[go: up one dir, main page]

WO2008053858A2 - Interface device and electronic device - Google Patents

Interface device and electronic device Download PDF

Info

Publication number
WO2008053858A2
WO2008053858A2 PCT/JP2007/071066 JP2007071066W WO2008053858A2 WO 2008053858 A2 WO2008053858 A2 WO 2008053858A2 JP 2007071066 W JP2007071066 W JP 2007071066W WO 2008053858 A2 WO2008053858 A2 WO 2008053858A2
Authority
WO
WIPO (PCT)
Prior art keywords
signal
interface unit
interface
electronic device
pcie
Prior art date
Application number
PCT/JP2007/071066
Other languages
French (fr)
Japanese (ja)
Other versions
WO2008053858A3 (en
Inventor
Tomoaki Kurosawa
Masaki Horikawa
Hiroshi Kamizono
Original Assignee
Gpaphin Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gpaphin Co., Ltd. filed Critical Gpaphin Co., Ltd.
Priority to JP2008542111A priority Critical patent/JP5252292B2/en
Publication of WO2008053858A2 publication Critical patent/WO2008053858A2/en
Publication of WO2008053858A3 publication Critical patent/WO2008053858A3/en

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F13/00Interconnection of, or transfer of information or other signals between, memories, input/output devices or central processing units
    • G06F13/38Information transfer, e.g. on bus
    • G06F13/42Bus transfer protocol, e.g. handshake; Synchronisation
    • G06F13/4282Bus transfer protocol, e.g. handshake; Synchronisation on a serial bus, e.g. I2C bus, SPI bus
    • G06F13/4286Bus transfer protocol, e.g. handshake; Synchronisation on a serial bus, e.g. I2C bus, SPI bus using a handshaking protocol, e.g. RS232C link

Definitions

  • the present invention relates to an interface device and an electronic device, and more particularly, to an interface device and an electronic device having a serial interface using the PCI Express (PCIe) standard.
  • PCIe PCI Express
  • PCs personal computers
  • I / Fs interfaces
  • the motherboard the main PC component
  • I / Fs for connecting to external devices.
  • Typical examples are portable music players, memory devices, external hard disks, General purpose such as USB (Unversal Serial Bus) that transfers data with printers, scanners, etc.
  • PCI bus that can add various I / F functions in the form of interface cards corresponding to low to high speed data transfer
  • SATA SerialATA
  • LAN connection for adding HDDs and LAN connection.
  • PCs often use interface cards when connecting to various peripheral devices, networks, etc., but as the mainstream interface card standard, desktop PCs have a board shape.
  • PCI buses PCI-X buses that have been upgraded to a higher speed by upgrading PCI, and PCIe, which has been made even faster by serialization.
  • PC Ie is a serial-based I / O (input / output) standard, like USB, IEEE1394, SATA, Hiper—Transport InfiniBand, and so on.
  • the PCI standard is an industry standard architecture that was developed by PCI—PCI Special Interest Group (SIG) and has been continually improved since version 2 of 1993, with a 64-bit bus and a 64-bit bus. This includes a 64-bit bus specification for the CPU! /, A parallel bus with a maximum bus clock of 33 MHz and a transfer rate of 132 bytes / second (peak value) on a 32-bit data bus.
  • SIG PCI—PCI Special Interest Group
  • the PCI Express (PCIe) standard is a serial bus that has been further increased from the conventional parallel transfer PCI bus and the PCI-X bus that has been expanded to expand the PCI bus standard.
  • the point of transfer is the biggest difference from these.
  • the PCIe standard uses a low-voltage differential serial signal system of 0.8V to connect devices by point points (one-to-one), with two signals in one direction of the differential pair and a total of four signals in both directions.
  • the number of configured lanes can be increased as needed, and the standard has a one-way transfer rate of 2.5 Gbps per lane, and a configuration of up to 32 lanes is specified, which broadens the bandwidth.
  • the physical layer (PHY) that can
  • the PCIe standard employs a hierarchical architecture that was not found in the conventional PCI standard, and has a configuration similar to the structure of the network standard, such as serial transfer and transfer in units of packets.
  • the standard, software, protocol, media, and implementation (mechanism) specifications are changed from those defined collectively, and are defined in the transaction layer, data link layer, and physical layer.
  • the transaction layer regulates message transmission / reception and interrupts
  • the data link layer regulates CRC (cycle redundancy check), packet loss, and retry in case of error. Stipulates configuration and configuration.
  • the interface card When connecting a PC and an external device (externally connected peripheral device) using such an interface card, the interface card is generally connected to a circuit for interfacing with the inside of the PC and the external device. Circuit (application part). Conventionally, the interface part with the PC has been transferred data by parallel signals such as PCI bus and PCI—X bus. In the PCIe standard, the interface with the PC is a physical layer called PHY (SerDes: Serialize Deserialize). This is done by serial transfer as defined by the lowest layer (layer 1) of the OSI hierarchical model.
  • PHY SerDes: Serialize Deserialize
  • the external device is a DVC (digital video camera) and the cable transfer method is IEEE1394.
  • the external device is an industrial camera, and the cable transfer method is mostly a dedicated method, and the interface card encodes and decodes data of this dedicated method and connects to the PC.
  • the cable transfer method is a dedicated method using an optical cable, and the interface card is based on data encoding and decoding of the dedicated method and optical-electrical signal conversion. Connect to a PC, etc.
  • an interface card is often used to connect an external device and a PC.
  • the external input / output (I / O) of the external device is used.
  • PCI or PCIe which is the I / O of the PC, by the interface card.
  • the PC interface card can be installed in large ways: (1) One-chip LSI system in which simple network protocols such as NIC are integrated into a single-chip LSI and mounted as an interface card; (2) PC side of PCI or PCIe Conversion to interface between peripheral interface and I / O of peripheral equipment. (3) FPGA (Programmable logic circuit: Program rewritable ASIC) etc.
  • the application built-in method including the application part can be divided into the device built-in method implemented on one FPGA, and (4) the I / O part and the application can be divided into device separation methods realized by separate LSIs and FPGAs.
  • the interface on the PC side is PCIe, in general, an expensive device with high-speed SerDes is required to implement the physical layer with FPGA.
  • the PC interface card can be thought of as interfacing with the PC by converting the I / O of the external device and adding processing for each application in order to connect the PC and the external device with a cable.
  • the interface card When connecting dedicated external devices such as HDDs and monitors, the interface card has cable transfer methods and protocols that support SATA for HDD and DVI for monitors and liquid crystal displays, and each process (processing by application) Connected to the PC via PCI or PCIe.
  • the data transfer in the DVI standard used to connect the liquid crystal display is the physical layer of the graphics power (TMDS : Differential serial transfer) is the main video data transfer, and the communication protocol for automatically determining what kind of monitor is connected is the existing force S, data retransmission is performed by collision detection, etc. There is no advanced communication protocol.
  • TMDS Differential serial transfer
  • the connection between the graphic card and the liquid crystal display is a connection between physical layers that perform cable transfer.
  • the physical layer used for this transfer uses a differential serial transfer method called TMDS in the DVI standard, and iLINK (IEEE 1394) also uses the differential serial transfer method.
  • TMDS differential serial transfer method
  • iLINK IEEE 1394
  • the present invention improves efficiency by using a PCIe standard physical layer for signal transfer between an interface card mounted on a PC (or control device) and an external device (an externally connected electronic device).
  • control signals such as a reset signal from a PC (or control device) that was previously required separately from the PCIe standard signal are superimposed and transferred within the PCIe standard packet signal.
  • An object of the present invention is to provide an interface device and an electronic device having a PCIe interface capable of realizing a high-speed and high-efficiency signal transfer while simplifying the configuration of the interface card as compared with the prior art.
  • An interface device made to achieve the above object includes a first interface unit having at least a physical layer of a PCIe (PCI Express) standard connected to the first electronic device, and a second interface unit.
  • At least an optical transceiver configured to transmit a signal by communication and an optical communication cable connector, and the first interface unit receives a first signal other than the PCI e standard serial signal from the first electronic device.
  • the second signal is transmitted, the second signal is assembled in the packet signal of the PCIe standard serial signal received from the first electronic device.
  • the second interface unit is the first interface unit.
  • the second signal is extracted and the second signal is transmitted to the second electronic device. It has a number extraction means.
  • an interface device made to achieve the above object includes a first interface unit having at least a physical layer of a PCIe (PCI Express) standard connected to the first electronic device, and a second interface unit.
  • a second interface unit having at least a PCIe standard physical layer to be connected to the electronic device, and a metal cable connector for transferring a signal by an electrical signal for connecting between the first and second interface units, Or at least an optical transmission module comprising an optical transceiver for transmitting signals by optical communication and an optical communication cable connector, and the first interface unit detects a reset signal from the first electronic device.
  • a packet signal in which the reset signal is embedded in the packet signal received from the first electronic device and the reset signal is superimposed on the packet signal.
  • Reset signal superimposing means for transmitting to the second interface unit, wherein the second interface unit reads the packet signal received from the first interface unit, and reset signal is included in the packet signal; And a reset signal generating means for generating a reset signal for resetting the second electronic device when the second electronic device is detected.
  • a first interface unit having at least a PCIe (PCI Express) standard physical layer connected to the first electronic device, a second interface unit having at least a PCIe standard physical layer connected to the second electronic device, and An optical transmission module comprising a metal cable connector for transferring a signal by an electrical signal or an optical transceiver and an optical communication cable connector for transferring a signal by optical communication for connecting between the first and second interface units; , And the first interface unit sends an inquiry signal to the second interface unit as to whether it can detect a reset signal superimposed on the packet signal and sent from the first interface unit.
  • a reset detection inquiry means for transmitting and receiving the response signal; and the second interface section in the reset detection inquiry means.
  • the second interface unit when the second interface unit receives the inquiry signal from the first interface unit, the second interface unit can detect a reset signal superimposed in a packet signal received from the first interface unit. A response signal is transmitted to the first interface unit, and when a reset signal is detected in the packet signal received from the first interface unit, a reset signal for resetting the second electronic device is generated. It has a reset signal generating means to perform.
  • the second interface unit includes clock recovery means for recovering and generating a clock signal based on the packet signal and the external reference signal.
  • the first and second interface units may include a transmission compensation circuit for extending a transmission distance during signal transfer.
  • first and second interface units have a multilink function of performing signal transfer with a single electronic device using a plurality of lanes.
  • the first or second interface unit further includes a PCIe standard-compliant HUB device that is connected to a plurality of electronic devices and performs signal transfer of a plurality of channels.
  • An electronic device made to achieve the above object includes a PCIe standard physical layer connected to a control device and an interface unit having at least a PCIe control unit for controlling signal transfer based on the PCIe standard. At least a main body control unit that mutually converts and connects communication standards between the electronic device main body and the interface unit, and the PCIe control unit passes through the interface unit from the control device. And a reset signal generating means for generating a reset signal for resetting the electronic apparatus main body when the received packet signal is read and a reset signal is detected in the packet signal.
  • the interface configuration of the interface card and the external device is achieved by connecting the PC and the external device (externally connected electronic device) via the PCIe standard physical layer and transmitting the signal.
  • the logic on the interface card mounted on the PC can be simplified. It can be simplified as a connector board type that can be reduced, and the interface card can be a common card unrelated to the types of external devices.
  • the transmission speed of the transmission system between the PC and the external device is increased by superimposing and transmitting control signals such as reset signals not included in the PCIe standard on the PCIe standard packet signal between the PC and the external device.
  • This also has the effect of simplifying the configuration even when connecting cables.
  • it is determined whether or not to superimpose the sideband signal depending on whether or not the external device has a function capable of detecting a sideband signal such as a reset signal superimposed on the packet signal.
  • the possibility of malfunctions of external devices that cannot be handled can be eliminated.
  • the noise resistance performance can be improved and a long-distance connection between devices can be achieved.
  • FIG. 1 is a configuration diagram of an interface device and an electronic device according to an embodiment of the present invention.
  • FIG. 2 is a block diagram of the interface unit (1) shown in FIG.
  • FIG. 3 is a block diagram of the interface unit (2) shown in FIG.
  • FIG. 4 is another configuration diagram of the interface unit (1) shown in FIG.
  • FIG. 5 is another configuration diagram of the interface unit (2) shown in FIG.
  • FIG. 6 is a configuration diagram using a transmission compensation circuit.
  • FIG. 7 Configuration diagram of PtoN transmission method using PCIe-compatible HUB.
  • FIG. 8 is a configuration diagram in which PCIe signals are aggregated.
  • FIG. 9 is a configuration diagram of a camera system according to an embodiment of the present invention.
  • FIG. 10 is a schematic configuration diagram of a conventional camera system.
  • FIG. 11 is a configuration diagram in which a reset signal is superimposed on the camera system shown in FIG.
  • FIG. 12 is a configuration diagram of a conventional camera system.
  • FIG. 1 is a block diagram of an interface device and an electronic device according to an embodiment of the present invention.
  • 2 shows the configuration of the interface unit (1)
  • FIG. 3 shows the configuration of the interface unit (2).
  • a reset signal (control signal) is taken as an example of the second signal other than the PCIe standard signal, and this second signal is superimposed on the PCIe standard serial signal packet. The case of transmission to (external device) will be described.
  • reference numeral 101 denotes a PCIe compatible interface card connected to a PCIe bus mounted on a control device (first electronic device) configured by a PC or a computer system.
  • the interface part (1) 1 is provided.
