WO2008062870A1 - Optical guiding member, process for producing the same, optical waveguide and light guide plate - Google Patents
Optical guiding member, process for producing the same, optical waveguide and light guide plate Download PDFInfo
- Publication number
- WO2008062870A1 WO2008062870A1 PCT/JP2007/072665 JP2007072665W WO2008062870A1 WO 2008062870 A1 WO2008062870 A1 WO 2008062870A1 JP 2007072665 W JP2007072665 W JP 2007072665W WO 2008062870 A1 WO2008062870 A1 WO 2008062870A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- light guide
- layer
- less
- guide member
- layers
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/10—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
- G02B6/12—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
- G02B6/122—Basic optical elements, e.g. light-guiding paths
- G02B6/1223—Basic optical elements, e.g. light-guiding paths high refractive index type, i.e. high-contrast waveguides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y20/00—Nanooptics, e.g. quantum optics or photonic crystals
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/10—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
- G02B6/12—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
- G02B6/12004—Combinations of two or more optical elements
Definitions
- Light guide member method for manufacturing the same, light guide and light guide plate
- the present invention relates to a novel light guide member, a method for manufacturing the same, and an optical waveguide and a light guide plate.
- the light guide member excellent in heat resistance, light resistance, film formability, adhesion to the substrate and adhesion on the laminated surface, a method for producing the same, and an optical waveguide and a light guide plate including the light guide member About.
- optical equipment for example, when displaying a display unit of a display device such as a display, a button part of a facsimile, a telephone, a mobile phone, and other various household appliances, light emitted from a light source is emitted at a desired part.
- the required level of high quality is also increasing in the light guide plate.
- Cited Document 1 a siloxane polymer having a specific weight-average molecular weight and number-average molecular weight is used for the purpose of providing an optical waveguide having excellent environmental reliability such as a temperature cycle with few cracks.
- the invention of the optical waveguide used is disclosed.
- Patent Document 1 Japanese Patent Application Laid-Open No. 2004-91579
- Patent Document 2 Pamphlet of International Publication No. 2006/090804
- the conventional conventional light guide member including S et al., Cited reference 1 is hard and brittle, so if it is thickened or a coating is applied to a complicated substrate, it will crack.
- conventional light guide members include substrates and film materials that are laminated for moisture-proof purposes.
- the coating film Because of insufficient adhesiveness.
- the conventional light guide member has a problem of peeling of the coating film because the adhesion on the laminated surface is not sufficient when layers of different materials are laminated.
- the light guide member is also required to have heat resistance and light resistance that can be applied for long-term use.
- the present invention has been made in view of the above problems. That is, the first object of the present invention is excellent in heat resistance, light resistance, film formability, adhesion to substrates and film materials, and adhesion on the laminated surface, and cracks and peeling even after long-term use.
- An object of the present invention is to provide a light guide member that does not cause coloring, and an optical waveguide and a light guide plate using the same.
- the second object of the present invention is to have flexibility, excellent adhesion to a substrate or a film material, etc., and adhesion on a laminated surface.
- An object of the present invention is to provide a light guide member that does not occur, and an optical waveguide and a light guide plate using the same.
- a third object of the present invention is to provide a light guide member manufacturing method, a light guide member, and a light guide member capable of efficiently transmitting light source light and designing a light guide portion in a free shape and color.
- Optical waveguide used And it aims at obtaining a light-guide plate.
- NMR nuclear magnetic resonance
- the first light guide member of the present invention is a light guide member formed by laminating two or more layers having different refractive indexes, and at least two-layer force of the layers contacting each other. (Claim 1).
- the peak top position is in the region of chemical shift-40 ppm or more and Oppm or less, and the peak half-value width is 0.3 ppm or more and 3. Oppm or less, and
- the peak top position is in the region of chemical shift—80 ppm or more—less than 40 ppm, and the peak half-value width is 0.3 ppm or more and 5. Oppm or less.
- the content of silicon is 10% by weight or more.
- the content of silanol is 0.01% by weight or more and 10% by weight or less.
- Hardness measured by Durometer Type A is 5 or more and 90 or less.
- the second light guide member of the present invention is a light guide member formed by laminating two or more layers having different refractive indexes, and at least two-layer force of the layers in contact with each other. (Claim 2).
- the peak top position is in the region of chemical shift-40 ppm or more and Oppm or less, and the peak half-value width is 0.5 ppm or more and 3. Oppm or less, and
- the peak top position is in the region of chemical shift—more than 80ppm and less than 40ppm
- the peak half-value width is 1. Oppm or more and 5. Oppm or less
- the content of silicon is 10% by weight or more.
- the content of silanol is 0.01% by weight or more and 10% by weight or less.
- the refractive index of at least one of the layers in contact with each other is 1.45 or more (claim 3).
- the first and second light guide members of the present invention include at least one of the layers in contact with each other.
- the refractive index of one layer is 1.45 or more and the refractive index of at least one other layer is less than 1.45! / ⁇ (Claim 4).
- the third light guide member of the present invention is a light guide member formed by laminating two or more layers having different haze values, and at least two-layer force of the layers contacting each other satisfies the following conditions: (Claim 5).
- the peak top position is in the region of chemical shift-40 ppm or more and Oppm or less, and the peak half-value width is 0.3 ppm or more and 3. Oppm or less, and
- the peak top position is in the region of chemical shift—80 ppm or more—less than 40 ppm, and the peak half-value width is 0.3 ppm or more and 5. Oppm or less.
- the content of silicon is 10% by weight or more.
- the content of silanol is 0.01% by weight or more and 10% by weight or less.
- Hardness measured by Durometer Type A is 5 or more and 90 or less.
- a fourth light guide member of the present invention is a light guide member formed by laminating two or more layers having different haze values, and at least two layer forces of the layers contacting each other satisfy the following conditions: (Claim 6).
- the peak top position is in the region of chemical shift-40 ppm or more and Oppm or less, and the peak half-value width is 0.5 ppm or more and 3. Oppm or less, and
- the peak top position is in the region of chemical shift—more than 80ppm and less than 40ppm
- the peak half-value width is 1. Oppm or more and 5. Oppm or less
- the content of silicon is 10% by weight or more.
- the content of silanol is 0.01% by weight or more and 10% by weight or less.
- a fifth light guide member of the present invention is a light guide member in which two or more layers having different refractive indexes are laminated, and at least one of the layers has the following characteristics and emits light:
- a light source having a peak dominant wavelength of 5 OOnm or less is provided (claim 7).
- Hardness of Shore A is 5 or more and 100 or less, or Shore D is 0 or more and 85 or less.
- a sixth light guide member of the present invention is a light guide member formed by laminating two or more layers having different refractive indexes, and at least two-layer force of the layers in contact with each other. (Claim 8).
- Hardness of Shore A is 5 or more and 100 or less, or Shore D is 0 or more and 85 or less.
- a seventh light guide member of the present invention is a light guide member in which two or more layers having different haze values are laminated, and has at least one layer force of the layer, and has the following characteristics, and emits light
- a light source having a peak main wavelength power of S500 nm or less is provided (claim 9).
- Hardness of Shore A is 5 or more and 100 or less, or Shore D is 0 or more and 85 or less.
- An eighth light guide member of the present invention is a light guide member formed by laminating two or more layers having different haze values, and at least two-layer force of the layers in contact with each other. (Claim 10).
- Hardness of Shore A is 5 or more and 100 or less, or Shore D is 0 or more and 85 or less.
- the layer satisfying the above conditions (5) to (8) contains a bull group and / or a hydrosilyl group (claim 11). ).
- the third, fourth, seventh and eighth light guide members of the present invention preferably have at least one layer force S of the above-mentioned layer, and a ⁇ 1 value of 50 or more! / ⁇ (Claim 12).
- the first to eighth light guide members of the present invention it is preferable that at least one of the layers contains inorganic particles (claim 13). At this time, it is preferable that the median particle diameter of the inorganic particles is;! -10 nm! / ⁇ (claim 14)
- At least one of the layers has a median particle size of 0.
- the inorganic particles of 05 to 50 111 are contained, and that the layer and / or at least one other layer contains inorganic particles of a median particle size;! To lOnm! / (Claim 15).
- At least one of the layers includes a phosphor! (Claim 16).
- an angle formed between the side surface and the laminated surface of the member is 30 degrees or more and 80 degrees or less! Section 17).
- first to eighth light guide members of the present invention include a boundary portion penetrating at least two of the layers (claim 18).
- a method for producing a light guide member of the present invention is a method for producing a light guide member comprising a light guide layer formed by curing a fluid curable material on a substrate, the method comprising: The method includes a step of providing a weir for partitioning the light guide layer, a step of coating the curable material on the substrate, and a step of curing the curable material (claim 19).
- the weir is preferably provided by a dispenser (claim 20).
- a ninth light guide member of the present invention is a light guide member including a substrate, a light guide layer, and a weir that partitions the light guide layer, wherein the light guide layer includes a high refractive index layer and A low refractive index layer is provided, and the weir does not have a ridgeline (claim 21).
- the light guide layer is formed by curing a curable material (claim 22).
- the light guide layer has a scattering layer (claim 23).
- the light guide layer has a phosphor-containing layer (claim 24).
- the optical waveguide of the present invention is formed using the first to ninth light guide members of the present invention (claim 25).
- the light guide plate of the present invention is characterized by being formed using the first to ninth light guide members of the present invention (claim 26).
- the optical waveguide and the light guide plate formed using the first to fourth light guide members of the present invention suppress the generation of cracks even in the thick film portion where the degree of freedom in the film thickness design is high, and the substrate Peeling from the surface and peeling on the laminated surface are suppressed, and the heat resistance and light resistance are excellent.
- the fifth to eighth light guide members of the present invention are flexible, have excellent adhesion at the time of lamination, and can be used for a long period of time! And peeling on the laminated surface are suppressed.
- the optical waveguide and the light guide plate formed by using the fifth to eighth light guide members of the present invention can freely set the film thickness to a thin film force and a thin film, and the generation of cracks is suppressed even in long-term use. Peeling from the substrate and peeling on the laminated surface are suppressed.
- the shape and specification of the light guide member and the light guide plate can be changed. Even if it is not done, the light emitting part can be designed freely.
- FIG. 1 Figs. 1 (a) to 1 (f) are specific examples of the relationship between any two layers constituting the fifth to eighth light guide members of the present invention! /, FIG.
- FIG. 2 is a schematic sectional view showing an embodiment of a light guide plate using the first to eighth light guide members of the present invention.
- FIG. 3 is a schematic cross section showing an embodiment of a light guide plate using the first to eighth light guide members of the present invention.
- FIG. 4 is a schematic cross-sectional view showing an embodiment of a light guide plate using the first to eighth light guide members of the present invention.
- FIG. 5 is a schematic cross-sectional view showing an embodiment of a light guide plate using the first to eighth light guide members of the present invention.
- FIG. 6 is a schematic sectional view showing an embodiment of a light guide plate using the first to eighth light guide members of the present invention.
- FIG. 7 is a schematic sectional view showing an embodiment of a light guide plate using the first to eighth light guide members of the present invention.
- FIG. 8 is a schematic cross-sectional view showing an embodiment of a light guide plate using the first to eighth light guide members of the present invention.
- FIG. 9 is a schematic cross-sectional view showing an embodiment of a light guide plate using the first to eighth light guide members of the present invention.
- FIG. 10 is a schematic cross-sectional view showing an embodiment of a light guide plate using the first to eighth light guide members of the present invention.
- FIG. 11 is a schematic cross-sectional view showing an embodiment of a light guide plate using the first to eighth light guide members of the present invention.
- FIG. 12 (a) to FIG. 12 (c) are cross-sectional views schematically showing a method for manufacturing a light guide member as an eleventh embodiment of the present invention.
- FIG. 13 (a) and FIG. 13 (b) are perspective views schematically showing a weir for explaining an embodiment of the present invention.
- FIG. 17 is a schematic cross-sectional view of a light guide member as a fifteenth embodiment of the present invention.
- FIG. 20 A schematic cross-sectional view of a light guide member according to an eighteenth embodiment of the present invention.
- FIG. 21 is a schematic cross-sectional view of a light guide member as a nineteenth embodiment of the present invention.
- FIG. 22 is a schematic cross-sectional view of a light guide member as a twentieth embodiment of the present invention.
- FIG. 23 is a schematic cross-sectional view of a light guide member as a twenty-first embodiment of the present invention.
- FIG. 24 is a schematic cross-sectional view of a light guide member as a 22nd embodiment of the present invention.
- FIG. 25 is a schematic cross-sectional view of a light guide member as a 23rd embodiment of the present invention.
- FIG. 26 is a schematic cross-sectional view of a light guide member as a 24th embodiment of the present invention.
- FIG. 27 is a schematic cross-sectional view of a light guide member as a 25th embodiment of the present invention.
- FIG. 28 is a schematic cross-sectional view of a light guide member as a 26th embodiment of the present invention.
- FIG. 29 is a schematic cross-sectional view of the light-emitting device fabricated in Example C-15 of the present invention. Explanation of symbols
- the first to fourth light guide members of the present invention are characterized in that two or more layers are laminated.
- At least two layers in contact with each other have the following characteristics. Above all, it is preferable that the above-mentioned laminated layer has the following characteristics as V and deviation! /.
- At least two layers in contact with each other among the layers constituting the light guide member have the following characteristics (1) to (4).
- the peak top position is in the region of chemical shift-40 ppm or more and Oppm or less, and the peak half-value width is 0.3 ppm or more and 3. Oppm or less, and
- the peak top position is in the region of chemical shift—80 ppm or more—less than 40 ppm, and the peak half-value width is 0.3 ppm or more and 5. Oppm or less.
- Characteristic (2) The content of silicon is 10% by weight or more.
- At least two layers in contact with each other have the above characteristics (2) (3) and the following characteristics (5). Have.
- the peak top position is in the region of chemical shift-40 ppm or more and Oppm or less, and the peak half-value width is 0.5 ppm or more and 3. Oppm or less, and
- the peak top position is in the region where the chemical shift is 80 ppm or more and less than 40 ppm, and the peak half-value width is 1. Oppm or more and 5. Oppm or less
- the specific layer A according to the present invention satisfies the characteristics (1) or (5). That is, the specific layer A according to the present invention is formed of a material that satisfies the above characteristic (1) or (5). These materials are usually compounds having a main component of key or a composition containing the compound. The compound whose main component is Ca is expressed by the SiO 2 ⁇ ⁇ 2 ⁇ formula, but structurally,
- an oxygen atom ⁇ is bonded to each vertex of the tetrahedron of the key atom Si, and a key atom Si is further bonded to these oxygen atoms o to have a net-like structure.
- the schematic diagram shown below shows the net structure of Si o ignoring the tetrahedral structure described above, but in the repeating unit of Si—O—Si o, some of the oxygen atoms o are others. Some of them are substituted with a member of (for example, H, -CH, etc.).
- each Q ° Q 4 peak derived from the Q site is referred to as a Q n peak group.
- the Q n peak group of silica films that do not contain organic substituents is usually observed as multi-peaks that are continuous in the region of chemical shift – 80–130 ppm.
- a C atom with three oxygen atoms and one other atom (usually carbon) is generally called a T site.
- the peaks derived from the T site are observed as T ° T 3 peaks, as in the Q site.
- each peak derived from the ⁇ site is referred to as ⁇ ⁇ peak group.
- the ⁇ peak group is generally observed as a multimodal peak in the higher magnetic field side (usually chemical shift – 80 to 40 ppm) than the Q n peak group.
- a key atom in which two oxygen atoms are bonded and two other atoms (usually carbon) are bonded is generally referred to as a D site.
- the peaks originating from the D site are also observed as D ° D n peaks (D n peak groups), as well as the peak groups originating from the Q site and T site, and are further observed from the Q n and T n peak groups. It is observed as a multi-modal peak in the high magnetic field region (normally chemical shift 0 40 ppm region).
- the ratio of the area of each peak group of D n T n Q n is equal to the molar ratio of the key atoms in the environment corresponding to each peak group.
- the total area of the D n peak group and the T n peak group usually corresponds to the molar amount of all the atoms bonded directly to carbon atoms.
- peaks below 80 ppm correspond to Q n peaks as described above, and peaks above 80 ppm correspond to D n and T n peaks.
- the Q n peak is not essential, but at least one, preferably a plurality of peaks are observed in the D n and T n peak regions.
- the chemical shift value of the specific layer can be calculated based on the results obtained by performing solid Si-NMR measurement using the method described later in the description of Examples, for example! it can.
- analysis of measurement data is performed by dividing and extracting each peak by, for example, waveform separation analysis using a Gaussian function or a mouth-lentz function.
- the specific layer A is hardened without cracks even in the thick film portion, and has excellent adhesion to the substrate and the laminated surface between the layers.
- the above-mentioned characteristics (1) or (5) are desirable for exhibiting excellent characteristics when it is possible to obtain a cured product with excellent heat resistance. The reason is not clear. ! / Is estimated as follows.
- a melting method in which low melting point glass is melted and sealed, and a solution obtained by hydrolyzing and polycondensing alkoxysilane or the like at a relatively low temperature is applied and dried and cured.
- a sol-gel method There is a sol-gel method.
- the member obtained from the melting method is mainly a force S in which only the Qn peak is observed, a high temperature of at least 350 ° C is required for melting, and the light guide member is thermally deteriorated. .
- sol-gel glass When sol-gel glass is used as the light guide member, there is a problem that a sufficient film thickness must be secured because it is applied to a substrate having a complicated shape.
- heating at a high temperature of 400 ° C. or more is required, and the peripheral members including the substrate are thermally deteriorated. It was not.
- a trifunctional having a Tn peak is used to adjust the crosslinking density and to make the film flexible.
- silane and / or a bifunctional silane having a D ⁇ peak are used to adjust the crosslinking density and to make the film flexible.
- the volume reduction due to dehydrocondensation and the crosslinking density can be reduced appropriately within a range that does not hinder the function.
- the hydrolysis / condensation process and the drying process it is possible to obtain a transparent glass film-like member having a film thickness of 1000 m. Therefore, in the present invention, the presence of a T n peak and / or a D n peak observed at 80 ppm or more is essential.
- a technique for thickening a bifunctional or trifunctional raw material as a main component for example, a technique of hard coat film technology such as glasses is known. is there. Since these hard coat films are thin, solvent volatilization is easy and uniform curing is possible. Differences in adhesion to the base material and linear expansion coefficient were the main causes of cracks. In contrast, in the first to fourth light guide members of the present invention having flexibility, since the film thickness is as large as the paint, the film itself has a certain degree of strength, and there is a slight difference in the linear expansion coefficient. Absorbable. If such a film is not flexible, the generation of internal stress, which is different from the case of a thin film, becomes a new problem due to volume reduction by solvent drying.
- the half-value width of the peak observed in the region of -80 ppm or higher is smaller than the half-value width range of the light guide member known so far by the Solgenole method (narrow! /,).
- the half-width of the T n peak group in which the peak top position is observed at ⁇ 80 ppm or more and less than 40 ppm is usually 5 Oppm or less, preferably 4. Oppm or less, usually 0.3 ppm or more, and preferably 0.5 ppm or more (characteristic (1)).
- the half width of the T n peak group observed at a peak top position of 80 ppm or more and less than 40 ppm is usually 5.
- Oppm or less preferably 4.
- Oppm or less and usually 1.
- Oppm or more preferably 1.5 ppm or more (Characteristic (5)).
- the half width of D n peak group the position of the peak top is observed below 4 Oppm above Oppm is small fry constraints of molecular motion T n sag lower than the one peak group usually 3.
- Oppm following general, preferably 2.
- the half-value width of the D n peak group in which the peak top position is observed at 40 ppm or more and Oppm or less is because the constraint of molecular motion is small! / ⁇ Usually sag lower than the one of T n peak group 3.
- the half-value width of the peak observed in the chemical shift region is larger than the above range, the molecular motion is constrained and the strain is large, resulting in cracks and from the coated substrate. As soon as peeling occurs, it may become a member with poor heat resistance and weather resistance. For example, when a large amount of tetrafunctional silane is used, or when a large internal stress is accumulated by rapid drying in the drying process, the full width at half maximum is larger than the above range.
- the peak half-value width is smaller than the above range! /
- the Si atoms in the environment It will be not involved in hexane crosslinking, for example example only D 2 peak of crosslinking portion is formed by Si- c binding dimethyl siloxane chain as a silicone resin is observed and, trifunctional silane-residual uncrosslinked state
- the material is inferior in heat resistance and weather resistance to a material formed mainly of a siloxane bond.
- the solid Si nuclear magnetic resonance spectrum of the specific layer of the first to fourth light guide members of the present invention is selected from the group consisting of the D n peak group and the T n peak group having a half-value width in the above-described range. It is desirable to have at least one peak, preferably two or more peaks.
- the specific layer of the first to fourth light guide members of the present invention must have a key content of 10% by weight or more (characteristic (2)). That is, the specific layer A according to the present invention must have a silicon content of 10% by weight or more of the material forming the specific layer A.
- the basic skeleton of the specific layer A of the first to fourth light guide members of the present invention is the same inorganic siloxane bond as glass (silicate glass). As is apparent from the chemical bond comparison table shown in Table 1 below, this siloxane bond has the following excellent characteristics as a light guide member.
- the specific layer A which is a silicone-based layer formed of a skeleton in which siloxane bonds are bonded three-dimensionally and with a high degree of cross-linking, uses other materials such as epoxy resin V, Unlike layers, it is close to inorganic substances such as glass or rock, and it can be understood that it becomes a protective film with high heat resistance and light resistance.
- the specific layer A having a methyl group as a substituent does not absorb in the ultraviolet region, and therefore is excellent in light resistance in which photolysis is difficult to occur.
- the key layer content of the specific layer A of the first to fourth light guide members of the present invention is not less than 10% by weight as described above. Usually 20 weights as it is not necessary to contain the ingredients necessary for refractive index. / Is 0 or more, among them preferably at least 25 wt%, more preferably 30 weight 0/0 above. On the other hand, the upper limit is usually 47% for the reason that the silicon content of the glass composed only of SiO is 47% by weight. / 0 or less.
- the content ratio of the specific layer A of the first to fourth light guide members of the present invention is determined by, for example, inductively coupled high-frequency plasma spectroscopy using a method described later in the description of the embodiments.
- Plasma spectrometry hereinafter abbreviated as “ICP” where appropriate.
- Analysis can be performed and calculated based on the results.
- the specific layer A of the first to fourth light guide members of the present invention usually has a silanol content of 0.01. % By weight or more, preferably 0.1% by weight or more, more preferably 0.3% by weight or more, and usually 10% by weight or less, preferably 8% by weight or less, more preferably 6% by weight or less. (Characteristic (3)). That is, in the specific layer A according to the present invention, the silanol content of the material forming the specific layer A is in the above range.
- a glass body obtained by a sol-gel method using alkoxysilane as a raw material is 150 ° C,
- the fracture surface of the member has more silanol and less moisture permeability, but it has high surface hygroscopicity and is likely to invade water! /. It is possible to reduce the silanol content by high-temperature firing at 400 ° C or higher, but the heat resistance of the light guide member is almost 260 ° C or lower, which is not realistic.
- the first to fourth light guide members of the present invention have a low silanol content in the specific layer A! /, And therefore have excellent long-term performance stability with little change over time. Low! / Excellent performance.
- the member or layer containing no silanol is inferior in the adhesion to the substrate or the adhesion on the laminated surface when the light guide member is a laminate, the silanol content is optimal as described above in the present invention. Range exists.
- the specific layer A contains an appropriate amount of silanol
- silanol is hydrogen bonded to the polar portion present on the substrate or the laminated surface of each layer.
- Adhesion is developed.
- the polar part include hydroxyl group and metalloxane-bonded oxygen.
- the silanol content of the specific layer A of the first to fourth light guide members of the present invention is, for example, measured by a solid Si-NMR spectrum using the method described below, and derived from silanol with respect to the total peak area. From the ratio of peak area, silanol in all the key atoms Obtain the ratio ratio ((%%)) of the key element and the atomic ratio of the content of the key element that was analyzed separately. This is where you can compare the comparison here and the comparison here. .
- Nana any Aerosilojiru, such as any non-inorganic inorganic particles containing Sishiraran noorru.
- AA may contain Sishiraranol, but it may be a force SS, or it may be a special fixed layer.
- the compound compound strength SS which forms the main body, forms the layer AA. It's a good idea to have Sicilara nonor contained here. .
- the first to fourth to fourth specific light guide members of the light guide and light guide member are fixed solid layers AA, solid solid SSii——NNMMRR spectrum If you are going to perform a solid-state SSii——NNMMRR spectrum measurement and data analysis under the following conditions: I'll do it. .
- the ratio ratio ((%%)) of the key element that is the silarananol of the middle is determined and analyzed separately.
- the content ratio of sishiraranol content can be determined by comparing with the content ratio of the key element. .
- the analysis of measurement measurement data is, for example, a Gagarous function number
- Prolo Robe :: 77 .. 55mmmm ⁇ Propro Robe for CCPP // MMAASS
- Measurement measurement method Shishingugururupaparurusu method
- 512 points are taken as measurement data, zero-filled to 8192 points, and Fourier transformed.
- optimization calculation is performed by nonlinear least square method with the center position, height, and half width of the peak shape created by Lorentz waveform and Gaussian waveform or a mixture of both as variable parameters. Do.
- the silanol content of the specific layer A of the first to fourth light guide members of the present invention can also be determined by the following IR measurement.
- IR measurement is easy to identify the silanol peak, but the shape of the peak is broad, the area error occurs, and it is necessary to accurately prepare a sample with a fixed film thickness for the quantitative work immediately. Therefore, it is preferable to use solid-state Si-NMR for strict quantification.
- the concentration of silanol can be determined by complementary IR measurement.
- Measurement example A thin film sample with a film thickness of 200 11 m is coated on a Si wafer, and the infrared absorption spectrum of each Si wafer is measured by the transmission method to determine the total silanol peak area of wave numbers SYSlcnT 1 and SYOlcnT 1 .
- trimethylsilanol is anhydrous as a known concentration sample. It is possible to measure the infrared absorption spectrum by the transmission method using a liquid cell with an optical path length of 200 m after diluting in carbon tetrachloride and calculating the silanol concentration by comparing the peak area ratio with the actual sample. .
- the peak derived from the sample adsorbed water is detected as the background of the silanol peak, so the sample thin film must be heated at 150 ° C for 20 minutes or more at normal pressure before measurement, Remove adsorbed water by vacuuming for 10 minutes or longer.
- the hardness measurement value is an index for evaluating the hardness of the specific layer A of the first to fourth light guide members of the present invention, and is measured by the following hardness measurement method.
- the specific layer A of the first to fourth light guide members of the present invention is preferably a member exhibiting an elastomeric shape. That is, the first to fourth light guide members of the present invention are forces that normally use a plurality of members having different thermal expansion coefficients in the substrate or each layer. As described above, the specific layer A is an elastomer. By exhibiting the shape, the first to fourth light guide members of the present invention using the specific layer A and the specific layer A can relieve stress due to expansion and contraction of the respective parts. Therefore, it is possible to provide a light guide member that is excellent in reflow resistance and temperature cycle resistance, which is difficult to cause peeling, cracking, and disconnection during use.
- the specific layer A of the first to fourth light guide members of the present invention has a hardness measurement value (Shore A) by durometer type A of usually 5 or more, preferably 7 or more, more preferably Is 10 or more, and usually 90 or less, preferably 80 or less, more preferably 70 or less (characteristic (4)).
- a hardness measurement value (Shore A) by durometer type A of usually 5 or more, preferably 7 or more, more preferably Is 10 or more, and usually 90 or less, preferably 80 or less, more preferably 70 or less (characteristic (4)).
- the hardness measurement value (Shore A) can be measured by the method described in JIS K6253. Specifically, measurement can be performed using an A-type rubber hardness meter manufactured by Furusato Seiki Seisakusho.
- the specific layer A of the first to fourth light guide members of the present invention is mainly characterized by the above characteristics.
- the specific layer A of the first to fourth light guide members of the present invention emits light from the light source with a film thickness of lmm when a semiconductor light emitting device or the like is used as a light source for an optical waveguide or a light guide plate. It is preferable that the light transmittance (transmittance) at a wavelength is usually 80% or more, particularly 85% or more, and more preferably 90% or more! /.
- the specific layer A is used as a light-transmitting part in the light guide member, if the transparency of the light-transmitting part is low, the luminance of the light source using the light-transmitting part is reduced. Or it becomes difficult to obtain final products, such as a light-guide plate.
- the “emission wavelength of the light source” for example, in the case of a semiconductor light emitting device, the value varies depending on the type, but is generally 300 nm or more, preferably 350 nm or more, and usually 900 nm.
- the wavelength is preferably in the range of 500 nm or less. If the light transmittance at a wavelength in this range is low, the specific layer A absorbs light, and the light extraction efficiency decreases, making it impossible to obtain a high-intensity optical waveguide or light guide plate. Furthermore, the energy corresponding to the decrease in light extraction efficiency is changed to heat, which causes thermal deterioration of the optical waveguide or the light guide plate.
- the optical material In the ultraviolet to blue region (300 nm to 500 nm), the optical material is susceptible to light degradation. Therefore, if the specific layer A having excellent durability is used as a light source having an emission wavelength in this region, the optical material Since an effect becomes large, it is preferable.
- the light transmittance of the optical material such as the material of the specific layer A is measured with an ultraviolet spectrophotometer using a sample of a single cured film having a smooth surface molded to a film thickness of 1 mm, for example, by the following method. I can do that.
- the wavelength is between 200 nm and 800 nm. ! /, Measure the light transmittance.
- the specific layer A of the first to fourth light guide members of the present invention preferably satisfies the following conditions. That is, the specific layer A of the first to fourth light guide members of the present invention is the solid Si nuclear magnetism described above.
- the ratio of (total area of peaks with chemical shift of 40 ppm or more and Oppm or less) / (total area of peaks with chemical shift of less than 40 ppm) (hereinafter referred to as “peak area ratio according to the present invention” as appropriate) is usually It is preferably 3 or more, preferably 5 or more, more preferably 10 or more, and usually 200 or less, preferably 100 or less, more preferably 50 or less.
- the specific layer A of the first to fourth light guide members of the present invention is difunctional silane, trifunctional silane or tetrafunctional. This indicates that it has more than trifunctional or higher silanes such as silane. As described above, the presence of many silanes having two or less functional groups makes it possible for the specific layer A to exhibit an elastomeric shape and to relieve stress.
- the specific layer A may exhibit an elastomeric shape even if it does not satisfy the above-described conditions regarding the peak area ratio, which is a force of the present invention.
- this is the case when the specific layer A is produced using a coupling agent such as an alkoxide of a metal other than silicon as a crosslinking agent.
- the method for causing the specific layer A to exhibit an elastomeric shape is arbitrary, and is not limited to the above-mentioned conditions!
- the specific layer A of the first to fourth light guide members of the present invention includes a predetermined functional group (for example, hydroxyl group, oxygen in a metalloxane bond, etc.) present on the surface of a resin such as polyphthalamide, ceramic or metal. ) And a functional group capable of hydrogen bonding.
- the substrate for installing the light guide member is usually made of resin, ceramic or metal.
- a hydroxyl group usually exists on the surface of ceramic or metal.
- the specific layer A usually has a functional group capable of hydrogen bonding with the hydroxyl group. Therefore, the first to fourth light guide members of the present invention having the specific layer A are excellent in adhesion to the substrate by the hydrogen bond.
- Examples of the functional group capable of hydrogen bonding to the hydroxyl group of the specific layer A include silanol and alkoxy group.
- the functional group may be one kind or two or more kinds.
- the specific layer A according to the present invention has these functional groups and thus has excellent adhesion, It is a noteworthy feature that it is possible to laminate by means of. Utilizing this property, it is possible to easily produce a light guide member having a light guide function, an optical waveguide, a light guide plate, etc. by laminating two or more layers with adjusted refractive indexes.
- the specific layer A has a functional group capable of hydrogen bonding to a hydroxyl group depends on solid Si-NMR, solid 1 H-NMR, infrared absorption spectrum (IR), It can be confirmed by spectroscopic techniques such as Raman spectra.
- the specific layer A of the first to fourth light guide members of the present invention is excellent in heat resistance. That is, even when left under high temperature conditions, the transmittance of light having a predetermined wavelength does not easily change.
- the specific layer A has a transmittance maintaining power for light having a wavelength of 400 nm before and after being left at 200 ° C. for 500 hours, usually 80% or more, preferably 90% or more, more preferably 95% or more. In addition, it is usually 110% or less, preferably 105% or less, more preferably 100% or less.
- the variation ratio can be measured by the transmittance measurement using an ultraviolet / visible spectrophotometer in the same manner as the light transmittance measurement method described above in [A-15 1].
- the specific layer A of the first to fourth light guide members of the present invention is excellent in light resistance. That is, even when UV (ultraviolet light) is irradiated, the transmittance with respect to light having a predetermined wavelength is not easily changed.
- the specific layer A has a transmittance maintenance factor of light at a wavelength of 400 nm before and after irradiation with light having a center wavelength of 380 nm and a radiation intensity of 0.4 kW / m 2 for 72 hours. It is 90% or more, more preferably 95% or more, and usually 110% or less, preferably 105% or less, more preferably 100% or less.
- the variation ratio can be measured by the transmittance measurement using an ultraviolet / visible spectrophotometer in the same manner as the light transmittance measurement method described above in [A-15 1].
- the specific layer A of the first to fourth light guide members of the present invention is usually produced using an organometallic compound catalyst containing at least one element selected from zirconium, hafnium, tin, zinc, and titanium. The Therefore, these catalysts usually remain in the specific layer A. ing.
- the specific layer A contains the above organometallic compound catalyst in terms of metal element, usually 0.001% by weight or more, preferably 0.01% by weight or more, more preferably 0.02% by weight or more, Further, it is usually contained in an amount of not more than 0.3% by weight, preferably not more than 0.2% by weight, more preferably not more than 0.1% by weight.
- the oxide particles containing the above metal element are blended for the purpose of adjusting the refractive index of the specific layer A, an amount of the metal element exceeding the above range is detected.
- the content of the organometallic compound catalyst is as follows: It can be measured by ICP analysis.
- the specific layer A of the first to fourth light guide members of the present invention is obtained by measuring the material forming the specific layer A (specific layer forming liquid A described later) by GPC (gel permeation chromatography).
- the polystyrene-reduced weight average molecular weight (Mw) is usually 500 or more, preferably 900 or more, more preferably ⁇ 3200 or more, usually 400 or less, preferably ⁇ is 70,000 or less, Preferably it is 27,000 or less. If the weight average molecular weight is too small, bubbles tend to be generated during curing after substrate coating, or liquid leakage tends to occur from minute gaps between the package and the substrate. There is a tendency to increase in viscosity over time, complex shape on the board, and filling efficiency to the wiring part.
- the molecular weight distribution (Mw / Mn, where Mw represents the weight average molecular weight and Mn represents the number average molecular weight) is usually 20 or less, preferably 10 or less, more preferably 6 or less. . If the molecular weight distribution is too large, the member tends to thicken over time even at low temperatures and the coating efficiency to the substrate tends to deteriorate. Mn can be measured in terms of polystyrene by GPC, the same as Mw.
- the specific layer forming liquid A for the first to fourth light guide members of the present invention preferably has a low molecular weight component having a specific molecular weight or less.
- the component having a molecular weight of 800 or less in the GPC area ratio in the specific layer forming liquid A is usually 10% or less, preferably 7.5% or less, more preferably 5% or less of the whole. If there are too many low molecular weight components, bubbles may be generated at the time of curing after coating the substrate, and the weight yield (solid content ratio) at the time of curing may decrease due to volatilization of the main component.
- the specific layer forming liquid A of the first to fourth light guide members of the present invention has a specific molecular weight or more. Those having a low molecular weight component are preferred. Specifically, in the GPC analysis value of the specific layer forming liquid A, the molecular weight force at which the high molecular weight fractionation range is 5% is usually 1000000 or less, preferably 30000 or less, more preferably 110000 or less. If there are too many high molecular weight fractions in GPC,
- the specific layer forming liquid A for the first to fourth light guide members of the present invention is preferably in the molecular weight range shown above. The following methods can be mentioned.
- reaction rate and conditions during the synthesis reaction are appropriately controlled so that the polymerization reaction proceeds uniformly, and the molecular weight distribution is not increased more than necessary.
- the specific layer A is formed from a polycondensate obtained by hydrolysis and polycondensation of a specific compound as in "[A-2] Method for producing a light guide member"
- the specific layer is formed.
- Hydrolysis during synthesis of liquid A ⁇ It is preferable to proceed the polymerization reaction uniformly while maintaining an appropriate reaction rate.
- Hydrolysis ⁇ Polymerization is usually in the range of 15 ° C or higher, preferably 20 ° C or higher, more preferably 40 ° C or higher, and usually 140 ° C or lower, preferably 135 ° C or lower, more preferably 130 ° C or lower. To do.
- the hydrolysis / polymerization time varies depending on the reaction temperature, but is usually 0.1 hour or longer, preferably 1 hour or longer, more preferably 3 hours or longer, and usually 100 hours or shorter, preferably 20 hours or shorter, more preferably 15 hours. It is carried out in the range of less than time. If the reaction time is shorter than this, the force that does not reach the required molecular weight, i.e., the reaction proceeds non-uniformly, resulting in the presence of high molecular weight components while the low molecular weight raw material remains, resulting in poor cured product quality and storage stability. May become poor. Also, if the reaction time is longer than this, the polymerization catalyst may be deactivated, or the synthesis may take a long time and the productivity may deteriorate.
- reaction activity of the raw material is low and the reaction is difficult to proceed, if necessary, for example, an inert gas such as argon gas, helium gas, nitrogen gas, etc. is circulated so that moisture generated in the condensation reaction can be reduced.
- the reaction may be accelerated by removing the alcohol accompanied.
- the reaction time is preferably adjusted as appropriate while controlling the molecular weight by GPC and viscosity measurement. Furthermore, it is preferable to adjust in consideration of the temperature rising time.
- the solvent distillation When using a solvent, it is preferable to carry out the solvent distillation at normal pressure as required. Further, when the boiling point of the solvent or the low molecular weight substance to be removed is the curing start temperature (usually 120 ° C or higher), it is preferable to carry out distillation under reduced pressure as necessary. On the other hand, depending on the purpose of use, such as thin coating of the light guide film, a part of the solvent may remain for reducing the viscosity. A solvent different from the reaction solvent may be mixed after the reaction solvent is distilled off.
- the upper limit and the lower limit of the molecular weight distribution of the specific layer forming liquid A are not necessarily limited to one if the upper limit and the lower limit are preferably within the above range.
- the molecular weight distribution curve may be multimodal. For example, in order to give mechanical strength to the specific layer A, a small amount of the second specific layer forming liquid A having a low molecular weight containing a large amount of adhesion components is contained in the first specific layer forming liquid A finished to a high molecular weight. This is the case.
- the specific layer forming liquid A and the specific layer A of the first to fourth light guide members of the present invention are those of the heat generation gas in the range of 40 ° C to 210 ° C in the TG-mass (pyrolysis MS chromatogram). It is preferable that the chromatogram integral area is small!
- TG-mass is a chromatogram integral in the temperature range of 40 ° C to 210 ° C that detects the low-boiling components in the specified layer forming solution A and the specified layer A by raising the temperature of the specified layer forming solution A.
- a large area indicates that low-boiling components such as water, solvent, and 3- to 5-membered cyclic siloxane are present in the component.
- the amount of low-boiling components increases, the generation of bubbles or bleed-out during the curing process, and the lower the adhesion to the substrate, the more insufficient the curing or the weight loss during curing.
- the specific layer forming liquid A and the specific layer A have few such low-boiling components. Those are preferred.
- the TG-mass can be measured by the following operation under the following measurement conditions.
- Heating furnace Frontier 'Lab PY—2010 type
- Reheating furnace heating program 40 ° C ⁇ 10 ° C / min ⁇ 400 ° C
- Ionization chamber temperature 200 ° C
- the gas components generated from the heated sample are introduced into the gas chromatograph through an empty column and MS analysis is performed.
- About 10 mg of sample solution is put into a platinum cell (cup) and heated at 40 ° C to 400 ° C and 10 ° C / min under He flow.
- the specific layer forming liquid A is solidified at around 120 ° C .; After that, it is heated in a solid state.
- examples of a method for reducing the amount of the low boiling point component detected by TG mass include the following methods.
- the hydrolysis / polycondensation reaction time varies depending on the reaction temperature, usually 0.1 hour or more, preferably 1 hour or more, more preferably 3 hours or more, and usually 100 hours or less, preferably 20 hours or less, Preferably, it is carried out for 15 hours or less.
- the reaction time is preferably adjusted appropriately while sequentially controlling the molecular weight by GPC and viscosity measurement. Furthermore, it is preferable to adjust the temperature in consideration of the heating time.
- the curing start temperature during the synthesis of the specific layer forming liquid A While suppressing unnecessary polymerization at the following temperatures, natural distillation, light-boiling concomitant removal by circulation of inert gas such as argon gas, nitrogen gas, helium gas, etc. It is preferable to remove low boiling components having a boiling point of about room temperature to 260 ° C.
- the temperature condition when the solvent is distilled off is usually 60 ° C or higher, preferably 80 ° C or higher, more preferably 100 ° C or higher, and usually 150 ° C or lower, preferably 130 ° C or lower, more preferably 120 ° C or lower. It is also possible to remove unnecessary light-boiling substances by using a separate raw material before synthesis! /.
- the first to fourth light guide members of the present invention have layers other than the specific layer A as long as at least two of the layers of the light guide member are the specific layer A. Also good.
- a known layer can be arbitrarily applied.
- the layers other than the specific layer A may be provided with only one layer, or may be provided with two or more layers.
- more of the layers of the first to fourth light guide members of the present invention have the characteristics as the specific layer A. It is more preferable that all the layers have the characteristics as the specific layer A described above.
- each layer which comprises the 1st-4th light guide member of this invention can each be manufactured by arbitrary methods.
- the specific layer A is obtained by, for example, hydrolyzing and polycondensing a compound represented by the following general formula (1) or general formula (2) and / or an oligomer thereof, to form a polycondensate (hydrolysis / polycondensate). ) Can be obtained by drying.
- the specific layer A is mainly composed of a siloxane bond, it is desirable that the compound represented by the general formula (1) or the oligomer thereof is mainly composed of a raw material.
- the hydrolysis polycondensate contains a solvent, the solvent may be distilled off in advance before drying.
- the hydrolyzed polycondensate or a composition containing it is referred to as a specific layer forming liquid A that is obtained before the drying step. Therefore, when the specific layer A of the first to fourth light guide members of the present invention is manufactured by the manufacturing method described here (hereinafter referred to as “the specific layer manufacturing method according to the present invention” as appropriate), this specific What was obtained from the layer forming liquid A through the drying step is the specific layer A.
- compound (1) a compound represented by the following general formula (1) (hereinafter referred to as “compound (1)”) and / or an oligomer thereof is used.
- M is at least one element selected from the group consisting of silicon, aluminum, zirconium, and titanium. Of these, key is preferable.
- X is a hydrolyzable group that is hydrolyzed by water in the solution or moisture in the air to form a highly reactive hydroxyl group. It can be used arbitrarily. For example, a C1-C5 lower alkoxy group, acetoxy group, butanoxime group, chloro group and the like can be mentioned.
- Ci (i is a natural number) indicates that the number of carbon atoms is i.
- X may be a hydroxyl group.
- a C1-C5 lower alkoxy group is preferable because a component liberated after the reaction is neutral.
- a methoxy group or an ethoxy group is preferable because it is highly reactive and the solvent to be liberated is light boiling.
- Y 1 can be arbitrarily selected and used as a monovalent organic group of a so-called silane coupling agent.
- the organic group particularly useful as Y 1 in the general formula (1) in the present invention is selected from the following group represented by Y ° (useful organic group group).
- other organic groups may be appropriately selected for improving the affinity between the specific layer and other materials, improving adhesion, adjusting the refractive index of the specific layer A, and the like.
- ⁇ ° A monovalent or higher-valent organic group derived from an aliphatic compound, alicyclic compound, aromatic compound, or aliphatic aromatic compound.
- the carbon number of the organic group belonging to the group is usually 1 or more, usually 1000 or less, preferably 500 or less, more preferably 100 or less, and still more preferably 50 or less.
- the hydrogen atoms of the organic group belonging to the group may be substituted with a substituent such as the atoms and / or organic functional groups exemplified below.
- a plurality of hydrogen atoms of the organic group belonging to the group ⁇ ° are substituted with the following substituents. In this case, it may be substituted by one or a combination of two or more selected from the substituents shown below!
- substituents that can be substituted with hydrogen atoms of organic groups belonging to the group Y ° include atoms such as F, Cl, Br, and I; bur group, methacryloxy group, attaryloxy group, styryl group, mercapto group, Organic functional groups such as epoxy group, epoxycyclohexyl group, glycidoxy group, amino group, cyano group, nitro group, sulfonic acid group, carboxy group, hydroxy group, acyl group, alkoxy group, imino group, and phenyl group Etc.
- the organic functional group is at least one of the hydrogen atoms of the organic functional group. Some may be substituted with halogen atoms such as F, Cl, Br, and I. However, among those exemplified as substituents capable of substituting hydrogen for organic groups belonging to the group Y °, organic functional groups are examples of those that are easy to introduce, and various other types of physical chemistry depending on the purpose of use. An organic functional group having functional functionality may be introduced.
- the organic group belonging to the group ⁇ ° may have various atoms or atomic groups such as ⁇ , ⁇ , or S as a linking group.
- Y 1 is a group capable of selecting various groups depending on the purpose from the organic groups belonging to the useful organic group group Y ° described above. From the viewpoint of excellent ultraviolet resistance and heat resistance, a methyl group is The main body is preferable.
- Specific examples of the compound (1) are as follows.
- Examples of the compound in which ⁇ is a key include phenyloxysilane, butyltrimethoxysilane, butyltriethoxysilane, butylmethoxysilane, and orange.
- Examples include trichlorosilane, butururis (2-methoxyethoxy) silane, trifluoropropyltrimethoxysilane, and the like.
- examples of the compound in which ⁇ ⁇ is aluminum include, for example, aluminum triisopropoxide, aluminum tri- ⁇ butoxide, aluminum tri-t-butoxide
- Examples of the compound (1) in which M is zirconium include, for example, zirconium tetramethoxide, zirconium tetraethoxide, and zirconium tetra n propoxide.
- Zirconium tetra i propoxide Zirconium tetra n butoxide, Zirconium tetra i-butoxide, Zirconium tetra-butoxide, Zirconium dimethacrylate dibutoxide and the like.
- examples of the compound in which M is titanium include, for example, titanium tetrasopropoxide, titanium tetra n butoxide, titanium tetra ibutoxide, titanium methacrylate triisopropoxide, titanium tetramethoxy.
- examples include propoxide, titanium tetra n propoxide, titanium tetraethoxide.
- the compounds specifically exemplified in these are some of the commercially available coupling agents that are readily available. For more details, see, for example, “Optimum Utilization Technology for Coupling Agents”, Chapter 9 Coupling agent and related product list. Of course, the coupling agents that can be used in the present invention are not limited by these examples.
- compound (2) the compound represented by the following general formula (2) (hereinafter referred to as "compound (2)” as appropriate) and / or an oligomer thereof are also the same as the compound (1) and / or the oligomer thereof. Use with power S.
- M, X and Y 1 each independently represents the same as in the general formula (1).
- s represents the valence of ⁇ and is an integer of 2 or more and 4 or less. “S +” indicates that it is a positive integer.
- Y 2 represents a u-valent organic group.
- u represents an integer of 2 or more. Therefore, in the general formula (2), Y 2 can be arbitrarily selected from divalent or higher ones among the known organic groups of so-called silane coupling agents.
- t represents an integer of 1 or more and s ⁇ l or less. However, t ⁇ s.
- Examples of the compound (2) include various organic polymers and oligomers in which a plurality of hydrolyzable silyl groups are bonded as side chains! /, Or a hydrolyzable silyl group at multiple terminals of the molecule. Examples include those in which the group is bonded! /.
- compound (1), compound (2), and / or oligomers thereof are used as raw materials. That is, in the method for producing a specific layer according to the present invention, as a raw material, compound (1), oligomer of compound (1), compound (2), oligomer of compound (2), and compound (1) and compound ( Any of the oligomers with 2) may be used.
- the molecular weight of the oligomer is The force S is arbitrary as long as the specific layer A relating to light can be obtained, usually 400 or more.
- the main chain structure in the system may be an organic bond main body and may be inferior in durability.
- compound (1) and / or its oligomer (component derived from compound (1)) and compound (2) and / or its oligomer (component derived from compound (2)) are used at the same time,
- the proportion of the component (2) -derived component used is usually 30% by weight or less, preferably 20% by weight or less, more preferably 10% by weight or less.
- the oligomer is prepared in advance.
- the oligomer may be prepared in the manufacturing process. That is, a monomer such as the compound (1) or the compound (2) may be used as a raw material, and this may be used as an oligomer once in the production process, and the subsequent reaction may proceed from this oligomer.
- oligomer has a structure similar to that obtained from the monomer such as compound (1) or compound (2) as a result, a commercially available product having such a structure is sufficient. Can also be used. Specific examples of such oligomers include the following.
- XC96-723, XF3905, YF3057, YF3800, YF3802, YF3807, and YF3897 can be cited as examples of the hydroxy-terminated dimethylpolysiloxane manufactured by Momentive 'Performance' Materials Japan GK.
- Examples of the both-end silanol polydimethylsiloxane manufactured by Gelest include DMS-S12 and DMS-S14.
- Examples of the double-end silanol diphenylsiloxane-dimethylsiloxane copolymer manufactured by Gelest include PDS-1615.
- An example of the double-end silanol polydiphenylsiloxane manufactured by Gelest is PDS-9931.
- silicone alkoxy oligomers (methyl / methoxy type) manufactured by Shin-Etsu Chemical include KC-89S, KR-500, X-40-9225, X-40-9246, and X-40-9250.
- silicone alkoxy oligomers phenyl / methoxy type manufactured by Shin-Etsu Chemical
- KR-217 examples of silicone alkoxy oligomers manufactured by Shin-Etsu Chemical
- silicone alkoxy oligomers (methylphenyl / methoxy type) manufactured by Shin-Etsu Chemical include KR-9218, KR-213, KR-510, X-40-9227, and X-40-9247.
- the oligomer consisting only of the bifunctional cage has a great effect of giving flexibility to the specific layer A of the first to fourth light guide members of the present invention, but the mechanical functionality is obtained only with the bifunctional cage. Intensity tends to be insufficient. For this reason, the specific layer A can obtain mechanical strength useful as a sealant by polymerizing with a monomer composed of trifunctional or higher functional monomer or an oligomer containing trifunctional or higher functional cage.
- those having silanol as a reactive group do not need to be hydrolyzed in advance, and do not require the use of a solvent such as alcohol as a compatibilizer for adding water.
- water for hydrolysis is required as in the case of using a monomer having an alkoxy group as a raw material.
- the compound (1), the compound (2) and the oligomer thereof that have been hydrolyzed in advance that is, X is an OH group in the general formulas (1) and (2)! /.
- the compound (1), the compound (2), and the compound (1) which contain C as M and have at least one organic group Y 1 or organic group Y 2 It is necessary to use at least one oligomer (including hydrolyzed one).
- cross-linking in the system is mainly formed by inorganic components including siloxane bonds. Therefore, when both the compound (1) and the compound (2) are used, it is preferable that the compound (1) is mainly used.
- the oligomer of 1) and / or the oligomer of compound (2) is more preferably composed of a bifunctional composition.
- the bifunctional unit of the oligomer of the compound (1) and / or the oligomer of the compound (2) is preferably used as a bifunctional oligomer.
- bifunctional component oligomer when a bifunctional one (hereinafter referred to as "bifunctional component oligomer") is used as a main component, these bifunctional component oligomers
- the amount of is usually 50% by weight or more, preferably 60% by weight or more, more preferably, based on the total weight of the raw materials (that is, the sum of the weights of compound (1), compound (2), and oligomers thereof). 70% by weight or more.
- the upper limit of the amount used is usually 97% by weight. This is because the use of the bifunctional component oligomer as the main ingredient is one of the factors that enable the specific layer A to be easily manufactured by the specific layer manufacturing method according to the present invention.
- a hydrolysis / polycondensate obtained by hydrolysis and polycondensation of the raw material (a material contained in a coating liquid (hydrolysis liquid)) is used.
- a solvent such as alcohol
- the polymerization in the system proceeds and cures quickly, making molding and handling difficult.
- a solvent such as alcohol
- it may be cured even when the temperature is about 40 ° C to 50 ° C. Therefore, in order to ensure the polarity and properties of the hydrolyzed / polycondensate obtained after the hydrolysis, it was essential to allow a solvent to coexist in the hydrolyzed / polycondensed product.
- the weight yield decreases when the number of low boiling ring increases.
- the low boiling ring is volatilized from the cured product and causes stress generation S.
- the light guide member containing a large amount of low-boiling annular bodies may have low heat resistance. For these reasons, it has heretofore been difficult to obtain a light guide member as a high-performance elastomeric cured body.
- a bifunctional component is oligomerized in advance in a separate system (that is, a system that does not participate in the hydrolysis / polycondensation step) and is reactive.
- a material obtained by distilling off low-boiling impurities having no terminal is used as a raw material. Therefore, even if a large amount of bifunctional components (that is, the above-mentioned bifunctional component oligomers) is used, the low-boiling impurities do not volatilize, and the cured product weight yield can be improved and the performance is good.
- An elastomer-like cured product can be obtained.
- the reaction activity of the hydrolyzed polycondensate can be suppressed. This is presumably due to the steric hindrance and electronic effect of the hydrolyzed polycondensate, and the decrease in the amount of silanol terminals due to the use of bifunctional component oligomers.
- the hydrolysis 'polycondensate does not cure without the presence of a solvent. Therefore, the hydrolysis' polycondensate can be made into a one-pack type and solvent-free system. .
- [0144] Hydrolysis and polycondensation process
- the above compound (1), compound (2), and / or oligomer thereof is subjected to hydrolysis / polycondensation reaction (hydrolysis / polycondensation step).
- This hydrolysis / polycondensation reaction can be carried out by a known method.
- raw material compounds when referring to the compound (1), the compound (2), and the oligomer thereof without distinction, they are referred to as “raw material compounds”.
- Equation (3) represents an example in which M in the general formulas (1) and (2) is a key element.
- ⁇ Si” and Si ⁇ are the abbreviations of three of the four bonds of the key atom.
- the theoretical amount of water required for this hydrolysis that is, the amount of water corresponding to a 1/2 molar ratio of the total amount of hydrolyzable groups is used as the standard (hydrolysis rate 100%).
- the amount of water used is expressed as a percentage of this reference amount, ie “hydrolysis rate”.
- the amount of water used for carrying out the hydrolysis / polycondensation reaction is usually 80% or more, especially 100% when expressed by the above hydrolysis rate. A range of at least% is preferred. If the hydrolysis rate is less than this range, the hydrolysis and polymerization are insufficient, so that the raw material may volatilize during curing or the strength of the cured product may be insufficient. On the other hand, if the hydrolysis rate exceeds 200%, free water always remains in the system during curing, causing deterioration of the phosphor and other contents due to moisture, or the substrate absorbing water and foaming during curing. May cause cracking and peeling.
- hydrolysis-polycondensation is carried out with near 100% or more (for example, 80% or more) of water. If a process for removing free water is added before coating, 20 It is possible to apply hydrolysis rates above 0%. In this case, if an excessive amount of water is used, the amount of water to be removed and the amount of solvent used as a compatibilizer increase, the concentration process becomes complicated, and the polycondensation proceeds so much that each of the light guide members is formed. Since the coating performance of the specific layer A may deteriorate, the upper limit of the hydrolysis rate is usually 500% or less, particularly 300% or less, preferably 200% or less.
- the raw material compound is subjected to hydrolysis / condensation polymerization, it is preferable to promote the hydrolysis / condensation polymerization in the presence of a catalyst or the like.
- the catalyst used include organic acids such as acetic acid, propionic acid and butyric acid; inorganic acids such as nitric acid, hydrochloric acid, phosphoric acid and sulfuric acid; organometallic compound catalysts.
- organic acids such as acetic acid, propionic acid and butyric acid
- inorganic acids such as nitric acid, hydrochloric acid, phosphoric acid and sulfuric acid
- organometallic compound catalysts are examples of these, in the case of a composition layer used in a portion in direct contact with the substrate.
- the organometallic compound catalyst does not only refer to a catalyst consisting of an organometallic compound in a narrow sense in which an organic group and a metal atom are directly bonded, but an organometallic complex, a metal alkoxide, an organic acid and a metal.
- the catalyst which consists of an organic metal compound of a broad meaning including the salt with.
- organometallic compound catalysts containing zirconium are more preferred, which are preferred to organometallic compound catalysts containing at least one element selected from zirconium, hafnium, tin, zinc and titanium. preferable.
- organometallic compound catalysts containing zirconium include soot, zirconium dibutoxy diacetyl acylate, zirconium tetranormal pro-zirconium acylate, and zirconium tributoxy systemate. .
- organometallic compound catalyst containing titanium examples include titanium tetraisopropoxide, titanium tetranormal butoxide, butyl titanate dimer, and tetraethylacetoacetate.
- organometallic compound catalyst containing zinc is zinc triacetyl acetate.
- organometallic compound catalysts containing tin include tetraptyltin, monooctyltin, dioctyltin dichloride, dioctyltin oxide, tetramethyltin, dibutyltin laurate, dioctyltin.
- Laurate bis (2-ethylhexanoate) tin, bis (neodecanoate) tin, di-n-butylbis (ethylhexylmalate) tin, di-normal butylbis (2,4-pentanedionate) tin, di- Normal Butinore Examples include tin laurate and dimethyldineodecanoate tin.
- organometallic compound catalysts may be used alone or in combination of two or more in any combination and ratio.
- the first to fourth light guide members of the present invention using the specific layer A and the specific layer A can achieve high heat resistance.
- the organometallic compound not only promotes the hydrolysis / polycondensation reaction of the raw material compound as a catalyst, but also temporarily at the silanol ends of the hydrolysis / polycondensation product and its cured product.
- these actions (i) to (iii) will be described.
- the organometallic compound catalyst is bonded to the silanol, so that the polymer main chain is broken by the intramolecular attack of the silanol and the cyclic siloxane. It is presumed that the heat resistance is improved by suppressing the weight loss by heating due to the formation of.
- the preferred compounding amount of the organometallic compound catalyst is appropriately selected depending on the type of the catalyst used, but is usually 0.01% by weight or more, preferably not less than the total weight of the raw materials to be hydrolyzed / polycondensed. It is 0.05% by weight or more, more preferably 0.1% by weight or more, and usually 5% by weight or less, preferably 2% by weight or less, particularly preferably 1% by weight or less. If the amount of the organometallic compound catalyst is too small, it may take too much time for curing, or sufficient mechanical strength and durability may not be obtained due to insufficient curing.
- the curing will be too fast and it will be difficult to control the physical properties of the specific layer A, which is a cured product, or the catalyst will not dissolve and disperse and will precipitate and impair the transparency of the specific layer A.
- the specific layer A which can increase the amount of organic substances brought by the catalyst itself, may become colored when used at high temperatures.
- organometallic catalysts may be mixed into the raw material system at the time of hydrolysis and condensation, or may be divided and mixed. Further, a solvent may be used to dissolve the catalyst during hydrolysis / polycondensation, or the catalyst may be dissolved directly in the reaction solution. However, when used as the specific layer forming liquid A, it is desirable to strictly distill off the solvent after the hydrolysis and polycondensation step in order to prevent foaming during heating and coloring due to heat.
- a solvent may be used.
- the solvent for example, C1 to C3 lower alcohols, dimethylformamide, dimethyl sulfoxide, acetone, tetrahydrofuran, methylcetosolve, ethylcellosolve, methylethylketone, toluene, water and the like can be used arbitrarily. Those which are not acidic or basic are preferred because they do not adversely affect hydrolysis and polycondensation.
- the solvent one kind may be used alone, but two kinds or more may be used in any combination and ratio. The amount of solvent used can be freely selected.
- the solvent is often removed when it is applied to the substrate and on each layer, and therefore it is preferably set to the minimum necessary amount.
- a solvent such as alcohol is generated by a hydrolysis reaction without mixing a solvent from the outside, it may be heterogeneous at the beginning of the reaction or even during the reaction.
- the hydrolysis / polycondensation reaction of the above raw material compound is carried out at normal pressure, it is usually 15 ° C or higher, preferably 20 ° C or higher, more preferably 40 ° C or higher, and usually 140 ° C.
- Hydrolysis / polycondensation reaction time varies depending on the reaction temperature, but is usually 0.1 hour or more, preferably 1 hour or more, more preferably 3 hours or more, and usually 100 hours or less, preferably 20 hours or less, and more Preferably, it is carried out for 15 hours or less. It is preferable to adjust the reaction time appropriately while managing the molecular weight!
- the obtained hydrolysis / polycondensate is stored at room temperature or lower until its use S, and polycondensation proceeds slowly during this period. Therefore, especially when used as a thick film member, it is usually within 60 days, preferably within 30 days, more preferably 15 days at room temperature storage after the completion of the hydrolysis / polycondensation reaction by heating. Preferable to use within days! /. This period can be extended by cryogenic storage in the range! It is preferable to adjust the storage period while controlling the molecular weight!
- hydrolysis of the above raw material compound (polycondensate) is obtained.
- This hydrolyzed 'polycondensate is preferably liquid.
- a solid hydrolysis-polycondensation product can be used as long as it becomes liquid by using a solvent.
- the liquid hydrolysis / polycondensate thus obtained is a specific layer forming liquid A that becomes the specific layer A of the first to fourth light guide members of the present invention by curing in the steps described later. is there.
- [0165] Evaporation of solvent
- a solvent is used in the hydrolysis / polycondensation step, it is usually preferable to distill off the solvent from the hydrolysis / polycondensate before drying (solvent distillation step).
- the specific layer forming liquid A (liquid hydrolysis / polycondensate) containing no solvent can be obtained.
- the hydrolysis / polycondensation product is cured, so that it has been difficult to handle the hydrolysis / polycondensation product.
- the method for producing a specific layer according to the present invention when bifunctional component oligomers are used, the reactivity of the hydrolysis' polycondensate is suppressed. The condensate does not cure and the solvent can be distilled off. By distilling off the solvent before drying, cracking, peeling, disconnection, etc. due to solvent removal shrinkage can be prevented.
- water used for hydrolysis is also distilled off when the solvent is distilled off.
- the solvent to be distilled off also includes a solvent represented by XH or the like produced by hydrolysis of the raw material compounds represented by the above general formulas (1) and (2). Furthermore, low-molecular cyclic siloxane by-produced during the reaction is also included.
- the method for distilling off the solvent is arbitrary as long as the effects of the present invention are not significantly impaired. However, it should be avoided to distill off the solvent at a temperature higher than the curing start temperature of the hydrolysis and polycondensate.
- the specific range of the temperature conditions when the solvent is distilled off is usually 60 ° C or higher, preferably 80 ° C or higher, more preferably 100 ° C or higher, and usually 150 ° C. C or lower, preferably 130 ° C. or lower, more preferably 120 ° C. or lower. Below the lower limit of this range, the solvent may be insufficiently distilled, and when the upper limit is exceeded, the hydrolyzate / polycondensate may gel.
- the pressure condition for distilling off the solvent is usually atmospheric pressure. If necessary, reduce the pressure so that the boiling point of the reaction mixture does not reach the curing start temperature (usually 120 ° C or higher).
- the lower limit of the pressure is such that the main component of the hydrolysis and polycondensate does not distill.
- light boiling components can be efficiently distilled off under high temperature and high vacuum conditions.However, if the amount of light boiling components is very small, if it cannot be distilled off precisely due to the shape of the apparatus, the polymerization proceeds further due to high temperature operation and the molecular weight increases too much. there is a possibility.
- a certain type of catalyst is used, In some cases, if subjected to a high temperature reaction for a long time, it may be deactivated and the specific layer forming liquid A may be difficult to cure. Therefore, in these cases, the light boiling component may be distilled off at low temperature and normal pressure by blowing nitrogen or steam distillation, if necessary.
- the molecular weight of the main component of the hydrolysis and polycondensate should be increased by a moderate hydrolysis / polycondensation reaction so that the main component of the polycondensate does not distill. It is desirable to keep it.
- the light guide member having the specific layer A produced by using the specific layer forming liquid A from which light boiling components such as solvent, moisture, by-product low molecular cyclic siloxane, and dissolved air are sufficiently removed by these methods is light boiling. This is preferable because foaming at the time of curing due to vaporization of water and peeling from the substrate or each layer when used at a high temperature can be reduced.
- distilling off the solvent is not an essential operation.
- a solvent having a boiling point equal to or lower than the hydrolysis temperature of the hydrolysis / polycondensate when used, when the hydrolysis / polycondensation product is dried, before the hydrolysis of the hydrolysis / polycondensation product starts, Therefore, the generation of cracks and the like due to desolvation shrinkage can be prevented even without performing a solvent distillation step.
- the volume of the hydrolysis / polycondensate may change due to volatilization of the solvent, it is preferable to distill off the solvent from the viewpoint of precisely controlling the size and shape of the light guide member.
- the specific layer forming liquid A thus obtained is applied to a desired site such as a substrate to form a coating film.
- This coating film becomes the specific layer A by drying as described later.
- the coating may be performed before the solvent is distilled off, or the coating may be applied after the solvent is distilled off.
- the film thickness of the coating film may be set to an appropriate size according to the film thickness of the specific layer A to be formed.
- the specific layer A according to the present invention can be made thicker than a layer formed by the conventional technique, there is an advantage that the degree of freedom of dimension setting is large.
- the method used for coating is not limited, but for example, a casting method, a spin method, a dipping method, or the like can be used.
- [0173] [A-2-5] Drying The ability to obtain the specific layer A can be obtained by drying the hydrolysis / polycondensate obtained by the hydrolysis / polycondensation reaction described above (drying process or curing process). This hydrolyzed polycondensate is normally a liquid force as described above, and is dried in a state where it is put in a mold of the desired shape to form a specific layer A having the desired shape. Is possible. Further, by drying the hydrolyzed polycondensate applied to the target site as described above, the specific layer A can be formed directly on the target site.
- the solvent does not necessarily evaporate, but here it is called the drying process, including the phenomenon that the hydrolyzed hydrolyzate / polycondensate loses its fluidity and hardens. . Therefore, when there is no evaporation of the solvent, the above “drying” may be read as “curing”.
- the hydrolysis / polycondensate is further polymerized to form a metalloxane bond, and the polymer is dried and cured to obtain the specific layer A.
- the hydrolysis / polycondensate is heated to a predetermined curing temperature to be cured.
- the specific temperature range is arbitrary as long as hydrolysis / drying of the polycondensate is possible. Since the metalloxane bond is usually formed efficiently at 100 ° C or higher, preferably 120 ° C or higher, more preferably Implemented above 150 ° C.
- a light guide member including a light source such as a substrate or a semiconductor light-emitting device
- it is usually dried at a temperature lower than the heat-resistant temperature of a component such as a light source such as a substrate or a semiconductor light-emitting device, preferably 200 ° C or lower. It is preferable to carry out.
- the time for maintaining the curing temperature (curing time) for drying the hydrolyzed / polycondensate is not generally determined by the catalyst concentration, the thickness of the member, etc., but usually 0.1 hour or more, Preferably it is 0.5 hours or more, more preferably 1 hour or more, and usually 10 hours or less, preferably 5 hours or less, more preferably 3 hours or less.
- the temperature raising conditions in the drying step are not particularly limited. That is, during the drying process, the temperature may be maintained at a constant temperature, or the temperature may be changed continuously or intermittently. In addition, the drying process may be further divided into a plurality of times. Furthermore, the temperature may be changed stepwise in the drying process. By changing the temperature stepwise, it is possible to obtain the advantage that foaming due to residual water vapor can be prevented. Also low When cured at a high temperature and then cured at a high temperature, it is possible to obtain an advantage that internal stress is not easily generated in the obtained specific layer A, and cracks and peeling are unlikely to occur.
- the hydrolysis / polycondensation reaction described above was performed in the presence of a solvent, the hydrolysis / polycondensate was not performed even if the solvent distillation step was not performed or the solvent distillation step was performed. If the solvent remains in the solvent, this drying step is dried at a temperature not lower than the boiling point of the solvent and a first drying step that substantially removes the solvent at a temperature not higher than the boiling point of the solvent. It is preferable to perform it separately from the second drying step.
- the “solvent” mentioned here includes a solvent represented by XH or the like and a low-molecular cyclic siloxane produced by hydrolysis / polycondensation reaction of the above-mentioned raw material compounds.
- drying refers to a step of hydrolysis of the above-mentioned raw material compound, in which the polycondensate loses the solvent, and further polymerizes and cures to form a metalloxane bond.
- the first drying step hydrolysis of the raw material compound 'the contained solvent without actively proceeding further polymerization of the polycondensate is substantially removed at a temperature below the boiling point of the solvent. It is what you do. That is, the product obtained in this step is hydrolyzed prior to drying, the polycondensate is concentrated, the hydrogen-bonded viscous liquid or soft film-like force, and the solvent are removed. Hydrolysis ⁇ Polycondensate is present in liquid form.
- the first drying step it is usually preferable to perform the first drying step at a temperature lower than the boiling point of the solvent.
- the first drying is performed at a temperature equal to or higher than the boiling point of the solvent, the resulting film is foamed by the vapor of the solvent, and a uniform film having no defects is obtained.
- This first drying process may be performed in a single step when the evaporation efficiency of the solvent is good, such as when a thin film member is used, but when the evaporation efficiency is poor, the first drying process is divided into a plurality of steps. You can warm it. In the case of a shape with extremely poor evaporation efficiency, it may be dried and concentrated beforehand in another efficient container, and then applied in a state where fluidity remains, and further dried. When the evaporation efficiency is poor, it is preferable to devise a method in which the entire member is uniformly dried without taking a means of concentrating only the surface of the member, such as ventilation drying with a large amount of air.
- the hydrolysis' polycondensate in the state where the solvent of the above-mentioned hydrolysis 'polycondensate has substantially disappeared by the first drying step, the hydrolysis' polycondensate is heated to a temperature equal to or higher than the boiling point of the solvent.
- the hydrolysis' polycondensate is heated to a temperature equal to or higher than the boiling point of the solvent.
- the second drying step is preferably performed at 100 ° C or higher, more preferably 120 ° C or higher.
- the temperature is usually lower than the heat resistant temperature of a component such as a light source such as a substrate or a semiconductor light emitting device, preferably 200 ° C or lower. It is preferable to carry out drying with!
- the curing time in the second drying step is not generally determined depending on the catalyst concentration and the thickness of the member, but is usually 0.1 hour or more, preferably 0.5 hour or more, more preferably 1 hour or more, and usually 10 It is carried out for a period of time or less, preferably 5 hours or less, more preferably 3 hours or less.
- each drying step may be maintained at a constant temperature, or the temperature may be changed continuously or intermittently.
- each drying step may be further divided into a plurality of times.
- the temperature temporarily exceeds the boiling point of the solvent during the first drying step, or a period during which the temperature is lower than the boiling point of the solvent is interposed during the second drying step even if the temperature temporarily exceeds the boiling point of the solvent during the first drying step, or a period during which the temperature is lower than the boiling point of the solvent is interposed during the second drying step.
- the solvent removal step (first drying step) and the curing step (second drying step) as described above can be achieved independently, they are included in the scope of the present invention.
- the hydrolyzed 'polycondensate becomes a liquid hydrolyzed' polycondensate containing no solvent. After that, it is dried at a temperature higher than the boiling point of the solvent (that is, the curing temperature).
- the process of curing the hydrolysis / polycondensate proceeds. Therefore, when a solvent having a boiling point equal to or lower than the curing temperature is used as the solvent, the first drying step and the second drying step are performed even if they are not intended to be performed. . For this reason, the use of a solvent having a boiling point equal to or lower than the curing temperature of the hydrolysis polycondensate, preferably less than the above curing temperature, is that the hydrolysis / polycondensate contains a solvent during the drying step. Even if it is, the quality of the specific layer A and the light guide member provided with the specific layer A is not greatly affected.
- the obtained specific layer A may be subjected to various post treatments as necessary.
- the post-treatment include surface treatment for improving adhesion, production of an antireflection film, production of a fine uneven surface for improving light extraction efficiency, and the like.
- the specific layer forming liquid A of the present invention is a liquid material obtained by the hydrolysis / polycondensation step, and becomes the specific layer A by being cured in the drying step.
- the specific layer forming liquid A is a curable organopolysiloxane
- a branched organopolysiloxane is preferred to a linear organopolysiloxane in terms of the thermal expansion coefficient of the cured product.
- the cured product of linear organopolysiloxane is in the form of an elastomer, and its thermal expansion coefficient is large! /,
- the thermal expansion coefficient of the cured product of branched organopolysiloxane is that of linear onoreganopolysiloxane. This is because the change in optical properties accompanying thermal expansion is small because it is smaller than the thermal expansion coefficient of the product.
- the viscosity of the specific layer forming liquid A of the present invention is not limited, but at a liquid temperature of 25 ° C, it is usually 20 mPa's or more, preferably lOOmPa's or more, more preferably 200 mPa's or more, Usually, it is 1500 mPa's or less, preferably lOOOmPa's or less, more preferably 800 mPa's or less.
- the viscosity can be measured with an RV viscometer (for example, RV viscometer “R VDV-II + Proj” manufactured by Brookfield).
- the weight average molecular weight and molecular weight distribution of the specific layer forming solution A of the present invention are not limited. Usually, as described in “[A-1-5-7] Molecular weight”. Furthermore, it is preferable that the low-boiling component in the specific layer forming liquid A of the present invention is small, like the specific layer A of the present invention described in “[A-15-8] Low-boiling component”. .
- the fifth to eighth light guide members of the present invention are characterized in that two or more layers are laminated.
- the fifth and seventh light guide members of the present invention include a light source whose emission peak has a dominant wavelength of 500 nm or less, and at least one of the stacked layers has the following characteristics: .
- at least two layers in contact with each other among the above layers have the characteristics shown below.
- each of the stacked layers has the following characteristics.
- Hardness of Shore A is 5 or more and 100 or less, or Shore D is 0 or more and 85 or less.
- the specific layer B contains a polar group at the interface with other layers. That is, the specific layer B contains a compound having a polar group so as to have a polar group at the interface with another layer.
- a polar group There is no limitation on the type of such a polar group. Examples include lanol groups, amino groups and derivatives thereof, alkoxysilyl groups, carbonyl groups, epoxy groups, carboxy groups, carbinol groups (one COH), methacryl groups, cyanos groups, and sulfone groups.
- the specific layer B may contain only one kind of polar group at any time, or may contain two or more kinds of polar groups in any combination and ratio.
- the specific layer B has a polar group at the interface with other layers, so that the two layers are strongly adhered and can be stacked by overcoating.
- the polar group contained in the specific layer B according to the present invention is a predetermined functional group present on the surface of a resin, ceramic or metal such as polyphthalamide (for example, a hydroxyl group or an oxygen in a metalloxane bond). Etc.) and hydrogen bond is possible, and high adhesion is expressed.
- the substrate for installing the light guide member is usually made of resin, ceramic or metal. Further, a hydroxyl group usually exists on the surface of the ceramic metal.
- the specific layer B usually has a functional group capable of hydrogen bonding with the hydroxyl group. Therefore, the fifth to eighth light guide members of the present invention having the specific layer B are excellent in adhesion to the substrate due to the hydrogen bond.
- these polar groups may be added to the surface of the specific layer B later by application of a primer or surface treatment which may be contained in the specific layer B from the beginning. Therefore, from this point of view, specific examples are given of the relationship between any two layers (including the specific layer B and the layer other than the specific layer B) constituting the fifth to eighth light guide members of the present invention.
- the configuration shown in Fig. 1 (a) to Fig. 1 (f) can be mentioned.
- the relationship of the layers constituting the fifth to eighth light guide members of the present invention is not limited to the following specific examples.
- Fig. 1 (a) there is a configuration in which the two laminated layers are both formed from a specific layer B S containing a polar group from the beginning.
- both specific layers B adhere well due to the polar group contained in the specific layer B S.
- one of the two laminated layers is a specific layer BS containing a polar group from the beginning, and the other does not contain a polar group.
- a configuration formed of layer O can be mentioned. Even in this case, it is more dense due to the polar group contained in the specific layer BS. Wearability is improved than before.
- the two laminated layers are initially formed of a layer O not containing a polar group, and between the two layers O and O.
- the primer P is applied to
- polar groups are imparted to the surfaces of both layers O and O by the primer P.
- adhesiveness improves.
- the part containing the polar group is only an interface between the two layers, which is substantially a thin film. Therefore, even if a polar group that is easily colored by light or heat is introduced, the light guide function is hardly affected. .
- layer O satisfies characteristics (7) and (8), these layers O will have polar groups due to primer P, and thus function as specific layer B.
- the two laminated layers are both formed from a specific layer BS containing a polar group from the beginning, and both specific layers BS, S A configuration in which primer P is applied in between is mentioned.
- the adhesion between the two specific layers B S and S is particularly excellent due to the primer P.
- one of the two laminated layers is a specific layer BS containing a polar group from the beginning, and the other contains a polar group at the beginning.
- An example is a configuration in which the primer P is applied between the specific layer BS and the layer O.
- the adhesion between the specific layer B S and the layer O is improved by the primer P as compared with the case described in FIG.
- layer O satisfies characteristics (7) and (8), these layers O will have polar groups due to primer P. I will be in a storehouse.
- a specific layer BS containing a polar group is first laminated on a layer O that does not contain a polar group at first, A configuration in which the component partially soaks into layer O to assist adhesion is exemplified. Such impregnation of the component is carried out by soaking the formation liquid of the specific layer B S as the upper layer into the layer O as the lower layer.
- the hardness measurement value is an index for evaluating the hardness of the specific layer of the fifth to eighth light guide members of the present invention, and is measured by the following hardness measurement method.
- the specific layer B is preferably a member having a relatively low hardness, preferably a member having an elastomeric shape. That is, the fifth to eighth light guide members of the present invention are forces that use a plurality of members having different thermal expansion coefficients in the substrate or each layer.
- the specific layer B has a relatively low hardness.
- the specific layer B and the fifth to eighth light guide members of the present invention having the specific layer can relieve stress due to expansion and contraction of the respective components. Therefore, it is possible to provide a light guide member that is excellent in reflow resistance and temperature cycle resistance, which is difficult to cause peeling, cracking, disconnection, and the like during use.
- the specific layer B has a durometer type A hardness measurement Shore A) 15 or more, preferably 7 or more, more preferably 10 or more, and usually 100 or less, preferably 80 or less. More preferably, it is 70 or less.
- the hardness measurement value (Shore D) force by durometer type D is 0 or more, and usually 85 or less, preferably 80 or less, more preferably 75 or less.
- the substrate on which the specific layer B is applied is a thin substrate such as a flexible substrate
- the substrate and the specific layer B may be warped due to the curing shrinkage stress force due to the lamination of the specific layer B.
- the specific layer B is formed of a material having rubber elasticity with a Shore A of 5 to 80.
- the hardness measurement value (Shore A) can be measured by the method described in JIS K6253. Specifically, the measurement can be performed using an A-type rubber hardness meter manufactured by Furusato Seiki Seisakusho, while the hardness measurement value (Shore D) can be measured by the method described in JIS K6253. Specifically, measurement can be performed using a D-type plastic hardness tester manufactured by Furusato Seiki Seisakusho.
- the specific layer B contains a siloxane bond.
- the specific layer B is formed including a compound having a siloxane bond.
- the compound having a siloxane bond include inorganic materials, glass materials, and organic materials.
- specific examples of inorganic materials include a solution containing silicon oxide, nitride nitride, oxynitride, metal alkoxide, ceramic precursor polymer or metal alkoxide by a sol-gel method.
- examples thereof include inorganic materials obtained by solidifying a solution obtained by decomposition polymerization or a combination thereof.
- glass materials include glass materials such as borosilicate, phosphosilicate, and alkali silicate.
- organic materials include organic materials (silicone materials) such as polyorganosiloxane.
- the compound which has a siloxane bond may use only 1 type, and may use 2 or more types together by arbitrary combinations and ratios.
- a silicone material is preferable from the viewpoint of easy handling.
- this silicone material will be described in detail.
- the silicone-based material usually refers to an organic polymer having a siloxane bond as a main chain, and examples thereof include a compound represented by the general composition formula (4) and / or a mixture thereof.
- R 1 to R 6 represent those selected from the group consisting of an organic functional group, a hydroxyl group and a hydrogen atom.
- R 1 to R 6 may be the same or different.
- the specific layer B may be sealed using a liquid silicone material and then cured by heat or light.
- silicone materials are classified according to the curing mechanism, they are usually addition-polymerized curing types.
- silicone materials such as condensation polymerization curing type, ultraviolet curing type and peroxide crosslinking type.
- addition polymerization curing type addition type silicone are preferred to be a polymer-based material
- condensation-curing type condensation-type silicone material
- ultraviolet-curing type ultraviolet-curing type
- Addition-type silicone materials refer to those in which polyorganosiloxane chains are bridged by organic additional bonds.
- a typical example is a compound having a Si—C C Si bond at a crosslinking point obtained by reacting butylsilane and hydrosilane in the presence of an addition catalyst such as a Pt catalyst.
- an addition catalyst such as a Pt catalyst.
- Specific examples of addition polymerization curing type trade names include “LPS-1400”, “LPS-2410”, and “LPS-3400” manufactured by Shin-Etsu Chemical Co., Ltd. Note that the specific layer B formed using such an addition-type silicone material usually contains a small amount of a bur group and / or a hydrosilyl group.
- the addition-type silicone material is specifically represented by, for example, (A) an alkenyl group-containing organopolysiloxane represented by the following average composition formula (5) and the following average composition formula (6). (B) Hydrosilyl group-containing organopolysiloxane and (B) the total alkenyl group in (B) are mixed in an amount ratio such that the total hydrosilyl group amount of (B) is 0.5 to 2.0 times. (C) It can be obtained by reacting in the presence of an addition reaction catalyst.
- A an alkenyl group-containing organopolysiloxane represented by the following average composition formula (5) and the following average composition formula (6).
- Hydrosilyl group-containing organopolysiloxane and (B) the total alkenyl group in (B) are mixed in an amount ratio such that the total hydrosilyl group amount of (B) is 0.5 to 2.0 times.
- C It can be obtained by reacting in the presence of an addition reaction catalyst.
- the alkenyl group-containing organopolysiloxane is an organopolysiloxane having an alkenyl group bonded to at least two silicon atoms in one molecule represented by the following composition formula (5).
- R is the same or different substituted or unsubstituted monovalent hydrocarbon group, alkoxy group, or hydroxyl group, and n is a positive number satisfying l ⁇ n ⁇ 2. And at least one of R is an alkenyl group.
- the hydrosilyl group-containing polyorganosiloxane is an organohydrogen polysiloxane having hydrogen atoms bonded to at least two silicon atoms in one molecule represented by the following composition formula (6).
- R ′ is the same or different substituted or unsubstituted monovalent hydrocarbon group excluding the alkenyl group, and the symbols a and b are 0.7 ⁇ a ⁇ 2.1, 0. 001 ⁇ b ⁇ l. 0 and a positive number satisfying 0.8.8 ⁇ a + b ⁇ 2.
- the alkenyl group is preferably an alkenyl group having 2 to 8 carbon atoms such as a bur group, a allyl group, a butyr group, or a pentyl group.
- R is a hydrocarbon group
- an alkyl group such as a methyl group or an ethyl group, a carbon group such as a bur group or a phenyl group; one selected from monovalent hydrocarbon groups having! More preferably, they are a methyl group, an ethyl group, and a phenyl group.
- Each R may be different, but if UV resistance is required, 80% or more of R is preferably a methyl group! /.
- R may be an alkoxy group having 1 to 8 carbon atoms or a hydroxyl group, but the content of the alkoxy group or hydroxyl group is preferably 3% or less of the weight of (A)! /.
- n is a positive force satisfying l ⁇ n ⁇ 2. If this value is 2 or more, sufficient strength as a sealing material cannot be obtained. The synthesis of this organopolysiloxane becomes difficult.
- the (B) hydrosilyl group-containing polyorganosiloxane acts as a crosslinking agent for curing the composition by hydrosilylation reaction with the (A) alkenyl group-containing organopolysiloxane.
- R ′ represents a monovalent hydrocarbon group excluding an alkenyl group.
- R ′ a group similar to R in the composition formula (5) (however, excluding the alkenyl group) can be exemplified.
- at least 80% is preferably a methyl group.
- the symbol a is usually a positive number of 0.7 or more, preferably 0.8 or more, and usually 2.1 or less, preferably 2 or less.
- the sign b is a positive number that is usually 0.001 or more, preferably 0.01 or more, and usually 1.0 or less.
- a + b is 0.8 or more, preferably 1 or more, 2.6 or less, preferably 2.4 or less.
- the (B) hydrosilyl group-containing polyorganosiloxane has at least 2, preferably 3 or more SiH bonds in one molecule.
- the molecular structure of the (B) hydrosilyl group-containing polyorganosiloxane may be any of linear, cyclic, branched, and three-dimensional network structures, but the number of silicon atoms in one molecule (or polymerization) The degree) can be 3 to 1000, especially about 3 to 300.
- hydrosilyl group containing polyorganosiloxane may use only 1 type, and may use 2 or more types together by arbitrary combinations and ratios.
- the blending amount of the (B) hydrosilyl group-containing polyorganosiloxane depends on the total alkenyl group amount of the (A) alkenyl group-containing organopolysiloxane.
- the total SiH power of (B) hydrosilyl group-containing polyorganosiloxane with respect to the total alkenyl groups of (A) anoalkenyl group-containing organopolysiloxane is usually 0.5 mol times or more, preferably 0.8 mol.
- the amount may be not less than twice, and usually not more than 2.0 mol times, preferably not more than 1.5 mol times.
- the addition reaction catalyst promotes the hydrosilylation addition reaction between (A) an alkenyl group in an alkenyl group-containing organopolysiloxane and (B) a SiH group in a hydrosilyl group-containing polyorganosiloxane. It is a catalyst.
- the (C) addition reaction catalyst include platinum black, platinous chloride, chloroplatinic acid, a reaction product of chloroplatinic acid and a monohydric alcohol, a complex of chlorophosphoric acid and olefins, platinum bismuth.
- platinum group catalysts such as platinum catalysts such as cetoacetate, palladium catalysts and rhodium catalysts.
- the compounding amount of this addition reaction catalyst can be a catalytic amount, but is usually based on the total weight of (A) an alkenyl group-containing organopolysiloxane and (B) a hydrosilyl group-containing polyorganosiloxane as a platinum group metal. 1 ppm or more, particularly 2 ppm or more, and 500 ppm or less, particularly preferably 10 ppm or less.
- the composition for obtaining an addition-type silicone material includes (A) an alkenyl group-containing nonreganopolysiloxane, (B) a hydrosilyl group-containing polyorganosiloxane, and (C) an addition reaction catalyst.
- Addition control agent to give curability and pot life as optional components In addition to linear diorganopolysiloxane having an alkenyl group for adjusting hardness and viscosity, for example, linear non-reactive organopolysiloxane, linear having about 2 to 10 key atoms or A cyclic low molecular weight organopolysiloxane or the like may be incorporated in a range that does not impair the effects of the present invention.
- the curing conditions for the composition are not particularly limited, but are preferably 120 to 180 ° C, 30 to 180 minutes.
- the linear expansion coefficient is larger than that of rubber resin or hard plastic silicone resin, so it can be cured at a low temperature around room temperature for 10 to 30 hours. Force S to suppress the generation of internal stress.
- addition-type silicone material a known material can be used, and an additive or an organic group for improving adhesion to metal or ceramics may be further introduced.
- silicone materials described in Japanese Patent Nos. 39 09826, 3910080, 2003-128922, 2004 221308, and 2004-186168 are suitable.
- condensation type silicone material examples include a compound having a Si 2 O 3 Si bond obtained by hydrolysis and polycondensation of an alkylalkoxysilane at a crosslinking point.
- Specific examples include a polycondensate obtained by hydrolysis and polycondensation of a compound represented by the following general formula (1) and / or (2) and / or its oligomer.
- M represents at least one element selected from the group consisting of silicon, aluminum, zirconium, and titanium
- X represents a hydrolyzable group
- Y 1 represents a monovalent group.
- M represents an integer of 1 or more that represents the valence of M
- n represents an integer of 1 or more that represents the number of X groups, where m ⁇ n.
- M represents at least one element selected from the group consisting of silicon, aluminum, zirconium, and titanium
- X represents a hydrolyzable group
- Y 1 represents a monovalent group
- Y 2 represents a u-valent organic group
- s represents an M valence
- an integer of 1 or more T represents an integer of 1 or more and s—1 or less
- u represents an integer of 2 or more.
- the condensation type silicone material may contain a curing catalyst.
- any catalyst can be used as long as the effects of the present invention are not significantly impaired.
- any catalyst can be used as long as it is active in the dehydration or dealcohol condensation of an alkoxysilyl group or silanol. May be.
- Specific examples include metal salts such as Ti, Al, Sn, Ta, Zn, Zr, and Hf, metal chelate compounds, and amines. Of these, metal chelate compounds are preferred.
- the metal salt and the metal chelate compound are any force selected from the group consisting of Ti, Al, Sn, Ta, Zn and Zr, and those containing 1 or more are more preferable. Only one type of curing catalyst may be used, or two or more types may be used in any combination and ratio! /.
- the specific layers B of the fifth to eighth light guide members of the present invention are mainly characterized by the above-mentioned characteristics, but preferably have the following structure and properties. .
- the specific layer B according to the present invention is used for an optical waveguide or a light guide plate with a semiconductor light emitting element as a light source
- the light transmittance (transmittance) at the emission wavelength of the light source at a film thickness of 1 mm is usually It is preferable to be 80% or more, particularly 85% or more, and more preferably 90% or more.
- the specific layer B is used as the translucent part in the light guide member, if the translucency of the translucent part is low, the luminance of the light source using the translucent part is reduced. It becomes difficult to obtain the final product.
- the “emission wavelength of the light source” means, for example, a power that varies depending on the type of the semiconductor light emitting device. Generally, it is usually 300 nm or more, preferably 350 nm or more, and usually 900 nm or less. Preferably, it refers to a wavelength in the range of 500 nm or less. If the light transmittance at wavelengths in this range is low, the specific layer B absorbs light and the light extraction efficiency decreases, A high-intensity optical waveguide or light guide plate cannot be obtained. Furthermore, the energy corresponding to the decrease in the light extraction efficiency is changed to heat, which causes thermal deterioration of the optical waveguide or the light guide plate, which is not preferable.
- the optical material In the ultraviolet to blue region (wavelength 300 nm to 500 nm), the optical material is likely to be light-degraded. Therefore, the specific layer B according to the present invention having excellent durability is used as a light source having an emission wavelength in this region. If so, the effect will be great!
- the light transmittance of the optical material such as the material of the specific layer B is measured with an ultraviolet spectrophotometer using a sample of a single cured film having a smooth surface molded to a film thickness of 1 mm by the following method, for example. I can do that.
- the wavelength is between 200 nm and 800 nm. ! /, Measure the light transmittance.
- the coating liquid used for forming the specific layer B is a polystyrene-converted weight average obtained by measuring the material forming the specific layer B by GPC (gel permeation chromatography).
- the molecular weight (Mw) is usually 200 or more, preferably 500 or more, more preferably 900 or more, more preferably 3200 or more, and usually 400,000 or less, preferably 70,000 or less, more preferably 50,000 or less. It is.
- the weight average molecular weight is too small, it will volatilize during curing or contain a high concentration of crosslinkable terminals such as alkoxy groups, hydroxyl groups, bur groups, hydrosilyl groups, etc. Therefore, when used in the vicinity of blue to ultraviolet LEDs, there is a tendency for the transmittance from the catalyst to decrease.
- the weight average molecular weight is too large, the liquid will have a high viscosity, resulting in poor leveling during coating, penetration of fine wiring and uneven parts on the substrate, and spilling of the liquid. There is a tendency for the filling efficiency to become poor due to insufficiency.
- the weight average molecular weight is the value of the specific layer forming liquid B after mixing the liquids to be used together.
- the molecular weight distribution shows a shape having two or more peaks such as two peaks and three peaks, the average value over the entire section is used as the weight average molecular weight value.
- the specific layer B according to the present invention preferably has a low tackiness on the surface.
- silicone rubber has tackiness (stickiness) on the surface of the cured product.
- the tackiness is high, the products may be stacked and may not be handled individually during the manufacturing process, or may not be transported satisfactorily.
- the specific layer B has a stress relaxation force and preferably follows external forces such as bending and deformation.
- the preferred tensile stress range of the specific layer B is usually 0. IMPa or more, preferably 0.3 MPa or more, more preferably 0.4 MPa or more, and the upper limit is usually 50 MPa or less, preferably 30 MPa or less. Preferably it is 20 MPa or less. If the tensile stress is too small, the mechanical strength is insufficient and may be unsuitable for light guide plate applications. If it is too large, the material may be a hard material with insufficient stress relaxation force.
- the tensile stress of the specific layer B is arbitrary.
- the specific layer B is provided on a flexible substrate having a thickness of 500 m or less, it is particularly preferable that the specific layer B can relieve stress and that the tensile stress is 0. IMPa or more and 2 OMPa or less! /, .
- the tensile stress can be measured based on JIS K6250.
- the fifth to eighth light guide members of the present invention may have layers other than the specific layer B.
- a layer other than the specific layer B a known layer can be arbitrarily applied.
- only one layer may be provided, or two or more layers may be provided.
- more of the layers of the fifth to eighth light guide members of the present invention have the characteristics as the specific layer B. It is more preferable that all the layers have the characteristics as the specific layer B described above.
- each layer constituting the fifth to eighth light guide members of the present invention can be manufactured by any method.
- a liquid material that is, a forming solution
- the specific layer B is formed by, for example, applying a liquid material of the specific layer B (hereinafter referred to as “specific layer forming liquid B”) to a desired part to form a coating film. It can be made by curing with heat or light.
- primer treatment when producing the specific layer B, it is preferable to appropriately perform primer treatment in order to ensure that the specific layer B has the above-mentioned preferable characteristics.
- an adhesive layer having adhesiveness to both the base layer and the upper layer may be applied as an intermediate layer between the base layer and the upper layer. Applying such an adhesive intermediate layer on the underlayer is called primer treatment, and the coating solution is called a primer.
- the primer itself works in the same way as the polar group at the interface.
- the film thickness of the primer layer formed by the primer treatment is an arbitrary force as long as the effect of the present invention is not significantly impaired.
- the specific layer B or another layer or member in contact with the specific layer B may be subjected to a surface treatment.
- a surface treatment include, for example, formation of an adhesion improving layer using a primer-silane coupling agent, chemical surface treatment using a chemical such as acid or alkali, plasma irradiation, ion irradiation or electron beam irradiation. Used physical surface treatment, support And surface blasting by etching or fine particle coating.
- Other surface treatments for improving adhesion include, for example, JP-A-5-25300, Nobuhiro Inagaki “Surface Chemistry” Vol. 18 No. 9, pp21-26, Kuroo Kurosaki “Surface Chemistry” ”Vo 1.19 No. 2, pp44-51 (1998), etc., may be known surface treatment methods.
- ozone treatment can be performed.
- the fifth and seventh light guide members of the present invention include a light source.
- the sixth and eighth light guide members of the present invention may include a light source.
- the fifth to eighth light guide members of the present invention transmit light emitted from the light source and emit the light as it is or after converting the wavelength.
- the wavelength of the main wavelength of the light emission peak of this light source is 900 nm or less, preferably 700 nm or less, more preferably 500 ⁇ m or less. If the wavelength of the main wavelength of the light emission peak of the light source is too long, the light beam becomes a heat ray and may cause damage to the light guide member or may be absorbed by the constituent members of the light guide member to cause transmission loss.
- the lower limit of the wavelength of the emission peak is not limited, but is usually 300 nm or more, preferably 350 nm or more, more preferably 400 nm or more. If the wavelength of the main wavelength of the light emission peak of the light source is too short, the light beam becomes high-energy ultraviolet light, which may reduce the transmittance of the light guide member.
- the type of the light source is not limited as long as it emits light having the above-described emission peak, but a semiconductor light emitting element is usually used.
- a semiconductor light emitting element for example, a light emitting diode (LED) or a laser diode (LD) can be given.
- LED light emitting diode
- LD laser diode
- GaN-based LEDs and LDs using GaN-based compound semiconductors are preferred. This is because GaN-based LEDs and LDs are extremely low power and extremely low power when combined with phosphors described later, whose light output and external quantum efficiency are significantly higher than SiC LEDs that emit light in this region.
- the power to obtain bright light emission for example, for a current load of 20 mA, GaN-based LEDs and LDs usually have a light emission intensity that is more than 100 times that of SiC.
- Al GaN-based LEDs and LDs Al GaN-based LEDs and LDs, Al GaN-based LEDs and LD
- GaN gallium arsphide
- GaN-based LDs which are particularly preferred, multiple amounts of InGaN and GaN layers
- the one with the well structure is particularly preferred because the emission intensity is very strong.
- the value of X + Y is usually a value in the range of 0.8 to 1.2.
- these light-emitting layers doped with Zn or Si or those without dopants are preferred for adjusting the light emission characteristics.
- GaN-based LEDs have these light-emitting layers, p-layers, n-layers, electrodes, and substrates as basic components.
- the light-emitting layers are n-type and p-type AlGaN layers, GaN layers, or InGaN layers. Etc.
- Those having a heterostructure in the form of a neutral switch are preferred because the luminous efficiency is high, and those having a heterostructure in the quantum well structure are more preferred because the luminous efficiency is further high.
- the fifth to eighth light guide members of the present invention may include only one light source or two or more light sources in any combination and ratio. Further, the fifth to eighth light guide members of the present invention may include another light source that does not have the main wavelength of the emission peak in the above wavelength range, in addition to the above light source. In addition, the light source is equipped with a combination of multiple light sources with different emission colors such as red, green, and blue!
- the specific layer A and the specific layer B (hereinafter, when the specific layer A and the specific layer B are referred to without distinction, they may be referred to as “specific layer” as appropriate.
- the specific layer forming liquid A and the specific layer forming liquid B When referring to them without distinction, they may be referred to as “specific layer forming liquid” as appropriate.) Any component can be contained without departing from the gist of the present invention. Therefore, depending on the application, the specific layer and the specific layer forming liquid may contain other components in addition to the above-mentioned hydrolysis polycondensate. For example, if necessary, the specific layer and the specific layer forming liquid may contain phosphors, inorganic particles, and the like.
- light guide members may be used alone, or two or more may be used in any combination and ratio.
- first to eighth light guide members of the present invention may be appropriately referred to as “light guide members”.
- the light guide member of the present invention can contain, for example, a phosphor in a phosphor-containing layer (see [C 2-3-4]) described later.
- the phosphors may be used alone or in combination of two or more in any combination and ratio. Also, the phosphor is contained in two or more layers among the layers constituting the light guide member of the present invention!
- composition of the phosphor is typically represented by the crystal matrix Y O, Zn SiO, etc.
- Preferred examples of the crystal matrix include (Zn, Cd) S, SrGa S, SrS, ZnS, etc.
- Sulfides such as Y O S, (Y, Gd) Al O, YAIO, BaMgAl O, (Ba, S
- borate such as gB 2 O 3, (Y, Gd) BO, Ca (PO 2) (F, CI), (Sr, Ca, Ba, Mg) (
- Halophosphates such as PO) CI, phosphates such as SrPO, (La, Ce) PO, etc.
- the above-mentioned crystal matrix and activator or coactivator are not particularly limited in element composition, and can be partially replaced with elements of the same family, and the obtained phosphor is visible from near ultraviolet. Any material that absorbs light in a region and emits visible light can be used.
- phosphors that can be used in the present invention are not limited to these.
- phosphors that differ only in part of the structure are appropriately omitted.
- Y SiO: Ce 3+ “Y SiO: Tb 3+ ” and “Y SiO:
- the peak wavelength is usually 570 nm or more, preferably 580 nm or more, Usually, it is 700 nm or less, preferably 680 nm or less.
- red phosphors such as two are composed of fractured particles having a red fracture surface, and emit light in the red region (Mg, Ca, Sr, Ba) SiN: Eu represented by Eu. Mouth piu
- Activated alkaline earth silicon nitride phosphor composed of growing particles with a nearly spherical shape as a regular crystal growth shape, and emits light in the red region (Y, La, Gd, Lu) OS: Eu
- red phosphors for example, Eu-activated oxysulfur such as (La, Y) O S: Eu
- (Ca, Sr) S Eu-activated sulfide phosphors such as Eu, etc.
- YA10 Eu-activated aluminate such as Eu
- Ce-activated aluminate phosphor such as Ce, (Ca, Sr, Ba) Si N: Eu, (Mg, Ca, Sr,
- Ce-activated nitride phosphors such as Ce, (Sr, Ca, Ba, Mg) (PO)
- Mn-activated halophosphate phosphors such as Eu, Mn, (Ba Mg) Si O: Eu, Mn, (B
- MgO-0.5 MgF -GeO Mn-activated germanate phosphor such as Mn, Eu-activated ⁇ sizer Eu-activated oxynitride phosphors such as Ron, Eu, Bi-activated such as (Gd, Y, Lu, La) 2 O: Eu, Bi
- Ce activated sulfide phosphor such as Ce, Ce, CaLa S: Ce activated sulfide phosphor such as Ce, (B
- Ce-activated nitride phosphor (Ca, Sr, Ba, Mg) (PO) (F, CI, Br, OH): Eu, Mn, etc.
- Ce-activated silicate phosphors such as (Mg, Zn) Si Ge O
- red phosphor examples include: / 3 diketonate, ⁇ -diketone, aromatic carboxylic acid, or a red organic phosphor composed of a rare earth ion complex having an anion such as Bronsted acid as a ligand, a perylene pigment (For example, dibenzo ⁇ [f, f ']-4,4', 7,7'-tetraphenyl ⁇ diindeno [1,2,3-cd: l ', 2', 3'-lm] perylene) , Anthraquinone pigments, lake pigments, azo pigments, quinacridone pigments, anthracene pigments, isoindoline pigments, isoindolinone pigments, phthalocyanine pigments, triphenylmethane basic dyes, indanthrone pigments Indophenol pigments, cyanine pigments and dioxazine pigments can also be used.
- a perylene pigment for example, dibenzo ⁇ [f
- red phosphors those having a peak wavelength in the range of 580 nm or more, preferably 590 nm or more, and 620 nm or less, preferably 610 nm or less can be suitably used as an orange phosphor.
- orange phosphors are (Sr, Ba) SiO 2: Eu, (
- the peak wavelength is usually 490 nm or more, preferably 500 nm or more, Usually, it is 570 nm or less, preferably 550 nm or less.
- a green phosphor for example, it is composed of fractured particles having a fracture surface, and emits light in the green region (Mg, Ca, Sr, Ba) Si ON: with a plutonium represented by Eu.
- Active alkaline earth silicon oxynitride phosphor composed of fractured particles with fractured surface, and emits light in the green region (Ba, Ca, Sr, Mg) SiO: Eu mouth expressed by Eu
- Examples include a palladium-activated alkaline earth silicate phosphor.
- green phosphor for example, SrAlO: Eu, (Ba, Sr, Ca) Al
- Eu-activated aluminate phosphor such as Eu, (Sr, Ba) Al Si O: Eu, (Ba, Mg) SiO
- Activated silicate phosphor, Y SiO: Ce, Tb activated silicate phosphor such as Ce, Tb, Sr P O—
- Sr B O Eu-activated boric acid phosphor such as Eu, Sr Si O 2 SrCl: Eu such as Eu
- Tb-activated silicate phosphor such as Tb, (Sr, Ba, Ca) Ga S: E such as Eu, Tb, Sm
- Ce-activated aluminate phosphor such as Ce, Ca Sc Si O: Ce
- Ca (Sc, Mg, Na, Li) Si O Ce-activated silicate phosphor such as Ce, CaSc O: Ce, etc.
- Eu-activated oxynitride phosphors such as sialon, BaMgAl 2 O: Eu, Mn, etc.
- Activated aluminate phosphor such as SrAl 2 O 3: Eu, (La, Gd,
- Tb-activated oxysulfide phosphors such as Tb
- LaP ⁇ Ce
- Tb-activated phosphoric acid such as Ce
- Salt phosphors such as ZnS: Cu, Al, ZnS: Cu, Au, Al, (Y, Ga, Lu, Sc, La) BO: Ce, Tb T Na Gd B ⁇ : Ce, Tb, (Ba, Sr) (Ca, Mg, Zn) B ⁇ : K, C
- Tb activated borate phosphors such as Tb, Ca Mg (SiO 2) CI: Eu, Mn such as Eu, Mn
- green phosphors examples include pyridine-phthalimide condensed derivatives, benzoxazinone-based, quinazolinone-based, coumarin-based, quinophthalone-based, and naltalimide-based fluorescent materials. It is also possible to use an organic phosphor such as a terbium complex having a dye or hexyl salicylate as a ligand.
- the peak wavelength is usually 420 nm or more, preferably 440 nm or more, Usually, it is 480 nm or less, preferably 470 nm or less.
- a blue phosphor for example, a growing particle force having a substantially hexagonal shape as a regular crystal growth shape is configured, and BaMgAl 2 O 3: Eu that emits light in a blue region.
- Pt-activated norlium magnesium aluminate-based phosphor which is composed of grown particles having a nearly spherical shape as a regular crystal growth shape, and emits light in the blue region (Ca, Sr, Ba) (PO)
- CI Eu-pium-activated halophosphate calcium represented by Eu
- Phosphors which are composed of growing particles having a regular cubic crystal growth shape and emit light in the blue region (Ca, Sr, Ba) B O CI: Eu
- Pium-activated alkaline earth chloroborate phosphor composed of fractured particles with fractured surfaces, and emits light in the blue-green region (Sr, Ca, Ba) Al 2 O: Eu or (Sr, Ca, Ba) Al
- blue phosphors include Sn-activated phosphate phosphors such as Sr P 2 O 3: Sn.
- Salt-activated phosphor SrGa S: Ce
- CaGa S Ce-activated thiogallate phosphor such as Ce
- MgAlO Eu
- BaMgAlO Eu-activated aluminate fluorescence such as Eu, Tb, Sm
- Eu-activated halophosphate phosphors such as Mn and Sb, BaAl Si O: Eu, (Sr, Ba) MgSi 0:
- Eu-activated silicate phosphor such as Eu
- Eu-activated phosphate phosphor such as Sr P O: Eu
- ZnS A
- sulfide phosphor such as ZnS: Ag, Al, etc.
- Y SiO Ce activated silicate phosphor such as Ce, CaW
- nB 2 O Eu
- 2SrO-0.84P O-0.16B O Eu
- Mn-activated boric acid phosphates such as Eu Phosphors
- Eu-activated halosilicate phosphors such as SrSiO-2SrCl: Eu
- SrSiO-2SrCl Eu
- blue phosphor for example, naphthalic acid imide-based, benzoxazole-based, styryl-based, coumarin-based, pyrazoline-based, triazole-based fluorescent dyes, organic phosphors such as thulium complexes, etc. may be used. Is possible.
- yellow phosphor An example of the specific wavelength range of the fluorescence emitted by a phosphor emitting yellow fluorescence (hereinafter referred to as “yellow phosphor” as appropriate) is usually 530 nm or more, preferably 540 nm or more, and more preferably 550 nm.
- the wavelength is usually 620 nm or less, preferably 600 mm or less, more preferably 580 nm or less. If the emission peak wavelength of the yellow phosphor is too short, the yellow component may be reduced and the color rendering may be inferior. If it is too long, the luminance of the light emitted from the light guide member may be reduced.
- Examples of such yellow phosphors include various oxide-based, nitride-based, oxynitride-based, sulfide-based, and oxysulfide-based phosphors.
- RE M O Ce (where R
- M represents at least one element of Y, Tb, Gd, Lu, and Sm
- M represents at least one element of Al, Ga, and Sc.
- M 3 is a trivalent metal element
- M 4 is garnet phosphor having a garnet structure represented by tetravalent metal element) and the like
- M 5 represents at least one kind of element of Si and Ge.
- Etc. oxynitride phosphors obtained by substituting part of oxygen of the constituent elements of the phosphors with nitrogen, AEAlSiN: Ce (where AE is Ba , Sr, Ca, Mg
- the yellow phosphor for example, CaGa S: Eu (Ca, Sr) Ga S: Eu,
- a phosphor activated with Eu such as an oxynitride phosphor having a SiAlON structure.
- the light guide member of the present invention can contain phosphors other than those described above.
- the layer constituting the light guide member of the present invention may be a fluorescent glass in which an ionic fluorescent material or an organic / inorganic fluorescent component is dissolved and dispersed uniformly and transparently.
- the particle size of the phosphor used in the present invention is not particularly limited, but the median particle size (D) is usually 0.
- the phosphor-containing layer described later can be used as a light source.
- the transmitted light is sufficiently scattered.
- the light transmitted from the light source is sufficiently absorbed by the phosphor particles, wavelength conversion is performed with high efficiency, and light emitted from the phosphor is irradiated in all directions.
- primary light from a plurality of types of phosphors can be mixed to make white, and uniform white light and illuminance can be obtained.
- the central particle size (D) of the phosphor is larger than the above range! /, The phosphor sufficiently fills the space of the light emitting part.
- the light transmitted from the light source may not be sufficiently absorbed by the phosphor. If the median particle size (D) of the phosphor is smaller than the above range,
- the illuminance may decrease.
- the particle size distribution (QD) of the phosphor particles is preferably smaller in order to align the dispersed state of the particles in the phosphor-containing layer, but in order to reduce the particle size, the classification yield is lowered, leading to an increase in cost.
- it is 0.03 or more, preferably 0.05 or more, and more preferably 0.07 or more. Further, it is usually 0.4 or less, preferably 0.3 or less, more preferably 0.2 or less.
- the median particle size (D) and particle size distribution (QD) are weight-based particle sizes.
- the weight-based particle size distribution curve can be obtained by measuring the particle size distribution by a laser diffraction or scattering method. Specifically, for example, it can be measured as follows.
- the particle size value when the integrated value is 50% is expressed as the median particle size D. Also, the particle size values when the integrated value is 25% and 75% are D, D and
- the shape of the phosphor particles is arbitrary as long as it does not affect the formation of the phosphor-containing layer.
- a forming liquid for forming a phosphor-containing layer hereinafter, referred to as “phosphor-containing layer forming liquid” as appropriate.
- a specific layer forming liquid containing a phosphor, etc. is the same as the phosphor composition. As long as it does not affect the fluidity, etc.).
- the phosphor used in the present invention may be subjected to a surface treatment for the purpose of enhancing water resistance or preventing unnecessary aggregation of the phosphor in the phosphor-containing layer.
- a surface treatment for the purpose of enhancing water resistance or preventing unnecessary aggregation of the phosphor in the phosphor-containing layer.
- Examples of such surface treatment include surface treatments using organic materials, inorganic materials, glass materials and the like described in JP-A-2002-223008, and metal phosphates described in JP-A-2000-96045. And a known surface treatment such as a silica coating.
- the following surface treatments (i) to (iii) are performed in order to coat the phosphor with the metal phosphate.
- a water-soluble phosphate such as potassium phosphate or sodium phosphate
- an alkaline earth metal such as calcium chloride, strontium sulfate, manganese chloride or zinc nitrate
- a phosphate of at least one of the alkaline earth metals, Zn and Mn is formed in the suspension, and the generated metal phosphate is deposited on the phosphor surface.
- preferable examples include silica coating, a method of neutralizing water glass to precipitate SiO, and surface treatment of hydrolyzed alkoxysilane.
- the method of adding phosphor particles is not particularly limited! /.
- the phosphor particles are mixed in advance with a reaction solution containing the raw material compound before hydrolysis (hereinafter referred to as “pre-hydrolysis solution”!).
- pre-hydrolysis solution a reaction solution containing the raw material compound before hydrolysis
- the phosphor surface is preliminarily provided with a crosslinkable group such as a bull group and a hydrosilyl group, or a hydrophobic group such as a methyl group.
- a crosslinkable group such as a bull group and a hydrosilyl group
- a hydrophobic group such as a methyl group.
- the phosphor-containing layer is formed of a dehydrated or dealkoxy-condensation type silicone resin and the phosphor particles are likely to aggregate, the phosphor particles are mixed in advance in the pre-hydrolysis solution, When hydrolysis / polycondensation is performed in the presence of phosphor particles, the surface of the particles is partially silane-coupled to improve the dispersion state of the phosphor particles.
- the specific layer A of the first to fourth light guide members of the present invention is in a liquid state before application (specific layer forming liquid A).
- specific layer forming liquid A water is potentially present as a silanol body, and almost no free water is present. Therefore, even such a phosphor can be used without being hydrolyzed.
- the specific layer forming solution after hydrolysis and polycondensation is used after dehydration / dealcoholation treatment, there is an advantage that it can be easily used together with such a phosphor.
- the use of an addition condensation type silicone resin as the material of the layer containing the phosphor means that the silicone resin generates water during curing. This is preferable.
- a dehydrated or dealcoholized silicone resin is used as the material for the phosphor-containing layer, the liquid state (formation solution) before coating is not good.
- water since water is potentially present as a silanol body and almost no free water is present, such a phosphor can be used without being hydrolyzed.
- the formation liquid after hydrolysis / polycondensation is used after dehydration / dealcoholation treatment, there is also an advantage that the combined use with such a phosphor becomes easy. Therefore, when the specific layer contains a phosphor, it is particularly preferable to form the specific layer with an addition condensation type, dehydration, or dealcohol type silicone resin.
- the particle surface can be modified with an organic ligand to improve dispersibility.
- Conventional addition-type silicone resins that have been used as light-guide members cannot be cured and mixed with such surface-treated particles as soon as they are inhibited by such organic ligands. It was. This is because the platinum-based curing catalyst used in the addition reaction type silicone resin has a strong interaction with these organic ligands, loses the hydrosilylation ability, and causes poor curing.
- Such poisonous substances include organic compounds containing N, P, S, etc., ionic compounds of heavy metals such as Sn, Pb, Hg, Bi, As, acetylene groups, etc., organic compounds containing multiple bonds (flux) Amines, vinyl chloride, sulfur vulcanized rubber) and the like.
- the specific layer of the light guide member of the present invention is based on a condensation-type curing mechanism that hardly causes inhibition of curing by these poisoning substances. For this reason, the specific layer is made of phosphor particles or inorganic particles whose surface has been modified with an organic ligand, and phosphor binders that have a high degree of freedom of mixing with fluorescent components such as complex phosphors. It has excellent characteristics as an introduced transparent material.
- the phosphor content in the phosphor-containing layer of the present invention is arbitrary as long as the effects of the present invention are not significantly impaired, and the force that can be freely selected according to the application mode is usually 0.1% by weight or more, Preferably it is 1% by weight or more, more preferably 5% by weight or more, and usually 35% by weight or less, preferably 30% by weight or less, more preferably 28% by weight or less.
- the light emission color transmitted from the light source is mixed with the light emission color of the phosphor to obtain white, a part of the light emission color transmitted through the light source power is transmitted. ,fluorescence The body content is low and becomes a region near the lower limit of the above range.
- a high concentration phosphor is preferred, and the phosphor content is in a region near the upper limit of the above range. If the phosphor content is higher than this range, the coating performance may be deteriorated, or the utilization efficiency of the phosphor may be lowered due to optical interference, and the luminance may be lowered.
- the phosphor content is less than this range, wavelength conversion by the phosphor becomes insufficient, and the target emission color may not be obtained.
- the specific phosphor content varies depending on the target color, the light emission efficiency of the phosphor, the color mixture type, the specific gravity of the phosphor, the coating thickness, and the shape of the light guide member. Yes, this is not the case.
- the specific layer forming liquid has a lower viscosity than conventional light guide member forming liquids such as epoxy resins and silicone resins.
- the coating performance can be sufficiently maintained even if a high concentration phosphor or inorganic particles having good compatibility with the phosphor and inorganic particles are dispersed.
- the specific layer forming liquid may contain a thixo material such as erodyl whose polymerization degree is adjusted as necessary.
- a thixo material such as erodyl whose polymerization degree is adjusted as necessary.
- the phosphor content in the phosphor-containing layer is such that if the phosphor composition can be specified, the phosphor-containing sample is pulverized and pre-fired to remove the carbon component, and then subjected to hydrofluoric acid treatment.
- the components are removed as key hydrofluoric acid, the residue is dissolved in dilute sulfuric acid to make the main component metal element into an aqueous solution, and the main component metal element is quantified by known elemental analysis methods such as ICP, flame analysis, and fluorescent X-ray analysis.
- the phosphor content can be obtained by calculation.
- phosphor If the shape and particle size are uniform and the specific gravity is known, a simple method can be used in which the number of particles per unit area is obtained by image analysis of the cross-section of the coating and converted into the phosphor content.
- the phosphor content in the phosphor-containing layer forming liquid may be set so that the phosphor content in the phosphor-containing layer falls within the above range. Therefore, the phosphor-containing layer forming liquid does not change in weight during the drying process! / In this case, the phosphor content in the phosphor-containing layer forming liquid is the phosphor content in the phosphor-containing layer. It will be similar to the rate.
- the weight of the phosphor-containing layer forming liquid changes during the drying process, such as when the phosphor-containing layer forming liquid contains a solvent, the phosphor-containing layer forming liquid excluding the solvent or the like It suffices if the phosphor content rate is the same as the phosphor content rate in the phosphor-containing layer.
- the layer constituting the light guide member of the present invention is intended to improve optical characteristics and workability, and to obtain any of the following effects ⁇ 1> to ⁇ 5>.
- inorganic particles may be included.
- the specific layer which mutually contacts among the layers which comprise the light guide member of this invention contains an inorganic particle.
- at least one of the two or more specific layers provided in the light guide member may contain inorganic particles.
- the inorganic particles may be contained in only one layer among the layers constituting the light guide member of the present invention, or may be contained in two or more layers.
- a light scattering layer described later is mixed with inorganic particles as a light scattering material, and the light transmitted from the light source is scattered to widen the directivity angle of the light emitted from the light guide member to the outside. Further, in the phosphor-containing layer, the amount of light hitting the phosphor is increased to improve the wavelength conversion efficiency.
- an appropriate amount of inorganic particles may be mixed in the specific layer forming liquid according to the purpose in the same manner as the phosphor powder.
- the effect obtained varies depending on the kind and amount of inorganic particles to be mixed.
- the inorganic particles are ultrafine silica with a particle size of about 10 nm (product name: AEROSIL # 200, manufactured by Nippon Aerosil Co., Ltd.), the thixotropic property of the specific layer forming liquid increases, so Is big.
- the inorganic particles are crushed silica or spherical silica having a particle size of about several ⁇ m
- ⁇ 2> and ⁇ 4> are significant because the increase in thixotropic properties is mainly due to the role of aggregate in a specific layer.
- inorganic particles having a particle size of about 1 ⁇ m, which has a refractive index different from that of the compound (dried hydrolyzed polycondensate) used in the specific layer are used at the interface between the compound and the inorganic particles. Since light scattering increases, the effect of ⁇ 1> is great.
- the refractive index of the compound (material) used in the specific layer is larger than that of the compound (material), and the median particle size is usually 1 nm or more, preferably 3 nm or more, and usually 1 Onm or less, preferably 5 nm or less.
