に最も位置するラインは 2 X n- 2となり 、その(2 X n— 2)番目のラインが新たなる所定のラインとなる。以上の理由により、そ の第 2読み出し時 tを新たなる第 1読み出し時 tと設定しているので、繰り返し回数が 1 Driven simultaneously with 2 adjacent lines. At this time, of the simultaneously driven lines, the line located closest to the (n-1) th predetermined line is 2 Xn-2, and the (2Xn-2) th line is The line becomes a new predetermined line. For the above reasons, the second read time t is set as a new first read time t, so the number of repetitions is
2 2 twenty two
1回目の(新たなる)第 1読み出し時 tでの所定のラインは 2 X n— 2となる。以下、同じ At the first (new) first read time, the predetermined line at t is 2 × n−2. same as below
2 2
ように繰り返すと、繰り返し回数カ^の第 1読み出し時 t での所定のラインは (r+ 1) r+1 Then, the predetermined line at t at the first read of the number of repetitions is (r + 1) r + 1
X n— r— 1となり、(r+ 1) X (n— 1)となる。したがって、上述した実施例 1と比較する と、該当する各ライン (所定のラインや隣接したライン)を 1つずつ繰り下げたのが、実 施例 2となる。 [0077] 図 8に示すように、例えば、 5ライン同時駆動の場合には同時に駆動するライン数が 5になるので、初期の第 1読み出し時 tでの所定のラインは 4番目(図 8では L )となり Xn—r—1, and (r + 1) X (n—1). Therefore, in comparison with Example 1 described above, Example 2 is obtained by lowering each corresponding line (predetermined line or adjacent line) one by one. [0077] As shown in FIG. 8, for example, in the case of 5-line simultaneous drive, the number of lines to be driven simultaneously becomes 5, so the predetermined line at the initial first read time t is the fourth (in FIG. 8). L)
1 4 14
、繰り返し回数が 1回目の第 1読み出し時 tでの所定のラインは 8番目(図 8では L )と When the first reading is the first repetition, the predetermined line at t is 8th (L in Fig. 8).
2 8 なり、繰り返し回数が 2回目の第 1読み出し時 tでの所定のラインは 12番目(図 8では When the first read time is 2nd, the predetermined line at t is 12th (in Fig. 8,
3 Three
L )となる。例えば、 3ライン同時駆動の場合には同時に駆動するライン数が 3になる L). For example, if 3 lines are driven simultaneously, the number of lines to be driven simultaneously is 3.
12 12
ので、初期の第 1読み出し時 tでの所定のラインは 2番目(図 8では L )となり、繰り返 Therefore, the predetermined line at the initial first read t is the second (L in FIG. 8) and repeats.
1 2 1 2
し回数が 1回目の第 1読み出し時 tでの所定のラインは 4番目(図 8では L )となり、繰 The predetermined line at the first read t is the 4th (L in Fig. 8) and the repetition is repeated.
2 4 り返し回数が 2回目の第 1読み出し時 tでの所定のラインは 6番目(図 7では L )となる 2 4 When the first read is the second repeat count The predetermined line at t is the sixth (L in Fig. 7)
3 6 3 6
。また、例えば、 2ライン同時駆動の場合には同時に駆動するライン数が 2になるので 、初期の第 1読み出し時 tでの所定のラインは 1番目(図 8では L )となり、繰り返し回 数が 1回目の第 1読み出し時 tでの所定のラインは 2番目(図 8では L )となり、繰り返 . Also, for example, in the case of two-line simultaneous driving, the number of lines to be driven simultaneously is 2, so the predetermined line at the initial first read time t is the first (L in FIG. 8), and the number of repetitions is At the first read time of the first time, the predetermined line at t is the second (L in Fig. 8) and repeats
2 2 twenty two
し回数が 2回目の第 1読み出し時 tでの所定のラインは 3番目(図 7では L )となる。 However, the predetermined line at the first read t is the third (L in Fig. 7).
3 3 3 3
[0078] 実施例 1と同様に、これら各々の第 1読み出し時には所定のラインを駆動してキヤリ ァを読み出して、かつその所定のラインに隣接したラインを駆動せずにキャリアを読 み出さない。そして、各々の第 2読み出し時には所定のラインおよび隣接したラインを 同時に駆動してキャリアをそれぞれ同時に読み出す。 [0078] As in the first embodiment, at the time of each first read, a predetermined line is driven to read a carrier, and a carrier adjacent to the predetermined line is not driven and a carrier is not read out. . At the time of each second reading, a predetermined line and an adjacent line are simultaneously driven to simultaneously read the carriers.