  • Reference numeral 102 denotes a second electronic device (external device) that is externally connected to a PC or a control device via a signal transmission cable 10 such as an optical communication cable, a coaxial cable, or a twisted cable via the interface card 101.
  • the second interface unit (2) 11 includes a PCIe device 18 that transmits and receives PCIe signals, and a main body control unit 19 that controls the electronic device main body.
  • the first interface unit (1) 1 has a first PCIe control unit (1) 2 for transmitting a reset signal, which will be described later, superimposed on a packet signal, and the second interface unit (2) 11
  • the second PCIe control unit (2) for extracting the superimposed reset signal from the packet signal transmitted from the first interface unit (1) 1 and received via the signal transmission cable 10 Has 12.
  • the functions in the first interface unit (1) 1 and the second interface unit (2) 2 corresponding to the PCIe standard are all functions including the main body control unit 19 of the electronic device 102, or individual functions. Functions are combined and implemented by one or more LSIs or FPGAs.
  • the PCI e standard standard verl. La established in July 2002
  • the PCI e standard performs high-speed differential serial transfer of 2.5 Gbps per lane per lane, but because of the high speed, the total extension distance is extended with a metal cable. Has its limits. Therefore, to increase cable transmission efficiency, adopt cables and connectors with high transmission efficiency, adopt optical transmission modules that perform OE (Optical / Electrical) conversion, add transmission compensation circuits, etc. in cable transmission. Thus, stable cable transmission can be realized.
  • the first interface unit (1) 1 has a first PCIe control unit (1) 2 and is provided on the electronic device 102 side. (2) and optical communication cable 1 It has an electro-optical conversion unit 6 and a photoelectric conversion unit 7 for communication connection via Oa.
  • the interface card 101 includes a PCIe signal (Tx) of a serial packet signal transmitted from the PC and received by the electronic device 102, and a PCIe signal (Rx) of a serial packet signal transmitted from the electronic device 102 and received by the PC.
  • Tx PCIe signal
  • Rx PCIe signal
  • the sideband signals of the reference clock RefCLK signal and the reset signal that are not included in the PCIe standard signal are supplied.
  • the PCIe physical layer can be divided into two logical sub-blocks that perform coding and link control and electrical sub-blocks that perform signaling.
  • the data link layer is A special code (K code) indicating the boundary of the packet is added to the passed TLP (Transaction Layer Pakcet) or DLLP (Data Link Layer Packet) at the beginning and end.
  • K code indicating the boundary of the packet is added to the passed TLP (Transaction Layer Pakcet) or DLLP (Data Link Layer Packet) at the beginning and end.
  • TLP Transmission Layer Pakcet
  • DLLP Data Link Layer Packet
  • STP Start of TLP
  • PAD K codes
  • the data divided into each lane is scrambled and 8b / 10b converted (8bits / 10bits conversion) for each lane, and transmitted as serial data.
  • 8b / 10b conversion has the disadvantage that the effective transfer amount becomes 80% S, and there is no long crossing point between consecutive “0” and “;!”! /, The state continues, and it has features such as easy clock recovery and AC coupling due to DC balance.
  • the code space is expanded by 8b / 10b conversion, and a control code called K code can be added here.
  • each bit of 8 bits from LSB (least significant bit) to MSB (most significant bit) is called ABCDEFGH, which is divided into two groups, EDC BA and HGF.
  • EDC BA 8 bits of 8 bits from LSB (least significant bit) to MSB (most significant bit)
  • HGF HGF
  • the K code ⁇ code force 01 1 1 1 100b
  • an undefined K code in the PCIe standard is assigned as a reset code.
  • the first PCIe control unit (1) 2 includes a PCIe code. Sideband that is not included in the serial signal transmitted by the PCIe standard after receiving the PCIe signal (Tx) that is a standard serial transmission signal and converting it to a parallel signal by the serial / parallel converter 3
  • a reset signal, which is one of the signals, is received from the PCIe bus, and this reset signal is converted into a K code defined for resetting in the K code part and inserted as, for example, K24.4.
  • the PCIe signal (Tx) transmitted from the PC is a serial signal in which 8bits data is converted to 8b / 10b, and the serial-to-parallel converter 3 parallelizes the lObits pattern including the K code to the D code. Perform conversion.
  • the reset K code conversion unit 4 monitors the reset signal and K code, and if it detects that the reset signal is active, it indicates an IDL (idle) K code indicating that there is no data to be transmitted on the serial bus. (Example: ⁇ 28 ⁇ 3) is assigned and replaced with a K code undefined in the PCIe standard (eg, ⁇ 24 ⁇ 4) for resetting, and this reset K code is superimposed on the Tx signal.
  • the D code of the lObits pattern obtained by converting the K code and the transmission signal including the K code are converted again to a serial signal by the normal-reel serial conversion unit 5 at the subsequent stage.
  • the converted serial signal is converted into an optical signal suitable for the optical communication cable 10a by the electrical-optical conversion unit 6, and is connected to the outside via the optical communication cable connector and the optical communication cable 10a ( (External device) sent to 102 (reset signal superimposing means or signal superimposing means)
  • the optical signal that has reached the electronic device 102 is converted into an electrical signal by the optical-electrical conversion unit 17 provided in the interface unit (2) 11 provided on the electronic device 102 side.
  • the converted serial signal is extracted from the reset signal by the PCIe control unit (2) 12, converted into the original serial signal, and delivered to the PCIe device 18 and the main body control unit 19.
  • the PCIe control unit (2) 12 converts the received serial signal into a parallel code having an lObits pattern by the serial / parallel conversion unit 13, and passes the signal to the idle K code conversion unit 14.
  • the K code conversion unit for idle 14 monitors the K code and, when detecting the K code assigned for reset, generates a reset signal for the PCIe device 18 or the main body control unit 19 and outputs the signal.
  • Is activated and the reset K code (eg ⁇ 24 ⁇ 4) is replaced with the original IDL K code (eg K28.3) and sent to the parallel-serial converter 15.
  • the lObits pattern signal replaced with the original IDL K code is converted to the original serial signal via the parallel serial converter 15 and sent to the PCIe device 18.
  • the PCIe device 18 can receive the PCIe signal (Tx) and perform an appropriate operation (reset signal generation means or signal extraction means).
  • the PCIe signal (Rx) output from the PCIe device 18 side of the electronic device 102 is converted into an optical signal by the electrical-to-optical conversion unit 16 of the interface unit (2) 11, and the optical communication cable 10 a Is sent to the PC interface card 101 side.
  • the optical signal that has reached the interface card 101 is converted into an electrical signal by the optical-to-electric conversion unit 7 of the interface unit (1) 1 and delivered to the PCIe bus.
  • the PC or control device
  • the reference clock (RefCLK, Ref Clock: 100MHz) of the sideband signal shown in Fig. 1 and Fig. 2 is used as a clock signal for serial-parallel conversion and parallel-serial conversion of the PCIe controller (1) 2.
  • a clock signal actually required is generated by a DLL (Delay Locked Loop) or PLL (Phase Locked Loop) configuration.
  • a clock signal is regenerated from the received serial signal and used as a clock signal for serial-parallel conversion and parallel-serial conversion of the PCIe control unit (2) 12.
  • the data recovery circuit and its operation are omitted (not shown in Fig. 3).
  • the reset signal when detecting the K code assigned for resetting, in order to avoid false detection due to noise on the transmission path, the reset signal is only generated when the ⁇ code is detected for a predetermined number of times. It may have a function to activate.
  • sideband signals such as a reset signal are serialized.
  • the electronic device 102 Before superimposing in the nore packet signal, the electronic device 102 is inquired whether or not the sideband signal superimposed in the serial packet signal can be detected. In this way, it is possible to connect to an unspecified electronic device 102 by inquiring in advance whether or not the serial packet signal on which the sideband signal is superimposed can be processed.
  • the present invention can also be applied to a case where only a part of the sideband signals can be recognized, not whether or not all sideband signals can be recognized. In other words, it can be applied to the case where the K code assigned to the reset signal can be recognized but the unrecognizable K code assigned to other sideband signals cannot be processed.
  • a reset signal will be described as an example of the sideband signal.
  • FIG. 4 shows a reset K code conversion unit 4 shown in FIG. 2 replaced with a reset detection inquiry signal transmission function and a reset detection confirmation function (reset detection inquiry means) based on the response signal. It is one Example of the K code conversion part 4a. Therefore, a detailed description of the functions overlapping those in FIG. 2 is omitted.
  • the PCIe control unit (1) 2 on the PC side is in communication connection with the electronic device 102 via the optical communication cable 10a.
  • the PCIe control unit (1) 2 receives a PCIe signal (Tx), which is a serial transmission signal of the PCIe standard, from the PC, and converts it into a parallel signal by the serial / parallel conversion unit 3.
  • Tx PCIe signal
  • an inquiry signal is transmitted to inquire whether or not a reset signal superimposed as a code on the PCIe signal (Tx) can be detected.
  • a response signal (A CK (Acknowledgment), etc.) cannot be obtained even after a predetermined time has passed from the electronic device 102 that has received the inquiry signal!
  • the reset K code conversion unit 4a does not superimpose the reset signal on the subsequent packet signal, and the parallel signal is converted from the parallel signal to the serial packet signal by the parallel serial conversion unit 5, and remains as it is. Send.
  • the inquiry signal may be transmitted as a K code defined as the inquiry signal, or may be added before or after the first serial packet signal. Unlike the example in Fig. 4, it may be incorporated into the communication protocol as the first packet signal sent from the PC.
  • the reset signal is not superimposed, a configuration in which the serial / parallel conversion unit 3 and the parallel / serial conversion unit 5 of the PCIe control unit (1) 2 are passed is also possible.
  • electronic device 102 having received the reset detection inquiry signal from the PC side has a reset signal detection function, it transmits a reset detection response signal to the PC side in response to the inquiry signal from the PC side.
  • the reset K code conversion unit 4a on the PC side then transmits the serial signal transmitted according to the PCIe standard.
  • the K code defined for reset is inserted into the K code part in the serial packet signal transmitted from the PC and transmitted to the electronic device 102.
  • the details of the confirmation of the reset detection response signal are not shown in FIG. 4, but are converted into parallel data by the serial / parallel converter in the same way as the processing on the electronic device 102 side shown in FIG. 3, and the signal is interpreted. After that, there are a method of returning to the original serial packet signal by the parallel-serial converter, and a method of directly interpreting the serial packet signal by a circuit provided separately. In the case of a configuration similar to the method shown in Fig. 3, a response signal can be assigned to the K code part. Unlike the example in Fig. 4, serial packet signals received on the PC side may be incorporated into the transmission / reception protocol so that they can be directly interpreted.
  • FIG. 5 shows an idle K-code conversion in which the idle K-code conversion unit 14 shown in FIG. 3 is replaced with a reset detection inquiry signal reception function and a reset detection response function for generating a response signal.
  • This is an example of the unit 14a. Therefore, a detailed description of the functions overlapping those in Fig. 3 is omitted.
  • the PCIe control unit (2) 12 on the electronic device 102 side is communicatively connected from the PC side via the optical communication cabinet 10a.
  • the optical signal that has reached the electronic device 102 is converted into an electrical signal by the optical-electrical conversion unit 17 on the electronic device 102 side, and converted into a parallel signal by the serial / parallel conversion unit 13 of the PCIe control unit (2) 12.
  • the idle K-code conversion unit 14a of the electronic device 102 shown in FIG. 5 receives the reset detection inquiry signal as to whether or not the reset signal superimposed in the packet signal can be detected, it responds to the reset detection inquiry signal. Send a reset detection confirmation response signal to the PC. If a signal other than the reset signal cannot be interpreted!
  • a NACK is returned when a signal is received.
  • the electronic device 102 that does not have a function to detect the reset signal superimposed in the received packet signal and cannot respond to the reset detection inquiry signal also has a response signal to the reset detection inquiry signal on the PC side. Predetermined time Since it cannot be obtained even after elapse of time, the reset signal is not superimposed on the subsequent transmission packet signal.
  • the PCIe control unit (2) 12 on the electronic device 102 side that has transmitted the reset detection confirmation response signal in response to the reset detection inquiry signal received from the PC side performs the reset superimposed on the packet signal received thereafter.
  • the idle K code conversion unit 14a shown in FIG. 5 extracts the reset signal superimposed on the packet signal, and replaces the reset K code with the idle K code and delivers it to the PCIe device 18.
  • a reset signal is generated for the PCIe device 18 or the main body control unit 18 and the signal is activated.
  • the inquiry signal may be assigned as a K code, or may be configured to be added before or after the first serial packet signal. Also, unlike the example in Fig. 5, it may be incorporated into the communication protocol as the first packet signal for transmission / reception with the PC.
  • FIG. 6 is a configuration diagram using a transmission compensation circuit for the transmission of the above-mentioned PCIe standard serial signal, and shows a case where the transmission compensation circuit 22 suitable for the transmission speed and transmission distance of the PCIe standard is used. Yes.
  • the transmission compensation circuit 22 is connected between the PCIe control unit (1) 2 of the interface unit (1) 1 and the coaxial connector 23, and between the coaxial connector 23 of the interface unit (2) 11 and the PCIe control unit (2) 12.
  • the cable transmission distance can be extended even when the coaxial connector 23 and the coaxial cable 10 b are used for signal transmission.
  • the embodiment shown in FIG. 6 can be applied by optimizing the transmission compensation circuit for optical communication even when using the optical fiber communication cable 10a that uses the coaxial cable 10b for serial signal transmission. Is possible.