- the refractive index can be improved while maintaining the transparency of the specific layer, so the effect ⁇ 5> above is great!
- the type of inorganic particles to be mixed may be selected according to the purpose. Moreover, the type may be a single type or a combination of multiple types. Moreover, in order to improve dispersibility, it may be surface-treated with a surface treatment agent such as a silane coupling agent.
- a surface treatment agent such as a silane coupling agent.
- inorganic particles used include inorganic oxide particles such as silica, barium titanate, titanium oxide, zirconium oxide, niobium oxide, aluminum oxide, cerium oxide, yttrium oxide, and diamond particles. Depending on the choice of other substances, it is not limited to these.
- the form of the inorganic particles may be any form depending on the purpose, such as powder form or slurry form. However, if it is necessary to maintain transparency, other forms contained in the layer containing the inorganic particles may be used. It is preferable to make the refractive index the same as that of the material, or add it as a water-based / solvent-based transparent sol to the liquid for forming the layer.
- the median particle size of these inorganic particles is not particularly limited, but is usually about 1/10 or less of the phosphor particles. Specifically, the following median particle size is used according to the purpose. For example, if inorganic particles are used as the light scattering material, the median particle size is usually 0.05 ⁇ m or more, preferably 0.1 ⁇ m or more, and usually 50 ⁇ m or less, preferably 20 or less. is there. For example, if inorganic particles are used as the aggregate, the median particle size is preferably 1 m to 10 m. For example, if inorganic particles are used as a thickener (thixotropic agent), the central particle is preferably 10 to! OOnm.
- the median particle size is preferably from !! to 1 Onm.
- at least one of the layers in contact with each other contains inorganic particles having a median particle diameter of 0.05 ⁇ 50 to 50 111, and the layer and / or others. It is preferable to contain inorganic particles having a median particle diameter of 1 to 1 Onm in at least one layer.
- inorganic particles having a median particle diameter of! -10 nm have an advantage that various functions such as refractive index adjustment can be imparted without impairing the transmittance of the specific layer. Also
- the inorganic particles having a median particle diameter of 0.05 to 50 111 can impart functions such as diffuse fluorescence as described above.
- the first layer contains functional inorganic particles with a median particle size of 0.05 to 50 m
- the second layer contains only inorganic particles with a median particle size of! -10 nm.
- the 2nd layer with a specific refractive index and transparency plays the role of a light guide layer, and a 1st layer turns into a layer light-emitted by scattering and fluorescence.
- both the first layer and the second layer can contain inorganic particles having a median particle diameter of 1 to 10 nm , and the first layer and the second layer can be formed by setting different contents for each layer.
- the refractive index of this layer it is possible to make an optical design according to the light guide distance, film thickness, scattering efficiency, and the like.
- the method for mixing the inorganic particles is not particularly limited.
- a planetary agitation mixer or the like is usually used in the same manner as the phosphor. It is recommended to mix while degassing.
- small particles such as Aerozinole! /
- the content of the inorganic particles in each layer of the light guide member of the present invention can be freely selected depending on the force and its application form as long as the effects of the present invention are not significantly impaired.
- the content when inorganic particles are used as the light scattering agent, the content is preferably 0.01 to 10% by weight.
- the content is preferably from ! to 50% by weight.
- the content when inorganic particles are used as a thickener (thixotropic agent), the content is preferably 0.;! To 20% by weight.
- inorganic particles are used as the refractive index adjuster the content is preferably 10 to 80% by weight. If the amount of the inorganic particles is too small, the desired effect may not be obtained. If the amount is too large, various properties such as adhesion, transparency and hardness of the cured product may be adversely affected.
- the specific layer forming liquid contains inorganic particles.
- the specific layer forming liquid is a conventional conductive material such as an epoxy resin or a silicone resin. Compared to the optical member forming liquid, it has the advantage of being able to maintain sufficient coating performance even when dispersed at high concentration of inorganic particles that have good affinity with phosphors and inorganic particles. . It is also possible to increase the viscosity by adjusting the degree of polymerization if necessary, and by adding a thixo material such as aerosil, etc., and the viscosity adjustment range according to the target inorganic particle content is large.
- a thixo material such as aerosil, etc.
- the inorganic particle content in each layer of the light guide member can be measured in the same manner as the phosphor content described above.
- the content of the inorganic particles in the forming liquid for forming each layer may be set so that the content of the inorganic particles in each layer falls within the above range. Therefore, the weight of the forming liquid does not change during the drying process!
- the content of inorganic particles in the forming liquid is the same as the content of inorganic particles in each layer of the light guide member.
- the forming liquid contains a solvent and the like. When the weight of the forming liquid changes in the drying process, such as when it has, the content of inorganic particles in the forming liquid excluding the solvent is the same as the content of inorganic particles in each layer of the light guide member It should just become.
- the first and second light guide members of the present invention are characterized in that two or more layers having different refractive indexes are laminated.
- third and fourth light guide members of the present invention are characterized in that two or more layers having different values are stacked.
- the fifth and sixth light guide members of the present invention are characterized in that two or more layers having different refractive indexes are laminated. Therefore, the fifth light guide member of the present invention is a light guide member in which two or more layers having different refractive indexes are laminated, at least one of the layers being a specific layer, and having a light emission peak. A light source with a dominant wavelength of 500 nm or less is provided.
- the sixth light guide member of the present invention is a light guide member in which two or more layers having different refractive indexes are laminated, and at least two of the layers in contact with each other are specific layers.
- the seventh and eighth light guide members of the present invention are characterized in that two or more layers having different haze values are laminated. Accordingly, the seventh light guide member of the present invention is a light guide member in which two or more layers having different haze values are laminated, wherein at least one of the layers is a specific layer and has a main emission peak. A light source with a wavelength of 500 nm or less is provided.
- the eighth light guide member of the present invention is a light guide member in which two or more layers having different haze values are laminated, and at least two of the layers in contact with each other are specific layers.
- both layers are designated as specific layers.
- the first, second, fifth and sixth light guide members of the present invention are characterized in that two or more layers having different refractive indexes are laminated.
- the high refractive index layer transmits light by providing a difference in refractive index between adjacent layers.
- the core layer, the low refractive index layer is the cladding layer that confines light, Form each one.
- the refractive index of the high refractive index layer of the first, second, fifth and sixth light guide members of the present invention is usually
- the refractive index of a general semiconductor light-emitting device is about 2.5, and is usually 2.5 or less. From the viewpoint of ease, it is preferably 2.0 or less. If the refractive index of the high refractive index layer is too small, the light extraction efficiency may not be improved. On the other hand, the light extraction efficiency is not improved even when the refractive index of the high refractive index layer is larger than the refractive index of the member constituting the light source.
- the refractive index of the low refractive index layer of the first, second, fifth and sixth light guide members of the present invention is usually less than 1.45, preferably 1.43 or less, more preferably 1. 42 or less.
- the lower limit is usually 1.4 or more, preferably 1.41 or more.
- the refractive index difference between the high-refractive index layer and the low-refractive index layer is usually 0.03 to 0.2. By appropriately adjusting this, the transmission distance of light in the high-refractive index layer It is also possible to adjust the (guide distance). In other words, when the refractive index difference is increased, the low refractive index layer (cladding layer) efficiently confines the light of the high refractive index layer (core layer), and therefore the light transmission distance with less leakage light to the low refractive index layer. Can increase the separation force S. On the other hand, if the refractive index difference is set to be as small as 0.05 or less, for example, light leakage from the high refractive index layer to the low refractive index layer increases, and the light transmission distance becomes short.
- the refractive index can be measured using a known method such as a Pulflich refractometer, an Abbe refractometer, a prism cover method, an interferometry, and a minimum declination method in addition to the immersion method (solid object).
- the refractive index measurement wavelength in the present invention can be selected from sodium D line (589 nm), which is used for general purposes when using an instrument such as an Abbe refractometer.
- the refractive index can be measured by various methods as described above, and the refractive index of the sample before and after curing hardly changes. Since samples after curing will be molded in various ways depending on the purpose, measurement using an Abbe refractometer using the uncured solution is the simplest and preferred!
- the third, fourth, seventh and eighth light guide members of the present invention have two or more layers having different haze values. It is characterized by being laminated.
- the haze value of the light scattering layer and / or the phosphor-containing layer is set. You can make it higher.
- the haze value of the light scattering layer and / or the phosphor-containing layer of the third, fourth, seventh and eighth light guide members of the present invention is usually 50 or more, preferably 70 or more, more preferably 80. That's it. If the haze value of the light scattering layer and / or the phosphor-containing layer is too small, the light scattering effect, that is, the effect that light is emitted to the outside of the light guide member may not be improved. Therefore, it is preferable that the haze value of at least one of the specific layers in contact with each other falls within the range of the light scattering layer and / or the phosphor-containing layer.
- the haze value is a numerical value of the so-called cloudiness (cloudiness value) of a transparent member, and is a value measured based on JIS-K-7136.
- the light guide member of the present invention includes a low refractive index layer, a high refractive index layer, a light scattering layer, and a phosphor by adjusting the refractive index and / or the haze value of each layer that is configured.
- each layer will be described. The specific installation method for each layer will be explained in the section [C-3] according to each embodiment!
- a low refractive index layer is usually provided as a cladding layer for confining light.
- a layer other than the specific layer may be a low refractive index layer, but the low refractive index layer is composed of a specific layer made of a compound having the characteristics described in the above-mentioned chapter [A] or [B]. It is preferable. Therefore, in the light guide member of the present invention, it is preferable that at least one of the specific layers in contact with each other is a low refractive index layer.
- the refractive index of the low refractive index layer is as described above. Further, the low refractive index layer may be provided with only one layer or may be provided with two or more layers.
- a high refractive index layer is usually provided as a core layer for transmitting light.
- a layer other than the specific layer may be a high refractive index layer, but the high refractive index layer has the characteristics described in the above-mentioned chapter [A] or [B]. It is preferable that it is comprised by the specific layer which consists of a compound. Therefore, in the light guide member of the present invention, it is preferable that at least one of the specific layers in contact with each other is a high refractive index layer.
- the high refractive index layer has a higher refractive index than the low refractive index layer, for example, a phenyl group is introduced into the compound, or as described in Chapter [C-12].
- the refractive index of the high refractive index layer is as described above.
- the high refractive index layer may be provided with only one layer or with two or more layers.
- the low refractive index layer and the high refractive index layer are both constituted by specific layers. Therefore, in the light guide member of the present invention, the refractive index of at least one of the specific layers in contact with each other is within the range of the high refractive index layer, and the refractive index of at least one other layer is the low refractive index. More preferably, it falls within the range of the rate layer.
- the light guide member of the present invention can be provided with a light scattering layer that radiates light transmitted from a light source to the outside.
- the light scattering layer functions to widen the directivity angle of light emitted from the light guide member to the outside.
- a layer other than the specific layer may be a light scattering layer, but the light scattering layer may be composed of a specific layer made of a compound having the characteristics described in the above-mentioned chapter [A] or [B]. preferable.
- the light scattering layer has a median particle size of usually 0.05 ⁇ m or more, preferably 0.1 ⁇ m or more as a light scattering material. It is preferable to contain inorganic particles of 50 ⁇ m or less, preferably 20 or less.
- the light scattering layer may be provided with only one layer, or may be provided with two or more layers.
- guided light can be extracted using the surface roughness of the substrate. This is because, by providing a light scattering layer on the rough surface, the guided light is scattered on the rough surface, and the light becomes perpendicular to the extraction surface, so that the light emerges on the surface. It is what I did.
- the rough surface can be formed on the substrate and / or on each layer. The rough surface may be formed on the upper surface (close to the light extraction surface! /, Surface), lower surface (far from the light extraction surface! /, Surface), or misaligned!
- the roughness of the rough surface is not particularly limited as long as it has the property of scattering light, but the height difference is usually 0.2 Hm or more, preferably 0.5 ⁇ m or more, and usually 50 ⁇ m or less, preferably 30 ⁇ Less than m. .
- the method of creating a rough surface on the substrate is not limited! /, But, for example, precision machining, blasting, powder coating, application of coating solution containing diffusing particles, particle pasting, chemical etching, optical Examples include irradiation, ink jet printing, exposure to a photosensitive curable (softening) resin, development, and heating / developing to a thermosensitive resin.
- a method of roughening the surface of each layer to be laminated for example, chemical treatment using hydrofluoric acid or alkali, blast treatment, powder coating, application of a coating solution containing diffusing particles, particle pasting, light irradiation, inkjet There is printing.
- the light guide member of the present invention can be provided with a phosphor-containing layer in order to convert the wavelength of light transmitted from the light source force into a desired wavelength.
- the phosphor-containing layer refers to a layer containing a phosphor among the layers constituting the light guide member. At this time, a layer other than the specific layer becomes a phosphor-containing layer! /, But the phosphor-containing layer is made of a compound having the characteristics described in the above-mentioned chapter [A] or [B]. It is preferable that it is comprised by the specific layer. In this case, among the layers constituting the light guide member of the present invention, it is preferable that the specific layers in contact with each other contain a phosphor to constitute the phosphor-containing layer. However, in this case, at least one of the two or more specific layers provided in the light guide member may contain a phosphor.
- the phosphor-containing layer is formed by containing the phosphor described in [C 1 1] in the layer.
- the phosphor-containing layer contains inorganic particles having a median particle size of 0.;! To 10 m as a light scattering material. Also good.
- the phosphor-containing layer may be provided with only one layer or two or more layers.
- the shape and dimensions of the light guide member of this invention is determined according to the shape and size of the substrate of the optical waveguide or the light guide plate.
- the forming film film forming the light guide member
- the forming film is a force for laminating a plurality of films having different refractive indexes and haze values. The dimensions of each layer are arbitrarily set according to the application.
- the specific layer can be formed in a thick film.
- the layer constituting the light guide member is thickened, cracks or the like are generated due to internal stress or the like, and it is difficult to thicken the layer.
- the thickness of each specific layer is usually 10 m or more, preferably 30 m or more, usually 500 m or less, preferably 300 mm or less. More preferably, it is 200 m or less.
- the thickness of the film refers to the thickness of the maximum thickness portion of the film.
- the total thickness of all layers excluding the light guide plate substrate is usually ⁇ ⁇ or more, preferably ⁇ ⁇ or more, usually 500 ⁇ m or less, preferably 300 ⁇ m or less, more preferably 200 ⁇ m. m or less.
- the light guide member of the present invention a light guide plate using a semiconductor light-emitting device as a light source will be described as an example and described using an embodiment.
- these embodiments are used only for convenience of explanation, and the optical waveguide, the light guide plate, and other examples to which the light guide member of the present invention is applied are limited to these embodiments.
- the substrate may be provided or not as required, and the thickness is not particularly limited.
- the specific layer has high flexibility in the present invention, the use of this specific layer makes it possible to produce a layer having an arbitrary film thickness without warping or deformation of the substrate even on a thin substrate such as a flexible printed circuit board. it can.
- the light guide plate 8 of the first embodiment is disposed on the substrate 1 so as to cover the semiconductor light emitting element 2 made of LED chips and optionally cover the semiconductor light emitting element 2.
- the semiconductor light emitting device 4 comprising the sealing material 3 is provided as a light source.
- a low refractive index layer 5 is coated as a specific layer which is a part of the light guide plate 8.
- the low refractive index layer 5 is provided with a cylindrical or mortar-shaped hole 5H so as not to cover the semiconductor light emitting device 4!
- a high refractive index layer 6 is provided as a specific layer in contact with the low refractive index layer 5. Further, in the present embodiment, the high refractive index layer 6 is also formed around the semiconductor light emitting device 4 in the hole 5H, so that light emitted from the semiconductor light emitting device 4 is directly incident on the high refractive index layer 6. It has become. As a result, the high refractive index layer 6 assures the function of transmitting light emitted from the light source (semiconductor light emitting device 4 in FIG. 2) as the core portion of the optical waveguide.
- a low refractive index layer 5 ' may be further provided as a specific layer in contact with the high refractive index layer 6. Even when the low refractive index layer 5 ′ is not provided, the air layer can serve as a cladding portion.
- a light scattering layer and / or a phosphor-containing layer 7 can be appropriately provided on the contact surface (for example, the upper surface) of the high refractive index layer 6.
- the light scattering layer ensures the function of emitting light emitted from the light source transmitted by the high refractive index layer 6 to the outside.
- the phosphor-containing layer exhibits a wavelength conversion function of emitting light of a desired wavelength when excited by light from the light source transmitted by the high refractive index layer 6.
- the light scattering layer and / or the phosphor-containing layer 7 is used.
- the position to be formed is preferably set in consideration of design.
- the light scattering layer and / or the phosphor-containing layer 7 is formed in a predetermined portion on the upper surface of the high refractive index layer 6, and the low refractive index layer is formed on the other portions on the upper surface of the high refractive index layer 6. Assume that 5 'is formed.
- the semiconductor light-emitting element 2 is not particularly limited, but a specific example of a light-emitting diode (LED) or laser diode (LD) that emits light having a peak wavelength in the range of 350 nm to 500 nm is preferable. ) And the like. Of these, the above-described GaN-based LEDs and LDs are preferable.
- the sealing material 3 exhibits functions such as a highly durable sealant, a light extraction film, and various function-added films of the semiconductor light emitting device 2.
- the encapsulant 3 may be used alone, but can contain any additive as long as the effects of the present invention are not significantly impaired except for the phosphor and the phosphor component. Further, since the high refractive index layer 6 can also serve as a sealing material, the sealing material 3 may not be provided.
- sealing material 3 it is preferable to use the same compound (material) as the high refractive index layer 6 of the light guide member of the present invention from the viewpoint of adhesion and the like. Further, as the sealing material 3, other materials can be used. Normally, a resin (hereinafter referred to as “sealing resin” as appropriate) is used as the sealing material 3. Examples of such a sealing resin usually include a thermoplastic resin, a thermosetting resin, a photocurable resin, and the like.
- methacrylic resin such as polymethylmethacrylate
- styrene resin such as polystyrene and styrene acrylonitrile copolymer
- polycarbonate resin such as polymethylmethacrylate
- polyester resin such as polystyrene and styrene acrylonitrile copolymer
- phenoxy resin Cellulosic resins such as chinoresenolose, sennellose acetate, sennellose acetate petitate
- epoxy resins such as phenol resins; silicone resins, etc.
- inorganic materials such as metal alkoxides, ceramic precursor polymers, or solutions obtained by hydrolytic polymerization of a solution containing metal alkoxides by a sol-gel method or a combination thereof, inorganic materials such as siloxane bonds. Inorganic materials can be used.
- the material of the sealing material 3 such as the sealing resin may be used alone or in combination of two or more in any combination and ratio.
- the encapsulant 3 may contain a phosphor, whereby the wavelength of the light source can be converted into light having a desired wavelength and then transmitted through the high refractive index layer.
- the amount of the phosphor used is not particularly limited, but is usually 0.01 parts by weight or more, preferably 0.1 parts by weight or more, more preferably 1 part by weight with respect to 100 parts by weight of the sealing material. In addition, it is usually 100 parts by weight or less, preferably 80 parts by weight or less, more preferably 60 parts by weight or less.
- the sealing material 3 may contain components other than the phosphor and the inorganic particles.
- a color correction dye an antioxidant, a processing stabilizer such as a phosphorus processing stabilizer, an oxidation and heat stabilizer, a light resistance stabilizer such as an ultraviolet absorber, and a silane coupling agent.
- a processing stabilizer such as a phosphorus processing stabilizer, an oxidation and heat stabilizer, a light resistance stabilizer such as an ultraviolet absorber, and a silane coupling agent.
- the semiconductor light-emitting device 4 may be installed on the substrate 1 before coating, or may be installed on the substrate 1 after coating by removing the masking after coating the coating portion.
- a specific layer forming solution diluted with a solvent such as toluene or heptane is used. It may be formed by coating.
- the light guide plate 8 of the present embodiment is configured as described above, the light from the light source transmitted by the high refractive index layer 6 passes through the light scattering layer and / or the phosphor-containing layer 7. Then, the light is emitted to the outside of the light guide member (light guide plate 8). Therefore, when the sealing material 3 does not contain a phosphor, and when the light guide member (light guide plate 8) does not contain the phosphor-containing layer 7, the light is emitted from the light source (semiconductor light emitting element 2 in FIG. 2). Radiated to the outside in the same luminescent color.
- the phosphor-containing layer 7 exhibits a wavelength conversion function of emitting light of a desired wavelength when excited by light from the light source transmitted by the high refractive index layer 6 as described above. . Therefore, the phosphor-containing layer 7 emits light obtained by wavelength-converting light emitted from the semiconductor light emitting element 2. At this time, the phosphor-containing layer 7 only needs to contain at least a fluorescent substance that is excited by light from the light source and emits light of a desired wavelength. Examples of such phosphors include the various phosphors exemplified above.
- the emission color of the phosphor-containing layer 7 not only the three primary colors of red (R), green (G) and blue (B), but also white such as a fluorescent lamp and yellow such as a light bulb are possible.
- the phosphor-containing layer 7 has a wavelength conversion function for emitting light having a desired wavelength different from the excitation light.
- the light transmitted by the high refractive index layer 6 is also emitted from a portion where the high refractive index layer 6 is exposed on the side surface.
- the low refractive index layer 5 and the high refractive index layer 6 and the light scattering layer and / or the phosphor-containing layer 7 use a specific compound. Therefore, the light durability (light resistance) and heat durability (heat resistance) of the light guide member (light guide plate 8) can be improved. Due to the action of the polar group between 7 and the like, the adhesion is more improved than when the specific layer is used alone. Also, between the substrate 1 and the low refractive index layer 5, between the low refractive index layer 5 and the high refractive index layer 6, and / or the high refractive index layer.
- the angle 9 formed between the side surface of the light guide member (light guide plate 8) and the laminated surface may be vertical, but the light extraction effect (particularly, light from the side surface portion in the present embodiment). From the viewpoint of improving the taking-out effect), it is usually 30 ° or more, preferably 35 ° or more, more preferably 40 ° or more, and usually 80 ° or less, preferably 70 ° or less, and more preferably 60 ° or less.
- the angle formed between the side surface of the light guide member (light guide plate 8) and the laminated surface is a guide as viewed from a direction perpendicular to the laminate surface of the light guide member (light guide plate 8), as shown in FIG. The inner angle formed by the side surface of the optical member (light guide plate 8) and the laminated surface is shown.
- the light guide member of the present invention When the light guide member of the present invention is applied to an optical waveguide, a light guide plate, or the like, it is preferable to appropriately modify it according to the location to which the present invention is applied. For example, a desired number of light sources can be appropriately provided at desired positions on the substrate surface. A desired number of light scattering layers and phosphor-containing layers can be appropriately provided at desired positions of the light guide member.
- the light guide member of the present invention is not limited to the embodiments exemplified below, and can be implemented with arbitrary modifications without departing from the gist of the present invention.
- the same reference numerals as those in the first embodiment are used for the same parts as those described in the first embodiment.
- the entire uppermost layer is a light scattering layer and / or a phosphor-containing layer 7.
- the light guide plate 8 according to the present embodiment is configured in the same manner as in the first embodiment except for the above-described points. Therefore, the light guide plate 8 of the present embodiment is also configured by laminating the low refractive index layer 5, the high refractive index layer 6, and the light scattering layer and / or the phosphor-containing layer 7 which are specific layers in contact with each other.
- the light guide plate 8 of the third embodiment does not have the low refractive index layer 5 ′ and the light scattering layer and / or the phosphor-containing layer 7 as the uppermost layer. That is, the entire top surface of the photorefractive index layer 6 is configured to be exposed to the gas phase. In this case, the gas transmission layer acts as a cladding layer on the upper surface, thereby ensuring the optical transmission effect.
- the optical waveguide distance is controlled to achieve the desired effect. be able to.
- the phosphor-containing layer 7 can be provided on a part of the low refractive index layer 5 (FIG. 4).
- the light guide plate 8 according to the present embodiment is configured in the same manner as in the first embodiment except for the points described above. Therefore, the light guide plate 8 of the present embodiment also has a low refractive index layer 5, a high refractive index layer 6, and a light scattering layer and / or a fluorescent layer formed on a part of the low refractive index layer 5, which are specific layers in contact with each other. Since the body-containing layer 7 is laminated, as in the first embodiment, it is possible to freely control the film thickness such as thickening, and to suppress cracks and peeling. There are advantages such as being excellent in heat resistance and light resistance.
- the light guide plate 8 of the fourth embodiment is formed into a light scattering layer 7 by mixing a very small amount of inorganic particles as a light scattering agent in a portion corresponding to the high refractive index layer 6 of FIG. ( Figure 5). In this case, light can be extracted from the entire surface of the light guide plate 8 as in the second embodiment. In addition, because of the two-layer structure, the total thickness of the light guide plate 8 can be reduced.
- the light guide plate 8 according to the present embodiment has the above-mentioned configuration and the configuration other than that the light scattering layer and / or the phosphor-containing layer 7 is not provided in a part of the low refractive index layer 5.
- the configuration is the same as that of the embodiment. Therefore, since the light guide plate 8 of the present embodiment is also configured by laminating the low refractive index layer 5 and the light scattering layer 7 which are specific layers in contact with each other, as in the third embodiment, the thick film It is possible to obtain advantages such as free control of film thickness such as crystallization, suppression of cracks and peeling, excellent heat resistance and light resistance, etc.
- the light guide plate 8 of the fifth embodiment includes a high refractive index layer 6 that is an optical transmission unit.
- a part (high refractive index portion 6a) penetrates through the low refractive index layers 5, 5 ′, the light scattering layer and / or the phosphor-containing layer 7.
- the high refractive index portion 6a is a boundary portion that penetrates at least two specific layers in contact with each other.
- the boundary portion is formed as the high refractive index portion 6a capable of transmitting light, the light transmission portion can be extended in a direction perpendicular to the substrate surface across each layer.
- the high refractive index portion 6a functions as V, a so-called “boundary portion A”.
- the boundary A is a high refractive index boundary formed of a material having a refractive index equivalent to that of the high refractive index layer 6, and transmits light emitted from the semiconductor light emitting device 4 to shine itself.
- the high refractive index portion 6a may use a material different from the high refractive index layer 6 in the light guide member of the present invention as the boundary portion A.
- any material can be used as long as it is a material that can transmit light from the light source.
- an inorganic or organic material having the same refractive index as that of the high refractive index layer 6 can be used.
- the boundary A is preferably an epoxy resin, a urethane resin, a polyimide resin, an acrylic resin, a phenol resin, or the like from the viewpoints of low moisture permeability, light blocking properties, and adhesion to the substrate 1.
- the low refractive index layers 5, 5 ′, the light scattering layer and / or the phosphor-containing layer 7, epoxy resins and acrylic resins are particularly preferred.
- Use of an epoxy resin as the boundary portion A is a particularly preferable combination because the high refractive index layer 6 as a specific layer is particularly excellent in adhesion to the epoxy resin, hardly changes in quality, and does not inhibit the effect.
- the method for producing such a high refractive index portion 6a there is no limitation on the method for producing such a high refractive index portion 6a.
- the high refractive index portion 6a is provided on the substrate 1, the low refractive index layers 5, 5 ′, the high refractive index layer 6, and the light scattering layer and / or the phosphor-containing layer 7 are laminated before coating. Then, the high refractive index portion 6a is formed, and then the low refractive index layers 5 and 5 ′, the high refractive index layer 6 and the light scattering layer and / or the phosphor-containing layer 7 may be laminated.
- the method used to form the high refractive index portion 6a is not limited, and for example, it can be formed by a dispenser, screen printing, a resist method, or the like.
- the low refractive index layers 5, 5 ′, the high refractive index layer 6 and the light A scattering layer and / or phosphor-containing layer 7 is laminated, and then the masking is removed, and the installation portion is highly refracted.
- the rate portion 6a may be formed.
- the layer is laminated on the substrate 1, and then the high refractive index portion 6a and the high refractive index portion 6a are formed on the layer according to the method described above.
- the low refractive index layers 5 and 5 ′, the high refractive index layer 6, and the light scattering layer and / or the phosphor-containing layer 7 may be formed as necessary.
- the light guide plate 8 according to the present embodiment is configured in the same manner as in the first embodiment except for the points described above. Therefore, the light guide plate 8 of the present embodiment also includes the low refractive index layers 5 and 5 ′, the high refractive index layer 6, and the light scattering layer and / or the phosphor-containing layer 7 that are specific layers in contact with each other. Therefore, as in the first embodiment, it is possible to freely control the film thickness such as thickening, to suppress cracks and peeling, and to improve heat resistance and light resistance. Advantages such as superiority can be obtained.
- the high refractive index portion 6a is formed of the same compound as that of the specific layer, the high refractive index portion 6a can also be freely controlled in film thickness such as thickening, cracks and Advantages such as suppression of peeling and excellent heat resistance and light resistance can be obtained.
- the light guide plate 8 of the sixth embodiment includes a portion of the low refractive index layer 5 (low refractive index portion 5a) that is a light blocking portion, the high refractive index layer 6, It penetrates the light scattering layer and / or the phosphor-containing layer 7.
- the low refractive index portion 5a functions as a boundary portion.
- the boundary portion is formed as the low refractive index portion 5a capable of blocking light, the light blocking portion can be extended in the direction perpendicular to the substrate surface across each layer.
- the low refractive index portion 5a functions as V, a so-called “boundary portion B”.
- the boundary portion B is a low refractive index boundary portion formed of a low refractive index material, which blocks light emitted from the semiconductor light emitting device 4 and divides the light guide plate 8 into an optical area.
- a high refractive index boundary portion made of a material having a higher refractive index than that of the high refractive index layer 6 can be used as the boundary portion B.
- the low refractive index portion 5a may use a material different from the low refractive index layer 5 in the light guide member of the present invention as the boundary portion B.
- the boundary B any material can be used as long as it is a material that can block light transmitted from the light source.
- an inorganic or organic material having a refractive index lower than that of the high refractive index layer 6 can be used.
- the boundary B is preferably an epoxy resin, a urethane resin, a polyimide resin, an acrylic resin, a sol-gel glass, or the like from the viewpoints of low moisture permeability, light blocking properties, and adhesion to the substrate 1. Further, from the viewpoint of adhesion to the high refractive index layer 6, low refractive index layer 5, 5 ′, light scattering layer and / or phosphor-containing layer 7 of the present invention, epoxy resin and acrylic resin are more preferable. Epoxy resins are particularly preferred.
- the use of epoxy resin as the boundary B is a particularly preferred combination because the high refractive index layer 6 that is a specific layer is particularly excellent in adhesion to the epoxy resin, is difficult to be altered, and has no effect inhibition. It is.
- the light guide plate 8 according to the present embodiment is configured in the same manner as in the first embodiment, except for the above points. Therefore, the light guide plate 8 of the present embodiment also includes the low refractive index layers 5 and 5 ′, the high refractive index layer 6, and the light scattering layer and / or the phosphor-containing layer 7 that are specific layers in contact with each other. Therefore, as in the first embodiment, it is possible to freely control the film thickness such as thickening, to suppress cracks and peeling, and to improve heat resistance and light resistance. Advantages such as superiority can be obtained.
- the low refractive index portion 5a is formed of the same compound as that of the specific layer, the low refractive index portion 5a can also be freely controlled in film thickness such as thickening, cracks and Advantages such as suppression of peeling and excellent heat resistance and light resistance can be obtained.
- the light guide plate 8 of the seventh embodiment is obtained by installing a light scattering layer and / or a phosphor-containing layer 7 at a desired location in the high refractive index layer 6. is there.
- a light emitting surface using scattering can be formed at a desired location on the light guide plate 8. If this is used, it is possible to prevent transmission of light from far away while extracting light from a desired position.
- the method for producing such a light scattering layer and / or phosphor-containing layer 7 can be produced in the same manner as the high refractive index portion 6a described in the fifth embodiment.
- the light scattering layer and / or the phosphor-containing layer 7 is provided inside the high refractive index layer 6, the light scattering layer and / or the phosphor-containing layer 7 is provided. Then, a high refractive index layer 6 is further laminated thereon.
- the light guide plate 8 according to the present embodiment has the above-described points and the configuration other than that the light scattering layer and / or the phosphor-containing layer 7 is not provided in a part of the low refractive index layer 5.
- the configuration is the same as in the third embodiment. Therefore, the low-refractive index layers 5 and 5 ′, which are specific layers in contact with each other, and the high-refractive index layer 6 as well as the light scattering layer and / or the phosphor-containing layer 7 are also laminated in the light guide plate 8 of the present embodiment. Therefore, as in the third embodiment, it is possible to freely control the film thickness such as thickening, to suppress cracks and peeling, and to have heat resistance and light resistance. It has become possible to obtain advantages such as excellence
- the light guide plate 8 of the eighth embodiment has a high refractive index portion (boundary portion A) and / or a low refractive index portion (boundary portion B) 10 (in the description of this embodiment).
- boundary portion 10 When referring to the high refractive index portion and the low refractive index portion without distinguishing each other, it is referred to as “boundary portion 10”) that penetrates each of the layers 5, 6, 5 ′.
- a desired optical waveguide is constructed in the vertical and horizontal directions of the substrate surface by controlling the light blocking portion.
- the boundary portion 10 can be produced in the same manner as the high refractive index portion 6a described in the fifth embodiment.
- the light guide plate 8 according to the present embodiment has the above-described configuration, except that the light scattering layer and / or the phosphor-containing layer 7 is not provided on the upper surface of the high refractive index layer 6.
- the configuration is the same as in the first embodiment. Therefore, the light guide plate 8 of the present embodiment is also configured by laminating the low refractive index layers 5 and 5 ′ and the high refractive index layer 6 which are specific layers in contact with each other. Similarly, it is possible to obtain advantages such as being able to freely control the film thickness such as thickening, suppressing cracks and peeling, and being excellent in heat resistance and light resistance. It has become.
- the boundary portion 10 is formed of the same compound as that of the specific layer, the boundary portion 10 can also be freely controlled in film thickness such as thickening, and cracks and separation can be suppressed. Advantages such as being possible and being excellent in heat resistance and light resistance can be obtained.
- the reflective layer 11 is laminated on the substrate 1, and the reflective layer 11 does not cover the portion of the semiconductor light emitting device 4.
- a cylindrical or mortar-shaped hole 11H is provided. Thereby, the high refractive index layer 6 is transmitted. Since the light is efficiently reflected on the surface of the reflective layer 11, the light emitted from the semiconductor light emitting device 4 can be used effectively.
- a light scattering layer and / or a phosphor-containing layer 7 can be provided.
- the material constituting the reflective layer 11 is not limited.
- a metal material such as silver or aluminum; barium sulfate, silica, titanium oxide, calcium carbonate, or the like can be used.
- the film thickness is arbitrary as long as the effect of the present invention is not significantly impaired, but is usually ⁇ or more, preferably 10 m or more, and usually 100 m or less, preferably 50 m or less.
- stacking method For example, it can laminate
- the light guide plate 8 according to the present embodiment has the above-described points, and a configuration other than the force that does not provide the light scattering layer and / or the phosphor-containing layer 7 on the upper surface of the high refractive index layer 6. Is configured in the same manner as in the first embodiment. Accordingly, the light guide plate 8 of the present embodiment is also configured by laminating the high refractive index layer 6 and the low refractive index layer 5 ′, which are specific layers that are in contact with each other, and is the same as in the first embodiment. In addition, it is possible to obtain advantages such as being able to freely control the film thickness such as thickening, being able to suppress cracks and peeling, and being excellent in heat resistance and light resistance. Yes.
- a cylindrical or mortar-shaped hole 1H is formed in the substrate 1, and the semiconductor light emitting device 4 is installed at the bottom of the hole 1H. It is composed.
- the thickness of the light source itself can be accommodated in the substrate 1.
- the thickness of the low refractive index layer 5, the high refractive index layer 6, the light scattering layer and / or the phosphor-containing layer 7 can be reduced, and the height of the semiconductor light emitting device 4 can be adjusted. It becomes possible to increase the degree of freedom of design.
- the light guide plate 8 has the above-described points, and the configuration other than the provision of the light scattering layer and / or the phosphor-containing layer 7 in a part of the low refractive index layer 5,
- the configuration is the same as in the first embodiment. Therefore, the low-refractive index layers 5 and 5 ′, the high-refractive index layer 6, and the light scattering layer and / or the phosphor-containing layer 7, which are specific layers in contact with each other, are also laminated on the light guide plate 8 of the present embodiment.
- the thick film It is possible to obtain advantages such as free control of the film thickness such as crystallization, suppression of cracks and peeling, and excellent heat resistance and light resistance.
- the specific layers such as the low refractive index layers 5, 5 ′, the light refractive index layer 6, the light scattering layer and / or the phosphor-containing layer 7 are laminated.
- Some layers constituting the light guide plate 8 may not be provided, and other layers may be further stacked.
- the specific layer is excellent in translucency and adhesiveness, it is preferable to provide a moisture-proof film formed of polyethylene terephthalate (PET) or the like on the outermost layer of the light guide plate 8 described above.
- PET polyethylene terephthalate
- the boundary portions such as the low refractive index portion 5a, the high refractive index portion 6a, and the boundary portion 10 may penetrate at least two of the specific layers 5, 5 ', 6, and 7 described above. Therefore, it is possible to penetrate three or more layers. Further, it may be formed of a material that does not transmit light just by forming it from a material that can transmit light. Furthermore, the boundary part may contain other components such as inorganic particles, phosphors, and coloring materials.
- the color material can be used by appropriately selecting the material and color.
- the boundary is white
- the white boundary reflects the light in each region, and the light to the adjacent region It has the effect of preventing leakage and color mixing.
- the white boundary is made very thin or thin, the light shielding effect may be insufficient.
- the use of the black border can surely prevent the color mixing of light to the adjacent area that causes a loss of light guide amount due to light absorption.
- an inorganic and / or organic material can be used as the color material.
- the inorganic particles alumina fine powder, silicon oxide, aluminum oxide, titanium oxide, Metal oxides such as zinc oxide and magnesium oxide; metal salts such as calcium carbonate, barium carbonate, magnesium carbonate, barium sulfate, aluminum hydroxide, calcium hydroxide, magnesium hydroxide; boron nitride, alumina white, co Examples include loyal silica, aluminum silicate, zirconium silicate, aluminum borate, clay, talc, kaolin, mica, and synthetic mica.
- the organic fine particles include, but are not limited to, forces that can include resin particles such as fluorine resin particles, guanamine resin particles, melamine resin particles, acrylic resin particles, and silicon resin particles.
- the boundary portion contains a color material to make it black
- inorganic and / or organic materials can be used.
- the inorganic particles titanium black, carbon black, iron oxide black, bismuth sulfate, etc. Is mentioned.
- the organic fine particles are not limited to any force that can include, for example, aniline black, cyanine black, and perylene black.
- coloring material only one type of coloring material may be used, or two or more types may be used in any combination and ratio.
- the light guide member manufacturing method of the present invention includes a light guide layer obtained by curing a fluid curable material on a substrate.
- a step of providing a weir for partitioning the light guide layer on the substrate hereinafter referred to as “weir formation process” as appropriate
- a step of applying a curable material on the substrate hereinafter referred to as “curable material as appropriate”.
- curable material curing process a process of curing the curable material
- a substrate is prepared, and a weir is provided on the substrate.
- substrate is a part which can become a support body of the light guide member of this invention, and a light guide layer and a weir are arrange
- the size and shape of the substrate can be set arbitrarily according to the purpose of the light guide member to be manufactured.
- the substrate may include an arbitrary member as necessary.
- the substrate is a light emitting diode (also called “: LED”) and a semiconductor laser diode.
- a light emitting source such as a semiconductor light emitting device such as a semiconductor laser diode (also referred to as “LD”) may be provided.
- the position at which the light emitting light source is disposed can be arbitrarily set according to the purpose of the light guide member.
- one or more desired layers may be laminated on the substrate in advance.
- the weir and the light guide layer which will be described later, are provided on the substrate via these layers.
- the material for forming the substrate is optional as long as the effects of the present invention are not significantly impaired.
- a curable material for forming a weir or a light guide layer ceramic, metal, glass, etc.
- Resins are preferred.
- those containing a polar group and those containing a filler for improving adhesiveness such as ceramic, metal and glass are preferable.
- a substrate having wiring may be used.
- a printed wiring board on which glass fiber reinforced epoxy resin is laminated is suitable.
- the substrate may be formed of only one kind of material. Two or more kinds of materials may be used in any combination and kind.
- a weir is provided on the substrate.
- the weir is formed of a material that can transmit or block light from the light source, and is a portion that functions as a boundary portion that partitions the light guide member into predetermined regions.
- the light source light is transmitted to the area including the weir. That is, light is transmitted to the inside of the weir.
- the light source light is transmitted only to the area that does not include the weir! That is, no light is transmitted inside the weir.
- a light guide layer which will be described later, is formed so as to be blocked by this weir. Even when the weir does not completely block the light guide layer (that is, when the light guide layer is formed so as to cross over the weir), the portion where the weir is formed is a part of the weir. Only the light guide layer is formed thin, and as a result, the weir functions as a boundary part that partitions the light guide layer partially. Therefore, the weir partitions the light guide layer, so to speak, the size, shape, position, etc. of the light guide layer region are set according to the size, shape, position, etc. of the drawing of the weir. Design of Will be determined.
- the planar shape of each area of the partitioned light guide layer is the size, shape, It will be set according to the layout.
- the weir when the weir is formed of a material capable of transmitting light, the light transmitted from the light source through the light guide layer can be emitted through the weir.
- the shape and pattern formed by the light emitted by the member can be set according to the size, shape, position, etc. of the weir.
- the weir cannot transmit light! / Or is formed of a material! /
- the light transmitted from the light source through the light guide layer is prevented from being emitted from the weir. It is possible to prevent transmission from the weir to the end, or to reduce the intensity of the light transmitted from the weir to the end, thereby reducing the shape or pattern formed by the light emitted by the light guide member. It can be set according to the dimensions, shape, position, etc. of the weir.
- the weir has a function of converting the wavelength of light (that is, a wavelength conversion function)
- a wavelength conversion function when the weir has a function of converting the wavelength of light (that is, a wavelength conversion function), light transmitted from the light source through the light guide layer is transmitted through the weir to a desired wavelength. After being converted into light, the light can be emitted, so that the color formed by the light emitted from the light guide member can be set according to the size, shape, position, etc. of the weir.
- the weir has a function of diffusing light
- light transmitted from the light source through the light guide layer can be diffused with respect to light emitted from the weir.
- the shape or pattern formed by the light emitted from the light guide member can be set according to the size, shape, position, etc. of the weir.
- any material of the weir can be used as long as the effects of the present invention are not significantly impaired.
- epoxy resin, urethane resin, polyimide resin, acrylic resin, silicone resin, and the like are preferable from the viewpoint of low moisture permeability, light transmission or blocking characteristics, and adhesion to the substrate. Further, from the viewpoint of adhesion to the substrate and the light guide layer (curable material), epoxy resin, acrylic resin, and silicone resin are particularly preferable. Only one type of weir material may be used, or two or more types may be used in any combination and ratio. [0362] Further, the material of the weir is preferably a material (curable material) that can be cured by applying a liquid material.
- the curable material is preferably a thermosetting resin, a photocurable resin, or the like.
- thermosetting resins those that cure at the lowest possible temperature are preferred, and the influence of alteration on the substrate and light source is small.
- Some curable materials have a viscosity that temporarily decreases during curing. From the viewpoint of preventing the strength and the shape retention characteristics from deteriorating, it is preferable to suppress the above-described decrease in viscosity. In order to realize this, it is effective to improve the properties of the curable material and utilize the above-mentioned inorganic particles.
- other components may be further mixed with the above-described resin or the like as long as the effects of the present invention are not significantly impaired.
- Other components may be used alone, or two or more may be used in any combination and ratio.
- examples of other components include phosphors and inorganic particles. These phosphors and inorganic particles are the same as those described in the first to eighth light guide members of the present invention.
- the weir is formed as a convex member extending on the substrate surface.
- the weir is preferably formed in a shape having no ridgeline.
- the ridge line means a corner continuously formed in the longitudinal direction on the surface of the weir. Therefore, the shape having no ridge line refers to a shape in which the cross section has no corners when the weir is cut along a plane intersecting the longitudinal direction. Therefore, for example, the weir is preferably formed as a member having a substantially semicircular cross-section (le, loose, force, dimpled) whose surface is formed only by a curved surface (Fig. 13 (b) See).
- the surface of the weir is formed only with a smooth convex curved surface, the light extraction effect in the weir is superior to the case where it is formed with a polygonal cross section. This is because the surface of the weir is formed with a smooth surface, so that the transmitted light hits the weir and is reflected from the top of the weir. This is because it is possible to extract smooth light that continues to the bonding surface with a plate or the like.
- the dimensions of the weir can be arbitrarily set according to the design of the light guide member.
- the height of the weir (see height H in Fig. 12 (a)) is usually l ⁇ m or more, especially 5 m or more, especially 10 m or more, usually 5 mm or less, especially 2 mm or less. In particular, lmm or less is preferable. If the weir is too low, the light splitting function of the guided light may be lost, and if it is too high, the mechanical strength may be reduced and impractical.
- the width of the weir is more than normal, especially 5 111 or more, especially 10 m or more, usually 20 mm or less, especially 10 mm or less, especially 5 mm or less is preferable. If the width of the weir is too narrow, the mechanical strength may be insufficient, and if it is too wide, it may be wasted.
- the material of the weir is placed at a desired site on the substrate, and the desired shape is drawn with the material to form the weir.
- the drawing method is not limited.
- a drawing method using an inkjet, a dispenser, etc . a printing method such as intaglio printing, relief printing, lithographic printing, stencil printing (screen printing, etc.); a resist method, etc. should be used. I can do it. Of these, drawing with a dispenser, screen printing, and resist method are preferred.
- a dispenser is a device that quantitatively measures a liquid material and discharges the liquid material quantitatively.
- This device usually produces highly precise controlled air pressure, time, etc., which pushes the liquid material injected into a syringe or other container into various sizes and shapes of nozzle tips.
- the liquid material discharged from the tip of the nozzle is dropped onto the object and drawn.
- This drawing can be performed manually or automatically.
- an automatic dispensing stage a device that can directly draw an electronic drawing by storing two-dimensional movement or controlling it by a computer. It is preferable.
- a sufficient defoaming operation (defoaming operation) Preferably). If bubbles are mixed in the liquid material, the discharge from the nozzles may become intermittent during drawing, which may lead to a reduction in drawing accuracy. It is also desirable to remove bubbles of about 100 m or less that are difficult to see with the naked eye.
- a liquid material can be centrifuged under a vacuum (rotation, revolution type), or foam can be removed by applying an ultrasonic wave.
- bubbles may be mixed in when the nozzle is connected to the syringe, so discharge from the nozzle sufficiently before drawing! /, And it is also preferable to stabilize the discharge! /.
- the height of the weir is increased as the viscosity of the liquid material is higher, the thixotropy of the liquid material is higher, the nozzle diameter is larger, the drawing speed is slower, and the lowering of the viscosity during curing is smaller. That power S.
- the width of the weir can be increased as the viscosity of the liquid material is lower, the thixotropy is lower, the nozzle diameter is larger, the speed is lower, and the viscosity decrease is larger. Further, it can be made wider by performing multiple drawing adjacent in the horizontal direction.
- a dispenser having a plurality of adjacent nozzles it is possible to perform multiple drawing adjacent in the horizontal direction by one drawing.
- Screen printing is a kind of printing technique called stencil printing, and is a printing method in which a large number of fine holes are provided in a plate and a liquid material that has passed through the holes is transferred by pressure. Specifically, a screen composed of a mesh and a mask is stacked on the object to be printed, and the screen is pressed against the stage while supplying the liquid material from above. As a result, the liquid material is discharged from the mesh corresponding to the opening of the mask, and the same image as the mask opening is formed.
- the dimensions of the weir can be controlled by the operating conditions of screen printing. For example, the height of the weir can be increased as the mesh screen is thicker and the aperture ratio is larger. Further, it is possible to make it higher by repeatedly printing.
- the width of the weir usually follows the mask dimensions.
- the resist method is a method in which a resist material is used as a weir material, the resist material is applied to a substrate, and a desired image is formed by development.
- a resist material Either a positive type or a negative type can be used.
- the positive resist material for example, a photosensitive positive resin or a resin composition can be used.
- the negative resist material for example, a photopolymerizable and / or heat polymerizable resin or a resin composition can be used.
- a conventionally known method such as a spinner method, a wire bar method, a flow coating method, a slit 'and' spin method, a die coating method, a roll coating method, a spray coating method, etc. Can be done.
- a force S to form a desired image after the resist application, through an exposure process, a development process, a heat treatment process, and the like.
- a weir with a dispenser.
- the process is not complicated, so it is easy to design a variety of designs according to the order, and because the weir has a shape that does not have a ridgeline, the surface can be formed only with a smooth convex curved surface. This is because the light extraction effect at the portion is also excellent.
- the above method can be carried out by combining two or more methods.
- a curable material coating process is performed in which a curable material is coated on the substrate.
- the curable material is a fluid-like material that is cured by performing some kind of curing treatment.
- the fluid state means, for example, a liquid state or a gel state.
- the curable material ensures the role of the light guide that transmits light from the light source to a predetermined position.
- the curable material it is also possible to use! /, Deviation of inorganic material and organic material and a mixture of both.
- Examples of inorganic materials include metal alkoxides, ceramic precursor polymers, or Examples thereof include a solution obtained by hydrolytic polymerization of a solution containing a metal alkoxide by a sol-gel method, or an inorganic material (for example, an inorganic material having a siloxane bond) obtained by solidifying a combination thereof.
- examples of the organic material include a thermosetting resin and a photocurable resin.
- specific examples include methacrylic resins such as polymethylmethacrylate; styrene resins such as polystyrene and styrene acrylonitrile copolymers; polycarbonate resins; polyester resins; phenoxy resins; butyral resins; Cenorelose-based lunar essence such as cenololose acetate and cenololose acetate butyrate; epoxy resin; phenol resin; silicone resin and the like.
- a silicon-containing compound is a compound having a silicon atom in its molecule, inorganic materials such as organic materials (silicon-based materials) such as les, le, polyorganosiloxane, silicon oxide, silicon nitride, and silicon oxynitride. And glass materials such as borosilicate, phosphosilicate, and alkali silicate.
- silicone-based materials are preferable from the viewpoints of transparency, adhesion, ease of handling, mechanical and thermal adaptability relaxation characteristics, and the like.
- the specific layer forming liquid described in the first to eighth light guide members is more preferable.
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Optics & Photonics (AREA)
- Microelectronics & Electronic Packaging (AREA)
- General Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Nanotechnology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biophysics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Light Guides In General And Applications Therefor (AREA)
- Planar Illumination Modules (AREA)
Abstract
An optical guiding member that excels in heat resistance, light stability, film forming property, adhesion to substratum and adhesion at lamination plane, and that even when used for a prolonged period of time, is free from cracking, peeling or coloring. The optical guiding member is one comprised of a laminate of two or more layers different from each other in refractive index, wherein at least two layers in contact with each other among the layers satisfy the following requirements that: (1) in the solid Si-nuclear magnetic resonance spectrum, the position and half-width value of peak top be as specified; (2) the silicon content be 10 wt.% or more; (3) the silanol content be in the range of 0.01 to 10 wt.%; and (4) the value of hardness (Shore A) measured by type-A durometer be in the range of 5 to 90.
Description
明 細 書 Specification
導光部材及びその製造方法、並びに光導波路および導光板 Light guide member, method for manufacturing the same, light guide and light guide plate
技術分野 Technical field
[0001] 本発明は、新規な導光部材及びその製造方法、並びに光導波路および導光板に 関する。詳しくは、耐熱性、耐光性、成膜性、基板との密着性および積層面での密着 性に優れた導光部材及びその製造方法、並びに、その導光部材を備えた光導波路 および導光板に関する。 The present invention relates to a novel light guide member, a method for manufacturing the same, and an optical waveguide and a light guide plate. Specifically, the light guide member excellent in heat resistance, light resistance, film formability, adhesion to the substrate and adhesion on the laminated surface, a method for producing the same, and an optical waveguide and a light guide plate including the light guide member About.
背景技術 Background art
[0002] 近年、光通信システムの進歩はめざましいものがある力 特に光送受信モジュール に使用される、光信号を伝送するための光導波路においては、高生産性、低コストか つ高品質の材料のさらなる開発が望まれている。また、いわゆる光学機器において、 例えばディスプレイなどの表示装置の表示部や、ファクシミリ、電話、携帯電話、その 他各種家電のボタン部分などを表示する際に、光源力 発する光を所望の部位で発 光させる導光板においても、高品質の要求レベルは高まっている。 [0002] In recent years, the power of optical communication systems has been remarkable. Especially in optical waveguides for transmitting optical signals used in optical transceiver modules, high productivity, low cost and high quality materials have been developed. Further development is desired. Also, in so-called optical equipment, for example, when displaying a display unit of a display device such as a display, a button part of a facsimile, a telephone, a mobile phone, and other various household appliances, light emitted from a light source is emitted at a desired part. The required level of high quality is also increasing in the light guide plate.
例えば、引用文献 1には、クラックの発生が少なぐ温度サイクルなどの耐環境信頼 性に優れた光導波路を提供することを目的として、重量平均分子量および数平均分 子量が特定のシロキサンポリマを用いた光導波路の発明が開示されている。 For example, in Cited Document 1, a siloxane polymer having a specific weight-average molecular weight and number-average molecular weight is used for the purpose of providing an optical waveguide having excellent environmental reliability such as a temperature cycle with few cracks. The invention of the optical waveguide used is disclosed.
[0003] 一方、光導波路や導光板とは異なる半導体発光デバイスの材料分野において、特 定の構造および物性を有し、紫外線及び熱に対して高!/、耐久性を有する半導体発 光デバイス用部材が開示されている(引用文献 2)。 [0003] On the other hand, in the field of semiconductor light-emitting device materials different from optical waveguides and light-guide plates, for semiconductor light-emitting devices that have a specific structure and physical properties and are highly resistant to ultraviolet rays and heat! A member is disclosed (Cited document 2).
特許文献 1:特開 2004— 91579号公報 Patent Document 1: Japanese Patent Application Laid-Open No. 2004-91579
特許文献 2:国際公開第 2006/090804号パンフレット Patent Document 2: Pamphlet of International Publication No. 2006/090804
発明の開示 Disclosure of the invention
発明が解決しょうとする課題 Problems to be solved by the invention
[0004] しかしな力 Sら、引用文献 1を含む一般的な従来の導光部材は、硬くて脆いという性 質のため、厚膜化や、複雑な基板への塗膜を行なうと、クラックの発生などの課題が あった。また、従来の導光部材は、基板や、防湿の目的で積層させるフィルム材など
との密着性が十分でないため塗膜剥離の課題があった。また、従来の導光部材では 、材質の異なる層を積層すると積層面での密着性が十分でないため、塗膜剥離の課 題があった。さらに、導光部材に対しては、長期的な使用にも適用しうる耐熱性、耐 光性も望まれていた。 [0004] However, the conventional conventional light guide member including S et al., Cited reference 1 is hard and brittle, so if it is thickened or a coating is applied to a complicated substrate, it will crack. There were issues such as the occurrence of In addition, conventional light guide members include substrates and film materials that are laminated for moisture-proof purposes. There was a problem of peeling of the coating film because of insufficient adhesiveness. Further, the conventional light guide member has a problem of peeling of the coating film because the adhesion on the laminated surface is not sufficient when layers of different materials are laminated. Furthermore, the light guide member is also required to have heat resistance and light resistance that can be applied for long-term use.
[0005] 一方、光導波路や導光板のような積層体として用いる導光部材への適用性につい ては、その効果が予測できるものではなぐ特に、積層面での密着不十分による塗膜 剥離の課題は解決が難しいため、一般の化合物を転用するのは困難であるというの 1 当該分野の当業者の技術常識であった。さらに、引用文献 2の半導体発光デバ イス用部材を直ちに転用しうる特別な技術的動機は存在しなかった。 [0005] On the other hand, the applicability to a light guide member used as a laminate such as an optical waveguide or a light guide plate is not predictable, and in particular, coating film peeling due to insufficient adhesion on the laminate surface. Because it is difficult to solve the problem, it is difficult to divert a general compound. Furthermore, there was no special technical motive that could immediately convert the semiconductor light-emitting device member of the cited document 2.
[0006] また、近年、携帯電話や家電のデザイン性が向上する背景にお!/、て、プッシュボタ ンゃ表示ボタンなど機体の所定の領域のみを発光させる技術が望まれて!/、る。特に 、所定の領域を自由な形状や色に発光させる技術の係る分野における技術的価値 は非常に高い。 [0006] Also, in recent years, the background of improving the design of mobile phones and home appliances! /, And technology that emits light only in a predetermined area of the aircraft, such as push button and display buttons, is desired! . In particular, the technical value in the field related to the technology for emitting light in a predetermined shape and color in a predetermined region is very high.
しかしながら、導光板を自由な形状とすることは、生産技術、コストの面から望ましい とはいえない。特に自由な形状や色を求める場合は、大量生産は適当でないため、 導光板の形状'規格を変更することなぐ発光部分のみを自由に設計できる製造方 法が確立されることが望ましい。ところ力 特開 2003— 187624号公報、特開 2003 — 281912号公報、特開 2006— 172785号公報等に記載の従来の技術では、前 記の要望を持たすことは困難であった。 However, making the light guide plate free is not desirable from the viewpoint of production technology and cost. In particular, when a free shape and color are required, mass production is not appropriate. Therefore, it is desirable to establish a manufacturing method that can freely design only the light emitting part without changing the shape of the light guide plate. However, with the conventional techniques described in Japanese Patent Laid-Open No. 2003-187624, Japanese Patent Laid-Open No. 2003-281912, Japanese Patent Laid-Open No. 2006-172785, etc., it is difficult to have the above-mentioned demand.
[0007] 本発明は、上述の課題に鑑みてなされたものである。すなわち、本発明の第一の目 的は、耐熱性、耐光性、成膜性、基板やフィルム材などとの密着性および積層面で の密着性に優れ、長期間使用してもクラックや剥離、着色を生じることない導光部材 、並びに、それを用いた光導波路及び導光板を提供することにある。また、本発明の 第二の目的は、可撓性を有し、基板やフィルム材などとの密着性、および積層面で の密着性に優れ、長期間使用してもクラックや剥離、着色を生じることない導光部材 、並びに、それを用いた光導波路及び導光板を提供することにある。また、本発明の 第三の目的は、光源光を効率よく伝送し、導光部を自由な形状や色に設計すること ができる導光部材の製造方法並びに導光部材及びその導光部材を用いた光導波路
及び導光板を得ることを目的とする。 The present invention has been made in view of the above problems. That is, the first object of the present invention is excellent in heat resistance, light resistance, film formability, adhesion to substrates and film materials, and adhesion on the laminated surface, and cracks and peeling even after long-term use. An object of the present invention is to provide a light guide member that does not cause coloring, and an optical waveguide and a light guide plate using the same. In addition, the second object of the present invention is to have flexibility, excellent adhesion to a substrate or a film material, etc., and adhesion on a laminated surface. An object of the present invention is to provide a light guide member that does not occur, and an optical waveguide and a light guide plate using the same. In addition, a third object of the present invention is to provide a light guide member manufacturing method, a light guide member, and a light guide member capable of efficiently transmitting light source light and designing a light guide portion in a free shape and color. Optical waveguide used And it aims at obtaining a light-guide plate.
課題を解決するための手段 Means for solving the problem
[0008] 本発明者らは、上記目的を達成するために鋭意検討を重ねた結果、固体 Si—核磁 気共1 ¼ (nuclear magnetic resonance:以下適宜「NMR」という。 )スぺクトノレに おいて特定のピークを有するとともに、ケィ素含有率が特定の値以上であり、シラノー ル含有率が所定範囲にある高分子は、厚膜設計の自由度が高ぐ厚膜部においても クラックの発生が抑制され、基板やフィルム材などからの剥離および積層面での剥離 が抑制され、さらに耐熱性、耐光性に優れたものとなることを見出し、本発明を完成さ せた。 [0008] The present inventors have found, after intensive studies in order to achieve the above object, a solid Si- nuclear magnetic Co 1 ¼ (nuclear magnetic resonance:. Hereinafter appropriately referred to as "NMR") Oite to scan Bae Kutonore Polymers that have a specific peak, have a silicon content greater than a specific value, and have a silanol content within a specified range will cause cracks even in thick film parts where the degree of freedom in thick film design is high. As a result, it was found that peeling from the substrate and film material and peeling on the laminated surface was suppressed, and the heat resistance and light resistance were excellent, and the present invention was completed.
[0009] 即ち、本発明の第一の導光部材は、屈折率の異なる 2以上の層が積層されてなる 導光部材であって、前記層のうちの互いに接する少なくとも 2層力 下記の条件を満 たすことを特徴とする (請求項 1)。 That is, the first light guide member of the present invention is a light guide member formed by laminating two or more layers having different refractive indexes, and at least two-layer force of the layers contacting each other. (Claim 1).
(1)固体 Si—核磁気共鳴スペクトルにおいて、 (1) In the solid Si-nuclear magnetic resonance spectrum,
(i)ピークトップの位置がケミカルシフト— 40ppm以上 Oppm以下の領域にあり、ピ ークの半値幅が 0. 3ppm以上、 3. Oppm以下であるピーク、及び、 (i) The peak top position is in the region of chemical shift-40 ppm or more and Oppm or less, and the peak half-value width is 0.3 ppm or more and 3. Oppm or less, and
(ii)ピークトップの位置がケミカルシフト— 80ppm以上— 40ppm未満の領域にあり 、ピークの半値幅が 0. 3ppm以上 5. Oppm以下であるピーク (ii) The peak top position is in the region of chemical shift—80 ppm or more—less than 40 ppm, and the peak half-value width is 0.3 ppm or more and 5. Oppm or less.
力もなる群より選ばれるピークを、少なくとも 1つ有する。 Has at least one peak selected from the group that also has force.
(2)ケィ素含有率が 10重量%以上である。 (2) The content of silicon is 10% by weight or more.
(3)シラノーノレ含有率が 0. 01重量%以上、 10重量%以下である。 (3) The content of silanol is 0.01% by weight or more and 10% by weight or less.
(4)デュロメータタイプ Aによる硬度測定値 (ショァ A)が 5以上 90以下である。 (4) Hardness measured by Durometer Type A (Shore A) is 5 or more and 90 or less.
[0010] 本発明の第二の導光部材は、屈折率の異なる 2以上の層が積層されてなる導光部 材であって、前記層のうちの互いに接する少なくとも 2層力 下記の条件を満たすこと を特徴とする (請求項 2)。 [0010] The second light guide member of the present invention is a light guide member formed by laminating two or more layers having different refractive indexes, and at least two-layer force of the layers in contact with each other. (Claim 2).
(5)固体 Si—核磁気共鳴スペクトルにおいて、 (5) In the solid Si-nuclear magnetic resonance spectrum,
(i)ピークトップの位置がケミカルシフト— 40ppm以上 Oppm以下の領域にあり、ピ ークの半値幅が 0. 5ppm以上、 3. Oppm以下であるピーク、及び、 (i) The peak top position is in the region of chemical shift-40 ppm or more and Oppm or less, and the peak half-value width is 0.5 ppm or more and 3. Oppm or less, and
(ii)ピークトップの位置がケミカルシフト— 80ppm以上— 40ppm未満の領域にあり
、ピークの半値幅が 1. Oppm以上 5. Oppm以下であるピーク (ii) The peak top position is in the region of chemical shift—more than 80ppm and less than 40ppm The peak half-value width is 1. Oppm or more and 5. Oppm or less
力もなる群より選ばれるピークを、少なくとも 1つ有する。 Has at least one peak selected from the group that also has force.
(2)ケィ素含有率が 10重量%以上である。 (2) The content of silicon is 10% by weight or more.
(3)シラノーノレ含有率が 0. 01重量%以上、 10重量%以下である。 (3) The content of silanol is 0.01% by weight or more and 10% by weight or less.
[0011] このとき、本発明の第一及び第二の導光部材は、前記の互いに接する層の少なくと も 1層の屈折率が 1. 45以上であることが好ましい (請求項 3)。 At this time, in the first and second light guide members of the present invention, it is preferable that the refractive index of at least one of the layers in contact with each other is 1.45 or more (claim 3).
また、本発明の第一及び第二の導光部材は、前記の互いに接する層の、少なくとも The first and second light guide members of the present invention include at least one of the layers in contact with each other.
1層の屈折率が 1. 45以上であるとともに、他の少なくとも 1層の屈折率が 1. 45未満 であることも好まし!/ヽ(請求項 4)。 It is also preferable that the refractive index of one layer is 1.45 or more and the refractive index of at least one other layer is less than 1.45! / ヽ (Claim 4).
[0012] 本発明の第三の導光部材は、ヘーズ値の異なる 2以上の層が積層されてなる導光 部材であって、前記層のうちの互いに接する少なくとも 2層力 下記の条件を満たす ことが好ましい (請求項 5)。 [0012] The third light guide member of the present invention is a light guide member formed by laminating two or more layers having different haze values, and at least two-layer force of the layers contacting each other satisfies the following conditions: (Claim 5).
(1)固体 Si—核磁気共鳴スペクトルにおいて、 (1) In the solid Si-nuclear magnetic resonance spectrum,
(i)ピークトップの位置がケミカルシフト— 40ppm以上 Oppm以下の領域にあり、ピ ークの半値幅が 0. 3ppm以上、 3. Oppm以下であるピーク、及び、 (i) The peak top position is in the region of chemical shift-40 ppm or more and Oppm or less, and the peak half-value width is 0.3 ppm or more and 3. Oppm or less, and
(ii)ピークトップの位置がケミカルシフト— 80ppm以上— 40ppm未満の領域にあり 、ピークの半値幅が 0. 3ppm以上 5. Oppm以下であるピーク (ii) The peak top position is in the region of chemical shift—80 ppm or more—less than 40 ppm, and the peak half-value width is 0.3 ppm or more and 5. Oppm or less.
力もなる群より選ばれるピークを、少なくとも 1つ有する。 Has at least one peak selected from the group that also has force.
(2)ケィ素含有率が 10重量%以上である。 (2) The content of silicon is 10% by weight or more.
(3)シラノーノレ含有率が 0. 01重量%以上、 10重量%以下である。 (3) The content of silanol is 0.01% by weight or more and 10% by weight or less.
(4)デュロメータタイプ Aによる硬度測定値 (ショァ A)が 5以上 90以下である。 (4) Hardness measured by Durometer Type A (Shore A) is 5 or more and 90 or less.
[0013] 本発明の第四の導光部材は、ヘーズ値の異なる 2以上の層が積層されてなる導光 部材であって、前記層のうちの互いに接する少なくとも 2層力 下記の条件を満たす ことを特徴とする (請求項 6)。 [0013] A fourth light guide member of the present invention is a light guide member formed by laminating two or more layers having different haze values, and at least two layer forces of the layers contacting each other satisfy the following conditions: (Claim 6).
(5)固体 Si—核磁気共鳴スペクトルにおいて、 (5) In the solid Si-nuclear magnetic resonance spectrum,
(i)ピークトップの位置がケミカルシフト— 40ppm以上 Oppm以下の領域にあり、ピ ークの半値幅が 0. 5ppm以上、 3. Oppm以下であるピーク、及び、 (i) The peak top position is in the region of chemical shift-40 ppm or more and Oppm or less, and the peak half-value width is 0.5 ppm or more and 3. Oppm or less, and
(ii)ピークトップの位置がケミカルシフト— 80ppm以上— 40ppm未満の領域にあり
、ピークの半値幅が 1. Oppm以上 5. Oppm以下であるピーク (ii) The peak top position is in the region of chemical shift—more than 80ppm and less than 40ppm The peak half-value width is 1. Oppm or more and 5. Oppm or less
力もなる群より選ばれるピークを、少なくとも 1つ有する。 Has at least one peak selected from the group that also has force.
(2)ケィ素含有率が 10重量%以上である。 (2) The content of silicon is 10% by weight or more.
(3)シラノーノレ含有率が 0. 01重量%以上、 10重量%以下である。 (3) The content of silanol is 0.01% by weight or more and 10% by weight or less.
[0014] 本発明の第五の導光部材は、屈折率の異なる 2以上の層が積層された導光部材で あって、前記層の少なくとも 1層が下記の特性を有し、かつ、発光ピークの主波長が 5 OOnm以下である光源を備えることを特徴とする(請求項 7)。 [0014] A fifth light guide member of the present invention is a light guide member in which two or more layers having different refractive indexes are laminated, and at least one of the layers has the following characteristics and emits light: A light source having a peak dominant wavelength of 5 OOnm or less is provided (claim 7).
(6)他の層との界面に、極性基を含有すること。 (6) Contain polar groups at the interface with other layers.
(7)硬度が、ショァ Aで 5以上 100以下、または、ショァ Dで 0以上 85以下であること。 (7) Hardness of Shore A is 5 or more and 100 or less, or Shore D is 0 or more and 85 or less.
(8)シロキサン結合を有すること。 (8) Having a siloxane bond.
[0015] 本発明の第六の導光部材は、屈折率の異なる 2以上の層が積層されてなる導光部 材であって、前記層のうちの互いに接する少なくとも 2層力 下記の条件を満たすこと を特徴とする (請求項 8)。 [0015] A sixth light guide member of the present invention is a light guide member formed by laminating two or more layers having different refractive indexes, and at least two-layer force of the layers in contact with each other. (Claim 8).
(6)他の層との界面に、極性基を含有すること。 (6) Contain polar groups at the interface with other layers.
(7)硬度が、ショァ Aで 5以上 100以下、または、ショァ Dで 0以上 85以下であること。 (7) Hardness of Shore A is 5 or more and 100 or less, or Shore D is 0 or more and 85 or less.
(8)シロキサン結合を有すること。 (8) Having a siloxane bond.
[0016] 本発明の第七の導光部材は、ヘーズ値の異なる 2以上の層が積層された導光部材 であって、前記層の少なくとも 1層力 下記の特性を有し、かつ、発光ピークの主波長 力 S500nm以下である光源を備えることを特徴とする(請求項 9)。 [0016] A seventh light guide member of the present invention is a light guide member in which two or more layers having different haze values are laminated, and has at least one layer force of the layer, and has the following characteristics, and emits light A light source having a peak main wavelength power of S500 nm or less is provided (claim 9).
(6)他の層との界面に、極性基を含有すること。 (6) Contain polar groups at the interface with other layers.
(7)硬度が、ショァ Aで 5以上 100以下、または、ショァ Dで 0以上 85以下であること。 (7) Hardness of Shore A is 5 or more and 100 or less, or Shore D is 0 or more and 85 or less.
(8)シロキサン結合を有すること。 (8) Having a siloxane bond.
[0017] 本発明の第八の導光部材は、ヘーズ値の異なる 2以上の層が積層されてなる導光 部材であって、前記層のうちの互いに接する少なくとも 2層力 下記の条件を満たす ことを特徴とする (請求項 10)。 [0017] An eighth light guide member of the present invention is a light guide member formed by laminating two or more layers having different haze values, and at least two-layer force of the layers in contact with each other. (Claim 10).
(6)他の層との界面に、極性基を含有すること。 (6) Contain polar groups at the interface with other layers.
(7)硬度が、ショァ Aで 5以上 100以下、または、ショァ Dで 0以上 85以下であること。 (7) Hardness of Shore A is 5 or more and 100 or less, or Shore D is 0 or more and 85 or less.
(8)シロキサン結合を有すること。
[0018] このとき、本発明の第八の導光部材は、前記の条件 ½)〜(8)を満たす層がビュル 基及び/又はヒドロシリル基を含有することが好ましレ、(請求項 11)。 (8) Having a siloxane bond. [0018] In this case, in the eighth light guide member of the present invention, it is preferable that the layer satisfying the above conditions (5) to (8) contains a bull group and / or a hydrosilyl group (claim 11). ).
[0019] また、本発明の第三、第四、第七及び第八の導光部材は、前記層の少なくとも 1層 力 S、 - ^一ズ値 50以上であることが好まし!/ヽ(請求項 12)。 [0019] In addition, the third, fourth, seventh and eighth light guide members of the present invention preferably have at least one layer force S of the above-mentioned layer, and a ^ 1 value of 50 or more! / ヽ(Claim 12).
[0020] また、本発明の第一〜第八の導光部材は、前記層の少なくとも 1層が無機粒子を 含有することが好ましい(請求項 13)。このとき、該無機粒子の中央粒径が;!〜 10nm であることが好まし!/ヽ(請求項 14) [0020] In the first to eighth light guide members of the present invention, it is preferable that at least one of the layers contains inorganic particles (claim 13). At this time, it is preferable that the median particle diameter of the inorganic particles is;! -10 nm! / ヽ (claim 14)
[0021] また、本発明の第一〜第八の導光部材は、前記層の、少なくとも 1層が中央粒径 0[0021] Further, in the first to eighth light guide members of the present invention, at least one of the layers has a median particle size of 0.
. 05〜50 111の無機粒子を含有するとともに、その層及び/又は他の少なくとも 1層 が中央粒径;!〜 lOnmの無機粒子を含有することが好まし!/、(請求項 15)。 It is preferred that the inorganic particles of 05 to 50 111 are contained, and that the layer and / or at least one other layer contains inorganic particles of a median particle size;! To lOnm! / (Claim 15).
[0022] また、本発明の第一〜第八の導光部材は、前記層の少なくとも 1層が蛍光体を含 有することが好まし!/ヽ(請求項 16)。 [0022] Further, in the first to eighth light guide members of the present invention, it is preferable that at least one of the layers includes a phosphor! (Claim 16).
[0023] また、本発明の第一〜第八の導光部材は、該部材の側面と積層面とで形成される 角度が 30度以上 80度以下であることが好まし!/ヽ(請求項 17)。 [0023] Further, in the first to eighth light guide members of the present invention, it is preferable that an angle formed between the side surface and the laminated surface of the member is 30 degrees or more and 80 degrees or less! Section 17).
[0024] また、本発明の第一〜第八の導光部材は、前記層のうち少なくとも 2層を貫通する 境界部を備えることが好ましレヽ (請求項 18)。 [0024] Further, it is preferable that the first to eighth light guide members of the present invention include a boundary portion penetrating at least two of the layers (claim 18).
[0025] 本発明の導光部材の製造方法は、基板上に、流体状の硬化性材料を硬化させて なる導光層を備える導光部材の製造方法であって、該基板上に、該導光層を区画す る堰を設ける工程と、該硬化性材料を該基板上に塗設する工程と、該硬化性材料を 硬化させる工程とを有することを特徴とする(請求項 19)。 [0025] A method for producing a light guide member of the present invention is a method for producing a light guide member comprising a light guide layer formed by curing a fluid curable material on a substrate, the method comprising: The method includes a step of providing a weir for partitioning the light guide layer, a step of coating the curable material on the substrate, and a step of curing the curable material (claim 19).
[0026] このとき、該堰はディスペンサーにより設けることが好ましい (請求項 20)。 [0026] At this time, the weir is preferably provided by a dispenser (claim 20).
[0027] 本発明の第九の導光部材は、基板、導光層、及び、該導光層を区画する堰を備え た導光部材であって、該導光層が高屈折率層及び低屈折率層を有し、該堰が稜線 を有さないことを特徴とする (請求項 21)。 [0027] A ninth light guide member of the present invention is a light guide member including a substrate, a light guide layer, and a weir that partitions the light guide layer, wherein the light guide layer includes a high refractive index layer and A low refractive index layer is provided, and the weir does not have a ridgeline (claim 21).
[0028] このとき、本発明の第九の導光部材において、該導光層が硬化性材料を硬化させ てなるものであることが好ましレヽ(請求項 22)。 [0028] At this time, in the ninth light guide member of the present invention, it is preferable that the light guide layer is formed by curing a curable material (claim 22).
[0029] また、本発明の第九の導光部材において、該導光層が散乱層を有することが好ま しい(請求項 23)。
[0030] また、本発明の第九の導光部材において、該導光層が蛍光体含有層を有すること が好ましい (請求項 24)。 [0029] In the ninth light guide member of the present invention, it is preferable that the light guide layer has a scattering layer (claim 23). [0030] In the ninth light guide member of the present invention, it is preferable that the light guide layer has a phosphor-containing layer (claim 24).
[0031] 本発明の光導波路は、本発明の第一〜第九の導光部材を用いて形成されたことを 特徴とする (請求項 25)。 [0031] The optical waveguide of the present invention is formed using the first to ninth light guide members of the present invention (claim 25).
[0032] 本発明の導光板は、本発明の第一〜第九の導光部材を用いて形成されたことを特 徴とする (請求項 26)。 [0032] The light guide plate of the present invention is characterized by being formed using the first to ninth light guide members of the present invention (claim 26).
発明の効果 The invention's effect
[0033] 本発明の第一〜第四の導光部材は、膜厚設計の自由度が高ぐ厚膜部において もクラックの発生が抑制され、基板からの剥離および積層面での剥離が抑制され、さ らに耐熱性、耐光性に優れた効果を奏する。したがって、この本発明の第一〜第四 の導光部材を用いて形成された光導波路および導光板は、膜厚設計の自由度が高 ぐ厚膜部においてもクラックの発生が抑制され、基板からの剥離および積層面での 剥離が抑制され、さらに耐熱性、耐光性に優れた効果を奏する。 [0033] In the first to fourth light guide members of the present invention, generation of cracks is suppressed even in the thick film portion where the degree of freedom in designing the film thickness is high, and the peeling from the substrate and the peeling on the laminated surface are suppressed. In addition, it has excellent effects in heat resistance and light resistance. Therefore, the optical waveguide and the light guide plate formed using the first to fourth light guide members of the present invention suppress the generation of cracks even in the thick film portion where the degree of freedom in the film thickness design is high, and the substrate Peeling from the surface and peeling on the laminated surface are suppressed, and the heat resistance and light resistance are excellent.
[0034] 本発明の第五〜第八の導光部材は、可撓性を有し、積層時の密着性に優れ、長 期使用にお!/、てもクラックの発生が抑制され、基板からの剥離および積層面での剥 離が抑制される。 [0034] The fifth to eighth light guide members of the present invention are flexible, have excellent adhesion at the time of lamination, and can be used for a long period of time! And peeling on the laminated surface are suppressed.
本発明の第五〜第八の導光部材を用いて形成された光導波路および導光板は、 厚膜力も薄膜まで膜厚を自由に設定でき、長期使用においてもクラックの発生が抑 制され、基板からの剥離および積層面での剥離が抑制される。 The optical waveguide and the light guide plate formed by using the fifth to eighth light guide members of the present invention can freely set the film thickness to a thin film force and a thin film, and the generation of cracks is suppressed even in long-term use. Peeling from the substrate and peeling on the laminated surface are suppressed.
[0035] 本発明の導光部材の製造方法、並びに、本発明の第九の導光部材及びそれを用 V、た導光板によれば、導光部材及び導光板の形状及び規格の変更を行なわなくとも 、発光部分を自由に設計できる。 [0035] According to the manufacturing method of the light guide member of the present invention, and the ninth light guide member of the present invention and the light guide plate using the same, the shape and specification of the light guide member and the light guide plate can be changed. Even if it is not done, the light emitting part can be designed freely.
図面の簡単な説明 Brief Description of Drawings
[0036] [図 1]図 1 (a)〜図 1 (f)はいずれも本発明の第五〜第八の導光部材を構成する任意 の 2層の関係の具体例につ!/、て模式的に示す図である。 [0036] [Fig. 1] Figs. 1 (a) to 1 (f) are specific examples of the relationship between any two layers constituting the fifth to eighth light guide members of the present invention! /, FIG.
[図 2]本発明の第一〜第八の導光部材を用いた導光板の実施形態を示す概略断面 図である。 FIG. 2 is a schematic sectional view showing an embodiment of a light guide plate using the first to eighth light guide members of the present invention.
[図 3]本発明の第一〜第八の導光部材を用いた導光板の実施形態を示す概略断面
図である。 FIG. 3 is a schematic cross section showing an embodiment of a light guide plate using the first to eighth light guide members of the present invention. FIG.
[図 4]本発明の第一〜第八の導光部材を用いた導光板の実施形態を示す概略断面 図である。 FIG. 4 is a schematic cross-sectional view showing an embodiment of a light guide plate using the first to eighth light guide members of the present invention.
[図 5]本発明の第一〜第八の導光部材を用いた導光板の実施形態を示す概略断面 図である。 FIG. 5 is a schematic cross-sectional view showing an embodiment of a light guide plate using the first to eighth light guide members of the present invention.
[図 6]本発明の第一〜第八の導光部材を用いた導光板の実施形態を示す概略断面 図である。 FIG. 6 is a schematic sectional view showing an embodiment of a light guide plate using the first to eighth light guide members of the present invention.
[図 7]本発明の第一〜第八の導光部材を用いた導光板の実施形態を示す概略断面 図である。 FIG. 7 is a schematic sectional view showing an embodiment of a light guide plate using the first to eighth light guide members of the present invention.
[図 8]本発明の第一〜第八の導光部材を用いた導光板の実施形態を示す概略断面 図である。 FIG. 8 is a schematic cross-sectional view showing an embodiment of a light guide plate using the first to eighth light guide members of the present invention.
[図 9]本発明の第一〜第八の導光部材を用いた導光板の実施形態を示す概略断面 図である。 FIG. 9 is a schematic cross-sectional view showing an embodiment of a light guide plate using the first to eighth light guide members of the present invention.
[図 10]本発明の第一〜第八の導光部材を用いた導光板の実施形態を示す概略断 面図である。 FIG. 10 is a schematic cross-sectional view showing an embodiment of a light guide plate using the first to eighth light guide members of the present invention.
[図 11]本発明の第一〜第八の導光部材を用いた導光板の実施形態を示す概略断 面図である。 FIG. 11 is a schematic cross-sectional view showing an embodiment of a light guide plate using the first to eighth light guide members of the present invention.
[図 12]図 12 (a)〜図 12 (c)は、いずれも本発明の第 11実施形態としての導光部材 の製造方法を模式的に示す断面図である。 FIG. 12 (a) to FIG. 12 (c) are cross-sectional views schematically showing a method for manufacturing a light guide member as an eleventh embodiment of the present invention.
園 13]図 13 (a)及び図 13 (b)はいずれも本発明の一実施形態について説明するた め、堰を模式的に示す斜視図である。 13] FIG. 13 (a) and FIG. 13 (b) are perspective views schematically showing a weir for explaining an embodiment of the present invention.
園 14]本発明の第 12実施形態としての導光部材の模式的な断面図である。 14] A schematic cross-sectional view of a light guide member as a twelfth embodiment of the present invention.
園 15]本発明の第 13実施形態としての導光部材の模式的な断面図である。 15] A schematic cross-sectional view of a light guide member as a thirteenth embodiment of the present invention.
園 16]本発明の第 14実施形態としての導光部材の模式的な断面図である。 16] A schematic cross-sectional view of a light guide member as a fourteenth embodiment of the present invention.
園 17]本発明の第 15実施形態としての導光部材の模式的な断面図である。 FIG. 17 is a schematic cross-sectional view of a light guide member as a fifteenth embodiment of the present invention.
園 18]本発明の第 16実施形態としての導光部材の模式的な断面図である。 18] A schematic cross-sectional view of a light guide member as a sixteenth embodiment of the present invention.
園 19]本発明の第 17実施形態としての導光部材の模式的な断面図である。 19] A schematic cross-sectional view of a light guide member as a seventeenth embodiment of the present invention.
園 20]本発明の第 18実施形態としての導光部材の模式的な断面図である。
[図 21]本発明の第 19実施形態としての導光部材の模式的な断面図である。 20] A schematic cross-sectional view of a light guide member according to an eighteenth embodiment of the present invention. FIG. 21 is a schematic cross-sectional view of a light guide member as a nineteenth embodiment of the present invention.
[図 22]本発明の第 20実施形態としての導光部材の模式的な断面図である。 FIG. 22 is a schematic cross-sectional view of a light guide member as a twentieth embodiment of the present invention.
[図 23]本発明の第 21実施形態としての導光部材の模式的な断面図である。 FIG. 23 is a schematic cross-sectional view of a light guide member as a twenty-first embodiment of the present invention.
[図 24]本発明の第 22実施形態としての導光部材の模式的な断面図である。 FIG. 24 is a schematic cross-sectional view of a light guide member as a 22nd embodiment of the present invention.
[図 25]本発明の第 23実施形態としての導光部材の模式的な断面図である。 FIG. 25 is a schematic cross-sectional view of a light guide member as a 23rd embodiment of the present invention.
[図 26]本発明の第 24実施形態としての導光部材の模式的な断面図である。 FIG. 26 is a schematic cross-sectional view of a light guide member as a 24th embodiment of the present invention.
[図 27]本発明の第 25実施形態としての導光部材の模式的な断面図である。 FIG. 27 is a schematic cross-sectional view of a light guide member as a 25th embodiment of the present invention.
[図 28]本発明の第 26実施形態としての導光部材の模式的な断面図である。 FIG. 28 is a schematic cross-sectional view of a light guide member as a 26th embodiment of the present invention.
[図 29]本発明の実施例 C— 15で作製した発光装置の模式的な断面図である。 符号の説明 FIG. 29 is a schematic cross-sectional view of the light-emitting device fabricated in Example C-15 of the present invention. Explanation of symbols
1 基板 1 Board
1H, 5H 穴 1H, 5H hole
2 半導体発光素子 2 Semiconductor light emitting device
3 封止材 3 Sealing material
4 半導体発光装置 4 Semiconductor light emitting device
5 低屈折率層 5 Low refractive index layer
5a 低屈折率部 5a Low refractive index part
6 高屈折率層 6 High refractive index layer
6a 高屈折率部 6a High refractive index part
7 光散乱層および/または蛍光体含有層 7 Light scattering layer and / or phosphor-containing layer
8 導光部材 (導光板) 8 Light guide member (light guide plate)
9 導光部材の側面と積層面とで形成される角度 9 Angle formed by the side surface of the light guide member and the laminated surface
10 高屈折率部および/または低屈折率部 (境界部) 10 High refractive index part and / or low refractive index part (boundary part)
11 反射層 11 Reflective layer
21 基板 21 Board
22 半導体発光素子 22 Semiconductor light emitting devices
23 封止材 23 Encapsulant
24 半導体発光装置
25 堰 24 Semiconductor light emitting device 25 weir
26 高屈折率層 26 High refractive index layer
27 導光部材 27 Light guide member
28 低屈折率層 28 Low refractive index layer
29 散乱層及び/又は蛍光体含有層 29 Scattering layer and / or phosphor-containing layer
30 反射層 30 Reflective layer
21H 凹部 21H recess
28H, 30H 穴 28H, 30H hole
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
[0038] 以下、本発明を詳細に説明するが、本発明は以下の実施の形態に限定されるもの ではなぐその要旨を逸脱しない範囲内であれば種々に変更して実施することができ [0038] Hereinafter, the present invention will be described in detail. However, the present invention is not limited to the following embodiments, and various modifications can be made without departing from the scope of the invention.
[0039] [A]第一〜第四の導光部材についての説明 [0039] [A] Description of the first to fourth light guide members
[A— 1]導光部材を構成する層の特性 [A-1] Properties of layers constituting light guide member
本発明の第一〜第四の導光部材は、 2以上の層が積層されてなることを特徴とする The first to fourth light guide members of the present invention are characterized in that two or more layers are laminated.
。そして、本発明の第一〜第四の導光部材においては、前記の積層された層のうち. And in the first to fourth light guide members of the present invention, among the stacked layers,
、互いに接する少なくとも 2層が、下記に示す特性を有する。中でも、前記の積層され た層が、 V、ずれも下記に示す特性を有することが好まし!/、。 At least two layers in contact with each other have the following characteristics. Above all, it is preferable that the above-mentioned laminated layer has the following characteristics as V and deviation! /.
[0040] 即ち、本発明の第一および第三の導光部材は、導光部材を構成する層のうち互い に接する少なくとも 2層が、以下の特性(1)〜(4)を有する。 That is, in the first and third light guide members of the present invention, at least two layers in contact with each other among the layers constituting the light guide member have the following characteristics (1) to (4).
特性(1)固体 Si—核磁気共鳴スペクトルにおいて、 Characteristics (1) In solid Si-nuclear magnetic resonance spectrum,
(i)ピークトップの位置がケミカルシフト— 40ppm以上 Oppm以下の領域にあり、ピ ークの半値幅が 0. 3ppm以上、 3. Oppm以下であるピーク、及び、 (i) The peak top position is in the region of chemical shift-40 ppm or more and Oppm or less, and the peak half-value width is 0.3 ppm or more and 3. Oppm or less, and
(ii)ピークトップの位置がケミカルシフト— 80ppm以上— 40ppm未満の領域にあり 、ピークの半値幅が 0. 3ppm以上 5. Oppm以下であるピーク (ii) The peak top position is in the region of chemical shift—80 ppm or more—less than 40 ppm, and the peak half-value width is 0.3 ppm or more and 5. Oppm or less.
力もなる群より選ばれるピークを、少なくとも 1つ有する。 Has at least one peak selected from the group that also has force.
特性(2)ケィ素含有率が 10重量%以上である。 Characteristic (2) The content of silicon is 10% by weight or more.
特性(3)シラノール含有率が 0. 01重量%以上、 10重量%以下である。
特性 (4)デュロメータタイプ Aによる硬度測定値 (ショァ A)が 5以上 90以下である。 Characteristic (3) Silanol content is 0.01 wt% or more and 10 wt% or less. Characteristics (4) Hardness measured by Durometer Type A (Shore A) is 5 or more and 90 or less.
[0041] また、本発明の第二および第四の導光部材を構成する層のうち、互いに接する少 なくとも 2層は、上記の特性(2) (3)及び以下の特性(5)を有する。 [0041] Further, of the layers constituting the second and fourth light guide members of the present invention, at least two layers in contact with each other have the above characteristics (2) (3) and the following characteristics (5). Have.
特性(5)固体 Si 核磁気共鳴スペクトルにお!/、て、 Characteristics (5) In solid Si nuclear magnetic resonance spectrum! /,
(i)ピークトップの位置がケミカルシフト— 40ppm以上 Oppm以下の領域にあり、ピ ークの半値幅が 0. 5ppm以上、 3. Oppm以下であるピーク、及び、 (i) The peak top position is in the region of chemical shift-40 ppm or more and Oppm or less, and the peak half-value width is 0.5 ppm or more and 3. Oppm or less, and
(ii)ピークトップの位置がケミカルシフト 80ppm以上 40ppm未満の領域にあり 、ピークの半値幅が 1. Oppm以上 5. Oppm以下であるピーク (ii) The peak top position is in the region where the chemical shift is 80 ppm or more and less than 40 ppm, and the peak half-value width is 1. Oppm or more and 5. Oppm or less
力もなる群より選ばれるピークを、少なくとも 1つ有する。 Has at least one peak selected from the group that also has force.
[0042] 以下、まず、これらの特性(1)〜(5)を中心に、本発明の第一〜第四の導光部材を 構成する層のうち、前記の特性を有する層(以下適宜、単に「特定層 A」という。)の特 徴について説明する。 [0042] Hereinafter, of these layers (1) to (5), among the layers constituting the first to fourth light guide members of the present invention, a layer having the above-described characteristics (hereinafter referred to as appropriate). Explain the characteristics of “Specific layer A”).
[0043] [A— 1 1]特性(1)および(5):固体 Si 核磁気共鳴スペクトル [0043] [A— 1 1] Characteristics (1) and (5): Solid Si nuclear magnetic resonance spectra
本発明に係る特定層 Aは、前記の特性(1)又は(5)を満たす。即ち、本発明に係る 特定層 Aは、前記の特性(1)又は(5)を満たす材料により形成される。これらの材料 は、通常、ケィ素を主成分とする化合物又は当該化合物を含む組成物である。 ケィ素を主成分とする化合物は、 SiO 2 ·ηΗ 2 Οの示性式で表されるが、構造的には The specific layer A according to the present invention satisfies the characteristics (1) or (5). That is, the specific layer A according to the present invention is formed of a material that satisfies the above characteristic (1) or (5). These materials are usually compounds having a main component of key or a composition containing the compound. The compound whose main component is Ca is expressed by the SiO 2 · ηΗ 2 示 formula, but structurally,
、ケィ素原子 Siの四面体の各頂点に酸素原子 οが結合され、これらの酸素原子 oに 更にケィ素原子 Siが結合してネット状に広がった構造を有する。そして、以下に示す 模式図は、上記の四面体構造を無視し、 Si oのネット構造を表わしたものであるが 、 Si— O— Si o の繰り返し単位において、酸素原子 oの一部が他の成員(例え ば— H、 -CHなど)で置換されているものもあり、一つのケィ素原子 Siに注目した場 In addition, an oxygen atom ο is bonded to each vertex of the tetrahedron of the key atom Si, and a key atom Si is further bonded to these oxygen atoms o to have a net-like structure. The schematic diagram shown below shows the net structure of Si o ignoring the tetrahedral structure described above, but in the repeating unit of Si—O—Si o, some of the oxygen atoms o are others. Some of them are substituted with a member of (for example, H, -CH, etc.).
3 Three
合、模式図の (A)に示す様に 4個の— OSiを有するケィ素原子 Si (Q4)、模式図の( B)に示す様に 3個の— OSiを有するケィ素原子 Si (Q3)等が存在する。そして、固体 Si 核磁気共鳴スペクトル(固体 Si— NMRスペクトル)測定において、上記の各ケィ 素原子 Siに基づくピークは、順次に、 Q4ピーク、 Q3ピーク、 · · ·と呼ばれる。 As shown in (A) of the schematic diagram, four atom atoms Si (Q 4 ) with OSi, and as shown in the schematic diagram (B), three atom atoms Si (with OSi Si ( Q 3 ) etc. exist. In the solid Si nuclear magnetic resonance spectrum (solid Si-NMR spectrum) measurement, the peaks based on each of the above silicon atoms Si are sequentially called Q 4 peak, Q 3 peak,.
[0044] [化 1]
( A) ( B ) [0044] [Chemical 1] (A) (B)
OH OH
o s— I o s— I
-Si- 0 Si i I I -Si- 0 Si i I I
0 Si. 0 Si.
-S i- O― Si- 0— S i- -S i- O― Si- 0― S i-
! !
o o
0 0
I I
Si I Si I
- Si- -Si-
[0045] これら酸素原子が 4つ結合したケィ素原子は、一般に Qサイトと総称される。本発明 においては Qサイトに由来する Q° Q4の各ピークを Qnピーク群と呼ぶこととする。有 機置換基を含まないシリカ膜の Qnピーク群は、通常ケミカルシフト— 80 ― 130pp mの領域に連続した多峰性のピークとして観測される。 [0045] These key atoms in which four oxygen atoms are bonded are generally referred to as Q sites. In the present invention, each Q ° Q 4 peak derived from the Q site is referred to as a Q n peak group. The Q n peak group of silica films that do not contain organic substituents is usually observed as multi-peaks that are continuous in the region of chemical shift – 80–130 ppm.
これに対し、酸素原子が 3つ結合し、それ以外の原子(通常は炭素である。)が 1つ 結合しているケィ素原子は、一般に Tサイトと総称される。 Tサイトに由来するピークは Qサイトの場合と同様に、 T° T3の各ピークとして観測される。本発明においては Τ サイトに由来する各ピークを Τηピーク群と呼ぶこととする。 Τηピーク群は一般に Qnピ ーク群より高磁場側(通常ケミカルシフト— 80 ― 40ppm)の領域に連続した多峰性 のピークとして観測される。 On the other hand, a C atom with three oxygen atoms and one other atom (usually carbon) is generally called a T site. The peaks derived from the T site are observed as T ° T 3 peaks, as in the Q site. In the present invention, each peak derived from the Τ site is referred to as Τ η peak group. Τ The η peak group is generally observed as a multimodal peak in the higher magnetic field side (usually chemical shift – 80 to 40 ppm) than the Q n peak group.
[0046] 更に、酸素原子が 2つ結合するとともに、それ以外の原子(通常は炭素である)が 2 つ結合しているケィ素原子は、一般に Dサイトと総称される。 Dサイトに由来するピー クも、 Qサイトや Tサイトに由来するピーク群と同様に、 D° Dnの各ピーク(Dnピーク 群)として観測され、 Qnや Tnのピーク群より更に、高磁場側の領域 (通常ケミカルシフ ト 0 40ppmの領域)に、多峰性のピークとして観測される。これらの Dn Tn Qnの 各ピーク群の面積の比は、各ピーク群に対応する環境におかれたケィ素原子のモル 比と夫々等しいので、全ピークの面積を全ケィ素原子のモル量とすれば、 Dnピーク 群及び Tnピーク群の合計面積は通常これに対する炭素原子と直接結合した全ケィ 素のモル量と対応することになる。
[0047] 本発明の第一〜第四の導光部材の特定層 Aの固体 Si— NMRスペクトルを測定す ると、有機基の炭素原子が直接結合したケィ素原子に由来する Dnピーク群及び Tnピ ーク群と、有機基の炭素原子と結合していないケィ素原子に由来する Qnピーク群と 力 S、各々異なる領域に出現する。これらのピークのうち一 80ppm未満のピークは前 述の通り Qnピークに該当し、— 80ppm以上のピークは Dn、Tnピークに該当する。特 定層 Aにおいては Qnピークは必須ではないが、 Dn、 Tnピーク領域に少なくとも 1本、 好ましくは複数本のピークが観測される。 [0046] Further, a key atom in which two oxygen atoms are bonded and two other atoms (usually carbon) are bonded is generally referred to as a D site. The peaks originating from the D site are also observed as D ° D n peaks (D n peak groups), as well as the peak groups originating from the Q site and T site, and are further observed from the Q n and T n peak groups. It is observed as a multi-modal peak in the high magnetic field region (normally chemical shift 0 40 ppm region). The ratio of the area of each peak group of D n T n Q n is equal to the molar ratio of the key atoms in the environment corresponding to each peak group. In terms of molar amount, the total area of the D n peak group and the T n peak group usually corresponds to the molar amount of all the atoms bonded directly to carbon atoms. [0047] When the solid Si-NMR spectrum of the specific layer A of the first to fourth light guide members of the present invention is measured, a group of D n peaks derived from a silicon atom to which a carbon atom of an organic group is directly bonded. And the T n peak group and the Q n peak group and the force S derived from the C atom that is not bonded to the carbon atom of the organic group, appear in different regions. Of these peaks, peaks below 80 ppm correspond to Q n peaks as described above, and peaks above 80 ppm correspond to D n and T n peaks. In the specific layer A, the Q n peak is not essential, but at least one, preferably a plurality of peaks are observed in the D n and T n peak regions.
[0048] なお、特定層 Αのケミカルシフトの値は、例えば実施例の説明にお!/、て後述する方 法を用いて固体 Si— NMR測定を行ない、その結果に基づいて算出することができ る。また、測定データの解析(半値幅ゃシラノール量解析)は、例えばガウス関数や口 一レンツ関数を使用した波形分離解析等により、各ピークを分割して抽出する方法 で fiなう。 [0048] The chemical shift value of the specific layer can be calculated based on the results obtained by performing solid Si-NMR measurement using the method described later in the description of Examples, for example! it can. In addition, analysis of measurement data (half-width or silanol content analysis) is performed by dividing and extracting each peak by, for example, waveform separation analysis using a Gaussian function or a mouth-lentz function.
[0049] 本発明の第一〜第四の導光部材において、特定層 Aが、厚膜部分でもクラックを 生じず緻密に硬化し、基板や各層間の積層面との密着性に優れ、光'熱に対する耐 久性に優れる硬化物を得ることができるとレ、う優れた特性を発揮する上で、上述の特 性(1)または(5)が望まし!/、理由は定かではな!/、が、次のように推測される。 [0049] In the first to fourth light guide members of the present invention, the specific layer A is hardened without cracks even in the thick film portion, and has excellent adhesion to the substrate and the laminated surface between the layers. 'The above-mentioned characteristics (1) or (5) are desirable for exhibiting excellent characteristics when it is possible to obtain a cured product with excellent heat resistance. The reason is not clear. ! / Is estimated as follows.
無機ガラスからなる導光部材を得る方法としては、低融点ガラスを溶融して封止す る溶融法と、比較的低温にてアルコキシシランなどを加水分解 ·重縮合した液を塗布 し、乾燥硬化させるゾルゲル法がある。このうち溶融法から得られる部材は主として Q nピークのみが観測される力 S、溶融に少なくとも 350°C以上の高温を要し、導光部材を 熱劣化させるため現実的な方法ではなレ、。 As a method for obtaining a light guide member made of inorganic glass, a melting method in which low melting point glass is melted and sealed, and a solution obtained by hydrolyzing and polycondensing alkoxysilane or the like at a relatively low temperature is applied and dried and cured. There is a sol-gel method. Of these, the member obtained from the melting method is mainly a force S in which only the Qn peak is observed, a high temperature of at least 350 ° C is required for melting, and the light guide member is thermally deteriorated. .
[0050] 一方、ゾルゲル法において 4官能のシラン化合物から得られる加水分解 '重縮合生 成物は、完全無機のガラスとなり耐熱 ·耐候性に極めて優れたものである力 硬化反 応はシラノールの縮合 (脱水 ·脱アルコール)反応により架橋が進行するので、脱水 が起こる分重量減少、体積収縮を伴う。そのため、 Qnピークを持つ 4官能のシランの みで原料を構成すると、硬化収縮の程度が大きくなりすぎ、被膜にクラックが発生し やすくなり、厚膜化することができなくなる。このような系では、骨材として無機粒子を 添加したり、重ね塗りをしたりすることにより膜厚増が試みられている力 一般に 10
m程度が限界膜厚となる。導光部材としてゾルゲルガラスを用いる場合、複雑な形状 の基板に塗設するため、さらに十分な膜厚を確保しなければならないという課題があ つた。また、前記したように、残留シラノールを十分に減少させ、完全無機のガラスを 得るためには 400°C以上の高温での加熱を要し、基板を含む周辺部材を熱劣化さ せるため現実的でなかった。 [0050] On the other hand, hydrolysis' polycondensation products obtained from tetrafunctional silane compounds in the sol-gel method become completely inorganic glass and are extremely excellent in heat resistance and weather resistance. (Dehydration / dealcoholation) The cross-linking proceeds by the reaction, resulting in weight reduction and volume shrinkage due to dehydration. For this reason, if the raw material is composed only of tetrafunctional silane having a Qn peak, the degree of cure shrinkage becomes too large, cracks are likely to occur in the film, and it becomes impossible to increase the film thickness. In such systems, attempts have been made to increase film thickness by adding inorganic particles as aggregates or by overcoating. The limit film thickness is about m. When sol-gel glass is used as the light guide member, there is a problem that a sufficient film thickness must be secured because it is applied to a substrate having a complicated shape. In addition, as described above, in order to sufficiently reduce the residual silanol and obtain a completely inorganic glass, heating at a high temperature of 400 ° C. or more is required, and the peripheral members including the substrate are thermally deteriorated. It was not.
[0051] これに対し、本発明の第一〜第四の導光部材では、特定層 Aにおいて、架橋密度 を調整し、膜に可撓性を持たせるために、 Tnピークを持つ 3官能シラン及び/又は D ηピークを持つ 2官能シランを導入し、同時に加水分解 '重縮合を行なうことにより、脱 水縮合による体積減少量、及び架橋密度を機能に支障無い範囲で適度に減じ、か つ加水分解 ·縮合工程並びに乾燥工程を制御することにより、膜厚 1000 mにも達 する透明ガラス膜状の部材を得ることが可能となる。従って、本発明においては一 80 ppm以上に観測される Tnピーク及び/又は Dnピークの存在が必須となる。 [0051] On the other hand, in the first to fourth light guide members of the present invention, in the specific layer A, a trifunctional having a Tn peak is used to adjust the crosslinking density and to make the film flexible. By introducing silane and / or a bifunctional silane having a D η peak and simultaneously carrying out hydrolysis and polycondensation, the volume reduction due to dehydrocondensation and the crosslinking density can be reduced appropriately within a range that does not hinder the function. By controlling the hydrolysis / condensation process and the drying process, it is possible to obtain a transparent glass film-like member having a film thickness of 1000 m. Therefore, in the present invention, the presence of a T n peak and / or a D n peak observed at 80 ppm or more is essential.
[0052] このように 2官能、或いは 3官能の原料を主成分として厚膜化する方法としては、例 えばメガネ等のハードコート膜の技術が知られている力 その膜厚は数 m以下であ る。これらハードコート膜では膜厚が薄いために溶媒の揮発が容易で均一な硬化が 可能であり、基材との密着性及び線膨張係数の違いがクラックの主原因とされていた 。これに対して可撓性を有する本発明の第一〜第四の導光部材では、膜厚が塗料 並みに大きいために、膜自身にある程度の強度があり、多少の線膨張係数の違いは 吸収可能となる。仮にこのような膜が可撓性を有していないとすると、溶剤乾燥による 体積減のために薄膜の場合とは異なる内部応力発生が新たな課題となる。すなわち 、 LEDのカップ等の開口面積の狭い深型容器にモールドを行なう場合、膜深部での 乾燥が不十分な状態で加熱硬化を行なうと、架橋後に溶媒揮発が起こり体積減とな るため大きなクラックや発泡、ゆず肌などの表面荒れを生じる。このような膜には大き な内部応力がかかっており、この膜の固体 Si— NMRを測定すると、検出される Dn、 Tn、 Qnピーク群は内部応力が小さい場合よりもシロキサン結合角に分布を生じ、各々 、よりブロードなピークとなる。この事実は、 Siに対して 2個の一 OSiで表される結合角 にひずみが大きいことを意味する。すなわち同じ原料からなる膜でも、本発明の第一 〜第四の導光部材における特定層 Aのように、これらのピークの半値幅が狭いほどク
ラックが起きに《高品質の膜となる。 [0052] As described above, as a method for thickening a bifunctional or trifunctional raw material as a main component, for example, a technique of hard coat film technology such as glasses is known. is there. Since these hard coat films are thin, solvent volatilization is easy and uniform curing is possible. Differences in adhesion to the base material and linear expansion coefficient were the main causes of cracks. In contrast, in the first to fourth light guide members of the present invention having flexibility, since the film thickness is as large as the paint, the film itself has a certain degree of strength, and there is a slight difference in the linear expansion coefficient. Absorbable. If such a film is not flexible, the generation of internal stress, which is different from the case of a thin film, becomes a new problem due to volume reduction by solvent drying. That is, when molding into a deep container with a small opening area such as an LED cup, if the heat curing is performed in a state where the drying in the deep part of the film is insufficient, the solvent volatilization occurs after crosslinking and the volume is reduced. Causes surface roughness such as cracks, foam, and yuzu skin. Such a film has a large internal stress. When solid-state NMR of this film is measured, the detected D n , T n , and Q n peak groups have a siloxane bond angle that is smaller than when the internal stress is small. Distribution, each with a broader peak. This fact means that the bond angle expressed by two OSi with respect to Si has a large strain. That is, even in the case of a film made of the same raw material, as the specific layer A in the first to fourth light guide members of the present invention is smaller, the lower the half width of these peaks, the lower the As the rack rises, it becomes a high quality film.
[0053] なお、ひずみに応じて半値幅が大きくなる現象は、 Si原子の分子運動の拘束の度 合!/、が大き!/、ほどより鋭敏に観測され、その現れやすさは Dnく Tnく Qnとなる。 [0053] Incidentally, a phenomenon in which the half width is increased in response to strain, every case! / The constraints of molecular motion of Si atoms, but the size! /, More than is sensitively observed, its appears Ease rather D n T n becomes Q n .
本発明において、—80ppm以上の領域に観測されるピークの半値幅は、これまで にゾルゲノレ法にて知られてレ、る導光部材の半値幅範囲より小さレヽ(狭!/、)ことを特徴 とする。 In the present invention, the half-value width of the peak observed in the region of -80 ppm or higher is smaller than the half-value width range of the light guide member known so far by the Solgenole method (narrow! /,). Features.
[0054] ケミカルシフトごとに整理すると、本発明の第一および第三の導光部材において、 ピークトップの位置が— 80ppm以上— 40ppm未満に観測される Tnピーク群の半値 幅は、通常 5. Oppm以下、好ましくは 4. Oppm以下、また、通常 0. 3ppm以上、好ま しくは 0. 5ppm以上の範囲である(特性(1) )。 [0054] When organized by chemical shift, in the first and third light guide members of the present invention, the half-width of the T n peak group in which the peak top position is observed at −80 ppm or more and less than 40 ppm is usually 5 Oppm or less, preferably 4. Oppm or less, usually 0.3 ppm or more, and preferably 0.5 ppm or more (characteristic (1)).
また、本発明の第二および第四の導光部材において、ピークトップの位置が 80p pm以上— 40ppm未満に観測される Tnピーク群の半値幅は、通常 5. Oppm以下、 好ましくは 4. Oppm以下、また、通常 1. Oppm以上、好ましくは 1. 5ppm以上の範囲 である (特性 (5) )。 In the second and fourth light guide members of the present invention, the half width of the T n peak group observed at a peak top position of 80 ppm or more and less than 40 ppm is usually 5. Oppm or less, preferably 4. Oppm or less, and usually 1. Oppm or more, preferably 1.5 ppm or more (Characteristic (5)).
[0055] 同様に、本発明の第一および第三の導光部材において、ピークトップの位置が 4 Oppm以上 Oppm以下に観測される Dnピーク群の半値幅は、分子運動の拘束が小さ いために全般に Tnピーク群の場合より小さぐ通常 3. Oppm以下、好ましくは 2. Opp m以下、また、通常 0. 3ppm以上の範囲である(特性(1) )。 [0055] Similarly, in the first and third guide members of the present invention, the half width of D n peak group the position of the peak top is observed below 4 Oppm above Oppm is small fry constraints of molecular motion T n sag lower than the one peak group usually 3. Oppm following general, preferably 2. Opp m or less, and the scope of the above normal 0. 3 ppm (characteristic (1)) to.
また、本発明の第二および第四の導光部材において、ピークトップの位置が 40p pm以上 Oppm以下に観測される Dnピーク群の半値幅は、分子運動の拘束が小さ!/ヽ ために全般に Tnピーク群の場合より小さぐ通常 3. Oppm以下、好ましくは 2. Oppm 以下、また、通常 0. 5ppm以上の範囲である(特性(5) )。 In addition, in the second and fourth light guide members of the present invention, the half-value width of the D n peak group in which the peak top position is observed at 40 ppm or more and Oppm or less is because the constraint of molecular motion is small! / ヽUsually sag lower than the one of T n peak group 3. Oppm following general, preferably 2. Oppm below, and the scope of the above normal 0. 5 ppm (characteristic (5)).
[0056] 上記のケミカルシフト領域にお!/、て観測されるピークの半値幅が上記の範囲より大 きいと、分子運動の拘束が大きくひずみの大きな状態となり、クラックや、塗布基板か らの剥離が発生しやすぐ耐熱 ·耐候耐久性に劣る部材となる可能性がある。例えば 、四官能シランを多用した場合や、乾燥工程において急速な乾燥を行ない大きな内 部応力を蓄えた状態などにおいて、半値幅範囲が上記の範囲より大きくなる。 [0056] If the half-value width of the peak observed in the chemical shift region is larger than the above range, the molecular motion is constrained and the strain is large, resulting in cracks and from the coated substrate. As soon as peeling occurs, it may become a member with poor heat resistance and weather resistance. For example, when a large amount of tetrafunctional silane is used, or when a large internal stress is accumulated by rapid drying in the drying process, the full width at half maximum is larger than the above range.
[0057] また、ピークの半値幅が上記の範囲より小さ!/、場合、その環境にある Si原子はシロ
キサン架橋に関わらないことになり、例えばシリコーン樹脂のように架橋部分が Si— c 結合で形成されジメチルシロキサン鎖の D2ピークのみが観測される例や、三官能シ ランが未架橋状態で残留する例など、シロキサン結合主体で形成される物質より耐 熱 -耐候耐久性に劣る部材となる可能性がある。 [0057] If the peak half-value width is smaller than the above range! /, The Si atoms in the environment It will be not involved in hexane crosslinking, for example example only D 2 peak of crosslinking portion is formed by Si- c binding dimethyl siloxane chain as a silicone resin is observed and, trifunctional silane-residual uncrosslinked state For example, there is a possibility that the material is inferior in heat resistance and weather resistance to a material formed mainly of a siloxane bond.
[0058] さらに、上述したように、本発明の第一〜第四の導光部材の特定層 Aの固体 Si— 核磁気共鳴スペクトルにおいては、 Dn、 Tnピーク領域に少なくとも 1本、好ましくは複 数本のピークが観測される。したがって、本発明の第一〜第四の導光部材の特定層 Αの固体 Si 核磁気共鳴スペクトルは、上述した範囲の半値幅を有する Dnピーク群 及び Tnピーク群からなる群より選ばれるピークを、少なくとも 1本、好ましくは 2本以上 有するようことが望ましい。 [0058] Further, as described above, in the solid Si-nuclear magnetic resonance spectrum of the specific layer A of the first to fourth light guide members of the present invention, at least one in the D n and T n peak regions, preferably Multiple peaks are observed. Therefore, the solid Si nuclear magnetic resonance spectrum of the specific layer of the first to fourth light guide members of the present invention is selected from the group consisting of the D n peak group and the T n peak group having a half-value width in the above-described range. It is desirable to have at least one peak, preferably two or more peaks.
[0059] [Α— 1 2]特性(2) :ケィ素含有率 [0059] [Α— 1 2] Characteristic (2): Key content
本発明の第一〜第四の導光部材の特定層 Αは、ケィ素含有率が 10重量%以上で なければならない(特性(2) )。即ち、本発明に係る特定層 Aは、当該特定層 Aを形 成する材料のケィ素含有率が 10重量%以上でなければならない。 The specific layer of the first to fourth light guide members of the present invention must have a key content of 10% by weight or more (characteristic (2)). That is, the specific layer A according to the present invention must have a silicon content of 10% by weight or more of the material forming the specific layer A.
本発明の第一〜第四の導光部材の特定層 Aの基本骨格はガラス(ケィ酸塩ガラス) などと同じ無機質のシロキサン結合である。このシロキサン結合は、下記表 1の化学 結合の比較表からも明らかなように、導光部材として優れた以下の特徴がある。 The basic skeleton of the specific layer A of the first to fourth light guide members of the present invention is the same inorganic siloxane bond as glass (silicate glass). As is apparent from the chemical bond comparison table shown in Table 1 below, this siloxane bond has the following excellent characteristics as a light guide member.
(I)結合エネルギーが大きぐ熱分解 ·光分解しにくいため、耐光性が良好である。 (I) Thermal decomposition with large binding energy · Light resistance is good because photodegradation is difficult.
(II)電気的に若干分極している。 (II) It is slightly polarized electrically.
(III)鎖状構造の自由度は大きぐフレキシブル性に富む構造が可能であり、シロキサ ン鎖中心に自由回転可能である。 (III) The degree of freedom of the chain structure is large and a flexible structure is possible, and the chain structure can freely rotate around the center of the siloxane chain.
(IV)酸化度が大きぐこれ以上酸化されない。 (IV) The degree of oxidation is large and no further oxidation occurs.
(V)電気絶縁性に富む。 (V) Excellent electrical insulation.
[0060] [表 1]
表 ] 表 1 化学結合比較表 [0060] [Table 1] Table] Table 1 Chemical Bond Comparison Table
[0061] これらの特徴から、シロキサン結合が 3次元的に、しかも高架橋度で結合した骨格 で形成されるシリコーン系の層である特定層 Aは、エポキシ樹脂などの他の材料を用 V、た層と異なりガラス或いは岩石などの無機質に近く、耐熱性'耐光性に富む保護被 膜となること力理解できる。特にメチル基を置換基とする特定層 Aは、紫外領域に吸 収を持たな 、ため光分解が起こりにくぐ耐光性に優れる。 [0061] From these characteristics, the specific layer A, which is a silicone-based layer formed of a skeleton in which siloxane bonds are bonded three-dimensionally and with a high degree of cross-linking, uses other materials such as epoxy resin V, Unlike layers, it is close to inorganic substances such as glass or rock, and it can be understood that it becomes a protective film with high heat resistance and light resistance. In particular, the specific layer A having a methyl group as a substituent does not absorb in the ultraviolet region, and therefore is excellent in light resistance in which photolysis is difficult to occur.
[0062] 本発明の第一〜第四の導光部材の特定層 Aのケィ素含有率は、上述の様に 10重 量%以上であるが、高屈折率化を要しない場合は、高屈折率化に必要な成分を含 有する必要がないので、通常 20重量。 /0以上であり、中でも 25重量%以上が好ましく 、 30重量0 /0以上がより好ましい。一方、上限としては、 SiOのみからなるガラスのケィ 素含有率が 47重量%であるとレ、う理由から、通常 47重量。 /0以下の範囲である。 [0062] The key layer content of the specific layer A of the first to fourth light guide members of the present invention is not less than 10% by weight as described above. Usually 20 weights as it is not necessary to contain the ingredients necessary for refractive index. / Is 0 or more, among them preferably at least 25 wt%, more preferably 30 weight 0/0 above. On the other hand, the upper limit is usually 47% for the reason that the silicon content of the glass composed only of SiO is 47% by weight. / 0 or less.
[0063] なお、本発明の第一〜第四の導光部材の特定層 Aのケィ素含有率は、例えば実 施例の説明において後述する方法を用いて誘導結合高周波プラズマ分光(inducti vely coupled plasma spectrometry:以下適宜「ICP」と略する。)分析を行ない 、その結果に基づいて算出することができる。 [0063] It should be noted that the content ratio of the specific layer A of the first to fourth light guide members of the present invention is determined by, for example, inductively coupled high-frequency plasma spectroscopy using a method described later in the description of the embodiments. Plasma spectrometry: hereinafter abbreviated as “ICP” where appropriate.) Analysis can be performed and calculated based on the results.
[0064] 〔ケィ素含有率の測定〕 [0064] [Measurement of content of key element]
導光部材の特定層 Aの単独硬化物を 100 m程度に粉砕し、白金るつぼ中にて 大気中、 450°Cで 1時間、ついで 750°Cで 1時間、 950°Cで 1. 5時間保持して焼成し 、炭素成分を除去した後、得られた残渣少量に 10倍量以上の炭酸ナトリウムを加え てバーナー加熱し溶融させ、これを冷却して脱塩水を加え、更に塩酸にて pHを中性 程度に調整しつつケィ素として数 ppm程度になるよう定容し、 ICP分析を行なう。 Grind the specific cured material of the specific layer A of the light guide member to about 100 m, in a platinum crucible in air, 450 ° C for 1 hour, then 750 ° C for 1 hour, and 950 ° C for 1.5 hours. After holding and firing to remove the carbon component, add 10 times or more of sodium carbonate to a small amount of the obtained residue, heat with a burner to melt, cool this, add demineralized water, and then add pH with hydrochloric acid. Adjust to a neutral level and adjust the volume to about several ppm as a key element, and perform ICP analysis.
[0065] [A— 1 3]特性(3):シラノール含有率 [0065] [A- 1 3] Property (3): Silanol content
本発明の第一〜第四の導光部材の特定層 Aは、シラノール含有率が、通常 0. 01
重量%以上、好ましくは 0. 1重量%以上、更に好ましくは 0. 3重量%以上、また、通 常 10重量%以下、好ましくは 8重量%以下、より好ましくは 6重量%以下の範囲であ る(特性(3) )。即ち、本発明に係る特定層 Aは、当該特定層 Aを形成する材料のシラ ノール含有率が、前記の範囲となる。 The specific layer A of the first to fourth light guide members of the present invention usually has a silanol content of 0.01. % By weight or more, preferably 0.1% by weight or more, more preferably 0.3% by weight or more, and usually 10% by weight or less, preferably 8% by weight or less, more preferably 6% by weight or less. (Characteristic (3)). That is, in the specific layer A according to the present invention, the silanol content of the material forming the specific layer A is in the above range.