[0079] また、従来の場合には、繰り返し回数カ^の第 1読み出し時 t での所定のラインは r+ 1 [0079] Also, in the conventional case, the predetermined line at t at the first read of the number of repetitions ^ is r + 1
(r+ 1) X nとなるのに対して、本実施例 2の場合には、繰り返し回数力^の第 1読み出 し時 t での所定のラインは (r+ 1) X (n—l)となる。したがって、従来のように図 6で r+ 1 In contrast to (r + 1) X n, in the case of the second embodiment, the predetermined line at t at the first reading of the repetition power ^ is (r + 1) X (n-l) It becomes. Therefore, r + 1 in Fig. 6 as before.
は同時に駆動するライン数力 ¾の場合と、本実施例 2のように図 8では同時に駆動す るライン数が(n+ 1)の場合とで、所定のラインが一致する。したがって、図 6のような 4 ライン同時駆動の場合には、本実施例 2では図 8に示すような 5ライン同時駆動を行 い、図 6のような 2ライン同時駆動の場合には、本実施例 2では図 8に示すような 3ライ ン同時駆動を行い、図 6のような 1ライン駆動の場合には、本実施例 2では図 8に示す ような 2ライン同時駆動を行う。このように本実施例 2では同時に駆動するライン数を 従来よりも 1つ増やすことで、繰り上がる数を同じにすることができるとともに、所定の ラインも同じにすることができる。 In FIG. 8, the number of lines that are driven simultaneously is the same as the number of lines that are simultaneously driven in FIG. Therefore, in the case of 4-line simultaneous drive as shown in FIG. 6, in Example 2, 5-line simultaneous drive as shown in FIG. 8 is performed, and in the case of 2-line simultaneous drive as shown in FIG. In Example 2, 3-line simultaneous drive as shown in FIG. 8 is performed, and in the case of 1-line drive as shown in FIG. 6, 2-line simultaneous drive as shown in FIG. 8 is performed in Example 2. As described above, in the second embodiment, by increasing the number of simultaneously driven lines by one as compared with the conventional case, the number of lines to be advanced can be made the same, and the predetermined lines can also be made the same.
[0080] 本実施例 2でも、実施例 1と同様に、図 8の各駆動方式間で互いに切り換えてもよい し、図 8のような各駆動方式を図 6のような各駆動方式に切り換えてもよ 、。 [0080] Also in the second embodiment, as in the first embodiment, the driving methods shown in Fig. 8 may be switched to each other. However, each drive system as shown in Fig. 8 can be switched to each drive system as shown in Fig. 6.
[0081] 本実施例 2に係る X線撮影装置による作用,効果は、相違点を除けば、上述した実 施例 1と同じなので、その説明を省略する。 Since the operations and effects of the X-ray imaging apparatus according to the second embodiment are the same as those of the first embodiment described above except for the differences, the description thereof will be omitted.
[0082] この発明は、上記実施形態に限られることはなぐ下記のように変形実施することが できる。 [0082] The present invention is not limited to the above embodiment, and can be modified as follows.
[0083] (1)上述した各実施例では、図 1に示すような X線撮影装置を例に採って説明した 力 この発明は、例えば C型アームに配設された X線撮影装置にも適用してもよい。 また、この発明は、 X線透視撮影装置や X線 CT装置にも適用してもよい。 (1) In each of the above-described embodiments, the force described by taking the X-ray imaging apparatus as shown in FIG. 1 as an example. The present invention also applies to, for example, an X-ray imaging apparatus disposed on a C-type arm. You may apply. The present invention may also be applied to an X-ray fluoroscopic apparatus and an X-ray CT apparatus.
[0084] (2)上述した各実施例では、入射した放射線を半導体厚膜 31 (半導体層)によって 電荷情報に直接に変換した、「直接変換型」の放射線検出器をこの発明は適用した 力 入射した放射線をシンチレータなどの変換層によって光に変換し、光感応型の 物質で形成された半導体層によってその光を電荷情報に変換する「間接変換型」の 放射線検出器をこの発明は適用してもよい。光感応型の半導体層については、フォ トダイオードで形成してもよ 、。 [0084] (2) In each of the above-described embodiments, the present invention is applied to a “direct conversion type” radiation detector in which incident radiation is directly converted into charge information by the semiconductor thick film 31 (semiconductor layer). The present invention applies an “indirect conversion type” radiation detector that converts incident radiation into light by a conversion layer such as a scintillator and converts the light into charge information by a semiconductor layer formed of a photosensitive material. May be. Photosensitive semiconductor layers may be formed with photodiodes.