  • FIG. 7 shows a case where signals are transmitted to a plurality of electronic devices 102 # 1 to 4 using a plurality of lanes, and is a configuration diagram of a PtoN transmission method using a PCIe-compatible HUB device.
  • a configuration is shown in which one PC and multiple (four in the figure) electronic devices 102 # 1 to 4 are connected by using PCIe-compatible HUB devices.
  • the PCIe controller (1) 2 on the interface card 101 side and four optical transceivers 21 #;! To 4 are equipped with a PCIe-compatible HUB24, and four optical transceivers 21 # ;!
  • the transmission method using the optical transceiver 21 and the optical communication cable 10a as well as the transmission method using the coaxial cable 10b can be realized.
  • the reset signal can be transmitted by being superimposed on the packet signal for each of the four lanes, or can be transmitted only to the required electronic devices 1 02 # 1 to 4. .
  • Figure 7 shows a PtoN configuration with a PCIe-compatible HUB24 on the PC interface card 101 side.
  • the PCIe-compatible HUB24 is installed on the electronic device 102 side, and each optical transceiver 21 # from the PCIe-compatible HUB2 4 Branch to 1 to 4 (4 units) and connect to the optical transceiver 21 of the PCIe interface card 101 inserted into each PC # 1 to 4 via the optical communication cable 10a, and the data is sent to each PC # 1
  • one electronic device 102 and one PC may be applied to a plurality of configurations.
  • FIG. 8 is a configuration diagram in which PCIe signals are aggregated, and is a configuration in which transmission using an optical communication cable or transmission based on the InfiniBand standard is used for serial transmission.
  • the InfiniBand standard (communication standard promoted by industry groups) uses a composite cable that can extend 2.5 Gbps transmission per lane by 10 meters and a high transmission efficiency connector in order to increase speed. It is possible to use such commercially available collective cables and connectors for PCIe cable transmission.
  • the InfiniBand standard currently defines Xlch, X4ch, and X12ch composite cables and connectors. As an example of cable aggregation using this, in the case of Figure 8, PCIe X 4 (T x + / —, Rx +/— X 4ch) is transmitted using 4 channels of the InfiniBand standard. InfiniBand X 4ch aggregate cable is used.
  • PCIe X 4inlOGbps conversion 25 which is a high-speed interface that can be synthesized and converted to differential serial of lOGbps, is used for IJ and transmits PCIe X 4 Power S can be.
  • OE optical one-electric
  • the power that can be transmitted by optical communication cable 10a is so fast that it is possible that lOGbps can be transmitted by metal cable in the near future. is expected.
  • the reset signal should be superimposed on one of the lanes without having to be superimposed on the packet signals of all four lanes! /.
  • FIG. 10 is a configuration diagram of a conventional industrial CCD camera system connected to a conventional PCIe interface card 110 provided with a PCIe interface on the PC side for comparison.
  • a specific product such as the power industrial CCD camera 103 that explained general cable transmission
  • transmission by the interface having the PCIe physical layer of the present invention is performed by a PC (or control device).
  • the electronic device 102 are used for cable transmission, which proves the power and the effect of which part is actually cost-saving.
  • FIG. 10 shows a conventional PCIe interface card (industrial camera capture card) 110, for example, an industrial product that outputs 2048 1024 dots 3 ( ⁇ ⁇ 1; ⁇ 161 ⁇ ).
  • FIG. 3 is a general block diagram when the CCD camera 103 is connected to a PCIe-capable interface card (PCIe standard) 110 for PC capture by an optical transceiver.
  • PCIe standard PCIe-capable interface card
  • the video data from the industrial CCD camera 103 is 960Mbps (120MB / sec), which is a simple calculation of data that is easy to calculate.
  • 960Mbps 120MB / sec
  • 8b / 10b conversion is added to reduce serial transmission errors, a transfer rate of 1.2Gbps (150MB / sec) is required at a minimum.
  • the industrial CCD camera 103 performs imaging of the image sensor CCD sensor by driving the CCD with the CCD controller.
  • the transmission control unit controls the captured moving image data so that it can be transmitted.
  • the moving image data is converted into differential serial that drives the optical transceiver 21.
  • a differential serial signal is transmitted from the optical transceiver 21 on the industrial CCD camera 103 side to the optical transceiver 21 of the PCIe interface card 110 on the PC side via the optical communication cable 10a.
  • the PCIe compatible interface card 110 1.
  • the differential serial signal is converted into LVTTL (Low Voltage TTL), etc., with a 25Gbps interface, and the transmission control unit controls the video data to be received.
  • the bridge controller performs control so that it can be passed to the PCIe bridge, and the PCIe bridge performs PCIe conversion and transmits the PCIe standard signal to the PCIe connector on the PC mother board on the PC side.
  • FIG. 9 is a block diagram of an embodiment in which the circuit of FIG. 10 is improved by moving the PCIe interface to the external device side, ie, the industrial CCD camera 103 side, based on the present invention.
  • the industrial CCD camera 103 shown in FIG. 9 controls the image sensor CCD sensor with a CCD control unit to capture an image.
  • the bridge controller controls this imaging signal so that it can be passed to the PCIe bridge, the PCI e-bridge performs PCIe conversion, and the PCIe interface signal is sent from the optical transceiver 21 via the optical communication cable 10a to the interface card on the PC side. Transmit to 101 optical transceiver 21.
  • the PC-side interface card 101 transmits to the PC motherboard via the PC PCIe connector.
  • the PC-side interface card 101 has a configuration with only an optical transceiver, and a significant cost saving can be realized.
  • FIG. 12 is a block diagram of a camera system having a conventional configuration including a reset circuit
  • FIG. 11 is a block diagram of a camera system according to an embodiment incorporating the reset circuit according to the present invention.
  • the PCIe standard itself enables signal transmission using only four in total, two each for transmission and reception, and as described above, no signal for clock transfer is particularly required.
  • a clock signal and reset signal are provided as band signals and can be used as needed.
  • Figures 11 and 12 show such This is an example in which a camera system is configured using a clock signal and a reset signal.
  • the PCIe control unit and conversion unit 111, the camera control unit 112 configured by FPGA, the LVDS (Low Voltage Differential Signaling) driver & receiver 113 are the interface card on the PC side. It is provided as a camera capture card that includes a camera control unit, and is connected to the LVDS driver & receiver 114 provided on the camera side by an original dedicated camera cable.
  • the PC-side interface card 101 is equipped with a PCIe controller (1) that superimposes the reset signal on the PCIe signal and an optical transceiver.
  • a PCIe controller (1) that superimposes the reset signal on the PCIe signal and an optical transceiver.
  • the signal based on the PCIe standard converted by the OE conversion unit of the optical transceiver 21 is transferred to the PCIe control unit (2) and the conversion unit 12 that extract the reset signal.
  • the PCIe control unit (2) and the conversion unit 12 interpret the received packet sent from the PC side, and when the reset signal is detected in the received packet, the reset signal is extracted and generated. At that time, the packet signal is received by regenerating the clock signal based on the signal from the external oscillator (OSC 100 MHz) 105 and the received signal. The received packet signal is passed along with the extracted reset signal to the camera control unit 104 through a local I / F (interface).
  • OSC 100 MHz external oscillator
  • the force S for transferring the reset signal from the PC (or control unit) side extracted together with the received packet signal from the PCIe control unit (2) and the conversion unit 12 to the camera control unit 104, and the camera control.
  • the control unit 104 also has a function of generating a reset signal and resetting the camera control unit 104 itself.
  • the camera control unit 104 is provided with a power-on reset circuit 106 and a reset switch 107 when the power is turned on. As shown in Figs. 4 and 5, first, a reset detection inquiry signal is sent from the PC side to the camera side, and a reset detection confirmation response signal is sent from the camera side to the PC side in response to the reset detection inquiry signal.
  • a reset detection inquiry signal is sent from the PC side to the camera side
  • a reset detection confirmation response signal is sent from the camera side to the PC side in response to the reset detection inquiry signal.
  • it can be configured as follows.
  • a reset signal (sideband signal) is transmitted as an example of a second signal other than a PCIe standard serial signal in a PCIe standard packet signal.
  • it can be configured to transmit a plurality of other necessary control signals (sideband signals), and the first electronic device (PC) can transmit the second power.
  • the necessary signal can be superimposed and transmitted from the second electronic device (external device) to the second electronic device (PC) side. It is also possible to make it bidirectional by superimposing both signals.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Information Transfer Systems (AREA)
  • Communication Control (AREA)

Abstract

Provided is an interface device of the PCIe standard which can simplify the connection to an external device and realize a high speed and a high efficiency. The interface device includes: a first interface unit having reset signal superimposing means which has a physical layer of the PCIe standard, inserts a reset signal detected from a first electronic device into a reception packet received from the first electronic device, and transmits the reception packet superimposed by the reset signal to a second interface unit; the second interface unit having resent signal generation means which has a physical layer of the PCIe standard, reads thereception packet received from the first packet, and generates a reset signal for resetting the second electronic device upon detection of a reset signal in the reception packet; and means for connecting the first interface unit to the second interface unit by an electric signal or an optical communication.

Description

明 細 書  Specification
インタフェース装置及び電子装置  Interface device and electronic device
技術分野  Technical field
[0001] 本発明は、インタフェース装置及び電子装置に関し、特に、 PCIエクスプレス(PCIe )規格を用いたシリアルインタフェースを有するインタフェース装置及び電子装置に 関する。  The present invention relates to an interface device and an electronic device, and more particularly, to an interface device and an electronic device having a serial interface using the PCI Express (PCIe) standard.
背景技術  Background art
[0002] PC (パーソナルコンピュータ)は、その内部や外部に多様な周辺機器を接続し、記 憶容量や機能を増設できるように、それぞれの機器に対応する各種の I/F (インタフ エース)を備えている。 PCの主要構成品であるマザ一ボードには、外部機器との接続 のために各種 I/Fが用意されており、代表的なものとしては、携帯音楽プレイヤ、メ モリデバイス、外付ハードディスク、プリンタ、スキャナ等とデータ転送を行う USB (Un iversal Serial Bus)、低速から高速のデータ転送に対応して様々な I/F機能をィ ンタフェースカードという形で追加することができる PCIバス等の汎用性の高い I/F の他に、 HDDを増設するための SATA(SerialATA)、 LAN接続用等の用途が限 定される専用 I/Fがある。  [0002] PCs (personal computers) have various I / Fs (interfaces) corresponding to each device so that various peripheral devices can be connected inside and outside to increase the storage capacity and functions. I have. The motherboard, the main PC component, has various I / Fs for connecting to external devices. Typical examples are portable music players, memory devices, external hard disks, General purpose such as USB (Unversal Serial Bus) that transfers data with printers, scanners, etc., PCI bus that can add various I / F functions in the form of interface cards corresponding to low to high speed data transfer In addition to highly functional I / Fs, there are dedicated I / Fs with limited applications such as SATA (SerialATA) for adding HDDs and LAN connection.
[0003] PCは様々な周辺機器やネットワーク等と接続する際に、インタフェースカードを用 いる場合が多いが、現在主流となっているインタフェースカードの規格としては、デス クトップ型 PCでは、ボード形状の PCIバス、 PCIをバージョンアップさせ高速対応とし た PCI— Xバス、シリアル化することで更に高速化を図った PCIe等が挙げられる。 PC Ieは、 USB、 IEEE1394、 SATA、 Hiper— Transport InfiniBand等と同様、シリ アルベースの I/O (入出力)規格である。  [0003] PCs often use interface cards when connecting to various peripheral devices, networks, etc., but as the mainstream interface card standard, desktop PCs have a board shape. PCI buses, PCI-X buses that have been upgraded to a higher speed by upgrading PCI, and PCIe, which has been made even faster by serialization. PC Ie is a serial-based I / O (input / output) standard, like USB, IEEE1394, SATA, Hiper—Transport InfiniBand, and so on.
[0004] PCI規格は、 PCI— SIG (PCI Special Interest Group)によって策定され、 19 93年のバージョン 2以来、逐次改良されてきた業界規格のアーキテクチャであって、 32ビット幅のバスと共に、 64ビット CPUのための 64ビットバスの規定も含まれて!/、る パラレル方式のバスであり、バスクロックは最大で 33MHz、転送レートは 32ビットの データバスで 132bytes/秒(ピーク値)である。 PC用のインタフェースカードとして は特許文献 1のような例が散見される。 [0004] The PCI standard is an industry standard architecture that was developed by PCI—PCI Special Interest Group (SIG) and has been continually improved since version 2 of 1993, with a 64-bit bus and a 64-bit bus. This includes a 64-bit bus specification for the CPU! /, A parallel bus with a maximum bus clock of 33 MHz and a transfer rate of 132 bytes / second (peak value) on a 32-bit data bus. As an interface card for PC There are some examples as in Patent Document 1.