[0066] 通常、アルコキシシランを原料としてゾルゲル法により得られるガラス体は、 150°C、 [0066] Usually, a glass body obtained by a sol-gel method using alkoxysilane as a raw material is 150 ° C,
3時間程度の温和な硬化条件では完全に重合して酸化物になることは無ぐ一定量 のシラノールが残存する。テトラアルコキシシランのみより得られるガラス体は高硬度' 高耐光性であるが、架橋度が高いため分子鎖の自由度が小さぐ完全な縮合が起こ らないため残存シラノールの量が多い。また、加水分解 '縮合液を乾燥硬化する際に は、架橋点が多いため増粘が早ぐ乾燥と硬化が同時に進むため大きな歪みを持つ たバルタ体となる。このような部材を導光部材として用いると、長期使用時には残存シ ラノールの縮合による新たな内部応力が発生し、クラックや剥離、断線などの不具合 を生じやすい。また、部材の破断面にはシラノールがより多ぐ透湿性は少ないもの の表面吸湿性が高く水分の浸入を招きやす!/、。 400°C以上の高温焼成によりシラノ ール含有率を減少させることが可能であるが、導光部材の耐熱性は 260°C以下のも のがほとんどであり、現実的ではない。 Under moderate curing conditions of about 3 hours, a certain amount of silanol remains without being completely polymerized into an oxide. A glass body obtained only from tetraalkoxysilane has high hardness and high light resistance. However, since the degree of crosslinking is high, the degree of freedom of molecular chains is small, and complete condensation does not occur, so the amount of residual silanol is large. In addition, when the hydrolysis / condensation liquid is dried and cured, there are many cross-linking points, so that the thickening is fast and drying and curing proceed at the same time, resulting in a distorted Balta body. When such a member is used as a light guide member, new internal stresses are generated due to condensation of residual styrene during long-term use, and defects such as cracks, peeling, and disconnection are likely to occur. In addition, the fracture surface of the member has more silanol and less moisture permeability, but it has high surface hygroscopicity and is likely to invade water! /. It is possible to reduce the silanol content by high-temperature firing at 400 ° C or higher, but the heat resistance of the light guide member is almost 260 ° C or lower, which is not realistic.
[0067] 一方、本発明の第一〜第四の導光部材は、特定層 Aにおけるシラノール含有率が 低!/、ため経時変化が少なぐ長期の性能安定性に優れ、吸湿 ·透湿性何れも低!/ヽ優 れた性能を有する。但し、シラノールが全く含まれない部材又は層は、基板との密着 性または導光部材を積層体とした場合の積層面における密着性に劣るため、本発明 においてはシラノール含有率に上記のごとく最適な範囲が存在する。 [0067] On the other hand, the first to fourth light guide members of the present invention have a low silanol content in the specific layer A! /, And therefore have excellent long-term performance stability with little change over time. Low! / Excellent performance. However, since the member or layer containing no silanol is inferior in the adhesion to the substrate or the adhesion on the laminated surface when the light guide member is a laminate, the silanol content is optimal as described above in the present invention. Range exists.
[0068] 本発明の第一〜第四の導光部材は、その特定層 Aが適当量のシラノールを含有し ているため、基板または各層の積層面に存在する極性部分にシラノールが水素結合 し、密着性が発現する。極性部分としては、例えば、水酸基やメタロキサン結合の酸 素等が挙げられる。 [0068] In the first to fourth light guide members of the present invention, since the specific layer A contains an appropriate amount of silanol, silanol is hydrogen bonded to the polar portion present on the substrate or the laminated surface of each layer. , Adhesion is developed. Examples of the polar part include hydroxyl group and metalloxane-bonded oxygen.
なお、本発明の第一〜第四の導光部材の特定層 Aのシラノール含有率は、例えば 以下に説明する方法を用いて固体 Si— NMRスペクトル測定を行ない、全ピーク面 積に対するシラノール由来のピーク面積の比率より、全ケィ素原子中のシラノールと
ななっってていいるるケケィィ素素原原子子のの比比率率((%%))をを求求めめ、、別別にに分分析析ししたたケケィィ素素含含有有率率とと比比較較すするるこことと にによよりり算算出出すするるここととががででききるる。。 The silanol content of the specific layer A of the first to fourth light guide members of the present invention is, for example, measured by a solid Si-NMR spectrum using the method described below, and derived from silanol with respect to the total peak area. From the ratio of peak area, silanol in all the key atoms Obtain the ratio ratio ((%%)) of the key element and the atomic ratio of the content of the key element that was analyzed separately. This is where you can compare the comparison here and the comparison here. .
[[00006699]] ななおお、、ァァエエロロジジルルななどどののシシララノノーールルをを含含有有すするる無無機機粒粒子子をを入入れれるるここととにによよりり、、特特定定層層 AAががシシララノノーールルをを含含有有すするる場場合合ももああるる力力 SS、、好好ままししくくはは特特定定層層 AAをを形形成成すするるママトトリリッッククスス層層 主主体体ととななるる化化合合物物力力 SS、、そそのの骨骨格格のの一一部部ととししててシシララノノーールルをを含含有有すするるここととがが好好ままししいい。。 [[00006699]] Nana, any Aerosilojiru, such as any non-inorganic inorganic particles containing Sishiraran noorru. Depending on the specific fixed layer AA may contain Sishiraranol, but it may be a force SS, or it may be a special fixed layer. As a part of the bone skeleton case, the compound compound strength SS, which forms the main body, forms the layer AA. It's a good idea to have Sicilara nonor contained here. .
[[00007700]] 〔〔固固体体 SSii—— NNMMRRススペペククトトルル測測定定及及びびシシララノノーールル含含有有率率のの算算出出〕〕 [[00007700]] [[Solid Solid SSii——Calculation of NNMMRR Spectral Measurement and Calculation of the Content Ratio of Sicilanolol]]
本本発発明明のの第第一一〜〜第第四四のの導導光光部部材材のの特特定定層層 AAににつついいてて固固体体 SSii—— NNMMRRススペペククトトルルをを 行行ななうう場場合合、、ままずず、、以以下下のの条条件件でで固固体体 SSii—— NNMMRRススペペククトトルル測測定定及及びびデデーータタ解解析析をを行行 ななうう。。次次にに、、全全ピピーークク面面積積にに対対すするるシシララノノーールル由由来来ののピピーークク面面積積のの比比率率よよりり、、全全ケケィィ素素 原原子子中中ののシシララノノーールルととななっってていいるるケケィィ素素原原子子のの比比率率((%%))をを求求めめ、、別別にに分分析析ししたたケケィィ素素 含含有有率率とと比比較較すするるここととにによよりりシシララノノーールル含含有有率率をを求求めめるる。。 In the present invention, the first to fourth to fourth specific light guide members of the light guide and light guide member are fixed solid layers AA, solid solid SSii——NNMMRR spectrum If you are going to perform a solid-state SSii——NNMMRR spectrum measurement and data analysis under the following conditions: I'll do it. . Next, according to the ratio of the ratio of the total area of the pipi-keke surface area to the total area of the pi-ke-keo surface area to the total area of the pi-keke surface area, The ratio ratio ((%%)) of the key element that is the silarananol of the middle is determined and analyzed separately. The content ratio of sishiraranol content can be determined by comparing with the content ratio of the key element. .
[[00007711]] ななおお、、測測定定デデーータタのの解解析析 ((シシララノノーールル量量解解析析))はは、、例例ええばばガガウウスス関関数数ややロローーレレンンツツ関関 数数をを使使用用ししたた波波形形分分離離解解析析等等にによよりり、、各各ピピーーククをを分分割割ししてて抽抽出出すするる方方法法でで行行ななうう。。 〔〔装装置置条条件件例例〕〕 [[00007711]] It should be noted that the analysis of measurement measurement data ((Sicilara nolanol amount analysis)) is, for example, a Gagarous function number This is a method of extracting and extracting each piper cake by dividing and dividing each waveform by using waveform function separation / disassembly analysis using function functions. Let ’s go. . [[Examples of equipment placement conditions]]
装装置置:: CChheemmaaggnneettiiccss社社 IInnffiinniittyy CCMMXX—— 440000 核核磁磁気気共共鳴鳴分分光光装装置置 Instrumentation equipment :: CChheemmaaggnneettiiccss, Inc. IInnffiinniittyy CCMMXX——440000 Nuclear magnetic resonance resonance instrumentation equipment
2 299SSii共共鳴鳴周周波波数数:: 7799.. 443366MMHHzz 2 299 SSii co-resonant ring frequency frequency: 7799 .. 443366MMHHzz
ププロローーブブ:: 77.. 55mmmm φφ CCPP//MMAASS用用ププロローーブブ Prolo Robe :: 77 .. 55mmmm φφ Propro Robe for CCPP // MMAASS
測測定定温温度度::室室温温 Measurement constant temperature temperature :: Room temperature
試試料料回回転転数数:: 44kkHHzz Number of rotations of sample material rotation: 44kkHHzz
測測定定法法::シシンンググルルパパルルスス法法 Measurement measurement method :: Shishingugururupaparurusu method
ェェ^^11デデカカッッププリリンンググ周周波波数数:: 5500kkHHzz Ye ^^ 11 dekakappupuriringu frequency frequency :: 5500kkHHzz
2 299SSiiフフリリッッププ角角:: 9900°° 2 299 SSii Flip Lip Angle :: 9900 °°
2 299SSii9900°°パパルルスス幅幅:: 55.. OO ^^ ss 2 299 SSii9900 ° Papallusus width :: 55 .. OO ^^ ss
くくりり返返しし時時間間:: 660000ss Repeat time time :: 660000ss
積積算算回回数数:: 112288回回 Number of product integration operations :: 112288 times
観観測測幅幅:: 3300kkHHzz Observation width: 3300kkHHzz
基基準準試試料料::固固体体 SSii—— NNMMRR基基準準物物質質用用ジジメメチチルルシシリリココーーンンゴゴムム((ポポリリジジメメチチルルシシロロキキ
サン) Base Standard Semi-Sample Material :: Solid Solid SSii—— NNMMRR Base Standard Semi-Material for Didimethicyl Lucilirico Corngoum ((Polyrigidimemethylicyl Lucirochiroki) Sun)
[0072] 〔データ処理例〕 [Example of data processing]
本発明の第一〜第四の導光部材の特定層 Aについては、 512ポイントを測定デー タとして取り込み、 8192ポイントにゼロフィリングしてフーリエ変換する。 With respect to the specific layer A of the first to fourth light guide members of the present invention, 512 points are taken as measurement data, zero-filled to 8192 points, and Fourier transformed.
[0073] 〔波形分離解析例〕 [Example of waveform separation analysis]
フーリエ変換後のスペクトルの各ピークについてローレンツ波形及びガウス波形或 いは両者の混合により作成したピーク形状の中心位置、高さ、半値幅を可変パラメ一 タとして、非線形最小二乗法により最適化計算を行なう。 For each peak of the spectrum after Fourier transform, optimization calculation is performed by nonlinear least square method with the center position, height, and half width of the peak shape created by Lorentz waveform and Gaussian waveform or a mixture of both as variable parameters. Do.
なお、ピークの同定は AIChE Journal, 44 (5) , p. 1141 , 1998年等を参考にす For peak identification, refer to AIChE Journal, 44 (5), p. 1141, 1998, etc.
[0074] また、本発明の第一〜第四の導光部材の特定層 Aのシラノール含有率は、以下の I R測定により求めることも可能である。ここで、 IR測定はシラノールピークを特定しや すいもののピークの形状がブロードであり面積誤差が出やすぐ定量作業にあたって は一定膜厚のサンプルを正確に作製する必要があるなど手順も煩雑であるため、厳 密な定量を行う上では固体 Si— NMRを用いることが好ましい。固体 Si— NMRを用 いてシラノール量を測定する際に、シラノールの量が非常に微量で検出が難しい場 合、複数のピークが重なりシラノールのピークを単離することが困難である場合、未知 試料においてシラノールピークのケミカルシフトが不明である場合などには相補的に I R測定を行うことによりシラノールの濃度を決定することが出来る。 [0074] The silanol content of the specific layer A of the first to fourth light guide members of the present invention can also be determined by the following IR measurement. Here, IR measurement is easy to identify the silanol peak, but the shape of the peak is broad, the area error occurs, and it is necessary to accurately prepare a sample with a fixed film thickness for the quantitative work immediately. Therefore, it is preferable to use solid-state Si-NMR for strict quantification. When measuring the amount of silanol using solid-state Si-NMR, if the amount of silanol is very small and difficult to detect, if multiple peaks overlap and it is difficult to isolate the silanol peak, an unknown sample If the chemical shift of the silanol peak is unknown, the concentration of silanol can be determined by complementary IR measurement.
[0075] 〔IR測定によるシラノール含有率の算出〕 [Calculation of silanol content by IR measurement]
'フーリエ変換赤外分光法 Fourier Transform Inirared Spectroscopy 'Fourier Transform Inirared Spectroscopy
•装置: Thermo Electron製 NEXUS 670及び Nic— Plan • Equipment: Thermo Electron NEXUS 670 and Nic—Plan
'分解能: 4cm— 1 'Resolution: 4cm— 1
•積算回数: 64 回 • Total number of times: 64
'パージ: N 'Purge: N
2 2
測定例: Siウェハ上に膜厚 200 11 mの薄膜試料を塗布作製し、透過法により Siゥェ ハごと赤外吸収スペクトルを測定し、波数 SYSlcnT1及び SYOlcnT1のシラノールピ ーク合計面積を求める。一方で、既知濃度試料としてトリメチルシラノールを無水の
四塩化炭素に希釈し、光路長 200 mの液セルを用いて透過法にて赤外吸収スぺ タトルを測定し、実サンプルとのピーク面積比比較によりシラノール濃度を算出するこ と力 Sできる。なお、赤外吸収スペクトルにおいてはサンプル吸着水由来のピークがシ ラノールピークのバックグラウンドとして検出されるので、サンプル薄膜は測定前に常 圧にて 150°C20分以上加熱する力、、 100°Cで 10分以上真空処理するなどの方法に て吸着水を除いておく。 Measurement example: A thin film sample with a film thickness of 200 11 m is coated on a Si wafer, and the infrared absorption spectrum of each Si wafer is measured by the transmission method to determine the total silanol peak area of wave numbers SYSlcnT 1 and SYOlcnT 1 . On the other hand, trimethylsilanol is anhydrous as a known concentration sample. It is possible to measure the infrared absorption spectrum by the transmission method using a liquid cell with an optical path length of 200 m after diluting in carbon tetrachloride and calculating the silanol concentration by comparing the peak area ratio with the actual sample. . In addition, in the infrared absorption spectrum, the peak derived from the sample adsorbed water is detected as the background of the silanol peak, so the sample thin film must be heated at 150 ° C for 20 minutes or more at normal pressure before measurement, Remove adsorbed water by vacuuming for 10 minutes or longer.
[0076] [A- 1 -4]特性 (4):硬度測定値 [0076] [A-1 -4] Characteristics (4): Hardness measurement
硬度測定値は、本発明の第一〜第四の導光部材の特定層 Aの硬度を評価する指 標であり、以下の硬度測定方法により測定される。 The hardness measurement value is an index for evaluating the hardness of the specific layer A of the first to fourth light guide members of the present invention, and is measured by the following hardness measurement method.
本発明の第一〜第四の導光部材の特定層 Aは、エラストマ一状を呈する部材であ ること力 S好ましい。即ち、本発明の第一〜第四の導光部材は、基板または各層にお いて、熱膨張係数の異なる部材を通常は複数使用することになる力 上記のように特 定層 Aがエラストマ一状を呈することにより、特定層 A及び当該特定層 Aを用いた本 発明の第一〜第四の導光部材が上記の各部剤の伸縮による応力を緩和することが できる。したがって、使用中に剥離、クラック、断線などを起こしにくぐ耐リフロー性及 び耐温度サイクル性に優れる導光部材を提供することができる。 The specific layer A of the first to fourth light guide members of the present invention is preferably a member exhibiting an elastomeric shape. That is, the first to fourth light guide members of the present invention are forces that normally use a plurality of members having different thermal expansion coefficients in the substrate or each layer. As described above, the specific layer A is an elastomer. By exhibiting the shape, the first to fourth light guide members of the present invention using the specific layer A and the specific layer A can relieve stress due to expansion and contraction of the respective parts. Therefore, it is possible to provide a light guide member that is excellent in reflow resistance and temperature cycle resistance, which is difficult to cause peeling, cracking, and disconnection during use.
[0077] 具体的には、本発明の第一〜第四の導光部材の特定層 Aは、デュロメータタイプ A による硬度測定値 (ショァ A)が、通常 5以上、好ましくは 7以上、より好ましくは 10以 上、また、通常 90以下、好ましくは 80以下、より好ましくは 70以下である(特性 (4) )。 上記範囲の硬度測定値を有することにより、特定層 A及び当該特定層 Aを用いた本 発明の第一〜第四の導光部材は、クラックが発生しにくぐ耐リフロー性及び耐温度 サイクル性に優れるという利点を得ることができる。 [0077] Specifically, the specific layer A of the first to fourth light guide members of the present invention has a hardness measurement value (Shore A) by durometer type A of usually 5 or more, preferably 7 or more, more preferably Is 10 or more, and usually 90 or less, preferably 80 or less, more preferably 70 or less (characteristic (4)). By having the hardness measurement value in the above range, the first to fourth light guide members of the present invention using the specific layer A and the specific layer A are resistant to reflow resistance and temperature cycle resistance. It is possible to obtain the advantage of superiority.
[0078] 〔硬度測定方法〕 [Hardness measurement method]
硬度測定値 (ショァ A)は、 JIS K6253に記載の方法により測定することができる。 具体的には、古里精機製作所製の A型ゴム硬度計を用いて測定を行なうことができ The hardness measurement value (Shore A) can be measured by the method described in JIS K6253. Specifically, measurement can be performed using an A-type rubber hardness meter manufactured by Furusato Seiki Seisakusho.
[0079] [A— 1 5]その他物性 [0079] [A— 1 5] Other physical properties
本発明の第一〜第四の導光部材の特定層 Aは、上記特性を主な特徴とするが、そ
の他、下記の構造や性質を有してレ、ることが好ましレ、。 The specific layer A of the first to fourth light guide members of the present invention is mainly characterized by the above characteristics. In addition, it is preferable to have the following structure and properties.
[0080] [A 1 5— 1]光透過率 [0080] [A 1 5— 1] Light transmittance
本発明の第一〜第四の導光部材の特定層 Aは、半導体発光デバイスなどを光源と して、光導波路または導光板などに用いる場合には、膜厚 lmmでの前記光源の発 光波長における光透過率(透過度)が、通常 80%以上、中でも 85%以上、更には 90 %以上であることが好まし!/、。導光部材にお!/、て特定層 Aを透光性部として用いる場 合、この透光性部の透明度が低いと、これを用いた光源の輝度が低減するため、高 輝度な光導波路または導光板などの最終製品を得ることが困難になる。 The specific layer A of the first to fourth light guide members of the present invention emits light from the light source with a film thickness of lmm when a semiconductor light emitting device or the like is used as a light source for an optical waveguide or a light guide plate. It is preferable that the light transmittance (transmittance) at a wavelength is usually 80% or more, particularly 85% or more, and more preferably 90% or more! /. When the specific layer A is used as a light-transmitting part in the light guide member, if the transparency of the light-transmitting part is low, the luminance of the light source using the light-transmitting part is reduced. Or it becomes difficult to obtain final products, such as a light-guide plate.
[0081] ここで「光源の発光波長」とは、例えば半導体発光デバイスの場合、その種類に応 じて値が異なるが、一般的には、通常 300nm以上、好ましくは 350nm以上、また、 通常 900nm以下、好ましくは 500nm以下の範囲の波長を指す。この範囲の波長に おける光透過率が低いと、特定層 Aが光を吸収してしまい、光取り出し効率が低下し て、高輝度の光導波路または導光板などを得ることができなくなる。更に、光取り出し 効率が低下した分のエネルギーは熱に変わり、光導波路または導光板などの熱劣化 の原因となるため好ましくない。 Here, the “emission wavelength of the light source”, for example, in the case of a semiconductor light emitting device, the value varies depending on the type, but is generally 300 nm or more, preferably 350 nm or more, and usually 900 nm. Hereinafter, the wavelength is preferably in the range of 500 nm or less. If the light transmittance at a wavelength in this range is low, the specific layer A absorbs light, and the light extraction efficiency decreases, making it impossible to obtain a high-intensity optical waveguide or light guide plate. Furthermore, the energy corresponding to the decrease in light extraction efficiency is changed to heat, which causes thermal deterioration of the optical waveguide or the light guide plate.
[0082] なお、紫外〜青色領域(300nm〜500nm)においては光学材料が光劣化しやす いので、この領域に発光波長を有する光源に、耐久性に優れた特定層 Aを使用すれ ば、その効果が大きくなるので好ましい。 [0082] In the ultraviolet to blue region (300 nm to 500 nm), the optical material is susceptible to light degradation. Therefore, if the specific layer A having excellent durability is used as a light source having an emission wavelength in this region, the optical material Since an effect becomes large, it is preferable.
なお、特定層 Aの材料等の光学材料の光透過率は、例えば以下の手法により、膜 厚 lmmに成形した平滑な表面の単独硬化物膜のサンプルを用いて、紫外分光光度 計により測定することカできる。 The light transmittance of the optical material such as the material of the specific layer A is measured with an ultraviolet spectrophotometer using a sample of a single cured film having a smooth surface molded to a film thickness of 1 mm, for example, by the following method. I can do that.
[0083] 〔透過率の測定〕 [0083] [Measurement of transmittance]
光学材料の、傷や凹凸による散乱の無い厚さ約 lmmの平滑な表面の単独硬化物 膜を用いて、紫外分光光度計(島津製作所製 UV— 3100)を使用し、波長 200nm 〜800nmにお!/、て光透過率測定を行なう。 Using an ultraviolet spectrophotometer (Shimadzu Corporation UV-3100) using a single-cured film with a smooth surface with a thickness of about lmm that is free from scattering due to scratches and unevenness of the optical material, the wavelength is between 200 nm and 800 nm. ! /, Measure the light transmittance.
[0084] [A— 1 5— 2]ピーク面積比 [0084] [A— 1 5— 2] Peak area ratio
本発明の第一〜第四の導光部材の特定層 Aは、次の条件を満たすことが好ましい 。即ち、本発明の第一〜第四の導光部材の特定層 Aは、上述した固体 Si 核磁気
共鳴スペクトルにおいて、(ケミカルシフト 40ppm以上 Oppm以下のピークの総面 積) / (ケミカルシフト 40ppm未満のピークの総面積)の比(以下適宜、「本発明に かかるピーク面積比」という)が、通常 3以上、好ましくは 5以上、より好ましくは 10以上 、また、通常 200以下、好ましくは 100以下、より好ましくは 50以下であることが好まし い。 The specific layer A of the first to fourth light guide members of the present invention preferably satisfies the following conditions. That is, the specific layer A of the first to fourth light guide members of the present invention is the solid Si nuclear magnetism described above. In the resonance spectrum, the ratio of (total area of peaks with chemical shift of 40 ppm or more and Oppm or less) / (total area of peaks with chemical shift of less than 40 ppm) (hereinafter referred to as “peak area ratio according to the present invention” as appropriate) is usually It is preferably 3 or more, preferably 5 or more, more preferably 10 or more, and usually 200 or less, preferably 100 or less, more preferably 50 or less.
[0085] 本発明に力、かるピーク面積比が上記の範囲にあることは、本発明の第一〜第四の 導光部材の特定層 Aが、 2官能シランを、 3官能シランや 4官能シランなどの 3官能以 上のシランよりも多く有することを表わす。このように、 2官能以下のシランを多く有す ることにより、特定層 Aはエラストマ一状を呈することが可能となり、応力を緩和するこ とが可能となる。 [0085] The power of the present invention and the peak area ratio within the above range are that the specific layer A of the first to fourth light guide members of the present invention is difunctional silane, trifunctional silane or tetrafunctional. This indicates that it has more than trifunctional or higher silanes such as silane. As described above, the presence of many silanes having two or less functional groups makes it possible for the specific layer A to exhibit an elastomeric shape and to relieve stress.
ただし、特定層 Aは、本発明に力、かるピーク面積比についての上記条件を満たさな くともエラストマ一状を呈する場合がある。例えば、ケィ素以外の金属のアルコキシド 等のカップリング剤を架橋剤として用いて特定層 Aを製造した場合などが、この場合 に該当する。特定層 Aがエラストマ一状を呈するための手法は任意であり、この本発 明に力、かるピーク面積比につ!/、ての上記条件に限定されるものではな!/、。 However, the specific layer A may exhibit an elastomeric shape even if it does not satisfy the above-described conditions regarding the peak area ratio, which is a force of the present invention. For example, this is the case when the specific layer A is produced using a coupling agent such as an alkoxide of a metal other than silicon as a crosslinking agent. The method for causing the specific layer A to exhibit an elastomeric shape is arbitrary, and is not limited to the above-mentioned conditions!
[0086] [A— 1 5— 3]官能基 [0086] [A— 1 5— 3] Functional group
本発明の第一〜第四の導光部材の特定層 Aは、ポリフタルアミドなどの樹脂、セラミ ック又は金属の表面に存在する所定の官能基 (例えば、水酸基、メタロキサン結合中 の酸素など)と水素結合可能な官能基を有することが好ましレ、。導光部材を設置する 際の基板は、通常、樹脂、セラミック又は金属で形成されている。また、セラミックや金 属の表面には、通常は水酸基が存在する。一方、特定層 Aは、通常、当該水酸基と 水素結合可能な官能基を有している。したがって、前記水素結合により、特定層 Aを 有する本発明の第一〜第四の導光部材は、基板に対する密着性に優れているので ある。 The specific layer A of the first to fourth light guide members of the present invention includes a predetermined functional group (for example, hydroxyl group, oxygen in a metalloxane bond, etc.) present on the surface of a resin such as polyphthalamide, ceramic or metal. ) And a functional group capable of hydrogen bonding. The substrate for installing the light guide member is usually made of resin, ceramic or metal. In addition, a hydroxyl group usually exists on the surface of ceramic or metal. On the other hand, the specific layer A usually has a functional group capable of hydrogen bonding with the hydroxyl group. Therefore, the first to fourth light guide members of the present invention having the specific layer A are excellent in adhesion to the substrate by the hydrogen bond.
[0087] 特定層 Aが有する、前記の水酸基に対して水素結合が可能な官能基としては、例 えば、シラノールやアルコキシ基等が挙げられる。なお、前記官能基は 1種でも良ぐ 2種以上でもよい。 [0087] Examples of the functional group capable of hydrogen bonding to the hydroxyl group of the specific layer A include silanol and alkoxy group. The functional group may be one kind or two or more kinds.
本発明に係る特定層 Aは、これらの官能基を有するために密着性に優れ、重ね塗
りによる積層が可能であることが特筆すべき特長である。この性質を利用し、屈折率 を調整した 2層以上の層を積層し、導光機能を有する導光部材、光導波路、導光板 などを容易に作製することができる。 The specific layer A according to the present invention has these functional groups and thus has excellent adhesion, It is a noteworthy feature that it is possible to laminate by means of. Utilizing this property, it is possible to easily produce a light guide member having a light guide function, an optical waveguide, a light guide plate, etc. by laminating two or more layers with adjusted refractive indexes.
なお、特定層 Aが、前記のように、水酸基に対して水素結合が可能な官能基を有し ているか否かは、固体 Si— NMR、固体1 H— NMR、赤外線吸収スペクトル(IR)、ラ マンスペクトルなどの分光学的手法により確認することができる。 As described above, whether or not the specific layer A has a functional group capable of hydrogen bonding to a hydroxyl group depends on solid Si-NMR, solid 1 H-NMR, infrared absorption spectrum (IR), It can be confirmed by spectroscopic techniques such as Raman spectra.
[0088] [A— 1 5— 4]耐熱性 [0088] [A— 1 5— 4] Heat resistance
本発明の第一〜第四の導光部材の特定層 Aは、耐熱性に優れる。即ち、高温条件 下に放置した場合でも、所定の波長を有する光における透過率が変動しにくい性質 を有する。具体的には、特定層 Aは、 200°Cに 500時間放置した前後において、波 長 400nmの光に対する透過率の維持率力 通常 80%以上、好ましくは 90%以上、 より好ましくは 95%以上であり、また、通常 110%以下、好ましくは 105%以下、より 好ましくは 100%以下である。 The specific layer A of the first to fourth light guide members of the present invention is excellent in heat resistance. That is, even when left under high temperature conditions, the transmittance of light having a predetermined wavelength does not easily change. Specifically, the specific layer A has a transmittance maintaining power for light having a wavelength of 400 nm before and after being left at 200 ° C. for 500 hours, usually 80% or more, preferably 90% or more, more preferably 95% or more. In addition, it is usually 110% or less, preferably 105% or less, more preferably 100% or less.
なお、前記の変動比は、紫外/可視分光光度計による透過率測定により、 [A- 1 5 1]で前述した光透過率の測定方法と同様にして測定することができる。 The variation ratio can be measured by the transmittance measurement using an ultraviolet / visible spectrophotometer in the same manner as the light transmittance measurement method described above in [A-15 1].
[0089] [八ー1 5— 5]耐1;¥性 [0089] [8-1 5-5] 1 resistance;
本発明の第一〜第四の導光部材の特定層 Aは、耐光性に優れる。即ち、 UV (紫 外光)を照射した場合でも、所定の波長を有する光に対する透過率が変動しにくい 性質を有する。具体的には、特定層 Aは、中心波長 380nm、放射強度 0. 4kW/m 2の光を 72時間照射した前後において、波長 400nmの光における透過率の維持率 ヽ通常 80%以上、好ましくは 90%以上、より好ましくは 95%以上であり、また、通 常 110%以下、好ましくは 105%以下、より好ましくは 100%以下である。 The specific layer A of the first to fourth light guide members of the present invention is excellent in light resistance. That is, even when UV (ultraviolet light) is irradiated, the transmittance with respect to light having a predetermined wavelength is not easily changed. Specifically, the specific layer A has a transmittance maintenance factor of light at a wavelength of 400 nm before and after irradiation with light having a center wavelength of 380 nm and a radiation intensity of 0.4 kW / m 2 for 72 hours. It is 90% or more, more preferably 95% or more, and usually 110% or less, preferably 105% or less, more preferably 100% or less.
なお、前記の変動比は、紫外/可視分光光度計による透過率測定により、 [A- 1 5 1]で前述した光透過率の測定方法と同様にして測定することができる。 The variation ratio can be measured by the transmittance measurement using an ultraviolet / visible spectrophotometer in the same manner as the light transmittance measurement method described above in [A-15 1].
[0090] [A 1 5— 6]触媒残留量 [0090] [A 1 5-6] Residual amount of catalyst
本発明の第一〜第四の導光部材の特定層 Aは、通常、ジルコニウム、ハフニウム、 スズ、亜鉛、及びチタンより選択される少なくとも 1種の元素を含む有機金属化合物 触媒を用いて製造される。そのため、特定層 Aには、通常は、これらの触媒が残留し
ている。具体的には、特定層 Aは、前記の有機金属化合物触媒を、金属元素換算で 、通常 0. 001重量%以上、好ましくは 0. 01重量%以上、より好ましくは 0. 02重量 %以上、また、通常 0. 3重量%以下、好ましくは 0. 2重量%以下、より好ましくは 0. 1 重量%以下だけ含有する。ただし、特定層 Aの屈折率調整を目的に上記金属元素 を含む酸化物粒子を配合した場合は、上記範囲を上回る量の金属元素が検出され なお、前記の有機金属化合物触媒の含有率は、 ICP分析により測定できる。 The specific layer A of the first to fourth light guide members of the present invention is usually produced using an organometallic compound catalyst containing at least one element selected from zirconium, hafnium, tin, zinc, and titanium. The Therefore, these catalysts usually remain in the specific layer A. ing. Specifically, the specific layer A contains the above organometallic compound catalyst in terms of metal element, usually 0.001% by weight or more, preferably 0.01% by weight or more, more preferably 0.02% by weight or more, Further, it is usually contained in an amount of not more than 0.3% by weight, preferably not more than 0.2% by weight, more preferably not more than 0.1% by weight. However, when the oxide particles containing the above metal element are blended for the purpose of adjusting the refractive index of the specific layer A, an amount of the metal element exceeding the above range is detected.The content of the organometallic compound catalyst is as follows: It can be measured by ICP analysis.
[0091] [A— 1 5— 7]分子量 [0091] [A— 1 5— 7] Molecular weight
本発明の第一〜第四の導光部材の特定層 Aは、当該特定層 Aを形成している材 料 (後述する特定層形成液 A)を GPC (ゲルパーミエーシヨンクロマトグラフィー)で測 定したポリスチレン換算の重量平均分子量 (Mw)が、通常 500以上、好ましくは、 90 0以上、更に好まし <は 3200以上であり、通常 400, 000以下、好まし <は 70, 000 以下、更に好ましくは 27, 000以下である。重量平均分子量が小さすぎると基板塗 布後の硬化時に気泡が発生したり、パッケージや基板の微小な隙間から液漏れが生 じたりする傾向があり、大きすぎると特定層形成液 Aが低温でも経時で増粘する傾向 や基板上の複雑な形状、配線部分への充填効率が悪くなる傾向がある。 The specific layer A of the first to fourth light guide members of the present invention is obtained by measuring the material forming the specific layer A (specific layer forming liquid A described later) by GPC (gel permeation chromatography). The polystyrene-reduced weight average molecular weight (Mw) is usually 500 or more, preferably 900 or more, more preferably <3200 or more, usually 400 or less, preferably <is 70,000 or less, Preferably it is 27,000 or less. If the weight average molecular weight is too small, bubbles tend to be generated during curing after substrate coating, or liquid leakage tends to occur from minute gaps between the package and the substrate. There is a tendency to increase in viscosity over time, complex shape on the board, and filling efficiency to the wiring part.
[0092] また、分子量分布(Mw/Mn。ここで Mwは重量平均分子量を表わし、 Mnは数平 均分子量を表わす)が、通常 20以下、好ましくは 10以下、更に好ましくは 6以下であ る。分子量分布が大きすぎると部材が低温でも経時で増粘する傾向や基板への塗布 効率が悪くなる傾向がある。なお、 Mnは、 Mwと同じぐ GPCによるポリスチレン換算 で測定できる。 [0092] The molecular weight distribution (Mw / Mn, where Mw represents the weight average molecular weight and Mn represents the number average molecular weight) is usually 20 or less, preferably 10 or less, more preferably 6 or less. . If the molecular weight distribution is too large, the member tends to thicken over time even at low temperatures and the coating efficiency to the substrate tends to deteriorate. Mn can be measured in terms of polystyrene by GPC, the same as Mw.
[0093] また、本発明の第一〜第四の導光部材の特定層形成液 Aは、特定分子量以下の 低分子量成分が少ないものが好ましい。具体的には、特定層形成液 Aの中の GPC 面積比率で分子量が 800以下の成分が、全体の、通常 10%以下、好ましくは 7. 5% 以下、更に好ましくは 5%以下である。低分子量成分が多すぎると、基板塗布後の硬 化時に気泡が発生したり主成分の揮発により硬化時の重量歩留まり(固形分率)が低 下したりする可能性がある。 [0093] The specific layer forming liquid A for the first to fourth light guide members of the present invention preferably has a low molecular weight component having a specific molecular weight or less. Specifically, the component having a molecular weight of 800 or less in the GPC area ratio in the specific layer forming liquid A is usually 10% or less, preferably 7.5% or less, more preferably 5% or less of the whole. If there are too many low molecular weight components, bubbles may be generated at the time of curing after coating the substrate, and the weight yield (solid content ratio) at the time of curing may decrease due to volatilization of the main component.
[0094] さらに、本発明の第一〜第四の導光部材の特定層形成液 Aは、特定分子量以上
の高分子量成分が少ないものが好ましい。具体的には、特定層形成液 Aの GPC分 析値において、高分子量の分画範囲が 5%となる分子量力 通常 1000000以下、 好ましくは 330000以下、さらに好ましくは 110000以下である。 GPCで高分子量側 の分画範囲が多すぎると、 [0094] Furthermore, the specific layer forming liquid A of the first to fourth light guide members of the present invention has a specific molecular weight or more. Those having a low molecular weight component are preferred. Specifically, in the GPC analysis value of the specific layer forming liquid A, the molecular weight force at which the high molecular weight fractionation range is 5% is usually 1000000 or less, preferably 30000 or less, more preferably 110000 or less. If there are too many high molecular weight fractions in GPC,
a)特定層形成液 Aが低温保管においても経時で増粘する、 a) The specific layer forming liquid A thickens over time even in low-temperature storage.
b)保管中の脱水縮合により水分生成し、特定層 Aの塗布後に基板やパッケージ等 から剥離しやすくなる、 b) Moisture is generated by dehydration condensation during storage, making it easier to peel off from the substrate or package after application of the specific layer A.
c)高粘度であるために基板塗布後の硬化時に気泡の抜けが悪くなる、 c) Due to the high viscosity, bubbles are not easily removed during curing after coating the substrate.
などの可能性がある。 There is a possibility.
[0095] 総括すれば、本発明の第一〜第四の導光部材の特定層形成液 Aは、上記に示さ れる分子量範囲であることが好ましぐこのような分子量範囲とする方法としては下記 の方法を挙げることが出来る。 [0095] In summary, the specific layer forming liquid A for the first to fourth light guide members of the present invention is preferably in the molecular weight range shown above. The following methods can be mentioned.
(i)合成時の重合反応を十分に行!、未反応原料を消費する。 (i) The polymerization reaction during synthesis is sufficiently performed and unreacted raw materials are consumed.
(ii)合成反応後に軽沸分の留去を十分に行い軽沸の低分子量残留物を除去する。 (ii) Light boiling components are sufficiently distilled off after the synthesis reaction to remove light boiling low molecular weight residues.
(iii)合成反応時の反応速度や条件を適切に制御し、重合反応が均一に進行するよ うにし、分子量分布が必要以上に大きくならないようにする。 (iii) The reaction rate and conditions during the synthesis reaction are appropriately controlled so that the polymerization reaction proceeds uniformly, and the molecular weight distribution is not increased more than necessary.
[0096] 例えば、「[A— 2]導光部材の製造方法」のように、特定の化合物を加水分解 '重縮 合した重縮合物で特定層 Aを形成する場合には、特定層形成液 Aの合成時の加水 分解 ·重合反応を適正な反応速度を維持しつつ、均一に進めることが好ましい。加水 分解 ·重合は通常 15°C以上、好ましくは 20°C以上、より好ましくは 40°C以上、また通 常 140°C以下、好ましくは 135°C以下、より好ましくは 130°C以下の範囲で行う。また 、加水分解 ·重合時間は反応温度により異なるが、通常 0. 1時間以上、好ましくは 1 時間以上、さらに好ましくは 3時間以上、また通常 100時間以下、好ましくは 20時間 以下、更に好ましくは 15時間以下の範囲で実施される。反応時間がこれより短いと、 必要な分子量まで到達しな力、つたり、不均一に反応進む結果低分子量原料が残存 しつつ高分子量の成分も存在し、硬化物の品質不良で貯蔵安定性に乏しいものとな つたりする可能性がある。また、反応時間がこれより長いと、重合触媒が失活したり、 合成に長時間力、かり生産性が悪化したりする可能性がある。
[0097] 原料の反応活性が低く反応が進みにくい場合には、必要に応じて、例えばァルゴ ンガス、ヘリウムガス、窒素ガス等の不活性ガスを流通させることにより、縮合反応に て発生する水分やアルコールを随伴させて除去を行ない反応を加速しても良い。 反応時間の調整は、 GPC及び粘度測定により分子量管理を行ないつつ、適宜行 なうことが好ましい。さらに、昇温時間を考慮して調節することが好ましい。 [0096] For example, when the specific layer A is formed from a polycondensate obtained by hydrolysis and polycondensation of a specific compound as in "[A-2] Method for producing a light guide member", the specific layer is formed. Hydrolysis during synthesis of liquid A · It is preferable to proceed the polymerization reaction uniformly while maintaining an appropriate reaction rate. Hydrolysis · Polymerization is usually in the range of 15 ° C or higher, preferably 20 ° C or higher, more preferably 40 ° C or higher, and usually 140 ° C or lower, preferably 135 ° C or lower, more preferably 130 ° C or lower. To do. The hydrolysis / polymerization time varies depending on the reaction temperature, but is usually 0.1 hour or longer, preferably 1 hour or longer, more preferably 3 hours or longer, and usually 100 hours or shorter, preferably 20 hours or shorter, more preferably 15 hours. It is carried out in the range of less than time. If the reaction time is shorter than this, the force that does not reach the required molecular weight, i.e., the reaction proceeds non-uniformly, resulting in the presence of high molecular weight components while the low molecular weight raw material remains, resulting in poor cured product quality and storage stability. May become poor. Also, if the reaction time is longer than this, the polymerization catalyst may be deactivated, or the synthesis may take a long time and the productivity may deteriorate. [0097] When the reaction activity of the raw material is low and the reaction is difficult to proceed, if necessary, for example, an inert gas such as argon gas, helium gas, nitrogen gas, etc. is circulated so that moisture generated in the condensation reaction can be reduced. The reaction may be accelerated by removing the alcohol accompanied. The reaction time is preferably adjusted as appropriate while controlling the molecular weight by GPC and viscosity measurement. Furthermore, it is preferable to adjust in consideration of the temperature rising time.
溶媒を用いる場合には、必要に応じて常圧にて溶媒留去を行なうことが好ましい。 さらに、溶媒や除去したい低分子量物の沸点が硬化開始温度(通常は 120°C以上) である場合には、必要に応じて減圧留去を行なうことが好ましい。一方、導光膜の薄 層塗布など、使用目的によっては低粘度化のため溶媒が一部残存していても良ぐ 反応溶媒と異なる溶媒を反応溶媒留去後に後混合しても良い。 When using a solvent, it is preferable to carry out the solvent distillation at normal pressure as required. Further, when the boiling point of the solvent or the low molecular weight substance to be removed is the curing start temperature (usually 120 ° C or higher), it is preferable to carry out distillation under reduced pressure as necessary. On the other hand, depending on the purpose of use, such as thin coating of the light guide film, a part of the solvent may remain for reducing the viscosity. A solvent different from the reaction solvent may be mixed after the reaction solvent is distilled off.
[0098] ここで、特定層形成液 Aの分子量分布の上限及び下限は上記範囲におさまること が好ましぐその範囲であれば分子量分布は必ずしも一山でなくてもよい。また、機 能付加などの目的により異なる分子量分布の形成液を混合してもよぐその場合には 分子量分布曲線が多峰性になっても良い。例えば、特定層 Aに機械的強度を与える ため、高分子量に仕上げた第一の特定層形成液 Aに、密着成分を多く含む低分子 量の第二の特定層形成液 Aを少量含有させた場合などがこれに該当する。 Here, the upper limit and the lower limit of the molecular weight distribution of the specific layer forming liquid A are not necessarily limited to one if the upper limit and the lower limit are preferably within the above range. In addition, it is possible to mix formation liquids having different molecular weight distributions depending on the purpose such as function addition. In that case, the molecular weight distribution curve may be multimodal. For example, in order to give mechanical strength to the specific layer A, a small amount of the second specific layer forming liquid A having a low molecular weight containing a large amount of adhesion components is contained in the first specific layer forming liquid A finished to a high molecular weight. This is the case.
[0099] [A— 1 5— 8]低沸点成分 [0099] [A— 1 5— 8] Low boiling point component
本発明の第一〜第四の導光部材の特定層形成液 A、及び特定層 Aは TG— mass (熱分解 MSクロマトグラム)において、 40°C〜210°Cの範囲の加熱発生ガスのクロマ トグラム積分面積が小さレ、ものであることが好まし!/、。 The specific layer forming liquid A and the specific layer A of the first to fourth light guide members of the present invention are those of the heat generation gas in the range of 40 ° C to 210 ° C in the TG-mass (pyrolysis MS chromatogram). It is preferable that the chromatogram integral area is small!
TG— massは、特定層形成液 Aを昇温して前記特定層形成液 A及び特定層 A中 の低沸点成分を検出するものである力 40°C〜210°Cの範囲にクロマトグラム積分 面積が大きい場合、水、溶媒および 3員環から 5員環の環状シロキサンといった、低 沸点成分が成分中に存在することを示す。このような場合、(i)低沸点成分が多くなり 、硬化過程において気泡の発生またはブリードアウトし基板との密着性が低くなるほ 、、硬化不十分となったり、硬化時の重量減が大きくなつたりするなどの可能性や、(i i)ランプ発光時ゃリフロー時の発熱により気泡の発生またはブリードアウトするなどの 可能性がある。そこで、特定層形成液 A及び特定層 Aはかかる低沸点成分が少ない
ものが好ましい。 TG-mass is a chromatogram integral in the temperature range of 40 ° C to 210 ° C that detects the low-boiling components in the specified layer forming solution A and the specified layer A by raising the temperature of the specified layer forming solution A. A large area indicates that low-boiling components such as water, solvent, and 3- to 5-membered cyclic siloxane are present in the component. In such a case, (i) the amount of low-boiling components increases, the generation of bubbles or bleed-out during the curing process, and the lower the adhesion to the substrate, the more insufficient the curing or the weight loss during curing. There is a possibility that it will be damaged, and (ii) there is a possibility that bubbles will be generated or bleed out due to the heat generated during reflow when the lamp emits light. Therefore, the specific layer forming liquid A and the specific layer A have few such low-boiling components. Those are preferred.
なお、 TG— massの測定は、以下の測定条件で、以下のような操作で行なうことが できる。 The TG-mass can be measured by the following operation under the following measurement conditions.
[TG— massの測定条件] [TG-mass measurement conditions]
加熱炉:フロンティア 'ラボ製 PY— 2010型 Heating furnace: Frontier 'Lab PY—2010 type
加熱炉昇温プログラム: 40°C→10°C/min→400°C Reheating furnace heating program: 40 ° C → 10 ° C / min → 400 ° C
インターフェース温度: 100°C Interface temperature: 100 ° C
試料カップ:白金大(25 U Sample cup: Platinum (25 U
試料量:約 lOmg Sample volume: approx. LOmg
GC : HP製 6890型 GC: HP 6890
カラム:空カラム(0. 25mm X 10m) Column: Empty column (0.25 mm X 10m)
キャリアー:ヘリウム 1. 5mL/ min Carrier: Helium 1.5 mL / min
注入口温度: 100°C Inlet temperature: 100 ° C
スプリット比: 1/50 Split ratio: 1/50
オーブン: 150°C Oven: 150 ° C
MS :日本電子製 ΑΜΠ— 15型 MS: JEOL Sakai—15 type
測定法: EI法 Measurement method: EI method
イオン化電圧: 70eV Ionization voltage: 70eV
イオン化電流: 300 A Ionization current: 300 A
フォトマノレ電圧: 400V Photo mano voltage: 400V
インターフェース温度: 150°C Interface temperature: 150 ° C
イオン化室温度: 200°C Ionization chamber temperature: 200 ° C
マスレンジ: m/ z = 10〜400 Mass range: m / z = 10-400
スキャンスヒート: 500ms Scan heat: 500ms
[TG— massの測定方法] [TG—mass measurement method]
加熱された試料より発生するガス成分を空カラムを通じてガスクロへ導入し、 MS分 析を行なう。試料液約 lOmgを白金セル(カップ)に入れ、 He流通下、 40°C〜400°C 、 10°C/minで昇温する。特定層形成液 Aは、 120°C〜; 150°C付近で固化し、その
後は固体状態で加熱される。 The gas components generated from the heated sample are introduced into the gas chromatograph through an empty column and MS analysis is performed. About 10 mg of sample solution is put into a platinum cell (cup) and heated at 40 ° C to 400 ° C and 10 ° C / min under He flow. The specific layer forming liquid A is solidified at around 120 ° C .; After that, it is heated in a solid state.
[0102] 特定層 Aにおいて、 TG— massで検出される前記低沸点成分量を低く抑える方法 としては、例えば、下記の方法を挙げることができる。 [0102] In the specific layer A, examples of a method for reducing the amount of the low boiling point component detected by TG mass include the following methods.
[0103] (i)重合反応等を十分に行う。つまり、十分な反応温度、反応時間を確保することによ り、未反応軽沸原料を消費し、硬化時に水やアルコールを生む未反応末端を適当量 まで減少させる。例えば、後述する「[Α— 2]導光部材の製造方法」のような、特定の 化合物を加水分解 ·重縮合した重縮合物で特定層 Αを形成する場合は、常圧で加 水分解 ·重縮合を実施する場合、通常 15°C以上、好ましくは 20°C以上、より好ましく は 40°C以上、また、通常 140°C以下、好ましくは 135°C以下、より好ましくは 130°C 以下の範囲で加水分解 ·重縮合を行なう。また、加水分解 ·重縮合反応時間は反応 温度により異なる力 通常 0. 1時間以上、好ましくは 1時間以上、更に好ましくは 3時 間以上、また、通常 100時間以下、好ましくは 20時間以下、更に好ましくは 15時間 以下の範囲で実施される。反応時間の調整は GPC、粘度測定により逐次分子量管 理を行いつつ適宜行うことが好ましい。さらに、昇温時間を考慮して調節することが好 ましい。 [0103] (i) The polymerization reaction and the like are sufficiently performed. That is, by ensuring sufficient reaction temperature and reaction time, unreacted light boiling raw materials are consumed, and unreacted terminals that produce water and alcohol during curing are reduced to an appropriate amount. For example, when the specific layer Α is formed from a polycondensate obtained by hydrolysis and polycondensation of a specific compound, as described later in “[Α-2] Light guide member manufacturing method”, hydrolysis is performed at normal pressure. When polycondensation is carried out, usually 15 ° C or higher, preferably 20 ° C or higher, more preferably 40 ° C or higher, and usually 140 ° C or lower, preferably 135 ° C or lower, more preferably 130 ° C Perform hydrolysis and polycondensation within the following ranges. The hydrolysis / polycondensation reaction time varies depending on the reaction temperature, usually 0.1 hour or more, preferably 1 hour or more, more preferably 3 hours or more, and usually 100 hours or less, preferably 20 hours or less, Preferably, it is carried out for 15 hours or less. The reaction time is preferably adjusted appropriately while sequentially controlling the molecular weight by GPC and viscosity measurement. Furthermore, it is preferable to adjust the temperature in consideration of the heating time.
[0104] (ii)特定層形成液 Aの中に、溶媒や低分子量環状シロキサンなど反応により消費さ れない軽沸分がある場合には、特定層形成液 Aの合成中に、硬化開始温度以下の 温度にて不用な重合を抑えつつ、自然留去、アルゴンガス、窒素ガス、ヘリウムガス 等の不活性ガス流通による軽沸物随伴除去、必要に応じて減圧留去などを行ない、 常圧における沸点が室温〜 260°C程度の低沸点成分を除去することが好ましい。具 体的には、例えば、溶媒の留去を行なう際の温度条件を通常 60°C以上、好ましくは 80°C以上、より好ましくは 100°C以上、また、通常 150°C以下、好ましくは 130°C以 下、より好ましくは 120°C以下とする。なお、不用軽沸物の除去は、合成前の個別の 原料にぉレ、て行なってもよ!/、。 [0104] (ii) When the specific layer forming liquid A has a light boiling point that is not consumed by the reaction, such as a solvent or a low molecular weight cyclic siloxane, the curing start temperature during the synthesis of the specific layer forming liquid A While suppressing unnecessary polymerization at the following temperatures, natural distillation, light-boiling concomitant removal by circulation of inert gas such as argon gas, nitrogen gas, helium gas, etc. It is preferable to remove low boiling components having a boiling point of about room temperature to 260 ° C. Specifically, for example, the temperature condition when the solvent is distilled off is usually 60 ° C or higher, preferably 80 ° C or higher, more preferably 100 ° C or higher, and usually 150 ° C or lower, preferably 130 ° C or lower, more preferably 120 ° C or lower. It is also possible to remove unnecessary light-boiling substances by using a separate raw material before synthesis! /.
[0105] [A— 1 6]その他の層 [0105] [A— 1 6] Other layers
本発明の第一〜第四の導光部材は、当該導光部材が有する層のうちの少なくとも 2層が前記の特定層 Aであれば、当該特定層 A以外にも層を有していても良い。この ような特定層 A以外の層としては、公知の層を任意に適用することが可能である。ま
た、特定層 A以外の層は、 1層のみが設けられていても良ぐ 2層以上が設けられて いても良い。 The first to fourth light guide members of the present invention have layers other than the specific layer A as long as at least two of the layers of the light guide member are the specific layer A. Also good. As the layer other than the specific layer A, a known layer can be arbitrarily applied. Ma The layers other than the specific layer A may be provided with only one layer, or may be provided with two or more layers.
ただし、本発明の効果をより顕著に得るためには、本発明の第一〜第四の導光部 材が有する層のうち、より多くが前記の特定層 Aとしての特性を有していることが好ま しぐ全ての層が前記の特定層 Aとしての特性を有していることがより好ましい。 However, in order to obtain the effects of the present invention more remarkably, more of the layers of the first to fourth light guide members of the present invention have the characteristics as the specific layer A. It is more preferable that all the layers have the characteristics as the specific layer A described above.
[0106] [A— 2]導光部材の製造方法 [0106] [A-2] Method for manufacturing light guide member
本発明の第一〜第四の導光部材を製造する方法は特に制限されない。したがって 、本発明の第一〜第四の導光部材を構成する各層は、それぞれ、任意の方法により 製造できる。中でも、特定層 Aは、例えば、後述の一般式(1)や一般式 (2)で表わさ れる化合物及び/又はそれらのオリゴマーを加水分解 '重縮合し、重縮合物 (加水 分解 ·重縮合物)を乾燥させることにより得ることができる。ただし、特定層 Aではシロ キサン結合を主体とすることが好ましいため、一般式(1)で表わされる化合物又はそ のオリゴマーを原料の主体とすることが望ましい。また、加水分解 '重縮合物が溶媒を 含有している場合には、乾燥させる前に事前に溶媒を留去するようにしてもよい。 The method for producing the first to fourth light guide members of the present invention is not particularly limited. Therefore, each layer which comprises the 1st-4th light guide member of this invention can each be manufactured by arbitrary methods. In particular, the specific layer A is obtained by, for example, hydrolyzing and polycondensing a compound represented by the following general formula (1) or general formula (2) and / or an oligomer thereof, to form a polycondensate (hydrolysis / polycondensate). ) Can be obtained by drying. However, since it is preferable that the specific layer A is mainly composed of a siloxane bond, it is desirable that the compound represented by the general formula (1) or the oligomer thereof is mainly composed of a raw material. Further, when the hydrolysis polycondensate contains a solvent, the solvent may be distilled off in advance before drying.
[0107] なお、以下の説明において、前記加水分解 '重縮合物又はこれを含有する組成物 であって、乾燥工程の前に得られるものを特定層形成液 Aという。したがって、ここで 説明する製造方法 (以下適宜、「本発明に係る特定層の製造方法」という)により本発 明の第一〜第四の導光部材の特定層 Aを製造する場合、この特定層形成液 Aから 乾燥工程を経て得られたものが特定層 Aとなる。 [0107] In the following description, the hydrolyzed polycondensate or a composition containing it is referred to as a specific layer forming liquid A that is obtained before the drying step. Therefore, when the specific layer A of the first to fourth light guide members of the present invention is manufactured by the manufacturing method described here (hereinafter referred to as “the specific layer manufacturing method according to the present invention” as appropriate), this specific What was obtained from the layer forming liquid A through the drying step is the specific layer A.
以下、この特定層 Aの製造方法について詳しく説明する。 Hereinafter, a method for producing the specific layer A will be described in detail.
[0108] [A— 2— 1]原料 [0108] [A— 2-1] Raw material
原料としては、下記一般式(1)で表わされる化合物(以下適宜「化合物(1)」とレ、う。 )及び/又はそのオリゴマーを用いる。 As the raw material, a compound represented by the following general formula (1) (hereinafter referred to as “compound (1)”) and / or an oligomer thereof is used.
[0109] Mm+X Y1 (1) [0109] M m + XY 1 (1)
[0110] 一般式(1)中、 Mは、ケィ素、アルミニウム、ジルコニウム、及びチタンからなる群よ り選択される少なくとも 1種の元素である。中でも、ケィ素が好ましい。 [0110] In general formula (1), M is at least one element selected from the group consisting of silicon, aluminum, zirconium, and titanium. Of these, key is preferable.
一般式(1)中、 mは、 Mの価数を表わし、 1以上、 4以下の整数である。また、「m+ 」とは、それが正の価数であることを表わす。
nは、 X基の数を表わし、 1以上、 4以下の整数である。但し、 m≥nである。 In general formula (1), m represents the valence of M, and is an integer of 1 or more and 4 or less. “M +” means that it is a positive valence. n represents the number of X groups, and is an integer of 1 or more and 4 or less. However, m≥n.
[0111] 一般式(1)中、 Xは、溶液中の水や空気中の水分などにより加水分解されて、反応 性に富む水酸基を生成する加水分解性基であり、従来より公知のものを任意に使用 すること力 Sできる。例えば、 C1〜C5の低級アルコキシ基、ァセトキシ基、ブタノキシム 基、クロル基等が挙げられる。なお、ここで Ci (iは自然数)という表記は、炭素数が i個 であることを表わす。さらに、 Xは、水酸基であってもよい。また、これらの加水分解性 基は 1種を単独で用いてもよぐ 2種以上を任意の組み合わせ及び比率で併用しても 良い。 [0111] In the general formula (1), X is a hydrolyzable group that is hydrolyzed by water in the solution or moisture in the air to form a highly reactive hydroxyl group. It can be used arbitrarily. For example, a C1-C5 lower alkoxy group, acetoxy group, butanoxime group, chloro group and the like can be mentioned. Here, Ci (i is a natural number) indicates that the number of carbon atoms is i. Furthermore, X may be a hydroxyl group. These hydrolyzable groups may be used alone or in combination of two or more in any combination and ratio.
[0112] 中でも、反応後に遊離する成分が中性であることから、 C1〜C5の低級アルコキシ 基が好ましい。特に、反応性に富み、遊離する溶媒が軽沸であることから、メトキシ基 又はエトキシ基が好ましい。 [0112] Among them, a C1-C5 lower alkoxy group is preferable because a component liberated after the reaction is neutral. In particular, a methoxy group or an ethoxy group is preferable because it is highly reactive and the solvent to be liberated is light boiling.
さらに、一般式(1)中で Xがァセトキシ基ゃクロル基である場合には、加水分解反応 後に酢酸や塩酸を遊離するため、特定層 Aに絶縁性が求められる場合には、酸成分 を除去する工程を付加することが好まし!/ヽ。 Furthermore, in the general formula (1), when X is a acetoxy group or a chloro group, acetic acid and hydrochloric acid are liberated after the hydrolysis reaction. It is preferable to add a process to remove!
[0113] 一般式(1)中、 Y1は、いわゆるシランカップリング剤の 1価の有機基として公知のも のを、いずれも任意に選択して使用することができる。中でも、本発明において一般 式(1)における Y1として特に有用な有機基とは、以下の Y°に表される群(有用有機 基群)から選ばれるものである。さらに、特定層 Αと他の材料との親和性向上、密着性 向上、特定層 Aの屈折率調整などのために、適宜、他の有機基を選択するようにして あよい。 [0113] In the general formula (1), Y 1 can be arbitrarily selected and used as a monovalent organic group of a so-called silane coupling agent. Among them, the organic group particularly useful as Y 1 in the general formula (1) in the present invention is selected from the following group represented by Y ° (useful organic group group). Furthermore, other organic groups may be appropriately selected for improving the affinity between the specific layer and other materials, improving adhesion, adjusting the refractive index of the specific layer A, and the like.
[0114] <有用有機基群 Y°〉 [0114] <Useful organic group Y °>
Υ° :脂肪族化合物、脂環式化合物、芳香族化合物、脂肪芳香族化合物より誘導さ れる 1価以上の有機基である。 Υ °: A monovalent or higher-valent organic group derived from an aliphatic compound, alicyclic compound, aromatic compound, or aliphatic aromatic compound.
また、群 Υ°に属する有機基の炭素数は、通常 1以上、また、通常 1000以下、好まし くは 500以下、より好ましくは 100以下、さらに好ましくは 50以下である。 The carbon number of the organic group belonging to the group is usually 1 or more, usually 1000 or less, preferably 500 or less, more preferably 100 or less, and still more preferably 50 or less.
[0115] さらに、群 Υ°に属する有機基が有する水素原子のうち少なくとも一部は、下記に例 示する原子及び/又は有機官能基等の置換基で置換されていても良い。この際、群 Υ°に属する有機基が有する水素原子のうちの複数が下記置換基で置換されていて
も良ぐこの場合、下記に示す置換基の中から選択した 1種又は 2種以上の組み合わ せにより置換されて!/、ても良レ、。 [0115] Further, at least a part of the hydrogen atoms of the organic group belonging to the group may be substituted with a substituent such as the atoms and / or organic functional groups exemplified below. At this time, a plurality of hydrogen atoms of the organic group belonging to the group Υ ° are substituted with the following substituents. In this case, it may be substituted by one or a combination of two or more selected from the substituents shown below!
[0116] 群 Y°に属する有機基の水素原子と置換可能な置換基の例としては、 F、 Cl、 Br、 I 等の原子;ビュル基、メタクリロキシ基、アタリロキシ基、スチリル基、メルカプト基、ェ ポキシ基、エポキシシクロへキシル基、グリシドキシ基、アミノ基、シァノ基、ニトロ基、 スルホン酸基、カルボキシ基、ヒドロキシ基、ァシル基、アルコキシ基、イミノ基、フエ二 ル基等の有機官能基などが挙げられる。 [0116] Examples of substituents that can be substituted with hydrogen atoms of organic groups belonging to the group Y ° include atoms such as F, Cl, Br, and I; bur group, methacryloxy group, attaryloxy group, styryl group, mercapto group, Organic functional groups such as epoxy group, epoxycyclohexyl group, glycidoxy group, amino group, cyano group, nitro group, sulfonic acid group, carboxy group, hydroxy group, acyl group, alkoxy group, imino group, and phenyl group Etc.
[0117] なお、上記全ての場合において、群 Y°に属する有機基の有する水素原子と置換可 能な置換基のうち、有機官能基については、その有機官能基の有する水素原子のう ち少なくとも一部が F、 Cl、 Br、 I等のハロゲン原子などで置換されていても良い。 ただし、群 Y°に属する有機基の水素と置換可能な置換基として例示したもののな かでも、有機官能基は、導入しやすいものの一例であり、使用目的に応じてこの他各 種の物理化学的機能性を持つ有機官能基を導入しても良い。 [0117] In all of the above cases, among the substituents that can be substituted with the hydrogen atom of the organic group belonging to the group Y °, the organic functional group is at least one of the hydrogen atoms of the organic functional group. Some may be substituted with halogen atoms such as F, Cl, Br, and I. However, among those exemplified as substituents capable of substituting hydrogen for organic groups belonging to the group Y °, organic functional groups are examples of those that are easy to introduce, and various other types of physical chemistry depending on the purpose of use. An organic functional group having functional functionality may be introduced.
[0118] また、群 Υ°に属する有機基は、その中に連結基として〇、 Ν、又は S等の各種の原 子または原子団を有するものであっても良い。 [0118] The organic group belonging to the group Υ ° may have various atoms or atomic groups such as ◯, Ν, or S as a linking group.
一般式(1)中、 Y1は、上記の有用有機基群 Y°に属する有機基などから、その目的 により様々な基を選択できる力 耐紫外線性、耐熱性に優れる点から、メチル基を主 体とすることが好ましい。 In general formula (1), Y 1 is a group capable of selecting various groups depending on the purpose from the organic groups belonging to the useful organic group group Y ° described above. From the viewpoint of excellent ultraviolet resistance and heat resistance, a methyl group is The main body is preferable.
[0119] 上述の化合物(1)の具体例を挙げると、 Μがケィ素である化合物としては、例えば フエ二ルジェトキシシラン、ビュルトリメトキシシラン、ビュルトリエトキシシラン、ビュルト メトキシシラン、 Ίーグリシドキシプロピノレトリエトキシシラン、 β一(3, 4—エポキシシ クロへキシノレ)ェチノレトリメトキシシラン、 γ—(3, 4—エポキシシクロへキシノレ)ェチノレ トリエトキシシラン、 γ—(メタ)アタリロキシプロビルトリメトキシシラン、フエニルトリメトキ [0119] Specific examples of the compound (1) are as follows. Examples of the compound in which Μ is a key include phenyloxysilane, butyltrimethoxysilane, butyltriethoxysilane, butylmethoxysilane, and orange. Sid alkoxy prop Honoré triethoxysilane, beta i (3, 4-Epokishishi black to Kishinore) E Chino Les trimethoxysilane, gamma - (3, 4-epoxy Kishinore cyclohexylene) Echinore triethoxysilane, gamma - (meth) Atarirokishi Provirtrimethoxysilane, phenyltrimethoxy
—クロ口プロピルトリメトキシシラン、 13—シァノエチルトリエトキシシラン、メチルトリメト キシシラン、メチノレトリエトキシシラン、メチノレトリプロポキシシラン、メチノレトリブトキシシ
ラン、ェチルトリメトキシシラン、ェチルトリエトキシシラン、テトラメトキシシラン、テトラエ ジフエ二ルジクロロシラン、メチルフエ二ルジメトキシシラン、トリメチルメトキシシラン、ト リメチルエトキシシラン、トリメチルクロロシラン、メチルトリクロロシラン、 γ アシノプロ ピルトリエトキシシラン、 4—アシノブチルトリエトキシシラン、 ρ ァミノフエニルトリメトキ シシラン、 Ν— (2 アミノエチル) 3 ァミノプロピルトリメトキシシラン、アミノエチル —Black mouth propyltrimethoxysilane, 13-cyanoethyltriethoxysilane, methyltrimethoxysilane, methinotritriethoxysilane, methinotritripropoxysilane, methinotributoxy Lan, Etyltrimethoxysilane, Ethyltriethoxysilane, Tetramethoxysilane, Tetraphenyldichlorosilane, Methylphenyldimethoxysilane, Trimethylmethoxysilane, Trimethylethoxysilane, Trimethylchlorosilane, Methyltrichlorosilane, γ-Acinopropyl Triethoxysilane, 4-Acinobutyltriethoxysilane, ρ Aminophenyltrimethoxysilane, Ν— (2 Aminoethyl) 3 Aminopropyltrimethoxysilane, Aminoethyl
— (3, 4—エポキシシクロへキシル)ェチルトリメトキシシラン、 3—ァミノプロピルトリメト キシシラン、 3—ァミノプロピルトリエトキシシラン、 4—アミノブチルトリエトキシシラン、 Ν— (6—ァミノへキシル)ァミノプロピルトリメトキシシラン、 3—クロ口プロビルトリメトキ シシラン、 3—クロ口プロピルトリクロロシラン、 (ρ クロロメチル)フエニルトリメトキシシ ラン、 4 クロ口フエニルトリメトキシシラン、 3—メタクリロキシプロビルトリメトキシシラン — (3,4-Epoxycyclohexyl) ethyltrimethoxysilane, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 4-aminobutyltriethoxysilane, Ν— (6-amino) Xylyl) aminopropyltrimethoxysilane, 3-chloropropyl trimethoxysilane, 3-chloropropyltrichlorosilane, (ρ chloromethyl) phenyltrimethoxysilane, 4-chlorophenyltrimethoxysilane, 3- Methacryloxypropyl trimethoxysilane
トリクロロシラン、ビュルトリス(2—メトキシエトキシ)シラン、トリフルォロプロピルトリメト キシシランなどが挙げられる。 Examples include trichlorosilane, butururis (2-methoxyethoxy) silane, trifluoropropyltrimethoxysilane, and the like.
[0120] また、化合物(1)のうち、 Μがアルミニウムである化合物としては、例えば、アルミ二 ゥムトリイソプロポキシド、アルミニウムトリ η ブトキシド、アルミニウムトリ t—ブトシキド[0120] Among the compounds (1), examples of the compound in which あ る is aluminum include, for example, aluminum triisopropoxide, aluminum tri-η butoxide, aluminum tri-t-butoxide
、アルミニウムトリエトキシドなどが挙げられる。 And aluminum triethoxide.
また、化合物(1)のうち、 Mがジルコニウムである化合物としては、例えば、ジルコ二 ゥムテトラメトキシド、ジルコニウムテトラエトキシド、ジルコニウムテトラ n プロポキシド Examples of the compound (1) in which M is zirconium include, for example, zirconium tetramethoxide, zirconium tetraethoxide, and zirconium tetra n propoxide.
、ジルコニウムテトラ i プロポキシド、ジルコニウムテトラ n ブトキシド、ジルコニウム テトラ iーブトキシド、ジルコニウムテトラ tーブトキシド、ジルコニウムジメタクリレートジ ブトキシドなどが挙げられる。 Zirconium tetra i propoxide, Zirconium tetra n butoxide, Zirconium tetra i-butoxide, Zirconium tetra-butoxide, Zirconium dimethacrylate dibutoxide and the like.
[0121] また、化合物(1)のうち、 Mがチタンである化合物としては、例えば、チタンテトライ ソプロポキシド、チタンテトラ n ブトキシド、チタンテトラ iーブトキシド、チタンメタクリレ ートトリイソプロポキシド、チタンテトラメトキシプロポキシド、チタンテトラ n プロポキシ ド、チタンテトラエトキシドなどが挙げられる。
ただし、これらに具体的に例示した化合物は、入手容易な市販のカップリング剤の 一部であり、更に詳しくは、例えば、科学技術総合研究所発行の「カップリング剤最 適利用技術」 9章のカップリング剤及び関連製品一覧表により示すことができる。また 、当然のことながら、本発明に使用できるカップリング剤は、これらの例示により制限さ れるものではない。 [0121] Further, among the compounds (1), examples of the compound in which M is titanium include, for example, titanium tetrasopropoxide, titanium tetra n butoxide, titanium tetra ibutoxide, titanium methacrylate triisopropoxide, titanium tetramethoxy. Examples include propoxide, titanium tetra n propoxide, titanium tetraethoxide. However, the compounds specifically exemplified in these are some of the commercially available coupling agents that are readily available. For more details, see, for example, “Optimum Utilization Technology for Coupling Agents”, Chapter 9 Coupling agent and related product list. Of course, the coupling agents that can be used in the present invention are not limited by these examples.
[0122] また、下記一般式 (2)で表される化合物(以下適宜、「化合物(2)」という。)及び/ 又はそのオリゴマーも、上記化合物( 1 )及び/又はそのオリゴマ一と同様に使用する こと力 Sでさる。 [0122] Further, the compound represented by the following general formula (2) (hereinafter referred to as "compound (2)" as appropriate) and / or an oligomer thereof are also the same as the compound (1) and / or the oligomer thereof. Use with power S.
[0123] (M3+X Y1 ) Y" (2) [0123] (M 3+ XY 1 ) Y "(2)
[0124] 一般式(2)において、 M、 X及び Y1は、それぞれ独立に、一般式(1)と同様のもの を表わす。特に Υ1としては、一般式(1)の場合と同様、上記の有用有機基群 Υ°に属 する有機基などから、その目的により様々な基を選択できる力 耐紫外線性、耐熱性 に優れる点から、メチル基を主体とすることが好ましレ、。 [0124] In the general formula (2), M, X and Y 1 each independently represents the same as in the general formula (1). Particularly Upsilon 1, as in the case of the general formula (1), the organic groups belonging to useful organic group & Upsilon ° above, the force ultraviolet resistance that can select various groups depending on the purpose, high heat resistance From the point of view, it is preferable to have a methyl group as the main component.
また、一般式(2)において、 sは、 Μの価数を表わし、 2以上、 4以下の整数である。 また、「s +」は、それが正の整数であることを表わす。 In the general formula (2), s represents the valence of Μ and is an integer of 2 or more and 4 or less. “S +” indicates that it is a positive integer.
[0125] さらに、一般式(2)において、 Y2は、 u価の有機基を表わす。ただし、 uは 2以上の 整数を表わす。したがって、一般式(2)中、 Y2は、いわゆるシランカップリング剤の有 機基として公知のもののうち 2価以上のものを、任意に選択して使用することができる[0125] Furthermore, in the general formula (2), Y 2 represents a u-valent organic group. However, u represents an integer of 2 or more. Therefore, in the general formula (2), Y 2 can be arbitrarily selected from divalent or higher ones among the known organic groups of so-called silane coupling agents.
〇 Yes
また、一般式(2)において、 tは、 1以上、 s—l以下の整数を表わす。但し、 t≤sで ある。 In general formula (2), t represents an integer of 1 or more and s−l or less. However, t≤s.
[0126] 上記化合物(2)の例としては、各種有機ポリマーやオリゴマーに側鎖として加水分 解性シリル基が複数結合して!/、るものや、分子の複数の末端に加水分解性シリル基 が結合して!/、るものなどが挙げられる。 [0126] Examples of the compound (2) include various organic polymers and oligomers in which a plurality of hydrolyzable silyl groups are bonded as side chains! /, Or a hydrolyzable silyl group at multiple terminals of the molecule. Examples include those in which the group is bonded! /.
上記化合物(2)の具体例及びその製品名を以下に挙げる。 Specific examples of the compound (2) and product names thereof are listed below.
(信越化学製、 KBE— 846) (Shin-Etsu Chemical, KBE-846)
• 2 ジエトキシメチノレエチノレシリノレジメチノレ 2ーフラニノレシラン
(信越化学製、 LS— 7740) • 2 diethoxymethylenoretinoresilinoresimethinole 2-furaninolesylane (Shin-Etsu Chemical, LS-7740)
(チッソ製、サイラエース XS1003) (Manufactured by Chisso, Sila Ace XS1003)
•N—グリシジルー N, N—ビス [3—(メチルジメトキシシリル)プロピル]ァミン • N—Glycidillo N, N—Bis [3- (methyldimethoxysilyl) propyl] amine
(モメンテイブ'パフォーマンス 'マテリアルズ'ジャパン合同会社製、 TSL8227) •N—グリシジルー N, N—ビス [3—(トリメトキシシリル)プロピル]ァミン (Momentive 'Performance' Materials' Japan GK, TSL8227) • N—Glycidillo N, N—Bis [3- (trimethoxysilyl) propyl] amine
(モメンテイブ'パフォーマンス 'マテリアルズ'ジャパン合同会社製、 TSL8228) (Momentive 'Performance' Materials' Japan GK, TSL8228)
(モメンテイブ'パフォーマンス 'マテリアルズ'ジャパン合同会社製、 TSL8206) •N, N—ビス [3—(メチルジメトキシシリル)プロピル]エチレンジァミン (Momentive 'Performance' Materials' Japan GK, TSL8206) • N, N-bis [3- (methyldimethoxysilyl) propyl] ethylenediamine
(モメンテイブ'パフォーマンス 'マテリアルズ'ジャパン合同会社製、 TSL8212) (Momentive 'Performance' Materials' Japan GK, TSL8212)
(モメンテイブ'パフォーマンス 'マテリアルズ'ジャパン合同会社製、 TSL8213) •N, N—ビス [3—(トリメトキシシリル)プロピノレ]ァミン (Momentive 'Performance' Materials' Japan GK, TSL8213) • N, N—bis [3- (trimethoxysilyl) propinole] amamine
(モメンテイブ'パフォーマンス 'マテリアルズ'ジャパン合同会社製、 TSL8208) (Momentive 'Performance' Materials' Japan GK, TSL8208)
(モメンテイブ'パフォーマンス 'マテリアルズ'ジャパン合同会社製、 TSL8214) (Momentive 'Performance' Materials' Japan GK, TSL8214)
(モメンテイブ'パフォーマンス 'マテリアルズ'ジャパン合同会社製、 TSL8215) •N, Ν' , Ν"—トリス [3—(トリメトキシシリノレ)プロピノレ]イソシァヌレート (Momentive 'Performance' Materials 'Japan GK, TSL8215) • N, Ν', Ν "—Tris [3- (trimethoxysilinore) propinore] isocyanurate
(ヒドラスィ匕学製、 12267- 1) (Made by Hydrasi, 12267-1)
(信越化学製、 LS— 7325) (Shin-Etsu Chemical, LS-7325)
原料としては化合物(1)、化合物(2)、及び/又はそれらのオリゴマーを使用するこ と力 Sできる。即ち、本発明に係る特定層の製造方法では、原料として、化合物(1)、 化合物(1)のオリゴマー、化合物(2)、化合物(2)のオリゴマー、及び化合物(1)と化 合物(2)とのオリゴマーのいずれを用いてもよい。なお、原料として化合物(1)のオリ ゴマー又は化合物(2)のオリゴマーを用いる場合、そのオリゴマーの分子量は、本発
明に係る特定層 Aを得ることができる限り任意である力 S、通常 400以上である。 It is possible to use compound (1), compound (2), and / or oligomers thereof as raw materials. That is, in the method for producing a specific layer according to the present invention, as a raw material, compound (1), oligomer of compound (1), compound (2), oligomer of compound (2), and compound (1) and compound ( Any of the oligomers with 2) may be used. When an oligomer of compound (1) or an oligomer of compound (2) is used as a raw material, the molecular weight of the oligomer is The force S is arbitrary as long as the specific layer A relating to light can be obtained, usually 400 or more.
[0128] ここで化合物(2)及び/又はそのオリゴマーを主原料として用いると系内の主鎖構 造が有機結合主体となり耐久性に劣るものとなる可能性がある。このため、化合物(2 )は主として密着性付与や屈折率調整、反応性制御、無機粒子分散性付与などの機 能性付与のため最小限の使用量で用いることが望ましい。化合物(1)及び/又はそ のオリゴマー(化合物(1)由来成分)と、化合物(2)及び/又はそのオリゴマー(化合 物(2)由来成分)を同時に使用する場合には原料の総重量における化合物(2)由来 成分の使用量割合が通常 30重量%以下、好ましくは 20重量%以下、さらに好ましく は 10重量%以下であることが望ましい。 Here, when the compound (2) and / or oligomer thereof is used as a main raw material, the main chain structure in the system may be an organic bond main body and may be inferior in durability. For this reason, it is desirable to use the compound (2) in a minimum use amount mainly for imparting functions such as adhesion, refractive index adjustment, reactivity control, and inorganic particle dispersibility. When compound (1) and / or its oligomer (component derived from compound (1)) and compound (2) and / or its oligomer (component derived from compound (2)) are used at the same time, The proportion of the component (2) -derived component used is usually 30% by weight or less, preferably 20% by weight or less, more preferably 10% by weight or less.
[0129] また、本発明の特定層形成液 A及び特定層 Aの製造方法において、原料として化 合物(1)又は化合物(2)のオリゴマーを用いる場合には、オリゴマーを予め用意して するようにしてもよいが、製造工程の中でオリゴマーを調製するようにしてもよい。即ち 、化合物(1)又は化合物(2)のようなモノマーを原料とし、これを製造工程中で一旦 オリゴマーとして、このオリゴマーから後の反応を進行させるようにしてもよい。 [0129] Further, in the method for producing the specific layer forming liquid A and the specific layer A of the present invention, when the compound (1) or the oligomer of the compound (2) is used as a raw material, the oligomer is prepared in advance. However, the oligomer may be prepared in the manufacturing process. That is, a monomer such as the compound (1) or the compound (2) may be used as a raw material, and this may be used as an oligomer once in the production process, and the subsequent reaction may proceed from this oligomer.
[0130] また、オリゴマーは、結果として化合物(1)又は化合物(2)のようなモノマーから得ら れるものと同様の構造を有しているものであれば良ぐそのような構造を有する市販 のものを用いることもできる。力、かるオリゴマーの具体例としては、例えば、以下のよう なものが挙げられる。 [0130] Further, as long as the oligomer has a structure similar to that obtained from the monomer such as compound (1) or compound (2) as a result, a commercially available product having such a structure is sufficient. Can also be used. Specific examples of such oligomers include the following.
[0131] < 2官能ケィ素のみからなるオリゴマーの例〉 [0131] <Example of oligomer consisting only of bifunctional cage>
モメンテイブ'パフォーマンス 'マテリアルズ 'ジャパン合同会社製ヒドロキシ末端ジメ チルポリシロキサンでは、例えば、 XC96— 723、 XF3905、 YF3057、 YF3800、 Y F3802、 YF3807、 YF3897など力挙げ、られる。 For example, XC96-723, XF3905, YF3057, YF3800, YF3802, YF3807, and YF3897 can be cited as examples of the hydroxy-terminated dimethylpolysiloxane manufactured by Momentive 'Performance' Materials Japan GK.
[0132] モメンテイブ'パフォーマンス 'マテリアルズ 'ジャパン合同会社製ヒドロキシ末端メチ ルフエ二ルポリシロキサンでは、例えば、 YF3804などが挙げられる。 [0132] In the case of Momentive 'Performance' Materials' Hydroxy-terminated methylpolypolysiloxane manufactured by Japan GK, for example, YF3804 can be mentioned.
Gelest社製両末端シラノール ポリジメチルシロキサンでは、例えば、 DMS— S12 、 DMS— S14などが挙げられる。 Examples of the both-end silanol polydimethylsiloxane manufactured by Gelest include DMS-S12 and DMS-S14.
Gelest社製両末端シラノール ジフエニルシロキサンージメチルシロキサン コポリ マーでは、例えば、 PDS— 1615が挙げられる。
Gelest社製両末端シラノール ポリジフエニルシロキサンでは、例えば、 PDS— 99 31が挙げられる。 Examples of the double-end silanol diphenylsiloxane-dimethylsiloxane copolymer manufactured by Gelest include PDS-1615. An example of the double-end silanol polydiphenylsiloxane manufactured by Gelest is PDS-9931.
[0133] < 3官能以上のケィ素を含むオリゴマーの例〉 [0133] <Example of oligomer containing tri- or higher functional key>
信越化学工業製 シリコーンアルコキシオリゴマー(メチル/メトキシ型)では、例え ば、 KC— 89S、 KR— 500、 X— 40— 9225、 X— 40— 9246、 X— 40— 9250など が挙げられる。 Examples of silicone alkoxy oligomers (methyl / methoxy type) manufactured by Shin-Etsu Chemical include KC-89S, KR-500, X-40-9225, X-40-9246, and X-40-9250.
[0134] 信越化学工業製 シリコーンアルコキシオリゴマー(フエニル/メトキシ型)では、例 えば、 KR— 217などが挙げられる。 [0134] Examples of silicone alkoxy oligomers (phenyl / methoxy type) manufactured by Shin-Etsu Chemical include KR-217.
信越化学工業製 シリコーンアルコキシオリゴマー(メチルフエニル/メトキシ型)で は、例えば、 KR— 9218、 KR— 213、 KR— 510、 X— 40— 9227、 X— 40— 9247 などが挙げられる。 Examples of silicone alkoxy oligomers (methylphenyl / methoxy type) manufactured by Shin-Etsu Chemical include KR-9218, KR-213, KR-510, X-40-9227, and X-40-9247.
[0135] これらのうち、 2官能ケィ素のみからなるオリゴマーは本発明の第一〜第四の導光 部材の特定層 Aに柔軟性を与える効果が大きいが、 2官能ケィ素のみでは機械的強 度が不十分となりやすい。このため、 3官能以上のケィ素からなるモノマー若しくは 3 官能以上のケィ素を含むオリゴマーと共に重合することにより、特定層 Aは封止剤と して有用な機械的強度を得ることができる。また、反応性基としてシラノールを有する ものは事前に加水分解する必要が無ぐ水を加えるための相溶剤としてアルコール 等の溶剤の使用をする必要が無い長所がある。なお、アルコキシ基を有するオリゴマ 一を使用する場合には、アルコキシ基を有するモノマーを原料とする場合と同様、加 水分解するための水が必要となる。 [0135] Among these, the oligomer consisting only of the bifunctional cage has a great effect of giving flexibility to the specific layer A of the first to fourth light guide members of the present invention, but the mechanical functionality is obtained only with the bifunctional cage. Intensity tends to be insufficient. For this reason, the specific layer A can obtain mechanical strength useful as a sealant by polymerizing with a monomer composed of trifunctional or higher functional monomer or an oligomer containing trifunctional or higher functional cage. In addition, those having silanol as a reactive group do not need to be hydrolyzed in advance, and do not require the use of a solvent such as alcohol as a compatibilizer for adding water. In the case of using an oligomer having an alkoxy group, water for hydrolysis is required as in the case of using a monomer having an alkoxy group as a raw material.
[0136] さらに、原料としては、これらの化合物(1)、化合物(2)、及びそのオリゴマーのうち [0136] Further, as a raw material, among these compounds (1), (2), and oligomers thereof
1種類だけを用いてよ!/、が、二種類以上を任意の組み合わせ及び組成で混合しても かまわない。さらに、予め加水分解された(即ち、一般式(1) , (2)において Xが OH 基である)化合物(1)、化合物(2)及びそのオリゴマーを用いるようにしてもよ!/、。 但し、本発明に係る特定層の製造方法では原料として、 Mとしてケィ素を含有し、 且つ、有機基 Y1又は有機基 Y2を少なくとも 1つ有する化合物(1)、化合物(2)及び そのオリゴマー(加水分解されたものを含む)を、少なくとも 1種以上用いる必要がある 。また、系内の架橋が主としてシロキサン結合を始めとする無機成分により形成される
ことが好ましいことから、化合物(1)及び化合物(2)をともに使用する場合には、化合 物(1)が主体となることが好ましい。 Use only one type! /, But two or more types may be mixed in any combination and composition. Furthermore, it is possible to use the compound (1), the compound (2) and the oligomer thereof that have been hydrolyzed in advance (that is, X is an OH group in the general formulas (1) and (2))! /. However, in the method for producing the specific layer according to the present invention, as a raw material, the compound (1), the compound (2), and the compound (1), which contain C as M and have at least one organic group Y 1 or organic group Y 2 It is necessary to use at least one oligomer (including hydrolyzed one). In addition, cross-linking in the system is mainly formed by inorganic components including siloxane bonds. Therefore, when both the compound (1) and the compound (2) are used, it is preferable that the compound (1) is mainly used.
[0137] また、シロキサン結合を主体とする特定層 Aを得るためには、化合物(1)及び/又 はそのオリゴマーを原料の主体として用いることが好ましい。さらに、これらの化合物([0137] In order to obtain the specific layer A mainly composed of a siloxane bond, it is preferable to use the compound (1) and / or an oligomer thereof as a main material. In addition, these compounds (
1)のオリゴマー及び/又は化合物(2)のオリゴマーは、 2官能を主体とした組成で構 成されていること力 より好ましい。特に、この化合物(1)のオリゴマー及び/又は化 合物(2)のオリゴマーの 2官能単位は、 2官能オリゴマーとして用いられることが好まし い。 The oligomer of 1) and / or the oligomer of compound (2) is more preferably composed of a bifunctional composition. In particular, the bifunctional unit of the oligomer of the compound (1) and / or the oligomer of the compound (2) is preferably used as a bifunctional oligomer.
[0138] さらに、化合物(1)のオリゴマー及び/又は化合物(2)のオリゴマーのうち、 2官能 のもの(以下適宜、「2官能成分オリゴマー」という)を主体として用いる場合、これら 2 官能成分オリゴマーの使用量は、原料の総重量 (即ち、化合物(1)、化合物(2)、及 びそのオリゴマーの重量の和)に対して、通常 50重量%以上、好ましくは 60重量% 以上、より好ましくは 70重量%以上である。なお、使用量の上限は通常 97重量%で ある。 2官能成分オリゴマーを原料の主体として使用することが、本発明に係る特定 層の製造方法によって、特定層 Aを容易に製造することができる要因のうちのひとつ となっているためである。 [0138] Furthermore, among the oligomers of the compound (1) and / or the oligomer of the compound (2), when a bifunctional one (hereinafter referred to as "bifunctional component oligomer") is used as a main component, these bifunctional component oligomers The amount of is usually 50% by weight or more, preferably 60% by weight or more, more preferably, based on the total weight of the raw materials (that is, the sum of the weights of compound (1), compound (2), and oligomers thereof). 70% by weight or more. The upper limit of the amount used is usually 97% by weight. This is because the use of the bifunctional component oligomer as the main ingredient is one of the factors that enable the specific layer A to be easily manufactured by the specific layer manufacturing method according to the present invention.
[0139] 以下、 2官能成分オリゴマーを原料の主体として用いたことによる利点について詳し く説明する。 [0139] Hereinafter, advantages of using the bifunctional component oligomer as the main ingredient will be described in detail.
例えば従来のゾルゲル法により製造されて!/、た導光部材では、その原料を加水分 解及び重縮合させた加水分解 ·重縮合物(塗布液 (加水分解液)に含有されたもの等 を含む)は、高い反応活性を有していた。したがって、その加水分解 ·重縮合物をァ ルコール等の溶媒で希釈しないと系内の重合が進み、すぐに硬化するため、成形や 取り扱いが困難であった。例えば、従来は溶媒で希釈しない場合には、温度が 40°C 〜50°C程度であっても硬化することがあった。したがって、加水分解後に得られた加 水分解 ·重縮合物の取り极レ、性を確保するためには、加水分解 ·重縮合物に溶媒を 共存させることが必須であった。 For example, in a light guide member manufactured by a conventional sol-gel method, a hydrolysis / polycondensate obtained by hydrolysis and polycondensation of the raw material (a material contained in a coating liquid (hydrolysis liquid)) is used. ) Had a high reaction activity. Therefore, if the hydrolysis / polycondensate is not diluted with a solvent such as alcohol, the polymerization in the system proceeds and cures quickly, making molding and handling difficult. For example, conventionally, when it is not diluted with a solvent, it may be cured even when the temperature is about 40 ° C to 50 ° C. Therefore, in order to ensure the polarity and properties of the hydrolyzed / polycondensate obtained after the hydrolysis, it was essential to allow a solvent to coexist in the hydrolyzed / polycondensed product.
[0140] また、加水分解 ·重縮合物に溶媒を共存させたまま加水分解 ·重縮合物の乾燥 '硬 化を行なわせると、硬化時に脱水縮合による収縮に加え、脱溶媒による収縮 (脱溶媒
収縮)が加味される。これにより、従来の導光部材では、硬化物の内部応力が大きく なりがちであり、この内部応力に起因するクラック、剥離などが生じやすかつた。 さらに、上記の内部応力を緩和するために導光部材を柔軟化する目的で原料とし て 2官能成分モノマーを多用すると、重縮合体中の低沸環状体が多くなる可能性が あった。低沸環状体は硬化時に揮発してしまうため、低沸環状体が多くなると重量歩 留まりが低下することになる。また、低沸環状体は硬化物からも揮発し、応力発生の 原因となること力 Sある。さらに、低沸環状体を多く含む導光部材は耐熱性が低くなるこ とがある。これらの理由により、従来は、導光部材を、性能の良いエラストマ一状硬化 体として得ることは困難であった。 [0140] In addition, when the hydrolysis / drying of the polycondensate is allowed to harden in the presence of a solvent in the hydrolysis / polycondensate, in addition to shrinkage due to dehydration condensation during curing, shrinkage due to desolvation (desolvation) (Shrinkage) is added. As a result, in the conventional light guide member, the internal stress of the cured product tends to be large, and cracks and peeling due to the internal stress tend to occur. Furthermore, if a bifunctional component monomer is frequently used as a raw material for the purpose of softening the light guide member in order to alleviate the above internal stress, there is a possibility that the number of low boiling rings in the polycondensate increases. Since the low boiling ring is volatilized at the time of curing, the weight yield decreases when the number of low boiling ring increases. In addition, the low boiling ring is volatilized from the cured product and causes stress generation S. Further, the light guide member containing a large amount of low-boiling annular bodies may have low heat resistance. For these reasons, it has heretofore been difficult to obtain a light guide member as a high-performance elastomeric cured body.
[0141] これに対して、本発明に係る特定層の製造方法では、原料として、別系で(即ち、 加水分解 ·重縮合工程に関与しない系で) 2官能成分をあらかじめオリゴマー化し、 反応性末端を持たない低沸不純物を留去したものを原料として使用するようにしてい る。したがって、 2官能成分(即ち、上記の 2官能成分オリゴマー)を多用しても、それ らの低沸不純物が揮発することはなぐ硬化物重量歩留まりの向上を実現することが できるとともに、性能の良いエラストマ一状硬化物を得ることができる。 [0141] On the other hand, in the method for producing a specific layer according to the present invention, as a raw material, a bifunctional component is oligomerized in advance in a separate system (that is, a system that does not participate in the hydrolysis / polycondensation step) and is reactive. A material obtained by distilling off low-boiling impurities having no terminal is used as a raw material. Therefore, even if a large amount of bifunctional components (that is, the above-mentioned bifunctional component oligomers) is used, the low-boiling impurities do not volatilize, and the cured product weight yield can be improved and the performance is good. An elastomer-like cured product can be obtained.
[0142] さらに、 2官能成分オリゴマーを主原料とすることにより、加水分解 '重縮合物の反 応活性を抑制することができる。これは、加水分解 '重縮合物の立体障害及び電子 効果、並びに、 2官能成分オリゴマーを使用したことに伴いシラノール末端量が低減 したことによるものと推察される。反応活性を抑制したことにより、溶媒を共存させなく ても加水分解 '重縮合物は硬化することはなぐしたがって、加水分解 '重縮合物を 一液型、かつ、無溶媒系とすることができる。 [0142] Furthermore, by using a bifunctional component oligomer as the main raw material, the reaction activity of the hydrolyzed polycondensate can be suppressed. This is presumably due to the steric hindrance and electronic effect of the hydrolyzed polycondensate, and the decrease in the amount of silanol terminals due to the use of bifunctional component oligomers. By suppressing the reaction activity, the hydrolysis 'polycondensate does not cure without the presence of a solvent. Therefore, the hydrolysis' polycondensate can be made into a one-pack type and solvent-free system. .
[0143] また、加水分解 ·重縮合物の反応活性が低下したことにより、硬化開始温度を従来 よりも高くすることが可能となった。したがって、加水分解 '重縮合物の硬化開始温度 以下の溶媒を加水分解 '重縮合物に共存させた場合には、加水分解'重縮合物の乾 燥時に、加水分解 ·重縮合物の硬化が開始されるよりも以前に溶媒が揮発することに なる。これにより、溶媒を使用した場合であっても脱溶媒収縮に起因する内部応力の 発生を抑制することが可能となる。 [0143] Further, since the reaction activity of the hydrolyzate / polycondensate has decreased, it has become possible to raise the curing start temperature higher than in the past. Therefore, if a solvent below the hydrolysis start temperature of the hydrolysis' polycondensate is allowed to coexist in the hydrolysis' polycondensate, the hydrolysis / polycondensation product is cured when the hydrolysis' polycondensate is dried. The solvent will volatilize before it is started. As a result, even when a solvent is used, it is possible to suppress the generation of internal stress due to solvent removal shrinkage.
[0144] [A— 2— 2]加水分解 ·重縮合工程
本発明ではまず、上述の化合物(1)、化合物(2)、及び/又はそれらのオリゴマー を加水分解 ·重縮合反応させる (加水分解 ·重縮合工程)。この加水分解 ·重縮合反 応は、公知の方法によって行なうことができる。なお、以下適宜、化合物(1)、化合物 (2)、及びそのオリゴマーを区別せずに指す場合、「原料化合物」という。 [0144] [A—2-2] Hydrolysis and polycondensation process In the present invention, first, the above compound (1), compound (2), and / or oligomer thereof is subjected to hydrolysis / polycondensation reaction (hydrolysis / polycondensation step). This hydrolysis / polycondensation reaction can be carried out by a known method. Hereinafter, when referring to the compound (1), the compound (2), and the oligomer thereof without distinction, they are referred to as “raw material compounds”.
[0145] 原料化合物の加水分解 '重縮合反応を行なうために使用する水の理論量は、下記 式(3)に示す反応式に基づき、系内の加水分解性基の総量の 1/2モル比である。 [0145] Hydrolysis of raw material compound 'The theoretical amount of water used for conducting the polycondensation reaction is 1/2 mol of the total amount of hydrolyzable groups in the system based on the reaction formula shown in the following formula (3). Is the ratio.
[0146] [化 2] [0146] [Chemical 2]
2 X s ϊ -… X -f II;. o s i―' a― s i + a x >;. H ( 3 } 2 X s ϊ-… X -f II ;. o s i― 'a― s i + a x> ;. H (3}
[0147] なお、上記式(3)は、一般式(1) , (2)の Mがケィ素である場合を例として表わして いる。また、「≡Si」及び「Si≡」は、ケィ素原子の有する 4つの結合手のうち 3つを省 略して表わしたものである。 [0147] It should be noted that the above equation (3) represents an example in which M in the general formulas (1) and (2) is a key element. “≡Si” and “Si≡” are the abbreviations of three of the four bonds of the key atom.
本明細書では、この加水分解時に必要な水の理論量、即ち、加水分解性基の総量 の 1/2モル比に相当する水の量を基準 (加水分解率 100%)とし、加水分解時に使 用する水の量をこの基準量に対する百分率、即ち「加水分解率」で表わす。 In this specification, the theoretical amount of water required for this hydrolysis, that is, the amount of water corresponding to a 1/2 molar ratio of the total amount of hydrolyzable groups is used as the standard (hydrolysis rate 100%). The amount of water used is expressed as a percentage of this reference amount, ie “hydrolysis rate”.
[0148] 本発明に係る特定層の製造方法において、加水分解 ·重縮合反応を行なうために 使用する水の量は、上述の加水分解率で表わした場合に、通常 80%以上、中でも 1 00%以上の範囲が好ましい。加水分解率がこの範囲より少ない場合、加水分解 '重 合が不十分なため、硬化時に原料が揮発したり、硬化物の強度が不十分となったり する可能性がある。一方、加水分解率が 200%を超える場合、硬化途中の系内には 常に遊離の水が残存し、蛍光体などの含有物に水分による劣化をもたらしたり、基板 が吸水し、硬化時の発泡、クラック、剥離の原因となったりする場合がある。但し、カロ 水分解反応において重要なのは 100%近傍以上 (例えば 80%以上)の水で加水分 解-重縮合を行なうということであり、塗布前に遊離の水を除く工程を付加すれば、 20 0%を超える加水分解率を適用することは可能である。この場合、あまり大量の水を 使用すると、除去すべき水の量や相溶剤として使用する溶媒の量が増え、濃縮工程 が煩雑になったり、重縮合が進みすぎて導光部材を構成する各特定層 Aの塗布性 能が低下したりすることがあるので、加水分解率の上限は通常 500%以下、中でも 3 00%以下、好ましくは 200%以下の範囲とすることが好ましい。
[0149] 原料化合物を加水分解 ·縮重合する際には、触媒などを共存させて、加水分解 ·縮 重合を促進することが好ましい。この場合、使用する触媒としては、例えば、酢酸、プ ロピオン酸、酪酸などの有機酸;硝酸、塩酸、リン酸、硫酸などの無機酸;有機金属化 合物触媒などを用いることができる。このうち、基板と直接接する部分に使用する構 成層とする場合には、絶縁特性に影響の少ない有機金属化合物触媒が好ましい。こ こで、有機金属化合物触媒とは、有機基と金属原子とが直接に結合してなる狭義の 有機金属化合物からなる触媒のみを指すのではなぐ有機金属錯体、金属アルコキ シド、有機酸と金属との塩などを含む広義の有機金属化合物からなる触媒を指す。 [0148] In the method for producing a specific layer according to the present invention, the amount of water used for carrying out the hydrolysis / polycondensation reaction is usually 80% or more, especially 100% when expressed by the above hydrolysis rate. A range of at least% is preferred. If the hydrolysis rate is less than this range, the hydrolysis and polymerization are insufficient, so that the raw material may volatilize during curing or the strength of the cured product may be insufficient. On the other hand, if the hydrolysis rate exceeds 200%, free water always remains in the system during curing, causing deterioration of the phosphor and other contents due to moisture, or the substrate absorbing water and foaming during curing. May cause cracking and peeling. However, what is important in the water-hydrolysis reaction is that hydrolysis-polycondensation is carried out with near 100% or more (for example, 80% or more) of water. If a process for removing free water is added before coating, 20 It is possible to apply hydrolysis rates above 0%. In this case, if an excessive amount of water is used, the amount of water to be removed and the amount of solvent used as a compatibilizer increase, the concentration process becomes complicated, and the polycondensation proceeds so much that each of the light guide members is formed. Since the coating performance of the specific layer A may deteriorate, the upper limit of the hydrolysis rate is usually 500% or less, particularly 300% or less, preferably 200% or less. [0149] When the raw material compound is subjected to hydrolysis / condensation polymerization, it is preferable to promote the hydrolysis / condensation polymerization in the presence of a catalyst or the like. In this case, examples of the catalyst used include organic acids such as acetic acid, propionic acid and butyric acid; inorganic acids such as nitric acid, hydrochloric acid, phosphoric acid and sulfuric acid; organometallic compound catalysts. Of these, in the case of a composition layer used in a portion in direct contact with the substrate, an organometallic compound catalyst that has little influence on the insulating properties is preferable. Here, the organometallic compound catalyst does not only refer to a catalyst consisting of an organometallic compound in a narrow sense in which an organic group and a metal atom are directly bonded, but an organometallic complex, a metal alkoxide, an organic acid and a metal. The catalyst which consists of an organic metal compound of a broad meaning including the salt with.
[0150] 有機金属化合物触媒の中では、ジルコニウム、ハフニウム、スズ、亜鉛及びチタンよ り選択される少なくとも 1種の元素を含む有機金属化合物触媒が好ましぐジルコユウ ムを含む有機金属化合物触媒がさらに好ましい。 [0150] Among organometallic compound catalysts, organometallic compound catalysts containing zirconium are more preferred, which are preferred to organometallic compound catalysts containing at least one element selected from zirconium, hafnium, tin, zinc and titanium. preferable.
その具体例を挙げると、ジルコニウムを含有する有機金属化合物触媒の例としては ート、ジルコニウムジブトキシジァセチルァセトネート、ジルコニウムテトラノルマルプロ ジルコニウムァシレート、ジルコニウムトリブトキシステアレートなどが挙げられる。 Specific examples of such organometallic compound catalysts containing zirconium include soot, zirconium dibutoxy diacetyl acylate, zirconium tetranormal pro-zirconium acylate, and zirconium tributoxy systemate. .
[0151] また、チタンを含有する有機金属化合物触媒の例としては、チタニウムテトライソプ ロポキシド、チタニウムテトラノルマルブトキシド、ブチルチタネートダイマー、テトラオ ェチルァセトアセテートなどが挙げられる。 [0151] Examples of the organometallic compound catalyst containing titanium include titanium tetraisopropoxide, titanium tetranormal butoxide, butyl titanate dimer, and tetraethylacetoacetate.
また、亜鉛を含有する有機金属化合物触媒の例としては、亜鉛トリァセチルァセトネ ートが挙げられる。 An example of the organometallic compound catalyst containing zinc is zinc triacetyl acetate.
[0152] また、スズを含有する有機金属化合物触媒の例を挙げると、テトラプチルスズ、モノ クチルスズ、ジォクチルスズジクロライド、ジォクチルスズオキサイド、テトラメチルスズ 、ジブチルスズラウレート、ジォクチルスズラウレート、ビス(2—ェチルへキサノエート )スズ、ビス(ネオデカノエート)スズ、ジー n—ブチルビス(ェチルへキシルマレート)ス ズ、ジ一ノルマルブチルビス(2, 4—ペンタンジォネート)スズ、ジ一ノルマルブチノレ
リル酸スズ、ジメチルジネオデカノエートスズなどが挙げられる。 [0152] Examples of organometallic compound catalysts containing tin include tetraptyltin, monooctyltin, dioctyltin dichloride, dioctyltin oxide, tetramethyltin, dibutyltin laurate, dioctyltin. Laurate, bis (2-ethylhexanoate) tin, bis (neodecanoate) tin, di-n-butylbis (ethylhexylmalate) tin, di-normal butylbis (2,4-pentanedionate) tin, di- Normal Butinore Examples include tin laurate and dimethyldineodecanoate tin.
[0153] なお、これらの有機金属化合物触媒は、 1種を単独で用いてもよぐ 2種以上を任意 の組み合わせ及び比率で併用してもよ!/、。 [0153] These organometallic compound catalysts may be used alone or in combination of two or more in any combination and ratio.
上記の好ましレ、有機金属化合物触媒を用レ、ることにより、原料化合物を加水分解 · 重縮合する際には、副生物の低分子環状シロキサンの生成を抑え、高い歩留まりで 特定層形成液 Aを合成することができる。 By using an organic metal compound catalyst as described above, when the raw material compound is hydrolyzed and polycondensed, the formation of low-molecular cyclic siloxane as a by-product is suppressed, and the specific layer forming liquid is produced with high yield. A can be synthesized.
[0154] また、この有機金属化合物触媒を用いたことにより、特定層 A及び当該特定層 Aを 用いた本発明の第一〜第四の導光部材は、高い耐熱性を実現することができる。そ の理由は明らかではないが、前記有機金属化合物は、単に触媒として原料化合物の 加水分解 ·重縮合反応を促進するだけではなく、加水分解 ·重縮合物及びその硬化 物のシラノール末端に一時的に結合.解離することができ、これによりシラノール含有 ポリシロキサンの反応性を調整して、高温条件における(i)有機基の酸化の防止、(ii )ポリマー間の不要な架橋の防止、(iii)主鎖の切断などの防止をする作用があると考 えられる。以下、これらの作用(i)〜(iii)につ!/、て説明する。 [0154] Further, by using this organometallic compound catalyst, the first to fourth light guide members of the present invention using the specific layer A and the specific layer A can achieve high heat resistance. . The reason for this is not clear, but the organometallic compound not only promotes the hydrolysis / polycondensation reaction of the raw material compound as a catalyst, but also temporarily at the silanol ends of the hydrolysis / polycondensation product and its cured product. (I) prevention of oxidation of organic groups under high temperature conditions, (ii) prevention of unwanted cross-linking between polymers, (iii) ) It seems to have an effect of preventing the main chain from being broken. Hereinafter, these actions (i) to (iii) will be described.
[0155] (i)有機基の酸化の防止としては、熱の作用によって、例えばメチル基上にラジカ ルが発生した時、有機金属化合物触媒の遷移金属がラジカルを補足する効果を有 する。一方、この遷移金属自身はラジカル捕捉によってイオン価数を失い、そのため に酸素と作用して有機基の酸化を防止する。その結果として、特定層 Aの劣化を抑 えることになると推察される。 [0155] (i) As the prevention of oxidation of organic groups, for example, when a radical is generated on a methyl group by the action of heat, the transition metal of the organometallic compound catalyst has an effect of capturing radicals. On the other hand, the transition metal itself loses its ionic valence by radical scavenging, and thus acts with oxygen to prevent organic group oxidation. As a result, it is presumed that the degradation of specific layer A will be suppressed.
[0156] (ii)ポリマー間の不要な架橋の防止としては、例えば、メチル基が酸素分子によつ て酸化を受けるとホルムアルデヒドになり、ケィ素原子に結合した水酸基が生成する 。こうしてできた水酸基同士が脱水縮合するとポリマー間に架橋点ができ、それが増 加することによって本来ゴム状であった特定層 Aが硬ぐもろくなる可能性がある。し かし、有機金属化合物触媒はシラノール基と結合し、これにより、熱分解による架橋 の進行を防止できるものと推察される。 (Ii) For preventing unnecessary crosslinking between polymers, for example, when a methyl group is oxidized by an oxygen molecule, it becomes formaldehyde and a hydroxyl group bonded to a silicon atom is generated. When the hydroxyl groups thus formed are dehydrated and condensed, cross-linking points are formed between the polymers, and the increase thereof may cause the specific layer A, which was originally rubbery, to become hard and brittle. However, it is presumed that the organometallic compound catalyst binds to the silanol group, thereby preventing the progress of crosslinking due to thermal decomposition.
[0157] (iii)主鎖の切断などの防止としては、有機金属化合物触媒がシラノールと結合する ことにより、シラノールの分子内攻撃によるポリマー主鎖の切断及び環状シロキサン
の生成による加熱重量減を抑制し、耐熱性が向上するものと推察される。 [0157] (iii) For preventing the main chain from being broken, the organometallic compound catalyst is bonded to the silanol, so that the polymer main chain is broken by the intramolecular attack of the silanol and the cyclic siloxane. It is presumed that the heat resistance is improved by suppressing the weight loss by heating due to the formation of.
[0158] 有機金属化合物触媒の好ましい配合量は、使用する触媒の種類によって適宜選 択されるが、加水分解 ·重縮合を行う原料の総重量に対し、通常 0. 01重量%以上、 好ましくは 0. 05重量%以上、さらに好ましくは 0. 1重量%以上、また、通常 5重量% 以下、好ましくは 2重量%以下、特に好ましくは 1重量%以下である。有機金属化合 物触媒が少なすぎると、硬化に時間力かかりすぎたり、硬化不十分なために十分な 機械的強度や耐久性が得られなかったりする可能性がある。一方、有機金属化合物 触媒が多すぎると、硬化が速すぎて硬化物である特定層 Aの物性の制御が困難とな つたり、触媒が溶解分散できず析出し特定層 Aの透明度を損なったり、触媒自身が 持ち込む有機物量が多くなり得られる特定層 Aが高温使用時に着色したりする可能 十生がある。 [0158] The preferred compounding amount of the organometallic compound catalyst is appropriately selected depending on the type of the catalyst used, but is usually 0.01% by weight or more, preferably not less than the total weight of the raw materials to be hydrolyzed / polycondensed. It is 0.05% by weight or more, more preferably 0.1% by weight or more, and usually 5% by weight or less, preferably 2% by weight or less, particularly preferably 1% by weight or less. If the amount of the organometallic compound catalyst is too small, it may take too much time for curing, or sufficient mechanical strength and durability may not be obtained due to insufficient curing. On the other hand, if there are too many organometallic compound catalysts, the curing will be too fast and it will be difficult to control the physical properties of the specific layer A, which is a cured product, or the catalyst will not dissolve and disperse and will precipitate and impair the transparency of the specific layer A. There is a possibility that the specific layer A, which can increase the amount of organic substances brought by the catalyst itself, may become colored when used at high temperatures.
[0159] これらの有機金属触媒は、加水分解 '縮合時に一括して原料系に混合しても良ぐ また分割混合しても良い。また、加水分解 ·重縮合時に触媒を溶解するために溶媒を 使用しても良く、直接反応液に触媒を溶解しても良い。ただし、特定層形成液 Aとし て使用する際には、硬化時の発泡や熱による着色を防ぐために、加水分解 '重縮合 工程の後で前記の溶媒を厳密に留去することが望ましい。 [0159] These organometallic catalysts may be mixed into the raw material system at the time of hydrolysis and condensation, or may be divided and mixed. Further, a solvent may be used to dissolve the catalyst during hydrolysis / polycondensation, or the catalyst may be dissolved directly in the reaction solution. However, when used as the specific layer forming liquid A, it is desirable to strictly distill off the solvent after the hydrolysis and polycondensation step in order to prevent foaming during heating and coloring due to heat.
[0160] 加水分解 ·重縮合反応時に系内が分液し不均一となる場合には、溶媒を使用して も良い。溶媒としては、例えば、 C1〜C3の低級アルコール類、ジメチルホルムアミド 、ジメチルスルホキシド、アセトン、テトラヒドロフラン、メチルセ口ソルブ、ェチルセロソ ルブ、メチルェチルケトン、トルエン、水等を任意に用いることができる力 中でも強い 酸性や塩基性を示さないものが加水分解 ·重縮合に悪影響を与えない理由から好ま しい。溶媒は 1種を単独で使用しても良いが、 2種以上を任意の組み合わせ及び比 率で併用することもできる。溶媒使用量は自由に選択できるが、基板に塗布する際、 および各層の上に塗布する際には溶媒を除去することが多いため、必要最低限の量 とすることが好ましい。また、溶媒除去を容易にするため、沸点が 100°C以下、より好 ましくは 80°C以下の溶媒を選択することが好ましい。なお、外部より溶媒を混合しなく ても加水分解反応によりアルコール等の溶媒が生成するため、反応当初は不均一で も反応中に均一になる場合もある。
[0161] 上記原料化合物の加水分解 ·重縮合反応は、常圧で実施する場合、通常 15°C以 上、好ましくは 20°C以上、より好ましくは 40°C以上、また、通常 140°C以下、好ましく は 135°C以下、より好ましくは 130°C以下の範囲で行なう。加圧下で液相を維持する ことでより高!/、温度で行なうことも可能である力 150°Cを超えな!/、ことが好まし!/、。 加水分解 ·重縮合反応時間は反応温度により異なるが、通常 0. 1時間以上、好ま しくは 1時間以上、更に好ましくは 3時間以上、また、通常 100時間以下、好ましくは 2 0時間以下、更に好ましくは 15時間以下の範囲で実施される。反応時間の調整は分 子量管理を行レ、つつ適宜行うことが好まし!/、。 [0160] Hydrolysis · If the system is separated and becomes non-uniform during the polycondensation reaction, a solvent may be used. As the solvent, for example, C1 to C3 lower alcohols, dimethylformamide, dimethyl sulfoxide, acetone, tetrahydrofuran, methylcetosolve, ethylcellosolve, methylethylketone, toluene, water and the like can be used arbitrarily. Those which are not acidic or basic are preferred because they do not adversely affect hydrolysis and polycondensation. As the solvent, one kind may be used alone, but two kinds or more may be used in any combination and ratio. The amount of solvent used can be freely selected. However, the solvent is often removed when it is applied to the substrate and on each layer, and therefore it is preferably set to the minimum necessary amount. In order to facilitate the removal of the solvent, it is preferable to select a solvent having a boiling point of 100 ° C. or lower, more preferably 80 ° C. or lower. In addition, since a solvent such as alcohol is generated by a hydrolysis reaction without mixing a solvent from the outside, it may be heterogeneous at the beginning of the reaction or even during the reaction. [0161] When the hydrolysis / polycondensation reaction of the above raw material compound is carried out at normal pressure, it is usually 15 ° C or higher, preferably 20 ° C or higher, more preferably 40 ° C or higher, and usually 140 ° C. Hereinafter, it is preferably carried out in the range of 135 ° C or lower, more preferably 130 ° C or lower. It is better to maintain the liquid phase under pressure! /, And the force that can be performed at temperature is not to exceed 150 ° C! /. Hydrolysis / polycondensation reaction time varies depending on the reaction temperature, but is usually 0.1 hour or more, preferably 1 hour or more, more preferably 3 hours or more, and usually 100 hours or less, preferably 20 hours or less, and more Preferably, it is carried out for 15 hours or less. It is preferable to adjust the reaction time appropriately while managing the molecular weight!
[0162] 以上の加水分解 '重縮合条件において、時間が短くなつたり温度が低すぎたりする と、加水分解 ·重合が不十分なため硬化時に原料が揮発したり、硬化物の強度が不 十分となる可能性がある。また、時間が長くなつたり温度が高すぎたりすると、重合物 の分子量が高くなり、系内のシラノール量が減少し、塗布時に密着性不良が生じたり 硬化が早すぎて硬化物の構造が不均一となり、クラックを生じやすくなる。以上の傾 向を踏まえて、所望の物性値に応じて条件を適宜選択することが望ましレ、。 [0162] Hydrolysis as described above If the time is too short or the temperature is too low under the polycondensation conditions, hydrolysis and polymerization will be insufficient, causing the raw materials to volatilize during curing or the strength of the cured product to be insufficient. There is a possibility. If the time is too long or the temperature is too high, the molecular weight of the polymer increases and the amount of silanol in the system decreases, resulting in poor adhesion during coating or the curing is too early and the structure of the cured product is not good. It becomes uniform and tends to cause cracks. Based on the above trend, it is desirable to select the conditions appropriately according to the desired physical property values.
[0163] 上記加水分解 ·重縮合反応が終了した後、得られた加水分解 ·重縮合物はその使 用時まで室温以下で保管される力 S、この期間にもゆっくりと重縮合が進行するため、 特に厚膜状の部材として使用する場合には前記加温による加水分解 ·重縮合反応 が終了した時点より室温保管にて通常 60日以内、好ましくは 30日以内、更に好まし くは 15日以内に使用に供することが好まし!/、。必要に応じ凍らな!/、範囲にて低温保 管することにより、この期間を延長することができる。保管期間の調整は分子量管理 を行!/、つつ適宜行うことが好まし!/、。 [0163] After the hydrolysis / polycondensation reaction is completed, the obtained hydrolysis / polycondensate is stored at room temperature or lower until its use S, and polycondensation proceeds slowly during this period. Therefore, especially when used as a thick film member, it is usually within 60 days, preferably within 30 days, more preferably 15 days at room temperature storage after the completion of the hydrolysis / polycondensation reaction by heating. Preferable to use within days! /. This period can be extended by cryogenic storage in the range! It is preferable to adjust the storage period while controlling the molecular weight!
[0164] 前記の操作により、上記の原料化合物の加水分解 '重縮合物(重縮合物)が得られ る。この加水分解 '重縮合物は、好ましくは液状である。しかし、固体状の加水分解- 重縮合物でも、溶媒を用いることにより液状となるものであれば、使用することができ る。また、こうして得られた液状の加水分解 ·重縮合物は、この後に説明する工程で 硬化することにより本発明の第一〜第四の導光部材の特定層 Aとなる特定層形成液 Aである。 [0164] By the above operation, hydrolysis of the above raw material compound (polycondensate) is obtained. This hydrolyzed 'polycondensate is preferably liquid. However, even a solid hydrolysis-polycondensation product can be used as long as it becomes liquid by using a solvent. In addition, the liquid hydrolysis / polycondensate thus obtained is a specific layer forming liquid A that becomes the specific layer A of the first to fourth light guide members of the present invention by curing in the steps described later. is there.
[0165] [A— 2— 3]溶媒留去
上記の加水分解 ·重縮合工程において溶媒を用いた場合には、通常、乾燥の前に 加水分解 ·重縮合物から溶媒を留去することが好ましレ、 (溶媒留去工程)。これにより 、溶媒を含まない特定層形成液 A (液状の加水分解 ·重縮合物)を得ることができる。 上述したように、従来は溶媒を留去すると加水分解 ·重縮合物が硬化してしまうため に加水分解 ·重縮合物の取り扱いが困難となっていた。しかし、本発明に係る特定層 の製造方法では、 2官能成分オリゴマーを使用すると加水分解 '重縮合物の反応性 が抑制されるため、乾燥の前に溶媒を留去しても加水分解 '重縮合物は硬化しなくな り、溶媒の留去が可能である。溶媒を乾燥前に留去しておくことにより、脱溶媒収縮 によるクラック、剥離、断線などを防止することができる。 [0165] [A-2-3] Evaporation of solvent When a solvent is used in the hydrolysis / polycondensation step, it is usually preferable to distill off the solvent from the hydrolysis / polycondensate before drying (solvent distillation step). Thus, the specific layer forming liquid A (liquid hydrolysis / polycondensate) containing no solvent can be obtained. As described above, conventionally, when the solvent is distilled off, the hydrolysis / polycondensation product is cured, so that it has been difficult to handle the hydrolysis / polycondensation product. However, in the method for producing a specific layer according to the present invention, when bifunctional component oligomers are used, the reactivity of the hydrolysis' polycondensate is suppressed. The condensate does not cure and the solvent can be distilled off. By distilling off the solvent before drying, cracking, peeling, disconnection, etc. due to solvent removal shrinkage can be prevented.