[0085] (3)上述した各実施例では、 X線を検出する X線検出器を例に採って説明したが、 この発明は、 ECT (Emission Computed Tomography)装置のように放射性同位元素( RI)を投与された被検体から放射される y線を検出する γ線検出器に例示されるよう に、放射線を検出する放射線検出器であれば特に限定されない。同様に、この発明 は、上述した ECT装置に例示されるように、放射線を検出して撮像を行う装置であれ ば特に限定されない。 (3) In each of the above-described embodiments, an X-ray detector for detecting X-rays has been described as an example. However, the present invention is not limited to a radioisotope (RI) as in an ECT (Emission Computed Tomography) apparatus. ) Is not particularly limited as long as it is a radiation detector that detects radiation, as exemplified by a γ-ray detector that detects y-rays radiated from a subject administered. Similarly, the present invention is not particularly limited as long as it is an apparatus that detects an image by detecting radiation as exemplified by the ECT apparatus described above.
[0086] (4)上述した各実施例では、 X線などに代表される放射線検出器を例に採って説 明したが、この発明は、光を検出する光検出器にも適用できる。したがって、光を検 出して撮像を行う装置であれば特に限定されない。 (4) In each of the above-described embodiments, the radiation detector typified by X-rays has been described as an example. However, the present invention can also be applied to a photodetector that detects light. Therefore, the device is not particularly limited as long as the device detects light and performs imaging.
[0087] (5)上述した各実施例では、同時に駆動するライン数を変更して切り換えていたが 、必ずしも切り換える必要はない。 (5) In each of the embodiments described above, the number of lines to be driven simultaneously is changed and switched, but it is not always necessary to switch.
[0088] (6)上述した実施例 1では、最後の読み出しを除けば、同時に駆動するライン数を 変更せずに、第 1読み出し時での駆動制御、第 2読み出し時での駆動制御および( 第 2読み出し時を新たなる第 1読み出し時とする)設定を繰り返して行い、上述した実 施例 2では、初期の第 1読み出し時 (図 8を参照)を除いて各第 1読み出し時および 第 2読み出し時で同時に駆動するライン数を変更せずに、第 1読み出し時での駆動 制御、第 2読み出し時での駆動制御および上述した (第 2読み出し時を新たなる第 1 読み出し時とする)設定を繰り返して行ったが、同時に駆動するライン数を読み出し 時の途中で変更してもよい。 [0088] (6) In the first embodiment described above, except for the last read, the drive control at the first read, the drive control at the second read, and ( (The second read time is the new first read time) In Example 2, the drive control during the first read is performed without changing the number of lines driven simultaneously during the first read and the second read except for the initial first read (see Fig. 8). The drive control at the time of the second read and the setting described above (the second read at the time of the new first read) were repeated, but even if the number of lines to be driven at the same time is changed during the read Good.
[0089] (7)上述した各実施例のように、図 7、図 8に示す 5ライン同時駆動や 3ライン同時駆 動のように同時に駆動するライン数が 2を超える場合に適用してもよいし、図 7、図 8 に示す 2ライン同時駆動のように同時に駆動するライン数が 2の場合に適用してもよ い。同時に駆動するライン数が 2を超える場合には、図 7、図 8からも明らかなように、 第 1読み出し時に駆動し、かつ第 2読み出し時にも駆動するラインが、所定のラインを 含む複数のラインであることを示す。一方、同時に駆動するライン数が 2の場合には、 図 7、図 8からも明らかなように、第 1読み出し時に駆動し、かつ第 2読み出し時にも駆 動するライン力 所定のラインのみであることを示す。 (7) Like the above-described embodiments, the present invention can be applied to the case where the number of lines to be simultaneously driven exceeds two, such as the 5-line simultaneous drive and 3-line simultaneous drive shown in FIGS. Alternatively, the present invention may be applied to the case where the number of lines to be driven simultaneously is two, such as the two-line simultaneous driving shown in FIGS. When the number of lines to be driven simultaneously exceeds 2, as is clear from FIGS. 7 and 8, the lines that are driven during the first reading and that are also driven during the second reading include a plurality of lines including a predetermined line. Indicates a line. On the other hand, when the number of lines to be driven simultaneously is 2, as is clear from FIGS. 7 and 8, the line force that is driven at the time of the first reading and is driven at the time of the second reading is only a predetermined line. It shows that.