[0005] PCIエクスプレス(PCIe)規格は、従来のパラレル転送方式の PCIバス、 PCIバス規 格を拡張して高速化を図った PCI—Xバスから更なる高速化を図ったもので、シリア ル転送とした点がこれらとの最大の相違点である。 PCIe規格では、 0. 8Vの低電圧 差動シリアル信号方式を採用してポイント ポイント(1対 1)によりデバイス間を接続 し、差動対の片方向 2本、双方向合計 4本の信号で構成されるレーンと呼ばれる組を 必要に応じて増やすことができ、標準で 1レーンあたり片方向 2. 5Gbpsの転送能力 を持ち、 32レーンまでの構成が規定されており、バンド幅をスケーラブルに広げること ができる物理層(PHY)にその特徴がある。  [0005] The PCI Express (PCIe) standard is a serial bus that has been further increased from the conventional parallel transfer PCI bus and the PCI-X bus that has been expanded to expand the PCI bus standard. The point of transfer is the biggest difference from these. The PCIe standard uses a low-voltage differential serial signal system of 0.8V to connect devices by point points (one-to-one), with two signals in one direction of the differential pair and a total of four signals in both directions. The number of configured lanes can be increased as needed, and the standard has a one-way transfer rate of 2.5 Gbps per lane, and a configuration of up to 32 lanes is specified, which broadens the bandwidth. The physical layer (PHY) that can
[0006] PCIe規格では、従来の PCI規格にはなかった階層アーキテクチャが採用され、シリ アル転送、パケット単位での転送等、ネットワーク規格の構造と似た構成がとられてお り、従来の PCI規格でソフトウェア、プロトコル、媒体や実装 (機構系)の仕様がまとめ て定義されていたものから変更され、トランズアクション層、データリンク層、物理層の 階層に分けられて定義されている。トランズアクション層はメッセージ送受信や割り込 み等を規定し、データリンク層は CRC (cycle redundancy check)やパケットロス 、エラー時のリトライを規定し、物理層は最小転送単位であるパケットの送受信、初期 化、コンフィグレーションを規定している。  [0006] The PCIe standard employs a hierarchical architecture that was not found in the conventional PCI standard, and has a configuration similar to the structure of the network standard, such as serial transfer and transfer in units of packets. The standard, software, protocol, media, and implementation (mechanism) specifications are changed from those defined collectively, and are defined in the transaction layer, data link layer, and physical layer. The transaction layer regulates message transmission / reception and interrupts, the data link layer regulates CRC (cycle redundancy check), packet loss, and retry in case of error. Stipulates configuration and configuration.
[0007] このようなインタフェースカードを用いて PCと外部機器 (外部接続される周辺機器) とを接続する際は、インタフェースカードは、概ね PC内部とインタフェースするための 回路と、外部機器と接続するための回路(アプリケーション部分)とで構成される。 PC 内部とのインタフェース部分は、従来、 PCIバスや PCI— Xバスと言ったパラレル信号 によってデータ転送されていた力 PCIe規格では、 PCとのインタフェースは PHY (S erDes: Serialize Deserialize)と呼ばれる物理層(OSI階層モデルの最下層(第 1 層) )で規定されるシリアル転送によってなされる。  [0007] When connecting a PC and an external device (externally connected peripheral device) using such an interface card, the interface card is generally connected to a circuit for interfacing with the inside of the PC and the external device. Circuit (application part). Conventionally, the interface part with the PC has been transferred data by parallel signals such as PCI bus and PCI—X bus. In the PCIe standard, the interface with the PC is a physical layer called PHY (SerDes: Serialize Deserialize). This is done by serial transfer as defined by the lowest layer (layer 1) of the OSI hierarchical model.
[0008] 外部機器と PCとの間でデータを送受信する場合を説明すると、外部機器力 PC へ送信されるデータは、ケーブル接続により PCに実装されたインタフェースカードに 転送され、 PCに実装されたインタフェースカードから PCのマザ一ボードに送られる。 逆の場合は、 PCのマザ一ボードからインタフェースカードを経て外部機器へデータ が送信される。その際、アプリケーションとして、ネットワーク用のインタフェースカード であれば ΙΕΕΕ802· 3を実装し、デジタルビデオであれば IEEE1394といったインタ フェースを取り入れる。また、アプリケーションがビデオ圧縮であれば、インタフェース カードにはビデオデータの圧縮回路が搭載され、これらのデータが PCのマザ一ボー ドを介して必要なメモリ等に転送されるといった具合になる。 [0008] Explaining the case where data is transmitted and received between an external device and a PC. Data transmitted to the external device power PC is transferred to the interface card mounted on the PC by cable connection, and mounted on the PC. Sent from the interface card to the motherboard of the PC. In the opposite case, data is transferred from the PC mother board to the external device via the interface card. Is sent. At that time, ア プ リ ケ ー シ ョ ン 802.3 is installed as an application for network interface cards, and an interface such as IEEE1394 is adopted for digital video. If the application is video compression, the interface card is equipped with a video data compression circuit, and this data is transferred to the necessary memory via the PC's motherboard.
[0009] これらの主だったインタフェースカードの組み合わせ例を列挙してみると、ネットヮー クカードの場合、外部機器は LAN、 HUB他であり、ケーブル転送方式は IEEE802 . 3ab (1000Base—T)等となる。また、 SATA対応の RAID (Redundant Arrays of Inexpensive Disks)カードの場合、外部機器は HDD (Hand Disk Drive )であり、ケーブル転送方式は SATA (1. 5G等シリアル方式)となる。ビデオキヤプチ ャカードの場合、外部機器はアナログ VTR等であり、ケーブル転送方式は RS— 170 /NTSC等となり、インタフェースカードは Videoの MPEG2 (Moving Picture E xperts Group phase 2)変換を行う。 DVCキヤプチャカードの場合、外部機器は DVC (デジタルビデオカメラ)であり、ケーブル転送方式は IEEE1394となる。工業 用カメラキヤプチヤの場合、外部機器は工業用カメラであり、ケーブル転送方式は専 用方式が殆どであって、インタフェースカードはこの専用方式のデータをエンコード 及びデコードして PCと接続する。医療用 X線装置では、外部機器は医療用 X線装置 であり、ケーブル転送方式は光ケーブルを用いた専用方式であって、インタフェース カードは専用方式のデータのエンコード及びデコードと光一電気信号変換とにより P Cと接続する、等である。  [0009] When listing examples of combinations of these main interface cards, in the case of network cards, external devices are LAN, HUB, etc., and the cable transfer method is IEEE802.3ab (1000Base-T), etc. . In the case of SATA compatible RAID (Redundant Arrays of Inexpensive Disks) cards, the external device is HDD (Hand Disk Drive) and the cable transfer method is SATA (1.5G serial method). In the case of a video capture card, the external device is an analog VTR, etc., the cable transfer method is RS-170 / NTSC, etc., and the interface card performs Video MPEG2 (Moving Picture Experts Group phase 2) conversion. In the case of a DVC capture card, the external device is a DVC (digital video camera) and the cable transfer method is IEEE1394. In the case of industrial camera capillaries, the external device is an industrial camera, and the cable transfer method is mostly a dedicated method, and the interface card encodes and decodes data of this dedicated method and connects to the PC. In a medical X-ray device, the external device is a medical X-ray device, the cable transfer method is a dedicated method using an optical cable, and the interface card is based on data encoding and decoding of the dedicated method and optical-electrical signal conversion. Connect to a PC, etc.
[0010] こうしたインタフェースカードは、上述のように、外部機器と PCとを接続するために 使われる場合が多ぐ外部機器と PCとを接続するために、外部機器の外部入出力(I /〇)として使用される様々な電気信号、通信方式等を、インタフェースカードによつ て PCの I/Oである PCI又は PCIeに変換するものと!/、うこともできる。 PCのインタフエ ースカードの実装方法としては、大きく、 (1) NIC等の簡単なネットワークプロトコル等 を 1チップ LSIにまとめてインタフェースカードとして実装した 1チップ LSI方式、(2) P CIや PCIeの PC側のインタフェースと周辺機器の I/Oとの変換 LSIを実装したブリツ ジ方式、(3) FPGA (プログラマブル論理回路:プログラム書き換え可能 ASIC)等に よりアプリケーション部分を含めて一つの FPGAに実装するアプリケーション内蔵方 式、(4) I/O部分とアプリケーションとを別々の LSIや FPGAで実現するデバイス分 離方式に分けることができる。 PC側のインタフェースが PCIeである場合、一般的に その物理層を FPGAで実装するには高速 SerDes搭載の高価なものが必要になる。 [0010] As described above, such an interface card is often used to connect an external device and a PC. In order to connect an external device and a PC, the external input / output (I / O) of the external device is used. ) Can be converted to PCI or PCIe, which is the I / O of the PC, by the interface card. The PC interface card can be installed in large ways: (1) One-chip LSI system in which simple network protocols such as NIC are integrated into a single-chip LSI and mounted as an interface card; (2) PC side of PCI or PCIe Conversion to interface between peripheral interface and I / O of peripheral equipment. (3) FPGA (Programmable logic circuit: Program rewritable ASIC) etc. In addition, the application built-in method including the application part can be divided into the device built-in method implemented on one FPGA, and (4) the I / O part and the application can be divided into device separation methods realized by separate LSIs and FPGAs. When the interface on the PC side is PCIe, in general, an expensive device with high-speed SerDes is required to implement the physical layer with FPGA.
[0011] 一方、 PCのインタフェースカードは、 PCと外部機器とをケーブルで接続させるため 、外部機器の I/Oを変換してアプリケーション毎の処理を加え PCとインタフェースす るものと考えることもできる。 HDDやモニタ等の専用の外部機器を接続する場合、 H DD用の SATA、モニタや液晶ディスプレイ用の DVIに対応したケーブル転送方式と プロトコルをインタフェースカード側で持ち、それぞれの処理(アプリケーションによる 処理)を行い、 PCI又は PCIeを経由して PCに接続される。  [0011] On the other hand, the PC interface card can be thought of as interfacing with the PC by converting the I / O of the external device and adding processing for each application in order to connect the PC and the external device with a cable. . When connecting dedicated external devices such as HDDs and monitors, the interface card has cable transfer methods and protocols that support SATA for HDD and DVI for monitors and liquid crystal displays, and each process (processing by application) Connected to the PC via PCI or PCIe.
[0012] 従って、 PCや外部機器では、データや制御信号をケーブルで転送する場合、ケー ブル長が長い場合、 LAN等のようなネットワーク転送方式には、 TCP/IPのような転 送の確実性の高いプロトコルを使う場合が多いが、上述の SATA、 DVI、各種周辺 機器や外部装置等と PCとの、 PtoP接続においては、再送要求があるようなプロトコ ルは使用せずに、物理的な接続のみでデータ転送する場合も少なくなレ、。  [0012] Therefore, in PCs and external devices, when data and control signals are transferred via a cable, when the cable length is long, a network transfer method such as LAN is reliable for transfer such as TCP / IP. However, in the PtoP connection between the above-mentioned SATA, DVI, various peripheral devices, external devices, etc. and a PC, a protocol that requires a retransmission is not used, but a physical protocol is used. There are few cases of data transfer only with simple connection.
[0013] 例えば、 PCに PCIe規格対応のグラフィックカードを揷して DVIモニタを接続する場 合、液晶ディスプレイの接続に使用される DVI規格でのデータ転送は、グラフィック力 ードの物理層(TMDS:差動シリアル転送)による映像データの転送が主で、どのよう なモニタが接続されているのか自動判別するための通信プロトコルは存在する力 S、衝 突検出等によりデータ再送信を行うというような高度な通信プロトコルは存在しない。 このような場合、グラフィックカードと液晶ディスプレイとの接続は、ケーブル転送を行 う物理層同士の接続であることに注目すべきである。  [0013] For example, when connecting a DVI monitor to a PC with a graphics card that supports the PCIe standard, the data transfer in the DVI standard used to connect the liquid crystal display is the physical layer of the graphics power (TMDS : Differential serial transfer) is the main video data transfer, and the communication protocol for automatically determining what kind of monitor is connected is the existing force S, data retransmission is performed by collision detection, etc. There is no advanced communication protocol. In such a case, it should be noted that the connection between the graphic card and the liquid crystal display is a connection between physical layers that perform cable transfer.
[0014] この転送に用いられる物理層は、 DVI規格では TMDSと呼ばれる差動シリアル転 送方式が用いられており、 iLINK (IEEE1394)でも差動シリアル転送方式が用いら れているが、 STD— TVの Video信号はアナログ NTSCやコンポジットが用いられる 、という具合に外部機器との接続の際は、その機器の I/O仕様に合わせたり、新し い仕様を採用する場合は用途、距離、転送スピード、使用するケーブルコスト等によ つてどの転送方式を採用するかを決めたりすることになる。 [0015] 特許文献 1 :特開平 08— 288977号公報 [0014] The physical layer used for this transfer uses a differential serial transfer method called TMDS in the DVI standard, and iLINK (IEEE 1394) also uses the differential serial transfer method. When connecting to an external device such as analog NTSC or composite for the video signal of the TV, the I / O specification of the device is used, or if a new specification is adopted, the application, distance, and transfer Depending on speed, cable cost, etc., which transfer method is used is decided. Patent Document 1: Japanese Patent Laid-Open No. 08-288977
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0016] PCに PCIeを採用することで、それなりに高コストにはなるが、高性能で高速な信号 の転送の実現が可能になるインタフェースカードを実装することができるようになる。 し力、しながら、上述したような従来のような形態でインタフェースカードを PCに実装す る方法では、インタフェースカード及び外部機器の双方に、ケーブル接続のための 物理層を重複して実装する必要があり、これは無駄な構成でありシステムを複雑化し コストを押し上げるという問題があった。  [0016] By adopting PCIe in the PC, it becomes possible to mount an interface card that can realize high-performance and high-speed signal transfer, although the cost is rather high. However, in the method of mounting the interface card on the PC in the conventional manner as described above, it is necessary to overlap the physical layer for cable connection on both the interface card and the external device. This was a wasteful configuration, and there was a problem that the system was complicated and the cost was increased.