[0166] なお、通常は、溶媒の留去の際に、加水分解に用いた水の留去も行なわれる。また 、留去される溶媒には、上記の一般式(1)、(2)で表わされる原料化合物の加水分 解'重縮合反応により生成される、 XH等で表わされる溶媒も含まれる。さらに、反応 時に副生する低分子環状シロキサンも含まれる。 [0166] Usually, water used for hydrolysis is also distilled off when the solvent is distilled off. The solvent to be distilled off also includes a solvent represented by XH or the like produced by hydrolysis of the raw material compounds represented by the above general formulas (1) and (2). Furthermore, low-molecular cyclic siloxane by-produced during the reaction is also included.
溶媒を留去する方法は、本発明の効果を著しく損なわない限り任意である。ただし 、加水分解 '重縮合物の硬化開始温度以上の温度で溶媒の留去を行なうことは避け るようにする。 The method for distilling off the solvent is arbitrary as long as the effects of the present invention are not significantly impaired. However, it should be avoided to distill off the solvent at a temperature higher than the curing start temperature of the hydrolysis and polycondensate.
[0167] 溶媒の留去を行なう際の温度条件の具体的な範囲を挙げると、通常 60°C以上、好 ましくは 80°C以上、より好ましくは 100°C以上、また、通常 150°C以下、好ましくは 13 0°C以下、より好ましくは 120°C以下である。この範囲の下限を下回ると溶媒の留去 が不十分となる可能性があり、上限を上回ると加水分解 ·重縮合物がゲル化する可 能性がある。 [0167] The specific range of the temperature conditions when the solvent is distilled off is usually 60 ° C or higher, preferably 80 ° C or higher, more preferably 100 ° C or higher, and usually 150 ° C. C or lower, preferably 130 ° C. or lower, more preferably 120 ° C. or lower. Below the lower limit of this range, the solvent may be insufficiently distilled, and when the upper limit is exceeded, the hydrolyzate / polycondensate may gel.
[0168] また、溶媒の留去を行なう際の圧力条件は、通常は常圧である。さらに、必要に応 じて溶媒留去時の反応液の沸点が硬化開始温度(通常は 120°C以上)に達しないよ うに減圧する。また、圧力の下限は、加水分解 '重縮合物の主成分が留出しない程 度である。 [0168] The pressure condition for distilling off the solvent is usually atmospheric pressure. If necessary, reduce the pressure so that the boiling point of the reaction mixture does not reach the curing start temperature (usually 120 ° C or higher). The lower limit of the pressure is such that the main component of the hydrolysis and polycondensate does not distill.
一般に高温 ·高真空条件で軽沸分は効率良く留去できるが、軽沸分が微量である ため装置形状により精密に留去できない場合には、高温操作によりさらに重合が進 み分子量が上がりすぎる可能性がある。さらに、所定の種類の触媒を使用している場
合には、長時間高温反応に供すると失活し、特定層形成液 Aを硬化しにくくなる可能 性もある。そこで、これらの場合などには、必要に応じ窒素吹き込みや水蒸気蒸留な どにより低温常圧で軽沸分を留去しても良い。 In general, light boiling components can be efficiently distilled off under high temperature and high vacuum conditions.However, if the amount of light boiling components is very small, if it cannot be distilled off precisely due to the shape of the apparatus, the polymerization proceeds further due to high temperature operation and the molecular weight increases too much. there is a possibility. In addition, if a certain type of catalyst is used, In some cases, if subjected to a high temperature reaction for a long time, it may be deactivated and the specific layer forming liquid A may be difficult to cure. Therefore, in these cases, the light boiling component may be distilled off at low temperature and normal pressure by blowing nitrogen or steam distillation, if necessary.
[0169] 減圧留去ゃ窒素吹き込みなどの何れの場合にも、加水分解 '重縮合物の主成分本 体が留出しないよう、前段の加水分解 ·重縮合反応にて適度に分子量を上げておく ことが望ましい。 [0169] In any case such as distilling under reduced pressure or nitrogen blowing, the molecular weight of the main component of the hydrolysis and polycondensate should be increased by a moderate hydrolysis / polycondensation reaction so that the main component of the polycondensate does not distill. It is desirable to keep it.
これらの方法により溶媒や水分、副生低分子環状シロキサン、溶存空気などの軽沸 分を十分に除いた特定層形成液 Aを用いて製造する特定層 Aを備えた導光部材は 、軽沸分の気化による硬化時発泡や高温使用時の基板または各層からの剥離を低 減させることができるため、好ましい。 The light guide member having the specific layer A produced by using the specific layer forming liquid A from which light boiling components such as solvent, moisture, by-product low molecular cyclic siloxane, and dissolved air are sufficiently removed by these methods is light boiling. This is preferable because foaming at the time of curing due to vaporization of water and peeling from the substrate or each layer when used at a high temperature can be reduced.
[0170] ただし、溶媒の留去を行なうことは、必須の操作ではない。特に、加水分解 '重縮合 物の硬化温度以下の沸点を有する溶媒を用いている場合には、加水分解 ·重縮合 物の乾燥時に、加水分解'重縮合物の硬化が開始される前に溶媒が揮発してしまう ため、特に溶媒留去工程を行なわなくても脱溶媒収縮によるクラック等の生成は防止 すること力 Sできる。しかし、溶媒の揮発により加水分解 '重縮合物の体積が変化するこ ともありえるため、導光部材の寸法や形状を精密に制御する観点からは、溶媒留去を 行なうことが好ましい。 [0170] However, distilling off the solvent is not an essential operation. In particular, when a solvent having a boiling point equal to or lower than the hydrolysis temperature of the hydrolysis / polycondensate is used, when the hydrolysis / polycondensation product is dried, before the hydrolysis of the hydrolysis / polycondensation product starts, Therefore, the generation of cracks and the like due to desolvation shrinkage can be prevented even without performing a solvent distillation step. However, since the volume of the hydrolysis / polycondensate may change due to volatilization of the solvent, it is preferable to distill off the solvent from the viewpoint of precisely controlling the size and shape of the light guide member.
[0171] [A— 2— 4]塗布 [0171] [A— 2— 4] Application
こうして得られた特定層形成液 Aは、基板等の所望の部位に塗布し、塗膜を形成さ せる。この塗膜は、後述するように乾燥させることで特定層 Aとなる。なお、前記の溶 媒留去を行う場合には、溶媒留去の前に塗布を行なってもよぐ溶媒留去の後に塗 布を fiなってもよい。 The specific layer forming liquid A thus obtained is applied to a desired site such as a substrate to form a coating film. This coating film becomes the specific layer A by drying as described later. When the solvent is distilled off, the coating may be performed before the solvent is distilled off, or the coating may be applied after the solvent is distilled off.
[0172] 塗布の際、塗膜の膜厚は形成しょうとする特定層 Aの膜厚に応じて適切な大きさに 設定すればよい。この際、本発明に係る特定層 Aは従来の技術により形成される層よ りも厚膜化が可能であるので、寸法設定の自由度が大きいという利点がある。 [0172] At the time of application, the film thickness of the coating film may be set to an appropriate size according to the film thickness of the specific layer A to be formed. At this time, since the specific layer A according to the present invention can be made thicker than a layer formed by the conventional technique, there is an advantage that the degree of freedom of dimension setting is large.
また、塗布に用いる手法に制限は無いが、例えば、キャスト法、スピン法、ディップ 法などを用いることができる。 Further, the method used for coating is not limited, but for example, a casting method, a spin method, a dipping method, or the like can be used.
[0173] [A— 2— 5]乾燥
上述の加水分解 ·重縮合反応により得られた加水分解 ·重縮合物を乾燥させる(乾 燥工程。または、硬化工程)ことにより、特定層 Aを得ること力 Sできる。この加水分解' 重縮合物は上述のように通常は液状である力 これを目的とする形状の型に入れた 状態で乾燥を行なうことにより、 目的とする形状を有する特定層 Aを形成することが可 能となる。また、この加水分解 '重縮合物を前記のように目的とする部位に塗布した状 態で乾燥を行なうことにより、 目的とする部位に直接、特定層 Aを形成することが可能 となる。なお、乾燥工程では必ずしも溶媒が気化するわけではないが、ここでは、流 動性を有する加水分解 ·重縮合物が流動性を失って硬化する現象を含めて、乾燥ェ 程と呼ぶものとする。したがって、溶媒の気化を伴わない場合には、上記「乾燥」は「 硬化」と読み替えて認識してもよレ、。 [0173] [A-2-5] Drying The ability to obtain the specific layer A can be obtained by drying the hydrolysis / polycondensate obtained by the hydrolysis / polycondensation reaction described above (drying process or curing process). This hydrolyzed polycondensate is normally a liquid force as described above, and is dried in a state where it is put in a mold of the desired shape to form a specific layer A having the desired shape. Is possible. Further, by drying the hydrolyzed polycondensate applied to the target site as described above, the specific layer A can be formed directly on the target site. In the drying process, the solvent does not necessarily evaporate, but here it is called the drying process, including the phenomenon that the hydrolyzed hydrolyzate / polycondensate loses its fluidity and hardens. . Therefore, when there is no evaporation of the solvent, the above “drying” may be read as “curing”.
[0174] 乾燥工程では、加水分解 ·重縮合物をさらに重合させることにより、メタロキサン結 合を形成させて、重合物を乾燥 '硬化させ、特定層 Aを得る。 [0174] In the drying step, the hydrolysis / polycondensate is further polymerized to form a metalloxane bond, and the polymer is dried and cured to obtain the specific layer A.
乾燥の際には、加水分解 ·重縮合物を所定の硬化温度まで加熱して硬化させるよう にする。具体的な温度範囲は加水分解 ·重縮合物の乾燥が可能である限り任意であ る力 メタロキサン結合は通常 100°C以上で効率良く形成されるため、好ましくは 120 °C以上、更に好ましくは 150°C以上で実施される。但し、基板や半導体発光装置な どの光源を含む導光部材を加熱する場合は、通常は基板や半導体発光装置などの 光源などの構成要素の耐熱温度以下の温度、好ましくは 200°C以下で乾燥を実施 することが好ましい。 At the time of drying, the hydrolysis / polycondensate is heated to a predetermined curing temperature to be cured. The specific temperature range is arbitrary as long as hydrolysis / drying of the polycondensate is possible. Since the metalloxane bond is usually formed efficiently at 100 ° C or higher, preferably 120 ° C or higher, more preferably Implemented above 150 ° C. However, when heating a light guide member including a light source such as a substrate or a semiconductor light-emitting device, it is usually dried at a temperature lower than the heat-resistant temperature of a component such as a light source such as a substrate or a semiconductor light-emitting device, preferably 200 ° C or lower. It is preferable to carry out.
[0175] また、加水分解 ·重縮合物を乾燥させるために硬化温度に保持する時間(硬化時 間)は触媒濃度や部材の厚みなどにより一概には決まらないが、通常 0. 1時間以上 、好ましくは 0. 5時間以上、更に好ましくは 1時間以上、また、通常 10時間以下、好 ましくは 5時間以下、更に好ましくは 3時間以下の範囲で実施される。 [0175] In addition, the time for maintaining the curing temperature (curing time) for drying the hydrolyzed / polycondensate is not generally determined by the catalyst concentration, the thickness of the member, etc., but usually 0.1 hour or more, Preferably it is 0.5 hours or more, more preferably 1 hour or more, and usually 10 hours or less, preferably 5 hours or less, more preferably 3 hours or less.
なお、乾燥工程における昇温条件は特に制限されない。即ち、乾燥工程の間、一 定の温度で保持しても良ぐ連続的又は断続的に温度を変化させても良い。また、乾 燥工程を更に複数回に分けて行なってもよい。さらに、乾燥工程において、温度を段 階的に変化させるようにしてもよい。温度を段階的に変化させることにより、残留溶媒 ゃ溶存水蒸気による発泡を防ぐことができるという利点を得ることができる。また、低
温で硬化させた後、高温で追硬化した場合には、得られる特定層 A中に内部応力が 発生しにくぐクラックや剥離を起こしにくいという利点も得ることができる。 In addition, the temperature raising conditions in the drying step are not particularly limited. That is, during the drying process, the temperature may be maintained at a constant temperature, or the temperature may be changed continuously or intermittently. In addition, the drying process may be further divided into a plurality of times. Furthermore, the temperature may be changed stepwise in the drying process. By changing the temperature stepwise, it is possible to obtain the advantage that foaming due to residual water vapor can be prevented. Also low When cured at a high temperature and then cured at a high temperature, it is possible to obtain an advantage that internal stress is not easily generated in the obtained specific layer A, and cracks and peeling are unlikely to occur.
[0176] ただし、上述の加水分解 ·重縮合反応を溶媒の存在下にて行なったときに、溶媒留 去工程を行なわなかった場合や、溶媒留去工程を行なっても加水分解 ·重縮合物中 に溶媒が残留している場合には、この乾燥工程を、溶媒の沸点以下の温度にて溶媒 を実質的に除去する第 1の乾燥工程と、該溶媒の沸点以上の温度にて乾燥する第 2 の乾燥工程とに分けて行なうことが好ましい。なお、ここで言う「溶媒」には、上述の原 料化合物の加水分解 ·重縮合反応により生成される、 XH等で表わされる溶媒や低 分子環状シロキサンも含まれる。また、本明細書における「乾燥」とは、上述の原料化 合物の加水分解 '重縮合物が溶媒を失い、更に重合'硬化してメタロキサン結合を形 成する工程を指す。 [0176] However, when the hydrolysis / polycondensation reaction described above was performed in the presence of a solvent, the hydrolysis / polycondensate was not performed even if the solvent distillation step was not performed or the solvent distillation step was performed. If the solvent remains in the solvent, this drying step is dried at a temperature not lower than the boiling point of the solvent and a first drying step that substantially removes the solvent at a temperature not higher than the boiling point of the solvent. It is preferable to perform it separately from the second drying step. The “solvent” mentioned here includes a solvent represented by XH or the like and a low-molecular cyclic siloxane produced by hydrolysis / polycondensation reaction of the above-mentioned raw material compounds. In the present specification, “drying” refers to a step of hydrolysis of the above-mentioned raw material compound, in which the polycondensate loses the solvent, and further polymerizes and cures to form a metalloxane bond.
[0177] 第 1の乾燥工程は、原料化合物の加水分解 '重縮合物の更なる重合を積極的に進 めることなぐ含有される溶媒を該溶媒の沸点以下の温度にて実質的に除去するも のである。即ち、この工程にて得られる生成物は、乾燥前の加水分解 '重縮合物が濃 縮され、水素結合により粘稠な液或いは柔らかい膜状になったもの力、、溶媒が除去さ れて加水分解 ·重縮合物が液状で存在しているものである。 [0177] In the first drying step, hydrolysis of the raw material compound 'the contained solvent without actively proceeding further polymerization of the polycondensate is substantially removed at a temperature below the boiling point of the solvent. It is what you do. That is, the product obtained in this step is hydrolyzed prior to drying, the polycondensate is concentrated, the hydrogen-bonded viscous liquid or soft film-like force, and the solvent are removed. Hydrolysis · Polycondensate is present in liquid form.
[0178] ただし、通常は、溶媒の沸点未満の温度で第 1の乾燥工程を行なうことが好ましい 。該溶媒の沸点以上の温度で第 1の乾燥を行なうと、得られる膜に溶媒の蒸気による 発泡が生じ、欠陥の無い均質な膜が得に《なる。この第 1の乾燥工程は、薄膜状の 部材とした場合など溶媒の蒸発の効率がよい場合は単独のステップで行なっても良 いが、蒸発効率の悪い場合においては複数のステップに分けて昇温しても良い。ま た、極端に蒸発効率が悪い形状の場合は、予め別の効率良い容器にて乾燥濃縮を 行なった上で、流動性が残る状態で塗布し、更に乾燥を実施してもよい。蒸発効率 の悪い場合には、大風量の通風乾燥など部材の表面のみ濃縮が進む手段をとらず 、部材全体が均一に乾燥するよう工夫することが好ましい。 However, it is usually preferable to perform the first drying step at a temperature lower than the boiling point of the solvent. When the first drying is performed at a temperature equal to or higher than the boiling point of the solvent, the resulting film is foamed by the vapor of the solvent, and a uniform film having no defects is obtained. This first drying process may be performed in a single step when the evaporation efficiency of the solvent is good, such as when a thin film member is used, but when the evaporation efficiency is poor, the first drying process is divided into a plurality of steps. You can warm it. In the case of a shape with extremely poor evaporation efficiency, it may be dried and concentrated beforehand in another efficient container, and then applied in a state where fluidity remains, and further dried. When the evaporation efficiency is poor, it is preferable to devise a method in which the entire member is uniformly dried without taking a means of concentrating only the surface of the member, such as ventilation drying with a large amount of air.
[0179] 第 2の乾燥工程は、上述の加水分解 '重縮合物の溶媒が第 1の乾燥工程により実 質的に無くなった状態において、この加水分解 '重縮合物を溶媒の沸点以上の温度 で加熱し、メタロキサン結合を形成することにより、安定な硬化物とするものである。こ
の工程において溶媒が多く残留していると、架橋反応が進行しつつ溶媒蒸発による 体積減が生じるため、大きな内部応力が生じ、収縮による剥離やクラックの原因とな る。メタロキサン結合は通常 100°C以上で効率良く形成されるため、第 2の乾燥工程 は好ましくは 100°C以上、更に好ましくは 120°C以上で実施される。但し、基板や半 導体発光装置などの光源を含む導光部材を加熱する場合は、通常は基板や半導体 発光装置などの光源などの構成要素の耐熱温度以下の温度、好ましくは 200°C以 下で乾燥を実施することが好まし!/、。第 2の乾燥工程における硬化時間は触媒濃度 や部材の厚みなどにより一概には決まらないが、通常 0. 1時間以上、好ましくは 0. 5 時間以上、更に好ましくは 1時間以上、また、通常 10時間以下、好ましくは 5時間以 下、更に好ましくは 3時間以下の範囲で実施される。 [0179] In the second drying step, in the state where the solvent of the above-mentioned hydrolysis 'polycondensate has substantially disappeared by the first drying step, the hydrolysis' polycondensate is heated to a temperature equal to or higher than the boiling point of the solvent. To form a metalloxane bond to form a stable cured product. This If a large amount of solvent remains in this step, the volume decreases due to evaporation of the solvent while the crosslinking reaction proceeds, resulting in a large internal stress, which causes peeling and cracking due to shrinkage. Since the metalloxane bond is usually formed efficiently at 100 ° C or higher, the second drying step is preferably performed at 100 ° C or higher, more preferably 120 ° C or higher. However, when heating a light guide member including a light source such as a substrate or a semiconductor light emitting device, the temperature is usually lower than the heat resistant temperature of a component such as a light source such as a substrate or a semiconductor light emitting device, preferably 200 ° C or lower. It is preferable to carry out drying with! The curing time in the second drying step is not generally determined depending on the catalyst concentration and the thickness of the member, but is usually 0.1 hour or more, preferably 0.5 hour or more, more preferably 1 hour or more, and usually 10 It is carried out for a period of time or less, preferably 5 hours or less, more preferably 3 hours or less.
[0180] このように溶媒除去の工程 (第 1の乾燥工程)と硬化の工程 (第 2の乾燥工程)とを 明確に分けることにより、溶媒留去工程を行なわない場合であっても、上述した特性 を持つ耐光性、耐熱性に優れる特定層 Aをクラック '剥離することなく得ることが可能 となる。 [0180] In this way, by clearly separating the solvent removal step (first drying step) and the curing step (second drying step), even if the solvent distillation step is not performed, It is possible to obtain a specific layer A having excellent light resistance and heat resistance without cracking and peeling.
ただし、第 1の乾燥工程中でも硬化が進行することはありえるし、第 2の乾燥工程中 にも溶媒除去が進行する場合はありえる。しかし、第 1の乾燥工程中の硬化や第 2の 乾燥工程中の溶媒除去は、通常は本発明の効果に影響を及ぼさな!/、程度に小さ!/ヽ ものである。 However, curing may proceed during the first drying step, and solvent removal may proceed during the second drying step. However, curing during the first drying step and removal of the solvent during the second drying step usually do not affect the effects of the present invention!
[0181] なお、実質的に上述の第 1の乾燥工程及び第 2の乾燥工程が実現される限り、各 工程における昇温条件は特に制限されない。即ち、各乾燥工程の間、一定の温度で 保持しても良ぐ連続的又は断続的に温度を変化させても良い。また、各乾燥工程を 更に複数回に分けて行なってもよい。更には、第 1の乾燥工程の間に一時的に溶媒 の沸点以上の温度となったり、第 2の乾燥工程の間に溶媒の沸点未満の温度となる 期間が介在したりする場合でも、実質的に上述したような溶媒除去の工程 (第 1の乾 燥工程)と硬化の工程 (第 2の乾燥工程)とが独立して達成される限り、本発明の範囲 に含まれるものとする。 [0181] As long as the first drying step and the second drying step described above are substantially realized, the temperature raising conditions in each step are not particularly limited. That is, during each drying step, the temperature may be maintained at a constant temperature, or the temperature may be changed continuously or intermittently. In addition, each drying step may be further divided into a plurality of times. Furthermore, even if the temperature temporarily exceeds the boiling point of the solvent during the first drying step, or a period during which the temperature is lower than the boiling point of the solvent is interposed during the second drying step, In particular, as long as the solvent removal step (first drying step) and the curing step (second drying step) as described above can be achieved independently, they are included in the scope of the present invention.
[0182] さらに、溶媒として加水分解 ·重縮合物の硬化温度以下、好ましくは硬化温度未満 の沸点を有するものを用いて!/、る場合には、加水分解 '重縮合物に共存してレ、る溶
媒は、特に温度を調整せずに加水分解 ·重縮合物を硬化温度まで加熱した場合で あっても、乾燥工程の途中において、温度が沸点に到達した時点で加水分解 ·重縮 合物から留去されることになる。つまり、この場合、乾燥工程において加水分解 '重縮 合物を硬化温度まで昇温する過程において、加水分解'重縮合物が硬化する前に、 溶媒の沸点以下の温度にて溶媒を実質的に除去する工程 (第 1の乾燥工程)が実施 される。これにより、加水分解 '重縮合物は、溶媒を含有しない液状の加水分解 '重 縮合物となる。そして、その後、溶媒の沸点以上の温度(即ち、硬化温度)にて乾燥し[0182] Further, when using a solvent having a boiling point not higher than the curing temperature of the hydrolysis / polycondensate, preferably lower than the curing temperature as a solvent! Rulu Even when the hydrolysis / polycondensate is heated to the curing temperature without adjusting the temperature, the medium is not removed from the hydrolysis / polycondensation when the temperature reaches the boiling point during the drying process. It will be distilled off. That is, in this case, in the process of raising the hydrolysis 'polycondensate to the curing temperature in the drying step, before the hydrolysis' polycondensate is cured, the solvent is substantially removed at a temperature below the boiling point of the solvent. A removal step (first drying step) is performed. As a result, the hydrolyzed 'polycondensate becomes a liquid hydrolyzed' polycondensate containing no solvent. After that, it is dried at a temperature higher than the boiling point of the solvent (that is, the curing temperature).
、加水分解 ·重縮合物を硬化させる工程 (第 2の乾燥工程)が進行することになる。し たがって、溶媒として上記の硬化温度以下の沸点を有するものを用いると、上記の第 1の乾燥工程と第 2の乾燥工程とは、たとえその実施を意図しなくても行なわれること になる。このため、溶媒として加水分解 '重縮合物の硬化温度以下、好ましくは上記 硬化温度未満の沸点を有するものを用いることは、乾燥工程を実施する際には加水 分解 ·重縮合物が溶媒を含んでいたとしても特定層 A及び当該特定層 Aを備えた導 光部材の品質に大きな影響を与えることがな!/、ため、好ましレ、と!/、える。 The process of curing the hydrolysis / polycondensate (second drying process) proceeds. Therefore, when a solvent having a boiling point equal to or lower than the curing temperature is used as the solvent, the first drying step and the second drying step are performed even if they are not intended to be performed. . For this reason, the use of a solvent having a boiling point equal to or lower than the curing temperature of the hydrolysis polycondensate, preferably less than the above curing temperature, is that the hydrolysis / polycondensate contains a solvent during the drying step. Even if it is, the quality of the specific layer A and the light guide member provided with the specific layer A is not greatly affected.
[0183] [A— 2— 6]その他 [0183] [A— 2-6] Others
上述の乾燥工程の後、得られた特定層 Aに対し、必要に応じて各種の後処理を施 しても良い。後処理の種類としては、密着性の改善のための表面処理、反射防止膜 の作製、光取り出し効率向上のための微細凹凸面の作製等が挙げられる。 After the above-described drying process, the obtained specific layer A may be subjected to various post treatments as necessary. Examples of the post-treatment include surface treatment for improving adhesion, production of an antireflection film, production of a fine uneven surface for improving light extraction efficiency, and the like.
[0184] [A— 3]特定層形成液 [0184] [A-3] Specific layer forming liquid
本発明の特定層形成液 Aは、上述したように、加水分解 ·重縮合工程により得られ る液状材料であり、乾燥工程で硬化させられることによって特定層 Aとなるものである As described above, the specific layer forming liquid A of the present invention is a liquid material obtained by the hydrolysis / polycondensation step, and becomes the specific layer A by being cured in the drying step.
〇 Yes
[0185] 特定層形成液 Aが硬化性オルガノポリシロキサンである場合は、その硬化物の熱膨 張係数の点で直鎖状オルガノポリシロキサンよりは分岐状オルガノポリシロキサンが 好ましい。直鎖状オルガノポリシロキサンの硬化物はエラストマ一状であり、その熱膨 張係数が大き!/、が、分岐状オルガノポリシロキサンの硬化物の熱膨張係数は直鎖状 オノレガノポリシロキサンの硬化物の熱膨張係数より小さ!/、ので、熱膨張に伴う光学特 性の変化が小さレ、からである。
[0186] 本発明の特定層形成液 Aの粘度に制限は無いが、液温 25°Cにおいて、通常 20m Pa ' s以上、好ましくは lOOmPa ' s以上、より好ましくは 200mPa' s以上、また、通常 1 500mPa ' s以下、好ましくは lOOOmPa ' s以下、より好ましくは 800mPa' s以下であ る。なお、前記粘度は RV型粘度計 (例えばブルックフィールド社製 RV型粘度計「R VDV-II+Projにより測定できる。 [0185] When the specific layer forming liquid A is a curable organopolysiloxane, a branched organopolysiloxane is preferred to a linear organopolysiloxane in terms of the thermal expansion coefficient of the cured product. The cured product of linear organopolysiloxane is in the form of an elastomer, and its thermal expansion coefficient is large! /, But the thermal expansion coefficient of the cured product of branched organopolysiloxane is that of linear onoreganopolysiloxane. This is because the change in optical properties accompanying thermal expansion is small because it is smaller than the thermal expansion coefficient of the product. [0186] The viscosity of the specific layer forming liquid A of the present invention is not limited, but at a liquid temperature of 25 ° C, it is usually 20 mPa's or more, preferably lOOmPa's or more, more preferably 200 mPa's or more, Usually, it is 1500 mPa's or less, preferably lOOOmPa's or less, more preferably 800 mPa's or less. The viscosity can be measured with an RV viscometer (for example, RV viscometer “R VDV-II + Proj” manufactured by Brookfield).
[0187] また、本発明の特定層形成液 Aの重量平均分子量及び分子量分布に制限は無い 力 通常は、「[A— 1— 5— 7]分子量」において説明したとおりである。さらに、本発 明の特定層形成液 Aの中の低沸点成分は、「 [A— 1 5— 8]低沸点成分」で説明し た本発明の特定層 Aと同様に、少ないことが好ましい。 [0187] The weight average molecular weight and molecular weight distribution of the specific layer forming solution A of the present invention are not limited. Usually, as described in "[A-1-5-7] Molecular weight". Furthermore, it is preferable that the low-boiling component in the specific layer forming liquid A of the present invention is small, like the specific layer A of the present invention described in “[A-15-8] Low-boiling component”. .
[0188] [B]第五〜第八の導光部材についての説明 [B188] [B] Explanation of the fifth to eighth light guide members
[B- 1]導光部材を構成する各層の説明 [B-1] Explanation of each layer constituting the light guide member
本発明の第五〜第八の導光部材は、 2以上の層が積層されてなることを特徴とする 。そして、本発明の第五及び第七の導光部材は、発光ピークの主波長が 500nm以 下である光源を備えるとともに、前記の積層された層の少なくとも 1層が、下記に示す 特性を有する。また、本発明の第六及び第八の導光部材は、前記の層のうちの互い に接する少なくとも 2層が、下記に示す特性を有する。さらに、本発明の第五〜第八 の導光部材のいずれにおいても、前記の積層された層が、いずれも下記に示す特性 を有することが好ましい。 The fifth to eighth light guide members of the present invention are characterized in that two or more layers are laminated. The fifth and seventh light guide members of the present invention include a light source whose emission peak has a dominant wavelength of 500 nm or less, and at least one of the stacked layers has the following characteristics: . In the sixth and eighth light guide members of the present invention, at least two layers in contact with each other among the above layers have the characteristics shown below. Furthermore, in any of the fifth to eighth light guide members of the present invention, it is preferable that each of the stacked layers has the following characteristics.
[0189] (6)他の層との界面に、極性基を含有すること。 [6] (6) It contains a polar group at the interface with other layers.
(7)硬度が、ショァ Aで 5以上 100以下、または、ショァ Dで 0以上 85以下であること。 (7) Hardness of Shore A is 5 or more and 100 or less, or Shore D is 0 or more and 85 or less.
(8)シロキサン結合を有すること。 (8) Having a siloxane bond.
以下、まず、これらの特性(6)〜(8)を中心に、本発明の第五〜第八の導光部材を 構成する層のうち、前記の特性を有する層(以下適宜「特定層 B」という)の特徴につ いて説明する。 Hereinafter, first of all, among the layers constituting the fifth to eighth light guide members of the present invention, focusing on these characteristics (6) to (8), the layers having the above characteristics (hereinafter referred to as “specific layer B as appropriate”). ))).
[0190] [B— 1 1]特性(6):極性基 [0190] [B— 1 1] Characteristics (6): Polar group
本発明の第五〜第八の導光部材において、特定層 Bは、他の層との界面に、極性 基を含有する。即ち、特定層 Bは、他の層との界面に極性基を有するよう、当該極性 基を有する化合物を含有する。このような極性基の種類に制限は無いが、例えば、シ
ラノール基、アミノ基及びその誘導基、アルコキシシリル基、カルボニル基、エポキシ 基、カルボキシ基、カルビノール基(一COH)、メタクリル基、シァノ基、スルホン基な ど力 S挙げられる。なお、特定層 Bは、いずれ力、 1種の極性基のみを含有していてもよく 、 2種以上の極性基を任意の組み合わせ及び比率で含有して!/、ても良!/、。 In the fifth to eighth light guide members of the present invention, the specific layer B contains a polar group at the interface with other layers. That is, the specific layer B contains a compound having a polar group so as to have a polar group at the interface with another layer. There is no limitation on the type of such a polar group. Examples include lanol groups, amino groups and derivatives thereof, alkoxysilyl groups, carbonyl groups, epoxy groups, carboxy groups, carbinol groups (one COH), methacryl groups, cyanos groups, and sulfone groups. In addition, the specific layer B may contain only one kind of polar group at any time, or may contain two or more kinds of polar groups in any combination and ratio.
このように、特定層 Bが他の層との界面に極性基を有することにより、二層が強く密 着し、重ね塗りによる積層が可能となる。 As described above, the specific layer B has a polar group at the interface with other layers, so that the two layers are strongly adhered and can be stacked by overcoating.
[0191] 本発明に係る特定層 Bに含まれる極性基は、また、ポリフタルアミドなどの樹脂、セ ラミック又は金属の表面に存在する所定の官能基 (例えば、水酸基、メタロキサン結 合中の酸素など)と水素結合が可能であり、高い密着性を発現する。導光部材を設 置する際の基板は、通常、樹脂、セラミック又は金属で形成されている。また、セラミツ クゃ金属の表面には、通常は水酸基が存在する。一方、特定層 Bは、通常、当該水 酸基と水素結合可能な官能基を有している。したがって、前記水素結合により、特定 層 Bを有する本発明の第五〜第八の導光部材は、基板に対する密着性に優れてい るのである。 [0191] The polar group contained in the specific layer B according to the present invention is a predetermined functional group present on the surface of a resin, ceramic or metal such as polyphthalamide (for example, a hydroxyl group or an oxygen in a metalloxane bond). Etc.) and hydrogen bond is possible, and high adhesion is expressed. The substrate for installing the light guide member is usually made of resin, ceramic or metal. Further, a hydroxyl group usually exists on the surface of the ceramic metal. On the other hand, the specific layer B usually has a functional group capable of hydrogen bonding with the hydroxyl group. Therefore, the fifth to eighth light guide members of the present invention having the specific layer B are excellent in adhesion to the substrate due to the hydrogen bond.
なお、特定層 Bにおける実質的な極性基の有無は、 IR (赤外分光)分析及び NMR (核磁気共鳴)により確認すること力 Sできる。 The presence or absence of substantial polar groups in the specific layer B can be confirmed by IR (infrared spectroscopy) analysis and NMR (nuclear magnetic resonance).
[0192] ところで、これらの極性基は、特定層 Bの中にはじめから含まれていても良ぐプライ マーの塗布や表面処理などにより特定層 Bの表面に後から付加されたものでもよい。 したがって、この観点からいえば、本発明の第五〜第八の導光部材を構成する任意 の 2層(特定層 B、及び、特定層 B以外の層を含む)の関係について具体例を挙げる と、図 1 (a)〜図 1 (f)のような構成が挙げられる。ただし、本発明の第五〜第八の導 光部材を構成する層の関係は、以下の具体例に限定されるものではない。 [0192] By the way, these polar groups may be added to the surface of the specific layer B later by application of a primer or surface treatment which may be contained in the specific layer B from the beginning. Therefore, from this point of view, specific examples are given of the relationship between any two layers (including the specific layer B and the layer other than the specific layer B) constituting the fifth to eighth light guide members of the present invention. The configuration shown in Fig. 1 (a) to Fig. 1 (f) can be mentioned. However, the relationship of the layers constituting the fifth to eighth light guide members of the present invention is not limited to the following specific examples.
[0193] 例えば図 1 (a)に模式的に示すように、積層された 2層が共に、はじめから極性基を 含有する特定層 B Sで形成されている構成が挙げられる。この場合、特定層 B Sが 含有する極性基により両特定層 Bは良好に密着する。 [0193] For example, as schematically shown in Fig. 1 (a), there is a configuration in which the two laminated layers are both formed from a specific layer B S containing a polar group from the beginning. In this case, both specific layers B adhere well due to the polar group contained in the specific layer B S.
[0194] また、例えば図 1 (b)に模式的に示すように、積層された 2層のうち一方がはじめか ら極性基を含有する特定層 B Sであり、他方が、極性基を含有しない層 Oで形成さ れている構成が挙げられる。この場合でも、特定層 B Sが含有する極性基により密
着性は従来よりも向上する。 [0194] For example, as schematically shown in Fig. 1 (b), one of the two laminated layers is a specific layer BS containing a polar group from the beginning, and the other does not contain a polar group. A configuration formed of layer O can be mentioned. Even in this case, it is more dense due to the polar group contained in the specific layer BS. Wearability is improved than before.
[0195] さらに、例えば図 1 (c)に模式的に示すように、積層された 2層が共に、はじめは極 性基を含有しない層 Oで形成され、且つ、両層 O, Oの間にプライマー Pが塗布され ている構成が挙げられる。この場合、プライマー Pにより両層 O, Oの表面には極性基 が付与される。これにより、密着性が向上する。また、この場合、極性基を含む部分が 2層の界面のみとなり、実質的に薄膜となるため、光や熱により着色しやすい極性基 を導入しても、導光機能への影響が生じにくい。なお、層 Oが特性(7)及び特性(8) を満たしている場合には、これらの層 Oはプライマー Pにより極性基を有することにな るため、特定層 Bとして機能することになる。 [0195] Further, for example, as schematically shown in FIG. 1 (c), the two laminated layers are initially formed of a layer O not containing a polar group, and between the two layers O and O. The primer P is applied to In this case, polar groups are imparted to the surfaces of both layers O and O by the primer P. Thereby, adhesiveness improves. In this case, the part containing the polar group is only an interface between the two layers, which is substantially a thin film. Therefore, even if a polar group that is easily colored by light or heat is introduced, the light guide function is hardly affected. . If layer O satisfies characteristics (7) and (8), these layers O will have polar groups due to primer P, and thus function as specific layer B.
[0196] また、例えば図 1 (d)に模式的に示すように、積層された 2層が共に、はじめから極 性基を含有する特定層 B Sで形成され、且つ、両特定層 B S, Sの間にプライマー Pが塗布されている構成が挙げられる。この場合、プライマー Pにより両特定層 B S, Sの間の密着性が特に優れる。 [0196] For example, as schematically shown in Fig. 1 (d), the two laminated layers are both formed from a specific layer BS containing a polar group from the beginning, and both specific layers BS, S A configuration in which primer P is applied in between is mentioned. In this case, the adhesion between the two specific layers B S and S is particularly excellent due to the primer P.
[0197] さらに、例えば図 1 (e)に模式的に示すように、積層された 2層のうち一方がはじめ から極性基を含有する特定層 B Sであり、他方が、はじめは極性基を含有しない層 Oで形成され、さらに、特定層 B Sと層 Oとの間にプライマー Pが塗布されている構成 が挙げられる。この場合、プライマー Pにより特定層 B Sと層 Oとの間の密着性は、図 1 (b)で説明した場合よりも向上する。なお、この場合においても、層 Oが特性(7)及 び特性(8)を満たしている場合には、これらの層 Oはプライマー Pにより極性基を有 することになるため、特定層 Bとして機倉することになる。 [0197] Further, for example, as schematically shown in FIG. 1 (e), one of the two laminated layers is a specific layer BS containing a polar group from the beginning, and the other contains a polar group at the beginning. An example is a configuration in which the primer P is applied between the specific layer BS and the layer O. In this case, the adhesion between the specific layer B S and the layer O is improved by the primer P as compared with the case described in FIG. Even in this case, if layer O satisfies characteristics (7) and (8), these layers O will have polar groups due to primer P. I will be in a storehouse.
[0198] また、例えば図 1 (f)に模式的に示すように、はじめは極性基を含有しない層 Oの上 に、はじめから極性基を含有する特定層 B Sを積層し、特定層 B Sの成分が層 Oに 一部しみ込んで密着性を補助してレ、る構成が挙げられる。このような成分のしみ込み は、上層である特定層 B Sの形成液が下層である層 Oにしみ込むことにより行なわ れる。 [0198] Further, for example, as schematically shown in Fig. 1 (f), a specific layer BS containing a polar group is first laminated on a layer O that does not contain a polar group at first, A configuration in which the component partially soaks into layer O to assist adhesion is exemplified. Such impregnation of the component is carried out by soaking the formation liquid of the specific layer B S as the upper layer into the layer O as the lower layer.
[0199] [B— 1 2]特性(7):硬度測定値 [0199] [B-1 2] Characteristic (7): Hardness measurement
硬度測定値は、本発明の第五〜第八の導光部材の特定層の硬度を評価する指標 であり、以下の硬度測定方法により測定される。
本発明の第五〜第八の導光部材において、特定層 Bは、比較的硬度の低い部材、 好ましくはエラストマ一状を呈する部材であることが好ましい。即ち、本発明の第五〜 第八の導光部材は、基板または各層において、熱膨張係数の異なる部材を複数使 用することになる力 上記のように特定層 Bが比較的硬度が低ぐ好ましくはエラスト マー状を呈することにより、特定層 B及び当該特定層を有する本発明の第五〜第八 の導光部材が上記の各部剤の伸縮による応力を緩和することができる。したがって、 使用中に剥離、クラック、断線などを起こしにくぐ耐リフロー性及び耐温度サイクル 性に優れる導光部材を提供することができる。 The hardness measurement value is an index for evaluating the hardness of the specific layer of the fifth to eighth light guide members of the present invention, and is measured by the following hardness measurement method. In the fifth to eighth light guide members of the present invention, the specific layer B is preferably a member having a relatively low hardness, preferably a member having an elastomeric shape. That is, the fifth to eighth light guide members of the present invention are forces that use a plurality of members having different thermal expansion coefficients in the substrate or each layer. As described above, the specific layer B has a relatively low hardness. Preferably, by exhibiting an elastomeric shape, the specific layer B and the fifth to eighth light guide members of the present invention having the specific layer can relieve stress due to expansion and contraction of the respective components. Therefore, it is possible to provide a light guide member that is excellent in reflow resistance and temperature cycle resistance, which is difficult to cause peeling, cracking, disconnection, and the like during use.
[0200] 具体的には、特定層 Bは、デュロメータタイプ Aによる硬度測定 ショァ A) 1 5以 上、好ましくは 7以上、より好ましくは 10以上、また、通常 100以下、好ましくは 80以 下、より好ましくは 70以下である。または、デュロメータタイプ Dによる硬度測定値 (シ ョァ D)力 0以上、また、通常 85以下、好ましくは 80以下、より好ましくは 75以下であ る。上記範囲の硬度測定値を有することにより、特定層 B及び当該特定層 Bを有する 本発明の第五〜第八の導光部材は、クラックが発生しにくぐ耐リフロー性及び耐温 度サイクル性に優れるという利点を得ることができる。また、特定層 Bを塗布する基板 が例えばフレキシブル基板等の薄手の基板である場合には、特定層 Bの積層により 硬化収縮応力力かかって基板及び特定層 Bが反る可能性がある。このため、特定層 Bは、ショァ Aが 5以上 80以下のゴム弾性を有する材料で形成されていることが好ま しい。 [0200] Specifically, the specific layer B has a durometer type A hardness measurement Shore A) 15 or more, preferably 7 or more, more preferably 10 or more, and usually 100 or less, preferably 80 or less. More preferably, it is 70 or less. Alternatively, the hardness measurement value (Shore D) force by durometer type D is 0 or more, and usually 85 or less, preferably 80 or less, more preferably 75 or less. By having the hardness measurement value in the above range, the fifth to eighth light guide members of the present invention having the specific layer B and the specific layer B have reflow resistance and temperature cycle resistance that are difficult to generate cracks. It is possible to obtain the advantage of superiority. In addition, when the substrate on which the specific layer B is applied is a thin substrate such as a flexible substrate, the substrate and the specific layer B may be warped due to the curing shrinkage stress force due to the lamination of the specific layer B. For this reason, it is preferable that the specific layer B is formed of a material having rubber elasticity with a Shore A of 5 to 80.
[0201] 〔硬度測定方法〕 [0201] [Hardness measurement method]
硬度測定値 (ショァ A)は、 JIS K6253に記載の方法により測定することができる。 具体的には、古里精機製作所製の A型ゴム硬度計を用いて測定を行なうことができ 一方、硬度測定値 (ショァ D)は、 JIS K6253に記載の方法により測定することがで きる。具体的には、古里精機製作所製の D型プラスチック硬度計を用いて測定を行 なうことができる。 The hardness measurement value (Shore A) can be measured by the method described in JIS K6253. Specifically, the measurement can be performed using an A-type rubber hardness meter manufactured by Furusato Seiki Seisakusho, while the hardness measurement value (Shore D) can be measured by the method described in JIS K6253. Specifically, measurement can be performed using a D-type plastic hardness tester manufactured by Furusato Seiki Seisakusho.
[0202] [B— 1 3]特性(8):シロキサン結合 [0202] [B— 1 3] Property (8): Siloxane bond
本発明の第五〜第八の導光部材において、特定層 Bは、シロキサン結合を含有す
る。即ち、特定層 Bは、シロキサン結合を有する化合物を含んで形成されている。 シロキサン結合を有する化合物としては、例えば、無機系材料、ガラス材料、有機 系材料などが挙げられる。このうち、無機系材料の具体例を挙げると、酸化ケィ素、 窒化ケィ素、酸窒化ケィ素、および、金属アルコキシド、セラミック前駆体ポリマー若し くは金属アルコキシドを含有する溶液をゾルーゲル法により加水分解重合して成る溶 液またはこれらの組み合わせを固化した無機系材料等が挙げられる。また、ガラス材 料の具体例を挙げると、ホウケィ酸塩、ホスホケィ酸塩、アルカリケィ酸塩等のガラス 材料が挙げられる。さらに、有機系材料の具体例を挙げると、ポリオルガノシロキサン 等の有機材料 (シリコーン系材料)などが挙げられる。なお、シロキサン結合を有する 化合物は、 1種のみを用いてもよぐ 2種以上を任意の組み合わせ及び比率で併用し てもよい。 In the fifth to eighth light guide members of the present invention, the specific layer B contains a siloxane bond. The That is, the specific layer B is formed including a compound having a siloxane bond. Examples of the compound having a siloxane bond include inorganic materials, glass materials, and organic materials. Among these, specific examples of inorganic materials include a solution containing silicon oxide, nitride nitride, oxynitride, metal alkoxide, ceramic precursor polymer or metal alkoxide by a sol-gel method. Examples thereof include inorganic materials obtained by solidifying a solution obtained by decomposition polymerization or a combination thereof. Specific examples of glass materials include glass materials such as borosilicate, phosphosilicate, and alkali silicate. Furthermore, specific examples of organic materials include organic materials (silicone materials) such as polyorganosiloxane. In addition, the compound which has a siloxane bond may use only 1 type, and may use 2 or more types together by arbitrary combinations and ratios.
上記のシロキサン結合を有する化合物の中でも、ハンドリングの容易さ等の点から、 シリコーン系材料が好ましい。以下、このシリコーン系材料について詳しく説明する。 Among the compounds having a siloxane bond, a silicone material is preferable from the viewpoint of easy handling. Hereinafter, this silicone material will be described in detail.
[0203] [B— 1 3— 1]シリコーン系材料 [0203] [B— 1 3— 1] Silicone materials
シリコーン系材料とは、通常、シロキサン結合を主鎖とする有機重合体をいい、例え ば一般組成式 (4)で表される化合物及び/またはそれらの混合物が挙げられる。 The silicone-based material usually refers to an organic polymer having a siloxane bond as a main chain, and examples thereof include a compound represented by the general composition formula (4) and / or a mixture thereof.
(R'R'R'SIO ) (R4R5SiO ) (R6SiO ) (SiO ) . · ·式(4) (R'R'R'SIO) (R 4 R 5 SiO) (R 6 SiO) (SiO) .. Formula (4)
1/2 M 2/2 D 3/2 T 4/2 Q 1/2 M 2/2 D 3/2 T 4/2 Q
[0204] 一般組成式 (4)において、 R1から R6は、有機官能基、水酸基及び水素原子よりな る群から選択されるものを表わす。なお、 R1から R6は、同じであってもよく、異なっても よい。 [0204] In the general composition formula (4), R 1 to R 6 represent those selected from the group consisting of an organic functional group, a hydroxyl group and a hydrogen atom. R 1 to R 6 may be the same or different.
また、一般組成式(4)において、 M、 D、 T及び Qは、 0以上 1未満の数を表わす。 ただし、 M + D + T + Q = lを満足する数である。 In the general composition formula (4), M, D, T and Q represent a number of 0 or more and less than 1. However, it is a number satisfying M + D + T + Q = 1.
なお、前記のシリコーン系材料を用いて特定層 Bを成膜する場合には、液状のシリ コーン系材料を用いて封止した後、熱や光によって硬化させればよい。 In the case where the specific layer B is formed using the silicone material, the specific layer B may be sealed using a liquid silicone material and then cured by heat or light.
[0205] [B— 1 3— 2]シリコーン系材料の種類 [0205] [B— 1 3— 2] Types of silicone materials
シリコーン系材料を硬化のメカニズムにより分類すると、通常、付加重合硬化タイプ If silicone materials are classified according to the curing mechanism, they are usually addition-polymerized curing types.
、縮重合硬化タイプ、紫外線硬化タイプ、パーオキサイド架硫タイプなどのシリコーン 系材料を挙げること力 Sできる。これらの中では、付加重合硬化タイプ (付加型シリコー
ン系材料)、縮合硬化タイプ (縮合型シリコーン系材料)、紫外線硬化タイプが好適で ある。以下、付加型シリコーン系材料、及び縮合型シリコーン系材料について説明す It is possible to list silicone materials such as condensation polymerization curing type, ultraviolet curing type and peroxide crosslinking type. Among these, addition polymerization curing type (addition type silicone Are preferred to be a polymer-based material), a condensation-curing type (condensation-type silicone material), and an ultraviolet-curing type. Hereinafter, the addition type silicone material and the condensation type silicone material will be described.
[0206] [B- 1 - 3- 2- 1]付加型シリコーン系材料 [0206] [B- 1-3- 2- 1] Addition-type silicone materials
付加型シリコーン系材料とは、ポリオルガノシロキサン鎖が、有機付加結合により架 橋されたものをいう。代表的なものとしては、例えばビュルシランとヒドロシランを Pt触 媒などの付加型触媒の存在下反応させて得られる Si— C C Si結合を架橋点に 有する化合物等を挙げることができる。これらは市販のものを使用することができ、例 えば付加重合硬化タイプの具体的商品名としては信越化学工業社製「LPS— 1400 」「LPS— 2410」「LPS— 3400」等が挙げられる。なお、このような付加型シリコーン 系材料を用いて形成された特定層 Bには、通常、少量ながらもビュル基及び/又は ヒドロシリル基が含有されることになる。 Addition-type silicone materials refer to those in which polyorganosiloxane chains are bridged by organic additional bonds. A typical example is a compound having a Si—C C Si bond at a crosslinking point obtained by reacting butylsilane and hydrosilane in the presence of an addition catalyst such as a Pt catalyst. Commercially available products can be used. Specific examples of addition polymerization curing type trade names include “LPS-1400”, “LPS-2410”, and “LPS-3400” manufactured by Shin-Etsu Chemical Co., Ltd. Note that the specific layer B formed using such an addition-type silicone material usually contains a small amount of a bur group and / or a hydrosilyl group.
[0207] 上記付加型シリコーン系材料は、具体的には、例えば下記平均組成式(5)で表さ れる(A)アルケニル基含有オルガノポリシロキサンと、下記平均組成式(6)で表され る(B)ヒドロシリル基含有オルガノポリシロキサンとを、(A)の総アルケニル基に対して (B)の総ヒドロシリル基量が 0. 5〜2. 0倍となる量比で混合し、触媒量の(C)付加反 応触媒の存在下反応させて得ることが出来る。 [0207] The addition-type silicone material is specifically represented by, for example, (A) an alkenyl group-containing organopolysiloxane represented by the following average composition formula (5) and the following average composition formula (6). (B) Hydrosilyl group-containing organopolysiloxane and (B) the total alkenyl group in (B) are mixed in an amount ratio such that the total hydrosilyl group amount of (B) is 0.5 to 2.0 times. (C) It can be obtained by reacting in the presence of an addition reaction catalyst.
[0208] (A)アルケニル基含有オルガノポリシロキサンは、下記組成式(5)で示される 1分子 中に少なくとも 2個のケィ素原子に結合したアルケニル基を有するオルガノポリシロキ サンである。 [0208] (A) The alkenyl group-containing organopolysiloxane is an organopolysiloxane having an alkenyl group bonded to at least two silicon atoms in one molecule represented by the following composition formula (5).
R SiO (5) R SiO (5)
n 〔(4 n) /2〕 n ((4 n) / 2]
(但し、式(5)中、 Rは同一又は異種の置換又は非置換の 1価炭化水素基、アルコキ シ基、又は水酸基であり、 nは l≤n< 2を満たす正数である。ただし、 Rのうち少なくと も 1つはアルケニル基である。 ) (In the formula (5), R is the same or different substituted or unsubstituted monovalent hydrocarbon group, alkoxy group, or hydroxyl group, and n is a positive number satisfying l≤n <2. And at least one of R is an alkenyl group.)
[0209] (B)ヒドロシリル基含有ポリオルガノシロキサンは、下記組成式(6)で示される 1分子 中に少なくとも 2個のケィ素原子に結合した水素原子を有するオルガノハイドロジェン ポリシロキサンである。 [0209] (B) The hydrosilyl group-containing polyorganosiloxane is an organohydrogen polysiloxane having hydrogen atoms bonded to at least two silicon atoms in one molecule represented by the following composition formula (6).
R' H SiO (6)
(但し、式(6)中、 R'はアルケニル基を除く同一又は異種の置換又は非置換の 1価 の炭化水素基であり、符号 a及び符号 bは 0. 7≤a≤2. 1、 0. 001≤b≤l . 0かつ、 0. 8≤a + b≤2. 6を満たす正数である。 ) R 'H SiO (6) (In the formula (6), R ′ is the same or different substituted or unsubstituted monovalent hydrocarbon group excluding the alkenyl group, and the symbols a and b are 0.7 ≦ a ≦ 2.1, 0. 001≤b≤l. 0 and a positive number satisfying 0.8.8≤a + b≤2.
[0210] 以下、付加型シリコーン系材料につき更に詳しく説明する。 [0210] Hereinafter, the addition-type silicone material will be described in more detail.
上記式(5)の Rにおいて、アルケニル基とはビュル基、ァリル基、ブテュル基、ペン テュル基などの炭素数 2〜8のアルケニル基であることが好ましい。また、 Rが炭化水 素基である場合は、メチル基、ェチル基などのアルキル基、ビュル基、フエ二ル基等 の炭素数;!〜 20の 1価炭化水素基から選択されるものが好ましぐより好ましくは、メ チル基、ェチル基、フエニル基である。 Rはそれぞれは異なっても良いが、耐 UV性 が要求される場合には Rの 80%以上はメチル基であることが好まし!/、。 Rが炭素数 1 〜8のアルコキシ基や水酸基であってもよいが、アルコキシ基や水酸基の含有率は( A)の重量の 3%以下であることが好まし!/、。 In R of the above formula (5), the alkenyl group is preferably an alkenyl group having 2 to 8 carbon atoms such as a bur group, a allyl group, a butyr group, or a pentyl group. In addition, when R is a hydrocarbon group, an alkyl group such as a methyl group or an ethyl group, a carbon group such as a bur group or a phenyl group; one selected from monovalent hydrocarbon groups having! More preferably, they are a methyl group, an ethyl group, and a phenyl group. Each R may be different, but if UV resistance is required, 80% or more of R is preferably a methyl group! /. R may be an alkoxy group having 1 to 8 carbon atoms or a hydroxyl group, but the content of the alkoxy group or hydroxyl group is preferably 3% or less of the weight of (A)! /.
上記組成式(5)において、 nは l≤n< 2を満たす正数である力 この値が 2以上で あると封止材としての十分な強度が得られなくなり、 1未満であると合成上このオルガ ノポリシロキサンの合成が困難になる。 In the above composition formula (5), n is a positive force satisfying l≤n <2. If this value is 2 or more, sufficient strength as a sealing material cannot be obtained. The synthesis of this organopolysiloxane becomes difficult.
なお、(A)アルケニル基含有オルガノポリシロキサンは、 1種のみを用いても良ぐ 2 種以上を任意の組み合わせ及び比率で併用してもよい。 Note that only one type of (A) alkenyl group-containing organopolysiloxane may be used, or two or more types may be used in any combination and ratio.
[0211] 次に、(B)ヒドロシリル基含有ポリオルガノシロキサンは、(A)アルケニル基含有ォ ルガノポリシロキサンとヒドロシリル化反応をすることにより、組成物を硬化させる架橋 剤として作用するものである。 [0211] Next, the (B) hydrosilyl group-containing polyorganosiloxane acts as a crosslinking agent for curing the composition by hydrosilylation reaction with the (A) alkenyl group-containing organopolysiloxane.
組成式(6)において、 R'はアルケニル基を除く一価の炭化水素基を表わす。ここで 、 R'としては、組成式(5)中の Rと同様の基 (ただし、アルケニル基を除く)を挙げるこ と力 Sできる。また、耐 UV性要求される用途に用いる場合には少なくとも 80%以上はメ チル基であることが好ましレ、。 In the composition formula (6), R ′ represents a monovalent hydrocarbon group excluding an alkenyl group. Here, as R ′, a group similar to R in the composition formula (5) (however, excluding the alkenyl group) can be exemplified. In addition, when used in applications requiring UV resistance, at least 80% is preferably a methyl group.
組成式(6)において、符号 aは、通常 0. 7以上、好ましくは 0. 8以上であり、通常 2 . 1以下、好ましくは 2以下の正の数である。また、符号 bは、通常 0. 001以上、好ま しくは 0. 01以上であり、通常 1. 0以下の正の数である。ただし、 a + bは、 0. 8以上、 好ましくは 1以上であり、 2. 6以下、好ましくは 2. 4以下である。
さらに、(B)ヒドロシリル基含有ポリオルガノシロキサンは、 1分子中に少なくとも 2個 、好ましくは 3個以上の SiH結合を有する。 In the composition formula (6), the symbol a is usually a positive number of 0.7 or more, preferably 0.8 or more, and usually 2.1 or less, preferably 2 or less. The sign b is a positive number that is usually 0.001 or more, preferably 0.01 or more, and usually 1.0 or less. However, a + b is 0.8 or more, preferably 1 or more, 2.6 or less, preferably 2.4 or less. Further, the (B) hydrosilyl group-containing polyorganosiloxane has at least 2, preferably 3 or more SiH bonds in one molecule.
この(B)ヒドロシリル基含有ポリオルガノシロキサンの分子構造は、直鎖状、環状、 分岐状、三次元網状構造のいずれであってもよいが、 1分子中のケィ素原子の数 (又 は重合度)は、 3〜; 1000、特に 3〜300程度のものを使用することができる。 The molecular structure of the (B) hydrosilyl group-containing polyorganosiloxane may be any of linear, cyclic, branched, and three-dimensional network structures, but the number of silicon atoms in one molecule (or polymerization) The degree) can be 3 to 1000, especially about 3 to 300.
なお、(B)ヒドロシリル基含有ポリオルガノシロキサンは、 1種のみを用いても良ぐ 2 種以上を任意の組み合わせ及び比率で併用してもよい。 In addition, (B) hydrosilyl group containing polyorganosiloxane may use only 1 type, and may use 2 or more types together by arbitrary combinations and ratios.
[0212] 上記(B)ヒドロシリル基含有ポリオルガノシロキサンの配合量は、(A)アルケニル基 含有オルガノポリシロキサンの総アルケニル基量に依存する。具体的には、(A)ァノレ ケニル基含有オルガノポリシロキサンの総アルケニル基に対して、(B)ヒドロシリル基 含有ポリオルガノシロキサンの総 SiH量力 通常 0. 5モル倍以上、好ましくは 0. 8モ ノレ倍以上、また、通常 2. 0モル倍以下、好ましくは 1. 5モル倍以下となる量とすれば よい。 [0212] The blending amount of the (B) hydrosilyl group-containing polyorganosiloxane depends on the total alkenyl group amount of the (A) alkenyl group-containing organopolysiloxane. Specifically, the total SiH power of (B) hydrosilyl group-containing polyorganosiloxane with respect to the total alkenyl groups of (A) anoalkenyl group-containing organopolysiloxane is usually 0.5 mol times or more, preferably 0.8 mol. The amount may be not less than twice, and usually not more than 2.0 mol times, preferably not more than 1.5 mol times.
[0213] (C)付加反応触媒は、(A)アルケニル基含有オルガノポリシロキサン中のアルケニ ル基と(B)ヒドロシリル基含有ポリオルガノシロキサン中の SiH基とのヒドロシリル化付 加反応を促進するための触媒である。この(C)付加反応触媒としては、例えば、白金 黒、塩化第 2白金、塩化白金酸、塩化白金酸と一価アルコールとの反応物、塩化白 金酸とォレフィン類との錯体、白金ビスァセトアセテート等の白金系触媒、パラジウム 系触媒、ロジウム系触媒などの白金族金属触媒が挙げられる。 [0213] (C) The addition reaction catalyst promotes the hydrosilylation addition reaction between (A) an alkenyl group in an alkenyl group-containing organopolysiloxane and (B) a SiH group in a hydrosilyl group-containing polyorganosiloxane. It is a catalyst. Examples of the (C) addition reaction catalyst include platinum black, platinous chloride, chloroplatinic acid, a reaction product of chloroplatinic acid and a monohydric alcohol, a complex of chlorophosphoric acid and olefins, platinum bismuth. Examples thereof include platinum group catalysts such as platinum catalysts such as cetoacetate, palladium catalysts and rhodium catalysts.
なお、(C)付加反応触媒は、 1種のみを用いても良ぐ 2種以上を任意の組み合わ せ及び比率で併用してもよ!/、。 (C) Only one type of addition reaction catalyst may be used. Two or more types may be used in any combination and ratio.
この付加反応触媒の配合量は触媒量とすることができるが、通常、白金族金属とし て、(A)アルケニル基含有オルガノポリシロキサン及び(B)ヒドロシリル基含有ポリオ ルガノシロキサンの合計重量に対して、 lppm以上、特に 2ppm以上、また、 500pp m以下、特に lOOppm以下配合することが好ましい。 The compounding amount of this addition reaction catalyst can be a catalytic amount, but is usually based on the total weight of (A) an alkenyl group-containing organopolysiloxane and (B) a hydrosilyl group-containing polyorganosiloxane as a platinum group metal. 1 ppm or more, particularly 2 ppm or more, and 500 ppm or less, particularly preferably 10 ppm or less.
[0214] 付加型シリコーン系材料を得るための組成物には、上記 (A)アルケニル基含有ォ ノレガノポリシロキサン、(B)ヒドロシリル基含有ポリオルガノシロキサン及び(C)付加反 応触媒に加え、任意成分として硬化性、ポットライフを与えるための付加反応制御剤
、硬度 ·粘度を調節するための例えばアルケニル基を有する直鎖状のジオルガノポリ シロキサンの他にも直鎖状の非反応性オルガノポリシロキサン、ケィ素原子数が 2〜 10個程度の直鎖状又は環状の低分子オルガノポリシロキサンなどを本発明の効果 を損なわなレ、範囲で含有させても良レ、。 [0214] The composition for obtaining an addition-type silicone material includes (A) an alkenyl group-containing nonreganopolysiloxane, (B) a hydrosilyl group-containing polyorganosiloxane, and (C) an addition reaction catalyst. Addition control agent to give curability and pot life as optional components In addition to linear diorganopolysiloxane having an alkenyl group for adjusting hardness and viscosity, for example, linear non-reactive organopolysiloxane, linear having about 2 to 10 key atoms or A cyclic low molecular weight organopolysiloxane or the like may be incorporated in a range that does not impair the effects of the present invention.
[0215] 上記組成物の硬化条件は特に制限されないが、 120〜; 180°C、 30〜; 180分の条 件とすることが好ましい。得られる硬化物が硬化後にも柔らかいゲル状である場合に は、ゴム状や硬質プラスチック状のシリコーン樹脂と比較して線膨張係数大きいため 、室温付近の低温にて 10〜30時間硬化することにより内部応力の発生を抑制するこ と力 Sできる。 [0215] The curing conditions for the composition are not particularly limited, but are preferably 120 to 180 ° C, 30 to 180 minutes. When the cured product is a soft gel after curing, the linear expansion coefficient is larger than that of rubber resin or hard plastic silicone resin, so it can be cured at a low temperature around room temperature for 10 to 30 hours. Force S to suppress the generation of internal stress.
[0216] 付加型シリコーン系材料は公知のものを使用することができ、さらには金属やセラミ ッタスへの密着性を向上させる添加剤や有機基を導入しても良い。例えば、特許 39 09826号公報、特許 3910080号公報、特開 2003— 128922号公報、特開 2004 221308号公報、特開 2004— 186168号公報に記載のシリコーン材料が好適で ある。 [0216] As the addition-type silicone material, a known material can be used, and an additive or an organic group for improving adhesion to metal or ceramics may be further introduced. For example, silicone materials described in Japanese Patent Nos. 39 09826, 3910080, 2003-128922, 2004 221308, and 2004-186168 are suitable.
[0217] [B— 1 3— 2— 2]縮合型シリコーン系材料 [0217] [B— 1 3— 2-2] Condensation type silicone material
縮合型シリコーン系材料とは、例えば、アルキルアルコキシシランの加水分解 '重縮 合で得られる Si O Si結合を架橋点に有する化合物を挙げることができる。具体 的には、下記一般式(1)及び/又は(2)で表わされる化合物、及び/又はそのオリ ゴマーを加水分解 '重縮合して得られる重縮合物が挙げられる。 Examples of the condensation type silicone material include a compound having a Si 2 O 3 Si bond obtained by hydrolysis and polycondensation of an alkylalkoxysilane at a crosslinking point. Specific examples include a polycondensate obtained by hydrolysis and polycondensation of a compound represented by the following general formula (1) and / or (2) and / or its oligomer.
[0218] Mm+X Y1 (1) [0218] M m + XY 1 (1)
n m— n n m— n
(式(1)中、 Mは、ケィ素、アルミニウム、ジルコニウム、及びチタンからなる群より選択 される少なくとも 1種の元素を表わし、 Xは、加水分解性基を表わし、 Y1は、 1価の有 機基を表わし、 mは、 Mの価数を表わす 1以上の整数を表わし、 nは、 X基の数を表 わす 1以上の整数を表わす。但し、 m≥nである。 ) (In the formula (1), M represents at least one element selected from the group consisting of silicon, aluminum, zirconium, and titanium, X represents a hydrolyzable group, and Y 1 represents a monovalent group. M represents an integer of 1 or more that represents the valence of M, and n represents an integer of 1 or more that represents the number of X groups, where m≥n.)
[0219] (Ms+X Y1 ) Y2 (2) [0219] (M s + XY 1 ) Y 2 (2)
s - 1 s-1
(式(2)中、 Mは、ケィ素、アルミニウム、ジルコニウム、及びチタンからなる群より選択 される少なくとも 1種の元素を表わし、 Xは、加水分解性基を表わし、 Y1は、 1価の有 機基を表わし、 Y2は、 u価の有機基を表わし、 sは、 Mの価数を表わす 1以上の整数
を表わし、 tは、 1以上、 s— 1以下の整数を表わし、 uは、 2以上の整数を表わす。 ) (In the formula (2), M represents at least one element selected from the group consisting of silicon, aluminum, zirconium, and titanium, X represents a hydrolyzable group, and Y 1 represents a monovalent group. Y 2 represents a u-valent organic group, s represents an M valence, an integer of 1 or more T represents an integer of 1 or more and s—1 or less, and u represents an integer of 2 or more. )
[0220] [B— 1 3— 3]硬化触媒 [0220] [B— 1 3— 3] Curing catalyst
縮合型シリコーン系材料には、硬化触媒を含有させておいても良い。硬化触媒とし ては、本発明の効果を著しく損なわない限り任意のものを用いることができ、例えば、 アルコキシシリル基又はシラノールの脱水又は脱アルコール縮合に活性があるもの であればいずれのものを用いてもよい。具体例としては、 Ti、 Al、 Sn、 Ta、 Zn、 Zr、 Hf等の金属塩、金属キレート化合物、ァミンなどが挙げられる。中でも、金属キレート 化合物などが好ましい。金属塩及び金属キレート化合物は、 Ti、 Al、 Sn、 Ta、 Zn及 び Zrからなる群より選ばれるいずれ力、 1以上を含むものがより好ましぐ Zrを含むもの 力 Sさらに好ましい。なお、硬化触媒は、 1種のみを用いてもよぐ 2種以上を任意の組 み合わせ及び比率で併用してもよ!/、。 The condensation type silicone material may contain a curing catalyst. As the curing catalyst, any catalyst can be used as long as the effects of the present invention are not significantly impaired. For example, any catalyst can be used as long as it is active in the dehydration or dealcohol condensation of an alkoxysilyl group or silanol. May be. Specific examples include metal salts such as Ti, Al, Sn, Ta, Zn, Zr, and Hf, metal chelate compounds, and amines. Of these, metal chelate compounds are preferred. The metal salt and the metal chelate compound are any force selected from the group consisting of Ti, Al, Sn, Ta, Zn and Zr, and those containing 1 or more are more preferable. Only one type of curing catalyst may be used, or two or more types may be used in any combination and ratio! /.
[0221] [B- 1 - 3-4]シロキサン結合の確認方法 [0221] [B- 1-3-4] Confirmation method of siloxane bond
特定層 Bがシロキサン結合を有しているか否かは、固体 Si— NMR及び IR分析によ り確言忍すること力 Sでさる。 Whether or not the specific layer B has a siloxane bond can be confirmed by solid S-NMR and IR analysis.
[0222] [B— 1 4]その他特性 [0222] [B— 1 4] Other characteristics
本発明の第五〜第八の導光部材の特定層 Bは、上記特性を主な特徴とするが、そ の他、下記の構造や性質を有してレ、ることが好ましレ、。 The specific layers B of the fifth to eighth light guide members of the present invention are mainly characterized by the above-mentioned characteristics, but preferably have the following structure and properties. .
[0223] [B— 1 4 1]UV透過率 [0223] [B— 1 4 1] UV transmittance
本発明に係る特定層 Bは、半導体発光素子などを光源として、光導波路または導 光板などに用いる場合には、膜厚 lmmでの前記光源の発光波長における光透過率 (透過度)が、通常 80%以上、中でも 85%以上、更には 90%以上であることが好まし い。導光部材において特定層 Bを透光性部として用いる場合、この透光性部の透明 度が低いと、これを用いた光源の輝度が低減するため、高輝度な光導波路または導 光板などの最終製品を得ることが困難になる。 When the specific layer B according to the present invention is used for an optical waveguide or a light guide plate with a semiconductor light emitting element as a light source, the light transmittance (transmittance) at the emission wavelength of the light source at a film thickness of 1 mm is usually It is preferable to be 80% or more, particularly 85% or more, and more preferably 90% or more. When the specific layer B is used as the translucent part in the light guide member, if the translucency of the translucent part is low, the luminance of the light source using the translucent part is reduced. It becomes difficult to obtain the final product.
[0224] ここで「光源の発光波長」とは、例えば半導体発光素子の場合、その種類に応じて 値が異なる力 一般的には、通常 300nm以上、好ましくは 350nm以上、また、通常 900nm以下、好ましくは 500nm以下の範囲の波長を指す。この範囲の波長におけ る光透過率が低いと、特定層 Bが光を吸収してしまい、光取り出し効率が低下して、
高輝度の光導波路または導光板などを得ることができなくなる。更に、光取り出し効 率が低下した分のエネルギーは熱に変わり、光導波路または導光板などの熱劣化の 原因となるため好ましくない。 Here, the “emission wavelength of the light source” means, for example, a power that varies depending on the type of the semiconductor light emitting device. Generally, it is usually 300 nm or more, preferably 350 nm or more, and usually 900 nm or less. Preferably, it refers to a wavelength in the range of 500 nm or less. If the light transmittance at wavelengths in this range is low, the specific layer B absorbs light and the light extraction efficiency decreases, A high-intensity optical waveguide or light guide plate cannot be obtained. Furthermore, the energy corresponding to the decrease in the light extraction efficiency is changed to heat, which causes thermal deterioration of the optical waveguide or the light guide plate, which is not preferable.
[0225] なお、紫外〜青色領域 (波長 300nm〜500nm)においては光学材料が光劣化し やすいので、この領域に発光波長を有する光源に、耐久性に優れた本発明に係る 特定層 Bを使用すれば、その効果が大きくなるので好まし!/、。 [0225] In the ultraviolet to blue region (wavelength 300 nm to 500 nm), the optical material is likely to be light-degraded. Therefore, the specific layer B according to the present invention having excellent durability is used as a light source having an emission wavelength in this region. If so, the effect will be great!
なお、特定層 Bの材料等の光学材料の光透過率は、例えば以下の手法により、膜 厚 lmmに成形した平滑な表面の単独硬化物膜のサンプルを用いて、紫外分光光度 計により測定することカできる。 The light transmittance of the optical material such as the material of the specific layer B is measured with an ultraviolet spectrophotometer using a sample of a single cured film having a smooth surface molded to a film thickness of 1 mm by the following method, for example. I can do that.
[0226] 〔光透過率の測定〕 [Measurement of light transmittance]
光学材料の、傷や凹凸による散乱の無い厚さ約 lmmの平滑な表面の単独硬化物 膜を用いて、紫外分光光度計(島津製作所製 UV— 3100)を使用し、波長 200nm 〜800nmにお!/、て光透過率測定を行なう。 Using an ultraviolet spectrophotometer (Shimadzu Corporation UV-3100) using a single-cured film with a smooth surface with a thickness of about lmm that is free from scattering due to scratches and unevenness of the optical material, the wavelength is between 200 nm and 800 nm. ! /, Measure the light transmittance.
[0227] [B— 1 4 2]分子量 [0227] [B— 1 4 2] Molecular weight
本発明に係る特定層 Bを形成する材料の分子量に制限は無い。ただし、特定層 B の形成に用いる塗布液(後述する特定層形成液 B)は、当該特定層 Bを形成している 材料を GPC (ゲルパーミエーシヨンクロマトグラフィー)で測定したポリスチレン換算の 重量平均分子量 (Mw)が、通常 200以上、好ましくは 500以上、より好ましくは 900 以上、更に好ましくは 3200以上であり、通常 400, 000以下、好ましくは 70, 000以 下、更に好ましくは 50, 000以下である。重量平均分子量が小さすぎると、硬化時に 揮発したり、反応性に富むアルコキシ基、水酸基、ビュル基、ヒドロシリル基等の架橋 性末端を高濃度に含有するため液の保存安定性及び硬化物の耐久性を確保できな かったり、高濃度の触媒を要するため、青色〜紫外 LEDの近傍で用いた場合に触 媒由来の透過率低下を招いたりする傾向がある。一方、重量平均分子量が大きすぎ ると、液が高い粘度になるため塗布時のレべリング性が不良となったり、微細な配線 及び基板上の凹凸部分への浸透性及び液のまわり込みが不十分となるため充填効 率が悪くなつたりする傾向がある。 There is no restriction | limiting in the molecular weight of the material which forms the specific layer B which concerns on this invention. However, the coating liquid used for forming the specific layer B (specific layer forming liquid B described later) is a polystyrene-converted weight average obtained by measuring the material forming the specific layer B by GPC (gel permeation chromatography). The molecular weight (Mw) is usually 200 or more, preferably 500 or more, more preferably 900 or more, more preferably 3200 or more, and usually 400,000 or less, preferably 70,000 or less, more preferably 50,000 or less. It is. If the weight average molecular weight is too small, it will volatilize during curing or contain a high concentration of crosslinkable terminals such as alkoxy groups, hydroxyl groups, bur groups, hydrosilyl groups, etc. Therefore, when used in the vicinity of blue to ultraviolet LEDs, there is a tendency for the transmittance from the catalyst to decrease. On the other hand, if the weight average molecular weight is too large, the liquid will have a high viscosity, resulting in poor leveling during coating, penetration of fine wiring and uneven parts on the substrate, and spilling of the liquid. There is a tendency for the filling efficiency to become poor due to insufficiency.
なお、例えばビュル基とヒドロシリル基の架橋により硬化する特定層 Bを形成する場
合などには、貯蔵安定性と使用時間との両立のために特定層形成液 Bを 2種以上併 用した 2液型とすることもある。この場合、前記の重量平均分子量は、併用する液を混 合した後の特定層形成液 Bの値である。また、分子量分布が二山、三山等の 2以上 のピークを有する形状を示す場合、その全区間を通じた平均値を重量平均分子量の 値として用いる。 For example, when forming a specific layer B that is cured by cross-linking of a bull group and a hydrosilyl group. In some cases, in order to achieve both storage stability and operating time, a two-component type using two or more types of specific layer forming liquid B may be used. In this case, the weight average molecular weight is the value of the specific layer forming liquid B after mixing the liquids to be used together. In addition, when the molecular weight distribution shows a shape having two or more peaks such as two peaks and three peaks, the average value over the entire section is used as the weight average molecular weight value.
[0228] [B— 1 4 3]タック性 [0228] [B— 1 4 3] Tackiness
本発明に係る特定層 Bは、その表面のタック性が低いことが好ましい。一般にシリコ ーンゴムは、その硬化物表面にタック性(ベたつき)を有する。しかし、タック性が高い と製品同士がスタツキングして、製造工程の途中で製品個別に取り扱えなくなったり、 搬送が良好に行なえなくなったりする可能性がある。 The specific layer B according to the present invention preferably has a low tackiness on the surface. In general, silicone rubber has tackiness (stickiness) on the surface of the cured product. However, if the tackiness is high, the products may be stacked and may not be handled individually during the manufacturing process, or may not be transported satisfactorily.
[0229] [B— 1 4 4]引っ張り応力 [0229] [B— 1 4 4] Tensile stress
物体に外力を加えた時、その物体が原形を保っために抵抗しょうとする力を引っ張 り応力という。特定層 Bには応力緩和力があり、曲げ及び変形などの外力に追随する ことが好ましい。好ましい特定層 Bの引っ張り応力の範囲としては、通常 0. IMPa以 上、好ましくは 0. 3MPa以上、より好ましくは 0. 4MPa以上であり、また、上限は通常 50MPa以下、好ましくは 30MPa以下、より好ましくは 20MPa以下である。引っ張り 応力が小さすぎると機械的強度が不足して導光板用途には不適当になる可能性が あり、大きすぎると応力緩和力が不足する硬い材料となる可能性がある。ただし、ねじ れ及び反り等の変形が生じにくい厚い基板に特定層 Bを設ける場合、特定層 Bの引 つ張り応力は任意である。また、厚さ 500 m以下のフレキシブル基板に特定層 Bを 設ける場合、特定層 Bは、応力緩和しうるとともに、引っ張り応力が 0. IMPa以上、 2 OMPa以下であることが特に好まし!/、。 When an external force is applied to an object, the force that resists the object in order to maintain its original shape is called tensile stress. The specific layer B has a stress relaxation force and preferably follows external forces such as bending and deformation. The preferred tensile stress range of the specific layer B is usually 0. IMPa or more, preferably 0.3 MPa or more, more preferably 0.4 MPa or more, and the upper limit is usually 50 MPa or less, preferably 30 MPa or less. Preferably it is 20 MPa or less. If the tensile stress is too small, the mechanical strength is insufficient and may be unsuitable for light guide plate applications. If it is too large, the material may be a hard material with insufficient stress relaxation force. However, when the specific layer B is provided on a thick substrate where deformation such as twisting and warping is not likely to occur, the tensile stress of the specific layer B is arbitrary. In addition, when the specific layer B is provided on a flexible substrate having a thickness of 500 m or less, it is particularly preferable that the specific layer B can relieve stress and that the tensile stress is 0. IMPa or more and 2 OMPa or less! /, .
なお、引張り応力は、 JIS K6250に基づき測定できる。 The tensile stress can be measured based on JIS K6250.
[0230] [B— 1 5·その他の層] [0230] [B— 1 5 Other layers]
本発明の第五〜第八の導光部材は、当該特定層 B以外にも層を有していても良い 。このような特定層 B以外の層としては、公知の層を任意に適用することが可能である 。また、特定層 B以外の層は、 1層のみが設けられていても良ぐ 2層以上が設けられ ていても良い。
ただし、本発明の効果をより顕著に得るためには、本発明の第五〜第八の導光部 材が有する層のうち、より多くが前記の特定層 Bとしての特性を有していることが好ま しぐ全ての層が前記の特定層 Bとしての特性を有していることがより好ましい。 The fifth to eighth light guide members of the present invention may have layers other than the specific layer B. As such a layer other than the specific layer B, a known layer can be arbitrarily applied. In addition to the specific layer B, only one layer may be provided, or two or more layers may be provided. However, in order to obtain the effect of the present invention more remarkably, more of the layers of the fifth to eighth light guide members of the present invention have the characteristics as the specific layer B. It is more preferable that all the layers have the characteristics as the specific layer B described above.
[0231] [B— 1 6]導光部材の各層の作製方法 [0231] [B— 1 6] Method for producing each layer of light guide member
本発明の第五〜第八の導光部材を製造する方法は特に制限されない。したがって 、本発明の第五〜第八の導光部材を構成する各層は、それぞれ、任意の方法により 製造できる。通常は、液状の各層の材料 (即ち、形成液)を所望の部位に塗布して塗 膜を形成し、当該塗膜を熱や光などによって硬化させて作製することができる。した がって、特定層 Bは、例えば、液状の特定層 Bの材料 (以下適宜、「特定層形成液 B」 という)を所望の部位に塗布して塗膜を形成し、当該塗膜を熱や光などによって硬化 させて作製すること力 Sでさる。 The method for producing the fifth to eighth light guide members of the present invention is not particularly limited. Therefore, each layer constituting the fifth to eighth light guide members of the present invention can be manufactured by any method. Usually, a liquid material (that is, a forming solution) for each layer is applied to a desired site to form a coating film, and the coating film is cured by heat or light. Therefore, the specific layer B is formed by, for example, applying a liquid material of the specific layer B (hereinafter referred to as “specific layer forming liquid B”) to a desired part to form a coating film. It can be made by curing with heat or light.
[0232] さらに、特定層 Bを作製する際には、上述した好ましい特性を特定層 Bにより確実に 備えさせるため、適宜、プライマー処理を行なうことが好ましい。一般に、下地層の上 に上層を積層する際に、下地層に直接上層を積層する場合には、上層の自己接着 性が不十分で剥離等が生じることがある。これを防止するため、必要に応じ、下地層 と上層との両方に対して接着性を有する接着層を、下地層と上層との間に中間層とし て塗布することがある。このように接着性を有する中間層を下地層の上に塗布するこ とをプライマー処理と呼び、その塗布液をプライマーという。このプライマー処理により 、本来接着性が不十分な二層を簡便に密着性が高い状態で積層することができる。 なお、極性基を含まない下地層にプライマーを塗布して極性基を含まない上層との 密着性を向上させることも可能である。この場合、プライマー自身が界面の極性基と 同様に働く。なお、プライマー処理により形成されるプライマー層の膜厚は本発明の 効果を著しく損なわない限り任意である力 通常 10 m以下、中でも 5 m以下が好 ましい。 [0232] Furthermore, when producing the specific layer B, it is preferable to appropriately perform primer treatment in order to ensure that the specific layer B has the above-mentioned preferable characteristics. In general, when an upper layer is laminated on the underlayer, if the upper layer is laminated directly on the underlayer, the self-adhesive property of the upper layer may be insufficient and peeling may occur. In order to prevent this, if necessary, an adhesive layer having adhesiveness to both the base layer and the upper layer may be applied as an intermediate layer between the base layer and the upper layer. Applying such an adhesive intermediate layer on the underlayer is called primer treatment, and the coating solution is called a primer. By this primer treatment, two layers that are inherently insufficient in adhesion can be easily laminated with high adhesion. It is also possible to improve the adhesion with an upper layer not containing a polar group by applying a primer to the base layer not containing a polar group. In this case, the primer itself works in the same way as the polar group at the interface. The film thickness of the primer layer formed by the primer treatment is an arbitrary force as long as the effect of the present invention is not significantly impaired.
[0233] また、特定層 B又は当該特定層 Bに接触する他の層若しくは部材に、表面処理を 行なうようにしてもよい。そのような表面処理の例としては、例えばプライマーゃシラン カップリング剤を用いた密着改善層の形成、酸やアルカリなどの薬品を用いた化学 的表面処理、プラズマ照射やイオン照射 ·電子線照射を用いた物理的表面処理、サ
ンドブラストやエッチング '微粒子塗布などによる粗面化処理等が挙げられる。また、 密着性改善のための表面処理としては、その他に例えば、特開平 5— 25300号公報 、稲垣訓宏著「表面化学」 Vol. 18 No. 9、pp21— 26、黒崎和夫著「表面化学」 Vo 1. 19 No. 2、 pp44— 51 (1998)等に開示される公知の表面処理方法が挙げられ る。さらに、オゾン処理を行なうことも可能である。 [0233] Further, the specific layer B or another layer or member in contact with the specific layer B may be subjected to a surface treatment. Examples of such surface treatment include, for example, formation of an adhesion improving layer using a primer-silane coupling agent, chemical surface treatment using a chemical such as acid or alkali, plasma irradiation, ion irradiation or electron beam irradiation. Used physical surface treatment, support And surface blasting by etching or fine particle coating. Other surface treatments for improving adhesion include, for example, JP-A-5-25300, Nobuhiro Inagaki “Surface Chemistry” Vol. 18 No. 9, pp21-26, Kuroo Kurosaki “Surface Chemistry” ”Vo 1.19 No. 2, pp44-51 (1998), etc., may be known surface treatment methods. Furthermore, ozone treatment can be performed.
[0234] [B— 2]光源 [0234] [B-2] Light source
本発明の第五及び第七の導光部材は、光源を備える。また、本発明の第六及び第 八の導光部材は、光源を備えていても良い。通常、本発明の第五〜第八の導光部 材は、この光源から発せられた光を伝送し、そのまま又は波長を変換してから、外部 に放射するようになっている。 The fifth and seventh light guide members of the present invention include a light source. Moreover, the sixth and eighth light guide members of the present invention may include a light source. Normally, the fifth to eighth light guide members of the present invention transmit light emitted from the light source and emit the light as it is or after converting the wavelength.
ただし、本発明の第五及び第七の導光部材においては、この光源の発光ピークの 主波長の波長は、 900nm以下であり、好ましくは 700nm以下、より好ましくは 500η m以下である。光源の発光ピークの主波長の波長が長すぎると光線が熱線となり導 光部材の損傷の一因となったり導光部材の構成部材に吸収されて伝送損失が生じ たりする可能性がある。なお、当該発光ピークの波長の下限に制限は無いが、通常 3 00nm以上、好ましくは 350nm以上、より好ましくは 400nm以上である。光源の発光 ピークの主波長の波長が短すぎると光線は高エネルギーの紫外線となり、導光部材 の透過率低下を招く可能性がある。 However, in the fifth and seventh light guide members of the present invention, the wavelength of the main wavelength of the light emission peak of this light source is 900 nm or less, preferably 700 nm or less, more preferably 500 ηm or less. If the wavelength of the main wavelength of the light emission peak of the light source is too long, the light beam becomes a heat ray and may cause damage to the light guide member or may be absorbed by the constituent members of the light guide member to cause transmission loss. The lower limit of the wavelength of the emission peak is not limited, but is usually 300 nm or more, preferably 350 nm or more, more preferably 400 nm or more. If the wavelength of the main wavelength of the light emission peak of the light source is too short, the light beam becomes high-energy ultraviolet light, which may reduce the transmittance of the light guide member.
[0235] 前記の発光ピークを有する光を発するものである限り、光源の種類に制限は無いが 、通常は半導体発光素子を用いる。その例を挙げると、発光ダイオード (LED)また はレーザーダイオード(LD)等を挙げることができる。その中でも、 GaN系化合物半 導体を使用した、 GaN系 LEDや LDが好ましい。なぜなら、 GaN系 LEDや LDは、こ の領域の光を発する SiC系 LED等に比し、発光出力や外部量子効率が格段に大き ぐ後述する蛍光体と組み合わせることによって、非常に低電力で非常に明るい発光 が得られる力、らである。例えば、 20mAの電流負荷に対し、通常 GaN系 LEDや LD は SiC系の 100倍以上の発光強度を有する。 GaN系 LEDや LDにおいては、 Al Ga [0235] The type of the light source is not limited as long as it emits light having the above-described emission peak, but a semiconductor light emitting element is usually used. For example, a light emitting diode (LED) or a laser diode (LD) can be given. Of these, GaN-based LEDs and LDs using GaN-based compound semiconductors are preferred. This is because GaN-based LEDs and LDs are extremely low power and extremely low power when combined with phosphors described later, whose light output and external quantum efficiency are significantly higher than SiC LEDs that emit light in this region. The power to obtain bright light emission. For example, for a current load of 20 mA, GaN-based LEDs and LDs usually have a light emission intensity that is more than 100 times that of SiC. For GaN-based LEDs and LDs, Al Ga
X X
N発光層、 GaN発光層、または In Ga N発光層を有しているものが好ましい。 GaN Those having an N light emitting layer, a GaN light emitting layer, or an InGa N light emitting layer are preferred. GaN
Y X Y Y X Y
系 LEDにおいては、それらの中で In Ga N発光層を有するものが発光強度が非常
に強いので、特に好ましぐ GaN系 LDにおいては、 In Ga N層と GaN層の多重量 Among these LEDs, those with an InGaN emission layer have a very high emission intensity. For GaN-based LDs, which are particularly preferred, multiple amounts of InGaN and GaN layers
X Y X Y
子井戸構造のものが発光強度が非常に強レ、ので、特に好ましレ、。 The one with the well structure is particularly preferred because the emission intensity is very strong.
[0236] なお、上記において X + Yの値は通常 0. 8〜; 1. 2の範囲の値である。 GaN系 LED において、これら発光層に Znや Siをドープしたものやドーパント無しのものが発光特 性を調節する上で好ましレ、ものである。 In the above, the value of X + Y is usually a value in the range of 0.8 to 1.2. In GaN-based LEDs, these light-emitting layers doped with Zn or Si or those without dopants are preferred for adjusting the light emission characteristics.
GaN系 LEDはこれら発光層、 p層、 n層、電極、および基板を基本構成要素とした ものであり、発光層を n型と p型の Al Ga N層、 GaN層、または In Ga N層などでサ GaN-based LEDs have these light-emitting layers, p-layers, n-layers, electrodes, and substrates as basic components. The light-emitting layers are n-type and p-type AlGaN layers, GaN layers, or InGaN layers. Etc.
X Y X Y X Y X Y
ンドイッチにしたへテロ構造を有しているものが発光効率が高ぐ好ましぐさらにへテ 口構造を量子井戸構造にしたものが発光効率がさらに高ぐより好ましい。 Those having a heterostructure in the form of a neutral switch are preferred because the luminous efficiency is high, and those having a heterostructure in the quantum well structure are more preferred because the luminous efficiency is further high.
[0237] なお、本発明の第五〜第八の導光部材は、光源を、 1個のみを備えていてもよぐ 2 個以上を任意の組み合わせ及び比率で備えていても良い。また、本発明の第五〜 第八の導光部材は、前記の光源に加えて、上記の波長範囲に発光ピークの主波長 を有さない別の光源を備えていても良い。さらに、光源は、いわゆる赤色、緑色、青 色等の発光色が異なる光源を複数組み合わせて備えて!/、ても良レ、。 [0237] Note that the fifth to eighth light guide members of the present invention may include only one light source or two or more light sources in any combination and ratio. Further, the fifth to eighth light guide members of the present invention may include another light source that does not have the main wavelength of the emission peak in the above wavelength range, in addition to the above light source. In addition, the light source is equipped with a combination of multiple light sources with different emission colors such as red, green, and blue!
[0238] [C.第一〜第八の導光部材に共通の事項の説明] [0238] [C. Description of matters common to first to eighth light guide members]
[C 1]その他の成分 [C 1] Other ingredients
前記特定層 A及び特定層 B (以下、特定層 Aと特定層 Bとを区別せずに指す場合、 適宜「特定層」ということがある。また、特定層形成液 Aと特定層形成液 Bとを区別せ ずに指す場合、適宜「特定層形成液」ということがある。)には、本発明の要旨を逸脱 しない限り、任意の成分を含有させることができる。したがって、用途によっては、特 定層及び特定層形成液は、上述した加水分解 '重縮合物以外にその他の成分を含 有していてもよい。例えば、必要に応じて特定層及び特定層形成液に蛍光体や無機 粒子などを含有させてもよい。また、その他の成分は、 1種のみを用いても良ぐ 2種 以上を任意の組み合わせ及び比率で併用しても良い。なお、これらのその他の成分 は、本発明の第一〜第八の導光部材を構成する特定層以外の層に含有させても良 い。なお、以下、本発明の第一〜第八の導光部材を区別せずに指す場合、適宜「導 光部材」ということがある。 The specific layer A and the specific layer B (hereinafter, when the specific layer A and the specific layer B are referred to without distinction, they may be referred to as “specific layer” as appropriate. In addition, the specific layer forming liquid A and the specific layer forming liquid B When referring to them without distinction, they may be referred to as “specific layer forming liquid” as appropriate.) Any component can be contained without departing from the gist of the present invention. Therefore, depending on the application, the specific layer and the specific layer forming liquid may contain other components in addition to the above-mentioned hydrolysis polycondensate. For example, if necessary, the specific layer and the specific layer forming liquid may contain phosphors, inorganic particles, and the like. In addition, other components may be used alone, or two or more may be used in any combination and ratio. In addition, you may contain these other components in layers other than the specific layer which comprises the 1st-8th light guide member of this invention. Hereinafter, when referring to the first to eighth light guide members of the present invention without distinction, they may be appropriately referred to as “light guide members”.
以下、蛍光体および無機粒子について説明する。
[0239] [C 1 1]蛍光体 Hereinafter, the phosphor and the inorganic particles will be described. [0239] [C 1 1] phosphor
本発明の導光部材は、例えば、後述する蛍光体含有層([C 2— 3— 4]参照)中 に蛍光体を含有することができる。なお、蛍光体は 1種類を単独で用いてもよぐ 2種 類以上を任意の組み合わせ及び比率で併用しても良い。また、蛍光体は、本発明の 導光部材を構成する層のうち、 2層以上に含有されて!/、ても良レ、。 The light guide member of the present invention can contain, for example, a phosphor in a phosphor-containing layer (see [C 2-3-4]) described later. The phosphors may be used alone or in combination of two or more in any combination and ratio. Also, the phosphor is contained in two or more layers among the layers constituting the light guide member of the present invention!
[0240] [C 1 1 1]蛍光体の種類 [0240] [C 1 1 1] Types of phosphor
蛍光体の組成には特に制限はないが、結晶母体である Y O 、 Zn SiO等に代表 There are no particular restrictions on the composition of the phosphor, but it is typically represented by the crystal matrix Y O, Zn SiO, etc.
2 3 2 4 される金属酸化物、 Ca (PO ) C1等に代表されるリン酸塩及び ZnS、 SrS、 CaS等 2 3 2 4 Metal oxides, phosphates typified by Ca (PO) C1, etc. and ZnS, SrS, CaS, etc.
5 4 3 5 4 3
に代表される石) ¾ィ匕物に、 Ce、 Pr、 Nd、 Pm、 Sm、 Eu、 Tb、 Dy、 Ho, Er、 Tm、 Yb等 の希土類金属のイオンや Ag、 Cu、 Au、 Al、 Mn、 Sb等の金属のイオンを付活剤ま たは共付活剤として組み合わせたものが好ましい。 石 匕 匕, Ce, Pr, Nd, Pm, Sm, Eu, Tb, Dy, Ho, Er, Tm, Yb, and other rare earth metal ions, Ag, Cu, Au, Al, A combination of metal ions such as Mn and Sb as an activator or coactivator is preferred.
[0241] 結晶母体の好ましい例としては、例えば、(Zn, Cd) S、 SrGa S 、 SrS、 ZnS等の [0241] Preferred examples of the crystal matrix include (Zn, Cd) S, SrGa S, SrS, ZnS, etc.
2 4 twenty four
硫化物、 Y O S等の酸硫化物、(Y, Gd) Al O 、 YAIO、 BaMgAl O 、 (Ba, S Sulfides, oxysulfides such as Y O S, (Y, Gd) Al O, YAIO, BaMgAl O, (Ba, S
2 2 3 5 12 3 10 17 2 2 3 5 12 3 10 17
r) (Mg, Mn)Al O 、 (Ba, Sr, Ca) (Mg, Zn, Mn)Al O 、 BaAl O 、 CeMg r) (Mg, Mn) Al O, (Ba, Sr, Ca) (Mg, Zn, Mn) Al O, BaAl O, CeMg
10 17 10 17 12 19 10 17 10 17 12 19
Al O 、 (Ba, Sr, Mg) 0 -Al O、 BaAl Si O、 SrAl O、 Sr Al O 、 Y Al O Al O, (Ba, Sr, Mg) 0 -Al O, BaAl Si O, SrAl O, Sr Al O, Y Al O
11 19 2 3 2 2 8 2 4 4 14 25 3 5 12 等のアルミン酸塩、 Y SiO 、 Zn SiO等の珪酸塩、 SnO 、 Y Ο等の酸化物、 GdM 11 19 2 3 2 2 8 2 4 4 14 25 3 5 12 etc. aluminate, Y SiO, Zn SiO etc. silicate, SnO, Y O etc. oxide, GdM
2 5 2 4 2 2 3 2 5 2 4 2 2 3
gB O 、(Y, Gd) BO等の硼酸塩、 Ca (PO ) (F, CI) 、 (Sr, Ca, Ba, Mg) ( borate such as gB 2 O 3, (Y, Gd) BO, Ca (PO 2) (F, CI), (Sr, Ca, Ba, Mg) (
5 10 3 10 4 6 2 10 5 10 3 10 4 6 2 10
PO ) CI等のハロリン酸塩、 Sr P O、 (La, Ce) PO等のリン酸塩等を挙げることがHalophosphates such as PO) CI, phosphates such as SrPO, (La, Ce) PO, etc.
4 6 2 2 2 7 4 4 6 2 2 2 7 4
できる。 it can.
[0242] ただし、上記の結晶母体及び付活剤または共付活剤は、元素組成には特に制限 はなく、同族の元素と一部置き換えることもでき、得られた蛍光体は近紫外から可視 領域の光を吸収して可視光を発するものであれば用いることが可能である。 [0242] However, the above-mentioned crystal matrix and activator or coactivator are not particularly limited in element composition, and can be partially replaced with elements of the same family, and the obtained phosphor is visible from near ultraviolet. Any material that absorbs light in a region and emits visible light can be used.
具体的には、蛍光体として以下に挙げるものを用いることが可能である力 これらは あくまでも例示であり、本発明で使用できる蛍光体はこれらに限られるものではない。 なお、本明細書における蛍光体の例示では、構造の一部のみが異なる蛍光体を、適 宜省略して示している。例えば、「Y SiO : Ce3+」、「Y SiO : Tb3+」及び「Y SiO : Specifically, the following can be used as phosphors, and these are merely examples, and phosphors that can be used in the present invention are not limited to these. In the examples of the phosphors in this specification, phosphors that differ only in part of the structure are appropriately omitted. For example, “Y SiO: Ce 3+ ”, “Y SiO: Tb 3+ ” and “Y SiO:
2 5 2 5 2 5 2 5 2 5 2 5
Ce3+, Tb3+」を「Y SiO : Ce3+, Tb3+」と、「La O S : Eu」、「Y O S : Eu」及び「(: La “Ce 3+ , Tb 3+ ” and “Y SiO: Ce 3+ , Tb 3+ ” and “La OS: Eu”, “YOS: Eu” and “(: La
2 5 2 2 2 2 2 5 2 2 2 2
, Y) O 3 : £11」を「(1^, Y) O S : Eu」とまとめて示している。省略箇所はカンマ(, ) , Y) O 3: £ 11 ”together with“ (1 ^, Y) O S: Eu ”. The omitted part is a comma (,)
2 2 2 2
で区切って示す。 2 2 2 2 Shown separated by.
[C 1 1 1 1]赤色蛍光体 [C 1 1 1 1] Red phosphor
赤色の蛍光を発する蛍光体(以下適宜、「赤色蛍光体」と!、う)が発する蛍光の具体 的な波長の範囲を例示すると、ピーク波長が、通常 570nm以上、好ましくは 580nm 以上、また、通常 700nm以下、好ましくは 680nm以下が望ましい。 Illustrating the specific wavelength range of the fluorescence emitted by the phosphor emitting red fluorescence (hereinafter referred to as “red phosphor” as appropriate), the peak wavelength is usually 570 nm or more, preferably 580 nm or more, Usually, it is 700 nm or less, preferably 680 nm or less.
[0244] 二のような赤色蛍光体としては、例えば、赤色破断面を有する破断粒子から構成さ れ、赤色領域の発光を行なう(Mg, Ca, Sr, Ba) Si N : Euで表わされるユウ口ピウ [0244] Examples of red phosphors such as two are composed of fractured particles having a red fracture surface, and emit light in the red region (Mg, Ca, Sr, Ba) SiN: Eu represented by Eu. Mouth piu
2 5 8 2 5 8
ム付活アルカリ土類シリコンナイトライド系蛍光体、規則的な結晶成長形状としてほぼ 球形状を有する成長粒子から構成され、赤色領域の発光を行なう (Y, La, Gd, Lu) O S : Euで表わされるユウ口ピウム付活希土類ォキシカルコゲナイド系蛍光体等が Activated alkaline earth silicon nitride phosphor, composed of growing particles with a nearly spherical shape as a regular crystal growth shape, and emits light in the red region (Y, La, Gd, Lu) OS: Eu The rare earth oxychalcogenide-based phosphor activated by the pyrudium represented by
2 2 twenty two
挙げられる。 Can be mentioned.
[0245] さらに、特開 2004— 300247号公幸 に記載された、 Ti、 Zr、 Hf、 Nb、 Ta、 W、及 び Moよりなる群から選ばれる少なくも 1種の元素を含有する酸窒化物及び/又は酸 硫化物を含有する蛍光体であって、 A1元素の一部又は全てが Ga元素で置換された アルファサイアロン構造をもつ酸窒化物を含有する蛍光体も用いることができる。な お、これらは酸窒化物及び/又は酸硫化物を含有する蛍光体である。 [0245] Further, an oxynitride containing at least one element selected from the group consisting of Ti, Zr, Hf, Nb, Ta, W, and Mo described in JP-A-2004-300247 It is also possible to use a phosphor containing an oxysulfide and containing an oxynitride having an alpha sialon structure in which part or all of the A1 element is substituted with a Ga element. These are phosphors containing oxynitrides and / or oxysulfides.
[0246] また、そのほか、赤色蛍光体としては、例えば (La, Y) O S : Eu等の Eu付活酸硫 [0246] In addition, as red phosphors, for example, Eu-activated oxysulfur such as (La, Y) O S: Eu
2 2 twenty two
化物蛍光体、 Y(V, P) 0 : Eu、 Y Ο : Eu等の Eu付活酸化物蛍光体、 (Ba, Sr, Ca Compound phosphor, Y (V, P) 0: Eu, Y :: Eu-activated oxide phosphor such as Eu, (Ba, Sr, Ca)
4 2 3 4 2 3
, Mg) SiO : Eu, Mn、 (Ba, Mg) SiO : Eu, Mn等の Eu, Mn付活珪酸塩蛍光体 , Mg) SiO: Eu, Mn, (Ba, Mg) SiO: Eu, Mn activated silicate phosphor such as Eu, Mn
2 4 2 4 2 4 2 4
、 (Ca, Sr) S : Eu等の Eu付活硫化物蛍光体、 YA1〇 : Eu等の Eu付活アルミン酸塩 , (Ca, Sr) S: Eu-activated sulfide phosphors such as Eu, etc. YA10: Eu-activated aluminate such as Eu
3 Three
蛍光体、 LiY (SiO ) O : Eu, Ca Y (SiO ) 〇 :Eu、 (Sr, Ba, Ca) SiO : Eu、 S Phosphor, LiY (SiO 2) O: Eu, Ca Y (SiO 2) 0: Eu, (Sr, Ba, Ca) SiO: Eu, S
9 4 6 2 2 8 4 6 2 3 5 r BaSiO : Eu等の Eu付活珪酸塩蛍光体、(Y, Gd) Al O : Ce、(Tb, Gd) Al〇 9 4 6 2 2 8 4 6 2 3 5 r BaSiO: Eu-activated silicate phosphor such as Eu, (Y, Gd) Al 2 O: Ce, (Tb, Gd) Al 0
2 5 3 5 12 3 52 5 3 5 12 3 5
: Ce等の Ce付活アルミン酸塩蛍光体、(Ca, Sr, Ba) Si N : Eu、 (Mg, Ca, Sr,: Ce-activated aluminate phosphor such as Ce, (Ca, Sr, Ba) Si N: Eu, (Mg, Ca, Sr,
12 2 5 8 12 2 5 8
Ba) SiN : Eu、 (Mg, Ca, Sr, Ba)AlSiN : Eu等の Eu付活窒化物蛍光体、 (Mg, Ba) SiN: Eu, (Mg, Ca, Sr, Ba) AlSiN: Eu-activated nitride phosphors such as Eu, (Mg,
2 3 twenty three
Ca, Sr, Ba)AlSiN : Ce等の Ce付活窒化物蛍光体、 (Sr, Ca, Ba, Mg) (PO ) Ca, Sr, Ba) AlSiN: Ce-activated nitride phosphors such as Ce, (Sr, Ca, Ba, Mg) (PO)
3 10 4 6 3 10 4 6
CI : Eu, Mn等の Eu, Mn付活ハロリン酸塩蛍光体、 (Ba Mg) Si O : Eu, Mn、 (BCI: Eu, Mn-activated halophosphate phosphors such as Eu, Mn, (Ba Mg) Si O: Eu, Mn, (B
2 3 2 8 2 3 2 8
a, Sr, Ca, Mg) (Zn, Mg) Si O : Eu, Mn等の Eu, Mn付活珪酸塩蛍光体、 3. 5 a, Sr, Ca, Mg) (Zn, Mg) Si O: Eu, Mn activated silicate phosphor such as Eu, Mn, etc.
3 2 8 3 2 8
MgO - 0. 5MgF -GeO : Mn等の Mn付活ゲルマン酸塩蛍光体、 Eu付活 αサイァ
ロン等の Eu付活酸窒化物蛍光体、(Gd, Y, Lu, La) O : Eu, Bi等の Eu, Bi付活 MgO-0.5 MgF -GeO: Mn-activated germanate phosphor such as Mn, Eu-activated α sizer Eu-activated oxynitride phosphors such as Ron, Eu, Bi-activated such as (Gd, Y, Lu, La) 2 O: Eu, Bi
2 3 twenty three
酸化物蛍光体、(Gd, Y, Lu, La) O S : Eu, Bi等の Eu, Bi付活酸硫化物蛍光体、 Oxide phosphor, (Gd, Y, Lu, La) O S: Eu, Bi activated oxysulfide phosphor such as Eu, Bi, etc.
2 2 twenty two
(Gd, Y, Lu, La)VO : Eu, Bi等の Eu, Bi付活バナジン酸塩蛍光体、 SrY S : Eu (Gd, Y, Lu, La) VO: Eu, Bi-activated vanadate phosphor such as Eu, Bi, etc., SrY S: Eu
4 2 4 4 2 4
, Ce等の Eu, Ce付活硫化物蛍光体、 CaLa S : Ce等の Ce付活硫化物蛍光体、 (B Eu, Ce activated sulfide phosphor such as Ce, Ce, CaLa S: Ce activated sulfide phosphor such as Ce, (B
2 4 twenty four
a, Sr, Ca) MgP〇 : Eu, Mn (Sr, Ca, Ba, Mg, Zn) P〇 : Eu, Mn等の Eu, a, Sr, Ca) MgP ○: Eu, Mn (Sr, Ca, Ba, Mg, Zn) P ○: Eu, Eu, Mn, etc.
2 7 2 2 7 2 7 2 2 7
Mn付活リン酸塩蛍光体、(Y, Lu) WO : Eu, Mo等の Eu, Mo付活タングステン酸 Mn-activated phosphate phosphor, (Y, Lu) WO: Eu, Mo-activated tungstic acid such as Eu and Mo
2 6 2 6
塩蛍光体、(Ba, Sr, Ca) Si N: Eu, Ce (但し、 x、 y、 zは、 1以上の整数)等の Eu, x y z Salt phosphor, (Ba, Sr, Ca) Si N: Eu, Ce (where x, y, z are integers of 1 or more), Eu, x y z
Ce付活窒化物蛍光体、 (Ca, Sr, Ba, Mg) (PO ) (F, CI, Br, OH): Eu, Mn等 Ce-activated nitride phosphor, (Ca, Sr, Ba, Mg) (PO) (F, CI, Br, OH): Eu, Mn, etc.
10 4 10 4
の Eu, Mn付活ハロリン酸塩蛍光体、((Y, Lu, Gd, 2 (Ca, Mg)卜
Eu, Mn-activated halophosphate phosphor, ((Y, Lu, Gd, 2 (Ca, Mg) 卜
(Mg, Zn) Si Ge O 等の Ce付活珪酸塩蛍光体等を用いることも可能である It is also possible to use Ce-activated silicate phosphors such as (Mg, Zn) Si Ge O
2 + r z-q q 12+ δ 2 + r z-q q 12+ δ
[0247] 赤色蛍光体としては、例えば /3 ジケトネート、 βージケトン、芳香族カルボン酸、 又は、ブレンステッド酸等のァニオンを配位子とする希土類元素イオン錯体からなる 赤色有機蛍光体、ペリレン系顔料 (例えば、ジベンゾ { [f, f ' ] -4, 4' , 7, 7 '—テトラ フエ二ル}ジインデノ [1 , 2, 3-cd : l ' , 2' , 3'—lm]ペリレン)、アントラキノン系顔料 、レーキ系顔料、ァゾ系顔料、キナクリドン系顔料、アントラセン系顔料、イソインドリン 系顔料、イソインドリノン系顔料、フタロシアニン系顔料、トリフエニルメタン系塩基性 染料、インダンスロン系顔料、インドフエノール系顔料、シァニン系顔料、ジォキサジ ン系顔料を用いることも可能である。 [0247] Examples of the red phosphor include: / 3 diketonate, β-diketone, aromatic carboxylic acid, or a red organic phosphor composed of a rare earth ion complex having an anion such as Bronsted acid as a ligand, a perylene pigment (For example, dibenzo {[f, f ']-4,4', 7,7'-tetraphenyl} diindeno [1,2,3-cd: l ', 2', 3'-lm] perylene) , Anthraquinone pigments, lake pigments, azo pigments, quinacridone pigments, anthracene pigments, isoindoline pigments, isoindolinone pigments, phthalocyanine pigments, triphenylmethane basic dyes, indanthrone pigments Indophenol pigments, cyanine pigments and dioxazine pigments can also be used.
[0248] また、赤色蛍光体のうち、ピーク波長が 580nm以上、好ましくは 590nm以上、また 、 620nm以下、好ましくは 610nm以下の範囲内にあるものは、橙色蛍光体として好 適に用いることができる。このような橙色蛍光体の例としては、(Sr, Ba) SiO : Eu、 ( [0248] Among red phosphors, those having a peak wavelength in the range of 580 nm or more, preferably 590 nm or more, and 620 nm or less, preferably 610 nm or less can be suitably used as an orange phosphor. . Examples of such orange phosphors are (Sr, Ba) SiO 2: Eu, (
3 5 3 5
Sr, Mg) (PO ) : Sn2+、 SrCaAlSiN : Eu、 Eu付活 αサイアロン等の Eu付活酸窒 Sr, Mg) (PO): Sn 2+ , SrCaAlSiN: Eu, Eu-activated Eu-activated oxynitride such as α-sialon
3 4 2 3 3 4 2 3
化物蛍光体等が挙げられる。 Compound phosphor and the like.
[0249] [C 1 1 1 2]緑色蛍光体 [0249] [C 1 1 1 2] Green phosphor
緑色の蛍光を発する蛍光体(以下適宜、「緑色蛍光体」と!、う)が発する蛍光の具体 的な波長の範囲を例示すると、ピーク波長が、通常 490nm以上、好ましくは 500nm 以上、また、通常 570nm以下、好ましくは 550nm以下が望ましい。
このような緑色蛍光体として、例えば、破断面を有する破断粒子から構成され、緑 色領域の発光を行なう(Mg, Ca, Sr, Ba) Si O N : Euで表わされるユウ口ピウム付 Illustrating the specific wavelength range of the fluorescence emitted by the phosphor emitting green fluorescence (hereinafter referred to as “green phosphor” as appropriate), the peak wavelength is usually 490 nm or more, preferably 500 nm or more, Usually, it is 570 nm or less, preferably 550 nm or less. As such a green phosphor, for example, it is composed of fractured particles having a fracture surface, and emits light in the green region (Mg, Ca, Sr, Ba) Si ON: with a plutonium represented by Eu.
2 2 2 2 2 2
活アルカリ土類シリコンォキシナイトライド系蛍光体、破断面を有する破断粒子から構 成され、緑色領域の発光を行なう(Ba, Ca, Sr, Mg) SiO : Euで表わされるユウ口 Active alkaline earth silicon oxynitride phosphor, composed of fractured particles with fractured surface, and emits light in the green region (Ba, Ca, Sr, Mg) SiO: Eu mouth expressed by Eu
2 4 twenty four
ピウム付活アルカリ土類シリケート系蛍光体等が挙げられる。 Examples include a palladium-activated alkaline earth silicate phosphor.
[0250] また、そのほか、緑色蛍光体としては、例えば Sr Al O : Eu、 (Ba, Sr, Ca)Al [0250] Besides, as the green phosphor, for example, SrAlO: Eu, (Ba, Sr, Ca) Al
4 14 25 2 4 14 25 2
O : Eu等の Eu付活アルミン酸塩蛍光体、(Sr, Ba)Al Si O : Eu、 (Ba, Mg) SiOO: Eu-activated aluminate phosphor such as Eu, (Sr, Ba) Al Si O: Eu, (Ba, Mg) SiO
4 2 2 8 2 44 2 2 8 2 4
: Eu、 (Ba, Sr, Ca, Mg) SiO : Eu、 (Ba, Sr, Ca) (Mg, Zn) Si O : Eu等の Eu : Eu, (Ba, Sr, Ca, Mg) SiO: Eu, (Ba, Sr, Ca) (Mg, Zn) Si O: Eu such as Eu
2 4 2 2 7 2 4 2 2 7
付活珪酸塩蛍光体、 Y SiO : Ce, Tb等の Ce, Tb付活珪酸塩蛍光体、 Sr P O— Activated silicate phosphor, Y SiO: Ce, Tb activated silicate phosphor such as Ce, Tb, Sr P O—
2 5 2 2 7 2 5 2 2 7
Sr B O : Eu等の Eu付活硼酸リン酸塩蛍光体、 Sr Si O 2SrCl : Eu等の Eu付Sr B O: Eu-activated boric acid phosphor such as Eu, Sr Si O 2 SrCl: Eu such as Eu
2 2 5 2 3 8 2 2 2 5 2 3 8 2
活ハロ珪酸塩蛍光体、 Zn Si〇 :Mn等の Mn付活珪酸塩蛍光体、 CeMgAl O : Active halosilicate phosphor, ZnSiO: Mn-activated silicate phosphor such as Mn, CeMgAl 2 O:
2 4 11 19 2 4 11 19
Tb、 Y Al O : Tb等の Tb付活アルミン酸塩蛍光体、 Ca Y (SiO ) O : Tb、 La G Tb, Y Al O: Tb activated aluminate phosphor such as Tb, Ca Y (SiO 2) O: Tb, La G
3 5 12 2 8 4 6 2 3 a SiO : Tb等の Tb付活珪酸塩蛍光体、 (Sr, Ba, Ca) Ga S : Eu, Tb, Sm等の E 3 5 12 2 8 4 6 2 3 a SiO: Tb-activated silicate phosphor such as Tb, (Sr, Ba, Ca) Ga S: E such as Eu, Tb, Sm
5 14 2 4 5 14 2 4
u, Tb, Sm付活チォガレート蛍光体、 Y (Al, Ga) 〇 : Ce、(Y, Ga, Tb, La, Sm u, Tb, Sm activated thiogallate phosphor, Y (Al, Ga) O: Ce, (Y, Ga, Tb, La, Sm
3 5 12 3 5 12
, Pr, Lu) (Al, Ga) O : Ce等の Ce付活アルミン酸塩蛍光体、 Ca Sc Si O : Ce Pr, Lu) (Al, Ga) O: Ce-activated aluminate phosphor such as Ce, Ca Sc Si O: Ce
3 5 12 3 2 3 12 3 5 12 3 2 3 12
、 Ca (Sc, Mg, Na, Li) Si O : Ce等の Ce付活珪酸塩蛍光体、 CaSc O : Ce等Ca (Sc, Mg, Na, Li) Si O: Ce-activated silicate phosphor such as Ce, CaSc O: Ce, etc.
3 2 3 12 2 4 の Ce付活酸化物蛍光体、 SrSi O N : Eu、 (Sr, Ba, Ca) Si O N : Eu、 Eu付活 /3 3 2 3 12 2 4 Ce-activated oxide phosphor, SrSi ON: Eu, (Sr, Ba, Ca) Si ON: Eu, Eu-activated / 3
2 2 2 2 2 2 2 2 2 2 2 2
サイアロン等の Eu付活酸窒化物蛍光体、 BaMgAl O : Eu, Mn等の Eu, Mn付 Eu-activated oxynitride phosphors such as sialon, BaMgAl 2 O: Eu, Mn, etc.
10 17 10 17
活アルミン酸塩蛍光体、 SrAl O : Eu等の Eu付活アルミン酸塩蛍光体、(La, Gd, Activated aluminate phosphor, Eu-activated aluminate phosphor such as SrAl 2 O 3: Eu, (La, Gd,
2 4 twenty four
Y) O S :Tb等の Tb付活酸硫化物蛍光体、 LaP〇 : Ce, Tb等の Ce, Tb付活リン酸 Y) Os: Tb-activated oxysulfide phosphors such as Tb, LaP〇: Ce, Tb-activated phosphoric acid such as Ce, Tb
2 2 4 2 2 4
塩蛍光体、 ZnS : Cu, Al、 ZnS : Cu, Au, Al等の硫化物蛍光体、(Y, Ga, Lu, Sc , La) BO : Ce, Tbゝ Na Gd B〇 : Ce, Tb、 (Ba, Sr) (Ca, Mg, Zn) B〇 : K, C Salt phosphors, sulfide phosphors such as ZnS: Cu, Al, ZnS: Cu, Au, Al, (Y, Ga, Lu, Sc, La) BO: Ce, Tb T Na Gd B〇: Ce, Tb, (Ba, Sr) (Ca, Mg, Zn) B〇: K, C
3 2 2 2 7 2 2 6 e, Tb等の Ce, Tb付活硼酸塩蛍光体、 Ca Mg (SiO ) CI : Eu, Mn等の Eu, Mn 3 2 2 2 7 2 2 6 e, Ce, Tb activated borate phosphors such as Tb, Ca Mg (SiO 2) CI: Eu, Mn such as Eu, Mn
8 4 4 2 8 4 4 2
付活ハロ珪酸塩蛍光体、 (Sr, Ca, Ba) (Al, Ga, In) S : Eu等の Eu付活チォアル Activated halosilicate phosphor, (Sr, Ca, Ba) (Al, Ga, In) S: Eu activated thioal such as Eu
2 4 twenty four
ミネート蛍光体やチォガレート蛍光体、(Ca, Sr) (Mg, Zn) (SiO ) CI : Eu, Mn Minate phosphor and thiogallate phosphor, (Ca, Sr) (Mg, Zn) (SiO) CI: Eu, Mn
8 4 4 2 8 4 4 2
等の Eu, Mn付活ハロ珪酸塩蛍光体等を用いることも可能である。 It is also possible to use Eu, Mn activated halosilicate phosphors, etc.
[0251] また、緑色蛍光体としては、例えばピリジン—フタルイミド縮合誘導体、ベンゾォキ サジノン系、キナゾリノン系、クマリン系、キノフタロン系、ナルタル酸イミド系等の蛍光
色素、へキシルサリチレートを配位子として有するテルビウム錯体等の有機蛍光体を 用いることも可能である。 [0251] Examples of green phosphors include pyridine-phthalimide condensed derivatives, benzoxazinone-based, quinazolinone-based, coumarin-based, quinophthalone-based, and naltalimide-based fluorescent materials. It is also possible to use an organic phosphor such as a terbium complex having a dye or hexyl salicylate as a ligand.