[0090] (8)この発明は、非照射時におけるリーク電流を放出するために、不必要なキャリア を複数ラインで同時に読み出して高速に掃き出す場合にも適用できる。また、視野外 の不必要なキャリアを複数ラインで同時に読み出して高速に掃き出す場合にも適用 できる。 [0090] (8) The present invention can also be applied to a case where unnecessary carriers are simultaneously read out by a plurality of lines and discharged at high speed in order to release a leakage current at the time of non-irradiation. It can also be applied to cases where unnecessary carriers outside the field of view are simultaneously read out by multiple lines and swept out at high speed.
Claims
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2006/324758 WO2008072311A1 (en) | 2006-12-12 | 2006-12-12 | Imaging device |
JP2008549146A JP4905460B2 (en) | 2006-12-12 | 2006-12-12 | Imaging device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2006/324758 WO2008072311A1 (en) | 2006-12-12 | 2006-12-12 | Imaging device |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2008072311A1 true WO2008072311A1 (en) | 2008-06-19 |
Family
ID=39511342
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2006/324758 WO2008072311A1 (en) | 2006-12-12 | 2006-12-12 | Imaging device |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP4905460B2 (en) |
WO (1) | WO2008072311A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010216919A (en) * | 2009-03-16 | 2010-09-30 | Olympus Corp | Image pickup device and cell image analyzing system equipped with the same |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003018610A (en) * | 2001-07-03 | 2003-01-17 | Casio Comput Co Ltd | Digital camera and image processing method |
JP2006308519A (en) * | 2005-05-02 | 2006-11-09 | Shimadzu Corp | Inspection method of radiation detector |
-
2006
- 2006-12-12 WO PCT/JP2006/324758 patent/WO2008072311A1/en active Application Filing
- 2006-12-12 JP JP2008549146A patent/JP4905460B2/en not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003018610A (en) * | 2001-07-03 | 2003-01-17 | Casio Comput Co Ltd | Digital camera and image processing method |
JP2006308519A (en) * | 2005-05-02 | 2006-11-09 | Shimadzu Corp | Inspection method of radiation detector |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010216919A (en) * | 2009-03-16 | 2010-09-30 | Olympus Corp | Image pickup device and cell image analyzing system equipped with the same |
Also Published As
Publication number | Publication date |
---|---|
JPWO2008072311A1 (en) | 2010-03-25 |
JP4905460B2 (en) | 2012-03-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4669653B2 (en) | Radiation imaging apparatus, radiation imaging system, and computer program | |
EP1440660B1 (en) | Radiographic apparatus | |
US8970755B2 (en) | Radiographic imaging device, radiographic imaging system, control method, and non-transitory computer readable medium | |
US7953207B2 (en) | Radiation conversion panel and method of capturing radiation image therewith | |
JP2007021184A (en) | Radiographic imaging apparatus, control method thereof, and radiographic imaging system | |
JP2004321310A (en) | Radiation imaging device | |
US9782137B2 (en) | Radiographic imaging system, method of controlling radiographic imaging system and recording medium storing program of controlling radiographic imaging system | |
KR101141378B1 (en) | Imager | |
JPH11311673A (en) | Radiation imaging device | |
JP4325788B2 (en) | Method and apparatus for increasing data collection speed in a digital detector | |
JPH09289985A (en) | X-ray image display method and device | |
JP4708576B2 (en) | Radiation imaging apparatus and control method | |
JP2007144064A (en) | Imaging sensor and imaging apparatus using the same | |
JP3984676B2 (en) | Photoelectric conversion device and system having the device | |
WO2008072311A1 (en) | Imaging device | |
JP4513648B2 (en) | Imaging device | |
JP2003130957A (en) | X-ray flat panel detector lag correction method and apparatus, and X-ray inspection apparatus | |
JP4618091B2 (en) | Imaging device | |
JP2006304213A (en) | Imaging device | |
JP2007000249A (en) | Imaging sensor and imaging apparatus using the same | |
JP2018195949A (en) | Radiation imaging device and radiation imaging system | |
JP4968364B2 (en) | Imaging device | |
JP2006153616A (en) | Radiation imaging device | |
JP2006304212A (en) | Imaging device | |
JP2010088460A (en) | Data processing method, radiation data processing method using the same and radiation imaging device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 06834513 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2008549146 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 06834513 Country of ref document: EP Kind code of ref document: A1 |