[0017] そこで、本発明は、 PCIe規格の物理層を PC (又は制御装置)に搭載されるインタフ エースカードと外部機器 (外部接続される電子装置)との信号転送に用いることで効 率化しようというものであり、特に従来 PCIe規格の信号とは別途に必要とされていた PC (又は制御装置)からのリセット信号等の制御信号を PCIe規格のパケット信号内 に重畳して転送することで、従来に比べてインタフェースカードの構成を簡素化しな がら、信号転送の高速化、高効率化を実現できる PCIeインタフェースを有するインタ フェース装置及び電子装置を提供することを目的とする。  [0017] Therefore, the present invention improves efficiency by using a PCIe standard physical layer for signal transfer between an interface card mounted on a PC (or control device) and an external device (an externally connected electronic device). In particular, control signals such as a reset signal from a PC (or control device) that was previously required separately from the PCIe standard signal are superimposed and transferred within the PCIe standard packet signal. An object of the present invention is to provide an interface device and an electronic device having a PCIe interface capable of realizing a high-speed and high-efficiency signal transfer while simplifying the configuration of the interface card as compared with the prior art.
課題を解決するための手段  Means for solving the problem
[0018] 上記目的を達成するためになされた本発明によるインタフェース装置は、第 1の電 子装置と接続する PCIe (PCI Express)規格の物理層を少なくとも有する第 1のイン タフエース部と、第 2の電子装置と接続する PCIe規格の物理層を少なくとも有する第 2のインタフェース部と、前記第 1及び第 2のインタフェース部間を接続するための、 電気信号により信号転送するメタルケーブル用コネクタ、又は光通信により信号転送 する光トランシーバ及び光通信ケーブル用コネクタからなる光伝送モジュールと、を 少なくとも具備し、前記第 1のインタフェース部は、前記第 1の電子装置から前記 PCI e規格のシリアル信号以外の第 2の信号を送出する場合、前記第 1の電子装置から 受信した前記 PCIe規格のシリアル信号のパケット信号内に該第 2の信号を組み込み 、該第 2の信号が重畳されたパケット信号を前記第 2のインタフェース部に送信する 信号重畳手段を有し、前記第 2のインタフェース部は、前記第 1のインタフェース部か ら受信したパケット信号を判読し、該パケット信号内に前記第 2の信号を検出した場 合、前記第 2の信号を抽出して前記第 2の電子装置に前記第 2の信号を伝送する信 号抽出手段を有することを特徴とする。 [0018] An interface device according to the present invention made to achieve the above object includes a first interface unit having at least a physical layer of a PCIe (PCI Express) standard connected to the first electronic device, and a second interface unit. A connector for a metal cable for transferring a signal by an electrical signal for connecting between the first interface unit and the second interface unit having at least a PCIe standard physical layer to be connected to the electronic device; At least an optical transceiver configured to transmit a signal by communication and an optical communication cable connector, and the first interface unit receives a first signal other than the PCI e standard serial signal from the first electronic device. When the second signal is transmitted, the second signal is assembled in the packet signal of the PCIe standard serial signal received from the first electronic device. And includes a signal superimposing means for transmitting the packet signal on which the second signal is superimposed to the second interface unit, wherein the second interface unit is the first interface unit. When the received packet signal is read and the second signal is detected in the packet signal, the second signal is extracted and the second signal is transmitted to the second electronic device. It has a number extraction means.
[0019] また、上記目的を達成するためになされた本発明によるインタフェース装置は、第 1 の電子装置と接続する PCIe (PCI Express)規格の物理層を少なくとも有する第 1 のインタフェース部と、第 2の電子装置と接続する PCIe規格の物理層を少なくとも有 する第 2のインタフェース部と、前記第 1及び第 2のインタフェース部間を接続するた めの、電気信号により信号転送するメタルケーブル用コネクタ、又は光通信により信 号転送する光トランシーバ及び光通信ケーブル用コネクタからなる光伝送モジュール と、を少なくとも具備し、前記第 1のインタフェース部は、前記第 1の電子装置からリセ ット信号を検出した場合、前記第 1の電子装置から受信したパケット信号内に該リセッ ト信号を組み込み、該リセット信号が重畳されたパケット信号を前記第 2のインタフエ ース部に送信するリセット信号重畳手段を有し、前記第 2のインタフェース部は、前記 第 1のインタフェース部から受信したパケット信号を判読し、該パケット信号内にリセッ ト信号を検出した場合、前記第 2の電子装置をリセットするためのリセット信号を生成 するリセット信号生成手段を有することを特徴とする。  [0019] Further, an interface device according to the present invention made to achieve the above object includes a first interface unit having at least a physical layer of a PCIe (PCI Express) standard connected to the first electronic device, and a second interface unit. A second interface unit having at least a PCIe standard physical layer to be connected to the electronic device, and a metal cable connector for transferring a signal by an electrical signal for connecting between the first and second interface units, Or at least an optical transmission module comprising an optical transceiver for transmitting signals by optical communication and an optical communication cable connector, and the first interface unit detects a reset signal from the first electronic device. A packet signal in which the reset signal is embedded in the packet signal received from the first electronic device and the reset signal is superimposed on the packet signal. Reset signal superimposing means for transmitting to the second interface unit, wherein the second interface unit reads the packet signal received from the first interface unit, and reset signal is included in the packet signal; And a reset signal generating means for generating a reset signal for resetting the second electronic device when the second electronic device is detected.
[0020] さらに、上記目的を達成するためになされた本発明によるインタフェース装置は、第  Furthermore, an interface device according to the present invention made to achieve the above object is
1の電子装置と接続する PCIe (PCI Express)規格の物理層を少なくとも有する第 1 のインタフェース部と、第 2の電子装置と接続する PCIe規格の物理層を少なくとも有 する第 2のインタフェース部と、前記第 1及び第 2のインタフェース部間を接続するた めの、電気信号により信号転送するメタルケーブル用コネクタ、又は光通信により信 号転送する光トランシーバ及び光通信ケーブル用コネクタからなる光伝送モジュール と、を少なくとも具備し、前記第 1のインタフェース部は、パケット信号に重畳されて前 記第 1のインタフェース部から送出されるリセット信号を検出できるか否かの照会信号 を前記第 2のインタフェース部に送信しその応答信号を受信するリセット検出照会手 段と、前記リセット検出照会手段で前記第 2のインタフェース部からリセット信号の検 出が可能との応答が有り、且つ前記第 1の電子装置からリセット信号を検出した場合 、前記第 1の電子装置から受信したパケット信号内に該リセット信号を組み込み、該リ セット信号が重畳されたパケット信号を前記第 2のインタフェース部に送信するリセット 信号重畳手段と、を有することを特徴とする。 A first interface unit having at least a PCIe (PCI Express) standard physical layer connected to the first electronic device, a second interface unit having at least a PCIe standard physical layer connected to the second electronic device, and An optical transmission module comprising a metal cable connector for transferring a signal by an electrical signal or an optical transceiver and an optical communication cable connector for transferring a signal by optical communication for connecting between the first and second interface units; , And the first interface unit sends an inquiry signal to the second interface unit as to whether it can detect a reset signal superimposed on the packet signal and sent from the first interface unit. A reset detection inquiry means for transmitting and receiving the response signal; and the second interface section in the reset detection inquiry means. There is a response enabling discovery of the reset signal, and when detecting a reset signal from said first electronic device, built the reset signal to the first in the packet signal received from the electronic device, 該Ri Reset signal superimposing means for transmitting the packet signal superimposed with the set signal to the second interface unit.
ここで、前記第 2のインタフェース部は、前記第 1のインタフェース部から前記照会 信号を受信した場合、前記第 1のインタフェース部から受信するパケット信号内に重 畳されるリセット信号を検出できる旨の応答信号を前記第 1のインタフェース部に送 信し、前記第 1のインタフェース部から受信したパケット信号内にリセット信号を検出し た場合、前記第 2の電子装置をリセットするためのリセット信号を生成するリセット信号 生成手段を有することを特徴とする。  Here, when the second interface unit receives the inquiry signal from the first interface unit, the second interface unit can detect a reset signal superimposed in a packet signal received from the first interface unit. A response signal is transmitted to the first interface unit, and when a reset signal is detected in the packet signal received from the first interface unit, a reset signal for resetting the second electronic device is generated. It has a reset signal generating means to perform.
また、前記第 2のインタフェース部は、パケット信号及び外部基準信号を基にクロッ ク信号を再生して生成するクロック再生手段を有することを特徴とする。  In addition, the second interface unit includes clock recovery means for recovering and generating a clock signal based on the packet signal and the external reference signal.
また、前記第 1及び第 2のインタフェース部は、信号転送の際の伝送距離を延長す るための伝送補償回路を有することを特徴とする。  The first and second interface units may include a transmission compensation circuit for extending a transmission distance during signal transfer.
また、前記第 1及び第 2のインタフェース部は、一つの電子装置との間で複数のレ ーンを使用して信号転送を行うマルチリンク機能を有することを特徴とする。  Further, the first and second interface units have a multilink function of performing signal transfer with a single electronic device using a plurality of lanes.
また、前記第 1又は第 2のインタフェース部は、複数の電子装置と接続し複数チヤネ ルの信号転送を行う PCIe規格対応の HUBデバイスを更に有することを特徴とする。  Further, the first or second interface unit further includes a PCIe standard-compliant HUB device that is connected to a plurality of electronic devices and performs signal transfer of a plurality of channels.
[0021] 上記目的を達成するためになされた本発明による電子装置は、制御装置と接続す る PCIe規格の物理層及び該 PCIe規格に基づく信号転送を制御する PCIe制御部を 少なくとも有するインタフェース部と、電子装置本体と前記インタフェース部との間の 通信規格を相互変換して接続し信号転送を行う本体制御部と、を少なくとも具備し、 前記 PCIe制御部は、前記制御装置から前記インタフェース部を介して受信したパケ ット信号を判読し、該パケット信号内にリセット信号を検出した場合、電子装置本体を リセットするためのリセット信号を生成するリセット信号生成手段を有することを特徴と する。 [0021] An electronic device according to the present invention made to achieve the above object includes a PCIe standard physical layer connected to a control device and an interface unit having at least a PCIe control unit for controlling signal transfer based on the PCIe standard. At least a main body control unit that mutually converts and connects communication standards between the electronic device main body and the interface unit, and the PCIe control unit passes through the interface unit from the control device. And a reset signal generating means for generating a reset signal for resetting the electronic apparatus main body when the received packet signal is read and a reset signal is detected in the packet signal.
発明の効果  The invention's effect
[0022] 本発明によれば、 PCと外部機器 (外部接続される電子装置)との間を PCIe規格の 物理層により接続して信号伝送することで、インタフェースカードや外部機器のインタ フェース構成が簡素化でき、 PCに実装されるインタフェースカード上のロジックが削 減できるコネクタボード型として単純化でき、また、インタフェースカードを各種外部機 器の種別に無関係な共通カードとすることが可能になる。 [0022] According to the present invention, the interface configuration of the interface card and the external device is achieved by connecting the PC and the external device (externally connected electronic device) via the PCIe standard physical layer and transmitting the signal. The logic on the interface card mounted on the PC can be simplified. It can be simplified as a connector board type that can be reduced, and the interface card can be a common card unrelated to the types of external devices.
また、 PCと外部機器間の PCIe規格のパケット信号に、 PCIe規格には含まれないリ セット信号等の制御信号を重畳して伝送する構成により、 PCと外部機器との伝送系 の高速化を図りながらケーブル接続においてもその構成が簡素化できるという効果 がある。その際、パケット信号に重畳されたリセット信号等のサイドバンド信号を検出 できる機能を外部機器が有するか否かに応じてそのサイドバンド信号を重畳するかし な!/、かを決定するので、対応できなレ、外部機器の誤動作の可能性を排除できる。 さらに、光通信ケーブルを用いた場合は、対ノイズ性能を高めることができ、機器間 の長距離接続を図ることができる。  In addition, the transmission speed of the transmission system between the PC and the external device is increased by superimposing and transmitting control signals such as reset signals not included in the PCIe standard on the PCIe standard packet signal between the PC and the external device. This also has the effect of simplifying the configuration even when connecting cables. At that time, it is determined whether or not to superimpose the sideband signal depending on whether or not the external device has a function capable of detecting a sideband signal such as a reset signal superimposed on the packet signal. The possibility of malfunctions of external devices that cannot be handled can be eliminated. Furthermore, when an optical communication cable is used, the noise resistance performance can be improved and a long-distance connection between devices can be achieved.
図面の簡単な説明  Brief Description of Drawings
[0023] [図 1]本発明の一実施例によるインタフェース装置及び電子装置の構成図である。  FIG. 1 is a configuration diagram of an interface device and an electronic device according to an embodiment of the present invention.
[図 2]図 1に示すインタフェース部(1)の構成図である。  2 is a block diagram of the interface unit (1) shown in FIG.
[図 3]図 1に示すインタフェース部(2)の構成図である。  FIG. 3 is a block diagram of the interface unit (2) shown in FIG.
[図 4]図 1に示すインタフェース部(1)の他の構成図である。  4 is another configuration diagram of the interface unit (1) shown in FIG.
[図 5]図 1に示すインタフェース部(2)の他の構成図である。  FIG. 5 is another configuration diagram of the interface unit (2) shown in FIG.
[図 6]伝送補償回路を用いた構成図である。  FIG. 6 is a configuration diagram using a transmission compensation circuit.
[図 7]PCIe対応 HUBを用いた PtoN伝送方式の構成図である。  [Fig. 7] Configuration diagram of PtoN transmission method using PCIe-compatible HUB.