[0252] [C 1 1 1 3]青色蛍光体 [0252] [C 1 1 1 3] Blue phosphor
青色の蛍光を発する蛍光体(以下適宜、「青色蛍光体」と!、う)が発する蛍光の具体 的な波長の範囲を例示すると、ピーク波長が、通常 420nm以上、好ましくは 440nm 以上、また、通常 480nm以下、好ましくは 470nm以下が望ましい。 Illustrating the specific wavelength range of the fluorescence emitted by the phosphor emitting blue fluorescence (hereinafter referred to as “blue phosphor” as appropriate!), The peak wavelength is usually 420 nm or more, preferably 440 nm or more, Usually, it is 480 nm or less, preferably 470 nm or less.
このような青色蛍光体としては、例えば、規則的な結晶成長形状としてほぼ六角形 状を有する成長粒子力も構成され、青色領域の発光を行なう BaMgAl O : Euで As such a blue phosphor, for example, a growing particle force having a substantially hexagonal shape as a regular crystal growth shape is configured, and BaMgAl 2 O 3: Eu that emits light in a blue region.
10 17 表わされるユウ口ピウム付活ノ リウムマグネシウムアルミネート系蛍光体、規則的な結 晶成長形状としてほぼ球形状を有する成長粒子から構成され、青色領域の発光を行 なう(Ca, Sr, Ba) (PO ) CI : Euで表わされるユウ口ピウム付活ハロリン酸カルシゥ 10 17 This is composed of Pt-activated norlium magnesium aluminate-based phosphor, which is composed of grown particles having a nearly spherical shape as a regular crystal growth shape, and emits light in the blue region (Ca, Sr, Ba) (PO) CI: Eu-pium-activated halophosphate calcium represented by Eu
5 4 3 5 4 3
ム系蛍光体、規則的な結晶成長形状としてほぼ立方体形状を有する成長粒子から 構成され、青色領域の発光を行なう(Ca, Sr, Ba) B O CI : Euで表わされるユウ口 Phosphors, which are composed of growing particles having a regular cubic crystal growth shape and emit light in the blue region (Ca, Sr, Ba) B O CI: Eu
2 5 9 2 5 9
ピウム付活アルカリ土類クロロボレート系蛍光体、破断面を有する破断粒子から構成 され、青緑色領域の発光を行なう(Sr, Ca, Ba)Al O : Euまたは(Sr, Ca, Ba) Al Pium-activated alkaline earth chloroborate phosphor, composed of fractured particles with fractured surfaces, and emits light in the blue-green region (Sr, Ca, Ba) Al 2 O: Eu or (Sr, Ca, Ba) Al
2 4 4 1 2 4 4 1
O : Euで表わされるユウ口ピウム付活アルカリ土類アルミネート系蛍光体等が挙げO: Pit-activated alkaline earth aluminate-based phosphor represented by Eu
4 25 4 25
られる。 It is done.
[0253] また、そのほか、青色蛍光体としては、例えば Sr P O : Sn等の Sn付活リン酸塩蛍 [0253] In addition, other examples of blue phosphors include Sn-activated phosphate phosphors such as Sr P 2 O 3: Sn.
2 2 7 2 2 7
光体、 Sr Al 〇 : Eu、BaMgAl 〇 : Eu、BaAl〇 : Eu等の Eu付活アルミン酸 Light body, Sr Al ○: Eu, BaMgAl ○: Eu, BaAl ○: Eu-activated aluminate such as Eu
4 14 25 10 17 8 13 4 14 25 10 17 8 13
塩蛍光体、 SrGa S : Ce、 CaGa S : Ce等の Ce付活チォガレート蛍光体、(Ba, Sr Salt-activated phosphor, SrGa S: Ce, CaGa S: Ce-activated thiogallate phosphor such as Ce, (Ba, Sr
2 4 2 4 2 4 2 4
, Ca) MgAl O : Eu, BaMgAl O : Eu, Tb, Sm等の Eu付活アルミン酸塩蛍光 , Ca) MgAlO: Eu, BaMgAlO: Eu-activated aluminate fluorescence such as Eu, Tb, Sm
10 17 10 17 10 17 10 17
体、(Ba, Sr, Ca) MgAl O : Eu, Mn等の Eu, Mn付活アルミン酸塩蛍光体、(Sr (Ba, Sr, Ca) MgAl O: Eu, Mn activated aluminate phosphor such as Eu, Mn, (Sr
10 17 10 17
, Ca, Ba, Mg) (PO ) CI : Eu、 (Ba, Sr, Ca) (PO ) (CI, F, Br, OH): Eu, , Ca, Ba, Mg) (PO) CI: Eu, (Ba, Sr, Ca) (PO) (CI, F, Br, OH): Eu,
10 4 6 2 5 4 3 10 4 6 2 5 4 3
Mn, Sb等の Eu付活ハロリン酸塩蛍光体、 BaAl Si O : Eu、 (Sr, Ba) MgSi〇 : Eu-activated halophosphate phosphors such as Mn and Sb, BaAl Si O: Eu, (Sr, Ba) MgSi 0:
2 2 8 3 2 8 2 2 8 3 2 8
Eu等の Eu付活珪酸塩蛍光体、 Sr P O : Eu等の Eu付活リン酸塩蛍光体、 ZnS :A Eu-activated silicate phosphor such as Eu, Eu-activated phosphate phosphor such as Sr P O: Eu, ZnS: A
2 2 7 2 2 7
g、 ZnS :Ag, Al等の硫化物蛍光体、 Y SiO : Ce等の Ce付活珪酸塩蛍光体、 CaW g, sulfide phosphor such as ZnS: Ag, Al, etc., Y SiO: Ce activated silicate phosphor such as Ce, CaW
2 5 twenty five
〇等のタングステン酸塩蛍光体、(Ba, Sr, Ca) BPO : Eu, Mn、 (Sr, Ca) (PO ) 〇 etc. tungstate phosphor, (Ba, Sr, Ca) BPO: Eu, Mn, (Sr, Ca) (PO)
4 5 10 44 5 10 4
•nB O : Eu、 2SrO- 0. 84P O - 0. 16B O : Eu等の Eu, Mn付活硼酸リン酸塩
蛍光体、 Sr Si O - 2SrCl : Eu等の Eu付活ハロ珪酸塩蛍光体等を用いることも可 • nB 2 O: Eu, 2SrO-0.84P O-0.16B O: Eu, Mn-activated boric acid phosphates such as Eu Phosphors, Eu-activated halosilicate phosphors such as SrSiO-2SrCl: Eu can also be used
2 3 8 2 2 3 8 2
能である。 Noh.
また、青色蛍光体としては、例えば、ナフタル酸イミド系、ベンゾォキサゾール系、ス チリル系、クマリン系、ピラゾリン系、トリァゾール系化合物の蛍光色素、ツリウム錯体 等の有機蛍光体等を用いることも可能である。 In addition, as the blue phosphor, for example, naphthalic acid imide-based, benzoxazole-based, styryl-based, coumarin-based, pyrazoline-based, triazole-based fluorescent dyes, organic phosphors such as thulium complexes, etc. may be used. Is possible.
[0254] [C 1 1 1 4]黄色蛍光体 [0254] [C 1 1 1 4] Yellow phosphor
黄色の蛍光を発する蛍光体 (以下適宜、「黄色蛍光体」という。)が発する蛍光の具 体的な波長の範囲を例示すると、通常 530nm以上、好ましくは 540nm以上、より好 ましくは 550應以上、また、通常 620腹以下、好ましくは 600應以下、より好ましく は 580nm以下の波長範囲にあることが好適である。黄色蛍光体の発光ピーク波長 が短すぎると黄色成分が少なくなり演色性が劣ることとなる可能性があり、長すぎると 導光部材から放射される光の輝度が低下する可能性がある。 An example of the specific wavelength range of the fluorescence emitted by a phosphor emitting yellow fluorescence (hereinafter referred to as “yellow phosphor” as appropriate) is usually 530 nm or more, preferably 540 nm or more, and more preferably 550 nm. In addition, the wavelength is usually 620 nm or less, preferably 600 mm or less, more preferably 580 nm or less. If the emission peak wavelength of the yellow phosphor is too short, the yellow component may be reduced and the color rendering may be inferior. If it is too long, the luminance of the light emitted from the light guide member may be reduced.
[0255] このような黄色蛍光体としては、例えば、各種の酸化物系、窒化物系、酸窒化物系 、硫化物系、酸硫化物系等の蛍光体が挙げられる。特に、 RE M O : Ce (ここで、 R [0255] Examples of such yellow phosphors include various oxide-based, nitride-based, oxynitride-based, sulfide-based, and oxysulfide-based phosphors. In particular, RE M O: Ce (where R
3 5 12 3 5 12
Eは、 Y, Tb, Gd, Lu, Smの少なくとも 1種類の元素を表し、 Mは、 Al, Ga, Scの少 なくとも 1種類の元素を表す。)や M2 M3 M4 O : Ce (ここで、 M2は 2価の金属元素 E represents at least one element of Y, Tb, Gd, Lu, and Sm, and M represents at least one element of Al, Ga, and Sc. ) Or M 2 M 3 M 4 O: Ce (where M 2 is a divalent metal element
3 2 3 12 3 2 3 12
、 M3は 3価の金属元素、 M4は 4価の金属元素)等で表されるガーネット構造を有する ガーネット系蛍光体、 AE M50 : Eu (ここで、 AEは、 Ba, Sr, Ca, Mg, Znの少なく , M 3 is a trivalent metal element, M 4 is garnet phosphor having a garnet structure represented by tetravalent metal element) and the like, AE M 5 0: Eu (here, AE is, Ba, Sr, Less Ca, Mg, Zn
2 4 twenty four
とも 1種類の元素を表し、 M5は、 Si, Geの少なくとも 1種類の元素を表す。)等で表さ れるオルソシリケート系蛍光体、これらの系の蛍光体の構成元素の酸素の一部を窒 素で置換した酸窒化物系蛍光体、 AEAlSiN : Ce (ここで、 AEは、 Ba, Sr, Ca, Mg Both represent one kind of element, and M 5 represents at least one kind of element of Si and Ge. ), Etc., oxynitride phosphors obtained by substituting part of oxygen of the constituent elements of the phosphors with nitrogen, AEAlSiN: Ce (where AE is Ba , Sr, Ca, Mg
3 Three
, Znの少なくとも 1種類の元素を表す。)等の CaAlSiN構造を有する窒化物系蛍光 , Represents at least one element of Zn. Nitride-based fluorescence with CaAlSiN structure
3 Three
体等の Ceで付活した蛍光体などが挙げられる。 And phosphors activated by Ce such as the body.
また、そのほ力、、黄色蛍光体としては、例えば CaGa S : Eu (Ca, Sr) Ga S : Eu、 Further, as the yellow phosphor, for example, CaGa S: Eu (Ca, Sr) Ga S: Eu,
2 4 2 4 2 4 2 4
(Ca, Sr) (Ga, Al) S : Eu等の硫化物系蛍光体、 Ca (Si, Al) (O, N) : Eu等の (Ca, Sr) (Ga, Al) S: Sulfide-based phosphors such as Eu, Ca (Si, Al) (O, N): Eu etc.
2 4 x 12 16 2 4 x 12 16
SiAlON構造を有する酸窒化物系蛍光体等の Euで付活した蛍光体を用いることも 可能である。 It is also possible to use a phosphor activated with Eu such as an oxynitride phosphor having a SiAlON structure.
[0256] [C 1 1 1 5]その他の蛍光体
本発明の導光部材は、上述したもの以外の蛍光体を含有させることも可能である。 例えば、本発明の導光部材を構成する層は、イオン状の蛍光物質や有機'無機の蛍 光成分を均一 ·透明に溶解 ·分散させた蛍光ガラスとすることもできる。 [0256] [C 1 1 1 5] Other phosphors The light guide member of the present invention can contain phosphors other than those described above. For example, the layer constituting the light guide member of the present invention may be a fluorescent glass in which an ionic fluorescent material or an organic / inorganic fluorescent component is dissolved and dispersed uniformly and transparently.
[0257] [C 1 1 2]蛍光体の粒径 [0257] Particle size of [C 1 1 2] phosphor
本発明に使用する蛍光体の粒径は特に制限はないが、中央粒径 (D )で、通常 0 The particle size of the phosphor used in the present invention is not particularly limited, but the median particle size (D) is usually 0.
50 50
. l ^ m以上、好ましくは 2 m以上、さらに好ましくは 5 m以上である。また、通常 1 OO ^ m以下、好ましくは 50 m以下、さらに好ましくは 20 m以下である。蛍光体の 中央粒径 (D )が上記範囲にある場合は、後述する蛍光体含有層において、光源か l ^ m or more, preferably 2 m or more, more preferably 5 m or more. Further, it is usually 1 OO ^ m or less, preferably 50 m or less, more preferably 20 m or less. When the median particle diameter (D) of the phosphor is in the above range, the phosphor-containing layer described later can be used as a light source.
50 50
ら伝送された光が充分に散乱される。また、光源から伝達された光が充分に蛍光体 粒子に吸収されるため、波長変換が高効率に行われると共に、蛍光体から発せられ る光が全方向に照射される。これにより、複数種類の蛍光体からの一次光を混色して 白色にすることができると共に、均一な白色光と照度が得られる。一方、蛍光体の中 央粒径 (D )が上記範囲より大き!/、場合は、蛍光体が発光部の空間を充分に埋める The transmitted light is sufficiently scattered. In addition, since the light transmitted from the light source is sufficiently absorbed by the phosphor particles, wavelength conversion is performed with high efficiency, and light emitted from the phosphor is irradiated in all directions. As a result, primary light from a plurality of types of phosphors can be mixed to make white, and uniform white light and illuminance can be obtained. On the other hand, when the central particle size (D) of the phosphor is larger than the above range! /, The phosphor sufficiently fills the space of the light emitting part.
50 50
ことができないため、光源から伝達された光が充分に蛍光体に吸収されない可能性 力 る。また、蛍光体の中央粒径 (D )が、上記範囲より小さい場合は、蛍光体の発 Therefore, the light transmitted from the light source may not be sufficiently absorbed by the phosphor. If the median particle size (D) of the phosphor is smaller than the above range,
50 50
光効率が低下するため、照度が低下する可能性がある。 Since the light efficiency decreases, the illuminance may decrease.
[0258] 蛍光体粒子の粒度分布(QD)は、蛍光体含有層での粒子の分散状態をそろえる ために小さい方が好ましいが、小さくするためには分級収率が下がってコストアップ につながるので、通常 0. 03以上、好ましくは 0. 05以上、更に好ましくは 0. 07以上 である。また、通常 0. 4以下、好ましくは 0. 3以下、更に好ましくは 0. 2以下である。 なお、本発明にお!/、て、中央粒径 (D )および粒度分布(QD)は、重量基準粒度 [0258] The particle size distribution (QD) of the phosphor particles is preferably smaller in order to align the dispersed state of the particles in the phosphor-containing layer, but in order to reduce the particle size, the classification yield is lowered, leading to an increase in cost. Usually, it is 0.03 or more, preferably 0.05 or more, and more preferably 0.07 or more. Further, it is usually 0.4 or less, preferably 0.3 or less, more preferably 0.2 or less. In the present invention, the median particle size (D) and particle size distribution (QD) are weight-based particle sizes.
50 50
分布曲線から得ることが出来る。前記重量基準粒度分布曲線は、レーザ回折,散乱 法により粒度分布を測定し得られるもので、具体的には、例えば以下のように測定す ること力 s出来る。 It can be obtained from the distribution curve. The weight-based particle size distribution curve can be obtained by measuring the particle size distribution by a laser diffraction or scattering method. Specifically, for example, it can be measured as follows.
[0259] 〔重量基準粒度分布曲線の測定方法〕 [0259] [Measurement method of weight-based particle size distribution curve]
(1)気温 25°C、湿度 70%の環境下において、エチレングリコールなどの溶媒に蛍光 体を分散させる。 (1) Disperse the phosphor in a solvent such as ethylene glycol in an environment where the temperature is 25 ° C and the humidity is 70%.
(2)レーザ回折式粒度分布測定装置 (堀場製作所 LA— 300)により、粒径範囲 0.
1 μ m〜600 μ mにて測定する。 (2) With a laser diffraction particle size distribution analyzer (Horiba, Ltd. LA-300), the particle size range is 0. Measure at 1 μm to 600 μm.
(3)この重量基準粒度分布曲線において積算値が 50%のときの粒径値を中央粒径 D と表記する。また、積算値が 25%及び 75%の時の粒径値をそれぞれ D 、 D と (3) In this weight-based particle size distribution curve, the particle size value when the integrated value is 50% is expressed as the median particle size D. Also, the particle size values when the integrated value is 25% and 75% are D, D and
50 25 75 表記し、 QD= (D -D ) / (D +D )と定義する。 QDが小さいことは粒度分布 50 25 75 Notation and defined as QD = (D -D) / (D + D). Small QD means particle size distribution
75 25 75 25 75 25 75 25
が狭いことを意味する。 Means narrow.
[0260] また、蛍光体粒子の形状も、蛍光体含有層の形成に影響を与えない限り、任意で ある。例えば、蛍光体含有層の形成のための形成液(以下適宜、「蛍光体含有層形 成液」という。例えば、蛍光体を含有する特定層形成液などがこれに当たり、蛍光体 組成物と同様のものを指す)の流動性等に影響を与えない限り、特に限定されない。 [0260] The shape of the phosphor particles is arbitrary as long as it does not affect the formation of the phosphor-containing layer. For example, a forming liquid for forming a phosphor-containing layer (hereinafter, referred to as “phosphor-containing layer forming liquid” as appropriate. For example, a specific layer forming liquid containing a phosphor, etc., is the same as the phosphor composition. As long as it does not affect the fluidity, etc.).
[0261] [C 1 1 3]蛍光体の表面処理 [0261] [C 1 1 3] Phosphor surface treatment
本発明に使用する蛍光体は、耐水性を高める目的で、または蛍光体含有層中で蛍 光体の不要な凝集を防ぐ目的で、表面処理が行われていてもよい。かかる表面処理 の例としては、特開 2002— 223008号公報に記載の有機材料、無機材料、ガラス材 料などを用いた表面処理、特開 2000— 96045号公報等に記載の金属リン酸塩によ る被覆処理、金属酸化物による被覆処理、シリカコート等の公知の表面処理などが 挙げられる。 The phosphor used in the present invention may be subjected to a surface treatment for the purpose of enhancing water resistance or preventing unnecessary aggregation of the phosphor in the phosphor-containing layer. Examples of such surface treatment include surface treatments using organic materials, inorganic materials, glass materials and the like described in JP-A-2002-223008, and metal phosphates described in JP-A-2000-96045. And a known surface treatment such as a silica coating.
[0262] 表面処理の具体例を挙げると、例えば蛍光体の表面に上記金属リン酸塩を被覆さ せるには、以下の(i)〜(iii)の表面処理を行う。 [0262] As specific examples of the surface treatment, for example, the following surface treatments (i) to (iii) are performed in order to coat the phosphor with the metal phosphate.
(i)所定量のリン酸カリウム、リン酸ナトリウムなどの水溶性のリン酸塩と、塩化カルシゥ ム、硫酸ストロンチウム、塩化マンガン、硝酸亜鉛等のアルカリ土類金属、 Ζη及び Μ ηの中の少なくとも 1種の水溶性の金属塩化合物とを蛍光体懸濁液中に混合し、攪 拌する。 (i) a predetermined amount of a water-soluble phosphate such as potassium phosphate or sodium phosphate and an alkaline earth metal such as calcium chloride, strontium sulfate, manganese chloride or zinc nitrate, at least of Ζη and ηη One kind of water-soluble metal salt compound is mixed in the phosphor suspension and stirred.
(ii)アルカリ土類金属、 Zn及び Mnの中の少なくとも 1種の金属のリン酸塩を懸濁液 中で生成させると共に、生成したこれらの金属リン酸塩を蛍光体表面に沈積させる。 (ii) A phosphate of at least one of the alkaline earth metals, Zn and Mn is formed in the suspension, and the generated metal phosphate is deposited on the phosphor surface.
(iii)水分を除去する。 (iii) Remove moisture.
[0263] また、表面処理の他の例のうち好適な例を挙げると、シリカコートとしては、水ガラス を中和して SiOを析出させる方法、アルコキシシランを加水分解したものを表面処理 [0263] Further, among other examples of surface treatment, preferable examples include silica coating, a method of neutralizing water glass to precipitate SiO, and surface treatment of hydrolyzed alkoxysilane.
2 2
する方法 (例えば、特開平 3— 231987号公報)等が挙げられ、分散性を高める点に
お!/、てはアルコキシシランを加水分解したものを表面処理する方法が好まし!/、。 (For example, Japanese Patent Laid-Open No. 3-231987) and the like to improve dispersibility O! / A method of surface treatment of hydrolyzed alkoxysilane is preferred! /.
[0264] [C 1 1 4]蛍光体の混合方法 [0264] [C 1 1 4] Phosphor mixing method
本発明にお!/、て、蛍光体粒子を加える方法は特に制限されな!/、。 In the present invention, the method of adding phosphor particles is not particularly limited! /.
例えば、特定層に蛍光体を含有させる場合、蛍光体粒子の分散状態が良好な場 合であれば、上述の特定層形成液に後混合するだけでよい。即ち、特定層形成液と 蛍光体とを混合し、蛍光体含有層形成液を用意して、この蛍光体含有層形成液を用 いて蛍光体含有層を作製すればよい。蛍光体粒子の凝集が起こりやすい場合には、 加水分解前の原料化合物を含む反応用溶液(以下適宜「加水分解前溶液」と!、う。 ) に蛍光体粒子を前もって混合し、蛍光体粒子の存在下で加水分解 ·重縮合を行なう と、粒子の表面が一部シランカップリング処理され、蛍光体粒子の分散状態が改善さ れる。 For example, when phosphor is contained in a specific layer, if the dispersion state of the phosphor particles is good, it is only necessary to post-mix in the above-mentioned specific layer forming liquid. That is, the specific layer forming solution and the phosphor are mixed, a phosphor-containing layer forming solution is prepared, and the phosphor-containing layer is prepared using this phosphor-containing layer forming solution. When aggregation of the phosphor particles is likely to occur, the phosphor particles are mixed in advance with a reaction solution containing the raw material compound before hydrolysis (hereinafter referred to as “pre-hydrolysis solution”!). When hydrolysis / polycondensation is performed in the presence of silane, the surface of the particles is partially treated with silane coupling, and the dispersed state of the phosphor particles is improved.
[0265] また、蛍光体を含有させる層が付加縮合型シリコーン樹脂で形成されている場合に は、蛍光体表面を予めビュル基及びヒドロシリル基等の架橋性基、メチル基等の疎 水基を有するシランカップリングを用いて表面処理することにより分散状態が改善さ れる。また、蛍光体を含有させる層が脱水、脱アルコキシ縮合型のシリコーン樹脂で 形成されていて、蛍光体粒子の凝集が起こりやすい場合には、加水分解前溶液に蛍 光体粒子を前もって混合し、蛍光体粒子の存在下で加水分解 ·重縮合を行なうと、粒 子の表面が一部シランカップリング処理され、蛍光体粒子の分散状態が改善される。 [0265] In addition, when the layer containing the phosphor is formed of an addition condensation type silicone resin, the phosphor surface is preliminarily provided with a crosslinkable group such as a bull group and a hydrosilyl group, or a hydrophobic group such as a methyl group. The dispersion state is improved by surface treatment using the silane coupling. If the phosphor-containing layer is formed of a dehydrated or dealkoxy-condensation type silicone resin and the phosphor particles are likely to aggregate, the phosphor particles are mixed in advance in the pre-hydrolysis solution, When hydrolysis / polycondensation is performed in the presence of phosphor particles, the surface of the particles is partially silane-coupled to improve the dispersion state of the phosphor particles.
[0266] なお、蛍光体の中には加水分解性のものもある力 本発明の第一〜第四の導光部 材の特定層 Aは、塗布前の液状態(特定層形成液 A)において、水分はシラノール体 として潜在的に存在し、遊離の水分はほとんど存在しないので、そのような蛍光体で も加水分解してしまうことなく使用することが可能である。また、加水分解 '重縮合後 の特定層形成液を脱水 ·脱アルコール処理を行なってから使用すれば、そのような 蛍光体との併用が容易となる利点もある。 [0266] It should be noted that some phosphors are hydrolyzable. The specific layer A of the first to fourth light guide members of the present invention is in a liquid state before application (specific layer forming liquid A). In this case, water is potentially present as a silanol body, and almost no free water is present. Therefore, even such a phosphor can be used without being hydrolyzed. Further, if the specific layer forming solution after hydrolysis and polycondensation is used after dehydration / dealcoholation treatment, there is an advantage that it can be easily used together with such a phosphor.
[0267] また、加水分解性の蛍光体を使用する場合には、蛍光体を含有させる層の材料と して付加縮合型のシリコーン樹脂を用いることは、当該シリコーン樹脂は硬化時に水 分が発生しないので、好ましい。また、蛍光体を含有させる層の材料として脱水、脱 アルコール型のシリコーン樹脂を用いた場合には、塗布前の液状態(形成液)におい
て、水分はシラノール体として潜在的に存在し、遊離の水分はほとんど存在しないの で、そのような蛍光体でも加水分解してしまうことなく使用することが可能である。また 、加水分解 ·重縮合後の形成液を脱水 ·脱アルコール処理を行なってから使用すれ ば、そのような蛍光体との併用が容易となる利点もある。したがって、特定層に蛍光体 を含有させる場合には、当該特定層を付加縮合型、脱水、脱アルコール型のシリコ ーン樹脂で形成することが、特に好ましい。 [0267] When a hydrolyzable phosphor is used, the use of an addition condensation type silicone resin as the material of the layer containing the phosphor means that the silicone resin generates water during curing. This is preferable. In addition, when a dehydrated or dealcoholized silicone resin is used as the material for the phosphor-containing layer, the liquid state (formation solution) before coating is not good. In addition, since water is potentially present as a silanol body and almost no free water is present, such a phosphor can be used without being hydrolyzed. Further, if the formation liquid after hydrolysis / polycondensation is used after dehydration / dealcoholation treatment, there is also an advantage that the combined use with such a phosphor becomes easy. Therefore, when the specific layer contains a phosphor, it is particularly preferable to form the specific layer with an addition condensation type, dehydration, or dealcohol type silicone resin.
[0268] また、蛍光体粒子や無機粒子(後述する)を特定層に分散させる場合には、粒子表 面に分散性改善のため有機配位子による修飾を行うことも可能である。従来、導光部 材として用いられてきた付加型シリコーン樹脂は、このような有機配位子により硬化阻 害を受けやすぐこのような表面処理を行った粒子を混合 '硬化することができなかつ た。これは、付加反応型シリコーン樹脂に使用されている白金系の硬化触媒が、これ らの有機配位子と強い相互作用を持ち、ヒドロシリル化の能力を失い、硬化不良を起 こすためである。このような被毒物質としては N、 P、 S等を含む有機化合物の他、 Sn 、 Pb、 Hg、 Bi、 As等の重金属のイオン性化合物、アセチレン基等、多重結合を含む 有機化合物(フラックス、アミン類、塩ビ、硫黄加硫ゴム)などが挙げられる。これに対 し、本発明の導光部材の特定層は、これらの被毒物質による硬化阻害を起こしにくい 縮合型の硬化機構によるものである。このため、特定層は有機配位子により表面改 質した蛍光体粒子や無機粒子、さらには錯体蛍光体などの蛍光成分との混合使用 の自由度が大きぐ蛍光体バインダゃ高屈折率ナノ粒子導入透明材料として優れた 特徴を備えるものである。 [0268] When phosphor particles or inorganic particles (described later) are dispersed in a specific layer, the particle surface can be modified with an organic ligand to improve dispersibility. Conventional addition-type silicone resins that have been used as light-guide members cannot be cured and mixed with such surface-treated particles as soon as they are inhibited by such organic ligands. It was. This is because the platinum-based curing catalyst used in the addition reaction type silicone resin has a strong interaction with these organic ligands, loses the hydrosilylation ability, and causes poor curing. Such poisonous substances include organic compounds containing N, P, S, etc., ionic compounds of heavy metals such as Sn, Pb, Hg, Bi, As, acetylene groups, etc., organic compounds containing multiple bonds (flux) Amines, vinyl chloride, sulfur vulcanized rubber) and the like. On the other hand, the specific layer of the light guide member of the present invention is based on a condensation-type curing mechanism that hardly causes inhibition of curing by these poisoning substances. For this reason, the specific layer is made of phosphor particles or inorganic particles whose surface has been modified with an organic ligand, and phosphor binders that have a high degree of freedom of mixing with fluorescent components such as complex phosphors. It has excellent characteristics as an introduced transparent material.
[0269] [C 1 1 5]蛍光体の含有率 [0269] Content of [C 1 1 5] phosphor
本発明の蛍光体含有層における蛍光体の含有率は、本発明の効果を著しく損なわ ない限り任意であり、その適用形態により自由に選定できる力 蛍光体総量として、 通常 0. 1重量%以上、好ましくは 1重量%以上、より好ましくは 5重量%以上、また、 通常 35重量%以下、好ましくは 30重量%以下、より好ましくは 28重量%以下である The phosphor content in the phosphor-containing layer of the present invention is arbitrary as long as the effects of the present invention are not significantly impaired, and the force that can be freely selected according to the application mode is usually 0.1% by weight or more, Preferably it is 1% by weight or more, more preferably 5% by weight or more, and usually 35% by weight or less, preferably 30% by weight or less, more preferably 28% by weight or less.
〇 Yes
[0270] また、一般に、光源から伝送される光の発光色と蛍光体の発光色とを混色して白色 を得る場合、光源力 伝送される光の発光色を一部透過させることになるため、蛍光
体含有率は低濃度となり、上記範囲の下限近くの領域となる。一方、光源から伝送さ れる光を全て蛍光体発光色に変換して白色を得る場合には、高濃度の蛍光体が好 ましいため、蛍光体含有率は上記範囲の上限近くの領域となる。蛍光体含有率がこ の範囲より多いと塗布性能が悪化したり、光学的な干渉作用により蛍光体の利用効 率が低くなり、輝度が低くなつたりする可能性がある。また、蛍光体含有率がこの範囲 より少ないと、蛍光体による波長変換が不十分となり、 目的とする発光色を得られなく なる可能性がある。 [0270] Also, in general, when the light emission color transmitted from the light source is mixed with the light emission color of the phosphor to obtain white, a part of the light emission color transmitted through the light source power is transmitted. ,fluorescence The body content is low and becomes a region near the lower limit of the above range. On the other hand, when white light is obtained by converting all the light transmitted from the light source into a phosphor emission color, a high concentration phosphor is preferred, and the phosphor content is in a region near the upper limit of the above range. If the phosphor content is higher than this range, the coating performance may be deteriorated, or the utilization efficiency of the phosphor may be lowered due to optical interference, and the luminance may be lowered. On the other hand, if the phosphor content is less than this range, wavelength conversion by the phosphor becomes insufficient, and the target emission color may not be obtained.
[0271] 以上白色発光の用途について例示したが、具体的な蛍光体含有率は目的色、蛍 光体の発光効率、混色形式、蛍光体比重、塗布膜厚、導光部材の形状により多様で あり、この限りではない。 [0271] Although examples of the use of white light emission have been described above, the specific phosphor content varies depending on the target color, the light emission efficiency of the phosphor, the color mixture type, the specific gravity of the phosphor, the coating thickness, and the shape of the light guide member. Yes, this is not the case.
ところで、例えば特定層に蛍光体を含有させて蛍光体含有層を構成する場合には 、当該特定層形成液はエポキシ樹脂やシリコーン樹脂など従来の導光部材形成液と 比較して低粘度であり、かつ蛍光体や無機粒子とのなじみが良ぐ高濃度の蛍光体 や無機粒子を分散しても十分に塗布性能を維持することが出来る利点を有する。ま た、必要に応じて重合度の調整ゃァエロジル等チキソ材を含有させることにより高粘 度にすることも可能であり、 目的の蛍光体含有量に応じた粘度の調整幅が大きぐ塗 布対象物の種類や形状さらにはポッティング 'スピンコ一ト ·印刷などの各種塗布方法 に柔軟に対応できる塗布液を提供することが出来る。 By the way, for example, when a phosphor is contained in a specific layer to form a phosphor-containing layer, the specific layer forming liquid has a lower viscosity than conventional light guide member forming liquids such as epoxy resins and silicone resins. In addition, there is an advantage that the coating performance can be sufficiently maintained even if a high concentration phosphor or inorganic particles having good compatibility with the phosphor and inorganic particles are dispersed. In addition, it is possible to increase the viscosity by adding a thixo material such as aerosil, if necessary, and the degree of polymerization can be increased, and the viscosity can be adjusted according to the target phosphor content. It is possible to provide a coating solution that can flexibly respond to various types of coating methods such as the type and shape of the object, as well as potting, spin coating and printing.
[0272] また、例えば特定層に蛍光体を含有させて蛍光体含有層を構成する場合には、当 該特定層形成液は、必要に応じて重合度の調整ゃァエロジル等チキソ材を含有させ て、 目的の蛍光体含有量に応じた粘度及びチキソ性の調整をすることが好ましい。こ れにより、塗布対象物の種類や形状さらにはポッティング、スピンコート、印刷などの 各種塗布方法に柔軟に対応できる塗布液を提供することが出来る。 [0272] In addition, for example, when a phosphor is contained in a specific layer to form a phosphor-containing layer, the specific layer forming liquid may contain a thixo material such as erodyl whose polymerization degree is adjusted as necessary. Thus, it is preferable to adjust the viscosity and thixotropy according to the target phosphor content. As a result, it is possible to provide a coating solution that can flexibly cope with various types of coating methods such as potting, spin coating, and printing, as well as the type and shape of the object to be coated.
[0273] なお、蛍光体含有層における蛍光体の含有率は、蛍光体組成が特定出来ていれ ば、蛍光体含有試料を粉砕後予備焼成し炭素成分を除いた後にフッ酸処理によりケ ィ素成分をケィフッ酸として除去し、残渣を希硫酸に溶解して主成分の金属元素を 水溶液化し、 ICPや炎光分析、蛍光 X線分析などの公知の元素分析方法により主成 分金属元素を定量し、計算により蛍光体含有率を求めることが出来る。また、蛍光体
形状や粒径が均一で比重が既知であれば塗布物断面の画像解析により単位面積あ たりの粒子個数を求め蛍光体含有率に換算する簡易法も用いることが出来る。 [0273] It should be noted that the phosphor content in the phosphor-containing layer is such that if the phosphor composition can be specified, the phosphor-containing sample is pulverized and pre-fired to remove the carbon component, and then subjected to hydrofluoric acid treatment. The components are removed as key hydrofluoric acid, the residue is dissolved in dilute sulfuric acid to make the main component metal element into an aqueous solution, and the main component metal element is quantified by known elemental analysis methods such as ICP, flame analysis, and fluorescent X-ray analysis. The phosphor content can be obtained by calculation. Also phosphor If the shape and particle size are uniform and the specific gravity is known, a simple method can be used in which the number of particles per unit area is obtained by image analysis of the cross-section of the coating and converted into the phosphor content.
[0274] また、蛍光体含有層形成液における蛍光体の含有率は、蛍光体含有層における蛍 光体の含有率が前記範囲に収まるように設定すればよい。したがって、蛍光体含有 層形成液が乾燥工程にお!/、て重量変化しな!/、場合は蛍光体含有層形成液におけ る蛍光体の含有率は蛍光体含有層における蛍光体の含有率と同様になる。また、蛍 光体含有層形成液が溶媒等を含有している場合など、蛍光体含有層形成液が乾燥 工程において重量変化する場合は、その溶媒等を除いた蛍光体含有層形成液にお ける蛍光体の含有率が蛍光体含有層における蛍光体の含有率と同様になるようにす れば'よい。 [0274] Further, the phosphor content in the phosphor-containing layer forming liquid may be set so that the phosphor content in the phosphor-containing layer falls within the above range. Therefore, the phosphor-containing layer forming liquid does not change in weight during the drying process! / In this case, the phosphor content in the phosphor-containing layer forming liquid is the phosphor content in the phosphor-containing layer. It will be similar to the rate. In addition, when the weight of the phosphor-containing layer forming liquid changes during the drying process, such as when the phosphor-containing layer forming liquid contains a solvent, the phosphor-containing layer forming liquid excluding the solvent or the like It suffices if the phosphor content rate is the same as the phosphor content rate in the phosphor-containing layer.
[0275] [C 1 2]無機粒子 [0275] [C 1 2] Inorganic particles
また、本発明の導光部材を構成する層には、光学的特性や作業性を向上させるた め、また、以下の < 1〉〜< 5〉の何れかの効果を得ることを目的として、更に無機 粒子を含有させても良い。中でも、本発明の導光部材を構成する各層のうち、互いに 接する特定層が無機粒子を含有していることが好ましい。ただし、この場合には、導 光部材が備える 2層以上の特定層のうち、少なくとも 1層が無機粒子を含有すればよ い。なお、無機粒子は、本発明の導光部材を構成する層のうち、 1層のみに含有され ていてもよく、 2層以上に含有されていても良い。 Further, the layer constituting the light guide member of the present invention is intended to improve optical characteristics and workability, and to obtain any of the following effects <1> to <5>. Further, inorganic particles may be included. Especially, it is preferable that the specific layer which mutually contacts among the layers which comprise the light guide member of this invention contains an inorganic particle. However, in this case, at least one of the two or more specific layers provided in the light guide member may contain inorganic particles. The inorganic particles may be contained in only one layer among the layers constituting the light guide member of the present invention, or may be contained in two or more layers.
[0276] < 1 >後述する光散乱層に光散乱物質として無機粒子を混入し、光源から伝送され た光を散乱させることにより、導光部材から外部に放射される光の指向角を広げる。 また、蛍光体含有層において、蛍光体に当たる光量を増加させ、波長変換効率を向 上させる。 <1> A light scattering layer described later is mixed with inorganic particles as a light scattering material, and the light transmitted from the light source is scattered to widen the directivity angle of the light emitted from the light guide member to the outside. Further, in the phosphor-containing layer, the amount of light hitting the phosphor is increased to improve the wavelength conversion efficiency.
< 2〉導光部材を構成する層に結合剤として無機粒子を配合することにより、クラック の発生を防止する。 <2> Preventing the generation of cracks by blending inorganic particles as a binder in the layers constituting the light guide member.
< 3〉導光部材の各層を構成するための形成液に、粘度調整剤として無機粒子を配 合することにより、当該形成液の粘度を高くする。 <3> Increasing the viscosity of the forming liquid by mixing inorganic particles as a viscosity adjusting agent in the forming liquid for constituting each layer of the light guide member.
< 4 >導光部材を構成する層に無機粒子を配合することにより、その収縮を低減する
< 5〉導光部材を構成する層に無機粒子を配合することにより、その屈折率を調整し て、光取り出し効率を向上させる。 <4> Reduce the shrinkage by blending inorganic particles in the layers that make up the light guide member <5> Incorporating inorganic particles into the layer constituting the light guide member to adjust the refractive index and improve the light extraction efficiency.
[0277] 中でも、上記の場合のうちでも特定層に無機粒子を含有させる場合は、特定層形 成液に、蛍光体の粉末と同様に、無機粒子を目的に応じて適量混合すればよい。こ の場合、混合する無機粒子の種類及び量によって得られる効果が異なる。 [0277] In particular, among the above cases, when the inorganic particles are contained in the specific layer, an appropriate amount of inorganic particles may be mixed in the specific layer forming liquid according to the purpose in the same manner as the phosphor powder. In this case, the effect obtained varies depending on the kind and amount of inorganic particles to be mixed.
例えば、無機粒子が粒径約 10nmの超微粒子状シリカ(日本ァエロジル株式会社 製、商品名: AEROSIL # 200)の場合、特定層形成液のチクソトロピック性が増大 するため、上記く 3〉の効果が大きい。 For example, when the inorganic particles are ultrafine silica with a particle size of about 10 nm (product name: AEROSIL # 200, manufactured by Nippon Aerosil Co., Ltd.), the thixotropic property of the specific layer forming liquid increases, so Is big.
[0278] また、例えば、無機粒子が粒径約数 μ mの破砕シリカ若しくは真球状シリカの場合[0278] For example, when the inorganic particles are crushed silica or spherical silica having a particle size of about several μm
、チクソトロピック性の増加はほとんど無ぐ特定層の骨材としての働きが中心となるの で、上記 < 2〉及び < 4〉の効果が大きい。 The effects of <2> and <4> are significant because the increase in thixotropic properties is mainly due to the role of aggregate in a specific layer.
また、例えば、特定層に用いられる前記化合物(乾燥させた加水分解 ·重縮合物)と は屈折率が異なる粒径約 1 μ mの無機粒子を用いると、前記化合物と無機粒子との 界面における光散乱が大きくなるので、上記 < 1〉の効果が大きい。 Further, for example, when inorganic particles having a particle size of about 1 μm, which has a refractive index different from that of the compound (dried hydrolyzed polycondensate) used in the specific layer, are used at the interface between the compound and the inorganic particles. Since light scattering increases, the effect of <1> is great.
[0279] また、例えば、特定層に用いられる前記化合物 (材料)より屈折率の大きな、中央粒 径が通常 lnm以上、好ましくは 3nm以上、また、通常 lOnm以下、好ましくは 5nm以 下、具体的には発光波長以下の粒径をもつ無機粒子を用いると、特定層の透明性を 保ったまま屈折率を向上させることができるので、上記 < 5〉の効果が大き!/、。 [0279] Also, for example, the refractive index of the compound (material) used in the specific layer is larger than that of the compound (material), and the median particle size is usually 1 nm or more, preferably 3 nm or more, and usually 1 Onm or less, preferably 5 nm or less. When using inorganic particles having a particle size equal to or smaller than the emission wavelength, the refractive index can be improved while maintaining the transparency of the specific layer, so the effect <5> above is great!
[0280] 従って、混合する無機粒子の種類は目的に応じて選択すれば良い。また、その種 類は単一でも良ぐ複数種を組み合わせてもよい。また、分散性を改善するためにシ ランカップリング剤などの表面処理剤で表面処理されていても良い。 [0280] Therefore, the type of inorganic particles to be mixed may be selected according to the purpose. Moreover, the type may be a single type or a combination of multiple types. Moreover, in order to improve dispersibility, it may be surface-treated with a surface treatment agent such as a silane coupling agent.
[0281] [C 1 2 1]無機粒子の種類 [0281] [C 1 2 1] Types of inorganic particles
使用する無機粒子の種類としては、シリカ、チタン酸バリウム、酸化チタン、酸化ジ ルコユウム、酸化ニオブ、酸化アルミニウム、酸化セリウム、酸化イットリウムなどの無 機酸化物粒子やダイヤモンド粒子が例示される力 目的に応じて他の物質を選択す ることあでさ、これらに限定されるあのではない。 Examples of inorganic particles used include inorganic oxide particles such as silica, barium titanate, titanium oxide, zirconium oxide, niobium oxide, aluminum oxide, cerium oxide, yttrium oxide, and diamond particles. Depending on the choice of other substances, it is not limited to these.
[0282] 無機粒子の形態は粉体状、スラリー状等、 目的に応じいかなる形態でもよいが、透 明性を保つ必要がある場合は、当該無機粒子を含有させる層に含有されるその他の
材料と屈折率を同等としたり、水系 ·溶媒系の透明ゾルとして当該層の形成液に加え たりすることが好ましい。 [0282] The form of the inorganic particles may be any form depending on the purpose, such as powder form or slurry form. However, if it is necessary to maintain transparency, other forms contained in the layer containing the inorganic particles may be used. It is preferable to make the refractive index the same as that of the material, or add it as a water-based / solvent-based transparent sol to the liquid for forming the layer.
[0283] [C 1 2— 2]無機粒子の中央粒径 [0283] [C 1 2-2] Median particle size of inorganic particles
これらの無機粒子(一次粒子)の中央粒径は特に限定されないが、通常、蛍光体粒 子の 1/10以下程度である。具体的には、 目的に応じて以下の中央粒径のものが用 いられる。例えば、無機粒子を光散乱材として用いるのであれば、その中央粒径は通 常 0. 05 μ m以上、好ましくは 0. 1 μ m以上、また、通常 50 μ m以下、好ましくは 20 以下である。また、例えば、無機粒子を骨材として用いるのであれば、その中央 粒径は 1 m〜; 10 mが好適である。また、例えば、無機粒子を増粘剤(チキソ剤)と して用いるのであれば、その中央粒子は 10〜; !OOnmが好適である。また、例えば、 無機粒子を屈折率調整剤として用いるのであれば、その中央粒径は;!〜 1 Onmが好 適である。特に、本発明の導光部材においては、互いに接する層(好ましくは特定層 )のうち、少なくとも 1層に中央粒径 0· 05〜50 111の無機粒子を含有させるとともに 、その層及び/又は他の少なくとも 1層に中央粒径 1〜 1 Onmの無機粒子を含有させ ることが好ましい。 The median particle size of these inorganic particles (primary particles) is not particularly limited, but is usually about 1/10 or less of the phosphor particles. Specifically, the following median particle size is used according to the purpose. For example, if inorganic particles are used as the light scattering material, the median particle size is usually 0.05 μm or more, preferably 0.1 μm or more, and usually 50 μm or less, preferably 20 or less. is there. For example, if inorganic particles are used as the aggregate, the median particle size is preferably 1 m to 10 m. For example, if inorganic particles are used as a thickener (thixotropic agent), the central particle is preferably 10 to! OOnm. Further, for example, if inorganic particles are used as the refractive index adjusting agent, the median particle size is preferably from !! to 1 Onm. In particular, in the light guide member of the present invention, at least one of the layers in contact with each other (preferably a specific layer) contains inorganic particles having a median particle diameter of 0.05 · 50 to 50 111, and the layer and / or others. It is preferable to contain inorganic particles having a median particle diameter of 1 to 1 Onm in at least one layer.
[0284] これにより、光学的には中央粒径;!〜 10nmの無機粒子は特定層の透過率を損じ ることなく屈折率調整をはじめとする諸機能を付与することが出来る利点がある。また Thus, optically, inorganic particles having a median particle diameter of! -10 nm have an advantage that various functions such as refractive index adjustment can be imparted without impairing the transmittance of the specific layer. Also
、中央粒径 0. 05〜50 111の無機粒子は上記のように散舌い蛍光などの機能を付与 することが出来る。例えば、相接する 2層のうち第一の層が中央粒径 0. 05〜50 m の機能性無機粒子を含有し、第二の層が中央粒径;!〜 10nmの無機粒子のみを含 有する場合、特定屈折率かつ透明である第二の層が導光層の役割を果たし、第一 の層は散乱や蛍光により面発光する層となる。また、例えば、第一の層、第二の層共 に中央粒径 1〜 10nmの無機粒子を含むこともでき、層ごとに異なる含有量を設定す ることにより第一の層、第二の層の屈折率を任意に調節し、導光距離や膜厚、散乱 効率などに応じた光学設計をすることが可能となる。 The inorganic particles having a median particle diameter of 0.05 to 50 111 can impart functions such as diffuse fluorescence as described above. For example, of the two layers in contact, the first layer contains functional inorganic particles with a median particle size of 0.05 to 50 m, and the second layer contains only inorganic particles with a median particle size of! -10 nm. When it has, the 2nd layer with a specific refractive index and transparency plays the role of a light guide layer, and a 1st layer turns into a layer light-emitted by scattering and fluorescence. In addition, for example, both the first layer and the second layer can contain inorganic particles having a median particle diameter of 1 to 10 nm , and the first layer and the second layer can be formed by setting different contents for each layer. By arbitrarily adjusting the refractive index of this layer, it is possible to make an optical design according to the light guide distance, film thickness, scattering efficiency, and the like.
[0285] [C 1 2— 3]無機粒子の混合方法 [0285] [C 1 2-3] Method of mixing inorganic particles
本発明において、無機粒子を混合する方法は特に制限されない。ただし、形成液 に無機粒子を混合する場合には、通常は、蛍光体と同様に遊星攪拌ミキサー等を用
ヽて脱泡しつつ混合することが推奨される。例えばァエロジノレのような凝集しやす!/ヽ 小粒子を混合する場合には、粒子混合後必要に応じビーズミルや三本ロールなどを 用いて凝集粒子の解砕を行ってから蛍光体等の混合容易な大粒子成分を混合して も良い。 In the present invention, the method for mixing the inorganic particles is not particularly limited. However, when mixing inorganic particles in the forming liquid, a planetary agitation mixer or the like is usually used in the same manner as the phosphor. It is recommended to mix while degassing. For example, when mixing small particles such as Aerozinole! / When mixing small particles, after mixing the particles, if necessary, use a bead mill or three rolls to break up the agglomerated particles before mixing phosphors, etc. Large particle components may be mixed.
[0286] [C 1 2— 4]無機粒子の含有率 [0286] [C 1 2-4] Content of inorganic particles
本発明の導光部材の各層における無機粒子の含有率は、本発明の効果を著しく 損なわない限り任意である力 その適用形態により自由に選定できる。例えば、無機 粒子を光散乱剤として用いる場合は、その含有率は 0. 01〜; 10重量%が好適である 。また、例えば、無機粒子を骨材として用いる場合は、その含有率は;!〜 50重量%が 好適である。また、例えば、無機粒子を増粘剤(チキソ剤)として用いる場合は、その 含有率は 0. ;!〜 20重量%が好適である。また、例えば、無機粒子を屈折率調整剤と して用いる場合は、その含有率は 10〜80重量%が好適である。無機粒子の量が少 なすぎると所望の効果が得られなくなる可能性があり、多すぎると硬化物の密着性、 透明性、硬度等の諸特性に悪影響を及ぼす可能性がある。 The content of the inorganic particles in each layer of the light guide member of the present invention can be freely selected depending on the force and its application form as long as the effects of the present invention are not significantly impaired. For example, when inorganic particles are used as the light scattering agent, the content is preferably 0.01 to 10% by weight. Also, for example, when inorganic particles are used as the aggregate, the content is preferably from !! to 50% by weight. For example, when inorganic particles are used as a thickener (thixotropic agent), the content is preferably 0.;! To 20% by weight. For example, when inorganic particles are used as the refractive index adjuster, the content is preferably 10 to 80% by weight. If the amount of the inorganic particles is too small, the desired effect may not be obtained. If the amount is too large, various properties such as adhesion, transparency and hardness of the cured product may be adversely affected.
[0287] 前記のように、特定層に無機粒子を含有させる場合には特定層形成液に無機粒子 を含有させることになるのであるが、特定層形成液はエポキシ樹脂やシリコーン樹脂 など従来の導光部材形成液と比較して低粘度であり、かつ蛍光体や無機粒子とのな じみが良ぐ高濃度の無機粒子を分散しても十分に塗布性能を維持することが出来 る利点を有する。また、必要に応じて重合度の調整ゃァエロジル等のチキソ材を含 有させることにより高粘度にすることも可能であり、 目的の無機粒子含有量に応じた 粘度の調整幅が大きぐ塗布対象物の種類や形状さらにはポッティング 'スピンコート •印刷などの各種塗布方法に柔軟に対応できる塗布液を提供することが出来る。 [0287] As described above, when the specific layer contains inorganic particles, the specific layer forming liquid contains inorganic particles. However, the specific layer forming liquid is a conventional conductive material such as an epoxy resin or a silicone resin. Compared to the optical member forming liquid, it has the advantage of being able to maintain sufficient coating performance even when dispersed at high concentration of inorganic particles that have good affinity with phosphors and inorganic particles. . It is also possible to increase the viscosity by adjusting the degree of polymerization if necessary, and by adding a thixo material such as aerosil, etc., and the viscosity adjustment range according to the target inorganic particle content is large. Kinds and shapes of objects, as well as potting 'spin coating • We can provide coating solutions that can flexibly support various coating methods such as printing.
[0288] なお、導光部材の各層における無機粒子の含有率は、前出の蛍光体含有量と同 様に測定することが出来る。 [0288] The inorganic particle content in each layer of the light guide member can be measured in the same manner as the phosphor content described above.
また、各層を形成するための形成液における無機粒子の含有率は、各層における 無機粒子の含有率が前記範囲に収まるように設定すればよい。したがって、形成液 が乾燥工程にぉレ、て重量変化しな!/、場合は形成液における無機粒子の含有率は導 光部材の各層における無機粒子の含有率と同様になる。また、形成液が溶媒等を含
有している場合など、当該形成液が乾燥工程において重量変化する場合は、その溶 媒等を除いた形成液における無機粒子の含有率が導光部材の各層における無機粒 子の含有率と同様になるようにすればよい。 Further, the content of the inorganic particles in the forming liquid for forming each layer may be set so that the content of the inorganic particles in each layer falls within the above range. Therefore, the weight of the forming liquid does not change during the drying process! In this case, the content of inorganic particles in the forming liquid is the same as the content of inorganic particles in each layer of the light guide member. In addition, the forming liquid contains a solvent and the like. When the weight of the forming liquid changes in the drying process, such as when it has, the content of inorganic particles in the forming liquid excluding the solvent is the same as the content of inorganic particles in each layer of the light guide member It should just become.
[0289] [C 2]導光部材の層構成 [C289] Layer structure of light guide member
本発明の第一および第二の導光部材は、屈折率の異なる 2以上の層が積層されて なることを特徴とする。 The first and second light guide members of the present invention are characterized in that two or more layers having different refractive indexes are laminated.
また、本発明の第三および第四の導光部材は、 - ^一ズ値の異なる 2以上の層が積 層されてなることを特徴とする。 In addition, the third and fourth light guide members of the present invention are characterized in that two or more layers having different values are stacked.
さらに、本発明の第五及び第六の導光部材は、屈折率の異なる 2以上の層が積層 されてなることを特徴とする。したがって、本発明の第五の導光部材は、屈折率の異 なる 2以上の層が積層された導光部材であって、前記層の少なくとも 1層が特定層で あり、かつ、発光ピークの主波長が 500nm以下である光源を備える。一方、本発明 の第六の導光部材は、屈折率の異なる 2以上の層が積層されてなる導光部材であつ て、前記層のうちの互いに接する少なくとも 2層が特定層である。 Furthermore, the fifth and sixth light guide members of the present invention are characterized in that two or more layers having different refractive indexes are laminated. Therefore, the fifth light guide member of the present invention is a light guide member in which two or more layers having different refractive indexes are laminated, at least one of the layers being a specific layer, and having a light emission peak. A light source with a dominant wavelength of 500 nm or less is provided. On the other hand, the sixth light guide member of the present invention is a light guide member in which two or more layers having different refractive indexes are laminated, and at least two of the layers in contact with each other are specific layers.
また、本発明の第七及び第八の導光部材は、ヘーズ値の異なる 2以上の層が積層 されてなることを特徴とする。したがって、本発明の第七の導光部材は、ヘーズ値の 異なる 2以上の層が積層された導光部材であって、前記層の少なくとも 1層が特定層 であり、かつ、発光ピークの主波長が 500nm以下である光源を備える。一方、本発 明の第八の導光部材は、ヘーズ値の異なる 2以上の層が積層されてなる導光部材で あって、前記層のうちの互いに接する少なくとも 2層が特定層である。 The seventh and eighth light guide members of the present invention are characterized in that two or more layers having different haze values are laminated. Accordingly, the seventh light guide member of the present invention is a light guide member in which two or more layers having different haze values are laminated, wherein at least one of the layers is a specific layer and has a main emission peak. A light source with a wavelength of 500 nm or less is provided. On the other hand, the eighth light guide member of the present invention is a light guide member in which two or more layers having different haze values are laminated, and at least two of the layers in contact with each other are specific layers.
なお、密着性改善のためプライマーを層間に使用した場合、プライマー層を介する 2層それぞれに極性基が付与されたと見なし、両層を特定層とする。 In addition, when a primer is used between layers for improving adhesion, it is considered that a polar group is added to each of the two layers via the primer layer, and both layers are designated as specific layers.
以下、本発明の導光部材の層構成について説明する。 Hereinafter, the layer structure of the light guide member of the present invention will be described.
[0290] [C 2— 1]屈折率 [0290] [C 2-1] Refractive index
本発明の第一、第二、第五及び第六の導光部材は、屈折率の異なる 2以上の層が 積層されてなることを特徴とする。本発明の第一、第二、第五及び第六の導光部材を 光導波路や導光板として用いる場合は、隣接する層間に屈折率差をつけることにより 、高屈折率層は光を伝送するコア層を、低屈折率層は光を閉じ込めるクラッド層を、
それぞれ形成する。 The first, second, fifth and sixth light guide members of the present invention are characterized in that two or more layers having different refractive indexes are laminated. When the first, second, fifth and sixth light guide members of the present invention are used as an optical waveguide or a light guide plate, the high refractive index layer transmits light by providing a difference in refractive index between adjacent layers. The core layer, the low refractive index layer is the cladding layer that confines light, Form each one.
[0291] 本発明の第一、第二、第五及び第六の導光部材の高屈折率層の屈折率は、通常 [0291] The refractive index of the high refractive index layer of the first, second, fifth and sixth light guide members of the present invention is usually
1. 45以上、好ましくは 1. 5以上、さらに好ましくは 1. 6以上である。上限は特に制限 されないが、例えば半導体発光装置を光源として用いる場合は、一般的な半導体発 光装置の屈折率が約 2. 5であることから、通常 2. 5以下であり、屈折率調整を容易と する観点から、好ましくは 2. 0以下である。高屈折率層の屈折率が小さすぎると、光 取り出し効率が向上しない可能性がある。一方、高屈折率層の屈折率が光源を構成 する部材の屈折率より大きい場合にも、光取り出し効率は向上しない。 1. 45 or more, preferably 1.5 or more, more preferably 1.6 or more. Although the upper limit is not particularly limited, for example, when a semiconductor light-emitting device is used as a light source, the refractive index of a general semiconductor light-emitting device is about 2.5, and is usually 2.5 or less. From the viewpoint of ease, it is preferably 2.0 or less. If the refractive index of the high refractive index layer is too small, the light extraction efficiency may not be improved. On the other hand, the light extraction efficiency is not improved even when the refractive index of the high refractive index layer is larger than the refractive index of the member constituting the light source.
[0292] また、本発明の第一、第二、第五及び第六の導光部材の低屈折率層の屈折率は、 通常 1. 45未満、好ましくは 1. 43以下、さらに好ましくは 1. 42以下である。下限は、 通常 1. 4以上であり、好ましくは 1. 41以上である。 [0292] The refractive index of the low refractive index layer of the first, second, fifth and sixth light guide members of the present invention is usually less than 1.45, preferably 1.43 or less, more preferably 1. 42 or less. The lower limit is usually 1.4 or more, preferably 1.41 or more.
[0293] また、高屈折率層と低屈折率層の屈折率差は、通常 0. 03〜0. 2であるが、これを 適宜調整することにより、高屈折率層中の光の伝送距離 (導波距離)を調節すること もできる。即ち、屈折率差を大きくすると、低屈折率層(クラッド層)が高屈折率層(コ ァ層)の光を効率良く閉じ込めるため、低屈折率層への漏れ光が少なぐ光の伝送距 離を長くすること力 Sできる。一方、屈折率差を、例えば 0. 05以下というように小さく設 定すると、高屈折率層から低屈折率層への漏れ光が増えるため、光の伝送距離は短 くなる。 [0293] The refractive index difference between the high-refractive index layer and the low-refractive index layer is usually 0.03 to 0.2. By appropriately adjusting this, the transmission distance of light in the high-refractive index layer It is also possible to adjust the (guide distance). In other words, when the refractive index difference is increased, the low refractive index layer (cladding layer) efficiently confines the light of the high refractive index layer (core layer), and therefore the light transmission distance with less leakage light to the low refractive index layer. Can increase the separation force S. On the other hand, if the refractive index difference is set to be as small as 0.05 or less, for example, light leakage from the high refractive index layer to the low refractive index layer increases, and the light transmission distance becomes short.
[0294] 〔屈折率測定法〕 [Refractive Index Measurement Method]
屈折率は、液浸法(固体対象)のほか Pulflich屈折計、 Abbe屈折計、プリズムカブ ラー法、干渉法、最小偏角法などの公知の方法を用いて測定することが出来る。本 発明における屈折率の測定波長は、 Abbe屈折計などの機器を用いる場合に汎用に 用いられるナトリウム D線(589nm)を選択することが出来る。屈折率は上記のように 様々な方法で測定することができ、硬化前と硬化後のサンプルの屈折率はほとんど 変化しない。硬化後のサンプルは目的に応じて様々に成形することになるため、硬化 前の液を用いて Abbe屈折計を用いる測定が最も簡便で好まし!/、。 The refractive index can be measured using a known method such as a Pulflich refractometer, an Abbe refractometer, a prism cover method, an interferometry, and a minimum declination method in addition to the immersion method (solid object). The refractive index measurement wavelength in the present invention can be selected from sodium D line (589 nm), which is used for general purposes when using an instrument such as an Abbe refractometer. The refractive index can be measured by various methods as described above, and the refractive index of the sample before and after curing hardly changes. Since samples after curing will be molded in various ways depending on the purpose, measurement using an Abbe refractometer using the uncured solution is the simplest and preferred!
[0295] [C 2— 2]ヘーズ直 [0295] [C 2-2] Haze straight
本発明の第三、第四、第七及び第八の導光部材は、ヘーズ値の異なる 2以上の層
が積層されてなることを特徴とする。本発明の第三、第四、第七及び第八の導光部 材に光散乱層および/または蛍光体含有層を設ける場合は、前記光散乱層および /または蛍光体含有層のヘーズ値を高くすればよい。 The third, fourth, seventh and eighth light guide members of the present invention have two or more layers having different haze values. It is characterized by being laminated. When providing the light scattering layer and / or the phosphor-containing layer in the third, fourth, seventh and eighth light guide members of the present invention, the haze value of the light scattering layer and / or the phosphor-containing layer is set. You can make it higher.
[0296] 本発明の第三、第四、第七及び第八の導光部材の光散乱層および/または蛍光 体含有層のヘーズ値は、通常 50以上、好ましくは 70以上、さらに好ましくは 80以上 である。光散乱層および/または蛍光体含有層のヘーズ値が小さすぎると、光散乱 効果、即ち光が導光部材の外部へ放射される効果が向上しない可能性がある。した がって、前記の互いに接する特定層のうち少なくとも 1層のヘーズ値は、前記光散乱 層および/または蛍光体含有層の範囲に納まることが好ましい。なお、ヘーズ値とは 、透明部材のいわゆる曇り具合(曇価)を数値化したものであり、 JIS— K— 7136に基 いて測定される値をいう。 [0296] The haze value of the light scattering layer and / or the phosphor-containing layer of the third, fourth, seventh and eighth light guide members of the present invention is usually 50 or more, preferably 70 or more, more preferably 80. That's it. If the haze value of the light scattering layer and / or the phosphor-containing layer is too small, the light scattering effect, that is, the effect that light is emitted to the outside of the light guide member may not be improved. Therefore, it is preferable that the haze value of at least one of the specific layers in contact with each other falls within the range of the light scattering layer and / or the phosphor-containing layer. The haze value is a numerical value of the so-called cloudiness (cloudiness value) of a transparent member, and is a value measured based on JIS-K-7136.
[0297] [C 2— 3]各層の役割 [0297] [C 2-3] Role of each layer
上述の様に、本発明の導光部材は、構成される各層の屈折率および/またはへ一 ズ値を調整することにより、低屈折率層、高屈折率層、光散乱層および蛍光体含有 層を設けること力 Sできる。以下、各層について説明する。なお、各層の具体的な設置 方法は、 [C— 3]章にお!/、て各実施形態により説明する。 As described above, the light guide member of the present invention includes a low refractive index layer, a high refractive index layer, a light scattering layer, and a phosphor by adjusting the refractive index and / or the haze value of each layer that is configured. The ability to provide a layer S. Hereinafter, each layer will be described. The specific installation method for each layer will be explained in the section [C-3] according to each embodiment!
[0298] [C 2— 3— 1]低屈折率層 [0298] [C 2-3-1] Low refractive index layer
上述の様に本発明の導光部材を光導波路や導光板として用いる場合は、通常、光 を閉じ込めるクラッド層としての低屈折率層を設ける。特定層以外の層が低屈折率層 となっていても良いが、低屈折率層は、前述の [A]章又は [B]章に記載の特徴を有 する化合物からなる特定層により構成されることが好ましい。したがって、本発明の導 光部材においては、前記の互いに接する特定層のうちのうちの少なくとも 1層が低屈 折率層となっていることが好ましい。なお、低屈折率層の屈折率は上述のとおりであ る。また、低屈折率層は、 1層のみを設けてもよぐ 2層以上を設けても良い。 As described above, when the light guide member of the present invention is used as an optical waveguide or a light guide plate, a low refractive index layer is usually provided as a cladding layer for confining light. A layer other than the specific layer may be a low refractive index layer, but the low refractive index layer is composed of a specific layer made of a compound having the characteristics described in the above-mentioned chapter [A] or [B]. It is preferable. Therefore, in the light guide member of the present invention, it is preferable that at least one of the specific layers in contact with each other is a low refractive index layer. The refractive index of the low refractive index layer is as described above. Further, the low refractive index layer may be provided with only one layer or may be provided with two or more layers.
[0299] [C 2— 3— 2]高屈折率層 [0299] [C 2-3—2] High refractive index layer
上述の様に本発明の導光部材を光導波路や導光板として用いる場合は、通常、光 を伝送するコア層としての高屈折率層を設ける。特定層以外の層が高屈折率層とな つていても良いが、高屈折率層は、前述の [A]章又は [B]章に記載の特徴を有する
化合物からなる特定層により構成されることが好ましい。したがって、本発明の導光部 材においては、前記の互いに接する特定層のうち少なくとも 1層が高屈折率層となつ ていることが好ましい。 As described above, when the light guide member of the present invention is used as an optical waveguide or a light guide plate, a high refractive index layer is usually provided as a core layer for transmitting light. A layer other than the specific layer may be a high refractive index layer, but the high refractive index layer has the characteristics described in the above-mentioned chapter [A] or [B]. It is preferable that it is comprised by the specific layer which consists of a compound. Therefore, in the light guide member of the present invention, it is preferable that at least one of the specific layers in contact with each other is a high refractive index layer.
[0300] また、高屈折率層は、低屈折率層よりも高い屈折率とするため、例えば、化合物中 にフエ二ル基を導入したり、 [C— 1 2]章に記載される様に、屈折率調節剤として、 中央粒径が 1〜; !Onmの無機粒子を含有させることが好ましい。なお、高屈折率層の 屈折率は上述のとおりである。また、高屈折率層は、 1層のみを設けてもよぐ 2層以 上を設けても良い。 [0300] Further, in order to make the high refractive index layer have a higher refractive index than the low refractive index layer, for example, a phenyl group is introduced into the compound, or as described in Chapter [C-12]. In addition, it is preferable to contain inorganic particles having a median particle diameter of 1 to; The refractive index of the high refractive index layer is as described above. The high refractive index layer may be provided with only one layer or with two or more layers.
[0301] さらに、低屈折率層と高屈折率層とが、共に特定層により構成されていることがより 好ましい。したがって、本発明の導光部材においては、前記の互いに接する特定層 のうち少なくとも 1層の屈折率が前記高屈折率層の範囲に収まると共に、他の少なく とも 1層の屈折率が前記低屈折率層の範囲に収まることがより好ましい。 [0301] Furthermore, it is more preferable that the low refractive index layer and the high refractive index layer are both constituted by specific layers. Therefore, in the light guide member of the present invention, the refractive index of at least one of the specific layers in contact with each other is within the range of the high refractive index layer, and the refractive index of at least one other layer is the low refractive index. More preferably, it falls within the range of the rate layer.
[0302] [C 2— 3— 3]光散乱層 [0302] [C 2-3-3] Light scattering layer
本発明の導光部材は、光源から伝送された光を外部に放射させる光散乱層を設け ること力 Sできる。光散乱層は、導光部材から外部に放射される光の指向角を広げる働 きがある。特定層以外の層が光散乱層となっていても良いが、光散乱層は、前述の [ A]章又は [B]章に記載の特徴を有する化合物からなる特定層により構成されること が好ましい。また、光散乱層は、 [C— 1 2]章に記載される様に、光散乱材として、 中央粒径が通常 0. 05 μ m以上、好ましくは 0. 1 μ m以上、また、通常 50 μ m以下、 好ましくは 20 以下の無機粒子を含有させることが好ましい。なお、光散乱層は、 1層のみを設けてもよぐ 2層以上を設けても良い。 The light guide member of the present invention can be provided with a light scattering layer that radiates light transmitted from a light source to the outside. The light scattering layer functions to widen the directivity angle of light emitted from the light guide member to the outside. A layer other than the specific layer may be a light scattering layer, but the light scattering layer may be composed of a specific layer made of a compound having the characteristics described in the above-mentioned chapter [A] or [B]. preferable. In addition, as described in [C-12], the light scattering layer has a median particle size of usually 0.05 μm or more, preferably 0.1 μm or more as a light scattering material. It is preferable to contain inorganic particles of 50 μm or less, preferably 20 or less. The light scattering layer may be provided with only one layer, or may be provided with two or more layers.
[0303] また、基板の表面粗度を利用して導波した光を取り出すこともできる。これは、粗面 上に光散乱層を設けることで、導波した光が粗面で散乱して、光が取り出し面に対し て垂直になる成分が増加するため、光が表面に出てくるようにしたものである。粗面 は基板上、および/または各層上に形成することができる。粗面は各層の上面(光取 り出し面に近!/、面)、下面(光取り出し面から遠!/、面)レ、ずれに形成されてレ、てもよ!/ヽ 。粗面の荒さは、光を散乱させる性質を持てば特に限定されないが、高低差が通常 0 . 2 H m以上、好ましくは 0. 5 μ m以上であり、また通常 50 μ m以下、好ましくは 30 μ
m以下でめ。。 [0303] Further, guided light can be extracted using the surface roughness of the substrate. This is because, by providing a light scattering layer on the rough surface, the guided light is scattered on the rough surface, and the light becomes perpendicular to the extraction surface, so that the light emerges on the surface. It is what I did. The rough surface can be formed on the substrate and / or on each layer. The rough surface may be formed on the upper surface (close to the light extraction surface! /, Surface), lower surface (far from the light extraction surface! /, Surface), or misaligned! The roughness of the rough surface is not particularly limited as long as it has the property of scattering light, but the height difference is usually 0.2 Hm or more, preferably 0.5 μm or more, and usually 50 μm or less, preferably 30 μ Less than m. .
[0304] 基板に粗面を作る方法は限定されな!/、が、例えば、精密機械加工、ブラスト処理、 粉体コート、拡散粒子含有コーティング液の塗布、粒子貼り付け、薬液エッチング処 理、光照射、インクジェット印刷、感光硬化(軟化)樹脂への露光 '現像、感熱硬化樹 脂への加熱 ·現像等が挙げられる。 [0304] The method of creating a rough surface on the substrate is not limited! /, But, for example, precision machining, blasting, powder coating, application of coating solution containing diffusing particles, particle pasting, chemical etching, optical Examples include irradiation, ink jet printing, exposure to a photosensitive curable (softening) resin, development, and heating / developing to a thermosensitive resin.
また、積層させる各層表面を粗面化する方法としては、例えば、フッ酸やアルカリ等 を用いる薬液処理、ブラスト処理、粉体コート、拡散粒子含有コーティング液の塗布、 粒子貼り付け、光照射、インクジェット印刷等がある。また、例えば、構成させる層の 中に沈降性、あるいは浮遊性の光拡散粒子を含有させ、コーティングしたあとに粒子 を沈降または浮遊させて各層の界面により多くの拡散粒子を存在させる手法も、粗面 を形成させる手法同様に好ましく用いることができる。 Further, as a method of roughening the surface of each layer to be laminated, for example, chemical treatment using hydrofluoric acid or alkali, blast treatment, powder coating, application of a coating solution containing diffusing particles, particle pasting, light irradiation, inkjet There is printing. In addition, for example, a method in which sedimentation or floating light diffusing particles are contained in a layer to be configured, and after coating, particles are settled or suspended so that more diffusing particles exist at the interface of each layer. It can be preferably used in the same manner as the method of forming the surface.
[0305] [C 2— 3— 4]蛍光体含有層 [0305] [C 2-3-4] Phosphor-containing layer
本発明の導光部材は、光源力 伝送された光の波長を所望の波長に変換するため に蛍光体含有層を設けることができる。蛍光体含有層は、導光部材を構成する層のう ち、蛍光体を含有する層のことを言う。この際、特定層以外の層が蛍光体含有層とな つて!/、ても良レ、が、蛍光体含有層は前述の [A]章又は [B]章に記載の特徴を有する 化合物からなる特定層により構成されることが好ましい。この場合、本発明の導光部 材を構成する各層のうち、互いに接する特定層が蛍光体を含有して蛍光体含有層を 構成することが好ましい。ただし、この場合には、導光部材が備える 2層以上の特定 層のうち、少なくとも 1層が蛍光体を含有すればよい。 The light guide member of the present invention can be provided with a phosphor-containing layer in order to convert the wavelength of light transmitted from the light source force into a desired wavelength. The phosphor-containing layer refers to a layer containing a phosphor among the layers constituting the light guide member. At this time, a layer other than the specific layer becomes a phosphor-containing layer! /, But the phosphor-containing layer is made of a compound having the characteristics described in the above-mentioned chapter [A] or [B]. It is preferable that it is comprised by the specific layer. In this case, among the layers constituting the light guide member of the present invention, it is preferable that the specific layers in contact with each other contain a phosphor to constitute the phosphor-containing layer. However, in this case, at least one of the two or more specific layers provided in the light guide member may contain a phosphor.
蛍光体含有層は、層内に [C 1 1 ]章に記載される蛍光体を含有させて形成さ れる。また、蛍光体含有層には、蛍光体に当たる光量を増加させ、波長変換効率を 向上させるために、光散乱材として、中央粒径が 0. ;!〜 10 mの無機粒子を含有さ せてもよい。なお、蛍光体含有層は、 1層のみを設けてもよぐ 2層以上を設けても良 い。 The phosphor-containing layer is formed by containing the phosphor described in [C 1 1] in the layer. In addition, in order to increase the amount of light hitting the phosphor and improve the wavelength conversion efficiency, the phosphor-containing layer contains inorganic particles having a median particle size of 0.;! To 10 m as a light scattering material. Also good. The phosphor-containing layer may be provided with only one layer or two or more layers.
[0306] [C 2— 4]導光部材の形状及び寸法 [0306] [C 2-4] Shape and dimensions of light guide member
本発明の導光部材の形状及び寸法に制限は無く任意である。例えば、導光部材の 光導波路や導光板として使用される場合には、本発明の導光部材の形状及び寸法
は、その光導波路や導光板の基板の形状及び寸法に応じて決定される。また、基板 の表面に形成される場合は、通常は膜状に形成されることが多ぐその寸法は用途 に応じて任意に設定される。また、形成膜 (導光部材を形成する膜)は、前述の様に 、屈折率やヘーズ値の異なるものを複数積層させる力 各層の寸法も用途に応じて 任意に設定される。 There is no restriction | limiting in the shape and dimension of the light guide member of this invention, and it is arbitrary. For example, when used as a light guide or light guide plate of a light guide member, the shape and dimensions of the light guide member of the present invention Is determined according to the shape and size of the substrate of the optical waveguide or the light guide plate. When formed on the surface of the substrate, it is usually formed in a film shape, and its dimensions are arbitrarily set according to the application. In addition, as described above, the forming film (film forming the light guide member) is a force for laminating a plurality of films having different refractive indexes and haze values. The dimensions of each layer are arbitrarily set according to the application.
[0307] ただし、本発明の導光部材は、膜状に形成する場合、特定層を厚膜に形成するこ とができることを利点の一つとしている。従来の導光部材は、その導光部材を構成す る層を厚膜化すると内部応力等によりクラック等が生じて厚膜化が困難であつたが、 本発明の導光部材ではそのようなことは無ぐ安定して厚膜化が可能である。具体的 範囲を挙げると、本発明の導光部材を導光板として用いる場合は、各特定層の膜厚 が通常 10 m以上、好ましくは 30 m以上、通常 500 m以下、好ましくは 300〃 m以下、より好ましくは 200 m以下である。ここで、膜の厚みが一定でない場合には 、膜の厚みとは、その膜の最大の厚み部分の厚さのことを指すものとする。また、この 場合、導光板基板を除く全層の膜厚の合計は、通常 δθ ΐη以上、好ましくは δθ ΐη 以上であり、通常 500 μ m以下、好ましくは 300 μ m以下、更に好ましくは 200 μ m 以下である。 [0307] However, when the light guide member of the present invention is formed in a film shape, one of the advantages is that the specific layer can be formed in a thick film. In the conventional light guide member, when the layer constituting the light guide member is thickened, cracks or the like are generated due to internal stress or the like, and it is difficult to thicken the layer. However, in the light guide member of the present invention, It is possible to increase the film thickness stably. Specifically, when the light guide member of the present invention is used as a light guide plate, the thickness of each specific layer is usually 10 m or more, preferably 30 m or more, usually 500 m or less, preferably 300 mm or less. More preferably, it is 200 m or less. Here, when the thickness of the film is not constant, the thickness of the film refers to the thickness of the maximum thickness portion of the film. In this case, the total thickness of all layers excluding the light guide plate substrate is usually δθ ΐη or more, preferably δθ ΐη or more, usually 500 μm or less, preferably 300 μm or less, more preferably 200 μm. m or less.
[0308] [C 3]導光部材の構造 [0308] [C 3] Structure of light guide member
以下、本発明の導光部材の例として、半導体発光装置を光源とする導光板を例に 挙げて、実施形態を用いて説明する。但し、これらの実施形態はあくまでも説明の便 宜のために用いるものであって、本発明の導光部材を適用した光導波路、導光板そ の他の例は、これらの実施形態に限られるものではない。中でも、基板は必要に応じ て設けても設けなくても良く、また、その厚みに特に制限は無い。さらに、本発明では 特定層の柔軟性が高いため、この特定層を利用すれば、フレキシブルプリント基板の ような薄型基板上でも基板の反り及び変形なしに任意の膜厚の層を作製することが できる。 Hereinafter, as an example of the light guide member of the present invention, a light guide plate using a semiconductor light-emitting device as a light source will be described as an example and described using an embodiment. However, these embodiments are used only for convenience of explanation, and the optical waveguide, the light guide plate, and other examples to which the light guide member of the present invention is applied are limited to these embodiments. is not. In particular, the substrate may be provided or not as required, and the thickness is not particularly limited. Furthermore, since the specific layer has high flexibility in the present invention, the use of this specific layer makes it possible to produce a layer having an arbitrary film thickness without warping or deformation of the substrate even on a thin substrate such as a flexible printed circuit board. it can.
[0309] [C 3— 1]第一の実施形態 [0309] [C 3-1] First embodiment
第一の実施形態の導光板 8は、図 2に示すように、基板 1上に LEDチップからなる 半導体発光素子 2と、場合により、任意に半導体発光素子 2を被覆する様に配設され
た封止材 3とからなる半導体発光装置 4を光源として備えている。 As shown in FIG. 2, the light guide plate 8 of the first embodiment is disposed on the substrate 1 so as to cover the semiconductor light emitting element 2 made of LED chips and optionally cover the semiconductor light emitting element 2. The semiconductor light emitting device 4 comprising the sealing material 3 is provided as a light source.
[0310] 基板 1の表面上には、導光板 8の一部である特定層として低屈折率層 5が塗設され ている。低屈折率層 5は、前記半導体発光装置 4の部分を覆わないように、円柱状ま たはすり鉢状の穴 5Hが設けられて!/、る。 [0310] On the surface of the substrate 1, a low refractive index layer 5 is coated as a specific layer which is a part of the light guide plate 8. The low refractive index layer 5 is provided with a cylindrical or mortar-shaped hole 5H so as not to cover the semiconductor light emitting device 4!
[0311] 低屈折率層 5の上面には、前記低屈折率層 5と接する特定層として高屈折率層 6が 設けられている。また、本実施形態では、高屈折率層 6は前記穴 5Hにおいて半導体 発光装置 4の周囲にも形成されていて、半導体発光装置 4から発せられる光は高屈 折率層 6に直接入射するようになっている。これにより、高屈折率層 6は、光導波路の コア部として、光源(図 2における半導体発光装置 4)からの発光を伝送させる働きを 担保する。 [0311] On the upper surface of the low refractive index layer 5, a high refractive index layer 6 is provided as a specific layer in contact with the low refractive index layer 5. Further, in the present embodiment, the high refractive index layer 6 is also formed around the semiconductor light emitting device 4 in the hole 5H, so that light emitted from the semiconductor light emitting device 4 is directly incident on the high refractive index layer 6. It has become. As a result, the high refractive index layer 6 assures the function of transmitting light emitted from the light source (semiconductor light emitting device 4 in FIG. 2) as the core portion of the optical waveguide.
[0312] 高屈折率層 6の上面には、さらに、前記高屈折率層 6と接する特定層として低屈折 率層 5'を設けても良い。なお、低屈折率層 5'を設けない場合でも、気層が、クラッド 部の役割を果たし得る。 [0312] On the upper surface of the high refractive index layer 6, a low refractive index layer 5 'may be further provided as a specific layer in contact with the high refractive index layer 6. Even when the low refractive index layer 5 ′ is not provided, the air layer can serve as a cladding portion.
また、高屈折率層 6の接面(例えば上面)には、適宜光散乱層および/または蛍光 体含有層 7を設けることができる。光散乱層は、高屈折率層 6により伝送された光源 からの発光を外部に放射させる働きを担保する。蛍光体含有層は、高屈折率層 6に より伝送された光源からの光に励起されて所望の波長の光を発光する波長変換機能 を発揮するものである。なお、本実施形態の導光板 8では、主としてこれらの光散乱 層および/または蛍光体含有層 7から光が放射されることになるため、光散乱層およ び/または蛍光体含有層 7を形成する位置はデザイン性を考慮して設定することが 好ましい。 In addition, a light scattering layer and / or a phosphor-containing layer 7 can be appropriately provided on the contact surface (for example, the upper surface) of the high refractive index layer 6. The light scattering layer ensures the function of emitting light emitted from the light source transmitted by the high refractive index layer 6 to the outside. The phosphor-containing layer exhibits a wavelength conversion function of emitting light of a desired wavelength when excited by light from the light source transmitted by the high refractive index layer 6. In the light guide plate 8 of the present embodiment, since light is mainly emitted from the light scattering layer and / or the phosphor-containing layer 7, the light scattering layer and / or the phosphor-containing layer 7 is used. The position to be formed is preferably set in consideration of design.
本実施形態では、高屈折率層 6の上面の所定の部位に光散乱層および/または 蛍光体含有層 7が形成され、高屈折率層 6の上面のそれ以外の部位には低屈折率 層 5'が形成されているものとする。 In the present embodiment, the light scattering layer and / or the phosphor-containing layer 7 is formed in a predetermined portion on the upper surface of the high refractive index layer 6, and the low refractive index layer is formed on the other portions on the upper surface of the high refractive index layer 6. Assume that 5 'is formed.
[0313] 半導体発光素子 2は、特に制限は無いが、 350nm〜500nmの範囲にピーク波長 を有する光を発光するものが好ましぐ具体例としては、発光ダイオード(LED)また はレーザーダイオード(LD)等を挙げることができる。その中でも、上述した GaN系 L EDや LDが好ましい。
[0314] 封止材 3は、半導体発光素子 2の高耐久性封止剤、光取出し膜、諸機能付加膜な どの機能を発揮するものである。封止材 3は単独で用いてもよいが、蛍光体や蛍光体 成分を除けば本発明の効果を著しく損なわない限り任意の添加剤を含有させること 力 Sできる。また、高屈折率層 6が封止材を兼ねることもできるので、封止材 3を設けな い場合もある。 [0313] The semiconductor light-emitting element 2 is not particularly limited, but a specific example of a light-emitting diode (LED) or laser diode (LD) that emits light having a peak wavelength in the range of 350 nm to 500 nm is preferable. ) And the like. Of these, the above-described GaN-based LEDs and LDs are preferable. [0314] The sealing material 3 exhibits functions such as a highly durable sealant, a light extraction film, and various function-added films of the semiconductor light emitting device 2. The encapsulant 3 may be used alone, but can contain any additive as long as the effects of the present invention are not significantly impaired except for the phosphor and the phosphor component. Further, since the high refractive index layer 6 can also serve as a sealing material, the sealing material 3 may not be provided.
使用される封止材 3としては、本発明の導光部材の高屈折率層 6と同じ化合物 (材 料)を用いるのが、密着性などの観点から好ましい。また、封止材 3としては、その他 の材料を使用することもできる。通常は、封止材 3としては樹脂(以下適宜、「封止樹 脂」という)を用いる。そのような封止樹脂としては、通常、熱可塑性樹脂、熱硬化性 樹脂、光硬化性樹脂等が挙げられる。具体的には、例えば、ポリメタアクリル酸メチル 等のメタアクリル樹脂;ポリスチレン、スチレン アクリロニトリル共重合体等のスチレン 樹脂;ポリカーボネート樹脂;ポリエステル樹脂;フエノキシ樹脂;プチラール樹脂;ポリ ビニノレアノレコーノレ;ェチノレセノレロース、セノレロースアセテート、セノレロースアセテート プチレート等のセルロース系樹脂;エポキシ樹脂;フエノール樹脂;シリコーン樹脂等 力 S挙げられる。また、無機系材料、例えば、金属アルコキシド、セラミック前駆体ポリマ 一若しくは金属アルコキシドを含有する溶液をゾルーゲル法により加水分解重合して 成る溶液又はこれらの組み合わせを固化した無機系材料、例えばシロキサン結合を 有する無機系材料を用いることができる。なお、封止樹脂等の封止材 3の材料は、 1 種を用いても良ぐ 2種以上を任意の組み合わせ及び比率で併用しても良!/、。 As the sealing material 3 used, it is preferable to use the same compound (material) as the high refractive index layer 6 of the light guide member of the present invention from the viewpoint of adhesion and the like. Further, as the sealing material 3, other materials can be used. Normally, a resin (hereinafter referred to as “sealing resin” as appropriate) is used as the sealing material 3. Examples of such a sealing resin usually include a thermoplastic resin, a thermosetting resin, a photocurable resin, and the like. Specifically, for example, methacrylic resin such as polymethylmethacrylate; styrene resin such as polystyrene and styrene acrylonitrile copolymer; polycarbonate resin; polyester resin; phenoxy resin; Cellulosic resins such as chinoresenolose, sennellose acetate, sennellose acetate petitate; epoxy resins; phenol resins; silicone resins, etc. Also, inorganic materials such as metal alkoxides, ceramic precursor polymers, or solutions obtained by hydrolytic polymerization of a solution containing metal alkoxides by a sol-gel method or a combination thereof, inorganic materials such as siloxane bonds. Inorganic materials can be used. In addition, the material of the sealing material 3 such as the sealing resin may be used alone or in combination of two or more in any combination and ratio.
[0315] 封止材 3は、蛍光体を含有していてもよぐこれにより、光源の波長を所望の波長の 光に変換させて後、高屈折率層で伝送させることができる。蛍光体の使用量は特に 限定されるものではないが、封止材 100重量部に対して、通常 0. 01重量部以上、好 ましくは 0. 1重量部以上、より好ましくは 1重量部以上、また、通常 100重量部以下、 好ましくは 80重量部以下、より好ましくは 60重量部以下である。 [0315] The encapsulant 3 may contain a phosphor, whereby the wavelength of the light source can be converted into light having a desired wavelength and then transmitted through the high refractive index layer. The amount of the phosphor used is not particularly limited, but is usually 0.01 parts by weight or more, preferably 0.1 parts by weight or more, more preferably 1 part by weight with respect to 100 parts by weight of the sealing material. In addition, it is usually 100 parts by weight or less, preferably 80 parts by weight or less, more preferably 60 parts by weight or less.
[0316] また、封止材 3に蛍光体や無機粒子以外の成分を含有させることもできる。例えば、 色調補正用の色素、酸化防止剤、燐系加工安定剤等の加工 '酸化および熱安定化 剤、紫外線吸収剤等の耐光性安定化剤およびシランカップリング剤を含有させること 力できる。なお、これらの成分は、 1種で用いても良ぐ 2種以上を任意の組み合わせ
及び比率で併用しても良!/、。 [0316] In addition, the sealing material 3 may contain components other than the phosphor and the inorganic particles. For example, it is possible to incorporate a color correction dye, an antioxidant, a processing stabilizer such as a phosphorus processing stabilizer, an oxidation and heat stabilizer, a light resistance stabilizer such as an ultraviolet absorber, and a silane coupling agent. These components can be used alone or in any combination of two or more. Also, it can be used in combination at a ratio! /.
[0317] 半導体発光装置 4は塗布前に基板 1に設置しても、設置部をマスキングして塗布し たのちにマスキングを取り去り塗布後に基板 1に設置しても良い。また、低屈折率層 5 、高屈折率層 6、並びに散乱層および/または蛍光体含有層 7は薄膜状に形成させ る場合にはトルエンやヘプタンなどの溶剤にて希釈した特定層形成液を塗布して形 成させても良い。 [0317] The semiconductor light-emitting device 4 may be installed on the substrate 1 before coating, or may be installed on the substrate 1 after coating by removing the masking after coating the coating portion. When the low refractive index layer 5, the high refractive index layer 6, and the scattering layer and / or the phosphor-containing layer 7 are formed into a thin film, a specific layer forming solution diluted with a solvent such as toluene or heptane is used. It may be formed by coating.
[0318] 本実施形態の導光板 8は以上のように構成されているので、高屈折率層 6により伝 送された光源からの光は、光散乱層および/または蛍光体含有層 7を透過し、導光 部材(導光板 8)の外部に放射される。したがって、封止材 3が蛍光体を含有しない場 合、および、導光部材 (導光板 8)が蛍光体含有層 7を含有しない場合は、光源(図 2 における半導体発光素子 2)から放射された際の発光色のままで外部に放射される。 [0318] Since the light guide plate 8 of the present embodiment is configured as described above, the light from the light source transmitted by the high refractive index layer 6 passes through the light scattering layer and / or the phosphor-containing layer 7. Then, the light is emitted to the outside of the light guide member (light guide plate 8). Therefore, when the sealing material 3 does not contain a phosphor, and when the light guide member (light guide plate 8) does not contain the phosphor-containing layer 7, the light is emitted from the light source (semiconductor light emitting element 2 in FIG. 2). Radiated to the outside in the same luminescent color.
[0319] また、蛍光体含有層 7は、前述のように高屈折率層 6により伝送された光源からの光 に励起されて所望の波長の光を発光する波長変換機能を発揮するものである。した がって、蛍光体含有層 7からは、半導体発光素子 2が発した光を波長変換した光が 発せられることになる。この際、蛍光体含有層 7は、光源からの光により励起されて所 望の波長の光を発光する蛍光物質を少なくとも含んでいればよい。このような蛍光物 質の例としては、上に例示した各種の蛍光体が挙げられる。蛍光体含有層 7の発光 色としては、赤色(R)、緑色(G)及び青色(B)の 3原色は勿論のこと、蛍光灯のような 白色や電球のような黄色も可能である。要するに、蛍光体含有層 7は、励起光とは異 なる所望の波長の光を放射する波長変換機能を有している。 [0319] In addition, the phosphor-containing layer 7 exhibits a wavelength conversion function of emitting light of a desired wavelength when excited by light from the light source transmitted by the high refractive index layer 6 as described above. . Therefore, the phosphor-containing layer 7 emits light obtained by wavelength-converting light emitted from the semiconductor light emitting element 2. At this time, the phosphor-containing layer 7 only needs to contain at least a fluorescent substance that is excited by light from the light source and emits light of a desired wavelength. Examples of such phosphors include the various phosphors exemplified above. As the emission color of the phosphor-containing layer 7, not only the three primary colors of red (R), green (G) and blue (B), but also white such as a fluorescent lamp and yellow such as a light bulb are possible. In short, the phosphor-containing layer 7 has a wavelength conversion function for emitting light having a desired wavelength different from the excitation light.
また、本実施形態では高屈折率層 6により伝送された光は、その側面部の高屈折 率層 6が露出している部位からも放射される。 In the present embodiment, the light transmitted by the high refractive index layer 6 is also emitted from a portion where the high refractive index layer 6 is exposed on the side surface.
[0320] しかして、本実施形態の導光部材(導光板 8)は、低屈折率層 5および高屈折率層 6 ならびに光散乱層および/または蛍光体含有層 7が、特定の化合物を用いた互いに 接する特定層として形成されているため、導光部材 (導光板 8)の光耐久性 (耐光性) 、熱耐久性(耐熱性)を向上させることができ、さらに、層 5, 6, 7間の極性基の作用 等により、特定層を単独で用いた場合よりも密着性がより向上する。また、基板 1と低 屈折率層 5との間、低屈折率層 5と高屈折率層 6との間、および/または高屈折率層
6と光散乱層および/または蛍光体含有層 7との間にクラックや剥離が起きにくい。さ らに、前記の層 5, 6, 7はいずれも上述した特定層として形成されるため、それぞれ 厚膜化、薄膜化等の膜厚の自由な制御が可能であるとの利点も得られる。 Therefore, in the light guide member (light guide plate 8) of this embodiment, the low refractive index layer 5 and the high refractive index layer 6 and the light scattering layer and / or the phosphor-containing layer 7 use a specific compound. Therefore, the light durability (light resistance) and heat durability (heat resistance) of the light guide member (light guide plate 8) can be improved. Due to the action of the polar group between 7 and the like, the adhesion is more improved than when the specific layer is used alone. Also, between the substrate 1 and the low refractive index layer 5, between the low refractive index layer 5 and the high refractive index layer 6, and / or the high refractive index layer. Cracks and peeling do not easily occur between 6 and the light scattering layer and / or the phosphor-containing layer 7. Furthermore, since the layers 5, 6, and 7 are all formed as the above-mentioned specific layers, there is an advantage that the film thickness can be freely controlled such as thickening and thinning, respectively. .
[0321] また、導光部材(導光板 8)の側面と積層面とで形成される角度 9は、垂直であって もよいが、光取り出し効果(特に、本実施形態では側面部からの光取り出し効果)を 向上させる観点より、通常 30度以上、好ましくは 35度以上、さらに好ましくは 40度以 上であり、通常 80度以下、好ましくは 70度以下、さらに好ましくは 60度以下である。 なお、導光部材(導光板 8)の側面と積層面とで形成される角度とは、図 2に示される ように、導光部材(導光板 8)の積層面に垂直方面から見た導光部材(導光板 8)の側 面と積層面が形成する内角を示す。 [0321] In addition, the angle 9 formed between the side surface of the light guide member (light guide plate 8) and the laminated surface may be vertical, but the light extraction effect (particularly, light from the side surface portion in the present embodiment). From the viewpoint of improving the taking-out effect), it is usually 30 ° or more, preferably 35 ° or more, more preferably 40 ° or more, and usually 80 ° or less, preferably 70 ° or less, and more preferably 60 ° or less. Note that the angle formed between the side surface of the light guide member (light guide plate 8) and the laminated surface is a guide as viewed from a direction perpendicular to the laminate surface of the light guide member (light guide plate 8), as shown in FIG. The inner angle formed by the side surface of the optical member (light guide plate 8) and the laminated surface is shown.
[0322] [C 3— 2]その他の実施形態 [0322] [C 3-2] Other embodiments
本発明の導光部材を光導波路、導光板などに適用する場合には、本発明を適用 する箇所に応じて、適宜変形を加えるのが好ましい。例えば、光源は、基板面の所望 の位置に所望の数を適宜設けることができる。光散乱層、蛍光体含有層は、導光部 材の所望の位置に所望の数を適宜設けることができる。 When the light guide member of the present invention is applied to an optical waveguide, a light guide plate, or the like, it is preferable to appropriately modify it according to the location to which the present invention is applied. For example, a desired number of light sources can be appropriately provided at desired positions on the substrate surface. A desired number of light scattering layers and phosphor-containing layers can be appropriately provided at desired positions of the light guide member.
[0323] その他の実施形態を図 3〜; 11に示す。ただし、本発明の導光部材は以下に例示 する実施形態に限定されるものではなぐ本発明の要旨を逸脱しない範囲において 任意に変更して実施することができる。なお、以下の実施形態において、第一の実施 形態で説明したものと同様の部位については、第一の実施形態と同様の符号を用い [0323] Other embodiments are shown in Figs. However, the light guide member of the present invention is not limited to the embodiments exemplified below, and can be implemented with arbitrary modifications without departing from the gist of the present invention. In the following embodiments, the same reference numerals as those in the first embodiment are used for the same parts as those described in the first embodiment.
[0324] 第二の実施形態の導光板 8は、図 3に示すように、最上層の全面が光散乱層およ び/または蛍光体含有層 7となっている。これにより、導光板の全面から光が取り出 せる構造となっている。また、本実施形態に係る導光板 8は、前記の点以外の構成は 、第一の実施形態と同様に構成されている。したがって、本実施形態の導光板 8も、 互いに接する特定層である低屈折率層 5、高屈折率層 6、並びに光散乱層および/ または蛍光体含有層 7が積層されることで構成されているため、第一の実施形態と同 様に、厚膜化等の膜厚の自由な制御が可能であること、クラック及び剥離の抑制が 可能であること、耐熱性及び耐光性に優れること等の利点を得ることができる。
[0325] 第三の実施形態の導光板 8は、図 4に示すように、最上層に低屈折率層 5 '並びに 光散乱層および/または蛍光体含有層 7を設けないものである。即ち、光屈折率層 6 の上面全体が気相に露出するように構成されている。この場合は、気相が上面のクラ ッド層の働きをすることにより、光伝送効果が担保される。また、 [C 2 1 ]章で前述 した様に、低屈折率層 5と高屈折率層 6の屈折率差を調整することにより、光の導波 距離を制御して所望の効果を達成させることができる。 In the light guide plate 8 of the second embodiment, as shown in FIG. 3, the entire uppermost layer is a light scattering layer and / or a phosphor-containing layer 7. As a result, the light can be extracted from the entire surface of the light guide plate. Further, the light guide plate 8 according to the present embodiment is configured in the same manner as in the first embodiment except for the above-described points. Therefore, the light guide plate 8 of the present embodiment is also configured by laminating the low refractive index layer 5, the high refractive index layer 6, and the light scattering layer and / or the phosphor-containing layer 7 which are specific layers in contact with each other. Therefore, as in the first embodiment, it is possible to freely control the film thickness such as thickening, to suppress cracks and peeling, and to have excellent heat resistance and light resistance. You can get the benefits of As shown in FIG. 4, the light guide plate 8 of the third embodiment does not have the low refractive index layer 5 ′ and the light scattering layer and / or the phosphor-containing layer 7 as the uppermost layer. That is, the entire top surface of the photorefractive index layer 6 is configured to be exposed to the gas phase. In this case, the gas transmission layer acts as a cladding layer on the upper surface, thereby ensuring the optical transmission effect. In addition, as described above in section [C 2 1], by adjusting the refractive index difference between the low refractive index layer 5 and the high refractive index layer 6, the optical waveguide distance is controlled to achieve the desired effect. be able to.
なお、低屈折率層 5と高屈折率層 6の屈折率差を小さくする場合は、低屈折率層 5 に進入する光を利用して所望の効果を達成させるために、光散乱層および/または 蛍光体含有層 7を低屈折率層 5の一部に設けることもできる(図 4)。 In the case where the refractive index difference between the low refractive index layer 5 and the high refractive index layer 6 is made small, in order to achieve a desired effect using light entering the low refractive index layer 5, a light scattering layer and / or Alternatively, the phosphor-containing layer 7 can be provided on a part of the low refractive index layer 5 (FIG. 4).
[0326] さらに、本実施形態に係る導光板 8は、前記の点以外の構成は、第一の実施形態 と同様に構成されている。したがって、本実施形態の導光板 8も、互いに接する特定 層である低屈折率層 5、高屈折率層 6、並びに、低屈折率層 5の一部に形成された光 散乱層および/または蛍光体含有層 7が積層されることで構成されているため、第一 の実施形態と同様に、厚膜化等の膜厚の自由な制御が可能であること、クラック及び 剥離の抑制が可能であること、耐熱性及び耐光性に優れること等の利点を得ることが できるようになつている。 [0326] Furthermore, the light guide plate 8 according to the present embodiment is configured in the same manner as in the first embodiment except for the points described above. Therefore, the light guide plate 8 of the present embodiment also has a low refractive index layer 5, a high refractive index layer 6, and a light scattering layer and / or a fluorescent layer formed on a part of the low refractive index layer 5, which are specific layers in contact with each other. Since the body-containing layer 7 is laminated, as in the first embodiment, it is possible to freely control the film thickness such as thickening, and to suppress cracks and peeling. There are advantages such as being excellent in heat resistance and light resistance.
[0327] 第四の実施形態の導光板 8は、図 4の高屈折率層 6に相当する部分に光散乱剤と しての無機粒子をごく少量混入させることにより、光散乱層 7とするものである(図 5)。 この場合、第二の実施形態と同様、導光板 8の全面から光を取り出すことができる。ま た、二層構造であるため、導光板 8の全膜厚を薄くすることができる。 [0327] The light guide plate 8 of the fourth embodiment is formed into a light scattering layer 7 by mixing a very small amount of inorganic particles as a light scattering agent in a portion corresponding to the high refractive index layer 6 of FIG. (Figure 5). In this case, light can be extracted from the entire surface of the light guide plate 8 as in the second embodiment. In addition, because of the two-layer structure, the total thickness of the light guide plate 8 can be reduced.
さらに、本実施形態に係る導光板 8は、前記の点、並びに、光散乱層および/また は蛍光体含有層 7を低屈折率層 5の一部に設けないこと以外の構成は、第三の実施 形態と同様に構成されている。したがって、本実施形態の導光板 8も、互いに接する 特定層である低屈折率層 5及び光散乱層 7が積層されることで構成されているため、 第三の実施形態と同様に、厚膜化等の膜厚の自由な制御が可能であること、クラック 及び剥離の抑制が可能であること、耐熱性及び耐光性に優れること等の利点を得る こと力 Sできるようになって!/、る。 Further, the light guide plate 8 according to the present embodiment has the above-mentioned configuration and the configuration other than that the light scattering layer and / or the phosphor-containing layer 7 is not provided in a part of the low refractive index layer 5. The configuration is the same as that of the embodiment. Therefore, since the light guide plate 8 of the present embodiment is also configured by laminating the low refractive index layer 5 and the light scattering layer 7 which are specific layers in contact with each other, as in the third embodiment, the thick film It is possible to obtain advantages such as free control of film thickness such as crystallization, suppression of cracks and peeling, excellent heat resistance and light resistance, etc. The
[0328] 第五の実施形態の導光板 8は、図 6に示すように、光伝送部である高屈折率層 6の
一部(高屈折率部 6a)が、低屈折率層 5, 5 'や、光散乱層および/または蛍光体含 有層 7を貫通しているものである。この高屈折率部 6aは、互いに接する少なくとも 2層 の特定層を貫通する境界部である。本実施形態では、境界部を、光を伝送しうる高 屈折率部 6aとして形成したため、光伝送部分を各層にまたがって、基板面と垂直方 向に拡張させることができる。 As shown in FIG. 6, the light guide plate 8 of the fifth embodiment includes a high refractive index layer 6 that is an optical transmission unit. A part (high refractive index portion 6a) penetrates through the low refractive index layers 5, 5 ′, the light scattering layer and / or the phosphor-containing layer 7. The high refractive index portion 6a is a boundary portion that penetrates at least two specific layers in contact with each other. In the present embodiment, since the boundary portion is formed as the high refractive index portion 6a capable of transmitting light, the light transmission portion can be extended in a direction perpendicular to the substrate surface across each layer.
[0329] 前記高屈折率部 6aは、 V、わゆる「境界部 A」として機能する。ここで、境界部 Aは、 高屈折率層 6と同等の屈折率を有する材料で形成された高屈折率境界部であり、半 導体発光装置 4から発せられた光を伝送して自身が光るものである。また、高屈折率 部 6aは、境界部 Aとして、本発明の導光部材における高屈折率層 6とは別の材料を 用いても良い。本実施形態の場合、かかる境界部 Aとしては、光源からの光を伝送し うる材料であれば、特に限定はなぐ任意のものを用いることができる。例えば、高屈 折率層 6の屈折率と同じ屈折率を有する無機または有機の材料を挙げることができる 。中でも、境界部 Aは、低透湿、光遮断特性、および基板 1に対する密着性などの観 点から、エポキシ樹脂、ウレタン樹脂、ポリイミド樹脂、アクリル樹脂、フエノール樹脂 などが好ましい。また、高屈折率層 6、低屈折率層 5, 5 '、光散乱層及び/又は蛍光 体含有層 7に対する密着性などの観点から、エポキシ樹脂、アクリル樹脂がより好まし ぐエポキシ樹脂が特に好ましい。境界部 Aとしてエポキシ樹脂を用いることは、特定 層である高屈折率層 6がエポキシ樹脂との密着性に特に優れると共に、変質しにくく 、且つ、効果阻害が無いため、特に好ましい組み合わせである。 The high refractive index portion 6a functions as V, a so-called “boundary portion A”. Here, the boundary A is a high refractive index boundary formed of a material having a refractive index equivalent to that of the high refractive index layer 6, and transmits light emitted from the semiconductor light emitting device 4 to shine itself. Is. Further, the high refractive index portion 6a may use a material different from the high refractive index layer 6 in the light guide member of the present invention as the boundary portion A. In the case of this embodiment, as the boundary A, any material can be used as long as it is a material that can transmit light from the light source. For example, an inorganic or organic material having the same refractive index as that of the high refractive index layer 6 can be used. In particular, the boundary A is preferably an epoxy resin, a urethane resin, a polyimide resin, an acrylic resin, a phenol resin, or the like from the viewpoints of low moisture permeability, light blocking properties, and adhesion to the substrate 1. In addition, from the viewpoint of adhesion to the high refractive index layer 6, the low refractive index layers 5, 5 ′, the light scattering layer and / or the phosphor-containing layer 7, epoxy resins and acrylic resins are particularly preferred. preferable. Use of an epoxy resin as the boundary portion A is a particularly preferable combination because the high refractive index layer 6 as a specific layer is particularly excellent in adhesion to the epoxy resin, hardly changes in quality, and does not inhibit the effect.
[0330] このような高屈折率部 6aの作製方法に制限はない。例えば、高屈折率部 6aを基板 1上に設ける場合には、低屈折率層 5, 5 '、高屈折率層 6並びに光散乱層および/ または蛍光体含有層 7を塗布等により積層する前に高屈折率部 6aを形成し、その後 、低屈折率層 5, 5 '、高屈折率層 6並びに光散乱層および/または蛍光体含有層 7 を積層すればよい。この際、高屈折率部 6aの形成に用いる手法は制限されず、例え ば、ディスペンサー、スクリーン印刷、レジスト法などにより形成できる。また、例えば、 基板 1上の高屈折率部 6aを形成しょうとする部位(以下適宜「設置部」という)をマス キングしてから低屈折率層 5, 5 '、高屈折率層 6並びに光散乱層および/または蛍 光体含有層 7を積層し、その後に前記のマスキングを取り去り、当該設置部に高屈折
率部 6aを形成するようにしても良い。なお、基板 1以外の層の上に高屈折率部 6aを 設ける場合には、基板 1の上に当該層を積層してから、その層上に、前記の方法に 従って高屈折率部 6aと低屈折率層 5, 5 '、高屈折率層 6並びに光散乱層および/ま たは蛍光体含有層 7のうち必要な層とを形成すればよい。 [0330] There is no limitation on the method for producing such a high refractive index portion 6a. For example, when the high refractive index portion 6a is provided on the substrate 1, the low refractive index layers 5, 5 ′, the high refractive index layer 6, and the light scattering layer and / or the phosphor-containing layer 7 are laminated before coating. Then, the high refractive index portion 6a is formed, and then the low refractive index layers 5 and 5 ′, the high refractive index layer 6 and the light scattering layer and / or the phosphor-containing layer 7 may be laminated. At this time, the method used to form the high refractive index portion 6a is not limited, and for example, it can be formed by a dispenser, screen printing, a resist method, or the like. In addition, for example, after masking a portion of the substrate 1 where the high refractive index portion 6a is to be formed (hereinafter referred to as “installation portion” as appropriate), the low refractive index layers 5, 5 ′, the high refractive index layer 6 and the light A scattering layer and / or phosphor-containing layer 7 is laminated, and then the masking is removed, and the installation portion is highly refracted. The rate portion 6a may be formed. When the high refractive index portion 6a is provided on a layer other than the substrate 1, the layer is laminated on the substrate 1, and then the high refractive index portion 6a and the high refractive index portion 6a are formed on the layer according to the method described above. The low refractive index layers 5 and 5 ′, the high refractive index layer 6, and the light scattering layer and / or the phosphor-containing layer 7 may be formed as necessary.
[0331] さらに、本実施形態に係る導光板 8は、前記の点以外の構成は、第一の実施形態 と同様に構成されている。したがって、本実施形態の導光板 8も、互いに接する特定 層である低屈折率層 5、 5 '、高屈折率層 6、並びに、光散乱層および/または蛍光 体含有層 7が積層されることで構成されているため、第一の実施形態と同様に、厚膜 化等の膜厚の自由な制御が可能であること、クラック及び剥離の抑制が可能であるこ と、耐熱性及び耐光性に優れること等の利点を得ることができるようになつている。ま た、高屈折率部 6aを特定層と同様の化合物で形成すれば、当該高屈折率部 6aも、 同様に、厚膜化等の膜厚の自由な制御が可能であること、クラック及び剥離の抑制 が可能であること、耐熱性及び耐光性に優れること等の利点を得ることができる。 [0331] Furthermore, the light guide plate 8 according to the present embodiment is configured in the same manner as in the first embodiment except for the points described above. Therefore, the light guide plate 8 of the present embodiment also includes the low refractive index layers 5 and 5 ′, the high refractive index layer 6, and the light scattering layer and / or the phosphor-containing layer 7 that are specific layers in contact with each other. Therefore, as in the first embodiment, it is possible to freely control the film thickness such as thickening, to suppress cracks and peeling, and to improve heat resistance and light resistance. Advantages such as superiority can be obtained. Further, if the high refractive index portion 6a is formed of the same compound as that of the specific layer, the high refractive index portion 6a can also be freely controlled in film thickness such as thickening, cracks and Advantages such as suppression of peeling and excellent heat resistance and light resistance can be obtained.
[0332] 第六の実施形態の導光板 8は、図 7に示すように、光遮断部である低屈折率層 5の 一部 (低屈折率部 5a)が、高屈折率層 6や、光散乱層および/または蛍光体含有層 7を貫通しているものである。この低屈折率部 5aは境界部として機能する。本実施形 態では、境界部を、光を遮断しうる低屈折率部 5aとして形成したため、光遮断部分を 各層にまたがって、基板面と垂直方向に拡張させることができる。 As shown in FIG. 7, the light guide plate 8 of the sixth embodiment includes a portion of the low refractive index layer 5 (low refractive index portion 5a) that is a light blocking portion, the high refractive index layer 6, It penetrates the light scattering layer and / or the phosphor-containing layer 7. The low refractive index portion 5a functions as a boundary portion. In the present embodiment, since the boundary portion is formed as the low refractive index portion 5a capable of blocking light, the light blocking portion can be extended in the direction perpendicular to the substrate surface across each layer.
[0333] 前記低屈折率部 5aは、 V、わゆる「境界部 B」として機能する。ここで、境界部 Bは、 低屈折率の材料で形成された低屈折率境界部であり、半導体発光装置 4から発せら れた光を遮断し、導光板 8を光学上のエリア分けする役割を果たすものである。なお 、この趣旨から、境界部 Bとしては高屈折率層 6よりも屈折率が高い材料で構成した 高屈折率境界部を用いることもできる。 The low refractive index portion 5a functions as V, a so-called “boundary portion B”. Here, the boundary portion B is a low refractive index boundary portion formed of a low refractive index material, which blocks light emitted from the semiconductor light emitting device 4 and divides the light guide plate 8 into an optical area. To fulfill. For this purpose, as the boundary portion B, a high refractive index boundary portion made of a material having a higher refractive index than that of the high refractive index layer 6 can be used.
[0334] また、低屈折率部 5aは、境界部 Bとして、本発明の導光部材における低屈折率層 5 とは別の材料を用いても良い。本実施形態の場合、かかる境界部 Bとしては、光源か ら伝送される光を遮断しうる材料であれば、特に限定はなぐ任意のものを用いること ができる。例えば、高屈折率層 6よりも屈折率の低い無機または有機の材料を挙げる ことができる。また、高屈折率層 6より屈折率が大きい無機材料及び有機材料でも同
様の作用が得られる。中でも、境界部 Bは、低透湿、光遮断特性、および基板 1に対 する密着性などの観点から、エポキシ樹脂、ウレタン樹脂、ポリイミド樹脂、アクリル樹 脂、ゾルゲルガラスなどが好ましい。また、本発明の高屈折率層 6、低屈折率層 5, 5 ' 、光散乱層及び/又は蛍光体含有層 7に対する密着性などの観点から、エポキシ樹 脂、アクリル樹脂がより好ましぐエポキシ樹脂が特に好ましい。境界部 Bとしてェポキ シ樹脂を用いることは、特定層である高屈折率層 6がエポキシ樹脂との密着性に特 に優れると共に、変質しにくぐ且つ、効果阻害が無いため、特に好ましい組み合わ せである。 [0334] Further, the low refractive index portion 5a may use a material different from the low refractive index layer 5 in the light guide member of the present invention as the boundary portion B. In the present embodiment, as the boundary B, any material can be used as long as it is a material that can block light transmitted from the light source. For example, an inorganic or organic material having a refractive index lower than that of the high refractive index layer 6 can be used. The same applies to inorganic materials and organic materials having a refractive index higher than that of the high refractive index layer 6. A similar effect can be obtained. Among these, the boundary B is preferably an epoxy resin, a urethane resin, a polyimide resin, an acrylic resin, a sol-gel glass, or the like from the viewpoints of low moisture permeability, light blocking properties, and adhesion to the substrate 1. Further, from the viewpoint of adhesion to the high refractive index layer 6, low refractive index layer 5, 5 ′, light scattering layer and / or phosphor-containing layer 7 of the present invention, epoxy resin and acrylic resin are more preferable. Epoxy resins are particularly preferred. The use of epoxy resin as the boundary B is a particularly preferred combination because the high refractive index layer 6 that is a specific layer is particularly excellent in adhesion to the epoxy resin, is difficult to be altered, and has no effect inhibition. It is.
[0335] このような低屈折率部 5aの作製方法に制限はない。例えば、第五の実施形態で説 明した高屈折率部 6aと同様にして作製することができる。 [0335] There is no limitation on the method for producing such a low refractive index portion 5a. For example, it can be produced in the same manner as the high refractive index portion 6a described in the fifth embodiment.
[0336] さらに、本実施形態に係る導光板 8は、前記の点以外の構成は、第一の実施形態 と同様に構成されている。したがって、本実施形態の導光板 8も、互いに接する特定 層である低屈折率層 5、 5 '、高屈折率層 6、並びに、光散乱層および/または蛍光 体含有層 7が積層されることで構成されているため、第一の実施形態と同様に、厚膜 化等の膜厚の自由な制御が可能であること、クラック及び剥離の抑制が可能であるこ と、耐熱性及び耐光性に優れること等の利点を得ることができるようになつている。ま た、低屈折率部 5aを特定層と同様の化合物で形成すれば、当該低屈折率部 5aも、 同様に、厚膜化等の膜厚の自由な制御が可能であること、クラック及び剥離の抑制 が可能であること、耐熱性及び耐光性に優れること等の利点を得ることができる。 Furthermore, the light guide plate 8 according to the present embodiment is configured in the same manner as in the first embodiment, except for the above points. Therefore, the light guide plate 8 of the present embodiment also includes the low refractive index layers 5 and 5 ′, the high refractive index layer 6, and the light scattering layer and / or the phosphor-containing layer 7 that are specific layers in contact with each other. Therefore, as in the first embodiment, it is possible to freely control the film thickness such as thickening, to suppress cracks and peeling, and to improve heat resistance and light resistance. Advantages such as superiority can be obtained. Further, if the low refractive index portion 5a is formed of the same compound as that of the specific layer, the low refractive index portion 5a can also be freely controlled in film thickness such as thickening, cracks and Advantages such as suppression of peeling and excellent heat resistance and light resistance can be obtained.
[0337] 第七の実施形態の導光板 8は、図 8に示すように、高屈折率層 6中に、光散乱層お よび/または蛍光体含有層 7を所望の箇所に設置したものである。この場合、導光板 8上の所望の場所に散乱を用いた発光面を形成できる。これを利用すれば、所望の 位置より光を取り出しつつも、遠方への光の伝送を遮断することを防止できる。 As shown in FIG. 8, the light guide plate 8 of the seventh embodiment is obtained by installing a light scattering layer and / or a phosphor-containing layer 7 at a desired location in the high refractive index layer 6. is there. In this case, a light emitting surface using scattering can be formed at a desired location on the light guide plate 8. If this is used, it is possible to prevent transmission of light from far away while extracting light from a desired position.
このような光散乱層および/または蛍光体含有層 7の作製方法に制限は無い。例 えば、第五の実施形態で説明した高屈折率部 6aと同様にして作製することができる 。ただし、本実施形態では、前記の光散乱層および/または蛍光体含有層 7は高屈 折率層 6の内部に設けられているのであるから、光散乱層および/または蛍光体含 有層 7を形成した後で、さらにその上に高屈折率層 6を積層する。
[0338] さらに、本実施形態に係る導光板 8は、前記の点、並びに、光散乱層および/また は蛍光体含有層 7を低屈折率層 5の一部に設けないこと以外の構成は、第三の実施 形態と同様に構成されている。したがって、本実施形態の導光板 8も、互いに接する 特定層である低屈折率層 5、 5'、高屈折率層 6、並びに、光散乱層および/または 蛍光体含有層 7が積層されることで構成されているため、第三の実施形態と同様に、 厚膜化等の膜厚の自由な制御が可能であること、クラック及び剥離の抑制が可能で あること、耐熱性及び耐光性に優れること等の利点を得ることができるようになつてい There is no limitation on the method for producing such a light scattering layer and / or phosphor-containing layer 7. For example, it can be produced in the same manner as the high refractive index portion 6a described in the fifth embodiment. However, in the present embodiment, since the light scattering layer and / or the phosphor-containing layer 7 is provided inside the high refractive index layer 6, the light scattering layer and / or the phosphor-containing layer 7 is provided. Then, a high refractive index layer 6 is further laminated thereon. [0338] Furthermore, the light guide plate 8 according to the present embodiment has the above-described points and the configuration other than that the light scattering layer and / or the phosphor-containing layer 7 is not provided in a part of the low refractive index layer 5. The configuration is the same as in the third embodiment. Therefore, the low-refractive index layers 5 and 5 ′, which are specific layers in contact with each other, and the high-refractive index layer 6 as well as the light scattering layer and / or the phosphor-containing layer 7 are also laminated in the light guide plate 8 of the present embodiment. Therefore, as in the third embodiment, it is possible to freely control the film thickness such as thickening, to suppress cracks and peeling, and to have heat resistance and light resistance. It has become possible to obtain advantages such as excellence
[0339] 第八の実施形態の導光板 8は、図 9に示すように、高屈折率部(境界部 A)および /または低屈折率部 (境界部 B) 10 (本実施形態の説明において、高屈折率部と低 屈折率部とを区別せずに指す場合、「境界部 10」という)が各層 5, 6, 5'を貫通して おり、前記境界部 10により、光伝送部分と光遮断部分とを制御して基板面の垂直方 向および水平方向に所望の光導波路を構築しているものである。 As shown in FIG. 9, the light guide plate 8 of the eighth embodiment has a high refractive index portion (boundary portion A) and / or a low refractive index portion (boundary portion B) 10 (in the description of this embodiment). , When referring to the high refractive index portion and the low refractive index portion without distinguishing each other, it is referred to as “boundary portion 10”) that penetrates each of the layers 5, 6, 5 ′. A desired optical waveguide is constructed in the vertical and horizontal directions of the substrate surface by controlling the light blocking portion.