[図 8]PCIe信号を集合化した構成図である。  FIG. 8 is a configuration diagram in which PCIe signals are aggregated.
[図 9]本発明の一実施例によるカメラシステムの構成図である。  FIG. 9 is a configuration diagram of a camera system according to an embodiment of the present invention.
[図 10]従来のカメラシステムの概略構成図である。  FIG. 10 is a schematic configuration diagram of a conventional camera system.
[図 11]図 7に示すカメラシステムにリセット信号を重畳する構成図である。  FIG. 11 is a configuration diagram in which a reset signal is superimposed on the camera system shown in FIG.
[図 12]従来のカメラシステムの構成図である。  FIG. 12 is a configuration diagram of a conventional camera system.
符号の説明  Explanation of symbols
[0024] 1 , 11 PCIe規格の物理層を有するインタフェース(I/F)部  [0024] 1, 11 Interface (I / F) section with physical layer of PCIe standard
2、 12 PCIe制御部  2, 12 PCIe controller
3、 13 シリアル パラレル変換部  3, 13 Serial Parallel converter
4、 4a リセット用 Kコード変換部 5、 15 パラレル シリアル変換部 4, 4a K code converter for reset 5, 15 Parallel Serial converter
6、 16 電気一光変換部  6, 16 Electric-light converter
7、 17 光一電気変換部  7, 17 Optical-electrical converter
10 信号伝送ケープノレ  10 Signal transmission Cape Nore
10a 光通信ケープノレ  10a Optical Communication Cape Nore
10b 同軸ケーブル  10b coaxial cable
14、 14a アイドル用 Kコード変換部  14, 14a Idle K code converter
18 PCIeデバイス  18 PCIe devices
19 本体制御部  19 Main unit controller
21 光トランシーバ  21 Optical transceiver
22 伝送補償回路  22 Transmission compensation circuit
23 同軸コネクタ  23 Coaxial connector
24 PCIe対応 HUB  24 PCIe HUB
25 PCIe X 4inlOGbps変換  25 PCIe X 4inlOGbps conversion
26 lOGbps光トランシーバ又は InfiniBand X 4コネクタ  26 lOGbps optical transceiver or InfiniBand X 4 connector
101 PCIe対応インタフェースカード  101 PCIe compatible interface card
102 電子装置 (外部機器)  102 Electronic equipment (external equipment)
103 産業用 CCDカメラ  103 Industrial CCD camera
104、 112 カメラ制卸部  104, 112 Camera Control Department
105 発振器 (〇SC)  105 Oscillator (〇SC)
106 パワーオンリセット回路  106 Power-on reset circuit
107 リセットスィッチ  107 Reset switch
110 従来の PCIe対応インタフェースカード  110 Conventional PCIe compatible interface card
111 PCIe制御及び変換部  111 PCIe control and converter
113、 114 LVDSドライバ &レシーバ  113, 114 LVDS driver & receiver
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
以下、本発明を実施するための最良の形態について図を参照して説明する。 図 1は、本発明の一実施例によるインタフェース装置及び電子装置の構成図であり 、図 2は、そのインタフェース部(1)の構成、図 3は、インタフェース部(2)の構成を示 している。尚、本実施形態では、 PCIe規格の信号以外の第 2の信号としてリセット信 号 (制御信号)を一例とし、このリセット信号を PCIe規格のシリアル信号のパケット内 に重畳して第 2の電子装置 (外部機器)に伝送する場合を説明する。 The best mode for carrying out the present invention will be described below with reference to the drawings. FIG. 1 is a block diagram of an interface device and an electronic device according to an embodiment of the present invention. 2 shows the configuration of the interface unit (1), and FIG. 3 shows the configuration of the interface unit (2). In the present embodiment, a reset signal (control signal) is taken as an example of the second signal other than the PCIe standard signal, and this second signal is superimposed on the PCIe standard serial signal packet. The case of transmission to (external device) will be described.
[0026] 図 1において、 101は PCやコンピュータシステムで構成された制御装置(第 1の電 子装置)に実装される PCIeバスと接続される PCIe対応インタフェースカードであり、 カード上には第 1のインタフェース部(1) 1を有する。 102はインタフェースカード 101 を介して光通信ケーブル、同軸ケーブル、ツイストケーブル等の信号伝送ケーブル 1 0により PCや制御装置に外部接続される第 2の電子装置 (外部機器)であり、その内 部に第 2のインタフェース部(2) 11、 PCIe信号の送受信を行う PCIeデバイス 18、及 び電子装置本体を制御する本体制御部 19を有する。第 1のインタフェース部(1) 1は 、後述するリセット信号をパケット信号内に重畳して送信するための第 1の PCIe制御 部(1) 2を有し、第 2のインタフェース部(2) 11は、第 1のインタフェース部(1) 1より送 信され、信号伝送ケーブル 10を介して受信したパケット信号内から、重畳されたリセ ット信号を取り出すための第 2の PCIe制御部(2) 12を有する。  In FIG. 1, reference numeral 101 denotes a PCIe compatible interface card connected to a PCIe bus mounted on a control device (first electronic device) configured by a PC or a computer system. The interface part (1) 1 is provided. Reference numeral 102 denotes a second electronic device (external device) that is externally connected to a PC or a control device via a signal transmission cable 10 such as an optical communication cable, a coaxial cable, or a twisted cable via the interface card 101. The second interface unit (2) 11 includes a PCIe device 18 that transmits and receives PCIe signals, and a main body control unit 19 that controls the electronic device main body. The first interface unit (1) 1 has a first PCIe control unit (1) 2 for transmitting a reset signal, which will be described later, superimposed on a packet signal, and the second interface unit (2) 11 The second PCIe control unit (2) for extracting the superimposed reset signal from the packet signal transmitted from the first interface unit (1) 1 and received via the signal transmission cable 10 Has 12.
[0027] これら PCIe規格に対応した第 1インタフェース部(1) 1内及び第 2のインタフェース 部(2) 2内の各機能は、電子装置 102の本体制御部 19を含む全機能、或いは個々 の機能が組み合わされて 1つ又は複数の LSIや FPGAにより実装される。また、 PCI e規格(2002年 7月策定規格 verl . la)では、 1レーン当たり片方向 2. 5Gbpsという 高速な差動シリアル転送を行うが、高速であるために総延長距離をメタルケーブルで 伸ばすには限界がある。そのためケーブル伝送効率を上げるために高伝送効率なケ 一ブルやコネクタを採用したり、 OE (光 電気)変換を行う光伝送モジュールを採用 したり、ケーブル伝送において伝送補償回路等を付加したりすることで、安定したケ 一ブル伝送を実現することができる。  [0027] The functions in the first interface unit (1) 1 and the second interface unit (2) 2 corresponding to the PCIe standard are all functions including the main body control unit 19 of the electronic device 102, or individual functions. Functions are combined and implemented by one or more LSIs or FPGAs. In addition, the PCI e standard (standard verl. La established in July 2002) performs high-speed differential serial transfer of 2.5 Gbps per lane per lane, but because of the high speed, the total extension distance is extended with a metal cable. Has its limits. Therefore, to increase cable transmission efficiency, adopt cables and connectors with high transmission efficiency, adopt optical transmission modules that perform OE (Optical / Electrical) conversion, add transmission compensation circuits, etc. in cable transmission. Thus, stable cable transmission can be realized.
[0028] 図 2に示すように、本実施形態による第 1のインタフェース部(1) 1は、第 1の PCIe 制御部(1) 2を有し、電子装置 102側に備わる第 2のインタフェース部(2)と光通信ケ 一ブル 1 Oaを介して通信接続するための電気 光変換部 6及び光 電気変換部 7を 有する。 PCの PCIeバスに揷入される第 1のインタフェース部(1) 1を有する PCIe対 応インタフェースカード 101には、 PCから送信され電子装置 102で受信するシリアル パケット信号の PCIe信号 (Tx)、及び電子装置 102から送信され PCで受信するシリ アルパケット信号の PCIe信号 (Rx)の他に、 PCIe規格の信号に含まれないリファレ ンスクロック RefCLK信号とリセット Reset信号との各サイドバンド信号が供給される。 As shown in FIG. 2, the first interface unit (1) 1 according to the present embodiment has a first PCIe control unit (1) 2 and is provided on the electronic device 102 side. (2) and optical communication cable 1 It has an electro-optical conversion unit 6 and a photoelectric conversion unit 7 for communication connection via Oa. PCIe pair with first interface part (1) 1 inserted into the PCIe bus of PC The interface card 101 includes a PCIe signal (Tx) of a serial packet signal transmitted from the PC and received by the electronic device 102, and a PCIe signal (Rx) of a serial packet signal transmitted from the electronic device 102 and received by the PC. In addition, the sideband signals of the reference clock RefCLK signal and the reset signal that are not included in the PCIe standard signal are supplied.
[0029] PCIeの物理層は、符号化やリンクの制御を行う論理サブブロックと、シグナリングを 行う電気サブブロックの 2つに分けることができ、論理サブブロックでは、フレーミング 処理により、データリンク層から渡された TLP (Transaction Layer Pakcet)又は DLLP (Data Link Layer Packet)にパケットの境界を示す特殊符号(Kコード) がその先頭及び末尾に付加され、 TLPの場合は、先頭に付加された STP (Start o f TLP)力も末尾に付加された END迄のバイト数が所定数になるように;!〜 3個の P ADと呼ばれる Kコードが TLPと ENDとの間に挿入されることがある。  [0029] The PCIe physical layer can be divided into two logical sub-blocks that perform coding and link control and electrical sub-blocks that perform signaling. In the logical sub-block, the data link layer is A special code (K code) indicating the boundary of the packet is added to the passed TLP (Transaction Layer Pakcet) or DLLP (Data Link Layer Packet) at the beginning and end. In the case of TLP, the STP ( Start of TLP) Force is also added at the end so that the number of bytes until END becomes a predetermined number;! ~ 3 K codes called PAD may be inserted between TLP and END.
[0030] 各レーンに分割されたデータは、レーンごとにスクランブル及び 8b/10b変換(8bi ts/10bits変換)が行われ、シリアルデータとして送信される。 8b/10b変換は、実 効転送量が 80%になってしまうというデメリットがある力 S、連続した" 0 "や";!"が続くこ とで長レ、間クロスポイントが存在しな!/、状態が続かなレ、ようにしたものであり、クロック 再生を容易に行えることや、 DCバランスがとれることから AC結合が可能等の特徴を 有する。 8b/10b変換により符号空間が広がりここに Kコードと呼ばれる制御用の符 号を追加することができる。  [0030] The data divided into each lane is scrambled and 8b / 10b converted (8bits / 10bits conversion) for each lane, and transmitted as serial data. 8b / 10b conversion has the disadvantage that the effective transfer amount becomes 80% S, and there is no long crossing point between consecutive “0” and “;!”! /, The state continues, and it has features such as easy clock recovery and AC coupling due to DC balance. The code space is expanded by 8b / 10b conversion, and a control code called K code can be added here.
[0031] ここで、 8b/10b変換において、 LSB (least significant bit)から MSB (most significant bit)へ向かって 8ビットの各ビットを ABCDEFGHと呼び、これを EDC BA、 HGFの 2つのグループに分け、その順に、データを Dx. y、 Kコードを Κχ· yと すると、 ί列えば、、データ力 001 10000b (ノ イナリ)、 Κコード力 01 1 1 1 100bの場合は 、データは、 HGF = 001b、 EDCBA= 10000bなので、 D 16. 1と表すことができ、 Kコードは、 HGF = 01 1b、 EDCBA= 1 1 100bなので、 K28. 3と表すことができる。  [0031] Here, in the 8b / 10b conversion, each bit of 8 bits from LSB (least significant bit) to MSB (most significant bit) is called ABCDEFGH, which is divided into two groups, EDC BA and HGF. In this order, if the data is Dx. Y, and the K code is Κχ · y, then if the data is 001 10000b (Nonari) and Κ code force 01 1 1 1 100b, the data is HGF = Since 001b and EDCBA = 10000b, it can be expressed as D 16.1, and the K code can be expressed as K28.3 because HGF = 01 1b and EDCBA = 1 1 100b.
[0032] 本発明の実施形態は、 PCIe規格で未定義な Kコードをリセット用のコードとして割り 当てたもので、図 2に示すように、第 1の PCIe制御部(1 ) 2は、 PCIe規格のシリアル 送信信号である PCIe信号 (Tx)を受信してこれをシリアル パラレル変換部 3でパラ レル信号に変換し、 PCIe規格で伝送されるシリアル信号には含まれないサイドバンド 信号の一つであるリセット信号を PCIeバスから受け取り、このリセット信号を、 Kコード 部分にリセット用として定義した Kコードに変換し、例えば K24. 4として揷入する。こ こで、 PCから送信される PCIe信号 (Tx)は 8bitsのデータが 8b/10b変換されたシリ アル信号であり、シリアル パラレル変換部 3により、 Kコードを含む lObitsパターン の Dコードへのパラレル変換を行う。 [0032] In the embodiment of the present invention, an undefined K code in the PCIe standard is assigned as a reset code. As shown in FIG. 2, the first PCIe control unit (1) 2 includes a PCIe code. Sideband that is not included in the serial signal transmitted by the PCIe standard after receiving the PCIe signal (Tx) that is a standard serial transmission signal and converting it to a parallel signal by the serial / parallel converter 3 A reset signal, which is one of the signals, is received from the PCIe bus, and this reset signal is converted into a K code defined for resetting in the K code part and inserted as, for example, K24.4. Here, the PCIe signal (Tx) transmitted from the PC is a serial signal in which 8bits data is converted to 8b / 10b, and the serial-to-parallel converter 3 parallelizes the lObits pattern including the K code to the D code. Perform conversion.
[0033] リセット用 Kコード変換部 4では、リセット信号と Kコードの監視を行い、リセット信号 のアクティブを検出したら、シリアルバス上に伝送すべきデータが無いことを表す IDL (アイドル)の Kコード(例: Κ28· 3)を PCIe規格で未定義な Kコード(例: Κ24· 4)で リセット用として割り当てて置換し、このリセット用 Kコードを Tx信号に重畳する。 Kコ ードを変換した lObitsパターンの Dコードとその Kコードを含む送信信号は、後段の ノ ラレルーシリアル変換部 5により再度シリアル信号に変換される。変換されたシリア ル信号は、電気一光変換部 6により光通信ケーブル 10aに適合した光信号に変換さ れ、光通信ケーブル用コネクタ及び光通信ケーブル 10aを介して外部に接続される 電子装置 (外部機器) 102に送信される (リセット信号重畳手段、又は信号重畳手段) [0033] The reset K code conversion unit 4 monitors the reset signal and K code, and if it detects that the reset signal is active, it indicates an IDL (idle) K code indicating that there is no data to be transmitted on the serial bus. (Example: Κ28 · 3) is assigned and replaced with a K code undefined in the PCIe standard (eg, Κ24 · 4) for resetting, and this reset K code is superimposed on the Tx signal. The D code of the lObits pattern obtained by converting the K code and the transmission signal including the K code are converted again to a serial signal by the normal-reel serial conversion unit 5 at the subsequent stage. The converted serial signal is converted into an optical signal suitable for the optical communication cable 10a by the electrical-optical conversion unit 6, and is connected to the outside via the optical communication cable connector and the optical communication cable 10a ( (External device) sent to 102 (reset signal superimposing means or signal superimposing means)
[0034] 電子装置 102に到達した光信号は、図 3に示すように、電子装置 102側に設けられ たインタフェース部(2) 11に備わる光一電気変換部 17で電気信号に変換される。変 換されたシリアル信号は、 PCIe制御部(2) 12によってその信号からリセット信号が抽 出され、元のシリアル信号に変換されて PCIeデバイス 18及び本体制御部 19に引き 渡される。 PCIe制御部(2) 12は、受信したシリアル信号をシリアル パラレル変換部 13で lObitsパターンのパラレルコードに変換し、アイドル用 Kコード変換部 14にその 信号を引き渡す。 As shown in FIG. 3, the optical signal that has reached the electronic device 102 is converted into an electrical signal by the optical-electrical conversion unit 17 provided in the interface unit (2) 11 provided on the electronic device 102 side. The converted serial signal is extracted from the reset signal by the PCIe control unit (2) 12, converted into the original serial signal, and delivered to the PCIe device 18 and the main body control unit 19. The PCIe control unit (2) 12 converts the received serial signal into a parallel code having an lObits pattern by the serial / parallel conversion unit 13, and passes the signal to the idle K code conversion unit 14.
[0035] アイドル用 Kコード変換部 14では、 Kコードの監視を行い、リセット用に割り当てら れた Kコードを検出すると、 PCIeデバイス 18又は本体制御部 19に対するリセット信 号を生成してその信号をアクティブにすると共に、リセット用の Kコード (例: Κ24· 4) を元の IDLの Kコード(例: K28. 3)で置換してパラレル—シリアル変換部 15に送出 する。元の IDLの Kコードで置換された lObitsパターンの信号は、パラレル シリア ル変換部 15を経て元のシリアル信号になり、 PCIeデバイス 18に送出される。これに より PCIeデバイス 18は、 PCIe信号 (Tx)を受信して適切な動作を行うことができる(リ セット信号生成手段、又は信号抽出手段)。 [0035] The K code conversion unit for idle 14 monitors the K code and, when detecting the K code assigned for reset, generates a reset signal for the PCIe device 18 or the main body control unit 19 and outputs the signal. Is activated and the reset K code (eg Κ24 · 4) is replaced with the original IDL K code (eg K28.3) and sent to the parallel-serial converter 15. The lObits pattern signal replaced with the original IDL K code is converted to the original serial signal via the parallel serial converter 15 and sent to the PCIe device 18. to this Further, the PCIe device 18 can receive the PCIe signal (Tx) and perform an appropriate operation (reset signal generation means or signal extraction means).
[0036] 一方、電子装置 102の PCIeデバイス 18側から出力された PCIe信号 (Rx)は、イン タフエース部(2) 11の電気一光変換部 16で光信号に変換され、光通信ケーブル 10 aを介して PCのインタフェースカード 101側に送信される。インタフェースカード 101 に達した光信号は、インタフェース部(1) 1の光一電気変換部 7で電気信号に変換さ れて PCIeバスに引き渡される。これにより、 PC (又は制御装置)は、電子装置 (外部 機器) 102から PCIe信号 (Rx)を受信して適切な動作を行うことができる。  On the other hand, the PCIe signal (Rx) output from the PCIe device 18 side of the electronic device 102 is converted into an optical signal by the electrical-to-optical conversion unit 16 of the interface unit (2) 11, and the optical communication cable 10 a Is sent to the PC interface card 101 side. The optical signal that has reached the interface card 101 is converted into an electrical signal by the optical-to-electric conversion unit 7 of the interface unit (1) 1 and delivered to the PCIe bus. Thereby, the PC (or control device) can receive the PCIe signal (Rx) from the electronic device (external device) 102 and perform an appropriate operation.
[0037] 図 1及び図 2に示すサイドバンド信号の基準クロック(RefCLK、 Ref Clock: 100M Hz)は、 PCIe制御部(1) 2のシリアル パラレル変換、及びパラレル シリアル変換 の際のクロック信号として用いられ、図示していないが、 DLL (Delay Locked Loo p)或いは PLL (Phase Locked Loop)構成により実際に必要なクロック信号を生 成する。  [0037] The reference clock (RefCLK, Ref Clock: 100MHz) of the sideband signal shown in Fig. 1 and Fig. 2 is used as a clock signal for serial-parallel conversion and parallel-serial conversion of the PCIe controller (1) 2. Although not shown, a clock signal actually required is generated by a DLL (Delay Locked Loop) or PLL (Phase Locked Loop) configuration.
[0038] 図 2及び図 3に示す、シリアル パラレル変換部 3、 13、リセット用又はアイドル用の Kコード変換部 4、 14、及びパラレル シリアル変換部 5、 15の構成は、シフトレジス タによる FIFO (First— In First— Out)バッファを用いて、上述したリセット信号の 重畳、或いは抽出処理を行う。  [0038] The configuration of the serial / parallel conversion units 3, 13, the reset or idle K code conversion units 4, 14, and the parallel / serial conversion units 5, 15 shown in FIGS. First-In First-Out buffer is used to superimpose or extract the reset signal described above.
[0039] 電子装置 102側では、受信したシリアル信号よりクロック信号を再生し、 PCIe制御 部(2) 12のシリアル パラレル変換、及びパラレル シリアル変換の際のクロック信 号として用いるが、その際のクロック及びデータリカバリ回路、及びその動作について は省略する(図 3にも示さず)。  [0039] On the electronic device 102 side, a clock signal is regenerated from the received serial signal and used as a clock signal for serial-parallel conversion and parallel-serial conversion of the PCIe control unit (2) 12. The data recovery circuit and its operation are omitted (not shown in Fig. 3).
[0040] なお、リセット用として割り当てた Kコードの検出に際しては、伝送路上のノイズ等に よる誤検出を回避するために、所定回数連続して κコードを検出した場合にのみ、リ セット信号をアクティブにする機能を持たせても良い。  [0040] It should be noted that when detecting the K code assigned for resetting, in order to avoid false detection due to noise on the transmission path, the reset signal is only generated when the κ code is detected for a predetermined number of times. It may have a function to activate.
[0041] 次に、図 4及び図 5を参照して、受信したシリアルパケット信号内に重畳されたリセッ ト信号等のサイドバンド信号を抽出できない電子装置 102に対応する場合の構成と その処理につ!/、て説明する。  [0041] Next, referring to FIG. 4 and FIG. 5, in the configuration and processing for the electronic device 102 that cannot extract a sideband signal such as a reset signal superimposed in the received serial packet signal, Tsu!
[0042] 上述した図 2及び図 3との構成の違いは、リセット信号等のサイドバンド信号をシリア ノレパケット信号内に重畳する前に、シリアルパケット信号内に重畳されたサイドバンド 信号の検出ができるか否かを電子装置 102に照会する点である。このようにサイドバ ンド信号が重畳されたシリアルパケット信号を処理できるか否かを予め照会すること で不特定の電子装置 102との接続が可能になる。その際、全てのサイドバンド信号を 認識できるか否かではなく一部のサイドバンド信号だけを認識できる場合にも適用で きる。即ちリセット信号に割り当てられた Kコードは認識できるが他のサイドバンド信号 に割り当てられた認識不能な Kコードを処理できないという場合にも適用できる。以 下、サイドバンド信号としてリセット信号を例に説明する。 [0042] The difference between the configuration shown in FIGS. 2 and 3 is that sideband signals such as a reset signal are serialized. Before superimposing in the nore packet signal, the electronic device 102 is inquired whether or not the sideband signal superimposed in the serial packet signal can be detected. In this way, it is possible to connect to an unspecified electronic device 102 by inquiring in advance whether or not the serial packet signal on which the sideband signal is superimposed can be processed. In this case, the present invention can also be applied to a case where only a part of the sideband signals can be recognized, not whether or not all sideband signals can be recognized. In other words, it can be applied to the case where the K code assigned to the reset signal can be recognized but the unrecognizable K code assigned to other sideband signals cannot be processed. Hereinafter, a reset signal will be described as an example of the sideband signal.
[0043] 図 4は、図 2に示すリセット用 Kコード変換部 4を、リセット検出照会信号送出機能及 びその応答信号によるリセット検出確認機能(リセット検出照会手段)を付加したもの に置き換えたリセット用 Kコード変換部 4aの一実施例である。従って図 2と重複する 機能の詳細な説明は省略する。  [0043] FIG. 4 shows a reset K code conversion unit 4 shown in FIG. 2 replaced with a reset detection inquiry signal transmission function and a reset detection confirmation function (reset detection inquiry means) based on the response signal. It is one Example of the K code conversion part 4a. Therefore, a detailed description of the functions overlapping those in FIG. 2 is omitted.
[0044] 本実施例による PC側の PCIe制御部(1) 2は、電子装置 102と光通信ケーブル 10a を介して通信接続する。 PCIe制御部(1) 2は、 PCIe規格のシリアル送信信号である PCIe信号 (Tx)を PCから受信してこれをシリアル パラレル変換部 3でパラレル信号 に変換する。その際、 PC側から送信される最初のパケット信号として、 PCIe信号 (Tx )に コードとして重畳されるリセット信号を検出できるか否かを照会する照会信号を 送信する。照会信号を受信した電子装置 102から所定時間経過しても応答信号 (A CK (Acknowledgment)等)が得られな!/、場合、或いは照会信号を解釈できなレヽ( NACK (Negative Acknowledgment)等)の応答があった場合、リセット用 Kコー ド変換部 4aは、その後のパケット信号にリセット信号を重畳せず、元の信号をパラレ ルーシリアル変換部 5によりパラレル信号からシリアルパケット信号に戻してそのまま 送信する。  [0044] The PCIe control unit (1) 2 on the PC side according to the present embodiment is in communication connection with the electronic device 102 via the optical communication cable 10a. The PCIe control unit (1) 2 receives a PCIe signal (Tx), which is a serial transmission signal of the PCIe standard, from the PC, and converts it into a parallel signal by the serial / parallel conversion unit 3. At that time, as the first packet signal transmitted from the PC side, an inquiry signal is transmitted to inquire whether or not a reset signal superimposed as a code on the PCIe signal (Tx) can be detected. A response signal (A CK (Acknowledgment), etc.) cannot be obtained even after a predetermined time has passed from the electronic device 102 that has received the inquiry signal! /, Or if the inquiry signal cannot be interpreted (NACK (Negative Acknowledgment, etc.) If there is a response, the reset K code conversion unit 4a does not superimpose the reset signal on the subsequent packet signal, and the parallel signal is converted from the parallel signal to the serial packet signal by the parallel serial conversion unit 5, and remains as it is. Send.
[0045] ここで、照会信号は、照会信号として定義した Kコードとして送信してもよいし、最初 のシリアルパケット信号の前又は後に付加してもよい。また図 4の例とは異なり PC側 力、ら送出する最初のパケット信号としてその通信プロトコルに組み込むようにしても良 い。リセット信号を重畳しない場合は、 PCIe制御部(1) 2のシリアル パラレル変換 部 3及びパラレル シリアル変換部 5をパスする構成とすることもできる。 [0046] PC側からリセット検出照会信号を受信した電子装置 102は、リセット信号の検出機 能を有する場合、 PC側からの照会信号に応答してリセット検出応答信号を PC側に 送信する。電子装置 102からリセット検出応答信号を受信して電子装置 102がリセッ ト信号の検出機能を有すると判断した場合、 PC側のリセット用 Kコード変換部 4aは、 その後、 PCIe規格で伝送されるシリアル信号には含まれないリセット信号を PCIeバ スから受け取ると、これを PCから送信されるシリアルパケット信号内の Kコード部分に リセット用に定義した Kコードを揷入して電子装置 102に送信する。 [0045] Here, the inquiry signal may be transmitted as a K code defined as the inquiry signal, or may be added before or after the first serial packet signal. Unlike the example in Fig. 4, it may be incorporated into the communication protocol as the first packet signal sent from the PC. When the reset signal is not superimposed, a configuration in which the serial / parallel conversion unit 3 and the parallel / serial conversion unit 5 of the PCIe control unit (1) 2 are passed is also possible. When electronic device 102 having received the reset detection inquiry signal from the PC side has a reset signal detection function, it transmits a reset detection response signal to the PC side in response to the inquiry signal from the PC side. If the electronic device 102 receives the reset detection response signal from the electronic device 102 and determines that the electronic device 102 has a reset signal detection function, the reset K code conversion unit 4a on the PC side then transmits the serial signal transmitted according to the PCIe standard. When a reset signal not included in the signal is received from the PCIe bus, the K code defined for reset is inserted into the K code part in the serial packet signal transmitted from the PC and transmitted to the electronic device 102. .