[0340] このような境界部 10の作製方法に制限はない。例えば、第五の実施形態で説明し た高屈折率部 6aと同様にして作製することができる。 [0340] There is no limitation on the method of manufacturing the boundary portion 10 like this. For example, it can be produced in the same manner as the high refractive index portion 6a described in the fifth embodiment.
[0341] さらに、本実施形態に係る導光板 8は、前記の点、及び、高屈折率層 6の上面に光 散乱層および/または蛍光体含有層 7を設けなかったこと以外の構成は、第一の実 施形態と同様に構成されている。したがって、本実施形態の導光板 8も、互いに接す る特定層である低屈折率層 5、 5'及び高屈折率層 6が積層されることで構成されてい るため、第一の実施形態と同様に、厚膜化等の膜厚の自由な制御が可能であること 、クラック及び剥離の抑制が可能であること、耐熱性及び耐光性に優れること等の利 点を得ることができるようになつている。また、境界部 10を特定層と同様の化合物で 形成すれば、当該境界部 10も、同様に、厚膜化等の膜厚の自由な制御が可能であ ること、クラック及び剥離の抑制が可能であること、耐熱性及び耐光性に優れること等 の利点を得ることができる。 [0341] Further, the light guide plate 8 according to the present embodiment has the above-described configuration, except that the light scattering layer and / or the phosphor-containing layer 7 is not provided on the upper surface of the high refractive index layer 6. The configuration is the same as in the first embodiment. Therefore, the light guide plate 8 of the present embodiment is also configured by laminating the low refractive index layers 5 and 5 ′ and the high refractive index layer 6 which are specific layers in contact with each other. Similarly, it is possible to obtain advantages such as being able to freely control the film thickness such as thickening, suppressing cracks and peeling, and being excellent in heat resistance and light resistance. It has become. In addition, if the boundary portion 10 is formed of the same compound as that of the specific layer, the boundary portion 10 can also be freely controlled in film thickness such as thickening, and cracks and separation can be suppressed. Advantages such as being possible and being excellent in heat resistance and light resistance can be obtained.
[0342] 第九の実施形態の導光板 8は、図 10に示すように、基板 1の上に反射層 11が積層 され、反射層 11は、半導体発光装置 4の部分を覆わないように、円柱状またはすり鉢 状の穴 11Hが設けられた構成となっている。これにより、高屈折率層 6を伝送される
光は反射層 11の表面で効率よく反射するため、半導体発光装置 4から発せられた光 を有効に活用することが可能である。なお、この反射層 11の代わりに、光散乱層およ び/または蛍光体含有層 7を設けることも可能である。 As shown in FIG. 10, in the light guide plate 8 of the ninth embodiment, the reflective layer 11 is laminated on the substrate 1, and the reflective layer 11 does not cover the portion of the semiconductor light emitting device 4. A cylindrical or mortar-shaped hole 11H is provided. Thereby, the high refractive index layer 6 is transmitted. Since the light is efficiently reflected on the surface of the reflective layer 11, the light emitted from the semiconductor light emitting device 4 can be used effectively. Instead of the reflective layer 11, a light scattering layer and / or a phosphor-containing layer 7 can be provided.
[0343] ここで反射層 11を構成する材料に制限は無いが、例えば、銀、アルミニウム等の金 属材料;硫酸バリウム、シリカ、酸化チタン、炭酸カルシウムなどを用いることができる 。また、その膜厚は本発明の効果を著しく損なわない限り任意であるが、通常 δ πι 以上、好ましくは 10 m以上、また、通常 100 m以下、好ましくは 50 m以下であ る。さらに、その積層方法に制限は無いが、例えば、原料を蒸着したり、白色粒子顔 料を塗布したりすることにより積層できる。また、基板 1の上にソルダーレジスト等の白 色面が形成されている場合には、この白色面を反射層 11として利用しても良い。 [0343] Here, the material constituting the reflective layer 11 is not limited. For example, a metal material such as silver or aluminum; barium sulfate, silica, titanium oxide, calcium carbonate, or the like can be used. The film thickness is arbitrary as long as the effect of the present invention is not significantly impaired, but is usually δπι or more, preferably 10 m or more, and usually 100 m or less, preferably 50 m or less. Furthermore, although there is no restriction | limiting in the lamination | stacking method, For example, it can laminate | stack by vapor-depositing a raw material or apply | coating a white particle pigment. Further, when a white surface such as a solder resist is formed on the substrate 1, this white surface may be used as the reflective layer 11.
[0344] また、本実施形態に係る導光板 8は、前記の点、並びに、高屈折率層 6の上面に光 散乱層および/または蛍光体含有層 7を設けな力、つたこと以外の構成は、第一の実 施形態と同様に構成されている。したがって、本実施形態の導光板 8も、互いに接す る特定層である高屈折率層 6及び低屈折率層 5 'が積層されることで構成されている ため、第一の実施形態と同様に、厚膜化等の膜厚の自由な制御が可能であること、 クラック及び剥離の抑制が可能であること、耐熱性及び耐光性に優れること等の利点 を得ることができるようになつている。 In addition, the light guide plate 8 according to the present embodiment has the above-described points, and a configuration other than the force that does not provide the light scattering layer and / or the phosphor-containing layer 7 on the upper surface of the high refractive index layer 6. Is configured in the same manner as in the first embodiment. Accordingly, the light guide plate 8 of the present embodiment is also configured by laminating the high refractive index layer 6 and the low refractive index layer 5 ′, which are specific layers that are in contact with each other, and is the same as in the first embodiment. In addition, it is possible to obtain advantages such as being able to freely control the film thickness such as thickening, being able to suppress cracks and peeling, and being excellent in heat resistance and light resistance. Yes.
[0345] 第十の実施形態の導光板 8は、図 11に示すように、基板 1に円柱状またはすり鉢状 の穴 1Hを形成し、その穴 1Hの底部に半導体発光装置 4が設置された構成となって いる。これにより、光源自体の厚みを基板 1の内に収めることが可能となる。また、低 屈折率層 5、高屈折率層 6、光散乱層および/または蛍光体含有層 7などの膜厚を 薄くしたり、半導体発光装置 4の高さを調整したりできるようになり、設計の自由度を 高めることが可能となる。 As shown in FIG. 11, in the light guide plate 8 of the tenth embodiment, a cylindrical or mortar-shaped hole 1H is formed in the substrate 1, and the semiconductor light emitting device 4 is installed at the bottom of the hole 1H. It is composed. As a result, the thickness of the light source itself can be accommodated in the substrate 1. In addition, the thickness of the low refractive index layer 5, the high refractive index layer 6, the light scattering layer and / or the phosphor-containing layer 7 can be reduced, and the height of the semiconductor light emitting device 4 can be adjusted. It becomes possible to increase the degree of freedom of design.
[0346] また、本実施形態に係る導光板 8は、前記の点、並びに、低屈折率層 5の一部に光 散乱層および/または蛍光体含有層 7を設けたこと以外の構成は、第一の実施形態 と同様に構成されている。したがって、本実施形態の導光板 8も、互いに接する特定 層である低屈折率層 5, 5 '、高屈折率層 6、並びに、光散乱層および/または蛍光 体含有層 7が積層されることで構成されているため、第一の実施形態と同様に、厚膜
化等の膜厚の自由な制御が可能であること、クラック及び剥離の抑制が可能であるこ と、耐熱性及び耐光性に優れること等の利点を得ることができるようになつている。 [0346] The light guide plate 8 according to the present embodiment has the above-described points, and the configuration other than the provision of the light scattering layer and / or the phosphor-containing layer 7 in a part of the low refractive index layer 5, The configuration is the same as in the first embodiment. Therefore, the low-refractive index layers 5 and 5 ′, the high-refractive index layer 6, and the light scattering layer and / or the phosphor-containing layer 7, which are specific layers in contact with each other, are also laminated on the light guide plate 8 of the present embodiment. As in the first embodiment, the thick film It is possible to obtain advantages such as free control of the film thickness such as crystallization, suppression of cracks and peeling, and excellent heat resistance and light resistance.
[0347] 以上、本発明の導光部材の実施形態の具体例を紹介したが、前記第一〜第十の 実施形態は、それぞれ、その一部を他の実施形態に導入、または組合せなどするこ とにより、適宜変更することも可能である。 [0347] While specific examples of the embodiments of the light guide member of the present invention have been described above, a part of each of the first to tenth embodiments is introduced or combined with other embodiments. This can be changed as appropriate.
また、上述した実施形態においては、低屈折率層 5, 5 '、光屈折率層 6並びに光散 乱層および/または蛍光体含有層 7などの特定層が少なくとも 2層積層されている限 り、導光板 8を構成する一部の層を設けないようにしてもよぐまた、更に他の層を積 層してもよい。例えば、特定層は透光性及び密着性に優れていることから、上述した 導光板 8の最外層にポリエチレンテレフタレート(PET)等で形成された防湿フィルム を設けることが好適である。 In the above-described embodiment, as long as at least two specific layers such as the low refractive index layers 5, 5 ′, the light refractive index layer 6, the light scattering layer and / or the phosphor-containing layer 7 are laminated. Some layers constituting the light guide plate 8 may not be provided, and other layers may be further stacked. For example, since the specific layer is excellent in translucency and adhesiveness, it is preferable to provide a moisture-proof film formed of polyethylene terephthalate (PET) or the like on the outermost layer of the light guide plate 8 described above.
[0348] また、低屈折率部 5a、高屈折率部 6a、境界部 10などの境界部は、前記の特定層 5, 5 ' , 6, 7のうち、少なくとも 2層を貫通していれば良ぐしたがって、 3層以上を貫 通していてもよい。さらに、光を伝送しうる材料で形成するのみでなぐ光を伝送しな い材料で形成しても良い。さらに、境界部には、例えば無機粒子、蛍光体、色材等の その他の成分を含有させても良!/、。 [0348] Further, the boundary portions such as the low refractive index portion 5a, the high refractive index portion 6a, and the boundary portion 10 may penetrate at least two of the specific layers 5, 5 ', 6, and 7 described above. Therefore, it is possible to penetrate three or more layers. Further, it may be formed of a material that does not transmit light just by forming it from a material that can transmit light. Furthermore, the boundary part may contain other components such as inorganic particles, phosphors, and coloring materials.
色材は、境界部の各機能向上を目的として、その材料や、色を適宜選択して用いる こと力 Sできる。例えば、異なる色を伝播させる 2つの導光層領域を境界部で区切る場 合、境界部が白色であると、各々の領域の光を白色の境界部が反射し、隣の領域へ の光の漏れ出しを防止し混色を防ぐ効果がある。ただし、白色の境界部を非常に細く 又は薄くした場合には、光の遮蔽効果が不十分となる可能性がある。この場合には 黒色の境界部を用いると、光吸収による導光量のロスが生じる力 隣の領域への光 の混色を確実に防止することが出来ると考えられる。 For the purpose of improving each function of the boundary portion, the color material can be used by appropriately selecting the material and color. For example, when two light guide layer regions that propagate different colors are separated by a boundary, if the boundary is white, the white boundary reflects the light in each region, and the light to the adjacent region It has the effect of preventing leakage and color mixing. However, if the white boundary is made very thin or thin, the light shielding effect may be insufficient. In this case, it is considered that the use of the black border can surely prevent the color mixing of light to the adjacent area that causes a loss of light guide amount due to light absorption.
境界部に色材を含有させて白色とする場合は、色材としては無機および/または 有機の材料を用いることができ、例えば、無機粒子としてはアルミナ微粉、酸化珪素 、酸化アルミニウム、酸化チタン、酸化亜鉛、酸化マグネシウム等の金属酸化物;炭 酸カルシウム、炭酸バリウム、炭酸マグネシウム、硫酸バリウム、水酸化アルミニウム、 水酸化カルシウム、水酸化マグネシウム等の金属塩;窒化硼素、アルミナホワイト、コ
ロイダルシリカ、珪酸アルミニウム、珪酸ジルコニウム、硼酸アルミニウム、クレー、タル ク、カオリン、雲母、合成雲母などが挙げられる。また、有機微粒子としては、弗素樹 脂粒子、グアナミン樹脂粒子、メラミン樹脂粒子、アクリル樹脂粒子、シリコン樹脂粒 子等の樹脂粒子などを挙げることができる力 いずれもこれらに限定されるものでは ない。 In the case where a color material is included in the boundary to make it white, an inorganic and / or organic material can be used as the color material. For example, as the inorganic particles, alumina fine powder, silicon oxide, aluminum oxide, titanium oxide, Metal oxides such as zinc oxide and magnesium oxide; metal salts such as calcium carbonate, barium carbonate, magnesium carbonate, barium sulfate, aluminum hydroxide, calcium hydroxide, magnesium hydroxide; boron nitride, alumina white, co Examples include loyal silica, aluminum silicate, zirconium silicate, aluminum borate, clay, talc, kaolin, mica, and synthetic mica. Further, the organic fine particles include, but are not limited to, forces that can include resin particles such as fluorine resin particles, guanamine resin particles, melamine resin particles, acrylic resin particles, and silicon resin particles.
また、境界部に色材を含有させて黒色とする場合は、無機および/または有機の 材料を用いることができ、例えば、無機粒子としてはチタンブラック、カーボンブラック 、酸化鉄ブラック、硫酸ビスマス、などが挙げられる。また、有機微粒子としては、ァニ リンブラック、シァニンブラック、ペリレンブラック等を挙げることができる力 いずれもこ れらに限定されるものではない。 In addition, when the boundary portion contains a color material to make it black, inorganic and / or organic materials can be used. For example, as the inorganic particles, titanium black, carbon black, iron oxide black, bismuth sulfate, etc. Is mentioned. In addition, the organic fine particles are not limited to any force that can include, for example, aniline black, cyanine black, and perylene black.
また、色材は 1種のみを用いてもよぐ 2種以上を任意の組み合わせ及び比率で併 用してもよい。 In addition, only one type of coloring material may be used, or two or more types may be used in any combination and ratio.
[0349] [D.導光部材の製造方法] [0349] [D. Method for manufacturing light guide member]
本発明の導光部材の製造方法 (以下適宜、「本発明の製造方法」という)は、基板 上に、流体状の硬化性材料を硬化させてなる導光層を備える導光部材の製造方法 であって、前記の基板上に導光層を区画する堰を設ける工程 (以下適宜「堰形成ェ 程」という)と、硬化性材料を基板上に塗設する工程 (以下適宜「硬化性材料塗設ェ 程」という)と、硬化性材料を硬化させる工程 (以下適宜「硬化性材料硬化工程」という )とを有する。 The light guide member manufacturing method of the present invention (hereinafter referred to as “the manufacturing method of the present invention” as appropriate) includes a light guide layer obtained by curing a fluid curable material on a substrate. A step of providing a weir for partitioning the light guide layer on the substrate (hereinafter referred to as “weir formation process” as appropriate) and a step of applying a curable material on the substrate (hereinafter referred to as “curable material as appropriate”). And a process of curing the curable material (hereinafter referred to as “curable material curing process” as appropriate).
[0350] [D— 1 1]堰形成工程 [0350] [D— 1 1] Weir formation process
本発明の製造方法では、まず、基板を用意し、当該基板上に堰を設ける。 In the manufacturing method of the present invention, first, a substrate is prepared, and a weir is provided on the substrate.
[0351] [D— 1 1 1]基板 [0351] [D— 1 1 1] Board
基板は、本発明の導光部材の支持体となり得る部分であり、この基板上に、導光層 及び堰が配置される。 A board | substrate is a part which can become a support body of the light guide member of this invention, and a light guide layer and a weir are arrange | positioned on this board | substrate.
基板の大きさ及び形状は、製造される導光部材の目的などに応じて任意に設定す ること力 Sでさる。 The size and shape of the substrate can be set arbitrarily according to the purpose of the light guide member to be manufactured.
[0352] また、基板は、必要に応じて任意の部材を備えていても良い。例えば、基板は発光 ダイオード(light emitting diode。「: LED」ともいう)及び半導体レーザーダイォー
ド(semiconductor laser diode。 「LD」ともいう)等の半導体発光装置などの発光 光源を備えていてもよい。この場合、発光光源が配置される位置も、導光部材の目的 などに応じて任意に設定することができる。 [0352] Further, the substrate may include an arbitrary member as necessary. For example, the substrate is a light emitting diode (also called “: LED”) and a semiconductor laser diode. A light emitting source such as a semiconductor light emitting device such as a semiconductor laser diode (also referred to as “LD”) may be provided. In this case, the position at which the light emitting light source is disposed can be arbitrarily set according to the purpose of the light guide member.
また、基板上に予め所望の層を 1層又は 2層以上積層しておいてもよい。この場合 には、後述する堰及び導光層は、これらの層を介して基板上に設けられることになる Further, one or more desired layers may be laminated on the substrate in advance. In this case, the weir and the light guide layer, which will be described later, are provided on the substrate via these layers.
〇 Yes
[0353] 基板を形成する材料は本発明の効果を著しく損なわない限り任意であるが、例え ば、堰又は導光層を形成する硬化性材料との接着などの観点から、セラミック、金属 、ガラス、樹脂などが好ましい。樹脂の中では、極性基を含むものや、セラミック、金属 、ガラス等の接着性を向上するフイラ一が含まれるものが好ましい。また、発光光源を 備えた基板の場合、配線を有する基板が用いられることがある。この場合、例えば、 ガラス繊維強化のエポキシ樹脂が積層されたプリント配線基板などが好適である。な お、基板は、 1種の材料のみで形成してもよぐ 2種以上の材料を任意の組み合わせ 及び種類で併用してもよい。 [0353] The material for forming the substrate is optional as long as the effects of the present invention are not significantly impaired. For example, from the viewpoint of adhesion to a curable material for forming a weir or a light guide layer, ceramic, metal, glass, etc. Resins are preferred. Among the resins, those containing a polar group and those containing a filler for improving adhesiveness such as ceramic, metal and glass are preferable. In the case of a substrate provided with a light emitting light source, a substrate having wiring may be used. In this case, for example, a printed wiring board on which glass fiber reinforced epoxy resin is laminated is suitable. The substrate may be formed of only one kind of material. Two or more kinds of materials may be used in any combination and kind.
[0354] [D— 1 1 2]堰の形成 [0354] [D— 1 1 2] Formation of weir
前記の基板上には、堰を設ける。この堰は、光源からの光を伝送または遮断しうる 材料で形成されるもので、導光部材を所定の領域に区画する境界部として機能する 部分である。堰の材料として光を伝送する材料を用いた場合は堰を含む領域まで光 源光が伝送される。即ち、堰の内部にまで光が伝送されることになる。一方、堰の材 料として光を遮断する材料を用いた場合は堰を含まな!/、領域までだけ光源光が伝送 される。即ち、堰の内部には光は伝送されなくなる。 A weir is provided on the substrate. The weir is formed of a material that can transmit or block light from the light source, and is a portion that functions as a boundary portion that partitions the light guide member into predetermined regions. When a material that transmits light is used as the material of the weir, the light source light is transmitted to the area including the weir. That is, light is transmitted to the inside of the weir. On the other hand, when a material that blocks light is used as the material of the weir, the light source light is transmitted only to the area that does not include the weir! That is, no light is transmitted inside the weir.
[0355] [D l— l 2 l]堰の役割 [0355] Role of [D l— l 2 l] weir
通常、後述する導光層はこの堰に堰き止められるようにして形成される。また、堰が 導光層を完全には堰き止めない場合(即ち、導光層が堰を乗り越えるようにして形成 される場合)であっても、当該堰が形成されている部分は堰の分だけ導光層が薄く形 成されて、結果として堰は部分的に導光層を区画する境界部として機能する。したが つて、堰は導光層を区画し、いわば当該堰が描画された寸法、形状、位置等に応じ て導光層の領域の寸法、形状、位置等が設定され、これにより、発光部分のデザイン
を決定付けることになる。 Usually, a light guide layer, which will be described later, is formed so as to be blocked by this weir. Even when the weir does not completely block the light guide layer (that is, when the light guide layer is formed so as to cross over the weir), the portion where the weir is formed is a part of the weir. Only the light guide layer is formed thin, and as a result, the weir functions as a boundary part that partitions the light guide layer partially. Therefore, the weir partitions the light guide layer, so to speak, the size, shape, position, etc. of the light guide layer region are set according to the size, shape, position, etc. of the drawing of the weir. Design of Will be determined.
[0356] 例えば、堰が硬化性材料塗設工程にお!/、て硬化性材料を完全に堰き止める場合 には、区画された導光層の各領域の平面形状が堰の寸法、形状、配置等に応じて 設定されることになる。 [0356] For example, when the weir is completely damming the curable material in the curable material coating process, the planar shape of each area of the partitioned light guide layer is the size, shape, It will be set according to the layout.
[0357] また、例えば、堰が光を伝送しうる材料で形成されている場合には、光源から導光 層を通じて伝送された光を、当該堰を通じて放射させることができ、これにより、導光 部材が放射する光により形作られる形状や模様を、堰の寸法、形状、位置等に応じ て設定すること力できる。 [0357] Also, for example, when the weir is formed of a material capable of transmitting light, the light transmitted from the light source through the light guide layer can be emitted through the weir. The shape and pattern formed by the light emitted by the member can be set according to the size, shape, position, etc. of the weir.
[0358] また、例えば、堰が光を伝送し得な!/、材料で形成されて!/、る場合には、光源から導 光層を通じて伝送された光を、当該堰から放射されないようにしたり、当該堰から先 へは伝送されないようにしたり、当該堰から先へ伝送される光の強度を弱めたりする ことができ、これにより、導光部材が放射する光により形作られる形状や模様を、堰の 寸法、形状、位置等に応じて設定することができる。 [0358] In addition, for example, when the weir cannot transmit light! / Or is formed of a material! /, The light transmitted from the light source through the light guide layer is prevented from being emitted from the weir. It is possible to prevent transmission from the weir to the end, or to reduce the intensity of the light transmitted from the weir to the end, thereby reducing the shape or pattern formed by the light emitted by the light guide member. It can be set according to the dimensions, shape, position, etc. of the weir.
[0359] また、例えば、堰が光の波長を変換する機能(即ち、波長変換機能)を有している 場合には、光源から導光層を通じて伝送された光を、当該堰を通じて所望の波長の 光に変換してから放射させることができ、これにより、導光部材が放射する光により形 作られる色彩を、堰の寸法、形状、位置等に応じて設定することができる。 [0359] In addition, for example, when the weir has a function of converting the wavelength of light (that is, a wavelength conversion function), light transmitted from the light source through the light guide layer is transmitted through the weir to a desired wavelength. After being converted into light, the light can be emitted, so that the color formed by the light emitted from the light guide member can be set according to the size, shape, position, etc. of the weir.
[0360] また、例えば、堰が光を拡散する機能を有する場合には、光源から導光層を通じて 伝送された光を、当該堰から放射される光については拡散されるようにでき、これによ り、導光部材が放射する光により形作られる形状や模様を、堰の寸法、形状、位置等 に応じて設定することができる。 [0360] For example, when the weir has a function of diffusing light, light transmitted from the light source through the light guide layer can be diffused with respect to light emitted from the weir. Thus, the shape or pattern formed by the light emitted from the light guide member can be set according to the size, shape, position, etc. of the weir.
[0361] [D— 1 1 2— 2]堰の材料 [0361] [D— 1 1 2— 2] Weir material
堰の材料は、本発明の効果を著しく損なわない限り任意のものを用いることができ る。中でも、低透湿、光伝送または遮断特性、並びに基板に対する密着性などの観 点から、エポキシ樹脂、ウレタン樹脂、ポリイミド樹脂、アクリル樹脂、シリコーン樹脂な どが好ましい。また、基板、導光層(硬化性材料)に対する密着性などの観点から、ェ ポキシ樹脂、アクリル樹脂、シリコーン樹脂が特に好ましい。なお、堰の材料は、 1種 のみを用いてもよぐ 2種以上を任意の組み合わせ及び比率で併用してもよい。
[0362] さらに、堰の材料としては、液状のものを塗布して硬化させることができる材料 (硬化 性材料)が好ましい。中でも、塗布操作時に硬化せず硬化操作時に硬化する材料が 好ましい。この観点からは、硬化性材料としては、熱硬化性樹脂、光硬化性樹脂など が好ましい。そのうち熱硬化性樹脂の中でも、できるだけ低温で硬化するもの力 基 板や光源などへの変質の影響が少なぐ好ましい。 Any material of the weir can be used as long as the effects of the present invention are not significantly impaired. Of these, epoxy resin, urethane resin, polyimide resin, acrylic resin, silicone resin, and the like are preferable from the viewpoint of low moisture permeability, light transmission or blocking characteristics, and adhesion to the substrate. Further, from the viewpoint of adhesion to the substrate and the light guide layer (curable material), epoxy resin, acrylic resin, and silicone resin are particularly preferable. Only one type of weir material may be used, or two or more types may be used in any combination and ratio. [0362] Further, the material of the weir is preferably a material (curable material) that can be cured by applying a liquid material. Among these, a material that does not cure during the coating operation but cures during the curing operation is preferable. From this viewpoint, the curable material is preferably a thermosetting resin, a photocurable resin, or the like. Of these, among thermosetting resins, those that cure at the lowest possible temperature are preferred, and the influence of alteration on the substrate and light source is small.
[0363] 硬化性材料の硬化速度に制限は無!/、が、速!/、ほど好まし!/、。塗布時の形状保持 特性に優れるからである。具体的な範囲を挙げると、通常 10時間以内、中でも 5時間 以内、特には 3時間以内に硬化するものが好ましい。 [0363] There is no limit to the curing rate of the curable material! /, But it is faster! /, More preferred! This is because the shape retention characteristics during application are excellent. Specifically, those that cure usually within 10 hours, especially within 5 hours, particularly within 3 hours are preferred.
また、硬化性材料によっては、硬化途中に粘度が一旦低下するものもある。し力、し、 形状保持特性が悪化することを防ぐ観点から、前記の粘度低下は小さく抑制すること が好ましい。その実現のためには、硬化性材料の特性を改良するほか、前記の無機 粒子を活用することも有効である。 Some curable materials have a viscosity that temporarily decreases during curing. From the viewpoint of preventing the strength and the shape retention characteristics from deteriorating, it is preferable to suppress the above-described decrease in viscosity. In order to realize this, it is effective to improve the properties of the curable material and utilize the above-mentioned inorganic particles.
[0364] また、堰の材料としては、本発明の効果を著しく損なわない限り、上記の樹脂などに 、更にその他の成分を混合して用いることも可能である。なお、その他の成分は、 1種 のみを用いてもよぐ 2種以上を任意の組み合わせ及び比率で併用してもよい。その 他の成分の例を挙げると、蛍光体、無機粒子などが挙げられる。なお、これらの蛍光 体及び無機粒子は、本発明の第一〜第八の導光部材の項で説明したものと同様で ある。 [0364] Further, as a material of the weir, other components may be further mixed with the above-described resin or the like as long as the effects of the present invention are not significantly impaired. Other components may be used alone, or two or more may be used in any combination and ratio. Examples of other components include phosphors and inorganic particles. These phosphors and inorganic particles are the same as those described in the first to eighth light guide members of the present invention.
[0365] [D— 1 1 2— 3]堰の形状及び寸法 [0365] [D— 1 1 2— 3] Weir shape and dimensions
堰の形状に特に制限は無い。通常は、基板表面に延在する凸状の部材として形成 される。この際、堰は稜線を有さない形状に形成することが好ましい。ここで稜線とは 、堰の表面に長手方向に連続的に形成された角のことをいう。したがって、稜線を有 さない形状とは、堰を長手方向に交差する面で切った場合に、当該断面が角を有さ ない形状を言う。したがって、堰は、例えば、表面が曲面のみで形成された断面略半 円状(レ、わゆる、力、まぼこ状)の部材として形成することが好ましレ、(図 13 (b)を参照) 。堰の表面を滑らかな凸曲面のみで形成すれば、断面多角形状に形成した場合より も堰における光取り出し効果が優れるからである。これは、堰の表面を滑らかな面で 形成することにより、伝送されてきた光が堰に当たって反射する際、堰の頂点から基
板等との接着面まで連続する滑らかな光を取り出すことができるためである。 There is no particular limitation on the shape of the weir. Usually, it is formed as a convex member extending on the substrate surface. At this time, the weir is preferably formed in a shape having no ridgeline. Here, the ridge line means a corner continuously formed in the longitudinal direction on the surface of the weir. Therefore, the shape having no ridge line refers to a shape in which the cross section has no corners when the weir is cut along a plane intersecting the longitudinal direction. Therefore, for example, the weir is preferably formed as a member having a substantially semicircular cross-section (le, loose, force, dimpled) whose surface is formed only by a curved surface (Fig. 13 (b) See). This is because if the surface of the weir is formed only with a smooth convex curved surface, the light extraction effect in the weir is superior to the case where it is formed with a polygonal cross section. This is because the surface of the weir is formed with a smooth surface, so that the transmitted light hits the weir and is reflected from the top of the weir. This is because it is possible to extract smooth light that continues to the bonding surface with a plate or the like.
[0366] 堰の寸法は、導光部材のデザインに応じて任意に設定することができる。ただし、 中でも堰の高さ(図 12 (a)の高さ Hを参照)は、通常 l ^ m以上、中でも 5 m以上、 特には 10 m以上が好ましぐ通常 5mm以下、中でも 2mm以下、特には lmm以下 が好ましい。堰が低すぎると導光した光の分割機能が無くなる可能性があり、高すぎ ると機械的強度が低下して実用的でなくなる可能性がある。 [0366] The dimensions of the weir can be arbitrarily set according to the design of the light guide member. However, the height of the weir (see height H in Fig. 12 (a)) is usually l ^ m or more, especially 5 m or more, especially 10 m or more, usually 5 mm or less, especially 2 mm or less. In particular, lmm or less is preferable. If the weir is too low, the light splitting function of the guided light may be lost, and if it is too high, the mechanical strength may be reduced and impractical.
[0367] また、堰の幅(図 12 (a)の幅 Wを参照)は、通常 以上、中でも 5 111以上、特 には 10 m以上が好ましぐ通常 20mm以下、中でも 10mm以下、特には 5mm以 下が好ましい。堰の幅が狭すぎると機械的強度が不足する可能性があり、広すぎると 無駄となる可能性がある。 [0367] In addition, the width of the weir (see width W in Fig. 12 (a)) is more than normal, especially 5 111 or more, especially 10 m or more, usually 20 mm or less, especially 10 mm or less, especially 5 mm or less is preferable. If the width of the weir is too narrow, the mechanical strength may be insufficient, and if it is too wide, it may be wasted.
[0368] [D— 1 1 2— 4]堰の形成方法 [0368] [D— 1 1 2— 4] Weir formation method
堰の形成方法に制限は無いが、通常は、堰の材料を基板上の所望の部位に配置 することで、当該材料により所望の形状を描画して、堰を形成する。この場合、描画 の方法に制限は無いが、例えば、インクジェット、ディスペンサー等による描画法;凹 版印刷、凸版印刷、平板印刷、孔版印刷 (スクリーン印刷等)等の印刷法;レジスト法 などを用いること力できる。中でも、ディスペンサーによる描画法、スクリーン印刷、レ ジスト法が好ましい。 There is no limitation on the method of forming the weir, but normally, the material of the weir is placed at a desired site on the substrate, and the desired shape is drawn with the material to form the weir. In this case, the drawing method is not limited. For example, a drawing method using an inkjet, a dispenser, etc .; a printing method such as intaglio printing, relief printing, lithographic printing, stencil printing (screen printing, etc.); a resist method, etc. should be used. I can do it. Of these, drawing with a dispenser, screen printing, and resist method are preferred.
[0369] ディスペンサーとは、液状材料を定量計量し、定量吐出する装置である。この装置 は通常、高精度に圧力、時間等を制御されたエアノ ルスを作り出し、これがシリンジ 等の容器に注入された液状材料を様々なサイズ、形状のノズル先端力 押し出すも のである。この場合の温度、湿度、圧力などに制限は無いが、通常 0°C以上 100°C以 下、湿度 5RH%以上 90RH%以下、圧力 lPa以上 200kPa以下で行なう。 [0369] A dispenser is a device that quantitatively measures a liquid material and discharges the liquid material quantitatively. This device usually produces highly precise controlled air pressure, time, etc., which pushes the liquid material injected into a syringe or other container into various sizes and shapes of nozzle tips. There are no restrictions on the temperature, humidity, pressure, etc. in this case, but it is normally performed at a temperature of 0 ° C to 100 ° C, a humidity of 5RH% to 90RH%, and a pressure of 1Pa to 200kPa.
[0370] また、ディスペンサーでは、ノズル先端より吐出する液状材料を対象に滴下し、描 画する。この描画は、手動、自動のいずれでも可能である。しかし、寸法の安定性の 面から、自動のデイスペンシングステージ(二次元の動きを記憶させたり、コンビユー タにより制御させたりすることで、電子図面を直接描画させることができる装置)等を 用いることが好ましい。 [0370] In the dispenser, the liquid material discharged from the tip of the nozzle is dropped onto the object and drawn. This drawing can be performed manually or automatically. However, from the viewpoint of dimensional stability, an automatic dispensing stage (a device that can directly draw an electronic drawing by storing two-dimensional movement or controlling it by a computer) is used. It is preferable.
[0371] また、シリンジ等の容器に液状材料を注入した後には、十分に泡抜き操作 (脱泡操
作)を行なうことが好ましい。液状材料に泡が混入すると、描画中にノズルからの吐出 が断続的になり、描画精度の低下を招く可能性がある。また、肉眼では見えにくいよ うな 100 m以下程度の泡も除去することが望ましい。 [0371] In addition, after injecting a liquid material into a container such as a syringe, a sufficient defoaming operation (defoaming operation) Preferably). If bubbles are mixed in the liquid material, the discharge from the nozzles may become intermittent during drawing, which may lead to a reduction in drawing accuracy. It is also desirable to remove bubbles of about 100 m or less that are difficult to see with the naked eye.
泡抜き操作の方法に制限は無いが、例えば、真空下で液状材料を遠心させ(自転 、公転タイプ)、または、超音波をかけて泡抜きすることができる。また、シリンジ等の 容器に注入する前、及び/又は、シリンジ等に注入した後に処理することが好ましい 。更に、シリンジにノズルを接続するときに泡が混入することがあるので、描画前に十 分にノズルからの吐出を行な!/、、吐出を安定させることも好まし!/、。 Although there is no restriction | limiting in the method of foam removal operation, For example, a liquid material can be centrifuged under a vacuum (rotation, revolution type), or foam can be removed by applying an ultrasonic wave. Further, it is preferable to perform the treatment before injection into a container such as a syringe and / or after injection into a syringe or the like. In addition, bubbles may be mixed in when the nozzle is connected to the syringe, so discharge from the nozzle sufficiently before drawing! /, And it is also preferable to stabilize the discharge! /.
[0372] ディスペンサーの操作条件と液状材料の特性とによって、堰の寸法をコントロール すること力 Sできる。例えば、堰の高さは、液状材料の粘度が高いほど、液状材料のチ キソ性が高いほど、ノズル径が大きいほど、描画速度が遅いほど、硬化時の粘度低 下が小さいほど、高くすること力 Sできる。また、重ね塗りを行なうことにより、更に高くす ることも可能である。また、例えば、堰の幅は、液状材料の粘度が低いほど、チキソ性 が低いほど、ノズル径が大きいほど、速度が遅いほど、粘度低下が大きいほど、広く できる。また、水平方向に隣接した多重描画を行なうことにより、更に広くすることがで きる。さらに、隣接する複数のノズルを備えたディスペンサーを用いると、一度の描画 で水平方向に隣接した多重描画を行なうことが可能である。 [0372] Depending on the operating conditions of the dispenser and the characteristics of the liquid material, it is possible to control the weir dimensions. For example, the height of the weir is increased as the viscosity of the liquid material is higher, the thixotropy of the liquid material is higher, the nozzle diameter is larger, the drawing speed is slower, and the lowering of the viscosity during curing is smaller. That power S. Moreover, it is possible to make it even higher by overcoating. In addition, for example, the width of the weir can be increased as the viscosity of the liquid material is lower, the thixotropy is lower, the nozzle diameter is larger, the speed is lower, and the viscosity decrease is larger. Further, it can be made wider by performing multiple drawing adjacent in the horizontal direction. Furthermore, when a dispenser having a plurality of adjacent nozzles is used, it is possible to perform multiple drawing adjacent in the horizontal direction by one drawing.
[0373] また、スクリーン印刷とは、孔版と呼ばれる印刷技術の一種であり、版に微細な孔を 多数設け、圧力によって孔を通過した液状材料を転写する印刷方法である。具体的 には、メッシュとマスクで構成するスクリーンを印刷対象に重ねておき、上から液状材 料を供給しながらステージでスクリーンを押し当てる。これにより、マスクの開口部に 当たるメッシュから液状材料が吐出され、マスク開口部と同じ画像が形成される。 [0373] Screen printing is a kind of printing technique called stencil printing, and is a printing method in which a large number of fine holes are provided in a plate and a liquid material that has passed through the holes is transferred by pressure. Specifically, a screen composed of a mesh and a mask is stacked on the object to be printed, and the screen is pressed against the stage while supplying the liquid material from above. As a result, the liquid material is discharged from the mesh corresponding to the opening of the mask, and the same image as the mask opening is formed.
[0374] スクリーン印刷の操作条件によって、堰の寸法をコントロールすることができる。例え ば、堰の高さは、メッシュスクリーンの厚みが厚いほど、開口率が大きいほど、高くす ること力 Sできる。また、繰り返し印刷することにより、更に高くすることも可能である。な お、堰の幅は、通常はマスクの寸法に従う。 [0374] The dimensions of the weir can be controlled by the operating conditions of screen printing. For example, the height of the weir can be increased as the mesh screen is thicker and the aperture ratio is larger. Further, it is possible to make it higher by repeatedly printing. The width of the weir usually follows the mask dimensions.
[0375] また、レジスト法とは、堰の材料としてレジスト材料を用いて、このレジスト材料を基 板へ塗布し、現像により所望の画像を形成させる方法である。レジスト材料としては、
ポジ型、ネガ型のいずれのものを用いることもできる。ポジ型のレジスト材料としては、 例えば感光性ポジ型樹脂または樹脂組成物を使用することができる。一方、ネガ型 のレジスト材料としては、例えば光重合性及び/又は熱重合性の樹脂または樹脂組 成物を使用することができる。基板へのレジスト材料の塗布方法としては、従来公知 の方法、例えば、スピナ一法、ワイヤーバー法、フローコート法、スリット'アンド'スピ ン法、ダイコート法、ロールコート法、スプレーコート法等によって行なうことができる。 基板へのレジスト材料の塗布後は、例えば感光性レジスト材料を用いる場合は、レジ スト塗布の後、露光工程、現像工程、熱処理工程等を経て、所望の画像を形成する こと力 Sでさる。 [0375] The resist method is a method in which a resist material is used as a weir material, the resist material is applied to a substrate, and a desired image is formed by development. As a resist material, Either a positive type or a negative type can be used. As the positive resist material, for example, a photosensitive positive resin or a resin composition can be used. On the other hand, as the negative resist material, for example, a photopolymerizable and / or heat polymerizable resin or a resin composition can be used. As a method of applying the resist material to the substrate, a conventionally known method such as a spinner method, a wire bar method, a flow coating method, a slit 'and' spin method, a die coating method, a roll coating method, a spray coating method, etc. Can be done. After application of the resist material to the substrate, for example, when a photosensitive resist material is used, it is possible to use a force S to form a desired image after the resist application, through an exposure process, a development process, a heat treatment process, and the like.
[0376] これらの中でも、ディスペンサーにより堰を設けることが好ましい。ディスペンサーを 用いる場合、工程が複雑でないため、オーダーに応じた多種のデザイン設計が容易 であり、また、堰を稜線を有さない形状にしてその表面を滑らかな凸曲面のみで形成 できるため、境界部における光取り出し効果も優れるためである。 [0376] Among these, it is preferable to provide a weir with a dispenser. When using a dispenser, the process is not complicated, so it is easy to design a variety of designs according to the order, and because the weir has a shape that does not have a ridgeline, the surface can be formed only with a smooth convex curved surface. This is because the light extraction effect at the portion is also excellent.
また、前記の方法は、 2以上の方法を組み合わせて実施することもできる。 In addition, the above method can be carried out by combining two or more methods.
[0377] なお、前記のように堰を稜線を有さない形状に形成する場合には、例えば、前記の 方法により堰を形成した後、当該堰を熱溶融させる等の方法により、その表面を曲面 状にする処理を行なうことが好まし!/、。 [0377] Note that when the weir is formed in a shape having no ridgeline as described above, for example, after the weir is formed by the above-described method, the surface of the weir is thermally melted. It is preferable to perform processing to form a curved surface!
[0378] [D— 1 2]硬化性材料塗設工程 [0378] [D— 1 2] Hardening material coating process
堰形成工程の後、硬化性材料を基板上に塗設する硬化性材料塗設工程を行なう。 After the weir formation process, a curable material coating process is performed in which a curable material is coated on the substrate.
[0379] [D— 1 2— 1]硬化性材料 [0379] [D— 1 2— 1] Curable material
硬化性材料は、流体状の材料であって、何らかの硬化処理を施すことにより硬化す る材料のことをいう。ここで、流体状とは、例えば液状又はゲル状のことをいう。また、 硬化性材料は、光源からの光を所定の位置に伝送する導光部の役割を担保するも のである。このような硬化性材料の具体的な種類に制限は無い。また、硬化性材料 は、 1種のみを用いてもよぐ 2種以上を任意の組み合わせ及び比率で併用してもよ い。したがって、硬化性材料としては、無機系材料及び有機系材料並びに両者の混 合物の!/、ずれを用いることも可能である。 The curable material is a fluid-like material that is cured by performing some kind of curing treatment. Here, the fluid state means, for example, a liquid state or a gel state. In addition, the curable material ensures the role of the light guide that transmits light from the light source to a predetermined position. There is no restriction | limiting in the specific kind of such a curable material. Moreover, only one type of curable material may be used, or two or more types may be used in any combination and ratio. Therefore, as the curable material, it is also possible to use! /, Deviation of inorganic material and organic material and a mixture of both.
[0380] 無機系材料としては、例えば、金属アルコキシド、セラミック前駆体ポリマー若しくは
金属アルコキシドを含有する溶液をゾルーゲル法により加水分解重合して成る溶液、 またはこれらの組み合わせを固化した無機系材料 (例えばシロキサン結合を有する 無機系材料)等を挙げること力できる。 [0380] Examples of inorganic materials include metal alkoxides, ceramic precursor polymers, or Examples thereof include a solution obtained by hydrolytic polymerization of a solution containing a metal alkoxide by a sol-gel method, or an inorganic material (for example, an inorganic material having a siloxane bond) obtained by solidifying a combination thereof.
[0381] 一方、有機系材料としては、例えば、熱硬化性樹脂、光硬化性樹脂等が挙げられ る。具体例を挙げると、ポリメタアクリル酸メチル等のメタアクリル樹脂;ポリスチレン、ス チレン アクリロニトリル共重合体等のスチレン樹脂;ポリカーボネート樹脂;ポリエス テル樹脂;フエノキシ樹脂;ブチラール樹脂;ポリビュルアルコール;ェチルセルロー ス、セノレロースアセテート、セノレロースアセテートブチレート等のセノレロース系樹月旨; エポキシ樹脂;フエノール樹脂;シリコーン樹脂等が挙げられる。 [0381] On the other hand, examples of the organic material include a thermosetting resin and a photocurable resin. Specific examples include methacrylic resins such as polymethylmethacrylate; styrene resins such as polystyrene and styrene acrylonitrile copolymers; polycarbonate resins; polyester resins; phenoxy resins; butyral resins; Cenorelose-based lunar essence such as cenololose acetate and cenololose acetate butyrate; epoxy resin; phenol resin; silicone resin and the like.
[0382] これら硬化性材料の中では、特に大出力の光源を用いる場合、耐熱性や耐光性等 を目的として珪素含有化合物を使用することが好まし!/、。珪素含有化合物とは分子 中に珪素原子を有する化合物をレ、レ、、ポリオルガノシロキサン等の有機材料 (シリコ ーン系材料)、酸化ケィ素、窒化ケィ素、酸窒化ケィ素等の無機材料、及びホウケィ 酸塩、ホスホケィ酸塩、アルカリケィ酸塩等のガラス材料を挙げることができる。中で も、透明性、接着性、ハンドリングの容易さ、機械的、熱適応力の緩和特性に優れる 等の点から、シリコーン系材料が好ましい。シリコーン系材料の中でも、特に、第一〜 第八の導光部材の項で説明した特定層形成液がより好ましい。 [0382] Among these curable materials, it is preferable to use a silicon-containing compound for the purpose of heat resistance, light resistance, etc., especially when using a high output light source! A silicon-containing compound is a compound having a silicon atom in its molecule, inorganic materials such as organic materials (silicon-based materials) such as les, le, polyorganosiloxane, silicon oxide, silicon nitride, and silicon oxynitride. And glass materials such as borosilicate, phosphosilicate, and alkali silicate. Of these, silicone-based materials are preferable from the viewpoints of transparency, adhesion, ease of handling, mechanical and thermal adaptability relaxation characteristics, and the like. Among the silicone materials, the specific layer forming liquid described in the first to eighth light guide members is more preferable.
[0383] 硬化性材料として前記のアルキルアルコキシシランの加水分解.重縮合物を用いる 場合には、当該加水分解 ·重縮合物はエポキシ樹脂やシリコーン樹脂などの他の硬 化性材料と比較して低粘度であり、かつ蛍光体や無機粒子とのなじみが良ぐ高濃 度の無機粒子を分散しても十分に塗布性能を維持することが出来る利点を有する。 また、必要に応じて重合度の調整ゃァエロジル等のチキソ材を含有させることにより 高粘度にすることも可能であり、 目的の無機粒子含有量に応じた粘度の調整幅が大 きぐ塗布対象物の種類や形状さらにはポッティング、スピンコート、印刷などの各種 塗布方法に柔軟に対応できる塗布液を提供することが出来る。 [0383] Hydrolysis of the above-mentioned alkylalkoxysilane as a curable material. When a polycondensate is used, the hydrolysis / polycondensate is compared with other curable materials such as epoxy resins and silicone resins. It has the advantage that the coating performance can be sufficiently maintained even when high-concentration inorganic particles having low viscosity and good compatibility with phosphors and inorganic particles are dispersed. In addition, it is possible to increase the viscosity by adjusting the degree of polymerization as required, and by adding a thixo material such as aerosil, etc., and an object to be coated with a large viscosity adjustment range according to the target inorganic particle content It is possible to provide a coating solution that can be flexibly adapted to various coating methods such as potting, spin coating, and printing.
[0384] [D - 1 - 2 - 2]硬化性材料の塗設方法 [0384] [D-1-2-2] Coating method of curable material
前記の硬化性材料を塗設する場合、その塗設方法に制限はない。塗設方法の例 を挙げると、キャスト法、スピン法、ディップ法などを用いることができる。キャスト法と
は、所定量の液状の硬化性材料を塗布面にのせ、自動的に又は刷毛などにより塗り 広げる方法である。また、スピン法とは、遠心力により塗布面に載せた液状の硬化性 材料を均一膜厚にする方法である。さらに、ディップ法とは、液状の硬化性材料に塗 布面を浸し、一定速度で引き上げることにより、塗布面に所定量の硬化性材料を付 着させる方法である。中でも、堰で囲まれた範囲に均一膜厚で硬化性材料を塗設す るにはキャスト法が好ましい。他の方法では、堰に液溜りが生じやすぐ均一な膜厚を 実現しにくいので、導光特性の悪化を招く可能性がある。 When coating the curable material, there is no limitation on the coating method. As examples of the coating method, a cast method, a spin method, a dip method, and the like can be used. Cast method and In this method, a predetermined amount of a liquid curable material is placed on the coated surface and spread automatically or with a brush. The spin method is a method of forming a uniform film thickness of a liquid curable material placed on an application surface by centrifugal force. Further, the dipping method is a method of attaching a predetermined amount of curable material to the coated surface by immersing the coated surface in a liquid curable material and pulling it up at a constant speed. Among them, the casting method is preferable for coating the curable material with a uniform film thickness in the range surrounded by the weir. In other methods, liquid accumulation occurs in the weir and it is difficult to achieve a uniform film thickness immediately, which may lead to deterioration of the light guide characteristics.
[0385] キャスト法の塗設条件に制限は無いが、通常は、ディスペンサーを用いて所定量の 硬化性材料を所定の位置に吐出し、 目的膜厚のクリアランスを設け、へら状のかきと り板で硬化性材料をしごいて平らにする。この際、粘性を低く調節した液状の硬化性 材料をディスペンサーで計量吐出し、時間をおいたり、振動を与えたりして、膜面を 均一化(レべリング)させることが好ましい。また、膜面の均一化のためには、ディスぺ ンサ一のマルチノズルを用いることも有用である。 [0385] There are no restrictions on the coating conditions of the casting method, but normally a predetermined amount of curable material is discharged to a predetermined position using a dispenser, a clearance of the desired film thickness is provided, and a spatula-shaped scraper Squeeze the curable material with a plate and flatten it. At this time, it is preferable to make the film surface uniform by leveling and discharging a liquid curable material having a low viscosity adjusted with a dispenser to give time or vibration. In order to make the film surface uniform, it is also useful to use a multi-nozzle with a dispenser.
キャスト法で硬化性材料の塗設を行なう場合の温度、湿度、圧力等の条件に制限 は無いが、通常は、温度 0°C以上 100°C以下、相対湿度 5%以上 90%以下、圧力 1 Pa以上 200kPa以下が好ましい。また、結露を生じるような環境は、好ましくない。 There are no restrictions on conditions such as temperature, humidity, and pressure when applying curable materials by the casting method, but normally the temperature is 0 ° C to 100 ° C, relative humidity is 5% to 90%, pressure 1 Pa to 200 kPa is preferable. Also, an environment that causes condensation is not preferable.
[0386] 硬化性材料の塗設の際、形成する塗膜の厚さに制限は無いが、通常 1 μ m以上、 中でも 5 m以上、特には 10 m以上が好ましぐまた、通常 5mm以下、中でも 2m m以下、特には lmm以下が好ましい。塗膜が薄すぎると光の導光量が制限され、喑 くなる可能性があり、厚すぎると重く大きくなるため、小型部品としての魅力が薄れる 可能性がある。 [0386] When coating curable materials, there is no limit to the thickness of the coating film to be formed, but it is usually 1 μm or more, especially 5 m or more, especially 10 m or more, and usually 5 mm or less. Of these, 2 mm or less, particularly 1 mm or less is preferred. If the coating film is too thin, the amount of light guided is limited and may become thicker. If it is too thick, it becomes heavier and larger, which may reduce the attractiveness of small parts.
[0387] ただし、塗設の際、硬化性材料は、通常、前記の堰を利用してその塗膜の各領域 の形成位置を制御される。即ち、硬化性材料が前記の堰によって堰き止められるよう にして塗設される結果、形成される塗膜の平面形状は、堰により描画された形状に応 じて堰に区画された領域ごとにその平面形状を制御される。例えば、堰が閉じた枠を 形成している場合には、通常は、硬化性材料の塗膜は当該枠内に充填されるように して形成されるので、当該塗膜の平面形状は当該枠内において堰が描画された形 状に一致するようになる。また、例えば、堰が閉じた枠を形成していない場合でも、少
なくとも当該堰に当接する部分では硬化性材料の塗膜の縁部は堰に沿って形成さ れるので、その縁部の平面形状は堰が描画された形状に一致するようになる。また、 予め堰を設け、その堰に堰き止められるようにして硬化性材料を塗設するので、導光 層を通じて伝送された光が当該堰まで確実に届くように設計することが可能となり、こ のため、堰による発光部分の制御も可能となる。 [0387] However, at the time of coating, the curable material is usually controlled in the formation position of each region of the coating film by using the weir. That is, as a result of coating the curable material so as to be blocked by the weir, the planar shape of the formed coating film is different for each area partitioned by the weir according to the shape drawn by the weir. Its planar shape is controlled. For example, when the weir forms a closed frame, the coating film of the curable material is usually formed so as to be filled in the frame. Within the frame, the weirs will match the drawn shape. For example, even if the weir does not form a closed frame, At least the edge portion of the coating film of the curable material is formed along the weir at the portion in contact with the weir, so that the planar shape of the edge coincides with the shape on which the weir is drawn. In addition, a dam is provided in advance, and a curable material is applied so that the dam can be blocked, so that it is possible to design the light transmitted through the light guide layer to reach the weir without fail. Therefore, the light emitting part can be controlled by the weir.
このように、堰形成工程の後で硬化性材料塗設工程を行なうことで、予め設けてお いた堰によって硬化性材料の塗膜の平面形状を容易に且つ自由に設計できる。また 、堰を利用して、堰により区画された領域毎に異なる材料及び層構成で、塗膜を容 易且つ自由に設計できる。このため、従来のような大幅な形状及び規格の変更を行 なわなくとも、導光部材の発光部分のデザインを自由に設計することが可能になって いる。 Thus, by performing the curable material coating step after the dam formation step, the planar shape of the coating film of the curable material can be easily and freely designed by the previously provided dam. In addition, a coating film can be easily and freely designed using different weirs and different materials and layer configurations for each region partitioned by the weirs. For this reason, it is possible to freely design the light-emitting portion of the light guide member without having to change the shape and standard as in the past.
[0388] [D— 1 3]硬化性材料硬化工程 [0388] [D— 1 3] Curing material curing process
硬化性材料塗設工程の後、基板上に塗設した硬化性材料を硬化させる硬化性材 料硬化工程を行なう。これにより、基板上に形成された硬化性材料の塗膜が硬化さ れ、導光層が形成される。 After the curable material coating step, a curable material curing step for curing the curable material coated on the substrate is performed. Thereby, the coating film of the curable material formed on the substrate is cured, and the light guide layer is formed.
[0389] 硬化の方法は、硬化性材料の種類に応じて適切な条件を任意に選択すればよ!/、。 [0389] The curing method may be arbitrarily selected according to the type of curable material.
硬化性材料は、通常、光硬化性材料、熱硬化性材料及び光熱硬化性材料に分類さ れるため、各硬化性材料のタイプに応じた条件を設定すればよ!/、。 Since curable materials are usually classified into photo-curing materials, thermosetting materials, and photo-thermosetting materials, the conditions should be set according to the type of each curable material! /.
[0390] 例えば硬化性材料が光硬化性材料である場合には、硬化に適した波長の光を照 射すればよい。以下、具体例を挙げて説明する。 [0390] For example, when the curable material is a photocurable material, light having a wavelength suitable for curing may be irradiated. Hereinafter, a specific example will be described.
光硬化性材料には、重合して硬化に係る部分の構造に応じて、アクリル系、メタタリ ル系、エポキシ系などの種類がある。このうち、アクリル系及びメタクリル系のものは、 通常、ラジカル発生型の重合開始剤を併用する。したがって、重合開始剤のラジカ ノレ発生に適した波長の光(例えば、紫外線)を照射して、当該アクリル系及びメタタリ ル系の硬化性材料を硬化させればょレ、。このラジカル発生型の重合開始剤の例とし ては、アルキルフエノン系、ァシルフォスフィンオキサイド系、チタノセン系、ォキシム エステル系などが挙げられ、これらは 1種のみで用いてもよぐ 2種以上を任意の組み 合わせ及び比率で併用してもよい。さらに、例えばァミノべンゾエート系等の重合促
進剤を併用することもある。 There are various types of photo-curing materials such as acrylic, metal-based, and epoxy-based depending on the structure of the part that is polymerized and cured. Of these, acrylic and methacrylic ones are usually used in combination with radical generating polymerization initiators. Therefore, it is possible to cure the acrylic and meta- curable curable materials by irradiating light (for example, ultraviolet rays) having a wavelength suitable for generating radicals of the polymerization initiator. Examples of this radical-generating polymerization initiator include alkylphenone series, acylphosphine oxide series, titanocene series, and oxime ester series, and these may be used alone. The above may be used in any combination and ratio. In addition, polymerization promotion such as aminobenzoate, etc. Advancement agents may be used in combination.
[0391] また、エポキシ系の硬化性材料は、光のみで硬化するもの、及び、光と熱とのいず れでも硬化するものがある。通常、このエポキシ系の硬化性材料を硬化させる場合に は、カチオン発生型の重合開始剤を併用し、重合開始剤のカチオン発生に適した波 長の光及び/又は熱を加えて硬化させる。このカチオン発生型の重合開始剤の例と してはスルホニゥム塩、ョードニゥム塩などが挙げられ、これらは 1種のみでも、 2種以 上を任意の組み合わせ及び比率で併用してでも用いられる。中でも、主に光のみで 硬化させる場合には、 PF (へキサフルオロフォスフェート)の塩等が好適であり、また [0391] Epoxy curable materials include those that are cured only by light and those that are cured by either light or heat. Usually, when curing this epoxy-based curable material, a cation generation type polymerization initiator is used in combination, and light and / or heat having a wavelength suitable for cation generation of the polymerization initiator is applied and cured. Examples of this cation-generating polymerization initiator include sulfonium salts and odonium salts, and these can be used alone or in combination of two or more in any combination and ratio. Of these, PF (hexafluorophosphate) salt is suitable for curing mainly by light alone.
6 6
、光及び熱で硬化させる場合には、 SbF (へキサフルォロアンチモン)の塩等が好適 SbF (hexafluoroantimony) salt is suitable for curing with light and heat
6 6
である。 It is.
[0392] 一方、硬化性材料が熱硬化性材料である場合には、硬化性材料を塗設後、加熱 することにより硬化を行なう。加熱の方式に制限は無いが、例えば、熱風を当てる、ヒ ートブロックからの電熱を利用する、マイクロウエーブを利用する、輻射熱を利用する 、などの方式が挙げられる。通常は、定置式の箱型オーブン、ホットプレート、電子レ ンジ、遠赤炉などを用いることが好ましい。 [0392] On the other hand, when the curable material is a thermosetting material, the curable material is coated and then cured by heating. There are no restrictions on the heating method, but examples include methods such as applying hot air, using electric heat from a heat block, using microwaves, and using radiant heat. Usually, it is preferable to use a stationary box oven, a hot plate, an electronic range, a far-infrared furnace, or the like.
[0393] 硬化性材料が重縮合型の硬化メカニズムをもつ場合には、通常、硬化性材料中に は重合に伴って揮発する成分が存在する。これらの揮発成分を除去することによって 重合を更に促進できるため、硬化に用いる装置は、硬化の際の雰囲気を新鮮なガス で置換する手段を有することが好ましい。特に脱水縮合型の硬化性材料の場合、例 えば、定期的に硬化還流ガスの置換を行なったり、ガスの流通下で硬化を行なったり 、流通ガスの乾燥を行なったり、硬化還流乾燥剤を配置したりすることが好ましい。 [0393] When the curable material has a polycondensation type curing mechanism, the curable material usually contains a component that volatilizes with polymerization. Since the polymerization can be further accelerated by removing these volatile components, it is preferable that the apparatus used for curing has a means for replacing the atmosphere during curing with fresh gas. In particular, in the case of a dehydration condensation type curable material, for example, the replacement of the curing reflux gas is performed periodically, the curing is performed under the flow of the gas, the circulation gas is dried, or the curing reflux desiccant is disposed. It is preferable to do.
[0394] また、加熱炉を用いて加熱を行なう場合には、枚様処理、回分処理、移動ベルト、 炉内を通過させる連続処理、担当数をまとめて炉に入れる処理のいずれを用いても よぐ生産性により選択できる。また、加熱炉としては、例えばトンネル炉、箱型炉など が好適に用いられる。 [0394] In addition, when heating is performed using a heating furnace, any of sheet processing, batch processing, moving belt, continuous processing that passes through the furnace, and processing in which the number of persons in charge is put together into the furnace can be used. It can be selected according to productivity. As the heating furnace, for example, a tunnel furnace, a box furnace, or the like is preferably used.
[0395] ところで、導光層を構成する材料は、堰を形成する材料も含め、硬化により収縮す ること力 Sある。したがって、これらの材料は、圧縮や引張りに対して耐性を有している ことが好ましい。以下、この点を、例を挙げて説明する。
通常、導光層に対して基板は異なる熱膨張係数を有する。例えば、熱硬化時に熱 によって硬化されると、当該硬化した熱硬化性材料は室温に冷却される際に収縮す ること力 Sある。その収縮の傾向が基板の構成材料よりも導光層の構成材料の方が大 きいと、大きな引っ張り応力が導光層に加わる。その際、応力を緩和できなくなると接 着力の弱い部分に力が集中するため、剥離や割れが生じることがある。また、剥離や 割れが生じない場合でも、基板が変形することがある。剥離、破壊、変形等が生じると 、そこで導光された光が遮断され、導光層が機能しなくなる可能性がある。また、光源 と組み合わせる場合に、通常は光源が発熱する。このため、光源の直近では、光源 を構成する材料と導光層の構成材料との間での熱膨張係数の差により大きな応力が 発生し、接着不良などが起きやすくなる。 [0395] By the way, the material constituting the light guide layer, including the material forming the weir, has a force S that shrinks by curing. Therefore, these materials are preferably resistant to compression and tension. Hereinafter, this point will be described with an example. Usually, the substrate has a different coefficient of thermal expansion relative to the light guide layer. For example, when cured by heat during thermosetting, the cured thermosetting material has the ability to shrink when cooled to room temperature. If the constituent material of the light guide layer is larger than the constituent material of the substrate, a large tensile stress is applied to the light guide layer. At that time, if the stress cannot be relieved, the force concentrates on the part with weak adhesive force, which may cause peeling or cracking. Even if no peeling or cracking occurs, the substrate may be deformed. If peeling, destruction, deformation, or the like occurs, light guided there may be blocked and the light guide layer may not function. When combined with a light source, the light source usually generates heat. For this reason, in the immediate vicinity of the light source, a large stress is generated due to the difference in thermal expansion coefficient between the material constituting the light source and the material constituting the light guide layer, and adhesion failure or the like is likely to occur.
以上のような観点から、導光層の材料自身が、大きく応力緩和するものが好ましい。 具体的には、硬度が低いもの、及び/又は、ゴム性を有しているものが好ましい。 From the above viewpoint, it is preferable that the material of the light guide layer itself greatly relieves stress. Specifically, those having low hardness and / or rubber properties are preferred.
[D— 1 4]その他の工程 [D— 1 4] Other processes
本発明の要旨を逸脱しない範囲において、上述した堰形成工程、硬化性材料塗設 工程、硬化性材料硬化工程の工程前、工程中及び工程後のいずれかにおいて、 1 又は 2以上のその他の工程を行なうようにしてもよい。 In the range not departing from the gist of the present invention, one or more other steps before, during and after the dam formation step, the curable material coating step, and the curable material curing step described above May be performed.
例えば、導光層を 2層以上の層により構成する場合は、前記の硬化性材料硬化工 程の後、更に、所望の硬化性材料を用いて硬化性材料塗設工程及び硬化性材料硬 化工程を行ない、 2層以上の層を積層して導光層を形成するようにしても良い。 For example, when the light guide layer is composed of two or more layers, a curable material coating process and a curable material hardening process are performed using a desired curable material after the curable material curing process. The light guide layer may be formed by stacking two or more layers by performing the process.
また、例えば、堰及び導光層を形成する前に、基板に、表面処理を行なうようにして もよい。そのような表面処理の例としては、例えばプライマーゃシランカップリング剤を 用いた密着改善層の形成、酸やアルカリなどの薬品を用いた化学的表面処理、ブラ ズマ照射やイオン照射 ·電子線照射を用いた物理的表面処理、サンドブラストやエツ チング '微粒子塗布などによる粗面化処理等が挙げられる。また、密着性改善のため の表面処理としては、その他に例えば、特開平 5— 25300号公報、稲垣訓宏著「表 面ィ匕学」 Vol. 18 No. 9、 pp21— 26、黒崎禾ロ夫著「表面ィ匕学」 Vol. 19 No. 2、 p p44— 51 (1998)等に開示される公知の表面処理方法が挙げられる。さらに、オゾン 処理を行なうことも可能である。
[0397] [D— 2]導光部材 Further, for example, the surface treatment may be performed on the substrate before forming the weir and the light guide layer. Examples of such surface treatment include, for example, the formation of an adhesion improving layer using a primer silane coupling agent, chemical surface treatment using a chemical such as acid or alkali, plasma irradiation, ion irradiation, or electron beam irradiation. And surface roughening by sand blasting or etching 'fine particle coating'. Other surface treatments for improving adhesion include, for example, Japanese Patent Laid-Open No. 5-25300, Nobuhiro Inagaki “Surface Science” Vol. 18 No. 9, pp21-26, Satoshi Kurosaki. There are known surface treatment methods disclosed in the book “Surface Physics” Vol. 19 No. 2, p p44-51 (1998). In addition, ozone treatment can be performed. [0397] [D-2] Light guide member
上述した本発明の製造方法によれば、以下に説明する本発明の第九の導光部材 が実現できる。 According to the manufacturing method of the present invention described above, the ninth light guide member of the present invention described below can be realized.
本発明の第九の導光部材は、基板、堰及び導光層を備える。 A ninth light guide member of the present invention includes a substrate, a weir, and a light guide layer.
[0398] [D— 2— 1]基板 [0398] [D— 2— 1] Board
基板にっレ、ては、「 [D— 1 1 1]基板」の項で説明したとおりである。 The substrate is as described in the section “[D- 1 1 1] substrate”.
[0399] [D- 2- 2]±g [0399] [D- 2-2] ± g
堰については、「[D— 1— 1]堰形成工程」の項で説明したとおりである。ただし、本 発明の第九の導光部材においては、当該堰は、上述したように稜線を有さない形状 に形成され、いわゆるかまぼこ状の形状を有することが特徴である。換言すれば、堰 は稜線を有しない形状を有することを特徴とする。ここで、「稜線を有しない」とは、堰 の長手方向に平行でありかつ基板に接しなレ、面が、 2面以上を構成しな!/、ことを!/、う 。境界部が 2面以上で構成される場合は、合い隣り合う 2つの面が交わる部分に稜線 を有する。本発明は境界部に稜線を有しないことで、光取り出し効果を向上させるこ と力 Sできる。 The weir is as described in the section “[D-1-1] weir formation process”. However, in the ninth light guide member of the present invention, the weir is formed in a shape having no ridgeline as described above, and has a so-called kamaboko shape. In other words, the weir has a shape having no ridgeline. Here, “having no ridgeline” means that the plane that is parallel to the longitudinal direction of the weir and does not contact the substrate does not constitute two or more planes! /. When the boundary is composed of two or more surfaces, it has a ridge line at the intersection of two adjacent surfaces. The present invention can improve the light extraction effect by not having a ridge line at the boundary.
[0400] [D— 2— 3]導光層 [0400] [D-2-3] Light guiding layer
導光層は、導光部材において、光源から発せられた光を所定の位置まで伝送させ る役割を有する層である。力、かる導光層の材料としては、「[D— 1 2]硬化性材料塗 設工程」の項で前述した硬化性材料を用いる。 The light guide layer is a layer having a role of transmitting light emitted from the light source to a predetermined position in the light guide member. As the material for the light guide layer, the curable material described above in the “[D-12] curable material coating step” is used.
また、導光層は 1層のみにより形成しても良いが、 2層以上の層を積層して構成して もよい。この際、導光層を構成する層の例を挙げると、高屈折率層、低屈折率層、散 乱層、蛍光体含有層などが挙げられる。 Further, the light guide layer may be formed by only one layer, but may be formed by laminating two or more layers. In this case, examples of layers constituting the light guide layer include a high refractive index layer, a low refractive index layer, a scattering layer, and a phosphor-containing layer.
以下、これらの層について説明する。 Hereinafter, these layers will be described.
[0401] [D— 2— 3— 1]高屈折率層 [0401] [D— 2— 3— 1] High refractive index layer
高屈折率層は、通常、光を伝送するコア層として機能するものである。したがって、 光源から発せられた光は、通常、この高屈折率層を通じて所望の位置まで伝送され ることになる。 The high refractive index layer normally functions as a core layer that transmits light. Therefore, light emitted from the light source is normally transmitted to a desired position through this high refractive index layer.
[0402] この高屈折率層の屈折率は、本発明の効果を著しく損なわない限り任意である力
通常 1. 45以上、好ましくは 1. 5以上、さらに好ましくは 1. 6以上である。上限は特に 制限されないが、例えば半導体発光装置を光源として用いる場合は、一般的な半導 体発光装置の屈折率が約 2. 5であることから、通常 2. 5以下であり、屈折率調整を 容易とする観点から、好ましくは 2. 0以下である。高屈折率層の屈折率が小さすぎる と、光取り出し効率が向上しない可能性がある。一方、高屈折率層の屈折率が光源 を構成する部材の屈折率より大きい場合にも、光取り出し効率は向上しない可能性 力 sある。 [0402] The refractive index of the high refractive index layer is arbitrary as long as the effect of the present invention is not significantly impaired. Usually 1.45 or more, preferably 1.5 or more, more preferably 1.6 or more. Although the upper limit is not particularly limited, for example, when a semiconductor light-emitting device is used as a light source, the refractive index of a general semiconductor light-emitting device is approximately 2.5, so it is usually 2.5 or less, and the refractive index is adjusted. From the viewpoint of facilitating, it is preferably 2.0 or less. If the refractive index of the high refractive index layer is too small, the light extraction efficiency may not be improved. On the other hand, even when the refractive index of the high refractive index layer is larger than the refractive index of the member constituting the light source, the light extraction efficiency is likely force s not improved.
[0403] なお、屈折率は、液浸法(固体対象)のほ力、 Pulflich屈折計、 Abbe屈折計、プリズ ムカプラー法、干渉法、最小偏角法などの公知の方法を用いて測定することが出来 る。本発明における屈折率の測定波長は、 Abbe屈折計などの機器を用いる場合に 汎用に用いられるナトリウム D線(589nm)を選択することが出来る。 [0403] Refractive index should be measured using known methods such as immersion method (solid object), Pulflich refractometer, Abbe refractometer, prism coupler method, interferometry, minimum deviation method, etc. Is possible. The refractive index measurement wavelength in the present invention can be selected from sodium D line (589 nm), which is used for general purposes when using an instrument such as an Abbe refractometer.
[0404] 高屈折率層は、その屈折率を相対的に高くするため、例えば、化合物中にフエ二 ル基を導入するようにしてもよい。また、例えば、上述したように、屈折率調節剤として 、中央粒径が 1〜; !Onmの無機粒子を含有させるようにしてもよい。 [0404] In order to make the refractive index of the high refractive index layer relatively high, for example, a phenyl group may be introduced into the compound. For example, as described above, inorganic particles having a median particle diameter of 1 to! Onm may be included as the refractive index adjusting agent.
なお、高屈折率層は、 1層のみを設けてもよぐ 2層以上を設けても良い。 Note that the high refractive index layer may be provided with only one layer or with two or more layers.
[0405] [D— 2— 3— 2]低屈折率層 [0405] [D— 2— 3— 2] Low refractive index layer
低屈折率層は、通常、光を閉じ込めるクラッド層として機能するものである。したがつ て、高屈折率層、散乱層、蛍光体含有層等の層内を伝送される光は、当該層と低屈 折率層との界面において反射し、所定の位置まで的確に伝送されるようになっている The low refractive index layer normally functions as a cladding layer that confines light. Therefore, light transmitted through layers such as the high refractive index layer, scattering layer, and phosphor-containing layer is reflected at the interface between the layer and the low refractive index layer, and is transmitted accurately to a predetermined position. Has come to be
[0406] 低屈折率層の屈折率は、本発明の効果を著しく損なわない限り任意である力 通 常 1. 45未満、好ましくは 1. 43以下、さらに好ましくは 1. 42以下である。下限は、通 常 1. 4以上であり、好ましくは 1. 41以上である。 [0406] The refractive index of the low refractive index layer is arbitrary as long as the effects of the present invention are not significantly impaired. Usually, it is less than 1.45, preferably 1.43 or less, more preferably 1.42 or less. The lower limit is usually 1.4 or more, preferably 1.41 or more.
[0407] また、低屈折率層と高屈折率層とを組み合わせて用いる場合、高屈折率層と低屈 折率層の屈折率差は、通常 0. 03-0. 2であるが、これを適宜調整することにより、 高屈折率層中の光の伝送距離 (導波距離)を調節することもできる。即ち、屈折率差 を大きくすると、低屈折率層(クラッド層)が高屈折率層(コア層)の光を効率良く閉じ 込めるため、低屈折率層への漏れ光が少なぐ光の伝送距離を長くすることができる
。一方、屈折率差を、例えば 0. 05以下というように小さく設定すると、高屈折率層か ら低屈折率層への漏れ光が増えるため、光の伝送距離は短くなる。 [0407] When the low refractive index layer and the high refractive index layer are used in combination, the refractive index difference between the high refractive index layer and the low refractive index layer is usually 0.03-0. The transmission distance (waveguide distance) of light in the high refractive index layer can also be adjusted by appropriately adjusting. That is, when the refractive index difference is increased, the low refractive index layer (cladding layer) efficiently confines the light of the high refractive index layer (core layer), so that the light transmission distance with less leakage light to the low refractive index layer. Can be lengthened . On the other hand, if the refractive index difference is set to be as small as 0.05 or less, for example, leakage light from the high refractive index layer to the low refractive index layer increases, so that the light transmission distance becomes short.
なお、低屈折率層は、 1層のみを設けてもよぐ 2層以上を設けても良い。 Note that the low refractive index layer may be provided with only one layer or two or more layers.
[0408] [D— 2— 3— 3]散乱層 [0408] [D— 2-3—3] scattering layer
散乱層は、光源力 伝送された光を外部に放射する際、その放射される光の指向 角を広げる機能を有する層である。この散乱層には、上述したように、光散乱材として 、中央粒径が所定の範囲にある無機粒子を含有させることが好ましい。 The scattering layer is a layer having a function of expanding the directivity angle of the emitted light when the light transmitted by the light source is emitted to the outside. As described above, the scattering layer preferably contains inorganic particles having a median particle diameter in a predetermined range as a light scattering material.
なお、散乱層は、 1層のみを設けてもよぐ 2層以上を設けても良い。 The scattering layer may be provided with only one layer or may be provided with two or more layers.
[0409] また、散乱層の別の構成としては、表面粗度を利用して導波した光を取り出すことも できる。これは、粗面上に散乱層を設けることで、導波した光が粗面で散乱して、光 が取り出し面に対して垂直になる成分が増加するため、光が表面に出てくるようにし たものである。 [0409] As another configuration of the scattering layer, guided light can be extracted using surface roughness. This is because by providing a scattering layer on the rough surface, the guided light is scattered on the rough surface, and the light becomes perpendicular to the extraction surface. It is a thing.
[0410] 粗面は基板上、及び/又は各層上に形成することができる。この際、粗面は各層の 上面(光取り出し面に近!、面)、下面(光取り出し面から遠!/、面)レ、ずれに形成されて いてもよい。 [0410] The rough surface can be formed on the substrate and / or on each layer. At this time, the rough surface may be formed on the upper surface (close to the light extraction surface, the surface), the lower surface (distant from the light extraction surface! /, Surface) of each layer, or shifted.
粗面の荒さは、光を散乱させる性質を持てば特に限定されないが、高低差が通常 0 . 2〃111以上、好ましくは 0. 5 m以上であり、また 50 m以下、好ましくは 30 m以 下である。 The roughness of the rough surface is not particularly limited as long as it has the property of scattering light, but the height difference is usually 0.2 to 111 m or more, preferably 0.5 m or more, and 50 m or less, preferably 30 m or less. It is below.
[0411] 基板に粗面を作る方法は限定されないが、例えば、精密機械加工、ブラスト処理、 粉体コート、拡散粒子含有コーティング液の塗布、粒子貼り付け、薬液エッチング処 理、光照射、インクジェット印刷、感光硬化(軟化)樹脂への露光 '現像、感熱硬化樹 脂への加熱 ·現像等が挙げられる。 [0411] The method of creating a rough surface on the substrate is not limited, but, for example, precision machining, blasting, powder coating, application of a coating solution containing diffusing particles, particle pasting, chemical etching, light irradiation, inkjet printing , Exposure to photosensitive curable (softening) resin, development, heating / development to heat-sensitive curing resin, and the like.
また、積層させる各層表面を粗面化する方法としては、例えば、フッ酸やアルカリ等 を用いる薬液処理、ブラスト処理、粉体コート、拡散粒子含有コーティング液の塗布、 粒子貼り付け、光照射、インクジェット印刷等がある。また、例えば、構成させる層の 中に沈降性、あるいは浮遊性の光拡散粒子を含有させ、コーティングしたあとに粒子 を沈降または浮遊させて各層の界面により多くの拡散粒子を存在させる手法も、粗面 を形成させる手法同様に好ましく用いることができる。
[0412] [D— 2— 3— 4]蛍光体含有層 Further, as a method of roughening the surface of each layer to be laminated, for example, chemical treatment using hydrofluoric acid or alkali, blast treatment, powder coating, application of a coating solution containing diffusing particles, particle pasting, light irradiation, inkjet There is printing. In addition, for example, a method in which sedimentation or floating light diffusing particles are contained in a layer to be configured, and after coating, particles are settled or suspended so that more diffusing particles exist at the interface of each layer. It can be preferably used in the same manner as the method of forming the surface. [0412] [D— 2-3— 4] Phosphor-containing layer
蛍光体含有層は、蛍光体を含有する層であって、光源から伝送された光の波長を 所望の波長に変換する機能を有する。蛍光体については、上述したとおりである。 また、蛍光体含有層には、蛍光体に当たる光量を増加させ、波長変換効率を向上 させるために、光散乱剤として、中央粒径が 0.;!〜 10 mの無機粒子を含有させて もよい。なお、蛍光体含有層は、 1層のみを設けてもよぐ 2層以上を設けても良い。 The phosphor-containing layer is a layer containing a phosphor, and has a function of converting the wavelength of light transmitted from the light source into a desired wavelength. The phosphor is as described above. The phosphor-containing layer may contain inorganic particles having a median particle size of 0.;! To 10 m as a light scattering agent in order to increase the amount of light hitting the phosphor and improve the wavelength conversion efficiency. Good. The phosphor-containing layer may be provided with only one layer or two or more layers.
[0413] [D— 2— 4]導光部材の形状及び寸法 [0413] [D— 2-4] Shape and dimensions of light guide member
本発明の第九の導光部材の形状及び寸法に制限は無く任意である。例えば、導光 部材の光導波路や導光板として使用される場合には、本発明の第九の導光部材の 形状及び寸法は、その光導波路や導光板の基板の形状及び寸法に応じて決定され The shape and size of the ninth light guide member of the present invention are not limited and are arbitrary. For example, when used as an optical waveguide or a light guide plate of a light guide member, the shape and size of the ninth light guide member of the present invention are determined according to the shape and size of the substrate of the optical waveguide or light guide plate. Is
[0414] ただし、本発明の第九の導光部材は、前記のアルキルアルコキシシランの加水分 解 ·重縮合物を硬化性材料として使用する場合には、導光層を厚膜に形成すること ができることを利点の一つとしている。その他の多くの導光部材は、その導光層を厚 膜化すると内部応力等によりクラック等が生じて厚膜化が困難となる可能性があった 力 S、前記の加水分解 ·重縮合物を用いた場合には導光部材はそのようなことは無ぐ 安定して厚膜化が可能である。この場合、具体的範囲を挙げると、導光部材を導光 板として用いる場合には、導光層を構成する各層の膜厚が、通常 ΙΟ πι以上、好ま しく (ま 30 111以上、通常 500mm以下、好ましく (ま 300mm以下、より好ましく (ま 200 mm以下である。ここで、膜の厚みが一定でない場合には、膜の厚みとは、その膜の 最大の厚み部分の厚さのことを指すものとする。また、この場合、導光板基板を除く 全層の膜厚の合計は、通常 60 H m以上、好ましくは 80 H m以上であり、通常 500 μ m以下、好ましくは 300 m以下、更に好ましくは 200 m以下である。 [0414] However, in the ninth light guide member of the present invention, when the hydrolyzed polycondensate of alkylalkoxysilane is used as a curable material, the light guide layer is formed in a thick film. One of the advantages is that Many other light-guiding members have a thickness that could be difficult to thicken due to internal stress, etc., when the light-guiding layer is thickened. In the case of using the light guide member, such a situation does not occur, and a thick film can be stably formed. In this case, to give a specific range, when the light guide member is used as a light guide plate, the thickness of each layer constituting the light guide layer is usually ππι or more, preferably (30 111 or more, usually 500 mm). Or less (preferably less than or equal to 300 mm, more preferably less than or equal to 200 mm. Here, when the thickness of the film is not constant, the film thickness is the thickness of the maximum thickness portion of the film. In this case, the total thickness of all layers excluding the light guide plate substrate is usually 60 Hm or more, preferably 80 Hm or more, and usually 500 μm or less, preferably 300 m or less. More preferably, it is 200 m or less.
[0415] [D— 3]導光板 [0415] [D-3] Light guide plate
本発明の第九の導光部材を用いれば、当該本発明の第九の導光部材を備えた導 光板が得られる。この場合、本発明の第九の導光部材を板状に形成すれば、本発明 の第九の導光部材自体を導光板として用いることができる。また、本発明の第九の導 光部材に、必要に応じてその他の部材を組み合わせて、導光板を構成することもで
きる。 If the 9th light guide member of this invention is used, the light-guide plate provided with the said 9th light guide member of this invention will be obtained. In this case, if the ninth light guide member of the present invention is formed in a plate shape, the ninth light guide member itself of the present invention can be used as the light guide plate. In addition, the light guide plate can be configured by combining the ninth light guide member of the present invention with other members as necessary. wear.
[0416] ただし、導光板は面発光装置に適用されることが多い。この場合、通常は、本発明 の第九の導光部材の主面 (発光面)から発光しうるよう、散乱層を設けたり、発光面に 対向する面(通常は、基板と導光層との界面)に、溝、粗面、傾斜面等の凹凸を設け たりする。 [0416] However, the light guide plate is often applied to a surface light-emitting device. In this case, usually, a scattering layer is provided so that light can be emitted from the main surface (light emitting surface) of the ninth light guide member of the present invention, or a surface facing the light emitting surface (usually the substrate and the light guide layer). Or irregularities such as grooves, rough surfaces, and inclined surfaces.
また、導光板には、例えば、導光層内を伝送する光を反射させるために反射シート 等の反射部材を設けたり、導光層内を伝送する光を拡散させるための拡散シート等 の拡散部材を設けたり、導光層内を伝送する光を所望の方向に屈折させるためにプ リズムシート等の屈折部材を設けたりしてもよい。 In addition, the light guide plate is provided with a reflection member such as a reflection sheet to reflect light transmitted through the light guide layer, or a diffusion sheet or the like for diffusing light transmitted through the light guide layer. A member may be provided, or a refractive member such as a prism sheet may be provided to refract light transmitted through the light guide layer in a desired direction.
[0417] さらに、導光板は光源から発せられた光を伝送することを目的とする光学部品であ るため、通常は光源と組み合わせて用いる。導光板と光源とは別体に構成してもよい 力 導光板が光源を備えるように構成してもよい。また、光源の数は 1個でもよぐ 2個 以上でもよい。 [0417] Further, since the light guide plate is an optical component intended to transmit light emitted from the light source, it is usually used in combination with the light source. The light guide plate and the light source may be configured separately. Force The light guide plate may be configured to include a light source. Also, the number of light sources may be one or more than two.
[0418] 光源の発光ピークの主波長の波長は特に制限は無ぐ幅広い発光波長の光源を 用いることが可能である。通常は、近紫外領域から青色領域までの発光波長を有す る発光体が使用され、具体的数値としては、通常 300nm以上、好ましくは 330nm以 上、また、通常 500nm以下、好ましくは 480nm以下の発光波長を有する発光体が 使用される。また、特に導光層内に蛍光体を含有する場合には、当該蛍光体の吸収 波長と重複する発光波長を有する光源が好ましレ、。 [0418] The wavelength of the main wavelength of the emission peak of the light source is not particularly limited, and a light source with a wide emission wavelength can be used. Usually, an illuminant having an emission wavelength from the near ultraviolet region to the blue region is used, and specific values are usually 300 nm or more, preferably 330 nm or more, and usually 500 nm or less, preferably 480 nm or less. A light emitter having an emission wavelength is used. In particular, when a phosphor is contained in the light guide layer, a light source having an emission wavelength that overlaps with the absorption wavelength of the phosphor is preferred.
[0419] 光源としては、通常は半導体発光素子を用いる。その例を挙げると、 LEDまたは L D等を挙げることができる。その他、光源の例としては、有機エレクト口ルミネッセンス 発光素子、無機エレクト口ルミネッセンス発光素子等が挙げられる。その中でも、上述 した GaN系 LEDや LDが好まし!/、。 [0419] As the light source, a semiconductor light emitting element is usually used. For example, LED or LD can be mentioned. In addition, as an example of a light source, an organic electoluminescence light emitting element, an inorganic electoluminescence light emitting element, etc. are mentioned. Of these, the GaN LEDs and LDs mentioned above are preferred!
[0420] [D— 4]実施形態 [0420] [D-4] Embodiment
以下、図面を用いて本発明の第九の導光部材の実施形態について説明する。た だし、以下の実施形態はいずれも例示であって、本発明は以下の実施形態に限定さ れるものではなぐ本発明の要旨を逸脱しない範囲で任意に変更して実施できる。 The ninth embodiment of the light guide member of the present invention will be described below with reference to the drawings. However, all of the following embodiments are exemplifications, and the present invention is not limited to the following embodiments, and can be arbitrarily modified and implemented without departing from the gist of the present invention.
[0421] [D— 4 1]第 11実施形態
図 12 (a)〜図 12 (c)は、本発明の第 11実施形態としての導光部材の製造方法を 模式的に示す断面図である。 [0421] [D— 4 1] Eleventh embodiment 12 (a) to 12 (c) are cross-sectional views schematically showing a method for manufacturing a light guide member as an eleventh embodiment of the present invention.
この図 12 (a)に示すように、本実施形態にお!/、て導光部材 27 (図 12 (c)参照)を製 造する場合は、まず、基板 21を用意する。本実施形態では、予め基板 21の表面に は、図 12 (a)に示すように、光源として、半導体発光素子 22が封止材 23により被覆 されて構成された半導体発光装置 24が設置されているものとする。なお、封止材 23 により封止されて!/、な!/、半導体発光装置 24も、本発明に用いることは可能である。 As shown in FIG. 12 (a), when manufacturing the light guide member 27 (see FIG. 12 (c)) in this embodiment, first, the substrate 21 is prepared. In the present embodiment, as shown in FIG. 12 (a), a semiconductor light emitting device 24 configured by covering a semiconductor light emitting element 22 with a sealing material 23 as a light source is installed on the surface of the substrate 21 in advance. It shall be. It should be noted that the semiconductor light emitting device 24 that is sealed with the sealing material 23 can also be used in the present invention.
[0422] 基板 21を用意した後、上述した方法によって、所望の位置に堰 25を設ける(堰形 成工程)。本実施形態では、この堰 25を、半導体発光装置 24から伝送されてきた光 を遮断しうるように、相対的に低い屈折率を有する材料を用い、この材料をディスぺ ンサ一により描画して設けたものとする。 [0422] After the substrate 21 is prepared, the weir 25 is provided at a desired position by the method described above (weir formation process). In the present embodiment, a material having a relatively low refractive index is used for the weir 25 so as to block light transmitted from the semiconductor light emitting device 24, and this material is drawn by a dispenser. It shall be provided.
ただし、本実施形態では、堰 25を稜線を有さない形状に形成し、堰 25をいわゆる 力、まぼこ状に形成してあるものとする。即ち、上述したように、堰 25の形状に制限は 無いため、図 13 (a)に模式的に示すように断面多角形形状に形成することも可能で ある力 本実施形態では、図 13 (b)に模式的に示すように表面を滑らかな凸曲面の みで形成してあるものとする。 However, in this embodiment, it is assumed that the weir 25 is formed in a shape having no ridgeline, and the weir 25 is formed in a so-called force, magenta shape. That is, as described above, since the shape of the weir 25 is not limited, the force that can be formed in a polygonal cross section as schematically shown in FIG. 13 (a) is shown in FIG. It is assumed that the surface is formed only with a smooth convex curved surface as schematically shown in b).
[0423] 堰 25を設けた後、図 12 (b)に示すように、上述した方法によって、流体状の硬化性 材料を基板 21上に塗設する (硬化性材料塗設工程)。この際、予め堰 25を設けてい るため、硬化性材料は堰 25によって堰き止められる。したがって、硬化性材料により 形成される塗膜 26 ' (ひいては、当該塗膜 26 'を硬化した高屈折率層 26)は堰 25に より区画された構造となり、硬化性材料を所望の位置に容易に且つ正確に塗布する ことが可能となる。なお、本実施形態では、硬化後に半導体発光装置 24から発せら れる光を伝送しうるよう、高屈折率層 26となりうる相対的に高い屈折率の硬化性材料 を用いているものとする。 [0423] After the weir 25 is provided, as shown in Fig. 12 (b), a fluid curable material is coated on the substrate 21 by the method described above (curable material coating step). At this time, since the weir 25 is provided in advance, the curable material is blocked by the weir 25. Therefore, the coating film 26 ′ (and thus the high refractive index layer 26 obtained by curing the coating film 26 ′) formed by the curable material has a structure partitioned by the weir 25, and the curable material can be easily placed at a desired position. And can be applied accurately. In this embodiment, it is assumed that a curable material having a relatively high refractive index that can be the high refractive index layer 26 is used so that light emitted from the semiconductor light emitting device 24 can be transmitted after curing.
[0424] そして、硬化性材料の塗設後、図 12 (c)に示すように、上述した方法によって、塗 設された硬化性材料を硬化させる(硬化性材料硬化工程)。これにより、塗膜 26 'は 硬化し、導光層である高屈折率層 26が得られる。こうして、本実施形態の導光部材 2 7が製造される。
[0425] 以上のように製造された本実施形態の導光部材 27において、光源である半導体発 光装置 24から発せられた光は、導光層である高屈折率層 26により伝送され、高屈折 率層 26の図中上側の表面から放射される。なお、本実施形態では堰 25は低屈折率 の材料で設けられているため、前記の光の大部分は当該堰 25を透過できず、したが つて、導光部材 27の側面からは光がほとんど放射されない。 [0424] Then, after the application of the curable material, as shown in FIG. 12 (c), the applied curable material is cured by the above-described method (curable material curing step). As a result, the coating film 26 ′ is cured, and a high refractive index layer 26 as a light guide layer is obtained. Thus, the light guide member 27 of the present embodiment is manufactured. [0425] In the light guide member 27 of the present embodiment manufactured as described above, the light emitted from the semiconductor light emitting device 24 that is a light source is transmitted by the high refractive index layer 26 that is a light guide layer. It is emitted from the upper surface of the refractive index layer 26 in the figure. In this embodiment, since the weir 25 is made of a material having a low refractive index, most of the light cannot pass through the weir 25, and therefore light is transmitted from the side surface of the light guide member 27. Almost no radiation.
[0426] このように、 ±區25を設けたことにより、高屈折率層 26の平面形状は堰 25の形状に 応じて設定される。このため、導光部材 27のどの位置から光が放射されるかについ て、即ち、導光領域について、 ±區25により制御できることになる。したがって、本実施 形態のようにして導光部材 27を製造すれば、発光部分を自由に設計することが可能 である。 Thus, by providing ± 區 25, the planar shape of the high refractive index layer 26 is set according to the shape of the weir 25. Therefore, from which position of the light guide member 27 the light is emitted, that is, the light guide region can be controlled by ± に よ り 25. Therefore, if the light guide member 27 is manufactured as in the present embodiment, the light emitting portion can be freely designed.
また、本実施形態の導光部材 27では堰 25を稜線を有さな!/、形状に形成してあるた め、光の取り出し効果を向上させることができる。 Further, in the light guide member 27 of the present embodiment, the weir 25 is formed in a shape that does not have a ridge line, so that the light extraction effect can be improved.
[0427] [D 4 2]第 12実施形態 [0427] [D 4 2] 12th embodiment
図 14は、本発明の第 12実施形態としての導光部材の模式的な断面図である。な お、図 14において、図 12, 13と同様の部位については、同様の符号を用いて示す ものとする。 FIG. 14 is a schematic cross-sectional view of a light guide member as a twelfth embodiment of the present invention. In FIG. 14, the same parts as those in FIGS. 12 and 13 are denoted by the same reference numerals.
この導光部材 27は、堰 25が、半導体発光装置 24からの光を伝送させうると共に、 蛍光体を含有する材料で形成されている点、及び、導光層である高屈折率層 26が 堰 25によって部分的に区画されている点の他は、第 11実施形態と同様になつている In this light guide member 27, the weir 25 can transmit light from the semiconductor light emitting device 24, and is formed of a material containing a phosphor, and a high refractive index layer 26 which is a light guide layer Except for being partially partitioned by the weir 25, it is the same as in the eleventh embodiment.
[0428] 本実施形態の導光部材を製造する場合も、基本的には第 11実施形態と同様にし て、堰形成工程を行なった後、硬化性材料塗設工程と、硬化性材料硬化工程とを行 なえばよい。 [0428] Also in the case of manufacturing the light guide member of the present embodiment, a curable material coating step and a curable material curing step are performed after the weir forming step basically in the same manner as in the eleventh embodiment. You can do this.
ただし、堰形成工程においては、堰 25の材料として、半導体発光装置 24からの光 を伝送させうると共に、光散乱剤及び/又は蛍光体を含有する材料を用いる。ここで は、高屈折率を有する樹脂に光散乱剤及び/又は蛍光体が分散された組成物を堰 25の材料として用いて!/、るものとする。 However, in the weir formation step, as the material of the weir 25, a material that can transmit light from the semiconductor light emitting device 24 and contains a light scattering agent and / or a phosphor is used. Here, it is assumed that a composition in which a light scattering agent and / or a phosphor is dispersed in a resin having a high refractive index is used as the material of the weir 25.
また、硬化性材料塗設工程においては、堰 25によって完全には堰き止められない
ように硬化性材料を塗設するものとする。この場合でも、堰 25は硬化性材料を部分 的に堰き止めるため、硬化性材料により形成される塗膜及び塗膜を硬化した高屈折 率層 26は堰 25により少なくともその一部を区画された構造となり、硬化性材料を所 望の位置に容易に且つ正確に塗布することが可能となる。 Also, in the curable material coating process, the dam 25 cannot be completely dammed up. A curable material is applied as described above. Even in this case, since the dam 25 partially dams the curable material, the coating film formed of the curable material and the high refractive index layer 26 obtained by curing the coating film are at least partially partitioned by the dam 25. The structure allows the curable material to be easily and accurately applied to the desired location.
[0429] このように製造された本実施形態の導光部材 27において、光源である半導体発光 装置 24から発せられた光は、導光層である高屈折率層 26により伝送され、高屈折率 層 26の表面から放射される。なお、本実施形態では堰 25が光を伝送しうるため、高 屈折率層 26により伝送される光の一部は堰 25を通ってから放射される。この場合、 堰 25が光散乱剤を含有する場合は、堰 25を通って放射される光は散乱されてから 放射されるため、光の取り出し効率を向上させることができる。これにより、堰 25を設 けた位置における光の明るさを他の位置よりも高めることができ、導光領域を制御で きる。一方、堰 25が蛍光体を含有する場合は、堰 25を通って放射される光は波長変 換されてから放射されるため、光の色を変更することができる。これにより、堰 25を設 けた位置における光の色を他の位置とは違うものとでき、導光態様を制御できる。 In the light guide member 27 of the present embodiment manufactured as described above, light emitted from the semiconductor light emitting device 24 that is a light source is transmitted through the high refractive index layer 26 that is a light guide layer, and has a high refractive index. Radiated from the surface of layer 26. In this embodiment, since the weir 25 can transmit light, a part of the light transmitted by the high refractive index layer 26 is emitted after passing through the weir 25. In this case, when the weir 25 contains a light scattering agent, the light emitted through the weir 25 is emitted after being scattered, so that the light extraction efficiency can be improved. Thereby, the brightness of the light at the position where the weir 25 is provided can be made higher than the other positions, and the light guide region can be controlled. On the other hand, when the weir 25 contains a phosphor, the light emitted through the weir 25 is emitted after wavelength conversion, so that the color of the light can be changed. Thereby, the color of the light at the position where the weir 25 is provided can be different from the other positions, and the light guide mode can be controlled.
[0430] 以上のように、本実施形態のようにして導光部材 27を製造すれば、堰 25を設けた ことにより、導光部材 27の導光領域及び導光態様は堰 25により制御できるようになる 。したがって、本実施形態のようにして導光部材 27を製造すれば、発光部分を自由 に設計することが可能である。 [0430] As described above, when the light guide member 27 is manufactured as in the present embodiment, the light guide region and the light guide mode of the light guide member 27 can be controlled by the weir 25 by providing the weir 25. It becomes like. Therefore, if the light guide member 27 is manufactured as in the present embodiment, the light emitting portion can be freely designed.
また、本実施形態の導光部材 27でも、第 11実施形態と同様に、堰 25を稜線を有さ ない形状に形成してあるため、光の取り出し効果を向上させることができる。 Also in the light guide member 27 of the present embodiment, the light extraction effect can be improved because the weir 25 is formed in a shape having no ridgeline, as in the eleventh embodiment.
さらに、その他、第 11実施形態と同様の構成に基づき、同様の効果を得ることがで きる。 In addition, the same effects can be obtained based on the same configuration as that of the eleventh embodiment.
[0431] [D— 4 3]第 13実施形態 [0431] [D-4 3] Thirteenth embodiment
図 15は、本発明の第 13実施形態としての導光部材の模式的な断面図である。な お、図 15において、図 12〜図 14と同様の部位については、同様の符号を用いて示 すものとする。 FIG. 15 is a schematic cross-sectional view of a light guide member as a thirteenth embodiment of the present invention. In FIG. 15, parts similar to those in FIGS. 12 to 14 are denoted by the same reference numerals.
この導光部材 27は、高屈折率層 26の下部に低屈折率層 28が形成され、高屈折 率層 26と低屈折率層 28とから導光層が構成されている点の他は、第 11実施形態と
同様になつている。 The light guide member 27 has a low refractive index layer 28 formed below the high refractive index layer 26, and the light guide layer is composed of the high refractive index layer 26 and the low refractive index layer 28. With the eleventh embodiment The same is true.
[0432] 低屈折率層 28は、半導体発光装置 24から伝送されてきた光を遮断しうるように、基 板 21上に、相対的に低い屈折率を有する材料で形成された層である。この低屈折 率層 28には、半導体発光装置 24の部分を覆わないように、円柱状またはすり鉢状 の穴 28Hが設けられて!/、る。 [0432] The low refractive index layer 28 is a layer formed of a material having a relatively low refractive index on the substrate 21 so as to block light transmitted from the semiconductor light emitting device 24. The low refractive index layer 28 is provided with a cylindrical or mortar-shaped hole 28H so as not to cover the semiconductor light emitting device 24! /.
[0433] 本実施形態の導光部材を製造する場合、基本的には第 1 1実施形態と同様に、堰 形成工程を行なった後で、導光層を構成する各層それぞれに対応して硬化性材料 塗設工程及び硬化性材料硬化工程を行なえばよ!/、。具体的には、第 11実施形態に 堰形成工程を行なった後、低屈折率層 28に対応する硬化性材料を用レ、て硬化性材 料塗設工程及び硬化性材料硬化工程を行ない、低屈折率層 28を形成する。ただし 、この際、穴 28Hを形成するため、穴 28Hの部分はマスキング等により低屈折率層 2 8が形成されないようにしておくものとする。そして、低屈折率層 28の形成後、マスキ ング等を取り除き、高屈折率層 26に対応する硬化性材料を用いて硬化性材料塗設 工程及び硬化性材料硬化工程を行なって、低屈折率層 28上に高屈折率層 26を形 成すればよい。 [0433] When manufacturing the light guide member of this embodiment, basically, as in the first embodiment, after the weir formation step, curing is performed corresponding to each layer constituting the light guide layer. Material and coating process and curable material curing process! Specifically, after performing the weir forming process in the eleventh embodiment, the curable material corresponding to the low refractive index layer 28 is used, and the curable material coating process and the curable material curing process are performed, A low refractive index layer 28 is formed. However, in this case, since the hole 28H is formed, the low refractive index layer 28 is not formed in the hole 28H by masking or the like. Then, after the formation of the low refractive index layer 28, the masking or the like is removed, and a curable material coating process and a curable material curing process are performed using a curable material corresponding to the high refractive index layer 26, thereby reducing the low refractive index. The high refractive index layer 26 may be formed on the layer 28.
[0434] このように製造された本実施形態の導光部材 27において、光源である半導体発光 装置 24から発せられた光は、第 11実施形態と同様に、高屈折率層 26により伝送さ れ、高屈折率層 26の図中上側の表面から放射され、導光部材 27の側面からは光が 放射されない。 [0434] In the light guide member 27 of the present embodiment manufactured in this way, the light emitted from the semiconductor light emitting device 24, which is a light source, is transmitted by the high refractive index layer 26 as in the eleventh embodiment. The light is emitted from the upper surface of the high refractive index layer 26 in the drawing, and no light is emitted from the side surface of the light guide member 27.
[0435] 以上のように、本実施形態のようにして導光部材 27を製造すれば、堰 25を設けた ことにより、第 11実施形態と同様に導光領域を制御でき、発光部分を自由に設計す ること力 S可能である。さらに、本実施形態の導光部材 27では堰 25を稜線を有さない 形状に形成してあるため、光の取り出し効果を向上させることができる。 [0435] As described above, when the light guide member 27 is manufactured as in the present embodiment, the light guide region can be controlled similarly to the eleventh embodiment by providing the weir 25, and the light emitting portion can be freely set. It is possible to design to S. Furthermore, in the light guide member 27 of the present embodiment, the weir 25 is formed in a shape having no ridgeline, so that the light extraction effect can be improved.
また、その他、第 11実施形態と同様の構成に基づき、同様の効果を得ることができ In addition, based on the same configuration as that of the eleventh embodiment, the same effect can be obtained.
[0436] [D— 4 4]第 14実施形態 [0436] [D-4 4] Fourteenth embodiment
図 16は、本発明の第 14実施形態としての導光部材の模式的な断面図である。な お、図 16において、図 12〜図 15と同様の部位については、同様の符号を用いて示
すものとする。 FIG. 16 is a schematic cross-sectional view of a light guide member as a fourteenth embodiment of the present invention. In FIG. 16, parts similar to those in FIGS. 12 to 15 are denoted by the same reference numerals. It shall be
この導光部材 27は、低屈折率層 28の一部に散乱層及び/又は蛍光体含有層 29 が形成され、高屈折率層 26と、低屈折率層 28と、散乱層及び/又は蛍光体含有層 29とから導光層が構成されている点の他は、第 13実施形態と同様になつている。 In this light guide member 27, a scattering layer and / or a phosphor-containing layer 29 is formed on a part of the low refractive index layer 28, and the high refractive index layer 26, the low refractive index layer 28, the scattering layer and / or the fluorescent layer. The structure is the same as that of the thirteenth embodiment except that the light guide layer is composed of the body-containing layer 29.
[0437] 本実施形態において、散乱層及び/又は蛍光体含有層 29は、相対的に高い屈折 率を有する硬化性材料に光散乱剤及び/又は蛍光体を含有させて形成された層で あるものとする。この散乱層及び/又は蛍光体含有層 29を設けることにより、低屈折 率層 28と高屈折率層 26との屈折率差を小さくでき、低屈折率層 28に進入する光を 利用して所望の効果を達成させることができる。 [0437] In the present embodiment, the scattering layer and / or the phosphor-containing layer 29 is a layer formed by containing a light scattering agent and / or a phosphor in a curable material having a relatively high refractive index. Shall. By providing the scattering layer and / or the phosphor-containing layer 29, the refractive index difference between the low refractive index layer 28 and the high refractive index layer 26 can be reduced, and the light entering the low refractive index layer 28 can be used as desired. The effect of can be achieved.
[0438] 本実施形態の導光部材を製造する場合、基本的には第 13実施形態と同様に、堰 形成工程を行なった後で、導光層を構成する各層それぞれに対応して硬化性材料 塗設工程及び硬化性材料硬化工程を行なえばよ!/、。具体的には、第 13実施形態と 同様に堰形成工程を行なった後、低屈折率層 28に対応する硬化性材料を用いて硬 化性材料塗設工程及び硬化性材料硬化工程を行ない、低屈折率層 28を形成する。 ただし、この際、第 13実施形態と異なり、穴 28Hの部分だけでなぐ散乱層及び/又 は蛍光体含有層 29を形成しょうとする部分もマスキング等により低屈折率層 28が形 成されないようにしておくものとする。そして、低屈折率層 28の形成後、散乱層及び /又は蛍光体含有層 29を形成しょうとする部分のマスキング等を取り除き、この部分 に硬化性材料塗設工程及び硬化性材料硬化工程を行ない散乱層及び/又は蛍光 体含有層 29を形成する。そして、穴 28Hの部分のマスキング等を取り除き、その上 に、第 13実施形態と同様に高屈折率層 26を形成して、導光部材 27を製造すればよ い。なお、低屈折率層 28よりも先に散乱層及び/又は蛍光体含有層 29を形成して も良い。 [0438] When the light guide member of this embodiment is manufactured, basically, as in the thirteenth embodiment, after the weir formation process, the curability corresponding to each layer constituting the light guide layer is obtained. Materials The coating process and the curable material curing process should be performed! /. Specifically, after performing the weir formation process as in the thirteenth embodiment, the curable material coating process and the curable material curing process are performed using the curable material corresponding to the low refractive index layer 28, A low refractive index layer 28 is formed. However, in this case, unlike the thirteenth embodiment, the low refractive index layer 28 is not formed by masking or the like in the portion where the scattering layer and / or the phosphor-containing layer 29 is formed only by the hole 28H. Shall be kept. Then, after the formation of the low refractive index layer 28, the masking of the portion where the scattering layer and / or the phosphor-containing layer 29 is to be formed is removed, and a curable material coating step and a curable material curing step are performed on this portion. A scattering layer and / or a phosphor-containing layer 29 is formed. Then, the light guide member 27 may be manufactured by removing the masking or the like of the hole 28H and forming the high refractive index layer 26 thereon as in the thirteenth embodiment. Note that the scattering layer and / or the phosphor-containing layer 29 may be formed prior to the low refractive index layer 28.
[0439] このように製造された本実施形態の導光部材 27において、光源である半導体発光 装置 24から発せられた光は、第 13実施形態と同様に、高屈折率層 26により伝送さ れ、高屈折率層 26の図中上側の表面から放射され、導光部材 27の側面からは光が 放射されない。この際、散乱層及び/又は蛍光体含有層 29を設けたため、散乱層 及び/又は蛍光体含有層 29に入射した光を散乱させて導光部材 27からの光取り出
し効率を向上させたり、散乱層及び/又は蛍光体含有層 29に入射した光の波長を 変換して導光部材 27から放射される光の色を制御したりすることができる。 [0439] In the light guide member 27 of the present embodiment manufactured as described above, light emitted from the semiconductor light emitting device 24 that is a light source is transmitted by the high refractive index layer 26 as in the thirteenth embodiment. The light is emitted from the upper surface of the high refractive index layer 26 in the drawing, and no light is emitted from the side surface of the light guide member 27. At this time, since the scattering layer and / or the phosphor-containing layer 29 is provided, the light incident on the scattering layer and / or the phosphor-containing layer 29 is scattered to extract light from the light guide member 27. Thus, the efficiency can be improved, or the wavelength of light emitted from the light guide member 27 can be controlled by converting the wavelength of light incident on the scattering layer and / or the phosphor-containing layer 29.
[0440] 以上のように、本実施形態のようにして導光部材 27を製造すれば、堰 25を設けた ことにより、第 13実施形態と同様に導光領域を制御でき、さらに、散乱層及び/又は 蛍光体含有層 29により導光態様を制御できるため、発光部分を自由に設計すること が可能である。さらに、本実施形態の導光部材 27では堰 25を稜線を有さない形状 に形成してあるため、光の取り出し効果を向上させることができる。 [0440] As described above, if the light guide member 27 is manufactured as in the present embodiment, the light guide region can be controlled similarly to the thirteenth embodiment by providing the weir 25, and further the scattering layer. In addition, since the light guide mode can be controlled by the phosphor-containing layer 29, the light emitting portion can be freely designed. Furthermore, in the light guide member 27 of the present embodiment, the weir 25 is formed in a shape having no ridgeline, so that the light extraction effect can be improved.
また、その他、第 13実施形態と同様の構成に基づき、同様の効果を得ることができ In addition, the same effect can be obtained based on the same configuration as that of the thirteenth embodiment.
[0441] [D— 4 5]第 15実施形態 [0441] [D-4 5] Fifteenth embodiment
図 17は、本発明の第 15実施形態としての導光部材の模式的な断面図である。な お、図 17において、図 12〜図 16と同様の部位については、同様の符号を用いて示 すものとする。 FIG. 17 is a schematic cross-sectional view of a light guide member as a fifteenth embodiment of the present invention. In FIG. 17, parts similar to those in FIGS. 12 to 16 are denoted by the same reference numerals.
この導光部材 27は、高屈折率層 26の代わりに散乱層及び/又は蛍光体含有層 2 9が形成され、低屈折率層 28と散乱層及び/又は蛍光体含有層 29とから導光層が 構成されてレ、る点の他は、第 13実施形態と同様になつて!/、る。 In this light guide member 27, a scattering layer and / or a phosphor-containing layer 29 is formed instead of the high refractive index layer 26, and light is guided from the low refractive index layer 28 and the scattering layer and / or the phosphor-containing layer 29. Except for the point that the layer is formed, the same as in the thirteenth embodiment is performed! /.
[0442] 本実施形態の導光部材 27を製造する場合、基本的には第 13実施形態と同様に、 堰形成工程を行なった後で、導光層を構成する各層それぞれに対応して硬化性材 料塗設工程及び硬化性材料硬化工程を行なえばよ!/、。具体的には、高屈折率層 26 の代わりに、散乱層及び/又は蛍光体含有層 29に対応した硬化性材料を用いて硬 化性材料塗設工程及び硬化性材料硬化工程を行ない散乱層及び/又は蛍光体含 有層 29を形成する他は、第 13実施形態と同様にして、本実施形態の導光部材 27を 製造すること力 Sでさる。 [0442] When manufacturing the light guide member 27 of the present embodiment, basically, as in the thirteenth embodiment, after performing the weir formation step, curing is performed corresponding to each layer constituting the light guide layer. Do the coating process and the curing process of the curable material! /. Specifically, instead of the high refractive index layer 26, a curable material coating step and a curable material curing step are performed using a curable material corresponding to the scattering layer and / or the phosphor-containing layer 29, and then the scattering layer. In addition, the production of the light guide member 27 of the present embodiment is performed with the force S in the same manner as the thirteenth embodiment except that the phosphor-containing layer 29 is formed.
[0443] このように製造された本実施形態の導光部材 27において、光源である半導体発光 装置 24から発せられた光は、散乱層及び/又は蛍光体含有層 29により伝送され、 散乱層及び/又は蛍光体含有層 29の図中上側の表面から放射され、導光部材 27 の側面からは光が放射されない。この際、散乱層及び/又は蛍光体含有層 29を設 けたため、散乱層及び/又は蛍光体含有層 29に入射した光の指向角を広くしたり、
散乱層及び/又は蛍光体含有層 29に入射した光の波長を変換して導光部材 27か ら放射される光の色を制御したりすることができる。 [0443] In the light guide member 27 of the present embodiment manufactured as described above, the light emitted from the semiconductor light emitting device 24 as a light source is transmitted by the scattering layer and / or the phosphor-containing layer 29, and the scattering layer and / Or is emitted from the upper surface of the phosphor-containing layer 29 in the drawing, and no light is emitted from the side surface of the light guide member 27. At this time, since the scattering layer and / or the phosphor-containing layer 29 is provided, the directivity angle of light incident on the scattering layer and / or the phosphor-containing layer 29 is increased, The wavelength of light incident on the scattering layer and / or the phosphor-containing layer 29 can be converted to control the color of light emitted from the light guide member 27.
[0444] 以上のように、本実施形態のようにして導光部材 27を製造すれば、堰 25を設けた ことにより、第 13実施形態と同様に導光領域を制御でき、さらに、散乱層及び/又は 蛍光体含有層 29により導光態様を制御できるため、発光部分を自由に設計すること が可能である。さらに、本実施形態の導光部材 27では堰 25を稜線を有さない形状 に形成してあるため、光の取り出し効果を向上させることができる。 [0444] As described above, if the light guide member 27 is manufactured as in the present embodiment, the light guide region can be controlled similarly to the thirteenth embodiment by providing the weir 25, and further, the scattering layer In addition, since the light guide mode can be controlled by the phosphor-containing layer 29, the light emitting portion can be freely designed. Furthermore, in the light guide member 27 of the present embodiment, the weir 25 is formed in a shape having no ridgeline, so that the light extraction effect can be improved.
また、その他、第 13実施形態と同様の構成に基づき、同様の効果を得ることができ In addition, the same effect can be obtained based on the same configuration as that of the thirteenth embodiment.
[0445] [D— 4 6]第 16実施形態 [0445] [D-4 6] Sixteenth embodiment
図 18は、本発明の第 16実施形態としての導光部材の模式的な断面図である。な お、図 18において、図 12〜図 17と同様の部位については、同様の符号を用いて示 すものとする。 FIG. 18 is a schematic cross-sectional view of a light guide member as a sixteenth embodiment of the present invention. In FIG. 18, parts similar to those in FIGS. 12 to 17 are denoted by the same reference numerals.
この導光部材 27は、高屈折率層 26中の所定の領域に、散乱層及び/又は蛍光 体含有層 29が形成され、高屈折率層 26と低屈折率層 28と散乱層及び/又は蛍光 体含有層 29とから導光層が構成されている点の他は、第 13実施形態と同様になつ ている。 In the light guide member 27, a scattering layer and / or a phosphor-containing layer 29 is formed in a predetermined region in the high refractive index layer 26, and the high refractive index layer 26, the low refractive index layer 28, the scattering layer, and / or This is the same as the thirteenth embodiment except that the light guide layer is composed of the phosphor-containing layer 29.
[0446] 本実施形態の導光部材を製造する場合、基本的には第 13実施形態と同様に、堰 形成工程を行なった後で、導光層を構成する各層それぞれに対応して硬化性材料 塗設工程及び硬化性材料硬化工程を行なえばよ!/、。具体的には、第 13実施形態と 同様に、堰形成工程を行なった後低屈折率層 28を形成し、その後、高屈折率層 26 に対応する硬化性材料を用いて硬化性材料塗設工程及び硬化性材料硬化工程を 行ない、高屈折率層 26を形成する。ただし、この際、散乱層及び/又は蛍光体含有 層 29を形成しょうとする部分はマスキング等により高屈折率層 26が形成されないよう にしておくものとする。そして、高屈折率層 26の形成後、マスキング等を取り除き、硬 化性材料塗設工程及び硬化性材料硬化工程によって、マスキング等で保護して!/、 た部分に散乱層及び/又は蛍光体含有層 29を形成すればよい。なお、高屈折率層 26よりも先に散乱層及び/又は蛍光体含有層 29を形成しても良い。
[0447] このように製造された本実施形態の導光部材 27において、光源である半導体発光 装置 24から発せられた光は、高屈折率層 26により伝送され、高屈折率層 26の図中 上側の表面、並びに、散乱層及び/又は蛍光体含有層 29の図中上側の表面から 放射され、導光部材 27の側面からは光が放射されない。この際、散乱層及び/又は 蛍光体含有層 29を設けたため、散乱層及び/又は蛍光体含有層 29に入射した光 の指向角を広くしたり、散乱層及び/又は蛍光体含有層 29に入射した光の波長を 変換して導光部材 27から放射される光の色を制御したりすることができる。 [0446] When the light guide member of this embodiment is manufactured, basically, as in the thirteenth embodiment, after the weir formation process, the curability corresponding to each layer constituting the light guide layer is obtained. Materials The coating process and the curable material curing process should be performed! /. Specifically, as in the thirteenth embodiment, after the weir formation step, the low refractive index layer 28 is formed, and then the curable material is applied using the curable material corresponding to the high refractive index layer 26. The high refractive index layer 26 is formed by performing the process and the curable material curing process. However, at this time, the portion where the scattering layer and / or the phosphor-containing layer 29 is to be formed should not be formed with the high refractive index layer 26 by masking or the like. After the formation of the high refractive index layer 26, the masking and the like are removed and protected by masking etc. in the curable material coating process and the curable material curing process! The containing layer 29 may be formed. Note that the scattering layer and / or the phosphor-containing layer 29 may be formed before the high refractive index layer 26. In the light guide member 27 of the present embodiment manufactured in this way, light emitted from the semiconductor light emitting device 24 that is a light source is transmitted by the high refractive index layer 26 and is shown in the drawing of the high refractive index layer 26. The light is emitted from the upper surface and the upper surface in the drawing of the scattering layer and / or the phosphor-containing layer 29, and no light is emitted from the side surface of the light guide member 27. At this time, since the scattering layer and / or the phosphor-containing layer 29 is provided, the directivity angle of light incident on the scattering layer and / or the phosphor-containing layer 29 is widened, or the scattering layer and / or the phosphor-containing layer 29 is provided. The color of the light emitted from the light guide member 27 can be controlled by converting the wavelength of the incident light.
[0448] 以上のように、本実施形態のようにして導光部材 27を製造すれば、堰 25を設けた ことにより、第 13実施形態と同様に導光領域を制御でき、さらに、散乱層及び/又は 蛍光体含有層 29により導光態様を制御できるため、発光部分を自由に設計すること が可能である。さらに、本実施形態の導光部材 27では堰 25を稜線を有さない形状 に形成してあるため、光の取り出し効果を向上させることができる。 [0448] As described above, if the light guide member 27 is manufactured as in the present embodiment, the light guide region can be controlled similarly to the thirteenth embodiment by providing the weir 25, and further, the scattering layer In addition, since the light guide mode can be controlled by the phosphor-containing layer 29, the light emitting portion can be freely designed. Furthermore, in the light guide member 27 of the present embodiment, the weir 25 is formed in a shape having no ridgeline, so that the light extraction effect can be improved.
また、その他、第 13実施形態と同様の構成に基づき、同様の効果を得ることができ In addition, the same effect can be obtained based on the same configuration as that of the thirteenth embodiment.
[0449] [D— 4 7]第 17実施形態 [0449] [D-4 7] Seventeenth embodiment
図 19は、本発明の第 17実施形態としての導光部材の模式的な断面図である。な お、図 19において、図 12〜図 18と同様の部位については、同様の符号を用いて示 すものとする。 FIG. 19 is a schematic cross-sectional view of a light guide member as a seventeenth embodiment of the present invention. In FIG. 19, parts similar to those in FIGS. 12 to 18 are denoted by the same reference numerals.
この導光部材 27は、高屈折率層 26と散乱層及び/又は蛍光体含有層 29との境 界部分が堰 25で区分されている点の他は、第 16実施形態と同様になつている。ただ し、図示しない部分において高屈折率層 26と散乱層及び/又は蛍光体含有層 29と は接しており、この部分を介して半導体発光装置 24からの光は散乱層及び/又は 蛍光体含有層 29まで伝送されるようになっているものとする。 The light guide member 27 is the same as in the sixteenth embodiment except that the boundary portion between the high refractive index layer 26 and the scattering layer and / or the phosphor-containing layer 29 is divided by the weir 25. Yes. However, the high refractive index layer 26 and the scattering layer and / or the phosphor-containing layer 29 are in contact with each other at a portion (not shown), and light from the semiconductor light emitting device 24 passes through this portion and includes the scattering layer and / or the phosphor. It shall be transmitted up to layer 29.
[0450] 本実施形態の導光部材を製造する場合、基本的には第 13実施形態と同様に、堰 形成工程を行なった後で、導光層を構成する各層それぞれに対応して硬化性材料 塗設工程及び硬化性材料硬化工程を行なえばよ!/、。具体的には、第 13実施形態と 同様に、堰形成工程を行なった後低屈折率層 28を形成し、その後、高屈折率層 26 並びに散乱層及び/又は蛍光体含有層 29に対応する硬化性材料を用いて硬化性
材料塗設工程及び硬化性材料硬化工程をそれぞれ行なレ \高屈折率層 26と散乱 層及び/又は蛍光体含有層 29とを形成する。この際、第 16実施形態とは異なり、マ スキング等は不要である。高屈折率層 26と散乱層及び/又は蛍光体含有層 29との 間に堰 25が設けられるため、この堰 25により高屈折率層 26と散乱層及び/又は蛍 光体含有層 29との間で硬化性材料が交じり合うことが防止されるからである。 [0450] When the light guide member of this embodiment is manufactured, basically, as in the thirteenth embodiment, after the weir formation step, the curability corresponding to each layer constituting the light guide layer is obtained. Materials The coating process and the curable material curing process should be performed! /. Specifically, as in the thirteenth embodiment, the low refractive index layer 28 is formed after the weir formation step, and then corresponds to the high refractive index layer 26 and the scattering layer and / or the phosphor-containing layer 29. Curing using curable materials The high-refractive index layer 26 and the scattering layer and / or the phosphor-containing layer 29 are formed by performing the material coating step and the curable material curing step, respectively. At this time, unlike the sixteenth embodiment, masking or the like is not required. Since the weir 25 is provided between the high refractive index layer 26 and the scattering layer and / or phosphor-containing layer 29, the weir 25 causes the high refractive index layer 26 and the scattering layer and / or phosphor-containing layer 29 to This is because the curable material is prevented from intermingling between them.
[0451] このように製造された本実施形態の導光部材 27において、光源である半導体発光 装置 24から発せられた光は、高屈折率層 26により伝送され、高屈折率層 26の図中 上側の表面から放射される。また、光の一部は更に散乱層及び/又は蛍光体含有 層 29により伝送され、散乱層及び/又は蛍光体含有層 29の図中上側の表面から放 射される。一方、導光部材 27の側面からは光が放射されない。 In the light guide member 27 of the present embodiment manufactured in this way, the light emitted from the semiconductor light emitting device 24 that is a light source is transmitted by the high refractive index layer 26 and is shown in the drawing of the high refractive index layer 26. Radiated from the upper surface. Further, part of the light is further transmitted by the scattering layer and / or the phosphor-containing layer 29 and is emitted from the upper surface of the scattering layer and / or the phosphor-containing layer 29 in the drawing. On the other hand, no light is emitted from the side surface of the light guide member 27.
[0452] 以上のように、本実施形態のようにして導光部材 27を製造すれば、堰 25を設けた ことにより、第 13実施形態と同様に導光領域を制御でき、さらに、散乱層及び/又は 蛍光体含有層 29により導光態様を制御できるため、発光部分を自由に設計すること が可能である。さらに、本実施形態の導光部材 27では堰 25を稜線を有さない形状 に形成してあるため、光の取り出し効果を向上させることができる。 [0452] As described above, if the light guide member 27 is manufactured as in the present embodiment, the light guide region can be controlled similarly to the thirteenth embodiment by providing the weir 25, and further, the scattering layer In addition, since the light guide mode can be controlled by the phosphor-containing layer 29, the light emitting portion can be freely designed. Furthermore, in the light guide member 27 of the present embodiment, the weir 25 is formed in a shape having no ridgeline, so that the light extraction effect can be improved.
また、その他、第 16実施形態と同様の構成に基づき、同様の効果を得ることができ In addition, based on the same configuration as that of the sixteenth embodiment, the same effect can be obtained.
[0453] [D— 4 8]第 18実施形態 [0453] [D—4 8] Eighteenth embodiment
図 20は、本発明の第 18実施形態としての導光部材の模式的な断面図である。な お、図 20において、図 22〜図 29と同様の部位については、同様の符号を用いて示 すものとする。 FIG. 20 is a schematic cross-sectional view of a light guide member as an eighteenth embodiment of the present invention. In FIG. 20, parts similar to those in FIGS. 22 to 29 are denoted by the same reference numerals.
この導光部材 27は、高屈折率層 26の上に散乱層及び/又は蛍光体含有層 29が 積層され、高屈折率層 26と低屈折率層 28と散乱層及び/又は蛍光体含有層 29と 力も導光層が構成されている点の他は、第 13実施形態と同様になつている。 In this light guide member 27, a scattering layer and / or a phosphor-containing layer 29 is laminated on a high refractive index layer 26, and a high refractive index layer 26, a low refractive index layer 28, a scattering layer and / or a phosphor containing layer are stacked. 29 and the force are the same as in the thirteenth embodiment except that the light guide layer is configured.
[0454] 本実施形態の導光部材を製造する場合、基本的には第 13実施形態と同様に、堰 形成工程を行なった後で、導光層を構成する各層それぞれに対応して硬化性材料 塗設工程及び硬化性材料硬化工程を行なえばよ!/、。具体的には、第 13実施形態と 同様に、堰形成工程を行なった後低屈折率層 28及び高屈折率層 26を形成し、その
後、高屈折率層 26上に、散乱層及び/又は蛍光体含有層 29に対応した硬化性材 料を用いて、硬化性材料塗設工程及び硬化性材料硬化工程によって、散乱層及び /又は蛍光体含有層 29を形成すればよい。 [0454] When the light guide member of this embodiment is manufactured, basically, as in the thirteenth embodiment, after the weir formation step, the curability corresponding to each layer constituting the light guide layer is obtained. Materials The coating process and the curable material curing process should be performed! /. Specifically, as in the thirteenth embodiment, after the weir formation step, the low refractive index layer 28 and the high refractive index layer 26 are formed, and the After that, on the high refractive index layer 26, using the curable material corresponding to the scattering layer and / or the phosphor-containing layer 29, the scattering layer and / or the curable material coating process and the curable material curing process. The phosphor-containing layer 29 may be formed.
[0455] このように製造された本実施形態の導光部材 27において、光源である半導体発光 装置 24から発せられた光は、高屈折率層 26及び散乱層及び/又は蛍光体含有層 29により伝送され、散乱層及び/又は蛍光体含有層 29の図中上側の表面から放射 され、導光部材 27の側面からは光が放射されない。この際、散乱層及び/又は蛍光 体含有層 29を設けたため、散乱層及び/又は蛍光体含有層 29に入射した光の指 向角を広くしたり、散乱層及び/又は蛍光体含有層 29に入射した光の波長を変換し て導光部材 27から放射される光の色を制御したりすることができる。 In the light guide member 27 of the present embodiment manufactured as described above, the light emitted from the semiconductor light emitting device 24 that is a light source is transmitted by the high refractive index layer 26 and the scattering layer and / or the phosphor-containing layer 29. The light is transmitted and emitted from the upper surface of the scattering layer and / or the phosphor-containing layer 29 in the figure, and no light is emitted from the side surface of the light guide member 27. At this time, since the scattering layer and / or the phosphor-containing layer 29 is provided, the direction angle of the light incident on the scattering layer and / or the phosphor-containing layer 29 is widened, or the scattering layer and / or the phosphor-containing layer 29 is used. It is possible to control the color of light emitted from the light guide member 27 by converting the wavelength of light incident on the light guide member 27.
[0456] 以上のように、本実施形態のようにして導光部材 27を製造すれば、堰 25を設けた ことにより、第 13実施形態と同様に導光領域を制御でき、さらに、散乱層及び/又は 蛍光体含有層 29により導光態様を制御できるため、発光部分を自由に設計すること が可能である。さらに、本実施形態の導光部材 27では堰 25を稜線を有さない形状 に形成してあるため、光の取り出し効果を向上させることができる。 [0456] As described above, if the light guide member 27 is manufactured as in the present embodiment, the light guide region can be controlled similarly to the thirteenth embodiment by providing the weir 25, and further, the scattering layer In addition, since the light guide mode can be controlled by the phosphor-containing layer 29, the light emitting portion can be freely designed. Furthermore, in the light guide member 27 of the present embodiment, the weir 25 is formed in a shape having no ridgeline, so that the light extraction effect can be improved.
また、その他、第 13実施形態と同様の構成に基づき、同様の効果を得ることができ In addition, the same effect can be obtained based on the same configuration as that of the thirteenth embodiment.
[0457] [D— 4 9]第 19実施形態 [0457] [D—4 9] Nineteenth embodiment
図 21は、本発明の第 19実施形態としての導光部材の模式的な断面図である。な お、図 21において、図 12〜図 20と同様の部位については、同様の符号を用いて示 すものとする。 FIG. 21 is a schematic cross-sectional view of a light guide member as a nineteenth embodiment of the present invention. In FIG. 21, parts similar to those in FIGS. 12 to 20 are denoted by the same reference numerals.
この導光部材 27は、散乱層及び/又は蛍光体含有層 29の代わりに低屈折率層 2 8が形成されて、高屈折率層 26と低屈折率層 28, 28とから導光層が構成されている 点、並びに、堰 25が光を伝送させうる点の他は、第 18実施形態と同様になつている In this light guide member 27, a low refractive index layer 28 is formed instead of the scattering layer and / or the phosphor-containing layer 29, and the light guide layer is composed of the high refractive index layer 26 and the low refractive index layers 28, 28. The configuration is the same as that of the eighteenth embodiment except that the weir 25 can transmit light.
[0458] 本実施形態の導光部材を製造する場合、基本的には第 18実施形態と同様に、ま ず、堰形成工程を行なう。ただし、本実施形態では、堰 25が光を伝送しうるよう、相対 的に屈折率が高い材料によって堰 25を形成しているものとする。そして、堰 25の形
成の後で、導光層を構成する各層それぞれに対応して硬化性材料塗設工程及び硬 化性材料硬化工程を行なう。具体的には、散乱層及び/又は蛍光体含有層 29の代 わりに、低屈折率層 28を形成する他は、第 18実施形態と同様にして、導光層として 低屈折率層 28、高屈折率層 26及び低屈折率層 28を積層すればよい。 [0458] When manufacturing the light guide member of the present embodiment, a dam formation step is first performed as in the eighteenth embodiment. However, in this embodiment, it is assumed that the weir 25 is formed of a material having a relatively high refractive index so that the weir 25 can transmit light. And the shape of the weir 25 After the formation, a curable material coating step and a curable material curing step are performed corresponding to each layer constituting the light guide layer. Specifically, a low refractive index layer 28, a high refractive index layer 28, and a high light guiding layer are formed in the same manner as in the eighteenth embodiment except that the low refractive index layer 28 is formed instead of the scattering layer and / or the phosphor-containing layer 29. The refractive index layer 26 and the low refractive index layer 28 may be laminated.
[0459] このように製造された本実施形態の導光部材 27において、光源である半導体発光 装置 24から発せられた光は、高屈折率層 26により伝送され、堰 25から放射される。 したがって、発光部分の形状を堰 25に応じて設定でき、このため、導光領域につい て堰 25により制御できるようになる。一方、導光部材 27の図中上側の表面には、低 屈折率層 28が形成されているために、当該表面からは光は放射されない。 In the light guide member 27 of the present embodiment manufactured as described above, the light emitted from the semiconductor light emitting device 24 that is a light source is transmitted by the high refractive index layer 26 and emitted from the weir 25. Therefore, the shape of the light emitting portion can be set according to the weir 25, and therefore, the light guide region can be controlled by the weir 25. On the other hand, since the low refractive index layer 28 is formed on the upper surface of the light guide member 27 in the drawing, no light is emitted from the surface.
[0460] 以上のように、本実施形態のようにして導光部材 27を製造すれば、堰 25を設けた ことにより、導光領域を制御でき、発光部分を自由に設計することが可能である。さら に、本実施形態の導光部材 27では堰 25を稜線を有さな!/、形状に形成してあるため 、光の取り出し効果を向上させることができる。 [0460] As described above, when the light guide member 27 is manufactured as in the present embodiment, the light guide region can be controlled and the light emitting portion can be freely designed by providing the weir 25. is there. Furthermore, in the light guide member 27 of the present embodiment, the weir 25 is formed in a shape that does not have a ridge line, so that the light extraction effect can be improved.
また、その他、第 18実施形態と同様の構成に基づき、同様の効果を得ることができ In addition, based on the same configuration as that in the 18th embodiment, the same effect can be obtained.
[0461] [D 4 10]第 20実施形態 [0461] [D 4 10] 20th embodiment
図 22は、本発明の第 20実施形態としての導光部材の模式的な断面図である。な お、図 22において、図 12〜図 21と同様の部位については、同様の符号を用いて示 すものとする。 FIG. 22 is a schematic cross-sectional view of a light guide member as a twentieth embodiment of the present invention. In FIG. 22, parts similar to those in FIGS. 12 to 21 are denoted by the same reference numerals.
この導光部材 27は、高屈折率層 26の上に形成された低屈折率層 28の一部に散 乱層及び/又は蛍光体含有層 29が形成され、高屈折率層 26と、低屈折率層 28, 2 8と、散乱層及び/又は蛍光体含有層 29とから導光層が構成されている点の他は、 第 19実施形態と同様になつている。 In the light guide member 27, a scattering layer and / or a phosphor-containing layer 29 is formed on a part of the low refractive index layer 28 formed on the high refractive index layer 26, and the low refractive index layer 26 and the low refractive index layer 26 are low. The present embodiment is the same as the nineteenth embodiment except that the light guide layer is composed of the refractive index layers 28 and 28 and the scattering layer and / or the phosphor-containing layer 29.
[0462] 本実施形態の導光部材 27を製造する場合、基本的には第 19実施形態と同様に、 堰形成工程を行なった後で、導光層を構成する各層それぞれに対応して硬化性材 料塗設工程及び硬化性材料硬化工程を行なえばよ!/、。具体的には、高屈折率層 26 の上に低屈折率層 28と散乱層及び/又は蛍光体含有層 29とを形成する際、第 14 実施形態と同様にして、低屈折率層 28の一部に散乱層及び/又は蛍光体含有層 2
9を形成する他は、第 19実施形態と同様にすればよい。 [0462] When the light guide member 27 of the present embodiment is manufactured, basically, as in the nineteenth embodiment, after performing the weir formation step, curing is performed corresponding to each layer constituting the light guide layer. Do the coating process and the curing process of the curable material! /. Specifically, when the low refractive index layer 28 and the scattering layer and / or the phosphor-containing layer 29 are formed on the high refractive index layer 26, the low refractive index layer 28 is formed in the same manner as in the fourteenth embodiment. Partially scattering layer and / or phosphor-containing layer 2 Except for forming 9, it may be the same as the nineteenth embodiment.
[0463] このように製造された本実施形態の導光部材 27において、光源である半導体発光 装置 24から発せられた光は、高屈折率層 26により伝送され、堰 25から放射される。 また、導光部材 27の図中上側の表面では、散乱層及び/又は蛍光体含有層 29を 通じて光が放射される。 In the light guide member 27 of the present embodiment manufactured as described above, the light emitted from the semiconductor light emitting device 24 that is a light source is transmitted by the high refractive index layer 26 and emitted from the weir 25. Further, light is emitted through the scattering layer and / or the phosphor-containing layer 29 on the upper surface of the light guide member 27 in the drawing.
[0464] 以上のように、本実施形態のようにして導光部材 27を製造すれば、堰 25を設けた ことにより、導光領域を制御でき、さらに、散乱層及び/又は蛍光体含有層 29により 導光態様を制御できるため、発光部分を自由に設計することが可能である。また、本 実施形態の導光部材 27では堰 25を稜線を有さない形状に形成してあるため、光の 取り出し効果を向上させることができる。 [0464] As described above, when the light guide member 27 is manufactured as in the present embodiment, the light guide region can be controlled by providing the weir 25, and further, the scattering layer and / or the phosphor-containing layer can be controlled. Since the light guide mode can be controlled by 29, the light emitting portion can be designed freely. Further, in the light guide member 27 of the present embodiment, the weir 25 is formed in a shape having no ridgeline, so that the light extraction effect can be improved.
また、その他、第 19実施形態と同様の構成に基づき、同様の効果を得ることができ In addition, based on the configuration similar to that of the nineteenth embodiment, the same effect can be obtained.
[0465] [D— 4 11]第 21実施形態 [0465] [D—4 11] 21st embodiment
図 23は、本発明の第 21実施形態としての導光部材の模式的な断面図である。な お、図 23において、図 12〜図 22と同様の部位については、同様の符号を用いて示 すものとする。 FIG. 23 is a schematic cross-sectional view of a light guide member as a 21st embodiment of the present invention. In FIG. 23, parts similar to those in FIGS. 12 to 22 are denoted by the same reference numerals.
この導光部材 27は、堰 25が光を遮断する材料で形成されている点の他は、第 20 実施形態と同様になつている。 The light guide member 27 is the same as that of the twentieth embodiment except that the weir 25 is formed of a material that blocks light.
[0466] 本実施形態の導光部材 27を製造する場合、基本的には第 20実施形態と同様に、 堰形成工程を行なった後で、導光層を構成する各層それぞれに対応して硬化性材 料塗設工程及び硬化性材料硬化工程を行なえばよ!/、。具体的には、堰 25の材料と して、光を遮断しうるものを用いる他は、第 20実施形態と同様にして製造することが できる。 [0466] When the light guide member 27 of the present embodiment is manufactured, basically, as in the twentieth embodiment, after the weir formation step, curing is performed corresponding to each layer constituting the light guide layer. Do the coating process and the curing process of the curable material! /. Specifically, the dam 25 can be manufactured in the same manner as in the twentieth embodiment except that a material capable of blocking light is used.
[0467] このように製造された本実施形態の導光部材 27において、光源である半導体発光 装置 24から発せられた光は、高屈折率層 26により伝送され、導光部材 27の図中上 側の表面において、散乱層及び/又は蛍光体含有層 29を通じて放射される。ただ し、堰 25が光を遮断するため、導光部材 27の側面からは光が放射されない。 [0467] In the light guide member 27 of the present embodiment manufactured as described above, light emitted from the semiconductor light emitting device 24 as a light source is transmitted by the high refractive index layer 26, and the upper part of the light guide member 27 in the figure. On the side surface, it is emitted through the scattering layer and / or the phosphor-containing layer 29. However, since the weir 25 blocks light, no light is emitted from the side surface of the light guide member 27.
[0468] 以上のように、本実施形態のようにして導光部材 27を製造すれば、堰 25を設けた
ことにより、導光領域を制御でき、さらに、散乱層及び/又は蛍光体含有層 29により 導光態様を制御できるため、発光部分を自由に設計することが可能である。また、本 実施形態の導光部材 27では堰 25を稜線を有さない形状に形成してあるため、堰 25 を白色に形成した場合等のように堰 25が光を反射できる場合には、光の取り出し効 果を向上させることができる。 [0468] As described above, when the light guide member 27 is manufactured as in the present embodiment, the weir 25 is provided. Thus, the light guide region can be controlled, and the light guide mode can be controlled by the scattering layer and / or the phosphor-containing layer 29, so that the light emitting portion can be freely designed. In the light guide member 27 of the present embodiment, since the weir 25 is formed in a shape having no ridgeline, when the weir 25 can reflect light, such as when the weir 25 is formed in white, The light extraction effect can be improved.
また、その他、第 20実施形態と同様の構成に基づき、同様の効果を得ることができ In addition, based on the same configuration as that of the twentieth embodiment, the same effect can be obtained.
[0469] [D— 4 12]第 22実施形態 [0469] [D-4 12] Twenty-second embodiment
図 24は、本発明の第 22実施形態としての導光部材の模式的な断面図である。な お、図 24において、図 12〜図 23と同様の部位については、同様の符号を用いて示 すものとする。 FIG. 24 is a schematic cross-sectional view of a light guide member as a 22nd embodiment of the present invention. In FIG. 24, parts similar to those in FIGS. 12 to 23 are denoted by the same reference numerals.
この導光部材 27は、堰 25が光散乱剤及び/又は蛍光体を含有する点の他は、第 19実施形態と同様になつている。 The light guide member 27 is the same as that of the nineteenth embodiment except that the weir 25 contains a light scattering agent and / or a phosphor.
[0470] 本実施形態の導光部材 27を製造する場合、基本的には第 19実施形態と同様に、 堰形成工程を行なった後で、導光層を構成する各層それぞれに対応して硬化性材 料塗設工程及び硬化性材料硬化工程を行なえばよ!/、。具体的には、堰 25の材料と して、半導体発光装置 24からの光を伝送させうると共に、光散乱剤及び/又は蛍光 体を含有する材料を用いる他は、第 19実施形態と同様にして、導光部材 27を製造 できる。 [0470] When manufacturing the light guide member 27 of the present embodiment, basically, as in the nineteenth embodiment, after performing the weir formation step, curing is performed corresponding to each layer constituting the light guide layer. Do the coating process and the curing process of the curable material! /. Specifically, the light from the semiconductor light emitting device 24 can be transmitted as the material of the weir 25, and a material containing a light scattering agent and / or a phosphor is used as in the nineteenth embodiment. Thus, the light guide member 27 can be manufactured.
[0471] このように製造された本実施形態の導光部材 27において、光源である半導体発光 装置 24から発せられた光は、高屈折率層 26により伝送され、堰 25から放射される。 この際、堰 25は光散乱剤及び/又は蛍光体を含有するため、光の指向角を広くした り、光の波長を変換して導光部材 27から放射される光の色を制御したりすることがで きる。一方、導光部材 27の図中上側の表面には、低屈折率層 28が形成されている ために、当該表面からは光は放射されない。 In the light guide member 27 of the present embodiment manufactured as described above, the light emitted from the semiconductor light emitting device 24 that is a light source is transmitted by the high refractive index layer 26 and emitted from the weir 25. At this time, since the weir 25 contains a light scattering agent and / or a phosphor, the light directing angle is widened, or the color of the light emitted from the light guide member 27 is controlled by converting the wavelength of the light. can do. On the other hand, since the low refractive index layer 28 is formed on the upper surface of the light guide member 27 in the figure, no light is emitted from the surface.
[0472] 以上のように、本実施形態のようにして導光部材 27を製造すれば、堰 25を設けた ことにより、導光領域を制御でき、さらに、光散乱剤及び/又は蛍光体により導光態 様を制御できるため、発光部分を自由に設計することが可能である。さらに、本実施
形態の導光部材 27では堰 25を稜線を有さない形状に形成してあるため、光の取り 出し効果を向上させることができる。 [0472] As described above, if the light guide member 27 is manufactured as in the present embodiment, the light guide region can be controlled by providing the weir 25, and further, by the light scattering agent and / or the phosphor. Since the light guide mode can be controlled, the light emitting portion can be designed freely. In addition, this implementation In the light guide member 27 of the form, since the weir 25 is formed in a shape having no ridgeline, the light extraction effect can be improved.
また、その他、第 19実施形態と同様の構成に基づき、同様の効果を得ることができ In addition, based on the configuration similar to that of the nineteenth embodiment, the same effect can be obtained.
[0473] [D— 4 13]第 23実施形態 [0473] [D-4 13] 23rd embodiment
図 25は、本発明の第 23実施形態としての導光部材の模式的な断面図である。な お、図 25において、図 12〜図 24と同様の部位については、同様の符号を用いて示 すものとする。 FIG. 25 is a schematic cross-sectional view of a light guide member as a 23rd embodiment of the present invention. In FIG. 25, parts similar to those in FIGS. 12 to 24 are denoted by the same reference numerals.
この導光部材 27は、堰 25が異なる寸法で(即ち、不均一に)形成されている点の他 は、第 19実施形態と同様になつている。具体的には、図中左側の堰 25は低屈折率 層 28, 28及び高屈折率層 26の全体を貫通しているのに対し、図中右側の堰 25は 低く形成されていて、高屈折率層 26及びその下の低屈折率層 28は貫通しているが 、高屈折率層 26の上の低屈折率層 28を貫通していない。 The light guide member 27 is the same as the nineteenth embodiment except that the weir 25 is formed with different dimensions (that is, nonuniformly). Specifically, the dam 25 on the left side in the figure penetrates the entire low refractive index layers 28 and 28 and the high refractive index layer 26, whereas the dam 25 on the right side in the figure is formed low and has a high height. The refractive index layer 26 and the lower refractive index layer 28 below it penetrate, but do not penetrate the low refractive index layer 28 above the high refractive index layer 26.
[0474] 本実施形態の導光部材 27を製造する場合、基本的には第 19実施形態と同様に、 堰形成工程を行なった後で、導光層を構成する各層それぞれに対応して硬化性材 料塗設工程及び硬化性材料硬化工程を行なえばよい。ただし、本実施形態では、堰 形成工程において、図中右側の堰 25は低く形成する。したがって、高屈折率層 26 の上の低屈折率層 28を形成する工程においては、図中左側の堰 25で硬化性材料 を堰き止めることができるものの、図中右側の堰 25では硬化性材料を堰き止めること ができなくなつている。ただし、この場合でも、少なくとも高屈折率層 26を形成するま では図中右側の堰 25を用いて硬化性材料を堰き止めることが可能であり、当該堰 2 5は発光部分の自由な設計に寄与するものである。 [0474] When the light guide member 27 of the present embodiment is manufactured, basically, as in the nineteenth embodiment, after the weir formation step, the layers are cured corresponding to the respective layers constituting the light guide layer. What is necessary is just to perform a property material coating process and a curable material hardening process. However, in this embodiment, the dam 25 on the right side in the figure is formed low in the dam formation step. Therefore, in the process of forming the low refractive index layer 28 on the high refractive index layer 26, the curable material can be blocked by the left weir 25 in the figure, but the right dam 25 in the figure has the curable material. Can no longer be dammed up. However, even in this case, until the high refractive index layer 26 is formed, it is possible to block the curable material using the weir 25 on the right side of the figure, and the weir 25 can be freely designed for the light emitting portion. It contributes.
[0475] このように製造された本実施形態の導光部材 27において、光源である半導体発光 装置 24から発せられた光は、高屈折率層 26により伝送され、堰 25から放射される。 この際、図中左側の堰 25からは図中左方向から上方向にかけて広!/、角度範囲に光 が放射されるのに対し、図中右側の堰 25からは、当該堰 25の上には低屈折率層 28 が形成されているため、図中右方向の相対的に狭い角度範囲にのみ光を放射する ように光の放射の態様を制御できる。
[0476] 以上のように、本実施形態のようにして導光部材 27を製造すれば、堰 25を設けた ことにより、導光領域を制御できるため、発光部分を自由に設計することが可能であ る。さらに、本実施形態の導光部材 27では堰 25を稜線を有さない形状に形成してあ るため、光の取り出し効果を向上させることができる。 In the light guide member 27 of the present embodiment manufactured as described above, the light emitted from the semiconductor light emitting device 24 that is a light source is transmitted by the high refractive index layer 26 and emitted from the weir 25. At this time, light is emitted from the left weir 25 in the figure from the left direction to the upper direction in the figure, and light is emitted in an angular range, while the right weir 25 in the figure is above the weir 25. Since the low refractive index layer 28 is formed, the mode of light emission can be controlled so that light is emitted only in a relatively narrow angle range in the right direction in the figure. [0476] As described above, when the light guide member 27 is manufactured as in the present embodiment, the light guide region can be controlled by providing the weir 25, so that the light emitting portion can be freely designed. It is. Furthermore, in the light guide member 27 of the present embodiment, the weir 25 is formed in a shape having no ridgeline, so that the light extraction effect can be improved.
また、その他、第 19実施形態と同様の構成に基づき、同様の効果を得ることができ In addition, based on the configuration similar to that of the nineteenth embodiment, the same effect can be obtained.
[0477] [D— 4 14]第 24実施形態 [0477] [D—4 14] Twenty-fourth embodiment
図 26は、本発明の第 24実施形態としての導光部材の模式的な断面図である。な お、図 26において、図 12〜図 25と同様の部位については、同様の符号を用いて示 すものとする。 FIG. 26 is a schematic cross-sectional view of a light guide member as a twenty-fourth embodiment of the present invention. In FIG. 26, parts similar to those in FIGS. 12 to 25 are denoted by the same reference numerals.
この導光部材 27は、堰 25が他の層を介して基板 21上に設けられている点の他は 、第 19実施形態と同様になつている。具体的には、堰 25の一部(図中左側部)は基 板 21上に直接設けられ、堰 25の他の部分(図中右側部)が低屈折率層 28を介して 設けられている。 The light guide member 27 is the same as the nineteenth embodiment except that the weir 25 is provided on the substrate 21 via another layer. Specifically, a part of the weir 25 (left side in the figure) is provided directly on the substrate 21 and the other part of the weir 25 (right side in the figure) is provided via the low refractive index layer 28. Yes.
[0478] 本実施形態の導光部材 27を製造する場合、基本的には第 19実施形態と同様に、 堰形成工程を行なった後で、導光層を構成する各層それぞれに対応して硬化性材 料塗設工程及び硬化性材料硬化工程を行なえばよい。ただし、本実施形態では、ま ず、堰形成工程において図中左側の堰 25を形成し、その後低屈折率層 28を形成し てから当該低屈折率層 28上に図中右側の堰 25を設け、その後、高屈折率層 26及 び低屈折率層 28を形成するようにする。この場合、図中右側の堰 25は、高屈折率層 26及びその上の低屈折率層 28を形成する際には硬化性材料を堰き止めることが可 能であり、当該堰 25は発光部分の自由な設計に寄与するものである。 [0478] When manufacturing the light guide member 27 of the present embodiment, basically, as in the nineteenth embodiment, after performing the weir formation step, curing is performed corresponding to each layer constituting the light guide layer. What is necessary is just to perform a property material coating process and a curable material hardening process. However, in the present embodiment, first, the left dam 25 in the figure is formed in the dam formation step, and then the low refractive index layer 28 is formed, and then the right dam 25 in the figure is formed on the low refractive index layer 28. After that, the high refractive index layer 26 and the low refractive index layer 28 are formed. In this case, the dam 25 on the right side of the figure can dampen the curable material when forming the high refractive index layer 26 and the low refractive index layer 28 thereon. It contributes to the free design.
[0479] このように製造された本実施形態の導光部材 27において、光源である半導体発光 装置 24から発せられた光は、高屈折率層 26により伝送され、堰 25から放射される。 一方、導光部材 27の図中上側の表面には、低屈折率層 28が形成されているために 、当該表面からは光は放射されない。 In the light guide member 27 of the present embodiment manufactured as described above, the light emitted from the semiconductor light emitting device 24 that is a light source is transmitted by the high refractive index layer 26 and emitted from the weir 25. On the other hand, since the low refractive index layer 28 is formed on the upper surface of the light guide member 27 in the figure, no light is emitted from the surface.
[0480] 以上のように、本実施形態のようにして導光部材 27を製造すれば、導光領域を制 御できるため、発光部分を自由に設計することが可能である。さらに、本実施形態の
導光部材 27では堰 25を稜線を有さない形状に形成してあるため、光の取り出し効果 を向上させることができる。 [0480] As described above, if the light guide member 27 is manufactured as in the present embodiment, the light guide region can be controlled, so that the light emitting portion can be freely designed. Furthermore, in this embodiment In the light guide member 27, since the weir 25 is formed in a shape having no ridgeline, the light extraction effect can be improved.
また、その他、第 19実施形態と同様の構成に基づき、同様の効果を得ることができ In addition, based on the configuration similar to that of the nineteenth embodiment, the same effect can be obtained.
[0481] [D 4 15]第 25実施形態 [0481] [D 4 15] 25th embodiment
図 27は、本発明の第 25実施形態としての導光部材の模式的な断面図である。な お、図 27において、図 12〜図 26と同様の部位については、同様の符号を用いて示 すものとする。 FIG. 27 is a schematic cross-sectional view of a light guide member as a 25th embodiment of the present invention. In FIG. 27, parts similar to those in FIGS. 12 to 26 are denoted by the same reference numerals.
この導光部材 27は、基板 21と導光層を構成する高屈折率層 26との間に反射層 30 が形成されている点の他は、第 19実施形態と同様になつている。具体的には、基板 21の表面に、低屈折率層 28の代わりに反射層 30が形成された構成となっている。 The light guide member 27 is the same as the nineteenth embodiment except that a reflective layer 30 is formed between the substrate 21 and the high refractive index layer 26 constituting the light guide layer. Specifically, the reflective layer 30 is formed on the surface of the substrate 21 instead of the low refractive index layer 28.
[0482] 本実施形態の導光部材 27を製造する場合、基板 21上に反射層 30を形成してから 、第 19実施形態と同様に、堰形成工程を行なった後で、高屈折率層 26及び低屈折 率層 28それぞれに対応して硬化性材料塗設工程及び硬化性材料硬化工程を行な えばよい。反射層 30は、例えば、反射層 30の材料を蒸着することにより形成できる。 なお、蒸着の際には、半導体発光装置 24を反射層 30が覆わないように、円柱状また はすり鉢状の穴 30Hを形成する。 [0482] In the case of manufacturing the light guide member 27 of the present embodiment, after forming the reflective layer 30 on the substrate 21, after performing the weir forming step, the high refractive index layer is formed as in the nineteenth embodiment. A curable material coating step and a curable material curing step may be performed corresponding to each of the 26 and the low refractive index layer 28. The reflective layer 30 can be formed by evaporating the material of the reflective layer 30, for example. During vapor deposition, a cylindrical or mortar-shaped hole 30H is formed so that the reflective layer 30 does not cover the semiconductor light emitting device 24.
[0483] このように製造された本実施形態の導光部材 27において、光源である半導体発光 装置 24から発せられた光は、高屈折率層 26により伝送され、堰 25から放射される。 この際、反射層 30を形成したため、高屈折率層 26内を光が効率よく伝送され、導光 部材 27からの光取り出し効率が向上する。一方、導光部材 27の図中上側の表面に は、低屈折率層 28が形成されているために、当該表面からは光は放射されない。 In the light guide member 27 of the present embodiment manufactured as described above, the light emitted from the semiconductor light emitting device 24 that is a light source is transmitted by the high refractive index layer 26 and emitted from the weir 25. At this time, since the reflection layer 30 is formed, the light is efficiently transmitted through the high refractive index layer 26, and the light extraction efficiency from the light guide member 27 is improved. On the other hand, since the low refractive index layer 28 is formed on the upper surface of the light guide member 27 in the drawing, no light is emitted from the surface.
[0484] 以上のように、本実施形態のようにして導光部材 27を製造すれば、堰 25を設けた ことにより、導光領域を制御でき、発光部分を自由に設計することが可能である。さら に、本実施形態の導光部材 27では堰 25を稜線を有さな!/、形状に形成してあるため 、光の取り出し効果を向上させることができる。 [0484] As described above, when the light guide member 27 is manufactured as in the present embodiment, the light guide region can be controlled and the light emitting portion can be freely designed by providing the weir 25. is there. Furthermore, in the light guide member 27 of the present embodiment, the weir 25 is formed in a shape that does not have a ridge line, so that the light extraction effect can be improved.
また、その他、第 19実施形態と同様の構成に基づき、同様の効果を得ることができ
[0485] [D— 4 16]第 26実施形態 In addition, based on the configuration similar to that of the nineteenth embodiment, the same effect can be obtained. [0485] [D—4 16] 26th embodiment
図 28は、本発明の第 26実施形態としての導光部材の模式的な断面図である。な お、図 28において、図 12〜図 27と同様の部位については、同様の符号を用いて示 すものとする。 FIG. 28 is a schematic cross-sectional view of a light guide member as a 26th embodiment of the present invention. In FIG. 28, parts similar to those in FIGS. 12 to 27 are denoted by the same reference numerals.
この導光部材 27は、基板 21が平板状でない点の他は、第 19実施形態と同様にな つている。具体的には、基板 21に円柱状またはすり鉢状の凹部 21Hを形成し、この 凹部 21Hの底に半導体発光装置 24を設置した構成となっている。 The light guide member 27 is the same as that of the nineteenth embodiment except that the substrate 21 is not flat. Specifically, a cylindrical or mortar-shaped recess 21H is formed in the substrate 21, and the semiconductor light emitting device 24 is installed on the bottom of the recess 21H.
[0486] 本実施形態の導光部材 27を製造する場合、基板 21として凹部 21Hが形成されて V、るものを用いる他は、第 19実施形態と同様にすればよ!/、。 [0486] When the light guide member 27 of the present embodiment is manufactured, it is the same as that of the nineteenth embodiment except that a recess 21H is formed as the substrate 21 and V is used.
[0487] このように製造された本実施形態の導光部材 27において、光源である半導体発光 装置 24から発せられた光は、高屈折率層 26により伝送され、堰 25から放射される。 一方、導光部材 27の図中上側の表面には、低屈折率層 28が形成されているために 、当該表面からは光は放射されない。 In the light guide member 27 of the present embodiment manufactured as described above, the light emitted from the semiconductor light emitting device 24 that is a light source is transmitted by the high refractive index layer 26 and emitted from the weir 25. On the other hand, since the low refractive index layer 28 is formed on the upper surface of the light guide member 27 in the figure, no light is emitted from the surface.
[0488] 以上のように、本実施形態のようにして導光部材 27を製造すれば、堰 25を設けた ことにより、導光領域を制御でき、発光部分を自由に設計することが可能である。さら に、本実施形態の導光部材 27では堰 25を稜線を有さな!/、形状に形成してあるため 、光の取り出し効果を向上させることができる。 [0488] As described above, when the light guide member 27 is manufactured as in the present embodiment, the light guide region can be controlled and the light emitting portion can be freely designed by providing the weir 25. is there. Furthermore, in the light guide member 27 of the present embodiment, the weir 25 is formed in a shape that does not have a ridge line, so that the light extraction effect can be improved.
また、その他、第 19実施形態と同様の構成に基づき、同様の効果を得ることができ In addition, based on the configuration similar to that of the nineteenth embodiment, the same effect can be obtained.
[0489] [D— 4 17]その他 [0489] [D— 4 17] Others
本発明の実施形態について説明したが、上述した実施形態はいずれも本発明を制 限するものではなぐそれぞれ、その一部を他の実施形態に導入、または組合せなど することにより、適宜変更することも可能である。 Although the embodiments of the present invention have been described, none of the above-described embodiments limit the present invention, and some of the embodiments may be appropriately changed by introducing or combining some of them with other embodiments. Is also possible.
[0490] また、上述した実施形態においては、本発明の要旨を逸脱しない限り、更に他の層 を積層してもよく、また、更に他の部材を備えさせても良い。 [0490] Further, in the above-described embodiment, other layers may be stacked or other members may be provided without departing from the gist of the present invention.
更に、 ±區25は、異なるものを組み合わせても良い。例えば、構成する材料の屈折率 が高い堰と低い堰とを組み合わせてもよぐ形状及び寸法が異なる堰を組み合わせ て用いてもよぐ部分的にのみ光散乱剤及び/又は蛍光体を含有する堰を用レ、ても
よい。 Furthermore, ± 區 25 may be combined with different ones. For example, light scatterers and / or phosphors are included only partially when weirs with different shapes and dimensions can be used in combination with weirs with a high refractive index and a low weir. Even if you use a weir Good.
また、堰 25は導光層の少なくとも一部を区画していれば良ぐ当該導光層を完全に 区画していなくても良い。したがって、その区画は図中横方向に少なくとも一部を区 画していればよぐまた、図中高さ方向で少なくとも一部を区画していれば良い。した がって、第 12実施形態のように、導光層に堰 25が埋もれていてもよい。 In addition, the weir 25 may divide at least a part of the light guide layer and may not divide the light guide layer completely. Therefore, it suffices that at least a part of the section is defined in the horizontal direction in the figure, and at least a part is defined in the height direction in the figure. Therefore, as in the twelfth embodiment, the weir 25 may be buried in the light guide layer.
ところで、本発明の第一〜第九の導光部材はいずれも相反するものではない。よつ て、例えばある導光部材が第一〜第九の導光部材のうちの 2以上に該当することもあ りえる。 By the way, none of the first to ninth light guide members of the present invention is in conflict. Therefore, for example, a certain light guide member may correspond to two or more of the first to ninth light guide members.
実施例 Example
[0491] 以下、実施例を挙げて本発明をより具体的に説明するが、それらは本発明の説明 を目的とするものであって、本発明をこれらの態様に限定することを意図したものでは ない。 [0491] Hereinafter, the present invention will be described more specifically with reference to examples. However, they are intended to explain the present invention, and are intended to limit the present invention to these embodiments. is not.
[0492] [A.主として第一〜第四の導光部材に係る実施例及び比較例] [A. Examples and comparative examples mainly related to first to fourth light guide members]
[実施例 A— 1 1] [Example A— 1 1]
[A— 1 1]導光板の製造 [A— 1 1] Manufacture of light guide plate
実施例 A— 1 1の導光板を、以下の手順で作製した。 A light guide plate of Example A-11 was produced according to the following procedure.
[0493] [A- 1 - 1 1]特定層(低屈折率層)形成液の合成 [0493] [A- 1-1 1] Synthesis of specific layer (low refractive index layer) forming solution
モメンテイブ'パフォーマンス 'マテリアルズ 'ジャパン合同会社製両末端シラノール ジメチノレシリ 一ン才ィノレ XC96— 723を 1450. 82g、フエ二ノレ卜リメ卜キシシランを 14 5g、及び、触媒としてジルコニウムテトラァセチルァセトネート粉末を 3· 190g用意し 、これを攪拌翼とコンデンサとを取り付けた 2Lの三つ口コルベン中に計量し、室温に て 15分触媒が十分溶解するまで攪拌した。この後、反応液を 120度まで昇温し、 12 0°C全還流下で 30分間攪拌しつつ初期加水分解を行った。 Momentive 'Performance' 'Materials' Japan GK Co., Ltd. Both-end silanol Dimethenoresiri 1-year-old Inore XC96— 723 1450.82g, Phenyloloxysilane 145g 3 · 190 g was prepared, weighed into a 2 L three-necked Kolben equipped with a stirring blade and a condenser, and stirred at room temperature for 15 minutes until the catalyst was sufficiently dissolved. Thereafter, the temperature of the reaction solution was raised to 120 ° C., and initial hydrolysis was carried out with stirring at 120 ° C. under total reflux for 30 minutes.
[0494] 続いて窒素を SV20で吹き込み生成メタノール及び水分、副生物の低沸ケィ素成 分を留去しつつ 120°Cで攪拌し、さらに 5時間重合反応を進めた。なお、ここで「SV」 とは「Space Velocity」の略称であり、単位時間当たりの吹き込み体積量を指す。よ つて、 SV20とは、 1時間に反応液の 20倍の体積の Nを吹き込むことをいう。 [0494] Subsequently, nitrogen was blown in with SV20 and the resulting methanol, water, and low-boiling components of by-products were distilled off and stirred at 120 ° C, and the polymerization reaction was further continued for 5 hours. Here, “SV” is an abbreviation for “Space Velocity”, and indicates the volume of blown air per unit time. Therefore, SV20 means blowing N of 20 times the volume of the reaction solution in one hour.
2 2
[0495] 窒素の吹き込みを停止し反応液をいつたん室温まで冷却した後、ナス型フラスコに
反応液を移し、ロータリーエバポレーターを用いてオイルバス上 120°C、 lkPaで 20 分間微量に残留しているメタノール及び水分、低沸ケィ素成分を留去し、無溶剤の 特定層(低屈折率層)形成液(282mPa · s)を得た。 [0495] Nitrogen blowing was stopped and the reaction solution was cooled to room temperature. Transfer the reaction solution, and use a rotary evaporator to distill off trace amounts of methanol, water, and low-boiling carbon components that remain on the oil bath at 120 ° C and lkPa for 20 minutes. Layer) forming liquid (282 mPa · s) was obtained.
[0496] [A- 1 - 1 - 2]特定層(高屈折率層)形成液の合成 [0496] [A- 1-1-2] Synthesis of specific layer (high refractive index layer) forming solution
モメンテイブ'パフォーマンス 'マテリアルズ 'ジャパン合同会社製両末端シラノール ジメチノレシリコーンオイノレ XC96— 723を 42g、両末端シラノールメチルフエ二ルシリ コーンオイル YF3804を 98g、フエニルトリメトキシシランを 14g、及び、触媒としてジ ルコニゥムテトラァセチルァセトネート粉末を 0. 308g用意し、これを攪拌翼とコンデ ンサとを取り付けた三つ口コルベン中に計量し、室温にて 15分触媒が十分溶解する まで攪拌した。この後、反応液を 120°Cまで昇温し、 120°C全還流下で 2時間攪拌し つつ初期加水分解を行った。 Momentive 'Performance' Materials' Japan GK Co., Ltd. Both End Silanol Dimethylol Silicone Oile XC96-723 42g, Both End Silanol Methyl Phenyl Silcon Corn Oil 98g, Phenyltrimethoxysilane 14g, and Catalyst Prepare 0.308 g of zirconium tetracetylacetonate powder, weigh it into a three-necked Kolben equipped with a stirring blade and a condenser, and stir at room temperature for 15 minutes until the catalyst is sufficiently dissolved. did. Thereafter, the temperature of the reaction solution was raised to 120 ° C, and initial hydrolysis was carried out with stirring at 120 ° C under total reflux for 2 hours.
続レ、て窒素を SV20で吹き込み生成メタノール及び水分、副生物の低沸ケィ素成 分を留去しつつ 120°Cで攪拌し、さらに 6時間重合反応を進めた。 Subsequently, nitrogen was blown in with SV20 and the resulting methanol, water, and low-boiling components of by-products were distilled off and stirred at 120 ° C, and the polymerization reaction was further continued for 6 hours.
窒素の吹き込みを停止し反応液をいつたん室温まで冷却した後、ナス型フラスコに 反応液を移し、ロータリーエバポレーターを用いてオイルバス上 120°C、 lkPaで 20 分間微量に残留しているメタノール及び水分、低沸ケィ素成分を留去し、無溶剤の 特定層(高屈折率層)形成液を得た。 Nitrogen blowing was stopped and the reaction solution was cooled to room temperature.After that, transfer the reaction solution to an eggplant-shaped flask, and using a rotary evaporator, the remaining methanol and methanol remaining in a minute amount at 120 ° C and lkPa for 20 minutes on an oil bath. Moisture and low boiling water components were distilled off to obtain a solvent-free specific layer (high refractive index layer) forming solution.
[0497] [A- 1 - 1 - 3]特定層(光散乱層)形成液の合成 [0497] [A- 1-1-3] Synthesis of specific layer (light scattering layer) forming solution
光散乱粒子として、モメンテイブ'パフォーマンス 'マテリアルズ 'ジャパン合同会社 製「トスパール 145 (中央粒径 5 m)」0. 75gおよび Al O微粉 CR1 (中央粒径 40 As light-scattering particles, 0.75g of “Tospearl 145 (median particle size 5 m)” manufactured by Momentive 'Performance' Materials' Japan GK and Al O fine powder CR1 (median particle size 40
2 3 twenty three
0nm) 0. 076gを [A— 1— 1— 2]で前述した特定層(高屈折率層)形成液 11. 3gお よびヘプタン 2. 5gと混合し、超音波分散を行い、特定層(光散乱層)形成液を得た。 0nm) 0.076g was mixed with 11.3g of the specific layer (high refractive index layer) forming liquid described above in [A-1-1-2] and 2.5g of heptane, and ultrasonic dispersion was performed. A light scattering layer) forming solution was obtained.
[0498] [A— 1 1 4]特定層形成液の塗布 [0498] [A— 1 1 4] Application of specific layer forming solution
青色 LEDを実装したガラス繊維強化エポキシ積層板に、 LED部を囲むようにドー ナツ型(外周 10mm φ、穴部 6mm φ )の東洋アドテック社製低粘着テープ「Τ120Η W」を貼り、このテープ真上に、 10mm φの東洋アドテック社製低粘着テープ「T120 HW」を貼った。 A glass fiber reinforced epoxy laminate with a blue LED mounted on it is coated with a doughnut-shaped (outside 10mmφ, hole 6mmφ) Toyo Adtec low adhesive tape “Τ120ΤW” to surround the LED. On top of this, a low-adhesive tape “T120 HW” made by Toyo Adtec Co., Ltd. with a diameter of 10 mm was pasted.
前記 [A— 1 1 1]の特定層(低屈折率層)形成液をスピンコートした。スピンコー
トは 300rpmで 5秒間行った後、 1200rpmで 10秒間行なった。 The specific layer (low refractive index layer) forming solution of [A-1 1 1] was spin-coated. Spin Coe The test was performed at 300 rpm for 5 seconds and then at 1200 rpm for 10 seconds.
前述の低粘着テープをはがし、前記特定層形成液を、 150°C、 2時間の雰囲気下 で硬化させたところ、 LED部を除!/、て低屈折率層を塗布することができた。 When the above-mentioned low adhesive tape was peeled off and the specific layer forming solution was cured at 150 ° C. for 2 hours, the low refractive index layer could be applied by removing / excluding the LED portion.
[0499] 次に、上記低屈折率層の上面に、前記 [A— 1 1 2]の特定層(高屈折率層)形 成液を 0. 8mr塗布し、均一になるように広げ、 150°C、 2時間の雰囲気下で硬化させ たところ、前記 LEDを含む低屈折率層欠損部、及び、低屈折率層の上に高屈折率 層を設けることができた。 [0499] Next, 0.8 ml of the specific layer (high refractive index layer) forming solution of [A-1 1 2] above was applied to the upper surface of the low refractive index layer, and spread so as to be uniform. When cured at 2 ° C. for 2 hours, a low refractive index layer defect including the LED and a high refractive index layer could be provided on the low refractive index layer.
次に、上記高屈折率層の上面に、前述の [A— 1 1 3]の特定層(光散乱層)形 成液を流しながら塗布した。余分な散乱液は下に敷いた紙にしみこませた。 30分以 上、散乱粒子がレべリングするのを待ち、 150°C、 2時間の雰囲気下で硬化させ、光 散乱層を形成した。 Next, the above specific layer (light scattering layer) forming solution of [A-1 13] was applied to the upper surface of the high refractive index layer while flowing. Excess scattering liquid was soaked in the underlying paper. After waiting for the scattering particles to level for more than 30 minutes, it was cured in an atmosphere at 150 ° C for 2 hours to form a light scattering layer.
[0500] [A 1 2]各層の分析、および導光板の評価方法 [0500] [A 1 2] Analysis of each layer and evaluation method of light guide plate
[A- 1 - 2- 1]固体 Si— NMRスペクトル測定及びシラノール含有率の算出 実施例 A— 1 1の導光板の各層につ!/、て、以下の条件で固体 Si— NMRスぺタト ル測定及び波形分離解析を行なった。得られた波形データより、実施例 A— 1 1の 導光板の各層について、各々のピークの半値幅を求めた。また、全ピーク面積に対 するシラノール由来のピーク面積の比率より、全ケィ素原子中のシラノールとなって いるケィ素原子の比率(%)を求め、別に分析したケィ素含有率と比較することにより シラノール含有率を求めた。 [A- 1-2-1] Solid Si—NMR spectrum measurement and silanol content calculation Example A— 1 Each layer of the light guide plate of 1! /, Solid Si-NMR spectrum under the following conditions Measurement and waveform separation analysis. From the obtained waveform data, the half width of each peak was determined for each layer of the light guide plate of Example A-11. In addition, the ratio (%) of the silanol-derived silicon atoms in all the silicon atoms is calculated from the ratio of the silanol-derived peak area to the total peak area, and is compared with the separately analyzed content of silicon. The silanol content was determined by
[0501] <装置条件〉 [0501] <Device conditions>
装置: Chemagnetics社 Infinity CMX— 400 核磁気共鳴分光装置 Equipment: Chemagnetics Infinity CMX-400 Nuclear Magnetic Resonance Spectrometer
29Si共鳴周波数: 79. 436MHz 29 Si resonance frequency: 79. 436MHz
プローブ: 7. 5mm φ CP/MAS用プローブ Probe: 7.5mm φ CP / MAS probe
測定温度:室温 Measurement temperature: room temperature
試料回転数: 4kHz Sample rotation speed: 4kHz
測定法:シングルパルス法 Measurement method: Single pulse method
ェ^1デカップリング周波数: 50kHz ^^ 1 decoupling frequency: 50kHz
29Siフリップ角: 90°
29Si90°パルス幅: 5. O ^ s 29 Si flip angle: 90 ° 29 Si90 ° pulse width: 5. O ^ s
くり返し時間: 600s Repeat time: 600s
積算回数: 128回 Integration count: 128 times
観測幅: 30kHz Observation width: 30kHz
ブロードユングファクター: 20Hz Broad Jung factor: 20Hz
基準試料:固体 Si— NMR基準物質用ジメチルシリコーンゴム(ポリジメチルシロキ サン) Reference sample: Solid Si—dimethylsilicone rubber for NMR reference material (polydimethylsiloxane)
[0502] <データ処理法〉 [0502] <Data processing method>
512ポイントを測定データとして取り込み、 8192ポイントにゼロフィリングしてフーリ ェ変換した。 512 points were taken as measurement data, and zero-filled to 8192 points and Fourier transformed.
[0503] <波形分離解析法〉 [0503] <Waveform separation analysis method>
フーリエ変換後のスペクトルの各ピークについてローレンツ波形及びガウス波形或 いは両者の混合により作成したピーク形状の中心位置、高さ、半値幅を可変パラメ一 タとして、非線形最小二乗法により最適化計算を行なった。 For each peak of the spectrum after Fourier transform, optimization calculation is performed by nonlinear least square method with the center position, height, and half width of the peak shape created by Lorentz waveform and Gaussian waveform or a mixture of both as variable parameters. I did it.
なお、ピークの同定は AIChE Journal, 44 (5) , p. 1141 , 1998年等を参考にし た。 The peak was identified with reference to AIChE Journal, 44 (5), p. 1141, 1998, etc.
[0504] [A— 1 2— 2]ケィ素含有率の測定 [0504] [A— 1 2— 2] Measurement of the C content
実施例 A— 1 1の導光板の各層(低屈折率層、高屈折率層、光散乱層)の単独硬 化物を 100 m程度に粉砕し、白金るつぼ中にて大気中、 450°Cで 1時間、ついで 7 50°Cで 1時間、 950°Cで 1. 5時間保持して焼成し、炭素成分を除去した後、得られ た残渣少量に 10倍量以上の炭酸ナトリウムを加えてバーナー加熱し溶融させ、これ を冷却して脱塩水を加え、更に塩酸にて pHを中性程度に調整しつつケィ素として数 ppm程度になるよう定容し、セイコー電子社製「SPS1700HVR」を用いて ICP分析 を fiなった。 Example A-1 A single hardened material of each layer (low refractive index layer, high refractive index layer, light scattering layer) of the light guide plate of 1 was pulverized to about 100 m, and in a platinum crucible in air at 450 ° C. 1 hour, then 7 hours at 550 ° C and 1.5 hours at 950 ° C. After calcination to remove the carbon component, add more than 10 times the amount of sodium carbonate to the resulting residue and burner. Heat and melt it, cool it, add demineralized water, adjust the pH to a neutral level with hydrochloric acid while adjusting the pH to about several ppm, and use `` SPS1700HVR '' manufactured by Seiko Denshi. ICP analysis became fi.
[0505] [A— 1 2— 3]硬度測定 [0505] [A— 1 2— 3] Hardness measurement
実施例 A— 1 1の導光板の各層(低屈折率層、高屈折率層、光散乱層)について 、古里精機製作所製 A型(デュ口メータタイプ A)ゴム硬度計を使用し、 JIS K6253 に準拠して硬度(ショァ A)を測定した。
[0506] [A— 1 2— 4]屈折率測定 Example A— For each layer of the light guide plate of 1 (low refractive index layer, high refractive index layer, light scattering layer), A type (Duguchi meter type A) rubber hardness tester manufactured by Furusato Seiki Seisakusho was used, and JIS K6253 The hardness (Shore A) was measured according to the above. [0506] [A— 1 2— 4] Refractive index measurement
実施例 A— 1 1の導光板の各層(低屈折率層、高屈折率層、光散乱層)の形成液 につ!/、て、 25°Cで Abbe屈折率計を用いて屈折率を測定した。 Example A—11 For each layer of the light guide plate (low refractive index layer, high refractive index layer, light scattering layer) in 1! /, Using a Abbe refractometer at 25 ° C, the refractive index was measured. It was measured.
[0507] [A— 1 2— 5]密着性評価方法 [0507] [A— 1 2— 5] Adhesion evaluation method
実施例 A— 1 1の導光板の塗布層(上層)の一端をピンセットでつまんで直角方 向にゆっくり引き剥がした際に膜が容易に剥離せず、一部破壊するものを「良」とし、 容易にはがれるものを「不良」とした。 Example A—1 When the end of the coating layer (upper layer) of the light guide plate in 1 is pinched with tweezers and slowly peeled off in the right-angle direction, the film does not peel off easily, but breaks partly. Those that can be easily peeled are defined as “bad”.
[0508] [A— 1 2— 6]光取り出し効果 [0508] [A— 1 2— 6] Light extraction effect
目視および/または写真により、実施例 A— 1 1の導光板の発光の様子を観察し 、所望の箇所目的の箇所全面から均一に光が取り出されていると認められるものを「 良」とし、均一に光が取り出されていないと認められるものを「不良」とした。 Observe the state of light emission of the light guide plate of Example A-1 1 by visual inspection and / or photograph, and determine that the light is uniformly extracted from the entire desired location of the desired location. What was recognized that light was not extracted uniformly was defined as “defective”.
[0509] [表 2]
[0509] [Table 2]
[A— 2.境界部を設けた場合の実施例及び比較例] [A-2-1.各層の形成液の用意] [A—2. Examples and comparative examples in the case where a boundary is provided] [A-2-1. Preparation of formation liquid for each layer]
[A— 2 1— 1]特定層 (低屈折率層)形成液の合成
モメンテイブ'パフォーマンス 'マテリアルズ 'ジャパン合同会社製両末端シラノール ジメチノレシリ 一ン才ィノレ XC96— 723を 1450. 82g、フエ二ノレ卜リメ卜キシシランを 14 5g、及び、ジルコニウムテトラァセチルァセトネート粉末を 3. 190g用意した。これを 撹拌翼とコンデンサとを取り付けた 2Lの三つ口コルベン中に入れ、室温で、ジルコ二 ゥムテトラァセチルァセトネート粉末が十分溶解するまで撹拌した。これにより、 15分 ほどで溶解した。この液を 120°Cまで昇温し、 30分間還流させながら撹拌を行なった[A— 2 1— 1] Synthesis of specific layer (low refractive index layer) forming solution Momentive 'Performance''Materials' Japan GK Co., Ltd. Both-end silanol Dimethenoresiri 1-year-old Inore XC96— 723 1450. 190g prepared. This was placed in a 2 L three-necked Kolben equipped with a stirring blade and a condenser, and stirred at room temperature until the zirconium tetraacetylacetylate powder was sufficiently dissolved. This dissolved in about 15 minutes. The liquid was heated to 120 ° C and stirred while refluxing for 30 minutes.
〇 Yes
[0511] 続いて、ガス吹き込み管をコルベンの口に接続して、窒素を SV20で反応液中に吹 き込みながら 120°Cで 5時間、撹拌を続けた。なお、ここで「SV」とは「Space Veloc ity」の略称であり、単位時間当たりの吹き込み量を指す。よって、 SV20とは、 1時間 に反応液の 20倍体積の Nを吹き込むことをいう。 [0511] Subsequently, a gas blowing tube was connected to the Kolben port, and stirring was continued at 120 ° C for 5 hours while nitrogen was blown into the reaction solution with SV20. Here, “SV” is an abbreviation for “Space Velocity” and indicates the amount of blowing per unit time. Therefore, SV20 means blowing N of 20 times the volume of the reaction solution in one hour.
2 2
窒素の吹き込みを停止しコルベンをいつたん室温まで冷却した後、反応液をナス型 フラスコに移し、ロータリーエバポレーターを用いてオイルバス上 120°C、 lkPaで 20 分間減圧留去し、特定層(低屈折率層)形成液 (粘度 282mPa * s ;以下適宜「低屈折 率バインダ」という)を得た。 After the nitrogen blowing was stopped and the Kolben was cooled to room temperature, the reaction solution was transferred to an eggplant-shaped flask and distilled under reduced pressure on an oil bath at 120 ° C and lkPa for 20 minutes using a rotary evaporator. Refractive index layer) forming liquid (viscosity 282 mPa * s; hereinafter referred to as “low refractive index binder” as appropriate) was obtained.
[0512] [A— 2 1 2]特定層(高屈折率層)形成液 Aの合成 [0512] [A- 2 1 2] Synthesis of specific layer (high refractive index layer) forming solution A
モメンテイブ'パフォーマンス 'マテリアルズ 'ジャパン合同会社製両末端シラノール ジメチノレシリコーンオイノレ XC96— 723を 42g、両末端シラノールメチルフエ二ルシリ コーンオイル YF3804を 98g、フエニルトリメトキシシランを 14g、及び、触媒としてジ ルコニゥムテトラァセチルァセトネート粉末を 0. 308g用意し、これを撹拌翼とコンデ ンサとを取り付けた 200mlの三つ口コルベン中に計量した。室温で、ジルコニウムテ トラァセチルァセトネート粉末が十分溶解するまで撹拌した。これにより、 15分ほどで 溶解した。この液を 120°Cまで昇温し、 30分間還流させながら撹拌を行なった。 Momentive 'Performance' Materials' Japan GK Co., Ltd. Both End Silanol Dimethylol Silicone Oile XC96-723 42g, Both End Silanol Methyl Phenyl Silcon Corn Oil 98g, Phenyltrimethoxysilane 14g, and Catalyst 0.308 g of zirconium tetracetylacetonate powder was prepared and weighed into a 200 ml three-necked Kolben equipped with a stirring blade and a condenser. The mixture was stirred at room temperature until the zirconium tetracetylacetonate powder was sufficiently dissolved. This dissolved in about 15 minutes. The liquid was heated to 120 ° C. and stirred while refluxing for 30 minutes.
[0513] 続いて、ガス吹き込み管をコルベンの口に接続して、窒素を SV20で反応液中に吹 き込みながら 120°Cで 6時間、撹拌を続けた。 [0513] Subsequently, a gas blowing tube was connected to the mouth of Kolben, and stirring was continued at 120 ° C for 6 hours while nitrogen was blown into the reaction solution with SV20.
窒素の吹き込みを停止しコルベンをいつたん室温まで冷却した後、反応液をナス型 フラスコに移し、ロータリーエバポレーターを用いてオイルバス上 120°C、 lkPaで 20 分間減圧留去した。
[0514] 容器に無機粒子として、超微粒子状シリカ(日本ァエロジル株式会社製、商品名: AEROSIL # RX200) 0. lg、および、前記減圧留去後の反応液 1 · Ogを入れて混 合し、自転 ·公転方式ミキサー脱泡装置を使用し、遠心脱泡を行なった。その後、容 器を真空チャンバ一に入れて、さらに脱泡操作を行い、特定層(高屈折率層)形成液 A (以下適宜、「高屈折率バインダ八」という)を得た。 After the nitrogen blowing was stopped and the Kolben was cooled to room temperature, the reaction solution was transferred to an eggplant-shaped flask and distilled off under reduced pressure at 120 ° C. and lkPa for 20 minutes on an oil bath using a rotary evaporator. [0514] Ultrafine silica (trade name: AEROSIL # RX200, manufactured by Nippon Aerosil Co., Ltd.) 0. lg, and 1 · Og of the reaction solution after distillation under reduced pressure, were mixed in the container as inorganic particles. , Centrifugal defoaming was performed using a rotation / revolution mixer defoamer. Thereafter, the container was placed in a vacuum chamber and a defoaming operation was further performed to obtain a specific layer (high refractive index layer) forming liquid A (hereinafter referred to as “high refractive index binder 8” as appropriate).
[0515] [A— 2— 1 3]特定層(高屈折率層)形成液 Bの合成 [0515] [A— 2-1 1 3] Synthesis of specific layer (high refractive index layer) forming solution B
モメンテイブ'パフォーマンス 'マテリアルズ 'ジャパン合同会社製両末端シラノール ジメチノレシリコーンオイノレ XC96— 723を 105g、両末端シラノールメチルフエ二ルシリ コーンオイル YF3804を 35g、フエニルトリメトキシシランを 14g、及び、触媒としてジ ルコニゥムテトラァセチルァセトネート粉末を 0. 308g用意し、これを攪拌翼とコンデ ンサとを取り付けた 200mlの三つ口コルベン中に計量した。室温で、ジルコニウムテ トラァセチルァセトネート粉末が十分溶解するまで攪拌した。これにより 15分ほどで 溶解した。この液を 120°Cまで昇温し、 30分間還流させながら攪拌を行なった。 Momentive 'Performance' Materials' Japan GK Co., Ltd. Both Ends Silanol Dimethylol Silicone Oile XC96-723 105g, Both Ends Silanol Methyl Phenyl Silcon Corn Oil YF3804, Phenyltrimethoxysilane 14g, and Catalyst 0.308 g of zirconium tetracetylacetonate powder was prepared and weighed into a 200 ml three-necked Kolben equipped with a stirring blade and a condenser. The mixture was stirred at room temperature until the zirconium tetracetylacetonate powder was sufficiently dissolved. This dissolved in about 15 minutes. The liquid was heated to 120 ° C. and stirred while refluxing for 30 minutes.
[0516] 続いて、ガス吹き込み管をコルベンの口に接続して、窒素を SV20で反応液中に吹 き込みながら、 120°Cで 6. 5時間攪拌を続けた。 [0516] Subsequently, a gas blowing tube was connected to the Kolben port, and stirring was continued at 120 ° C for 6.5 hours while nitrogen was blown into the reaction solution with SV20.
窒素の吹き込みを停止しコルベンをいつたん室温まで冷却した後、反応液をナス型 フラスコに移し、ロータリーエバポレーターを用いてオイルバス上 120°C、 lkPaで 20 分間減圧留去し、屈折率 n= l . 43の高屈折率バインダを得た。 Nitrogen blowing was stopped and Kolben was cooled to room temperature.After that, the reaction solution was transferred to an eggplant-shaped flask and distilled under reduced pressure on an oil bath at 120 ° C and lkPa for 20 minutes using a rotary evaporator. l. A high refractive index binder of 43 was obtained.
容器に無機粒子として超微粒子状シリカ(日本ァエロジル株式会社製、商品名: A EROSIL # RX200) 0. lg及び上記の高屈折率バインダ 1 · Ogを入れて混合し、自 転 ·公転方式ミキサー脱泡装置を使用し、遠心脱泡を行なった。その後、容器を真空 チャンバ一に入れて、さらに脱泡を行い、 n= l . 43の特定層(高屈折率)形成液 B ( 以下適宜、「高屈折率バインダ という)を得た。 Ultrafine silica particles (made by Nippon Aerosil Co., Ltd., trade name: A EROSIL # RX200) 0. lg and the above high refractive index binder 1 · Og are mixed in the container and mixed to remove the rotating / revolving mixer. Centrifugal defoaming was performed using a foaming device. Thereafter, the container was placed in a vacuum chamber and further defoamed to obtain a specific layer (high refractive index) forming liquid B (hereinafter referred to as “high refractive index binder” where n = 1.43).
[0517] [A— 2— 1 4]特定層(堰)形成液 Bの合成 [0517] [A— 2 — 1 4] Synthesis of specific layer (weir) formation liquid B
容器に無機粒子として、超微粒子状シリカ(日本ァエロジル株式会社製、商品名: AEROSIL # 130) 0. 78g、エポキシ樹脂(ジャパンエポキシレジン製、商品名:ェピ コート 828US) 4. 98g、エポキシ樹脂硬化剤(ジャパンエポキシレジン製、商品名: J ERェピキュア YLH1230) 4. 24gを入れて混合し、自転'公転方式ミキサー脱泡装
置を使用し、遠心脱泡を行なった。その後、容器を真空としさらに脱泡操作を行ない 、特定層(堰)形成液 Bを得た。 Ultrafine silica particles (made by Nippon Aerosil Co., Ltd., trade name: AEROSIL # 130) 0.78 g, epoxy resin (made by Japan Epoxy Resin, trade name: Epicoat 828US) 4. 98 g, epoxy resin as inorganic particles in the container Curing agent (made by Japan Epoxy Resin, trade name: J ER Epicure YLH1230) 4. Add 24g, mix and rotate. Centrifugal defoaming was performed using the apparatus. Thereafter, the container was evacuated and further defoaming was performed to obtain a specific layer (weir) forming liquid B.
[0518] [A-2-1-5]特定層(堰)形成液 Cの合成 [0518] [A-2-1-5] Synthesis of specific layer (weir) forming liquid C
容器に無機粒子として、超微粒子状シリカ(日本ァエロジル株式会社製、商品名: AEROSIL# 130)0.55g、非凝集タイプアルミナ(Baikowski社製、商品名: CR1 、中央粒径 0.95ミクロン) 2.0g、エポキシ樹脂(ジャパンエポキシレジン製、商品名: ェピコート 828US)4.03g、エポキシ樹脂硬化剤(ジャパンエポキシレジン製、商品 名: JERェピキュア YLH1230)3.42gを入れて混合し、自転'公転方式ミキサー脱 泡装置を使用し、遠心脱泡を行なった。その後、容器を真空としさらに脱泡操作を行 なレ \特定層(堰)形成液 Cを得た。 As the inorganic particles in the container, 0.55 g of ultrafine silica (made by Nippon Aerosil Co., Ltd., trade name: AEROSIL # 130), non-aggregated type alumina (made by Baikowski, trade name: CR1, median particle size 0.95 microns) 2.0 g, Epoxy resin (made by Japan Epoxy Resin, product name: Epicoat 828US) 4.03g, epoxy resin curing agent (made by Japan Epoxy Resin, product name: JER Epicure YLH1230) 3.42g are mixed and mixed. Was used for centrifugal defoaming. Thereafter, the container was evacuated and further defoaming was performed to obtain a specific layer (weir) forming liquid C.
[0519] [A-2-1-6]特定層(高屈折光散乱層/低散乱型)形成液の調液 [0519] [A-2-1-6] Preparation of specific layer (high refractive light scattering layer / low scattering type) forming solution
光散乱粒子として、 Al O微粉「CR1 (中央粒径 400nm)」0. lgを [A— 1— 1— 2] Al O fine powder “CR1 (median particle size 400nm)” 0.lg as light scattering particles [A— 1— 1— 2]
2 3 twenty three
で前述した特定層(高屈折率層)形成液 (n=l.46)9.9gと混合し、自転 ·公転方式 ミキサー脱泡装置を使用し、遠心脱泡 ·混合を行なった。その後、容器を真空としてさ らに脱泡 ·混合を行い、特定層(高屈折光散乱層/低散乱型)形成液を得た。 The mixture was mixed with 9.9 g of the specific layer (high refractive index layer) forming liquid (n = l.46) described above in, and centrifugal defoaming and mixing were performed using a rotation / revolution system mixer defoaming device. Thereafter, the container was further evacuated and mixed under vacuum to obtain a liquid for forming a specific layer (high refractive light scattering layer / low scattering type).
[0520] [A— 2— 1 7]特定層(高屈折光散乱層/中散乱型)形成液の調液 [0520] [A— 2— 1 7] Preparation of specific layer (high refractive light scattering layer / medium scattering type) forming solution
光散乱粒子として、モメンテイブ'パフォーマンス 'マテリアルズ 'ジャパン合同会社 製「トスパール 145 (中央粒径 5 m)」l. Og及び Al O微粉「CR1 (中央粒径 400η As a light scattering particle, “Tospearl 145 (median particle size 5 m)” manufactured by Momentive 'Performance' Materials' Japan G.K. l. Og and Al O fine powder “CR1 (median particle size 400η)
2 3 twenty three
m)jO. lgを [A— 1 1 2]で前述した特定層(高屈折率層)形成液 (n=l.46)8. 9gと混合し、 自転 ·公転方式ミキサー脱泡装置を使用し、遠心脱泡 ·混合を行なった 。その後、容器を真空としてさらに脱泡 ·混合を行い、特定層(高屈折光散乱層/中 散乱型)形成液を得た。 m) jO.lg is mixed with 8.9g of the specific layer (high refractive index layer) forming liquid (n = l.46) described in [A- 1 1 2], and a rotating / revolving mixer deaerator is used. Then, centrifugal defoaming and mixing were performed. Thereafter, the container was evacuated and further defoamed and mixed to obtain a specific layer (high refractive light scattering layer / medium scattering type) forming liquid.
[0521] [A-2-1-8]特定層(高屈折光散乱層/強散乱型)形成液の調液 [0521] [A-2-1-8] Preparation of specific layer (high refractive light scattering layer / strong scattering type) forming solution
光散乱粒子として、モメンテイブ'パフォーマンス 'マテリアルズ 'ジャパン合同会社 製「トスパール 145 (中央粒径 5 m)」 2. Og及び Al O微粉「CR1 (中央粒径 400η As a light scattering particle, “Tospearl 145 (median particle size 5 m)” manufactured by Momentive “Performance” Materials “Japan GK” 2. Og and Al O fine powder “CR1 (median particle size 400η)
2 3 twenty three
m)」0.2gを [A— 1— 1— 2]で前述した特定層(高屈折率層)形成液 (n=l.46)7. 8gと混合し、 自転 ·公転方式ミキサー脱泡装置を使用し、遠心脱泡 ·混合を行なった 。その後、容器を真空としてさらに脱泡 ·混合を行い、特定層(高屈折光散乱層/強
散乱型)形成液を得た。 m) ”0.2 g is mixed with 7.8 g of the specific layer (high refractive index layer) formation liquid (n = l.46) described above in [A-1 1-2], and a rotating / revolving mixer deaerator , Centrifugal defoaming and mixing were performed. After that, the container is evacuated and further defoamed and mixed to a specific layer (high refractive light scattering layer / strong A scattering type) forming liquid was obtained.
[0522] [A- 2- 1 - 9]特定層(低屈折光散乱層)形成液の調液 [0522] [A- 2- 1-9] Preparation of specific layer (low refractive light scattering layer) forming solution
光散乱粒子として、 2 m球状シリカ 2. Og及び [A— 1— 1— 1]で合成した特定層( 低屈折率層)形成液 (n= l . 42) 8. Ogを混合し、自転 ·公転方式ミキサー脱泡装置 を使用し、遠心脱泡 ·混合を行なった。その後、容器を真空としてさらに脱泡 '混合を 行い、特定層 (低屈折光散乱層)形成液を得た。 As light scattering particles, 2 m spherical silica 2. Og and specific layer (low refractive index layer) formation liquid (n = l. 42) synthesized with [A-1 1-1-1] 8. Og is mixed and rotated. · Centrifugal defoaming and mixing were performed using a revolving mixer defoamer. Thereafter, the container was further evacuated and mixed under vacuum to obtain a liquid for forming a specific layer (low refractive light scattering layer).
[0523] [実施例 A— 2— 1] [0523] [Example A— 2-1]
[導光板の製造] [Manufacture of light guide plates]
厚さ 0. 43mmのガラス繊維強化エポキシ積層板に、ドリルにて 2mm φの穴を開け 、この穴の裏側から耐薬テープを貼り穴を塞いだ後、表側から穴の中に高屈折率バ インダ Αを注入し、 150°Cで一時間保持して硬化させて穴を塞いだ。その後、耐薬テ ープを剥がした。 Drill a 2mmφ hole in a 0.43mm thick glass fiber reinforced epoxy laminate with a drill, seal the hole with chemical-resistant tape from the back side of this hole, and then insert a high refractive index binder into the hole from the front side. A sputum was injected and held at 150 ° C for 1 hour to cure and close the hole. Then, the chemical resistant tape was peeled off.
また、穴の直下には青色 LEDを設置し、この青色 LEDから発せられる光が前記の 穴を塞ぐ高屈折率バインダ Aを通じて基板の上部に伝送されるようにした。具体的に は、ポリフタルアミド製表面実装パッケージ(3· 4mm X 2. 8mm)に、タリー社製 C46 0MBチップをエポキシ銀ペーストにてダイボンディングし、金線にてワイヤボンディン グしたランプを低屈折率バインダを用いて封止し、 90°Cで 1時間、 110°Cで 2時間、 及び 150°Cで 3時間保持し、硬化させた青色 LEDを用いた。 In addition, a blue LED was installed directly under the hole, and the light emitted from the blue LED was transmitted to the upper part of the substrate through a high refractive index binder A that closed the hole. Specifically, a lamp with a C46 0MB chip manufactured by Tully Corp. die-bonded with epoxy silver paste on a surface mount package made of polyphthalamide (3.4 mm x 2.8 mm) and wire bonded with a gold wire. A cured blue LED was used, which was sealed with a low refractive index binder and held at 90 ° C for 1 hour, 110 ° C for 2 hours, and 150 ° C for 3 hours and cured.
[0524] 前記の基板上に、特定層(堰)形成液 Bを用いて境界部を描画した。境界部は、当 該青色 LEDを囲む堰となるように描画した。また、境界部の描画は、ノズル径 290 mのシリンジを用いて行なった。この際、当該シリンジのノズルから基板表面までの距 離は 500 mとした。また、描画速度は 10cm/秒とした。さらに、シリンジから特定層 (堰)形成液 Bを押し出す際の圧力は、 1. 5MPaに設定した。 [0524] A boundary portion was drawn on the substrate using the specific layer (weir) forming liquid B. The boundary was drawn to be a weir surrounding the blue LED. The boundary portion was drawn using a syringe with a nozzle diameter of 290 m. At this time, the distance from the syringe nozzle to the substrate surface was set to 500 m. The drawing speed was 10 cm / sec. Furthermore, the pressure when extruding the specific layer (weir) forming solution B from the syringe was set to 1.5 MPa.
その後、これを空気雰囲気中、 150°C、大気圧で 0. 5時間保持し、境界部を硬化さ せた。これにより、高さ 500 111、幅 lmmの、稜線のない形状の境界部が得られた。 Thereafter, this was held in an air atmosphere at 150 ° C. and atmospheric pressure for 0.5 hour to cure the boundary. As a result, a boundary portion having a height of 500 111 and a width of 1 mm and having no ridgeline was obtained.
[0525] 次レ、で、基板上の前記の境界部の内側部分に、低屈折率バインダを塗布した。こ の際、境界部が低屈折率バインダを堰き止める堰として作用し、境界部の内側にの み低屈折率バインダが塗布され、境界部の外側には漏れ出さな力、つた。また、低屈
折率バインダは、前記の穴を塞ぐ高屈折率バインダ Aの上部を覆わないように塗布し 、低屈折率バインダにより形成される低屈折率層が、穴を通じて伝送される光の伝送 を妨げないようにした。 [0525] In the next step, a low refractive index binder was applied to the inner portion of the boundary on the substrate. At this time, the boundary portion acted as a weir to dam the low refractive index binder, and the low refractive index binder was applied only inside the boundary portion, and the leakage force was applied to the outside of the boundary portion. Also low bending The refractive index binder is applied so as not to cover the upper part of the high refractive index binder A that closes the hole, and the low refractive index layer formed by the low refractive index binder does not hinder the transmission of light transmitted through the hole. I did it.
そして、これを空気雰囲気中、 150°C、大気圧で 1時間保持し、低屈折率バインダ を硬化させて、厚さ 35 mの低屈折率層を形成した。 Then, this was held in an air atmosphere at 150 ° C. and atmospheric pressure for 1 hour, and the low refractive index binder was cured to form a low refractive index layer having a thickness of 35 m.
[0526] さらに、低屈折率層上の前記の境界部の内側部分に、高屈折率バインダ Aを塗布 した。この際も、境界部が高屈折率バインダ Aを堰き止める堰として作用し、境界部の 内側にのみ高屈折率バインダ Aが塗布され、境界部の外側には漏れ出さな力、つた。 そして、これを空気雰囲気中、 150°C、大気圧で 1時間保持し、高屈折率バインダ Aを硬化させて、厚さ 415 mの高屈折率層 Aを形成した。 [0526] Further, a high refractive index binder A was applied to the inner part of the boundary portion on the low refractive index layer. Also at this time, the boundary portion acted as a weir to block the high refractive index binder A, and the high refractive index binder A was applied only to the inside of the boundary portion, and the leakage force was applied to the outside of the boundary portion. Then, this was held in an air atmosphere at 150 ° C. and atmospheric pressure for 1 hour to cure the high refractive index binder A, thereby forming a high refractive index layer A having a thickness of 415 m.
[0527] さらに、高屈折率層 A上の前記の境界部の内側部分に、低屈折率バインダを塗布 した。この際も、境界部が低屈折率バインダを堰き止める堰として作用し、境界部の 内側にのみ低屈折率バインダが塗布され、境界部の外側には漏れ出さな力、つた。 そして、これを空気雰囲気中、 150°C、大気圧で 1時間保持し、低屈折率バインダ を硬化させて、厚さ 30 mの低屈折率層を形成した。 [0527] Further, a low refractive index binder was applied to the inside portion of the boundary portion on the high refractive index layer A. Also at this time, the boundary portion acted as a weir to block the low refractive index binder, and the low refractive index binder was applied only to the inside of the boundary portion, and the leakage force was applied to the outside of the boundary portion. Then, this was held in an air atmosphere at 150 ° C. and atmospheric pressure for 1 hour, and the low refractive index binder was cured to form a low refractive index layer having a thickness of 30 m.
以上のようにして、導光板を製造した。 The light guide plate was manufactured as described above.
[0528] [評価] [0528] [Evaluation]
得られた導光板の穴の下から、発光波長 460nmの前記青色 LEDを発光させて、 その様子を観察した。 The blue LED with an emission wavelength of 460 nm was emitted from under the hole of the obtained light guide plate, and the state was observed.
さらに、前記の「[A— 1— 2— 5]密着性評価方法」と同様にして、得られた導光板 の各層について、密着性を評価した。なお、表 3及び後述する表 4, 5において、密 着性が「良」であるものは「〇 Jで表す。 Further, in the same manner as in the above “[A-1-2-5] Adhesion evaluation method”, the adhesion of each layer of the obtained light guide plate was evaluated. In Table 3 and Tables 4 and 5, which will be described later, “Good” indicates that the adhesiveness is “good”.
また、前記の「 [A— 1 - 2- 1]固体 Si— NMRスペクトル測定及びシラノール含有 率の算出」と同様にして、得られた導光板の各層について、固体 Si— NMRスぺタト ル測定及びシラノール含有率を測定した。 In addition, in the same manner as “[A-1-2-2-1] Solid Si-NMR spectrum measurement and silanol content calculation” described above, solid Si-NMR spectrum measurement was performed on each layer of the obtained light guide plate. And the silanol content was measured.
さらに、前記の「 [A— 1 2— 2]ケィ素含有率の測定」と同様にして、得られた導光 板の各層について、ケィ素含有率を測定した。 Further, in the same manner as in the above-mentioned “Measurement of [A-12-2] Caydenium Content”, the Cay content was measured for each layer of the obtained light guide plate.
また、前記の「[A— 1 2 3]硬度測定」と同様にして、得られた導光板の各層に
っレ、て、硬度(ショァ A)を測定した。 In addition, in the same manner as the “[A-1 2 3] hardness measurement” described above, each layer of the obtained light guide plate The hardness (Shore A) was measured.
さらに、前記の「[A— 1— 2— 4]屈折率測定」と同様にして、得られた導光板の各 層について、屈折率を測定した。 Further, the refractive index of each layer of the obtained light guide plate was measured in the same manner as in the above “[A-1-2-4] refractive index measurement”.
また、透過率の測定と同様の方法にて作製した厚さ lmmの硬化物を用いて、空気 層をリファレンスとし、 日本電色工業 (株)製 COH— 300Aにて^ ^一ズ値の測定を行 なった。 Using a lmm-thick cured product prepared in the same way as the transmittance measurement, using the air layer as a reference, measure the ^^ values with COH-300A manufactured by Nippon Denshoku Industries Co., Ltd. I did.
結果を表 3に示す。 The results are shown in Table 3.
[0529] なお、表 3の光取り出し性の項において、「遠くまで光る力、」の欄力 S「〇」であれば堰 付近にまで発光面が達して!/、ることを意味し、「 X」であればチップ直上のみ発光して いることを意味する。 [0529] In addition, in the section of the light extraction property in Table 3, if the field power S is “O”, it means that the light emitting surface has reached the vicinity of the weir! “X” means that light is emitted only directly above the chip.
また、表 3の光取り出し性の項において、「全面が光る力、」の欄力 S「〇」であれば堰で 区切られた面全体が発光していることを意味し、「△」であれば LEDと境界部との中 間程度まで発光することを意味し、「 X」であればチップ近傍の面のみが発光してレ、 ることを意味する。 In addition, in the light extraction property section of Table 3, if the field power S “◯” of “the entire surface shines”, it means that the entire surface divided by the weir emits light, and “△” If it is, it means that it emits light to the middle between the LED and the boundary. If “X”, it means that only the surface near the chip emits light.
さらに、表 3の光取り出し性の項において、「境界部での光の遮蔽」の欄が「〇」であ れば境界内部の面のみ発光してレ、ることを意味し、「 X」であれば境界を越え隣接す る面に発光が達してレ、ることを意味する。 Furthermore, in the section of light extraction property in Table 3, if the column “Light shielding at boundary” is “◯”, it means that only the surface inside the boundary emits light, and “X” If this is the case, it means that the light reaches the adjacent surface beyond the boundary.
[0530] [実施例 A— 2— 2] [0530] [Example A— 2-2]
高屈折率層 Aの上に低屈折率層を形成しなかったこと以外は実施例 A— 2— 1と同 様にして、導光板を製造した。得られた導光板について、実施例 A— 2— 1と同様に して評価を行なった。結果を表 3に示す。 A light guide plate was produced in the same manner as in Example A-2-1 except that the low refractive index layer was not formed on the high refractive index layer A. The obtained light guide plate was evaluated in the same manner as in Example A-2-1. The results are shown in Table 3.
[0531] [比較例 A— 2— 1] [0531] [Comparative Example A— 2-1]
高屈折率層 A及びその高屈折率層 A上の低屈折率層を形成しなかったこと以外は 実施例 A— 2—1と同様にして、導光板を製造した。得られた導光板について、実施 例 A— 2—1と同様にして評価を行なった。結果を表 3に示す。 A light guide plate was produced in the same manner as in Example A-2-1 except that the high refractive index layer A and the low refractive index layer on the high refractive index layer A were not formed. The obtained light guide plate was evaluated in the same manner as in Example A-2-1. The results are shown in Table 3.
[0532] [実施例 A— 2— 3] [0532] [Example A-2-3]
特定層(堰)形成液 Bの代わりに特定層(堰)形成液 Cを用いて境界部を形成したこ と、及び、高屈折率層 Aの上に低屈折率層を形成しな力、つたこと以外は実施例 A— 2
—1と同様にして、導光板を製造した。得られた導光板について、実施例 A— 2 1と 同様にして評価を行なった。結果を表 3に示す。 The boundary layer is formed using the specific layer (weir) forming liquid C instead of the specific layer (weir) forming liquid B, and the force that does not form the low refractive index layer on the high refractive index layer A. Example A—2 except for A light guide plate was manufactured in the same manner as -1. The obtained light guide plate was evaluated in the same manner as in Example A-21. The results are shown in Table 3.
[0533] [比較例 A— 2— 2] [0533] [Comparative Example A— 2— 2]
高屈折率層 A及びその高屈折率層 A上の低屈折率層を形成しなかったこと以外は 実施例 A— 2— 3と同様にして、導光板を製造した。得られた導光板について、実施 例 A— 2— 1と同様にして評価を行なった。結果を表 3に示す。 A light guide plate was produced in the same manner as in Example A-2-3, except that the high refractive index layer A and the low refractive index layer on the high refractive index layer A were not formed. The obtained light guide plate was evaluated in the same manner as in Example A-2-1. The results are shown in Table 3.
[0534] [表 3] [0534] [Table 3]
[0535] [比較例 A— 2— 3] [0535] [Comparative Example A—2-3]
[導光板の製造] [Manufacture of light guide plates]
厚さ 0. 43mmのガラス繊維強化エポキシ積層板上の電極に、青色 LEDチップ(ク
リー社製、商品名: C460MB290)を、エポキシ銀ペーストによるダイボンディングと Au線によるワイヤボンディングにより取り付けた。この LEDチップ上に高屈折率バイ ンダ Aを盛り上げて塗布し、 150°Cで 1時間保持して硬化させ、 LEDチップを高屈折 率層 Aで封止した。 A blue LED chip (clamp) is applied to the electrode on a 0.43 mm thick glass fiber reinforced epoxy laminate. Lee Co., Ltd., product name: C460MB290) was attached by die bonding with epoxy silver paste and wire bonding with Au wire. A high refractive index binder A was raised and applied onto this LED chip, and was cured by holding at 150 ° C. for 1 hour, and the LED chip was sealed with a high refractive index layer A.
[0536] 前記の基板上に、特定層(堰)形成液 Bを用いて境界部を描画した。境界部は、当 該青色 LEDを囲む堰となるように描画した。また、境界部の描画は、ノズル径 570 mのシリンジを用いて行なった。この際、当該シリンジのノズルから基板表面までの距 離は 650 mとした。また、描画速度は 10cm/秒とした。さらに、シリンジから特定層 (堰)形成液 Bを押し出す際の圧力は、 2MPaに設定した。 [0536] A boundary portion was drawn on the substrate using the specific layer (weir) forming liquid B. The boundary was drawn to be a weir surrounding the blue LED. The boundary portion was drawn using a syringe having a nozzle diameter of 570 m. At this time, the distance from the syringe nozzle to the substrate surface was set to 650 m. The drawing speed was 10 cm / sec. Furthermore, the pressure when extruding the specific layer (weir) forming liquid B from the syringe was set to 2 MPa.
その後、これを空気雰囲気中、 150°C、大気圧で 0. 5時間保持し、境界部を硬化さ せた。これにより、高さ 500 111、幅 lmmの、稜線のない形状の境界部が得られた。 Thereafter, this was held in an air atmosphere at 150 ° C. and atmospheric pressure for 0.5 hour to cure the boundary. As a result, a boundary portion having a height of 500 111 and a width of 1 mm and having no ridgeline was obtained.
[0537] 次いで、基板上の前記の境界部の内側部分に、高屈折率バインダ Aを塗布した。 [0537] Next, a high refractive index binder A was applied to an inner portion of the boundary portion on the substrate.
この際、境界部が高屈折率バインダ Aを堰き止める堰として作用し、境界部の内側に のみ高屈折率バインダ Aが塗布され、境界部の外側には漏れ出さな力、つた。 At this time, the boundary portion acted as a weir to block the high refractive index binder A, and the high refractive index binder A was applied only to the inside of the boundary portion, and the leakage force was applied to the outside of the boundary portion.
そして、これを空気雰囲気中、 150°C、大気圧で 1時間保持し、高屈折率バインダ Aを硬化させて、厚さ 500 μ mの高屈折率層 Αを形成した。 Then, this was held in an air atmosphere at 150 ° C. and atmospheric pressure for 1 hour to cure the high refractive index binder A to form a high refractive index layer having a thickness of 500 μm.
[0538] 得られた導光板について、実施例 A— 2— 1と同様にして基板の LEDを点灯させて 評価を行なった。結果を表 4に示す。 [0538] The obtained light guide plate was evaluated in the same manner as in Example A-2-1 by turning on the LED on the substrate. The results are shown in Table 4.
なお、表 4の光取り出し性の項において、「遠くまで光る力、」の欄力 S「〇」であれば堰 付近にまで発光面が達していることを意味し、「△」であれば LEDと境界部との中間 程度まで発光することを意味し、「 X」であればチップ直上のみ発光して!/、ることを意 味する。 In addition, in the light extraction property section of Table 4, if the field power S “○” of “power to shine far away”, it means that the light emitting surface has reached the vicinity of the weir, and if it is “△”. This means that the LED emits light to the middle of the LED and the boundary. If “X”, it means that it emits light just above the chip! /.
また、表 4の光取り出し性の項において、「全面が光る力、」の欄力 S「〇」であれば堰で 区切られた面全体が発光していることを意味し、「△」であれば LEDと境界部との中 間程度まで発光することを意味し、「 X」であればチップ近傍の面のみが発光してレ、 ることを意味する。 Also, in the light extraction property section of Table 4, if the field power S “○” of “the whole surface shines,” it means that the entire surface separated by the weir is emitting light, and “△” If it is, it means that it emits light to the middle between the LED and the boundary. If “X”, it means that only the surface near the chip emits light.
さらに、表 4の光取り出し性の項において、「境界部での光の遮蔽」の欄が「〇」であ れば境界内部の面のみ発光してレ、ることを意味し、「 X」であれば境界を越え隣接す
る面に発光が達してレ、ることを意味する。 Furthermore, in the light extraction property section of Table 4, if the “Light shielding at the boundary” column is “◯”, it means that only the surface inside the boundary emits light. If so It means that the light emission reaches the surface.
[0539] [実施例 A— 2— 4] [0539] [Example A— 2— 4]
低屈折率層で LEDチップを封止し、基板上に高屈折率層 Aの代わりに、実施例 A 2 1と同様にして低屈折率層を形成し、その低屈折率層の上に、以下の要領で 光散乱層を形成したこと以外は、比較例 A— 2— 3と同様にして導光板を製造した。 光散乱層は、低屈折率層上の前記の境界部の内側部分に、特定層(低屈折光散 乱層)形成液を塗布し、これを空気雰囲気中、 150°C、大気圧で 1時間保持して硬化 させて形成した。この際、光散乱層の厚さは 470 πιであった。なお、この際も、境界 部が特定層(低屈折光散乱層)形成液を堰き止める堰として作用し、境界部の内側 にのみ特定層(低屈折光散乱層)形成液が塗布され、境界部の外側には漏れ出さな かった。 The LED chip is sealed with a low refractive index layer, and instead of the high refractive index layer A, a low refractive index layer is formed in the same manner as in Example A 21 on the substrate, and on the low refractive index layer, A light guide plate was produced in the same manner as in Comparative Example A-2-3, except that the light scattering layer was formed as follows. For the light scattering layer, a specific layer (low refractive light scattering layer) forming solution is applied to the inner part of the boundary portion on the low refractive index layer, and this is applied in an air atmosphere at 150 ° C and atmospheric pressure. It was formed by holding for a time and curing. At this time, the thickness of the light scattering layer was 470 πι. In this case as well, the boundary part acts as a weir to dam the specific layer (low refractive light scattering layer) forming liquid, and the specific layer (low refractive light scattering layer) forming liquid is applied only inside the boundary part. There was no leakage outside the section.
得られた導光板について、実施例 Α— 2—1と同様にして評価を行なった。結果を 表 4に示す。 The obtained light guide plate was evaluated in the same manner as in Example V2-1. The results are shown in Table 4.
[0540] [実施例 Α— 2— 5] [0540] [Example Α— 2-5]
堰の高さを 500 inとするとともに、基板上に高屈折率層 Aの代わりに、実施例 A— 2— 1と同様にして厚さ 30 mの低屈折率層を形成し、その低屈折率層の上に、以 下の要領で高屈折率層 Bを形成したこと以外は比較例 A— 2— 3と同様にして、導光 板を製造した。 The height of the weir is 500 inches, and instead of the high refractive index layer A, a low refractive index layer having a thickness of 30 m is formed on the substrate in the same manner as in Example A-2-1. A light guide plate was produced in the same manner as in Comparative Example A-2-3, except that the high refractive index layer B was formed on the refractive index layer as follows.
高屈折率層 Bは、低屈折率層上の前記の境界部の内側部分に、高屈折率バイン ダ Bを塗布し、これを空気雰囲気中、 150°C、大気圧で 1時間保持して硬化させて形 成した。この際、高屈折率層 Bの厚さは 470 mであった。なお、この際も、境界部が 高屈折率バインダ Bを堰き止める堰として作用し、境界部の内側にのみ高屈折率バ インダ Bが塗布され、境界部の外側には漏れ出さな力、つた。 For the high refractive index layer B, a high refractive index binder B is applied to the inner part of the boundary portion on the low refractive index layer, and this is held in an air atmosphere at 150 ° C. and atmospheric pressure for 1 hour. Hardened to form. At this time, the thickness of the high refractive index layer B was 470 m. In this case as well, the boundary acts as a weir to block the high refractive index binder B, and the high refractive index binder B is applied only to the inside of the boundary, and the leakage force is applied to the outside of the boundary. .
得られた導光板について、実施例 A— 2—1と同様にして評価を行なった。結果を 表 4に示す。 The obtained light guide plate was evaluated in the same manner as in Example A-2-1. The results are shown in Table 4.
[0541] [実施例 A— 2— 6] [0541] [Example A— 2-6]
特定層(堰)形成液 Bの代わりに特定層(堰)形成液 Cを用いたこと、高屈折率層 A の代わりに実施例 A— 2 1と同様にして低屈折率層を形成したこと、その低屈折率
層の上に実施例 A— 2— 1と同様にして高屈折率層 Aを形成したこと、及び、その高 屈折率層 Aの上に、特定層 (低屈折光散乱層)形成液の代わりに特定層(高屈折光 散乱層/低散乱型)形成液を用いたこと以外は実施例 A— 2— 4と同様にして光散 乱層を形成したこと以外は比較例 A— 2— 3と同様にして、導光板を製造した。 得られた導光板について、実施例 A— 2—1と同様にして評価を行なった。結果を 表 4に示す。 The specific layer (weir) forming liquid C was used in place of the specific layer (weir) forming liquid B, and the low refractive index layer was formed in the same manner as in Example A-21 in place of the high refractive index layer A. Its low refractive index The high refractive index layer A was formed on the layer in the same manner as in Example A-2-1, and the specific layer (low refractive light scattering layer) forming liquid was replaced on the high refractive index layer A. Comparative Example A-2-3 except that a light scattering layer was formed in the same manner as Example A-2-4, except that a specific layer (high refractive light scattering layer / low scattering type) forming solution was used. A light guide plate was manufactured in the same manner as described above. The obtained light guide plate was evaluated in the same manner as in Example A-2-1. The results are shown in Table 4.
[0542] [実施例 A— 2— 7] [0542] [Example A— 2-7]
特定層(堰)形成液 Cの代わりに特定層(堰)形成液 Bを用い、特定層(低屈折光散 乱層)形成液の代わりに特定層(高屈折光散乱層/強散乱型)形成液を用いたこと 以外は実施例 A— 2— 6と同様にして、導光板を製造した。 Specified layer (weir) forming solution C is used instead of specified layer (weir) forming solution B, and specified layer (high refractive light scattering layer / strong scattering type) is used instead of the specified layer (low refractive light scattering layer) forming solution. A light guide plate was produced in the same manner as in Example A-2-6 except that the forming liquid was used.
得られた導光板について、実施例 A— 2—1と同様にして評価を行なった。結果を 表 4に示す。 The obtained light guide plate was evaluated in the same manner as in Example A-2-1. The results are shown in Table 4.
[0543] [実施例 A— 2— 8] [0543] [Example A— 2-8]
特定層(高屈折光散乱層/強散乱型)形成液の代わりに特定層(高屈折光散乱層 /中散乱型)形成液を用いたこと以外は実施例 A— 2— 7と同様にして、導光板を製 λ&しプし。 Except that the specific layer (high refractive light scattering layer / medium scattering type) forming liquid was used instead of the specific layer (high refractive light scattering layer / strong scattering type) forming liquid, the same as in Example A-2-7 Make a light guide plate.
得られた導光板について、実施例 Α— 2—1と同様にして評価を行なった。結果を 表 4に示す。 The obtained light guide plate was evaluated in the same manner as in Example V2-1. The results are shown in Table 4.
[0544] [表 4]
[0544] [Table 4]
[0545] [実施例 A— 2— 9] [0545] [Example A— 2-9]
[導光板の製造] [Manufacture of light guide plates]
厚さ 0. 43mmのガラス繊維強化エポキシ積層基板上の電極に青色 LED (クリー社 製、商品名: C460MB290)を、エポキシ銀ペーストによるダイボンディングと Au線に よるワイヤボンディングにより取り付けた。この LEDを高屈折率バインダ Aにてドーム 状に封止し、 150°Cで 1時間保持して硬化させた。 A blue LED (CREE, trade name: C460MB290) was attached to an electrode on a 0.43 mm thick glass fiber reinforced epoxy laminated substrate by die bonding with epoxy silver paste and wire bonding with Au wire. This LED was sealed in a dome shape with a high refractive index binder A, and cured by holding at 150 ° C. for 1 hour.
[0546] 前記の基板上に、特定層(堰)形成液 Cを用いて境界部を描画した。境界部は、当
該青色 LEDを囲む堰となるように描画した。また、境界部の描画は、ノズル径 290 mのシリンジを用いて行なった。この際、当該シリンジのノズルから基板表面までの距 離は 350 111とした。また、描画速度は 15cm/秒とした。さらに、シリンジから特定層 (堰)形成液 Cを押し出す際の圧力は、 4MPaに設定した。 [0546] A boundary portion was drawn on the substrate using the specific layer (weir) forming liquid C. The boundary is Drawing was made to be a weir surrounding the blue LED. The boundary portion was drawn using a syringe with a nozzle diameter of 290 m. At this time, the distance from the nozzle of the syringe to the substrate surface was 350 111. The drawing speed was 15 cm / sec. Furthermore, the pressure when extruding the specific layer (weir) forming liquid C from the syringe was set to 4 MPa.
その後、これを空気雰囲気中、 150°C、大気圧で 0. 5時間保持し、境界部を硬化さ せた。これにより、高さ 300 111、幅 1 · 3mmの、稜線のない形状の境界部が得られ た。 Thereafter, this was held in an air atmosphere at 150 ° C. and atmospheric pressure for 0.5 hour to cure the boundary. As a result, a boundary part with a height of 300 111 and a width of 1.3 mm and no ridgeline was obtained.
[0547] 次いで、基板上の前記の境界部の内側部分に、実施例 A— 2— 1と同様にして低 屈折率層と高屈折率層 Aとを形成した。そして、高屈折率層 Aの上に、特定層(低屈 折光散乱層)形成液の代わりに特定層(高屈折光散乱層/強散乱型)形成液を用い た他は実施例 A— 2— 4と同様にして光散乱層を形成し、導光板を製造した。 [0547] Next, a low refractive index layer and a high refractive index layer A were formed in the inner part of the boundary portion on the substrate in the same manner as in Example A-2-1. Example A-2 except that the specific layer (high refractive light scattering layer / strong scattering type) forming liquid was used on the high refractive index layer A instead of the specific layer (low refractive light scattering layer) forming liquid. — A light-scattering layer was formed in the same manner as in 4 to produce a light guide plate.
得られた導光板について、実施例 A— 2—1と同様にして評価を行なった。結果を 表 5に示す。 The obtained light guide plate was evaluated in the same manner as in Example A-2-1. The results are shown in Table 5.
[0548] なお、表 5の光取り出し性の項において、「遠くまで光る力、」の欄力 S「〇」であれば堰 付近にまで発光面が達して!/、ることを意味し、「 X」であればチップ直上のみ発光して いることを意味する。 [0548] In addition, in the section of the light extraction property in Table 5, if the field power S "〇" of "power that shines far away", it means that the light emitting surface reaches the weir! “X” means that light is emitted only directly above the chip.
また、表 5の光取り出し性の項において、「全面が光る力、」の欄力 S「〇」であれば堰で 区切られた面全体が発光していることを意味し、「X」であればチップ近傍の面のみ が発光して!/、ることを意味する。 In addition, in the light extraction property section of Table 5, if the field power S “○” of “the whole surface is shining,” it means that the entire surface separated by the weir is emitting light, and “X” If there is, it means that only the surface near the chip emits light! /.
さらに、表 5の光取り出し性の項において、「境界部での光の遮蔽」の欄が「〇」であ れば境界内部の面のみ発光してレ、ることを意味し、「 X」であれば境界を越え隣接す る面に発光が達してレ、ることを意味する。 Furthermore, in the light extraction property section of Table 5, if the column “Light shielding at boundary” is “◯”, it means that only the surface inside the boundary emits light, and “X” If this is the case, it means that the light reaches the adjacent surface beyond the boundary.
[0549] [実施例 A— 2— 10] [0549] [Example A— 2-10]
境界部を形成する際の描画速度を 24cm/秒としたこと以外は実施例 A— 2— 9と 同様にして、導光板を製造した。これにより、高さ 150 m、幅 0. 6mmの稜線の無い 形状の境界部を有する導光板が得られた。 A light guide plate was manufactured in the same manner as in Example A-2-9 except that the drawing speed when forming the boundary portion was 24 cm / sec. As a result, a light guide plate having a boundary portion having a height of 150 m and a width of 0.6 mm and having no ridgeline was obtained.
得られた導光板について、実施例 A— 2—1と同様にして評価を行なった。結果を 表 5に示す。
[0550] [実施例 A— 2— 11] The obtained light guide plate was evaluated in the same manner as in Example A-2-1. The results are shown in Table 5. [0550] [Example A-2-11]
特定層(堰)形成液 Bに代えて特定層(堰)形成液 Cを用いて境界部を形成したこと 以外は実施例 A— 2 9と同様にして、導光板を製造した。 A light guide plate was produced in the same manner as in Example A-29 except that the boundary portion was formed using the specific layer (weir) forming liquid C instead of the specific layer (weir) forming liquid B.
得られた導光板について、実施例 A— 2—1と同様にして評価を行なった。結果を 表 5に示す。 The obtained light guide plate was evaluated in the same manner as in Example A-2-1. The results are shown in Table 5.
[0551] [実施例 A— 2— 12] [0551] [Example A— 2-12]
特定層(堰)形成液 Cの代わりに特定層(堰)形成液 Bを用いたこと、及び、境界部 を形成する際の描画速度を 9cm/秒としたこと以外は実施例 A— 2— 9と同様にして 、導光板を製造した。 Example A-2—Except that the specific layer (weir) forming liquid B was used instead of the specific layer (weir) forming liquid C, and that the drawing speed when forming the boundary was 9 cm / second. In the same manner as in 9, a light guide plate was produced.
得られた導光板について、実施例 A— 2—1と同様にして評価を行なった。結果を 表 5に示す。 The obtained light guide plate was evaluated in the same manner as in Example A-2-1. The results are shown in Table 5.
[0552] [実施例 A— 2— 13] [0552] [Example A— 2-13]
低屈折率層を形成せず、基板上に直接高屈折率層 Aを形成し、その上に光散乱 層を形成したこと以外は実施例 A— 2— 9と同様にして、導光板を製造した。 A light guide plate was produced in the same manner as Example A-2-9 except that the high refractive index layer A was formed directly on the substrate without forming the low refractive index layer, and the light scattering layer was formed thereon. did.
得られた導光板について、実施例 A— 2—1と同様にして評価を行なった。結果を 表 5に示す。 The obtained light guide plate was evaluated in the same manner as in Example A-2-1. The results are shown in Table 5.
[0553] [実施例 A— 2— 14] [0553] [Example A—2-14]
光散乱層を形成しなかったこと以外は実施例 A— 2— 9と同様にして、導光板を製 λ&しプし。 A light guide plate was made in the same manner as in Example A-2-9 except that the light scattering layer was not formed.
得られた導光板について、実施例 Α— 2—1と同様にして評価を行なった。結果を 表 5に示す。 The obtained light guide plate was evaluated in the same manner as in Example V2-1. The results are shown in Table 5.
[まとめ] [Summary]
表 3 5から、屈折率異なる層の積層により導光を高めたものが遠方への光導光機 能に優れ、また光取り出し面に散乱層を設けたものが面内の均一な発光(光取り出し )に優れていることがわかる。さらに境界部を設けることにより発光色の異なる導光層 を隣接させても色の遮蔽が行なわれ混色することが無ぐ必要に応じて境界部を白 色とすることにより境界部から導光面内への反射が起こり、 LED力 最も遠く暗くなり がちな境界部付近の発光均一性を改善することが出来た。積層した特定層の総厚 1
20 μ mの薄膜とした場合でも面内発光均一性の劣化は無ぐ極めて薄層の導光層 の形成が可能であった。このように、屈折率が異なる層の積層及び散乱層'境界層の 併用により、簡便な構造にて均一に面発光可能な導光層を構成することができる。 From Table 35, a layer with a different refractive index that enhances light guiding is superior in the ability to guide light far away, and a light extraction surface with a scattering layer provides uniform light emission (light extraction). ). Further, by providing a boundary portion, even if light guide layers having different light emission colors are adjacent to each other, the color is shielded and the colors are not mixed. Reflection inward occurred and the LED power was able to improve the light emission uniformity near the boundary, which tends to be the darkest farthest. Total thickness of specific layers stacked 1 Even in the case of a 20 μm thin film, it was possible to form a very thin light guide layer with no deterioration in the in-plane light emission uniformity. In this way, a light guide layer capable of uniformly emitting light with a simple structure can be formed by using a stack of layers having different refractive indexes and a combination of a scattering layer and a boundary layer.
[0556] [B.主として第五〜第八の導光部材に係る仮想モデル、実施例及び比較例] [0556] [B. Virtual model mainly related to fifth to eighth light guide members, examples and comparative examples]
[仮想モデル 1] [Virtual model 1]
以下に示す仮想モデル 1は、以下のように導光板を作製した場合には後述する実 施例 B— 1 , 2と同様の作用、効果が得られるであろう仮想モデルである。 The virtual model 1 shown below is a virtual model that will have the same functions and effects as those of Example B-1 and Example 2 described later when the light guide plate is manufactured as follows.
[0557] [B- 1 1]低屈折率層形成液の調液 [0557] [B- 1 1] Preparation of low refractive index layer forming solution
低屈折率樹脂として、極性基を含有しないゴム状 1液型ジメチルシリコーン樹脂 (屈 折率 η= 1 · 41)である東レダウコーユング (株) ¾ICR6101UPを、遠心脱泡型攪拌 装置にて攪拌脱泡して、低屈折率層形成液を得る。 Toray Dow Cowing Co., Ltd. ¾ICR6101UP, a low-refractive index resin that does not contain a polar group and is a rubber-like one-part dimethyl silicone resin (refractive index η = 1 · 41), is stirred with a centrifugal defoaming type stirring device Defoaming to obtain a low refractive index layer forming liquid.
[0558] [B- 1 - 2]高屈折率層形成液の調液 [0558] [B- 1-2] Preparation of high refractive index layer forming solution
高屈折率樹脂として極性基を含有しないゴム状 2液型フエニルメチルシリコーン樹 脂 (η= 1 · 53)であるモメンテイブ パフォーマンスマテリアルズジャパン合同会社製 I VS5022を、遠心脱泡型攪拌装置にて攪拌脱泡して、高屈折率層形成液を得る。 Momentum Performance Materials Japan GK I VS5022, which is a rubber-like two-component phenylmethyl silicone resin (η = 1 · 53) that does not contain polar groups as a high-refractive index resin, is centrifuged using a centrifugal defoaming stirrer. By stirring and degassing, a high refractive index layer forming liquid is obtained.
[0559] [Β— 1 3]光散乱層形成液の調液 [0559] [Β— 1 3] Preparation of light scattering layer forming solution
光散乱粒子として、モメンテイブ ノ フォーマンスマテリアルズジャパン合同会社製「 トスパール 145 (中央粒径 5 111)」0. 75gおよび Al O微粉 CR1 (中央粒径 400η As light scattering particles, 0.75g of Tospearl 145 (median particle size 5 111) manufactured by Momentive Noformance Materials Japan G.K. and Al O fine powder CR1 (median particle size 400η
2 3 twenty three
m) 0. 076gを [B— 1 - 2]で前述したゴム状 2液型フエニルメチルシリコーン樹脂 11 . 3gおよびヘプタン 2. 5gと混合し、遠心脱泡型攪拌装置にて攪拌脱泡して、光散 乱層形成液を得る。 m) 0.076g was mixed with 11.3g of the rubber-like two-component phenylmethyl silicone resin and 2.5g of heptane described in [B-1 -2] and stirred and defoamed with a centrifugal defoaming stirrer. Thus, a light scattering layer forming liquid is obtained.
[0560] [B— 1 4]プライマー液 [0560] [B— 1 4] Primer solution
プライマー液として、例えば、信越化学製プライマー液「プライマー C」(ァミノ基、メ タクリル基等の極性基が含まれると思われるもの)をそのまま使用する。なお、光学用 途専用のプライマー液を用いると、加熱硬化時の黄変が少な!/、ため好まし!/、。 As the primer solution, for example, the primer solution “Primer C” manufactured by Shin-Etsu Chemical Co., Ltd. (which is considered to contain polar groups such as amino groups and methacryl groups) is used as it is. In addition, it is preferable to use a primer solution dedicated for optical use because it causes little yellowing during heat curing!
[0561] [B— 1 5]光学材料形成液の塗布 [0561] [B-1 5] Application of optical material forming liquid
直径 5cmのテフロン (登録商標)製シャーレに [B— 1 1]の低屈折率層形成液 2g を流し入れてレべリングさせ、 150°Cの通風式乾燥機中、 1時間硬化を行ない、厚さ
lmmの透明硬化膜を得る。 Pour 2 g of low refractive index layer forming liquid [B—11] into a 5 cm diameter Teflon (registered trademark) petri dish, level it, and cure for 1 hour in a 150 ° C ventilator. The An lmm transparent cured film is obtained.
前記硬化膜をテフロン製シャーレに入れたまま、低屈折率層の上に [B— 1—4]の プライマー Cを薄く塗布し、プライマーの溶媒を風乾し、その後 [B— 1 2]の高屈折 率層形成液 2gを流し入れてレべリングさせ、 150°Cの通風式乾燥機中 1時間硬化を 行ない、先の低屈折率層の上に厚さ lmmの透明高屈折率層を積層する。 With the cured film in a Teflon petri dish, apply [B-1-4] Primer C thinly on the low refractive index layer, air-dry the primer solvent, and then set [B-1 2] high Pour 2 g of the refractive index layer forming solution, level it, cure for 1 hour in a 150 ° C ventilator, and stack a transparent high refractive index layer with a thickness of 1 mm on the low refractive index layer. .
さらに、この積層硬化物の上に [B— 1—4]のプライマー Cを薄く塗布、プライマー の溶媒を風乾後 [B— 1 3]の光散乱層形成液を流し入れてレべリングさせ、 150°C の通風乾燥機中 1時間硬化を行ない、厚さ 0. 8mmの 3層目の膜を積層する。 Furthermore, apply [B-1-4] Primer C thinly on this layered cured product, air-dry the primer solvent, and pour the [B-13] light scattering layer forming solution to level it. Curing for 1 hour in a ventilator at ° C, and a third film with a thickness of 0.8 mm is deposited.
[0562] 得られた 3層構造の導光板をシャーレから取り出し、円周上の一端から中央の高屈 折率層に上記高屈折率樹脂東レダウコーニング CR6175にて封止した波長 460 nmの青色 LEDを押し当てて発光させる。これにより、高屈折率層内を青色光が伝播 し、光散乱層全面が光る様子が観察されると考えられる。 [0562] The obtained light guide plate having a three-layer structure was taken out of the petri dish, and sealed with the above-mentioned high refractive index resin Toray Dow Corning CR6175 from one end on the circumference to the central high refractive index layer. Press the LED to emit light. As a result, it is considered that blue light propagates in the high refractive index layer and the entire surface of the light scattering layer shines.
[0563] この低屈折率層と高屈折率層との間に鋭利なピンセットを差し入れると、仮想モデ ノレ 1の導光板は各層の間でピンセット部分を起点とする自発的な剥離の拡大は起こ らず、よく密着しているものと期待される。同様に、高屈折率層と光散乱層との間に外 力を加えると、これも同様に自発的な剥離の拡大はおこらず、よく密着しているものと 期待される。 [0563] When sharp tweezers are inserted between the low-refractive index layer and the high-refractive index layer, the light guide plate of virtual model 1 does not spontaneously expand the peeling between the layers starting from the tweezers. It does not happen and is expected to be in close contact. Similarly, when an external force is applied between the high-refractive index layer and the light scattering layer, this also is expected to be in close contact without causing spontaneous expansion of peeling.
[0564] [実施例 B— 1] [0564] [Example B-1]
仮想モデル 1と同様の 3層構造である力 S、低屈折率層に極性基としてエポキシ基を 有する 2液型ジメチルシリコーン樹脂である信越化学工業 (株)製 LPS2410を使用し 、高屈折率層に極性基としてエポキシ基'メトキシ基を有する 2液型フエニルメチルシ リコーン樹脂である東レダウコーユング (株) ¾JCR6175を使用し、プライマーを塗布 せずに直接 3層積層した導光板を作製した。 A high-refractive index layer using LPS2410 made by Shin-Etsu Chemical Co., Ltd., which is a two-part dimethyl silicone resin that has an epoxy group as a polar group in the low-refractive index layer, with a force S that is the same as the virtual model 1. In addition, Toray Dow Cowing Co., Ltd. ¾JCR6175, which is a two-component phenylmethyl silicone resin having an epoxy group “methoxy group” as a polar group, was used to prepare a light guide plate in which three layers were directly laminated without applying a primer.
[0565] この導光板をシャーレから取り出し、仮想モデル 1と同様に、円周上の一端から中 央の高屈折率層に高屈折率層と同じ高屈折率樹脂にて封止した波長 460nmの青 色 LEDを押し当てて発光させたところ、高屈折率層内を青色光が伝播し、光散乱層 全体が光る様子が観察された。 [0565] This light guide plate was taken out of the petri dish, and in the same manner as in the virtual model 1, from the one end on the circumference to the central high refractive index layer was sealed with the same high refractive index resin as that of the high refractive index layer. When a blue LED was pressed to emit light, it was observed that blue light propagated through the high refractive index layer and the entire light scattering layer shined.
[0566] この低屈折率層と高屈折率層との間に鋭利なピンセットを差し入れたところ、実施
例 B— 1の導光板は各層の間でピンセット部分を起点とする自発的な剥離の拡大は 起こらず、よく密着していた。同様に、高屈折率層と光散乱層との間に外力を加えた ところ、これも同様にピンセット部分を起点とする自発的な剥離の拡大はおこらずよく 密着していた。 [0566] A sharp tweezer was inserted between the low refractive index layer and the high refractive index layer. The light guide plate of Example B-1 was in close contact with each other, with no spontaneous expansion of peeling from the tweezers. Similarly, when an external force was applied between the high-refractive index layer and the light scattering layer, it was also in close contact without causing spontaneous expansion of the peeling starting from the tweezers.
[0567] [実施例 B— 2] [0567] [Example B-2]
実施例 B— 1と同じの低屈折率層、高屈折率層及び光散乱層を有する 3層構造で ある力 各層間に仮想モデル 1で用いたプライマー Cを薄く塗布し、プライマーの溶 媒を風乾後次の層を流し入れてレべリングさせ、硬化を行なって、 3層積層した導光 板を作製した。 Example B-1 The force of a three-layer structure having the same low-refractive index layer, high-refractive index layer, and light scattering layer as in Example 1. Primer C used in virtual model 1 is thinly applied between each layer, and the primer solvent is used. After air drying, the next layer was poured and leveled and cured to produce a light guide plate with three layers laminated.
[0568] 仮想モデル 1と同様に、円周上の一端から中央の高屈折率層に実施例 B—1と同 様の高屈折率樹脂にて封止した波長 460nmの青色 LEDを押し当てて発光させたと ころ、高屈折率層内を青色光が伝播し、光散乱層全体が光る様子が観察された。 [0568] As in the virtual model 1, a blue LED with a wavelength of 460 nm sealed with a high refractive index resin similar to that in Example B-1 was pressed from one end of the circumference to the central high refractive index layer. When the light was emitted, it was observed that blue light propagated through the high refractive index layer and the entire light scattering layer was shining.
[0569] この低屈折率層と高屈折率層との間に鋭利なピンセットを差し入れたところ、実施 例 B— 2の導光板は各層の間でピンセット部分を起点とする自発的な剥離の拡大は 起こらず、よく密着していた。同様に、高屈折率層と光散乱層との間に外力を加えた ところ、これも同様にピンセット部分を起点とする自発的な剥離の拡大はおこらず、よ く密着していた。 [0569] When sharp tweezers were inserted between the low-refractive index layer and the high-refractive index layer, the light guide plate of Example B-2 expanded spontaneous peeling between the layers starting from the tweezers. Did not happen and was in close contact. Similarly, when an external force was applied between the high-refractive index layer and the light scattering layer, this also did not expand spontaneously starting from the tweezers, and was in close contact.
[0570] [比較用仮想モデル 1] [0570] [Comparison virtual model 1]
仮想モデル 1と同様の樹脂を用いた 3層構造であるが、各層間にプライマーを塗布 せずに直接 3層積層した導光板を作製した場合は、この導光板をシャーレから取り出 そうとすると、各層の境界面から容易に剥離が発生し分離するため、密着不十分に つき導光板として使用することが出来ない。 It has a three-layer structure using the same resin as the virtual model 1, but if a light guide plate is produced in which three layers are laminated directly without applying a primer between each layer, the light guide plate will be removed from the petri dish. Since peeling easily occurs and separates from the boundary surface of each layer, it cannot be used as a light guide plate due to insufficient adhesion.
[0571] [比較例 B— 1] [0571] [Comparative Example B-1]
[B- 2- 1]低屈折率層形成液の調液 [B-2-1] Preparation of low refractive index layer forming liquid
メチノレシリケー卜(三菱ィ匕学社製 MKCシリケ一卜 MS51) 30. 80g、メタノーノレ 56. 53g、水 6· 51g、及び、触媒として 5重量%ァセチルアセトンアルミニウム塩メタノー ノレ溶液 6. 16gを、密閉できる容器にて混合し、密栓してスターラーで撹拌しながら 5 0°Cの温水バスにて 8時間加熱したのち室温に戻し、加水分解'重縮合液を調液した
。この液の硬化物の屈折率は 1. 44である。 Methinosilicate (MKC Siliquette MS51 made by Mitsubishi Chemical Co., Ltd. MS51) 30. 80 g, methanole 56. 53 g, water 6.51 g, and 6.16 g of 5% by weight acetylacetone aluminum salt methanol solution as a catalyst were sealed. Mix in a container, seal tightly, and stir with a stirrer, heat in a 50 ° C hot water bath for 8 hours, return to room temperature, and prepare hydrolysis' polycondensation liquid . The refractive index of the cured product of this liquid is 1.44.
[0572] [B— 2— 2]高屈折率層形成液の調液 [0572] [B—2-2] Preparation of high refractive index layer forming solution
メチノレシリケー卜(三菱ィ匕学社製 MKCシリケ一卜 MS51) 30. 80g、メタノーノレ 56. 53g、水 6. 51g、屈折率調整剤として粒子径が 5nmのシリカジルコ二アコ一ティング 付きチタニアゾル(固形分 20重量%のメタノール分散液) 19. 6g、及び、触媒として 5 重量%ァセチルアセトンアルミニウム塩メタノール溶液 6. 16gを、密閉できる容器に て混合し、密栓してスターラーで撹拌しながら 50度の温水バスにて 8時間加熱したの ち室温に戻し、加水分解'重縮合液を調液した。この液の硬化物の屈折率は 1. 52 である。 Methinoresilicate (MKC Siliquette MS51 from Mitsubishi Chemical Co., Ltd. MS51) 30.80g, methanole 56.53g, water 6.51g, titania sol with silica zirconia-coating with a particle size of 5nm as a refractive index modifier (solid content 20 19.6 g of methanol dispersion (weight%) and 6.16 g of 5 wt% acetylethylacetone aluminum salt methanol solution as a catalyst are mixed in a container that can be sealed, sealed, stirred with a stirrer, and heated at 50 ° C. After heating in a bath for 8 hours, the temperature was returned to room temperature, and a hydrolysis / polycondensation solution was prepared. The refractive index of the cured product of this liquid is 1.52.
[0573] [B— 2— 3]光散乱層形成液の調液 [0573] [B— 2-3] Preparation of light scattering layer forming solution
光散乱粒子として、モメンテイブ ノ フォーマンスマテリアルズジャパン合同会社製「 トスパール 145 (中央粒径 5 111)」0. 75gおよび Al O微粉 CR1 (中央粒径 400η As light scattering particles, 0.75g of Tospearl 145 (median particle size 5 111) manufactured by Momentive Noformance Materials Japan G.K. and Al O fine powder CR1 (median particle size 400η
2 3 twenty three
m) 0. 076gを [B— 2— 2]で前述した高屈折率層形成液 30gと混合し、スターラーに て攪拌して、光散乱層形成液を得た。 m) 0.076 g was mixed with 30 g of the high refractive index layer forming solution described above in [B-2-2] and stirred with a stirrer to obtain a light scattering layer forming solution.
[0574] [B— 2— 4]光学材料形成液の塗布 [0574] [B— 2-4] Application of optical material forming liquid
[B- 2- 1]で得られた低屈折率層形成液 1 Ogを直径 5cmテフロン (登録商標)シ ヤーレに流し入れ、 35°Cで 30分間、次いで 50°Cで 1時間保持し、溶媒の除去を行な つた後、 150°Cで 3時間保持し加熱硬化を行なったところ、厚さ約 0. 3mmの硬いガ ラス状の膜が得られた。しかし、この膜には乾燥の過程でクラックが多く発生し、完全 な円形透明ガラス膜として取り出すことはできな力、つた。 Pour 1 Og of the low refractive index layer-forming solution obtained in [B-2-1] into a 5 cm diameter Teflon (registered trademark) Shear, hold at 35 ° C for 30 minutes, and then hold at 50 ° C for 1 hour. After removing the film, it was heated and cured at 150 ° C. for 3 hours to obtain a hard glass film having a thickness of about 0.3 mm. However, many cracks were generated in this film during the drying process, and it was impossible to take out as a complete circular transparent glass film.
[0575] さらに、 [B— 2— 2]で得られた高屈折率層形成液及び [B— 2— 3]の光散乱層形 成液を用いて低屈折率層形成液と同様の処方にて単独膜作成を試みた力 反りや クラックが多く発生し、完全な円形ガラス状膜として取り出すことが出来な力 た。 [0575] Further, using the high refractive index layer forming liquid obtained in [B2-2-2] and the light scattering layer forming liquid of [B2-2-3], the same formulation as the low refractive index layer forming liquid is used. Attempts to create a single film at the time Many warps and cracks occurred, and it was impossible to take out as a complete circular glassy film.
[0576] このように各々の層が単層膜形成困難な状態であり、仮想モデル 1のように 3層積 層した導光板形成することは出来なかった。また、これらの膜はショァ A、ショァ D硬 度計を用いて膜硬度を測定するに十分な面積 ·膜厚を得ることが出来ず、硬度測定 値を得ることが出来なかったが、 SiOで表される一般的なガラス板の硬度はショァ D [0576] Thus, each layer is in a state where it is difficult to form a single layer film, and it was not possible to form a light guide plate in which three layers were stacked as in virtual model 1. In addition, these films could not obtain a sufficient area and film thickness for measuring the film hardness using the Shore A and Shore D hardness meters, and could not obtain a hardness measurement value. The general glass plate hardness represented by Shore D
2 2
= 100であったことから、同程度の硬度を有するものと推測される。従って、シロキサ
ン構造を有し、極性基としてシラノールやアルコキシ基を有する力 架橋度調整が無 V、比較例 B— 1の硬質シロキサン化合物は、各層間の化学的な密着力は有して!/、て も可撓性不十分のため硬化時に発生する収縮応力を緩和することができず、破損し て導光板を形成することが出来ないと考えられる。 Since it was 100, it is estimated that it has the same degree of hardness. Therefore, Siloxa Power of having silanol structure and silanol or alkoxy group as a polar group No degree of cross-linking adjustment V, the hard siloxane compound of Comparative Example B-1 has chemical adhesion between each layer! / However, due to insufficient flexibility, the shrinkage stress generated during curing cannot be relieved, and it is considered that the light guide plate cannot be formed due to breakage.
以上の実施例及び比較例の結果を表 6にまとめた。なお、密着性の欄において、 D /Hは低屈折率層と高屈折率層との間の密着性を表わし、 H/Lは高屈折率層と光 散乱層との間の密着性を表わす。また、密着性の欄において、◎はピンセットを層の 間に差し込んだ場合に、ピンセット部分を起点とする自発的な別離がなぐ且つ、密 着性が強いためにピンセットの差し込みが困難であったことを表わし、〇はピンセット を層の間に差し込んだ場合に、ピンセット部分を起点とする自発的な別離がないが、 ピンセットの差し込みが容易であったことを表わし、 Xはシャーレから取り出す際に 2 層分離、破損が生じたことを表わす。さらに、光取り出し効果の欄において、〇は光 散乱層全体が光る様子が観察されたことを表わし、 Xはそれが観察されなかったこと を表わす。 The results of the above examples and comparative examples are summarized in Table 6. In the adhesion column, D / H represents the adhesion between the low refractive index layer and the high refractive index layer, and H / L represents the adhesion between the high refractive index layer and the light scattering layer. . Also, in the Adhesion column, ◎ indicates that when tweezers are inserted between layers, it is difficult to insert tweezers due to lack of spontaneous separation starting from the tweezers and strong adhesion. 〇 means that when tweezers are inserted between the layers, there is no spontaneous separation starting from the tweezers, but tweezers are easy to insert, and X indicates that the tweezers are removed from the petri dish. Indicates that two-layer separation or damage has occurred. Furthermore, in the column of the light extraction effect, ◯ indicates that the whole light scattering layer is shining, and X indicates that it is not observed.
[表 6] [Table 6]
[¾ 6 及びお:較^ 結果」 [¾ 6 and O: Comparison ^ Results]
' '
1 : :?·5 ·ί■?■■■¾;.. 1::? · 5 · ί ■? ■■■ ¾ ; ..
.; i、 ϋ .; i, ϋ
;;. ;;.
. ! !
ί'.ί o ί'.ί o
-; ラ - - 後度; V:せ- '' シ T ;·> :::: '; Q ¾i; s: :' 拖操され. ¾ - ; La--Later; V: Set-'' Shi T; ·> :::: '; Q ¾i; s::' Manipulated.
[C.主として第九の導光部材に係る実施例及び比較例] [C. Examples and comparative examples mainly related to ninth light guide member]
[c- i .各層の形成液の用意] [c-i. Preparation of forming solution for each layer]
[C 1 1]特定層 (低屈折率層)形成液の合成 [C 1 1] Synthesis of specific layer (low refractive index layer) forming solution
モメンテイブ'パフォーマンス 'マテリアルズ 'ジャパン合同会社製両末端シラノール ジメチノレシリ =i一ン才ィノレ XC96— 723を 1450. 82g、フエ二ノレ卜リメ卜キシシランを 14 5g、及び、ジルコニウムテトラァセチルァセトネート粉末を 3. 190g用意した。これを 撹拌翼とコンデンサとを取り付けた 2Lの三つ口コルベン中に入れ、室温で、ジルコ一 ネート粉末が十分溶解するまで撹拌した。これにより、 15分
ほどで溶解した。この液を 120°Cまで昇温し、 30分間還流させながら撹拌を行なったMomentive 'Performance''Materials' Japan GK Co., Ltd. Both-end silanol Dimethenoresiri = i 1-year-old Inore XC96— 723 1450. 3. 190g was prepared. This was placed in a 2 L three-necked Kolben equipped with a stirring blade and a condenser, and stirred at room temperature until the zirconate powder was sufficiently dissolved. This will allow 15 minutes It dissolved in about. The liquid was heated to 120 ° C and stirred while refluxing for 30 minutes.
〇 Yes
[0579] 続いて、ガス吹き込み管をコルベンの口に接続して、窒素を SV20で反応液中に吹 き込みながら 120°Cで 5時間、撹拌を続けた。なお、ここで「SV」とは「Space Veloc ity」の略称であり、単位時間当たりの吹き込み量を指す。よって、 SV20とは、 1時間 に反応液の 20倍体積の Nを吹き込むことをいう。 [0579] Subsequently, a gas blowing tube was connected to the mouth of Kolben, and stirring was continued at 120 ° C for 5 hours while nitrogen was blown into the reaction solution with SV20. Here, “SV” is an abbreviation for “Space Velocity” and indicates the amount of blowing per unit time. Therefore, SV20 means blowing N of 20 times the volume of the reaction solution in one hour.
2 2
窒素の吹き込みを停止しコルベンをいつたん室温まで冷却した後、反応液をナス型 フラスコに移し、ロータリーエバポレーターを用いてオイルバス上 120°C、 lkPaで 20 分間減圧留去し、特定層(低屈折率層)形成液 (粘度 282mPa * s ;以下適宜「低屈折 率バインダ」という)を得た。 After the nitrogen blowing was stopped and the Kolben was cooled to room temperature, the reaction solution was transferred to an eggplant-shaped flask and distilled under reduced pressure on an oil bath at 120 ° C and lkPa for 20 minutes using a rotary evaporator. Refractive index layer) forming liquid (viscosity 282 mPa * s; hereinafter referred to as “low refractive index binder” as appropriate) was obtained.
[0580] [C- 1 - 2]特定層(高屈折率層)形成液 Aの合成 [0580] [C-1-2] Synthesis of specific layer (high refractive index layer) forming solution A
モメンテイブ'パフォーマンス 'マテリアルズ 'ジャパン合同会社製両末端シラノール ジメチノレシリコーンオイノレ XC96— 723を 42g、両末端シラノールメチルフエ二ルシリ コーンオイル YF3804を 98g、フエニルトリメトキシシランを 14g、及び、触媒としてジ ルコニゥムテトラァセチルァセトネート粉末を 0. 308g用意し、これを撹拌翼とコンデ ンサとを取り付けた 200mLの三つ口コルベン中に計量した。室温で、ジルコニウムテ トラァセチルァセトネート粉末が十分溶解するまで撹拌した。これにより、 15分ほどで 溶解した。この液を 120°Cまで昇温し、 30分間還流させながら撹拌を行なった。 Momentive 'Performance' Materials' Japan GK Co., Ltd. both-end silanol Dimethylol silicone oil XC96-723 42g, Both-end silanol methylphenol corn oil YF3804 98g, Phenyltrimethoxysilane 14g, and catalyst 0.308 g of zirconium tetracetylacetonate powder was prepared and weighed into a 200 mL three-necked Kolben equipped with a stirring blade and a condenser. The mixture was stirred at room temperature until the zirconium tetracetylacetonate powder was sufficiently dissolved. This dissolved in about 15 minutes. The liquid was heated to 120 ° C. and stirred while refluxing for 30 minutes.
[0581] 続いて、ガス吹き込み管をコルベンの口に接続して、窒素を SV20で反応液中に吹 き込みながら 120°Cで 6時間、撹拌を続けた。 [0581] Subsequently, a gas blowing tube was connected to the mouth of Kolben, and stirring was continued at 120 ° C for 6 hours while nitrogen was blown into the reaction solution with SV20.
窒素の吹き込みを停止しコルベンをいつたん室温まで冷却した後、反応液をナス型 フラスコに移し、ロータリーエバポレーターを用いてオイルバス上 120°C、 lkPaで 20 分間減圧留去した。 After the nitrogen blowing was stopped and the Kolben was cooled to room temperature, the reaction solution was transferred to an eggplant-shaped flask and distilled off under reduced pressure at 120 ° C. and lkPa for 20 minutes on an oil bath using a rotary evaporator.
[0582] 容器に無機粒子として、超微粒子状シリカ(日本ァエロジル株式会社製、商品名: AEROSIL # RX200) 0. lg、および、前記減圧留去後の反応液 1 · 0gを入れて混 合し、自転 ·公転方式ミキサー脱泡装置を使用し、遠心脱泡を行なった。その後、容 器を真空チャンバ一に入れて、さらに脱泡操作を行い、特定層(高屈折率層)形成液 A (以下適宜、「高屈折率バインダ八」という)を得た。
[0583] [C 1 3]特定層(堰)形成液 Bの合成 [0582] Ultrafine silica (trade name: AEROSIL # RX200) manufactured by Nippon Aerosil Co., Ltd. as an inorganic particle, 0.1 lg, and 1.0 g of the reaction solution after distillation under reduced pressure were mixed in a container. , Centrifugal defoaming was performed using a rotation / revolution mixer defoamer. Thereafter, the container was placed in a vacuum chamber and a defoaming operation was further performed to obtain a specific layer (high refractive index layer) forming liquid A (hereinafter referred to as “high refractive index binder 8” as appropriate). [0583] [C 1 3] Synthesis of specific layer (weir) forming liquid B
容器に無機粒子として、超微粒子状シリカ(日本ァエロジル株式会社製、商品名: AEROSIL # 130) 0. 78g、エポキシ樹脂(ジャパンエポキシレジン製、商品名:ェピ コート 828US) 4. 98g、エポキシ樹脂硬化剤(ジャパンエポキシレジン製、商品名: J ERェピキュア YLH1230) 4. 24gを入れて混合し、自転'公転方式ミキサー脱泡装 置を使用し、遠心脱泡を行なった。その後、容器を真空としさらに脱泡操作を行ない 、特定層(堰)形成液 Bを得た。 Ultrafine silica particles (made by Nippon Aerosil Co., Ltd., trade name: AEROSIL # 130) 0.78 g, epoxy resin (made by Japan Epoxy Resin, trade name: Epicoat 828US) 4. 98 g, epoxy resin as inorganic particles in the container Curing agent (made by Japan Epoxy Resin, trade name: J ER Epicure YLH1230) 4. 24 g was added and mixed, and centrifugal defoaming was performed using a rotating / revolving mixer defoaming device. Thereafter, the container was evacuated and further defoaming was performed to obtain a specific layer (weir) forming liquid B.
[0584] [C 1 4]特定層(堰)形成液 Cの合成 [0584] [C 14] Synthesis of specific layer (weir) forming liquid C
容器に無機粒子として、超微粒子状シリカ(日本ァエロジル株式会社製、商品名: AEROSIL # 130) 0. 55g、非凝集タイプアルミナ(Baikowski社製、商品名: CR1 、中央粒径 0. 95ミクロン) 2. 0g、エポキシ樹脂(ジャパンエポキシレジン製、商品名: ェピコート 828US) 4. 03g、エポキシ樹脂硬化剤(ジャパンエポキシレジン製、商品 名: JERェピキュア YLH1230) 3. 42gを入れて混合し、自転'公転方式ミキサー脱 泡装置を使用し、遠心脱泡を行なった。その後、容器を真空としさらに脱泡操作を行 なレ \特定層(堰)形成液 Cを得た。 Ultrafine silica particles (made by Nippon Aerosil Co., Ltd., trade name: AEROSIL # 130) 0.55 g, non-agglomerated type alumina (made by Baikowski, trade name: CR1, median particle size 0.95 microns) as inorganic particles in the container 2. 0g, epoxy resin (made by Japan Epoxy Resin, trade name: Epicoat 828US) 4. 03g, epoxy resin curing agent (made by Japan Epoxy Resin, trade name: JER Epicure YLH1230) Centrifugal defoaming was performed using a revolving mixer defoaming device. Thereafter, the container was evacuated and further defoaming was performed to obtain a specific layer (weir) forming liquid C.
[0585] [C- 1 - 5]特定層(高屈折光散乱層/低散乱型)形成液の調液 [0585] [C- 1-5] Preparation of specific layer (high refractive light scattering layer / low scattering type) forming solution
モメンテイブ'パフォーマンス 'マテリアルズ 'ジャパン合同会社製両末端シラノール ジメチノレシリコーンオイノレ XC96— 723を 42g、両末端シラノールメチルフエ二ルシリ コーンオイル YF3804を 98g、フエニルトリメトキシシランを 14g、及び、触媒としてジ ルコニゥムテトラァセチルァセトネート粉末を 0. 308g用意し、これを攪拌翼とコンデ ンサとを取り付けた三つ口コルベン中に計量し、室温にて 15分触媒が十分溶解する まで攪拌した。この後、反応液を 120°Cまで昇温し、 120°C全還流下で 2時間攪拌し つつ初期加水分解を行った。 Momentive 'Performance' Materials' Japan GK Co., Ltd. Both End Silanol Dimethylol Silicone Oile XC96-723 42g, Both End Silanol Methyl Phenyl Silcon Corn Oil 98g, Phenyltrimethoxysilane 14g, and Catalyst Prepare 0.308 g of zirconium tetracetylacetonate powder, weigh it into a three-necked Kolben equipped with a stirring blade and a condenser, and stir at room temperature for 15 minutes until the catalyst is sufficiently dissolved. did. Thereafter, the temperature of the reaction solution was raised to 120 ° C, and initial hydrolysis was carried out with stirring at 120 ° C under total reflux for 2 hours.
続レ、て窒素を SV20で吹き込み生成メタノール及び水分、副生物の低沸ケィ素成 分を留去しつつ 120°Cで攪拌し、さらに 6時間重合反応を進めた。 Subsequently, nitrogen was blown in with SV20 and the resulting methanol, water, and low-boiling components of by-products were distilled off and stirred at 120 ° C, and the polymerization reaction was further continued for 6 hours.
窒素の吹き込みを停止し反応液をいつたん室温まで冷却した後、ナス型フラスコに 反応液を移し、ロータリーエバポレーターを用いてオイルバス上 120°C、 lkPaで 20 分間微量に残留しているメタノール及び水分、低沸ケィ素成分を留去し、無溶剤の
高屈折率バインダ (η= 1 · 46)を得た。 After stopping the nitrogen blowing and cooling the reaction solution to room temperature, transfer the reaction solution to an eggplant-shaped flask and use a rotary evaporator on the oil bath for 120 minutes at 120 ° C and lkPa for 20 minutes. Distills off moisture and low boiling carbon components, and eliminates solvent-free A high refractive index binder (η = 1 · 46) was obtained.
[0586] 光散乱粒子として、 Al Ο微粉「CR1 (中央粒径 400nm)」 0. lgを、前記の高屈折 [0586] Al Ο fine powder "CR1 (median particle size 400nm)" 0.lg as light scattering particles, the above high refraction
2 3 twenty three
率バインダ (n= l . 46) 9. 9gと混合し、自転 ·公転方式ミキサー脱泡装置を使用し、 遠心脱泡 ·混合を行なった。その後、容器を真空としてさらに脱泡 ·混合を行い、特定 層(高屈折光散乱層/低散乱型)形成液を得た。 Binder (n = l. 46) 9. Mix with 9g and perform centrifugal defoaming and mixing using a rotating / revolving mixer defoaming device. Thereafter, the container was evacuated and further defoamed and mixed to obtain a liquid for forming a specific layer (high refractive light scattering layer / low scattering type).
[0587] [C- 1 - 6]特定層(高屈折光散乱層/中散乱型)形成液の調液 [0587] [C-1-6] Preparation of specific layer (high refractive light scattering layer / medium scattering type) forming solution
光散乱粒子として、モメンテイブ'パフォーマンス 'マテリアルズ 'ジャパン合同会社 製「トスパール 145 (中央粒径 5 m)」l . Og及び Al O微粉「CR1 (中央粒径 400η As light-scattering particles, Motosive 'Performance' Materials' Japan Tospearl 145 (median particle size 5 m) 'l.Og and Al O fine powder' CR1 (median particle size 400η
2 3 twenty three
m) j O. lgを、前記の高屈折率バインダ (n= l . 46) 8. 9gと混合し、自転'公転方式 ミキサー脱泡装置を使用し、遠心脱泡 ·混合を行なった。その後、容器を真空としてさ らに脱泡 ·混合を行い、特定層(高屈折光散乱層/中散乱型)形成液を得た。 m) j O. lg was mixed with 8.9 g of the above high refractive index binder (n = l. 46) and subjected to centrifugal defoaming and mixing using a rotation / revolution system mixer defoaming device. Thereafter, the container was further evacuated and mixed under vacuum to obtain a specific layer (high refractive light scattering layer / medium scattering type) forming liquid.
[0588] [C- 1 - 7]特定層(高屈折光散乱層/強散乱型)形成液の調液 [0588] [C- 1-7] Preparation of specific layer (high refractive light scattering layer / strong scattering type) forming solution
光散乱粒子として、モメンテイブ'パフォーマンス 'マテリアルズ 'ジャパン合同会社 製「トスパール 145 (中央粒径 5 m)」 2. Og及び Al O微粉「CR1 (中央粒径 400η As a light scattering particle, “Tospearl 145 (median particle size 5 m)” manufactured by Momentive “Performance” Materials “Japan GK” 2. Og and Al O fine powder “CR1 (median particle size 400η)
2 3 twenty three
m) j 0. 2gを、前記の高屈折率バインダ (n= l . 46) 7. 8gと混合し、自転'公転方式 ミキサー脱泡装置を使用し、遠心脱泡 ·混合を行なった。その後、容器を真空としてさ らに脱泡 ·混合を行い、特定層(高屈折光散乱層/強散乱型)形成液を得た。 m) 0.2 g of j was mixed with 7.8 g of the above-described high refractive index binder (n = l. 46), and centrifugal defoaming and mixing were performed using a rotation / revolution system mixer defoaming device. Thereafter, the container was further evacuated and mixed under vacuum to obtain a liquid for forming a specific layer (high refractive light scattering layer / strong scattering type).
[0589] [C- 1 - 8]特定層(低屈折光散乱層)形成液の調液 [0589] [C- 1-8] Preparation of specific layer (low refractive light scattering layer) forming solution
モメンテイブ'パフォーマンス 'マテリアルズ 'ジャパン合同会社製両末端シラノール ジメチノレシリ 一ン才ィノレ XC96— 723を 1450. 82g、フエ二ノレ卜リメ卜キシシランを 14 5g、及び、触媒としてジルコニウムテトラァセチルァセトネート粉末を 3· 190g用意し 、これを攪拌翼とコンデンサとを取り付けた 2Lの三つ口コルベン中に計量し、室温に て 15分触媒が十分溶解するまで攪拌した。この後、反応液を 120°Cまで昇温し、 12 0°C全還流下で 30分間攪拌しつつ初期加水分解を行った。 Momentive 'Performance' 'Materials' Japan GK Co., Ltd. Both-end silanol Dimethenoresiri 1-year-old Inore XC96— 723 1450.82g, Phenyloloxysilane 145g 3 · 190 g was prepared, weighed into a 2 L three-necked Kolben equipped with a stirring blade and a condenser, and stirred at room temperature for 15 minutes until the catalyst was sufficiently dissolved. Thereafter, the temperature of the reaction solution was raised to 120 ° C., and initial hydrolysis was performed while stirring at 120 ° C. under total reflux for 30 minutes.
[0590] 続いて窒素を SV20で吹き込み生成メタノール及び水分、副生物の低沸ケィ素成 分を留去しつつ 120°Cで攪拌し、さらに 5時間重合反応を進めた。 [0590] Subsequently, nitrogen was blown in with SV20, and the resulting methanol, water, and low-boiling components of by-products were distilled off and stirred at 120 ° C, and the polymerization reaction was further continued for 5 hours.
窒素の吹き込みを停止し反応液をいつたん室温まで冷却した後、ナス型フラスコに 反応液を移し、ロータリーエバポレーターを用いてオイルバス上 120°C、 lkPaで 20
分間微量に残留しているメタノール及び水分、低沸ケィ素成分を留去し、無溶剤の 低屈折率バインダ (η= 1 · 42) (282mPa' s)を得た。 Nitrogen blowing was stopped and the reaction solution was cooled down to room temperature. After that, the reaction solution was transferred to an eggplant-shaped flask, and the rotary evaporator was used on an oil bath at 120 ° C and lkPa at 20 ° C. Methanol, water, and low-boiling carbon components remaining in minute amounts were distilled off to obtain a solvent-free low refractive index binder (η = 1 · 42) (282 mPa's).
[0591] 光散乱粒子として、 2 m球状シリカ 2. Og、及び、前記の低屈折率バインダ (n= 1[0591] As light scattering particles, 2 m spherical silica 2. Og and the low refractive index binder (n = 1)
. 42) 8. Ogを混合し、自転 ·公転方式ミキサー脱泡装置を使用し、遠心脱泡 ·混合を 行なった。その後、容器を真空としてさらに脱泡 ·混合を行い、特定層(低屈折光散 乱層)形成液を得た。 42) 8. Og was mixed, and centrifugal defoaming and mixing were performed using a rotation / revolution mixer defoaming device. Thereafter, the container was evacuated and further defoamed and mixed to obtain a specific layer (low refractive light scattering layer) forming liquid.
[0592] [C- 2.具体的な実施例の操作及び評価の説明] [0592] [C-2. Description of operation and evaluation of specific examples]
[実施例 C 1] [Example C 1]
[導光板の製造] [Manufacture of light guide plates]
厚さ 0. 43mmのガラス繊維強化エポキシ積層板に、ドリルにて 2mm φの穴を開け 、この穴の裏側から耐薬テープを貼り穴を塞いだ後、表側から穴の中に高屈折率バ インダ Αを注入し、 150°Cで一時間保持して硬化させて穴を塞いだ。その後、耐薬テ ープを剥がした。 Drill a 2mmφ hole in a 0.43mm thick glass fiber reinforced epoxy laminate with a drill, seal the hole with chemical-resistant tape from the back side of this hole, and then insert a high refractive index binder into the hole from the front side. A sputum was injected and held at 150 ° C for 1 hour to cure and close the hole. Then, the chemical resistant tape was peeled off.
また、穴の直下には青色 LEDを設置し、この青色 LEDから発せられる光が前記の 穴を塞ぐ高屈折率バインダ Aを通じて基板の上部に伝送されるようにした。具体的に は、ポリフタルアミド製表面実装パッケージ(3· 4mm X 2. 8mm)に、タリー社製 C46 0MBチップをエポキシ銀ペーストにてダイボンディングし、金線にてワイヤボンディン グしたランプを低屈折率バインダを用いて封止し、 90°Cで 1時間、 110°Cで 2時間、 及び 150°Cで 3時間保持し、硬化させた青色 LEDを用いた。 In addition, a blue LED was installed directly under the hole, and the light emitted from the blue LED was transmitted to the upper part of the substrate through a high refractive index binder A that closed the hole. Specifically, a lamp with a C46 0MB chip manufactured by Tully Corp. die-bonded with epoxy silver paste on a surface mount package made of polyphthalamide (3.4 mm x 2.8 mm) and wire bonded with a gold wire. A cured blue LED was used, which was sealed with a low refractive index binder and held at 90 ° C for 1 hour, 110 ° C for 2 hours, and 150 ° C for 3 hours and cured.
[0593] 前記の基板上に、特定層(堰)形成液 Bを用いて境界部を描画した。境界部は、当 該青色 LEDを囲む堰となるように描画した。また、境界部の描画は、ノズル径 290 mのシリンジを用いて行なった。この際、当該シリンジのノズルから基板表面までの距 離は 500 mとした。また、描画速度は 10cm/秒とした。さらに、シリンジから特定層 (堰)形成液 Bを押し出す際の圧力は、 1. 5MPaに設定した。 [0593] A boundary portion was drawn on the substrate using the specific layer (weir) forming liquid B. The boundary was drawn to be a weir surrounding the blue LED. The boundary portion was drawn using a syringe with a nozzle diameter of 290 m. At this time, the distance from the syringe nozzle to the substrate surface was set to 500 m. The drawing speed was 10 cm / sec. Furthermore, the pressure when extruding the specific layer (weir) forming solution B from the syringe was set to 1.5 MPa.
その後、これを空気雰囲気中、 150°C、大気圧で 0. 5時間保持し、境界部を硬化さ せた。これにより、高さ 500 111、幅 lmmの、稜線のない形状の境界部が得られた。 Thereafter, this was held in an air atmosphere at 150 ° C. and atmospheric pressure for 0.5 hour to cure the boundary. As a result, a boundary portion having a height of 500 111 and a width of 1 mm and having no ridgeline was obtained.
[0594] 次レ、で、基板上の前記の境界部の内側部分に、低屈折率バインダを塗布した。こ の際、境界部が低屈折率バインダを堰き止める堰として作用し、境界部の内側にの
み低屈折率バインダが塗布され、境界部の外側には漏れ出さなかった。また、低屈 折率バインダは、前記の穴を塞ぐ高屈折率バインダ Aの上部を覆わないように塗布し 、低屈折率バインダにより形成される低屈折率層が、穴を通じて伝送される光の伝送 を妨げないようにした。 In the next step, a low refractive index binder was applied to the inner part of the boundary portion on the substrate. At this time, the boundary portion acts as a weir for blocking the low refractive index binder, Only a low refractive index binder was applied, and it did not leak outside the boundary. Further, the low refractive index binder is applied so as not to cover the upper portion of the high refractive index binder A that closes the hole, and the low refractive index layer formed by the low refractive index binder allows the light transmitted through the hole to be transmitted. The transmission was not hindered.
そして、これを空気雰囲気中、 150°C、大気圧で 1時間保持し、低屈折率バインダ を硬化させて、厚さ 35 mの低屈折率層を形成した。 Then, this was held in an air atmosphere at 150 ° C. and atmospheric pressure for 1 hour, and the low refractive index binder was cured to form a low refractive index layer having a thickness of 35 m.
[0595] さらに、低屈折率層上の前記の境界部の内側部分に、高屈折率バインダ Aを塗布 した。この際も、境界部が高屈折率バインダ Aを堰き止める堰として作用し、境界部の 内側にのみ高屈折率バインダ Aが塗布され、境界部の外側には漏れ出さなかった。 そして、これを空気雰囲気中、 150°C、大気圧で 1時間保持し、高屈折率バインダ Aを硬化させて、厚さ 415 mの高屈折率層 Aを形成した。 [0595] Further, a high refractive index binder A was applied to the inner portion of the boundary portion on the low refractive index layer. Also at this time, the boundary portion acted as a weir for blocking the high refractive index binder A, and the high refractive index binder A was applied only to the inside of the boundary portion, and did not leak to the outside of the boundary portion. Then, this was held in an air atmosphere at 150 ° C. and atmospheric pressure for 1 hour to cure the high refractive index binder A, thereby forming a high refractive index layer A having a thickness of 415 m.
[0596] さらに、高屈折率層 A上の前記の境界部の内側部分に、低屈折率バインダを塗布 した。この際も、境界部が低屈折率バインダを堰き止める堰として作用し、境界部の 内側にのみ低屈折率バインダが塗布され、境界部の外側には漏れ出さなかった。 そして、これを空気雰囲気中、 150°C、大気圧で 1時間保持し、低屈折率バインダ を硬化させて、厚さ 30 mの低屈折率層を形成した。 [0596] Further, a low refractive index binder was applied to the inner part of the boundary portion on the high refractive index layer A. Also at this time, the boundary portion acted as a weir for blocking the low refractive index binder, and the low refractive index binder was applied only to the inside of the boundary portion and did not leak to the outside of the boundary portion. Then, this was held in an air atmosphere at 150 ° C. and atmospheric pressure for 1 hour, and the low refractive index binder was cured to form a low refractive index layer having a thickness of 30 m.
以上のようにして、導光板を製造した。 The light guide plate was manufactured as described above.
[0597] [評価] [0597] [Evaluation]
得られた導光板の穴の下から、発光波長 460nmの前記青色 LEDを発光させて、 その様子を観察した。 The blue LED with an emission wavelength of 460 nm was emitted from under the hole of the obtained light guide plate, and the state was observed.
さらに、以下に説明する要領で、得られた導光板の各層について、密着性の評価、 固体 Si— NMRスペクトル測定、シラノール含有率、ケィ素含有率、硬度(ショァ A)、 屈折率、及びヘーズ を測定した。 Further, for each layer of the obtained light guide plate as described below, adhesion evaluation, solid-state Si-NMR spectrum measurement, silanol content, key content, hardness (Shore A), refractive index, and haze Was measured.
結果を表 7に示す。 The results are shown in Table 7.
[0598] [各層の分析、および導光板の評価方法] [0598] [Analysis of each layer and evaluation method of light guide plate]
[固体 Si— NMRスペクトル測定及びシラノール含有率の算出] [Solid Si—NMR spectrum measurement and silanol content calculation]
実施例 C 1の導光板の各層について、以下の条件で固体 Si— NMRスぺクトノレ 測定及び波形分離解析を行なった。得られた波形データより、実施例 C 1の導光
板の各層について、各々のピークの半値幅を求めた。また、全ピーク面積に対するシ ラノール由来のピーク面積の比率より、全ケィ素原子中のシラノールとなっているケィ 素原子の比率(%)を求め、別に分析したケィ素含有率と比較することによりシラノー ノレ含有率を求めた。 For each layer of the light guide plate of Example C1, solid Si-NMR spectrum measurement and waveform separation analysis were performed under the following conditions. From the obtained waveform data, the light guide of Example C 1 For each layer of the plate, the half width of each peak was determined. In addition, the ratio (%) of silanol-derived silicon atoms to the total peak area is calculated from the ratio of silanol-derived peak area to the total peak area and compared with the separately analyzed content of silicon. The silanol content was determined.
[0599] <装置条件〉 [0599] <Device conditions>
装置: Chemagnetics社 Infinity CMX— 400 核磁気共鳴分光装置 Equipment: Chemagnetics Infinity CMX-400 Nuclear Magnetic Resonance Spectrometer
29Si共鳴周波数: 79. 436MHz 29 Si resonance frequency: 79. 436MHz
プローブ: 7. 5mm φ CP/MAS用プローブ Probe: 7.5mm φ CP / MAS probe
測定温度:室温 Measurement temperature: room temperature
試料回転数: 4kHz Sample rotation speed: 4kHz
測定法:シングルパルス法 Measurement method: Single pulse method
ェ^1デカップリング周波数: 50kHz ^^ 1 decoupling frequency: 50kHz
29Siフリップ角: 90° 29 Si flip angle: 90 °
29Si90°パルス幅: 5. O ^ s 29 Si90 ° pulse width: 5. O ^ s
くり返し時間: 600s Repeat time: 600s
積算回数: 128回 Integration count: 128 times
観測幅: 30kHz Observation width: 30kHz
ブロードユングファクター: 20Hz Broad Jung factor: 20Hz
[0600] <データ処理法〉 [0600] <Data processing method>
512ポイントを測定データとして取り込み、 8192ポイントにゼロフィリングしてフーリ ェ変換した。 512 points were taken as measurement data, and zero-filled to 8192 points and Fourier transformed.
[0601] <波形分離解析法〉 [0601] <Waveform separation analysis method>
フーリエ変換後のスペクトルの各ピークについてローレンツ波形及びガウス波形或 いは両者の混合により作成したピーク形状の中心位置、高さ、半値幅を可変パラメ一 タとして、非線形最小二乗法により最適化計算を行なった。 For each peak of the spectrum after Fourier transform, optimization calculation is performed by nonlinear least square method with the center position, height, and half width of the peak shape created by Lorentz waveform and Gaussian waveform or a mixture of both as variable parameters. I did it.
なお、ピークの同定は AIChE Journal, 44 (5) , p. 1141 , 1998年等を参考にし た。 The peak was identified with reference to AIChE Journal, 44 (5), p. 1141, 1998, etc.
[0602] [ケィ素含有率の測定]
実施例 C 1の導光板の各層(低屈折率層、高屈折率層、低屈折率層)の単独硬 化物を 100 m程度に粉砕し、白金るつぼ中にて大気中、 450°Cで 1時間、ついで 7 50°Cで 1時間、 950°Cで 1. 5時間保持して焼成し、炭素成分を除去した後、得られ た残渣少量に 10倍量以上の炭酸ナトリウムを加えてバーナー加熱し溶融させ、これ を冷却して脱塩水を加え、更に塩酸にて pHを中性程度に調整しつつケィ素として数 ppm程度になるよう定容し、セイコー電子社製「SPS1700HVR」を用いて ICP分析 を fiなった。 [0602] [Measurement of key content] Example C 1 A single hardened material of each layer (low refractive index layer, high refractive index layer, low refractive index layer) of the light guide plate was pulverized to about 100 m, and 1 hour at 450 ° C in a platinum crucible. After baking for 7 hours at 550 ° C for 1 hour and at 950 ° C for 1.5 hours to remove the carbon component, add 10 times or more of sodium carbonate to a small amount of the resulting residue and heat with a burner Then melt it, add demineralized water, adjust the pH to a neutral level with hydrochloric acid while adjusting the pH to about several ppm, and use `` SPS1700HVR '' manufactured by Seiko Denshi. ICP analysis became fi.
[0603] [硬度測定] [0603] [Hardness measurement]
実施例 C 1の導光板の各層(低屈折率層、高屈折率層、低屈折率層)について、 古里精機製作所製 A型(デュ口メータタイプ A)ゴム硬度計を使用し、 JIS K6253に 準拠して硬度(ショァ A)を測定した。 For each layer of the light guide plate of Example C 1 (low refractive index layer, high refractive index layer, low refractive index layer), use A type (Duguchi meter type A) rubber hardness tester manufactured by Furusato Seiki Seisakusho and comply with JIS K6253 The hardness (Shore A) was measured according to the standard.
[屈折率測定] [Refractive index measurement]
実施例 C 1の導光板の各層(低屈折率層、高屈折率層、低屈折率層)の単独硬 化物を数十 m程度の粉末状に粉砕し、予測される屈折率近傍の屈折率を有する 屈折率標準液 (屈折液)数点に分散し自然光下で観察した結果、浮遊する粉末が光 散乱無く透明となり、 目視で確認出来なくなる液の屈折率をもってバインダの屈折率 とした (液浸法)。 Example C 1 A single hardened material of each layer (low refractive index layer, high refractive index layer, low refractive index layer) of the light guide plate is pulverized into a powder of about several tens of meters, and the refractive index in the vicinity of the predicted refractive index is obtained. Refractive index standard liquid (refractive liquid) having a refractive index of a binder that is dispersed at several points and observed under natural light, and the floating powder becomes transparent without light scattering and cannot be confirmed by visual observation. Immersion method).
[0604] [密着性評価方法] [0604] [Adhesion evaluation method]
実施例 C 1の導光板の塗布層(上層)の一端をピンセットでつまんで直角方向に ゆっくり引き剥がした際に膜が容易に剥離せず、一部破壊するものを「良」(表 7〜9 では「〇」で表わす)とし、容易にはがれるものを「不良」とした。 Example C 1 When the light guide plate coating layer (upper layer) on one end of the light guide plate is pinched with tweezers and slowly peeled off in the right-angle direction, the film does not easily peel off, but breaks partially. In Fig. 9, it is represented by “◯”), and those that can be easily peeled are defined as “bad”.
[0605] [- ^一ズ値評価方法] [0605] [-^ Values evaluation method]
光学材料の、傷や凹凸による散乱の無い厚さ約 lmmの平滑な表面の単独硬化物 膜を用意し、この単独硬化膜を用いて、空気層をリファレンスとし、 日本電色工業 (株 )製 COH— 300Aにて^ ^一ズ値の測定を行なった。 A single cured film with a smooth surface of about lmm thick that is free from scattering due to scratches and unevenness of optical materials is prepared. Using this single cured film, the air layer is used as a reference and manufactured by Nippon Denshoku Industries Co., Ltd. The ^^ values were measured with COH-300A.
[0606] なお、表 7の光取り出し性の項において、「遠くまで光る力、」の欄力 S「〇」であれば堰 付近にまで発光面が達して!/、ることを意味し、「 X」であればチップ直上のみ発光して いることを意味する。
また、表 7の光取り出し性の項において、「全面が光る力、」の欄力 S「〇」であれば堰で 区切られた面全体が発光していることを意味し、「△」であれば LEDと境界部との中 間程度まで発光することを意味し、「 X」であればチップ近傍の面のみが発光してレ、 ることを意味する。 [0606] In addition, in the section of the light extraction property in Table 7, if the field power S "○" of "power that shines far away", it means that the light emitting surface reaches the weir! “X” means that light is emitted only directly above the chip. Also, in the light extraction property section of Table 7, if the field power S “◯” of “the whole surface shines,” it means that the entire surface separated by the weir is emitting light, and “△” If it is, it means that it emits light to the middle between the LED and the boundary. If “X”, it means that only the surface near the chip emits light.
さらに、表 7の光取り出し性の項において、「境界部での光の遮蔽」の欄が「〇」であ れば境界内部の面のみ発光してレ、ることを意味し、「 X」であれば境界を越え隣接す る面に発光が達してレ、ることを意味する。 Furthermore, in the light extraction property section of Table 7, if the “Light shielding at the boundary” column is “◯”, it means that only the surface inside the boundary emits light, and “X” If this is the case, it means that the light reaches the adjacent surface beyond the boundary.
[0607] [実施例 C 2] [0607] [Example C 2]
高屈折率層 Aの上に低屈折率層を形成しなかったこと以外は実施例 C 1と同様 にして、導光板を製造した。得られた導光板について、実施例 C—1と同様にして評 価を行なった。結果を表 7に示す。 A light guide plate was produced in the same manner as in Example C 1 except that the low refractive index layer was not formed on the high refractive index layer A. The obtained light guide plate was evaluated in the same manner as in Example C-1. The results are shown in Table 7.
[0608] [実施例 C 3] [0608] [Example C 3]
特定層(堰)形成液 Bの代わりに特定層(堰)形成液 Cを用いて境界部を形成したこ と、及び、高屈折率層 Aの上に低屈折率層を形成しなかったこと以外は実施例 C 1 と同様にして、導光板を製造した。得られた導光板について、実施例 C— 1と同様に して評価を行なった。結果を表 7に示す。 The boundary layer was formed using the specific layer (weir) forming liquid C instead of the specific layer (weir) forming liquid B, and the low refractive index layer was not formed on the high refractive index layer A. A light guide plate was produced in the same manner as in Example C 1 except that. The obtained light guide plate was evaluated in the same manner as in Example C-1. The results are shown in Table 7.
[0609] [表 7]
[0609] [Table 7]
[実施例 C 4] [Example C 4]
[導光板の製造] [Manufacture of light guide plates]
厚さ 0. 43mmのガラス繊維強化エポキシ積層板上の電極に、青色 LEDチップ(ク リー社製、商品名: C460MB290)を、エポキシ銀ペーストによるダイボンディングと Au線によるワイヤボンディングにより取り付けた。この LEDチップ上に高屈折率バイ ンダ Aを盛り上げて塗布し、 150°Cで 1時間保持して硬化させ、 LEDチップを高屈折 率層 Aで封止した。
[0611] 前記の基板上に、特定層(堰)形成液 Bを用いて境界部を描画した。境界部は、当 該青色 LEDを囲む堰となるように描画した。また、境界部の描画は、ノズル径 570 mのシリンジを用いて行なった。この際、当該シリンジのノズルから基板表面までの距 離は 650 mとした。また、描画速度は 10cm/秒とした。さらに、シリンジから特定層 (堰)形成液 Bを押し出す際の圧力は、 2MPaに設定した。 A blue LED chip (product name: C460MB290) was attached to the electrode on the 0.43 mm thick glass fiber reinforced epoxy laminate by die bonding with epoxy silver paste and wire bonding with Au wire. A high refractive index binder A was raised and applied onto this LED chip, and was cured by holding at 150 ° C. for 1 hour, and the LED chip was sealed with a high refractive index layer A. [0611] A boundary portion was drawn on the substrate using the specific layer (weir) forming liquid B. The boundary was drawn to be a weir surrounding the blue LED. The boundary portion was drawn using a syringe having a nozzle diameter of 570 m. At this time, the distance from the syringe nozzle to the substrate surface was set to 650 m. The drawing speed was 10 cm / sec. Furthermore, the pressure when extruding the specific layer (weir) forming liquid B from the syringe was set to 2 MPa.
その後、これを空気雰囲気中、 150°C、大気圧で 0. 5時間保持し、境界部を硬化さ せた。これにより、高さ 500 111、幅 lmmの、稜線のない形状の境界部が得られた。 Thereafter, this was held in an air atmosphere at 150 ° C. and atmospheric pressure for 0.5 hour to cure the boundary. As a result, a boundary portion having a height of 500 111 and a width of 1 mm and having no ridgeline was obtained.
[0612] 次いで、基板上の前記の境界部の内側部分に、高屈折率バインダ Aを塗布した。 [0612] Next, a high refractive index binder A was applied to an inner portion of the boundary portion on the substrate.
この際、境界部が高屈折率バインダ Aを堰き止める堰として作用し、境界部の内側に のみ高屈折率バインダ Aが塗布され、境界部の外側には漏れ出さな力、つた。 At this time, the boundary portion acted as a weir to block the high refractive index binder A, and the high refractive index binder A was applied only to the inside of the boundary portion, and the leakage force was applied to the outside of the boundary portion.
そして、これを空気雰囲気中、 150°C、大気圧で 1時間保持し、高屈折率バインダ Aを硬化させて、厚さ 500 μ mの高屈折率層 Αを形成した。 Then, this was held in an air atmosphere at 150 ° C. and atmospheric pressure for 1 hour to cure the high refractive index binder A to form a high refractive index layer having a thickness of 500 μm.
[0613] 得られた導光板について、実施例 C 1と同様にして基板の LEDを点灯させて評 価を行なった。結果を表 8に示す。 [0613] The obtained light guide plate was evaluated in the same manner as in Example C 1 by turning on the LED on the substrate. The results are shown in Table 8.
なお、表 8の光取り出し性の項において、「遠くまで光る力、」の欄力 S「〇」であれば堰 付近にまで発光面が達していることを意味し、「△」であれば LEDと境界部との中間 程度まで発光することを意味し、「 X」であればチップ直上のみ発光して!/、ることを意 味する。 In addition, in the section of light extraction property in Table 8, if the field power S “◯” of “power that shines far away”, it means that the light emitting surface has reached the vicinity of the weir, and if “△”, This means that the LED emits light to the middle of the LED and the boundary. If “X”, it means that it emits light just above the chip! /.
また、表 8の光取り出し性の項において、「全面が光る力、」の欄力 S「〇」であれば堰で 区切られた面全体が発光していることを意味し、「△」であれば LEDと境界部との中 間程度まで発光することを意味し、「 X」であればチップ近傍の面のみが発光してレ、 ることを意味する。 Also, in the light extraction property section of Table 8, if the field power S “◯” of “the whole surface shines,” it means that the entire surface divided by the weir is emitting light, and “△” If it is, it means that it emits light to the middle between the LED and the boundary. If “X”, it means that only the surface near the chip emits light.
さらに、表 8の光取り出し性の項において、「境界部での光の遮蔽」の欄力 S「〇」であ れば境界内部の面のみ発光してレ、ることを意味し、「 X」であれば境界を越え隣接す る面に発光が達してレ、ることを意味する。 Furthermore, in the section of light extraction property in Table 8, if the field power S of “shielding light at the boundary” S “◯”, it means that only the surface inside the boundary emits light, and “X "Means that the light reaches the adjacent surface beyond the boundary.
[0614] [実施例 C 5] [0614] [Example C 5]
低屈折率層で LEDチップを封止し、基板上に高屈折率層 Aの代わりに、実施例 C 1と同様にして低屈折率層を形成し、その低屈折率層の上に、以下の要領で光散
乱層を形成したこと以外は、実施例 C 4と同様にして導光板を製造した。 The LED chip is sealed with a low refractive index layer, and instead of the high refractive index layer A, a low refractive index layer is formed in the same manner as in Example C 1 on the substrate. In the way A light guide plate was produced in the same manner as in Example C4 except that the disordered layer was formed.
光散乱層は、低屈折率層上の前記の境界部の内側部分に、特定層(低屈折光散 乱層)形成液を塗布し、これを空気雰囲気中、 150°C、大気圧で 1時間保持して硬化 させて形成した。この際、光散乱層の厚さは 470 πιであった。なお、この際も、境界 部が特定層(低屈折光散乱層)形成液を堰き止める堰として作用し、境界部の内側 にのみ特定層(低屈折光散乱層)形成液が塗布され、境界部の外側には漏れ出さな かった。 For the light scattering layer, a specific layer (low refractive light scattering layer) forming solution is applied to the inner part of the boundary portion on the low refractive index layer, and this is applied in an air atmosphere at 150 ° C and atmospheric pressure. It was formed by holding for a time and curing. At this time, the thickness of the light scattering layer was 470 πι. In this case as well, the boundary part acts as a weir to dam the specific layer (low refractive light scattering layer) forming liquid, and the specific layer (low refractive light scattering layer) forming liquid is applied only inside the boundary part. There was no leakage outside the section.
得られた導光板について、実施例 C—1と同様にして評価を行なった。結果を表 8 に示す。 The obtained light guide plate was evaluated in the same manner as in Example C-1. The results are shown in Table 8.
[0615] [実施例 C 6] [0615] [Example C 6]
特定層(堰)形成液 Βの代わりに特定層(堰)形成液 Cを用いたこと、高屈折率層 A の代わりに実施例 C 1と同様にして低屈折率層を形成したこと、その低屈折率層の 上に実施例 C 1と同様にして高屈折率層 Aを形成したこと、及び、その高屈折率層 Aの上に、特定層(低屈折光散乱層)形成液の代わりに特定層(高屈折光散乱層/ 低散乱型)形成液を用いたこと以外は実施例 C 5と同様にして光散乱層を形成した こと以外は実施例 C 4と同様にして、導光板を製造した。 Specific layer (weir) formation liquid The specific layer (weir) formation liquid C was used instead of the soot, and the low refractive index layer was formed in the same manner as in Example C 1 instead of the high refractive index layer A. The high refractive index layer A was formed on the low refractive index layer in the same manner as in Example C 1, and the specific layer (low refractive light scattering layer) forming liquid was replaced on the high refractive index layer A. In the same manner as in Example C4, except that a specific layer (high refractive light scattering layer / low scattering type) forming liquid was used, a light scattering layer was formed in the same manner as in Example C5. Manufactured.
得られた導光板について、実施例 C—1と同様にして評価を行なった。結果を表 8 に示す。 The obtained light guide plate was evaluated in the same manner as in Example C-1. The results are shown in Table 8.
[0616] [実施例 C 7] [0616] [Example C 7]
特定層(堰)形成液 Cの代わりに特定層(堰)形成液 Bを用い、特定層(低屈折光散 乱層)形成液の代わりに特定層(高屈折光散乱層/強散乱型)形成液を用いたこと 以外は実施例 C— 6と同様にして、導光板を製造した。 Specified layer (weir) forming solution C is used instead of specified layer (weir) forming solution B, and specified layer (high refractive light scattering layer / strong scattering type) is used instead of the specified layer (low refractive light scattering layer) forming solution. A light guide plate was produced in the same manner as in Example C-6 except that the forming solution was used.
得られた導光板について、実施例 C—1と同様にして評価を行なった。結果を表 8 に示す。 The obtained light guide plate was evaluated in the same manner as in Example C-1. The results are shown in Table 8.
[0617] [実施例 C 8] [0617] [Example C 8]
特定層(高屈折光散乱層/強散乱型)形成液の代わりに特定層(高屈折光散乱層 /中散乱型)形成液を用いたこと以外は実施例 C— 7と同様にして、導光板を製造し た。
得られた導光板について、実施例 C 1と同様にして評価を行なった。結果を表 8 に示す。 In the same manner as in Example C-7, except that the specific layer (high refractive light scattering layer / medium scattering type) forming liquid was used instead of the specific layer (high refractive light scattering layer / strong scattering type) forming liquid. A light plate was manufactured. The obtained light guide plate was evaluated in the same manner as in Example C1. The results are shown in Table 8.
[表 8] [Table 8]
[0619] [実施例 C 9] [0619] [Example C 9]
[導光板の製造] [Manufacture of light guide plates]
厚さ 0. 43mmのガラス繊維強化エポキシ積層基板上の電極に青色 LED (タリ一社 製、商品名: C460MB290)を、エポキシ銀ペーストによるダイボンディングと Au線に よるワイヤボンディングにより取り付けた。この LEDを高屈折率バインダ Aにてドーム 状に封止し、 150°Cで 1時間保持して硬化させた。 A blue LED (product name: C460MB290, manufactured by Tari Co., Ltd.) was attached to the electrode on the 0.43-mm thick glass fiber reinforced epoxy laminated substrate by die bonding with epoxy silver paste and wire bonding with Au wire. This LED was sealed in a dome shape with a high refractive index binder A, and cured by holding at 150 ° C. for 1 hour.
[06201 前記の基板上に、特定層(堰)形成液 Cを用レ、て境界部を描画した。境界部は、当
該青色 LEDを囲む堰となるように描画した。また、境界部の描画は、ノズル径 290 mのシリンジを用いて行なった。この際、当該シリンジのノズルから基板表面までの距 離は 350 111とした。また、描画速度は 15cm/秒とした。さらに、シリンジから特定層 (堰)形成液 Cを押し出す際の圧力は、 4MPaに設定した。 [06201] A boundary layer was drawn on the substrate using the specific layer (weir) forming liquid C. The boundary is Drawing was made to be a weir surrounding the blue LED. The boundary portion was drawn using a syringe with a nozzle diameter of 290 m. At this time, the distance from the nozzle of the syringe to the substrate surface was 350 111. The drawing speed was 15 cm / sec. Furthermore, the pressure when extruding the specific layer (weir) forming liquid C from the syringe was set to 4 MPa.
その後、これを空気雰囲気中、 150°C、大気圧で 0. 5時間保持し、境界部を硬化さ せた。これにより、高さ 300 111、幅 1 · 3mmの、稜線のない形状の境界部が得られ た。 Thereafter, this was held in an air atmosphere at 150 ° C. and atmospheric pressure for 0.5 hour to cure the boundary. As a result, a boundary part with a height of 300 111 and a width of 1.3 mm and no ridgeline was obtained.
[0621] 次いで、基板上の前記の境界部の内側部分に、実施例 C 1と同様にして低屈折 率層と高屈折率層 Aとを形成した。そして、高屈折率層 Aの上に、特定層 (低屈折光 散乱層)形成液の代わりに特定層(高屈折光散乱層/強散乱型)形成液を用いた他 は実施例 C 5と同様にして光散乱層を形成し、導光板を製造した。 [0621] Next, a low-refractive index layer and a high-refractive index layer A were formed in the inner part of the boundary portion on the substrate in the same manner as in Example C1. In addition to Example C 5 except that the specific layer (low refractive light scattering layer) forming liquid was used on the high refractive index layer A instead of the specific layer (low refractive light scattering layer) forming liquid. Similarly, a light scattering layer was formed to produce a light guide plate.
得られた導光板について、実施例 C—1と同様にして評価を行なった。結果を表 9 に示す。 The obtained light guide plate was evaluated in the same manner as in Example C-1. The results are shown in Table 9.
[0622] なお、表 9の光取り出し性の項において、「遠くまで光る力、」の欄力 S「〇」であれば堰 付近にまで発光面が達して!/、ることを意味し、「 X」であればチップ直上のみ発光して いることを意味する。 [0622] In addition, in the section of light extraction property in Table 9, if the field power S "〇" of "power that shines far," it means that the light emitting surface has reached the vicinity of the weir! “X” means that light is emitted only directly above the chip.
また、表 9の光取り出し性の項において、「全面が光る力、」の欄力 S「〇」であれば堰で 区切られた面全体が発光していることを意味し、「X」であればチップ近傍の面のみ が発光して!/、ることを意味する。 Also, in the light extraction property section of Table 9, if the field power S “○” of “the whole surface shines,” it means that the entire surface separated by the weir is emitting light, and “X” If there is, it means that only the surface near the chip emits light! /.
さらに、表 9の光取り出し性の項において、「境界部での光の遮蔽」の欄が「〇」であ れば境界内部の面のみ発光してレ、ることを意味し、「 X」であれば境界を越え隣接す る面に発光が達してレ、ることを意味する。 Furthermore, in the light extraction property section of Table 9, if the column “Light shielding at boundary” is “◯”, it means that only the surface inside the boundary emits light, and “X” If this is the case, it means that the light reaches the adjacent surface beyond the boundary.
[0623] [実施例 C 10] [0623] [Example C 10]
境界部を形成する際の描画速度を 24cm/秒としたこと以外は実施例 C 9と同様 にして、導光板を製造した。これにより、高さ 150 m、幅 0. 6mmの稜線の無い形状 の境界部を有する導光板が得られた。 A light guide plate was produced in the same manner as in Example C 9 except that the drawing speed when forming the boundary was 24 cm / sec. As a result, a light guide plate having a boundary portion having a height of 150 m and a width of 0.6 mm and having no ridgeline was obtained.
得られた導光板について、実施例 C—1と同様にして評価を行なった。結果を表 9 に示す。
[0624] [実施例 C 11] The obtained light guide plate was evaluated in the same manner as in Example C-1. The results are shown in Table 9. [0624] [Example C 11]
特定層(堰)形成液 Bに代えて特定層(堰)形成液 Cを用いて境界部を形成したこと 以外は実施例 C— 9と同様にして、導光板を製造した。 A light guide plate was produced in the same manner as in Example C-9 except that the boundary layer was formed using the specific layer (weir) forming liquid C instead of the specific layer (weir) forming liquid B.
得られた導光板について、実施例 C—1と同様にして評価を行なった。結果を表 9 に示す。 The obtained light guide plate was evaluated in the same manner as in Example C-1. The results are shown in Table 9.
[0625] [実施例 C 12] [0625] [Example C 12]
特定層(堰)形成液 Cの代わりに特定層(堰)形成液 Bを用いたこと、及び、境界部 を形成する際の描画速度を 9cm/秒としたこと以外は実施例 C 9と同様にして、導 光板を製造した。 Same as Example C 9 except that the specific layer (weir) forming liquid B was used instead of the specific layer (weir) forming liquid C and that the drawing speed when forming the boundary was 9 cm / sec. Thus, a light guide plate was manufactured.
得られた導光板について、実施例 C—1と同様にして評価を行なった。結果を表 9 に示す。 The obtained light guide plate was evaluated in the same manner as in Example C-1. The results are shown in Table 9.
[0626] [実施例 C 13] [0626] [Example C 13]
低屈折率層を形成せず、基板上に直接高屈折率層 Aを形成し、その上に光散乱 層を形成したこと以外は実施例 C— 9と同様にして、導光板を製造した。 A light guide plate was produced in the same manner as in Example C-9 except that the high refractive index layer A was formed directly on the substrate without forming the low refractive index layer, and the light scattering layer was formed thereon.
得られた導光板について、実施例 C—1と同様にして評価を行なった。結果を表 9 に示す。 The obtained light guide plate was evaluated in the same manner as in Example C-1. The results are shown in Table 9.
[0627] [実施例 C 14] [0627] [Example C 14]
光散乱層を形成しなかったこと以外は実施例 C— 9と同様にして、導光板を製造し た。 A light guide plate was produced in the same manner as in Example C-9 except that the light scattering layer was not formed.
得られた導光板について、実施例 C—1と同様にして評価を行なった。結果を表 9 に示す。 The obtained light guide plate was evaluated in the same manner as in Example C-1. The results are shown in Table 9.
[まとめ] [Summary]
表 7 9から、屈折率が異なる層の積層により導光を高めたものが遠方への光導光 機能に優れ、また光取り出し面に散乱層を設けたものが面内の均一な発光(光取り 出し)に優れていることがわかる。さらに境界部を設けることにより発光色の異なる導 光層を隣接させても色の遮蔽が行なわれ混色することが無ぐ必要に応じて境界部 を白色とすることにより境界部から導光面内への反射が起こり、 LEDから最も遠く暗く なりがちな境界部付近の発光均一性を改善することが出来た。積層した特定層の総
厚 120 mの薄膜とした場合でも面内発光均一性の劣化は無ぐ極めて薄層の導光 層の形成が可能であった。このように、屈折率が異なる層の積層及び散乱層'境界層 の併用により、簡便な構造にて均一に面発光可能な導光層を構成することができる。 From Table 79, a layer with different refractive indexes that enhances the light guide is superior in the ability to guide light far away, and a light-extracting surface with a scattering layer provides uniform light emission (light capture). It can be seen that it is excellent in In addition, by providing a boundary portion, even if the light-guiding layers having different emission colors are adjacent to each other, the color is shielded and there is no color mixing. As a result, the light emission uniformity near the boundary, which tends to be the darkest farthest from the LED, was improved. Total number of specific layers stacked Even in the case of a 120 m thick thin film, the in-plane light emission uniformity was not degraded, and an extremely thin light guide layer could be formed. In this way, a light guide layer capable of uniformly emitting light with a simple structure can be formed by using a stack of layers having different refractive indexes and a combined use of a scattering layer and a boundary layer.
[0630] [C 3]導光板の製造 [0630] [C 3] Manufacture of light guide plate
[C 3— 1]各層の形成液の用意 [C 3—1] Preparation of forming solution for each layer
[C 3— 1 1 ]特定層(低屈折率層 )形成液 A (低屈折率; n = 1. 41 )の調液 モメンテイブ'パフォーマンス 'マテリアルズ 'ジャパン合同会社製両末端シラノール ジメチノレシリ 一ン才ィノレ XC96— 723を 390g、メチノレ卜リメ卜キシシランを 10. 41g、 及び、触媒としてジルコニウムテトラァセチルァセトネート粉末を 0. 280gを、攪拌翼 と、分留管、ジムロートコンデンサ及びリービッヒコンデンサとを取り付けた 500ml三 つ口コルベン中に計量し、室温にて 15分触媒の粗大粒子が溶解するまで攪拌した。 この後、反応液を 100°Cまで昇温して触媒を完全溶解し、 100°C全還流下で 30分間 500rpmで攪拌しつつ初期加水分解を行った。 [C 3-1 1] Preparation of specific layer (low refractive index layer) A (low refractive index; n = 1. 41) Momentive 'Performance' Materials' Japan GK Co., Ltd. Inore XC96-723 (390g), methynoleylmethoxysilane (10.41g), and zirconium tetraacetylacetonate powder (0.280g) as a catalyst, stirring blade, fractionating tube, Dimroth condenser and Liebig condenser Weighed into the attached 500 ml three-necked Kolben and stirred at room temperature for 15 minutes until the coarse particles of the catalyst were dissolved. Thereafter, the temperature of the reaction solution was raised to 100 ° C. to completely dissolve the catalyst, and initial hydrolysis was performed while stirring at 500 rpm for 30 minutes under 100 ° C. total reflux.
[0631] 続いて留出をリービッヒコンデンサ側に接続し、窒素を SV20で液中に吹き込み生 成メタノール及び水分、副生物の低沸ケィ素成分を窒素に随伴させて留去しつつ 10 0°C、 500rpmにて 1時間攪拌した。続いて窒素流量を SV40に増やし液中に吹き込 みながらさらに 130°Cに昇温、保持しつつ 4. 7時間重合反応を継続し、粘度 158. 7 mPa ' sの反応液を得た。なお、ここで「SV」とは「Space Velocity の略称であり、 単位時間当たりの吹き込み体積量を指す。よって、 SV20とは、 1時間に反応液の 20 倍の体積の Nを吹き込むことをいう。 [0631] Subsequently, the distillate was connected to the Liebig condenser side, and nitrogen was blown into the liquid with SV20, and the methanol, water, and low-boiling carbon components of by-products were distilled off accompanied with nitrogen. C, and stirred at 500 rpm for 1 hour. Subsequently, the nitrogen flow rate was increased to SV40 and the polymerization reaction was continued for 4.7 hours while the temperature was further raised to 130 ° C while being blown into the solution, and a reaction solution having a viscosity of 158.7 mPa's was obtained. “SV” is an abbreviation of “Space Velocity” and refers to the volume of blown volume per unit time. Therefore, SV20 means blowing N of 20 times the volume of the reaction solution per hour. .
2 2
[0632] 窒素の吹き込みを停止し反応液をいつたん室温まで冷却した後、ナス型フラスコに 反応液を移し、ロータリーエバポレーターを用いてオイルバス上 120°C、 lkPaで 20 分間微量に残留しているメタノール及び水分、低沸ケィ素成分を留去し、粘度 260m Pa ' sの無溶剤の液を得た。 [0632] After stopping nitrogen blowing and cooling the reaction solution to room temperature, transfer the reaction solution to an eggplant-shaped flask and leave it in a minute amount at 120 ° C and lkPa for 20 minutes on an oil bath using a rotary evaporator. The methanol, water, and low boiling point carbon components were distilled off to obtain a solvent-free solution having a viscosity of 260 mPa's.
[0633] ガラススクリュー管瓶にこの液 10gとジルコニウムテトラァセチルァセトネート粉末 0· 04gとを計量し、オイルバス中 100°Cで 5分間攪拌し溶解させた(以下適宜「低屈折 率バインダ八」と!/、う)。透明溶解後の低屈折率バインダ A液 2g、 日本ァエロジル株式 会社製疎水性ヒュームドシリカ RX200を 0. 194g軟膏壷に計量し、自転'公転方式ミ
キサー脱泡装置を使用し、混合モードで 3分、脱泡モードで 1分攪拌を行い、特定層 (低屈折率層)形成液 A (低屈折率; n= 1 · 41)を得た。 [0633] 10 g of this solution and zirconium tetraacetyl acetate powder 0 · 04 g were weighed in a glass screw tube bottle, and stirred and dissolved in an oil bath at 100 ° C for 5 minutes (hereinafter referred to as “low refractive index binder” as appropriate). Eight "! /, U). Low-refractive index binder A solution 2g after transparent dissolution, Nippon Aerosil Co., Ltd. Hydrophobic fumed silica RX200 was weighed to 0.194g ointment, and the rotation Using a Xerer deaerator, the mixture was stirred for 3 minutes in the mixing mode and for 1 minute in the defoaming mode to obtain a specific layer (low refractive index layer) forming liquid A (low refractive index; n = 1 · 41).
[0634] [C 3— 1 2]特定層(低屈折率層)形成液 B (低屈折率; n= l . 42)の調液 [0634] [C 3-1 2] Preparation liquid of specific layer (low refractive index layer) formation liquid B (low refractive index; n = l. 42)
モメンテイブ'パフォーマンス 'マテリアルズ 'ジャパン合同会社製両末端シラノール ジメチノレシリ 一ン才ィノレ XC96— 723を 1450. 82g、フエ二ノレ卜リメ卜キシシランを 14 5g、及び、ジルコニウムテトラァセチルァセトネート粉末を 3. 190g用意した。これを 撹拌翼とコンデンサとを取り付けた 2Lの三つ口コルベン中に入れ、室温で、ジルコ二 ゥムテトラァセチルァセトネート粉末が十分溶解するまで撹拌した。これにより、 15分 ほどで溶解した。この液を 120°Cまで昇温し、 30分間還流させながら撹拌を行なった Momentive 'Performance' 'Materials' Japan GK Co., Ltd. Both-end Silanol Dimethinoresiri 1-year-old Inore XC96— 723 1450.82g, Phenylolinoxysilane 14.5 g 190g prepared. This was placed in a 2 L three-necked Kolben equipped with a stirring blade and a condenser, and stirred at room temperature until the zirconium tetraacetylacetylate powder was sufficiently dissolved. This dissolved in about 15 minutes. The liquid was heated to 120 ° C and stirred while refluxing for 30 minutes.
〇 Yes
[0635] 続いて、ガス吹き込み管をコルベンの口に接続して、窒素を SV20で反応液中に吹 き込みながら 120°Cで 5時間、撹拌を続けた。窒素の吹き込みを停止しコルベンをい つたん室温まで冷却した後、反応液をナス型フラスコに移し、ロータリーエバポレータ 一を用いてオイルバス上 120°C、 lkPaで 20分間減圧留去し、粘度 282mPa ' sの無 溶剤の液を得た。 [0635] Subsequently, a gas blowing tube was connected to the mouth of Kolben, and stirring was continued at 120 ° C for 5 hours while nitrogen was blown into the reaction solution with SV20. After stopping the nitrogen blowing and cooling the Kolben to room temperature, the reaction solution was transferred to an eggplant-shaped flask and distilled under reduced pressure on an oil bath at 120 ° C and lkPa for 20 minutes using a rotary evaporator. 's solvent-free liquid was obtained.
[0636] ガラススクリュー管瓶にこの液 10gとジルコニウムテトラァセチルァセトネート粉末 0· 06gとを計量し、オイルバス中 100°Cで 5分間攪拌し溶解させた(以下適宜「低屈折 率バインダ と!/、う)。透明溶解後の低屈折率バインダ B液 2g、 日本ァエロジル株式 会社製疎水性ヒュームドシリカ RX200を 0. 196g軟膏壷に計量し、自転'公転方式ミ キサー脱泡装置を使用し、混合モードで 3分、脱泡モードで 1分攪拌を行い、特定層 (低屈折率層)形成液 B (低屈折率; n= 1. 42)を得た。 [0636] 10 g of this liquid and zirconium tetraacetylacetonate powder 0 · 06 g were weighed in a glass screw tube bottle and stirred and dissolved in an oil bath at 100 ° C for 5 minutes (hereinafter referred to as “low refractive index binder” 2) 2g of low-refractive index binder B after transparent dissolution, weigh hydrophobic fumed silica RX200 made by Nippon Aerosil Co., Ltd. into 0.196g ointment jar, The mixture was stirred for 3 minutes in the mixed mode and 1 minute in the defoaming mode to obtain a specific layer (low refractive index layer) forming liquid B (low refractive index; n = 1.42).
[0637] [C— 3— 1— 3]特定層(高屈折率層)形成液 C (高屈折率; n= l . 46)の調液 [0637] [C—3-1—3] Preparation of specific layer (high refractive index layer) forming liquid C (high refractive index; n = l. 46)
モメンテイブ'パフォーマンス 'マテリアルズ 'ジャパン合同会社製両末端シラノール ジメチノレシリコーンオイノレ XC96— 723を 42g、両末端シラノールメチルフエ二ルシリ コーンオイル YF3804を 98g、フエニルトリメトキシシランを 14g、及び、触媒としてジ ルコニゥムテトラァセチルァセトネート粉末を 0. 308g用意し、これを攪拌翼とコンデ ンサとを取り付けた三つ口コルベン中に計量し、室温にて 15分触媒が十分溶解する まで攪拌した。この後、反応液を 120°Cまで昇温し、 120°C全還流下で 2時間攪拌し
つつ初期加水分解を行った。 Momentive 'Performance'Materials' Japan GK Co., Ltd. Both End Silanol Dimethylol Silicone Oile XC96-723 42g, Both End Silanol Methyl Phenyl Silcon Corn Oil 98g, Phenyltrimethoxysilane 14g, and Catalyst Prepare 0.308 g of zirconium tetracetylacetonate powder, weigh it into a three-necked Kolben equipped with a stirring blade and a condenser, and stir at room temperature for 15 minutes until the catalyst is sufficiently dissolved. did. After this, the temperature of the reaction solution was raised to 120 ° C and stirred for 2 hours at 120 ° C total reflux. Initial hydrolysis was carried out.
続レ、て窒素を SV20で吹き込み生成メタノール及び水分、副生物の低沸ケィ素成 分を留去しつつ 120°Cで攪拌し、さらに 6時間重合反応を進めた。 Subsequently, nitrogen was blown in with SV20 and the resulting methanol, water, and low-boiling components of by-products were distilled off and stirred at 120 ° C, and the polymerization reaction was further continued for 6 hours.
窒素の吹き込みを停止し反応液をいつたん室温まで冷却した後、ナス型フラスコに 反応液を移し、ロータリーエバポレーターを用いてオイルバス上 120°C、 lkPaで 20 分間微量に残留しているメタノール及び水分、低沸ケィ素成分を留去し、粘度 150m Pa ' sの無溶剤の液を得た。 After stopping the nitrogen blowing and cooling the reaction solution to room temperature, transfer the reaction solution to an eggplant-shaped flask and use a rotary evaporator on the oil bath for 120 minutes at 120 ° C and lkPa for 20 minutes. Water and low boiling water components were distilled off to obtain a solvent-free liquid having a viscosity of 150 mPa's.
[0638] ガラススクリュー管瓶にこの液 10gとジルコニウムテトラァセチルァセトネート粉末 0· 08gとを計量し、オイルバス中 100°Cで 5分間攪拌し溶解させた(以下適宜「高屈折 率バインダじ」と!/、う)。透明溶解後の高屈折率バインダ C液 2g、 日本ァエロジル株式 会社製疎水性ヒュームドシリカ RX200を 0. 175g軟膏壷に計量し、自転'公転方式ミ キサー脱泡装置を使用し、混合モードで 3分、脱泡モードで 1分攪拌を行い、特定層 (高屈折率層)形成液 C (高屈折率; n= 1. 46)を得た。 [0638] 10 g of this solution and zirconium tetraacetylacetonate powder 0 · 08 g were weighed in a glass screw tube bottle and stirred and dissolved in an oil bath at 100 ° C for 5 minutes (hereinafter referred to as “high refractive index binder” "!" High-refractive-index binder solution C 2g after clear dissolution, Nippon Aerosil Co., Ltd. Hydrophobic fumed silica RX200 was weighed to 0.175g ointment jar, using a rotating / revolving mixer deaerator 3 The mixture was stirred in the defoaming mode for 1 minute to obtain a specific layer (high refractive index layer) forming liquid C (high refractive index; n = 1.46).
[0639] [C 3— 1 4]特定層(高屈折率光散乱層)形成液 Dの調液 [0639] [C 3-1 4] Preparation of specific layer (high refractive index light scattering layer) forming solution D
[C— 3— 1— 3]の特定層(高屈折率層)形成液 Cの液を 5g、光散乱粒子として、 A1 O微粉「CR— 1 (中央粒径 400nm)」を 0. l lg、モメンテイブ'パフォーマンス 'マテ Specific layer (high refractive index layer) formation liquid of [C—3—1—3] 5 g of liquid C, and light scattering particles, A1 O fine powder “CR-1 (median particle size 400 nm)” is 0.1 l lg , Momentive 'Performance'
2 3 twenty three
リアルズ'ジャパン合同会社製「トスパール 145 (中央粒径 5 m)」を 1. 09g混合用 容器に計量し、自転 ·公転方式ミキサー脱泡装置を使用し、遠心脱泡 ·混合を行い、 特定層(高屈折率光散乱層)形成液 Dを得た。 Reals' Japan GK “Tospearl 145 (median particle size 5 m)” is weighed in a 1.09 g mixing container, and is subjected to centrifugal defoaming and mixing using a rotating / revolving mixer defoaming device. (High refractive index light scattering layer) Formation liquid D was obtained.
[0640] [C 3— 2]堰形成液の用意 [0640] [C 3-2] Preparation of weir formation liquid
[C 3— 2— 1 ]堰形成液 A (白色縮合型シリコーン樹脂)の調液 Preparation of [C 3-2-1] weir formation solution A (white condensation silicone resin)
[C 3— 1— 2]の低屈折率バインダ Bの液 4· 2g、光散乱粒子として、 Al O微粉「 [C 3—1-2] Low refractive index binder B liquid 4.2g, Al O fine powder “
2 3 twenty three
CR- 1 (中央粒径 400nm)」を 1 · 407g、 日本ァエロジル株式会社製疎水性ヒユー ムドシリカ ァエロジル RX200を 1. 302gを混合用容器に計量し、 自転'公転方式ミ キサー脱泡装置を使用して遠心脱泡 ·混合を行レ \白色の堰形成液 Aを得た。 Measure CR-1 (median particle size 400nm) 1 · 407g, Nippon Aerosil Co., Ltd. Hydrophobic Humid Silica Aerosil RX200 1.302g into a mixing container, and use a rotating / revolving mixer deaerator. Centrifugal defoaming and mixing were performed. A white weir formation liquid A was obtained.
[0641] [C 3— 2— 2]堰形成液 B (白色付加型シリコーン樹脂)の調液 [0641] Preparation of [C 3-2-2] weir formation liquid B (white addition type silicone resin)
東レダウコーユング株式会社製シリコーン樹脂 OE6336— A液を 2· 0g、同 B液を 2 . 0g、光散乱粒子として、 Al O微粉「CR— 1 (中央粒径 400nm)」を 0. 8g、 日本ァ
エロジル株式会社製疎水性ヒュームドシリカ ァエロジル RX200を 0. 7g混合用容器 に計量し、自転 ·公転方式ミキサー脱泡装置を使用して遠心脱泡 ·混合を行い、白色 の堰形成液 Bを得た。 Silicone resin OE6336 manufactured by Toray Dow Cowing Co., Ltd. OE6336—A solution 2.0g, B solution 2.0g, Al O fine powder “CR-1 (median particle size 400nm)” 0.8g as light scattering particles, Japan Erosil Hydrophobic Fumed Silica Aerosil RX200 was weighed in a 0.7g mixing container, and centrifugal defoaming and mixing were performed using a rotating / revolving mixer defoaming device to obtain white weir forming liquid B It was.
[0642] [C 3— 2— 3]堰形成液 C (黒色付加型シリコーン樹脂)の調液 [0642] [C 3-2 3] Preparation of weir formation liquid C (black addition type silicone resin)
東レダウコーユング株式会社製シリコーン樹脂 OE6336— A液を 2· 5g、同 B液を 2 Silicone resin OE6336 manufactured by Toray Dow Cowing Co., Ltd.
. 5g、黒色顔料として、三菱マテリアル製チタンブラック粒子 BM— Cを 1. 5g混合用 容器に計量し、自転 ·公転方式ミキサー脱泡装置を使用して遠心脱泡 ·混合を行い、 黒色の堰形成液 Cを得た。 Measure 5g of black pigment BM-C made by Mitsubishi Materials as a black pigment in a 1.5g mixing container, and perform centrifugal defoaming and mixing using a rotating / revolving mixer defoaming device. Forming liquid C was obtained.
[0643] [C-4.具体的な実施例の操作及び評価の説明] [0643] [C-4. Description of operation and evaluation of specific examples]
[実施例 C 15] [Example C 15]
以下に堰を設け、塗布型導光層を有する発光装置の作製例を示す。 An example of manufacturing a light-emitting device having a weir and having a coating-type light guide layer is described below.
[導光板の製造] [Manufacture of light guide plates]
中央に LEDを設置するための凹部を備え、凹部以外の部分に白色ソルダーぺ一 ストを塗布した配線基板を用意した。なお、前記凹部にはリフレクタが装着されている We prepared a wiring board with a recess for installing the LED in the center and a white solder paste applied to the area other than the recess. In addition, a reflector is attached to the recess.
〇 Yes
前記凹部に緑色 LEDを実装した。次に、この基板上に、 [C— 3 2 1]で得られ た堰形成液 Aを用いて境界部を描画した。境界部は、当該緑色 LEDを囲む堰となる ように描画した。また、境界部の描画は、武蔵エンジニアリング株式会社製圧空型デ イスペンサを使用し、同社製テーパーノズル TPN— 22G (内径 0· 4mm)を用いて行 なった。この際の描画速度は 2mm/秒とした。さらに、シリンジから堰形成液 Aを押し 出す際の圧力は、 0. 364MPaに設定した。 A green LED was mounted in the recess. Next, a boundary portion was drawn on this substrate using the weir forming liquid A obtained in [C-3 2 1]. The boundary was drawn to be a weir surrounding the green LED. In addition, drawing of the boundary part was performed by using a pneumatic nozzle dispenser manufactured by Musashi Engineering Co., Ltd., and a taper nozzle TPN-22G (inner diameter: 0.4 mm) manufactured by the same company. The drawing speed at this time was 2 mm / sec. Furthermore, the pressure when pushing out the weir forming liquid A from the syringe was set to 0.364 MPa.
その後、これを空気雰囲気中 150°C、大気圧で 1. 0時間保持し、境界部を硬化さ せた。これにより高さ約 300 mの、稜線のない形状の境界部が得られた。 Thereafter, this was held in an air atmosphere at 150 ° C. and atmospheric pressure for 1.0 hour to cure the boundary. As a result, a boundary with a height of about 300 m and no ridgeline was obtained.
[0644] 次いで、デイスペンサを用いて基板上の前記の境界部の内側部分に、特定層(低 屈折率層)形成液 Aを塗布した。ここで境界部が特定層(低屈折率層)形成液 Aを堰 き止める堰として作用し、境界部の内側にのみ特定層(低屈折率層)形成液 Aが塗布 され、境界部の外側には漏れ出さな力 た。また、配線基板上の凹部には特定層( 低屈折率層)形成液 Aが侵入しな!/、ように塗布し、特定層(低屈折率層)形成液 Aに
より形成される低屈折率層が、凹部を通じて伝送される光の伝送を妨げないようにし た。 [0644] Next, the specific layer (low refractive index layer) forming liquid A was applied to the inner part of the boundary portion on the substrate using a dispenser. Here, the boundary acts as a weir to dam the specific layer (low refractive index layer) forming liquid A, and the specific layer (low refractive index layer) forming liquid A is applied only inside the boundary and the outside of the boundary There was no leaking power. In addition, the specific layer (low refractive index layer) forming liquid A does not penetrate into the recesses on the wiring board! /, And is applied to the specific layer (low refractive index layer) forming liquid A. The low refractive index layer formed in such a manner was made not to disturb the transmission of light transmitted through the recess.
そして、これを空気雰囲気中、 150°C、大気圧で 1時間保持し、特定層(低屈折率 層)形成液 Aを硬化させて、厚さ約 50 mの低屈折率層を形成した。 This was held in an air atmosphere at 150 ° C. and atmospheric pressure for 1 hour to cure the specific layer (low refractive index layer) forming liquid A to form a low refractive index layer having a thickness of about 50 m.
[0645] さらに、デイスペンサを用いて前記境界部内側の低屈折率層上に、特定層(低屈折 率層)形成液 Bを塗布した。この際も、境界部が特定層(低屈折率層)形成液 Bを堰き 止める堰として作用し、境界部の内側にのみ特定層(低屈折率層)形成液 Bが塗布さ れ、境界部の外側には漏れ出さなかった。 [0645] Further, the specific layer (low refractive index layer) forming liquid B was applied onto the low refractive index layer inside the boundary using a dispenser. Also at this time, the boundary part acts as a weir to dam the specific layer (low refractive index layer) forming liquid B, and the specific layer (low refractive index layer) forming liquid B is applied only inside the boundary part. Did not leak outside.
そして、これを空気雰囲気中、 150°C、大気圧で 1時間保持し、特定層(低屈折率 層)形成液 Bを硬化させて、厚さ約 200 mの高屈折率層を形成した。 Then, this was held in an air atmosphere at 150 ° C. and atmospheric pressure for 1 hour, and the specific layer (low refractive index layer) forming liquid B was cured to form a high refractive index layer having a thickness of about 200 m.
[0646] さらに、デイスペンサを用いて前記境界部内側の高屈折率層上に、特定層(高屈折 率光散乱層)形成液 Dを塗布した。この際も、境界部が特定層(高屈折率光散乱層) 形成液 Dを堰き止める堰として作用し、境界部の内側にのみ特定層(高屈折率光散 乱層)形成液 Dが塗布され、境界部の外側には漏れ出さな力、つた。 [0646] Further, the specific layer (high refractive index light scattering layer) forming liquid D was applied onto the high refractive index layer inside the boundary using a dispenser. Also at this time, the boundary part acts as a weir to dam the specific layer (high refractive index light scattering layer) forming liquid D, and the specific layer (high refractive index light scattering layer) forming liquid D is applied only inside the boundary part. There was a leaking force outside the boundary.
そして、これを空気雰囲気中、 150°C、大気圧で 1時間保持し、特定層(高屈折率 光散乱層)形成液 Dを硬化させて、厚さ約 50 mの高屈折率光散乱層を形成した。 以上のようにして、図 29に模式的に示すような、塗布型導光層を有する発光装置を 製造した。 Then, this is held in an air atmosphere at 150 ° C. and atmospheric pressure for 1 hour, and the specific layer (high refractive index light scattering layer) forming liquid D is cured to give a high refractive index light scattering layer having a thickness of about 50 m. Formed. As described above, a light emitting device having a coating type light guide layer as schematically shown in FIG. 29 was manufactured.
[0647] [評価] [0647] [Evaluation]
得られた塗布型導光層を有する発光装置に通電を行い、前記緑色 LEDを発光さ せて、その様子を観察した。 The light emitting device having the obtained coating type light guide layer was energized to emit the green LED, and the state was observed.
さらに、実施例 C 1と同様の要領で、得られた導光板の各層について、密着性の 評価、固体 Si— NMRスペクトル測定、シラノール含有率、ケィ素含有率、硬度(ショ ァ A)、及び^ ^一ズ値を測定した。 Further, in the same manner as in Example C1, for each layer of the obtained light guide plate, evaluation of adhesion, solid-state Si-NMR spectrum measurement, silanol content, key content, hardness (Shore A), and ^^ Measured values.
[0648] また、導光板の各層の屈折率を、以下の要領で測定した。 [0648] Further, the refractive index of each layer of the light guide plate was measured in the following manner.
[屈折率測定] [Refractive index measurement]
各層の屈折率は、液浸法(固体対象)のほか Pulflich屈折計、 Abbe屈折計、プリ ズムカプラー法、干渉法、最小偏角法などの公知の方法を用いて測定することが出
来る。本実施例の各層は硬化前後の屈折率変化は非常に僅かであるため、硬化前 の液体状態にて Abbe屈折計(ナトリウム D線(589nm) )により実施例 C— 15の導光 板の各層(低屈折率層、高屈折率層、光散乱層)の形成液屈折率を測定した。 The refractive index of each layer can be measured using known methods such as immersion method (solid object), Pulflich refractometer, Abbe refractometer, prism coupler method, interferometry, and minimum declination method. come. Each layer of this example has very little change in refractive index before and after curing. Therefore, each layer of the light guide plate of Example C-15 was measured with an Abbe refractometer (sodium D line (589 nm)) in the liquid state before curing. The forming liquid refractive index of (low refractive index layer, high refractive index layer, light scattering layer) was measured.
[0649] 結果を、表 10に示す。 [0649] The results are shown in Table 10.
なお、表 10において、密着性の評価結果におうて密着性が良好なものは「〇」で示 した。 In Table 10, those with good adhesion in the results of evaluation of adhesion are indicated by “◯”.
また、表 10の光取り出し性の項において、「遠くまで光る力、」の欄力 s「〇」であれば堰 付近にまで発光面が達していることを意味し、「△」であれば LEDと堰の中間付近に まで発光面が達してレ、ることを意味し、「 X」であればチップ直上のみ発光して!/、るこ とを意味する。 Also, in the light extraction property section of Table 10, if the field power s “◯” of “power to shine far away,” it means that the light emitting surface has reached the vicinity of the weir, and if “△”. This means that the light emitting surface reaches the middle of the LED and weir, and “X” means that it emits light just above the chip! /.
また、表 10の光取り出し性の項において、「全面が光る力、」の欄力 S「〇」であれば堰 で区切られた面全体が発光していることを意味し、「△」であれば LEDと境界部との 中間程度まで発光することを意味し、「X」であればチップ近傍の面のみが発光して いることを意味する。 Also, in the light extraction property section of Table 10, if the field power S “◯” of “the whole surface shines”, it means that the entire surface separated by the weir emits light, and “△” If there is, it means that the LED emits light to the middle of the boundary and “X” means that only the surface near the chip emits light.
さらに、表 10の光取り出し性の項において、「境界部での光の遮蔽」の欄が「〇」で あれば境界内部の面のみ発光してレ、ることを意味し、「 X」であれば境界を越え隣接 する面に発光が達してレヽることを意味する。 Furthermore, in the light extraction property section of Table 10, if the “Light shielding at the boundary” column is “◯”, it means that only the surface inside the boundary emits light. If there is, it means that the light reaches the adjacent surface beyond the boundary and is emitted.
[0650] [実施例 C 16] [0650] [Example C 16]
低屈折率層の形成液として特定層(低屈折率層)形成液 Bを用いた他は全て実施 例 C - 15と同様にして実施例 C - 16の発光装置を製造し、実施例 C - 15と同様の 評価を行なった。結果を表 10に示す。 The light emitting device of Example C-16 was manufactured in the same manner as Example C-15 except that the specific layer (low refractive index layer) forming liquid B was used as the low refractive index layer forming liquid. Evaluation similar to 15 was performed. The results are shown in Table 10.
[0652] [実施例 C 15, C 16からわかること] [0652] [What can be seen from Examples C 15 and C 16]
堰の素材をシリコーン樹脂としても堰と導光層が剥離することなく好適に導光層を 形成すること力';できた。また、実施例 C— 16より高屈折率層と低屈折率層の屈折率 差が大きな実施例 C— 15は、実施例 C— 16より光伝播効率が向上し、 LEDより遠方 まで均一に面発光させることが出来た。 Even if the weir material was made of silicone resin, the ability to form the light guide layer suitably without the weir and the light guide layer being peeled off. In addition, the difference in refractive index between the high-refractive index layer and the low-refractive index layer is larger than that of Example C-16. Example C-15 has a light propagation efficiency higher than that of Example C-16 and is more uniform than the LED. I was able to emit light.
[0653] [C 5]その他の堰の製造例と評価 [0653] [C 5] Other examples of production and evaluation of weirs
[C 5— 1]堰の描画と硬化 [C 5—1] Drawing and hardening of weir
[C- 5- 1 - 1]白色の堰 (付加型シリコーン樹脂)
スライドガラス上に [C 3— 2— 2]で得られた白色の堰形成液 Bを用いて 1辺 1cm の正方形の堰の描画を行なった。堰の描画は、武蔵エンジニアリング株式会社製圧 空型デイスペンサを使用し、同社製テーパーノズル TPN— 22G (内径 0· 4mm)を用 いて行なった。この際の描画速度は 3mm/秒とした。さらに、シリンジから堰形成液 Bを押し出す際の圧力は、 150kPaに設定した。 [C- 5- 1-1] White weir (additional silicone resin) A square weir with a side of 1 cm was drawn on the slide glass using the white weir formation liquid B obtained in [C 3-2-2]. The weir was drawn using a pneumatic air dispenser made by Musashi Engineering Co., Ltd., and a taper nozzle TPN-22G (inner diameter 0.4 mm) made by the company. The drawing speed at this time was 3 mm / sec. Furthermore, the pressure when extruding the weir forming liquid B from the syringe was set to 150 kPa.
その後、これを空気雰囲気中 150°C、大気圧で 1. 0時間保持し、堰を硬化させた。 これにより高さ約 300 μ mの、稜線のな!/、形状の白色の堰が得られた。 Thereafter, this was maintained in an air atmosphere at 150 ° C. and atmospheric pressure for 1.0 hour to cure the weir. As a result, a white weir with a height of about 300 μm and no ridgeline! / Was obtained.
[0654] [C 5— 1 2]黒色の堰 (付加型シリコーン樹脂) [0654] [C 5— 1 2] Black weir (addition type silicone resin)
スライドガラス上に [C 3— 2— 3]で得られた黒色の堰形成液 Cを用レ、たことの他 は [C— 5— 1— 1]と同様にして堰の描画を行なった。これにより高さ約 300 μ mの、 稜線のな!/、形状の黒色の堰が得られた。 The weir was drawn in the same manner as in [C-5-1-1-1] except that the black weir formation liquid C obtained in [C3-2-3] was used on the slide glass. . This resulted in a black weir with a height of about 300 μm and no edge! /.
[0655] [C 5— 2]堰の評価 [0655] [C 5-2] Weir evaluation
堰を描画 '硬化したのみのスライドガラスに応力をかけて二つに割り、堰の破断面の 形状を実体顕微鏡で観察し、堰の高さや断面構造を調べた。 [C 5— 1 1]の堰に ついては堰の内側に実施例 C 15と同様の方法で低屈折率層、高屈折率層、光散 乱層を積層 ·硬化させてこれを破断させ、実体顕微鏡で破断面を観察し、堰と導光層 素材の密着性や濡れ性を調べた。 Drawing the weir 'We applied stress to the hardened glass slide and divided it into two. We observed the shape of the fractured surface of the weir with a stereomicroscope, and investigated the height and cross-sectional structure of the weir. For the weir [C 5-11], a low refractive index layer, a high refractive index layer, and a light scattering layer are laminated and cured in the same manner as in Example C 15 inside the weir to break it and The fracture surface was observed with a microscope, and the adhesion and wettability between the weir and the light guide layer material were examined.
[0656] [C 5— 3]各種の堰の働き [0656] [C 5-3] Functions of various weirs
実施例 C 15および [C 5— 1 1 ]、 [C 5— 1 2]の実験例より縮合型シリコ ーン樹脂や付加型シリコーン樹脂いずれも好適に堰を形成できることがわかった。ま た、いずれの樹脂により形成した堰も導光層を形成する特定層との密着性良ぐ堰と 特定層の界面が剥離したり、特定層塗布時にはじきが発生したりすることはなかった 。さらに堰を白色や黒色に着色形成できることもわかった。 From the experimental examples of Example C 15 and [C 5-11], [C 5-12], it was found that both the condensation type silicone resin and the addition type silicone resin can form the weir suitably. In addition, the weir formed with any resin did not peel off the interface between the weir and the specific layer with good adhesion to the specific layer forming the light guide layer, and no cissing occurred when applying the specific layer. . It was also found that the weir can be colored white or black.
[0657] 異なる色を伝播させる 2つの導光層領域を堰で区切る場合、堰が白色であると、各 々の領域の光を白色の堰が反射し、隣の領域への光の漏れ出しを防止し混色を防 ぐ効果がある。ただし、白色の堰を非常に細く又は薄くした場合には、光の遮蔽効果 が不十分となる可能性がある。この場合には、黒色の堰を用いると光吸収による導光 量のロスが生じる力 S、隣の領域への光の混色を確実に防止することが出来ると考えら
れる。 [0657] When two light guide layer areas that propagate different colors are separated by a weir, if the weir is white, the white weir reflects the light in each area and the light leaks to the adjacent area This has the effect of preventing color mixing. However, if the white weir is very thin or thin, the light shielding effect may be insufficient. In this case, it is considered that the use of the black weir can surely prevent the light mixing loss due to light absorption S and the color mixing of light to the adjacent area. It is.
産業上の利用可能性 Industrial applicability
[0658] 本発明の導光部材は、通常、厚膜化が可能であり、厚膜部においてもクラックの発 生が抑制され、基板からの剥離および積層面での剥離が抑制され、さらに耐熱性、 耐光性に優れた効果を奏する。また、本発明の導光部材は、通常、可撓性を有し、 積層時の密着性に優れ、長期使用においてもクラックの発生が抑制され、基板から の剥離および積層面での剥離が抑制される。 [0658] The light guide member of the present invention can usually be made thicker, cracks are prevented from occurring in the thick film part, peeling from the substrate and peeling on the laminated surface are suppressed, and heat resistance is further improved. Excellent effects on light and light resistance. In addition, the light guide member of the present invention is usually flexible, has excellent adhesion during lamination, suppresses the generation of cracks even during long-term use, and suppresses peeling from the substrate and peeling on the laminated surface. Is done.
本発明の導光部材を用いて形成された光導波路および導光板は、膜厚設計の自 由度が高ぐ厚膜部においてもクラックの発生が抑制され、基板からの剥離および積 層面での剥離が抑制され、さらに耐熱性、耐光性に優れた効果を奏する。 In the optical waveguide and the light guide plate formed using the light guide member of the present invention, the occurrence of cracks is suppressed even in the thick film portion where the degree of freedom in the film thickness design is high. Peeling is suppressed, and further excellent effects of heat resistance and light resistance are exhibited.
[0659] よって、本発明の導光部材、光導波路、および導光板は、それぞれ当該分野にお いて、産業上の利用可能性が極めて高い。特に、光導波路、照明、電飾、ディスプレ ィなどの用途に用いて好適である。 Therefore, the light guide member, the light guide, and the light guide plate of the present invention have extremely high industrial applicability in the respective fields. In particular, it is suitable for use in applications such as optical waveguides, illumination, electrical decoration, and displays.
[0660] 以上、本発明を特定の態様を用いて詳細に説明したが、本発明の意図と範囲を離 れることなく様々な変更が可能であることは当業者に明らかである。 [0660] Although the present invention has been described in detail using specific embodiments, it is obvious to those skilled in the art that various modifications can be made without departing from the spirit and scope of the present invention.
なお本出願は、 2006年 11月 22日付で出願された日本特許出願(特願 2006— 3 15765)、 2007年 3月 30曰付で出願された曰本特許出願(特願 2007— 093686) 、 2007年 3月 30日付で出願された日本特許出願(特願 2007— 093687)、及び、 2 007年 3月 30曰付で出願された曰本特許出願(特願 2007— 093688)〖こ基づレヽて おり、その全体が引用により援用される。
In addition, this application is a Japanese patent application filed on November 22, 2006 (Japanese Patent Application 2006-3 15765), a Japanese patent application filed March 30, 2007 (Japanese Patent Application 2007-093686), Japanese patent application filed on March 30, 2007 (Japanese Patent Application No. 2007-093687) and Japanese patent application filed on March 30, 2007 dated 30 March 2007 (Japanese Patent Application No. 2007-093688) Which is incorporated by reference in its entirety.
Claims
(1)固体 Si—核磁気共鳴スペクトルにおいて、 (1) In the solid Si-nuclear magnetic resonance spectrum,
(i)ピークトップの位置がケミカルシフト— 40ppm以上 Oppm以下の領域にあり、ピ ークの半値幅が 0. 3ppm以上、 3. Oppm以下であるピーク、及び、 (i) The peak top position is in the region of chemical shift-40 ppm or more and Oppm or less, and the peak half-value width is 0.3 ppm or more and 3. Oppm or less, and
(ii)ピークトップの位置がケミカルシフト— 80ppm以上— 40ppm未満の領域にあり 、ピークの半値幅が 0. 3ppm以上 5. Oppm以下であるピーク (ii) The peak top position is in the region of chemical shift—80 ppm or more—less than 40 ppm, and the peak half-value width is 0.3 ppm or more and 5. Oppm or less.
力もなる群より選ばれるピークを、少なくとも 1つ有する。 Has at least one peak selected from the group that also has force.
(2)ケィ素含有率が 10重量%以上である。 (2) The content of silicon is 10% by weight or more.
(3)シラノーノレ含有率が 0. 01重量%以上、 10重量%以下である。 (3) The content of silanol is 0.01% by weight or more and 10% by weight or less.
(4)デュロメータタイプ Aによる硬度測定値 (ショァ A)が 5以上 90以下である。 (4) Hardness measured by Durometer Type A (Shore A) is 5 or more and 90 or less.
[6] - ^一ズ値の異なる 2以上の層が積層されてなる導光部材であって、 [6]-^ A light guide member in which two or more layers having different values are laminated,
前記層のうちの互いに接する少なくとも 2層力 下記の条件を満たす At least two layer forces that touch each other among the layers satisfy the following conditions:
ことを特徴とする導光部材。 A light guide member.
(5)固体 Si—核磁気共鳴スペクトルにおいて、 (5) In the solid Si-nuclear magnetic resonance spectrum,
(i)ピークトップの位置がケミカルシフト— 40ppm以上 Oppm以下の領域にあり、ピ ークの半値幅が 0. 5ppm以上、 3. Oppm以下であるピーク、及び、 (i) The peak top position is in the region of chemical shift-40 ppm or more and Oppm or less, and the peak half-value width is 0.5 ppm or more and 3. Oppm or less, and
(ii)ピークトップの位置がケミカルシフト— 80ppm以上— 40ppm未満の領域にあり 、ピークの半値幅が 1. Oppm以上 5. Oppm以下であるピーク (ii) The peak top position is in the region of chemical shift—80 ppm or more—less than 40 ppm, and the peak half-value width is 1. Oppm or more and 5. Oppm or less.
力もなる群より選ばれるピークを、少なくとも 1つ有する。 Has at least one peak selected from the group that also has force.
(2)ケィ素含有率が 10重量%以上である。 (2) The content of silicon is 10% by weight or more.
(3)シラノーノレ含有率が 0. 01重量%以上、 10重量%以下である。 (3) The content of silanol is 0.01% by weight or more and 10% by weight or less.
[7] 屈折率の異なる 2以上の層が積層された導光部材であって、 [7] A light guide member in which two or more layers having different refractive indexes are laminated,
前記層の少なくとも 1層が下記の特性を有し、かつ、 And at least one of the layers has the following characteristics:
発光ピークの主波長が 500nm以下である光源を備える Equipped with a light source whose main wavelength of emission peak is 500nm or less
ことを特徴とする導光部材。
(6)他の層との界面に、極性基を含有すること。 A light guide member. (6) Contain polar groups at the interface with other layers.
(7)硬度が、ショァ Aで 5以上 100以下、または、ショァ Dで 0以上 85以下であること。 (7) Hardness of Shore A is 5 or more and 100 or less, or Shore D is 0 or more and 85 or less.
(8)シロキサン結合を有すること。 (8) Having a siloxane bond.
[8] 屈折率の異なる 2以上の層が積層されてなる導光部材であって、 [8] A light guide member in which two or more layers having different refractive indexes are laminated,
前記層のうちの互いに接する少なくとも 2層力 下記の条件を満たす At least two layer forces that touch each other among the layers satisfy the following conditions:
ことを特徴とする導光部材。 A light guide member.
(6)他の層との界面に、極性基を含有すること。 (6) Contain polar groups at the interface with other layers.
(7)硬度が、ショァ Aで 5以上 100以下、または、ショァ Dで 0以上 85以下であること。 (7) Hardness of Shore A is 5 or more and 100 or less, or Shore D is 0 or more and 85 or less.
(8)シロキサン結合を有すること。 (8) Having a siloxane bond.
[9] - ^一ズ値の異なる 2以上の層が積層された導光部材であって、 [9]-^ A light guide member in which two or more layers having different values are laminated,
前記層の少なくとも 1層力 S、下記の特性を有し、かつ、 At least one layer force S of the layer, having the following characteristics, and
発光ピークの主波長が 500nm以下である光源を備える Equipped with a light source whose main wavelength of emission peak is 500nm or less
ことを特徴とする導光部材。 A light guide member.
(6)他の層との界面に、極性基を含有すること。 (6) Contain polar groups at the interface with other layers.
(7)硬度が、ショァ Aで 5以上 100以下、または、ショァ Dで 0以上 85以下であること。 (7) Hardness of Shore A is 5 or more and 100 or less, or Shore D is 0 or more and 85 or less.
(8)シロキサン結合を有すること。 (8) Having a siloxane bond.
[10] - ^一ズ値の異なる 2以上の層が積層されてなる導光部材であって、 [10]-^ A light guide member in which two or more layers having different values are laminated,
前記層のうちの互いに接する少なくとも 2層力 下記の条件を満たす At least two layer forces that touch each other among the layers satisfy the following conditions:
ことを特徴とする導光部材。 A light guide member.
(6)他の層との界面に、極性基を含有すること。 (6) Contain polar groups at the interface with other layers.
(7)硬度が、ショァ Aで 5以上 100以下、または、ショァ Dで 0以上 85以下であること。 (7) Hardness of Shore A is 5 or more and 100 or less, or Shore D is 0 or more and 85 or less.
(8)シロキサン結合を有すること。 (8) Having a siloxane bond.
[11] 前記の条件(6)〜(8)を満たす層がビュル基及び/又はヒドロシリル基を含有する ことを特徴とする請求項 7〜; 10のいずれか一項に記載の導光部材。 [11] The light guide member according to any one of [7] to [10], wherein the layer satisfying the above conditions (6) to (8) contains a bull group and / or a hydrosilyl group.
[12] 前記層の少なくとも 1層力 - ^一ズ直 50以上である [12] At least one layer force of the layer-^ 50
ことを特徴とする請求項 5、 6、 9及び 10のいずれか 1項に記載の導光部材。 The light guide member according to any one of claims 5, 6, 9 and 10.
[13] 前記層の少なくとも 1層が無機粒子を含有する [13] At least one of the layers contains inorganic particles
ことを特徴とする請求項 1〜; 12のいずれ力、 1項に記載の導光部材。
The light guide member according to any one of claims 1 to 12, wherein the force is any one of the above.
[14] 該無機粒子の中央粒径が;!〜 lOnmである [14] The median particle size of the inorganic particles is;! ~ LOnm
ことを特徴とする請求項 13に記載の導光部材。 The light guide member according to claim 13.
[15] 前記層の、少なくとも 1層が中央粒径 0. 05-50 H mの無機粒子を含有するととも に、その層及び/又は他の少なくとも 1層が中央粒径 1〜; !Onmの無機粒子を含有 する [15] At least one of the layers contains inorganic particles having a median particle size of 0.05-50 Hm, and the layer and / or at least one other layer has a median particle size of 1 to; Contains inorganic particles
ことを特徴とする請求項 1〜; 14のいずれ力、 1項に記載の導光部材。 The light guide member according to any one of claims 1 to 14, wherein the force is any one of the above items.
[16] 前記層の少なくとも 1層が蛍光体を含有する [16] At least one of the layers contains a phosphor
ことを特徴とする請求項 1〜; 15のいずれ力、 1項に記載の導光部材。 The light guide member according to any one of claims 1 to 15, wherein:
[17] 該部材の側面と積層面とで形成される角度が 30度以上 80度以下である [17] The angle formed between the side surface of the member and the laminated surface is not less than 30 degrees and not more than 80 degrees
ことを特徴とする請求項 1〜; 16のいずれ力、 1項に記載の導光部材。 The light guide member according to any one of claims 1 to 16, wherein the force is any one of the above items.
[18] 前記層のうち少なくとも 2層を貫通する境界部を備える [18] Provided with a boundary portion penetrating at least two of the layers
ことを特徴とする請求項 1〜; 17のいずれ力、 1項に記載の導光部材。 The light guide member according to any one of claims 1 to 17, wherein the force is any one of the above.
[19] 基板上に、流体状の硬化性材料を硬化させてなる導光層を備える導光部材の製造 方法であって、 [19] A method of manufacturing a light guide member comprising a light guide layer obtained by curing a fluid curable material on a substrate,
該基板上に、該導光層を区画する堰を設ける工程と、 Providing a weir for partitioning the light guide layer on the substrate;
該硬化性材料を該基板上に塗設する工程と、 Coating the curable material on the substrate;
該硬化性材料を硬化させる工程とを有する Curing the curable material.
ことを特徴とする導光部材の製造方法。 A method for manufacturing a light guide member.
[20] 該堰をディスペンサーにより設ける [20] providing the weir with a dispenser
ことを特徴とする請求項 19記載の導光部材の製造方法。 The method for manufacturing a light guide member according to claim 19.
[21] 基板、導光層、及び、該導光層を区画する堰を備えた導光部材であって、 [21] A light guide member comprising a substrate, a light guide layer, and a weir that partitions the light guide layer,
該導光層が高屈折率層及び低屈折率層を有し、 The light guide layer has a high refractive index layer and a low refractive index layer;
該堰が稜線を有さない The weir does not have a ridgeline
ことを特徴とする導光部材。 A light guide member.
[22] 該導光層が硬化性材料を硬化させてなる [22] The light guide layer is formed by curing a curable material.
ことを特徴とする請求項 21記載の導光部材。 22. The light guide member according to claim 21, wherein:
[23] 該導光層が散乱層を有する [23] The light guide layer has a scattering layer
ことを特徴とする請求項 21又は請求項 22に記載の導光部材。
23. The light guide member according to claim 21 or claim 22, wherein
[24] 該導光層が蛍光体含有層を有する [24] The light guide layer has a phosphor-containing layer
ことを特徴とする請求項 21〜23のいずれか一項に記載の導光部材。 24. The light guide member according to any one of claims 21 to 23, wherein:
[25] 請求項 1〜; 18及び 21〜24のいずれか 1項に記載の導光部材を用いて形成された ことを特徴とする光導波路。 [25] An optical waveguide, characterized by being formed using the light guide member according to any one of [1] to [18] and [18] to [21].
[26] 請求項 1〜; 18及び 21〜24のいずれか 1項に記載の導光部材を用いて形成された ことを特徴とする導光板。
[26] A light guide plate formed using the light guide member according to any one of claims 1 to 18 and 21 to 24.
Applications Claiming Priority (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006315765 | 2006-11-22 | ||
JP2006-315765 | 2006-11-22 | ||
JP2007093686 | 2007-03-30 | ||
JP2007093687 | 2007-03-30 | ||
JP2007093688 | 2007-03-30 | ||
JP2007-093688 | 2007-03-30 | ||
JP2007-093687 | 2007-03-30 | ||
JP2007-093686 | 2007-03-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2008062870A1 true WO2008062870A1 (en) | 2008-05-29 |
Family
ID=39429799
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2007/072665 WO2008062870A1 (en) | 2006-11-22 | 2007-11-22 | Optical guiding member, process for producing the same, optical waveguide and light guide plate |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2008062870A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013105946A (en) * | 2011-11-15 | 2013-05-30 | Toyo Ink Sc Holdings Co Ltd | Light-emitting device |
JP2013105947A (en) * | 2011-11-15 | 2013-05-30 | Toyo Ink Sc Holdings Co Ltd | Light-emitting device |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004091579A (en) * | 2002-08-30 | 2004-03-25 | Kyocera Corp | Siloxane polymer, siloxane polymer film-forming coating liquid composition containing the same, and optical waveguide using the same |
JP2005227701A (en) * | 2004-02-16 | 2005-08-25 | Dow Corning Corp | Curable organopolysiloxane composition for optical transmission member, flexible optical transmission member comprising organopolysiloxane hardened product, and method for manufacturing flexible optical transmission member |
JP2006519896A (en) * | 2003-02-19 | 2006-08-31 | ニューシル・テクノロジー・リミテッド・ライアビリティ・カンパニー | High refractive index polysiloxane with optical transparency and high temperature resistance |
WO2006090804A1 (en) * | 2005-02-23 | 2006-08-31 | Mitsubishi Chemical Corporation | Semiconductor light emitting device member, method for manufacturing such semiconductor light emitting device member and semiconductor light emitting device using such semiconductor light emitting device member |
JP2007242246A (en) * | 2006-03-03 | 2007-09-20 | Mitsubishi Chemicals Corp | Lighting apparatus |
-
2007
- 2007-11-22 WO PCT/JP2007/072665 patent/WO2008062870A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004091579A (en) * | 2002-08-30 | 2004-03-25 | Kyocera Corp | Siloxane polymer, siloxane polymer film-forming coating liquid composition containing the same, and optical waveguide using the same |
JP2006519896A (en) * | 2003-02-19 | 2006-08-31 | ニューシル・テクノロジー・リミテッド・ライアビリティ・カンパニー | High refractive index polysiloxane with optical transparency and high temperature resistance |
JP2005227701A (en) * | 2004-02-16 | 2005-08-25 | Dow Corning Corp | Curable organopolysiloxane composition for optical transmission member, flexible optical transmission member comprising organopolysiloxane hardened product, and method for manufacturing flexible optical transmission member |
WO2006090804A1 (en) * | 2005-02-23 | 2006-08-31 | Mitsubishi Chemical Corporation | Semiconductor light emitting device member, method for manufacturing such semiconductor light emitting device member and semiconductor light emitting device using such semiconductor light emitting device member |
JP2007242246A (en) * | 2006-03-03 | 2007-09-20 | Mitsubishi Chemicals Corp | Lighting apparatus |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013105946A (en) * | 2011-11-15 | 2013-05-30 | Toyo Ink Sc Holdings Co Ltd | Light-emitting device |
JP2013105947A (en) * | 2011-11-15 | 2013-05-30 | Toyo Ink Sc Holdings Co Ltd | Light-emitting device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6213585B2 (en) | Semiconductor device member and semiconductor light emitting device | |
JP5761397B2 (en) | Member forming liquid for semiconductor light emitting device, member for semiconductor light emitting device, member for aerospace industry, semiconductor light emitting device, and phosphor composition | |
JP5552748B2 (en) | Curable polysiloxane composition, and cured polysiloxane using the same, optical member, member for aerospace industry, semiconductor light emitting device, lighting device, and image display device | |
JP5641038B2 (en) | Member forming liquid for semiconductor light emitting device and method for manufacturing semiconductor light emitting device using the same | |
JP6473440B2 (en) | Curable silicone composition, cured product thereof, and optical semiconductor device | |
JP2009135485A (en) | Semiconductor light-emitting apparatus and method of manufacturing the same | |
WO2008001799A1 (en) | Illuminating device | |
JP2007116139A (en) | Member for semiconductor light-emitting device, method of manufacturing the same, and semiconductor light-emitting device using the same | |
JP2010100743A (en) | Method for producing phosphor-containing composition | |
WO2006090804A1 (en) | Semiconductor light emitting device member, method for manufacturing such semiconductor light emitting device member and semiconductor light emitting device using such semiconductor light emitting device member | |
CN105765744A (en) | Phosphor composition, phosphor sheet, phosphor sheet laminate, LED chip and LED package each using said phosphor composition, phosphor sheet or phosphor sheet laminate, and method for manufacturing LED package | |
KR20120135071A (en) | Reflector material and light emitting diode device | |
JP2016534162A (en) | Curable silicone composition, cured product thereof, and optical semiconductor device | |
JP5446078B2 (en) | SEMICONDUCTOR DEVICE MEMBER, SEMICONDUCTOR DEVICE MEMBER FORMING METHOD AND SEMICONDUCTOR DEVICE MEMBER MANUFACTURING METHOD, SEMICONDUCTOR LIGHT EMITTING DEVICE USING THE SAME, SEMICONDUCTOR DEVICE MEMBER FORMING SOLUTION, AND PHOSPHOR COMPOSITION | |
JP2016211003A (en) | Two-pack type curable polyorganosiloxane composition for semiconductor light emitting device, polyorganosiloxane-cured article obtained by curing the composition and production method therefor | |
JP2011129901A (en) | Method of manufacturing semiconductor light emitting device | |
WO2015186322A1 (en) | Curable silicone composition and optical semiconductor device | |
JP5145900B2 (en) | Light guide member, light guide and light guide plate | |
JP2010100733A (en) | Production method of phosphor-containing composition | |
JP2009224754A (en) | Semiconductor light emitting device, lighting apparatus, and image display device | |
JP2012256085A (en) | Light-emitting device, and manufacturing method of light-emitting device | |
WO2008062870A1 (en) | Optical guiding member, process for producing the same, optical waveguide and light guide plate | |
JP2008276175A (en) | Optical guiding member, optical waveguide and light guide plate | |
JP2009179677A (en) | Curable polysiloxane compound, method for producing it, polysiloxane cured product using it, optical member, semiconductor light emitting device, optical waveguide, and aerospace industrial member | |
KR20220016875A (en) | Curable organopolysiloxane composition and optical member comprising cured product thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 07832394 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 07832394 Country of ref document: EP Kind code of ref document: A1 |