[0047] リセット検出応答信号の確認の詳細は、図 4には示していないが、図 3に示す電子 装置 102側の処理と同様にシリアル パラレル変換部によりパラレルデータに変換し てその信号を解釈しその後パラレル シリアル変換部で元のシリアルパケット信号に 戻す手法や、別途に設けた回路によりシリアルパケット信号を直接解釈する手法があ る。また図 3に示す方法と同様な構成の場合は Kコード部分に応答信号を割り当てる ようにすることもできる。また図 4の例とは異なり PC側で受信したシリアルパケット信号 を直接解釈できるようにその送受信プロトコルに組み込んでも良い。  The details of the confirmation of the reset detection response signal are not shown in FIG. 4, but are converted into parallel data by the serial / parallel converter in the same way as the processing on the electronic device 102 side shown in FIG. 3, and the signal is interpreted. After that, there are a method of returning to the original serial packet signal by the parallel-serial converter, and a method of directly interpreting the serial packet signal by a circuit provided separately. In the case of a configuration similar to the method shown in Fig. 3, a response signal can be assigned to the K code part. Unlike the example in Fig. 4, serial packet signals received on the PC side may be incorporated into the transmission / reception protocol so that they can be directly interpreted.
[0048] 図 5は、図 3に示すアイドル用 Kコード変換部 14を、リセット検出照会信号受信機能 及びその応答信号を生成するリセット検出応答機能を付加したものに置き換えたアイ ドル用 Kコード変換部 14aの一実施例である。従って図 3と重複する機能の詳細な説 明は省略する。  FIG. 5 shows an idle K-code conversion in which the idle K-code conversion unit 14 shown in FIG. 3 is replaced with a reset detection inquiry signal reception function and a reset detection response function for generating a response signal. This is an example of the unit 14a. Therefore, a detailed description of the functions overlapping those in Fig. 3 is omitted.
[0049] 本実施例による電子装置 102側の PCIe制御部(2) 12は、 PC側から光通信ケープ ノレ 10aを介して通信接続される。電子装置 102に到達した光信号は、電子装置 102 側の光一電気変換部 17で電気信号に変換され、 PCIe制御部(2) 12のシリアル パラレル変換部 13によってパラレル信号に変換される。図 5に示す電子装置 102の アイドル用 Kコード変換部 14aは、パケット信号内に重畳されるリセット信号を検出で きるか否かのリセット検出照会信号を受信すると、このリセット検出照会信号に応答し てリセット検出確認応答信号を PC側に送信する。リセット信号以外の解釈できな!/、信 号を受信した場合は NACKを返す。なお、上述したように受信パケット信号内に重畳 されたリセット信号を検出する機能を有せず、リセット検出照会信号にも応答できない 電子装置 102の場合、 PC側はリセット検出照会信号に対する応答信号が所定時間 経過しても得られな!/、ので、その後の送信パケット信号へのリセット信号の重畳は行 わない。 [0049] The PCIe control unit (2) 12 on the electronic device 102 side according to the present embodiment is communicatively connected from the PC side via the optical communication cabinet 10a. The optical signal that has reached the electronic device 102 is converted into an electrical signal by the optical-electrical conversion unit 17 on the electronic device 102 side, and converted into a parallel signal by the serial / parallel conversion unit 13 of the PCIe control unit (2) 12. When the idle K-code conversion unit 14a of the electronic device 102 shown in FIG. 5 receives the reset detection inquiry signal as to whether or not the reset signal superimposed in the packet signal can be detected, it responds to the reset detection inquiry signal. Send a reset detection confirmation response signal to the PC. If a signal other than the reset signal cannot be interpreted! /, A NACK is returned when a signal is received. As described above, the electronic device 102 that does not have a function to detect the reset signal superimposed in the received packet signal and cannot respond to the reset detection inquiry signal also has a response signal to the reset detection inquiry signal on the PC side. Predetermined time Since it cannot be obtained even after elapse of time, the reset signal is not superimposed on the subsequent transmission packet signal.
[0050] PC側から受信したリセット検出照会信号に応答してリセット検出確認応答信号を送 信した電子装置 102側の PCIe制御部(2) 12は、その後受信するパケット信号内に 重畳されたリセット信号が検出されると、図 5に示すアイドル用 Kコード変換部 14aで パケット信号に重畳されたリセット信号を抽出し、リセット用 Kコードをアイドル用 Kコー ドに置き換えて PCIeデバイス 18に引き渡す。また、リセット用に割り当てられた Kコー ドを検出すると、 PCIeデバイス 18又は本体制御部 18に対するリセット信号を生成し てその信号をアクティブにする。ここで、照会信号は、 Kコードとして割り当ててもよい し、最初のシリアルパケット信号の前又は後に付加するように構成してもよい。また図 5の例とは異なり PC側との送受信の際の最初のパケット信号としてその通信プロトコ ルに組み込むようにしても良い。  [0050] The PCIe control unit (2) 12 on the electronic device 102 side that has transmitted the reset detection confirmation response signal in response to the reset detection inquiry signal received from the PC side performs the reset superimposed on the packet signal received thereafter. When the signal is detected, the idle K code conversion unit 14a shown in FIG. 5 extracts the reset signal superimposed on the packet signal, and replaces the reset K code with the idle K code and delivers it to the PCIe device 18. When a K code assigned for reset is detected, a reset signal is generated for the PCIe device 18 or the main body control unit 18 and the signal is activated. Here, the inquiry signal may be assigned as a K code, or may be configured to be added before or after the first serial packet signal. Also, unlike the example in Fig. 5, it may be incorporated into the communication protocol as the first packet signal for transmission / reception with the PC.
[0051] 図 6は、上述した PCIe規格のシリアル信号の伝送に伝送補償回路を用いた構成図 であり、 PCIe規格の伝送速度及び伝送距離に適合した伝送補償回路 22を使用する 場合を示している。伝送補償回路 22は、インタフェース部(1) 1の PCIe制御部(1) 2 と同軸コネクタ 23との間、及びインタフェース部(2) 11の同軸コネクタ 23と PCIe制御 部(2) 12との間に挿入され、このような伝送補償回路 22を使用することによって、同 軸コネクタ 23及び同軸ケーブル 10bをその信号伝送に使用する場合でもケーブル 伝送距離を伸ばすことができる。なお、図 6に示す実施形態では、シリアル信号の伝 送に同軸ケーブル 10bを用いている力 光通信ケーブル 10aを用いる場合にも、伝 送補償回路を光通信に最適化することで適用することが可能である。  [0051] FIG. 6 is a configuration diagram using a transmission compensation circuit for the transmission of the above-mentioned PCIe standard serial signal, and shows a case where the transmission compensation circuit 22 suitable for the transmission speed and transmission distance of the PCIe standard is used. Yes. The transmission compensation circuit 22 is connected between the PCIe control unit (1) 2 of the interface unit (1) 1 and the coaxial connector 23, and between the coaxial connector 23 of the interface unit (2) 11 and the PCIe control unit (2) 12. By using such a transmission compensation circuit 22, the cable transmission distance can be extended even when the coaxial connector 23 and the coaxial cable 10 b are used for signal transmission. Note that the embodiment shown in FIG. 6 can be applied by optimizing the transmission compensation circuit for optical communication even when using the optical fiber communication cable 10a that uses the coaxial cable 10b for serial signal transmission. Is possible.
[0052] なお、 PCIe規格では、上述したように、連続した" 0"や" 1 "が続くことで長い間クロ スポイントが存在しない状態が続かないように、 8b/10bエンコードによるコード変換 を採用して配線上の制約を緩和している力 8b/10bエンコードによるコード変換を 行っても、最大 5回の連続した" 0"や" 1 "が続くことがあり、この場合の対策として、同 じ値が続く場合、 2つ目の信号を送る際に、送信側が振幅を減らし、受信側で受け取 る信号のノイズマージンを大きくするように、送信側でデエンファシス転送を行うことが 規定されている。 [0053] 図 7は、複数のレーンを用いて複数の電子装置 102 # 1〜4に信号伝送する場合を 示したもので、 PCIe対応の HUBデバイスを用いた PtoN伝送方式の構成図であり、 PCIeに対応した HUBデバイスを利用することで 1台の PCと複数台(図では 4個)の 電子装置 102 # 1〜4とを接続する構成を示している。インタフェースカード 101側の PCIe制御部(1) 2と 4個の光トランシーバ 21 #;!〜 4との間に PCIe対応 HUB24を搭 載し、この PCIe対応 HUB24から 4個の光トランシーバ 21 #;!〜 4へ分岐し、光通信 ケーブル 10a、電子装置 (外部機器) 102 # 1〜4内の各光トランシーバ 21を介して、 それぞれの電子装置 102 # 1〜4を制御する。なお、ここでは伝送方式として光トラン シーバ 21と光通信ケーブル 10aを使用している力 勿論、同軸ケーブル 10bによる 伝送方法も実現可能である。この場合、リセット信号は、 4つのそれぞれのレーン毎の パケット信号に重畳されて伝達されるようにすることも、或いは必要とする電子装置 1 02 # 1〜4へのみの伝達とすることもできる。 [0052] In the PCIe standard, as described above, code conversion by 8b / 10b encoding is performed so that a state where there is no cross point for a long time does not continue due to continuous "0" or "1". Adopting power to ease restrictions on wiring Even if code conversion by 8b / 10b encoding is performed, up to 5 consecutive "0" or "1" may continue. If the same value continues, it is specified that when the second signal is sent, de-emphasis transfer is performed on the transmitting side so that the transmitting side reduces the amplitude and increases the noise margin of the signal received on the receiving side. ing. [0053] FIG. 7 shows a case where signals are transmitted to a plurality of electronic devices 102 # 1 to 4 using a plurality of lanes, and is a configuration diagram of a PtoN transmission method using a PCIe-compatible HUB device. A configuration is shown in which one PC and multiple (four in the figure) electronic devices 102 # 1 to 4 are connected by using PCIe-compatible HUB devices. The PCIe controller (1) 2 on the interface card 101 side and four optical transceivers 21 #;! To 4 are equipped with a PCIe-compatible HUB24, and four optical transceivers 21 # ;! from this PCIe-compatible HUB24 Branch to -4, and control each electronic device 102 # 1-4 via the optical communication cable 10a and each optical transceiver 21 in the electronic device (external device) 102 # 1-4. In this case, the transmission method using the optical transceiver 21 and the optical communication cable 10a as well as the transmission method using the coaxial cable 10b can be realized. In this case, the reset signal can be transmitted by being superimposed on the packet signal for each of the four lanes, or can be transmitted only to the required electronic devices 1 02 # 1 to 4. .
[0054] 図 7では、 PCのインタフェースカード 101側に PCIe対応 HUB24を設けた PtoNの 構成を示したが、電子装置 102側に PCIe対応 HUB24を搭載し、 PCIe対応 HUB2 4より各光トランシーバ 21 # 1〜4 (4個)へ分岐し、光通信ケーブル 10aを介して各 P C # l〜4に揷入された PCIe対応インタフェースカード 101の光トランシーバ 21と接 続し、そのデータが各 PC # 1〜4へ転送される、図 7とは逆の、電子装置 102が 1台 で PCが複数の構成に適用してもよい。  [0054] Figure 7 shows a PtoN configuration with a PCIe-compatible HUB24 on the PC interface card 101 side. However, the PCIe-compatible HUB24 is installed on the electronic device 102 side, and each optical transceiver 21 # from the PCIe-compatible HUB2 4 Branch to 1 to 4 (4 units) and connect to the optical transceiver 21 of the PCIe interface card 101 inserted into each PC # 1 to 4 via the optical communication cable 10a, and the data is sent to each PC # 1 As shown in FIG. 7, one electronic device 102 and one PC may be applied to a plurality of configurations.
[0055] 図 8は、 PCIe信号を集合化した構成図であり、シリアル伝送に光通信ケーブルによ る伝送又は InfiniBand規格による伝送を用いる構成である。  FIG. 8 is a configuration diagram in which PCIe signals are aggregated, and is a configuration in which transmission using an optical communication cable or transmission based on the InfiniBand standard is used for serial transmission.
InfiniBand規格 (業界団体が推進する通信規格)では、高速化を図るために、 1レ ーン当たり 2. 5Gbpsの伝送を 10m延長できる複合ケーブルと高伝送効率コネクタと を採用している。このような市販されている集合ケーブル及びコネクタを、 PCIeのケ 一ブル伝送に利用することは可能である。 InfiniBand規格では、現在 X lch、 X 4c h、 X 12chの複合ケーブルとコネクタが規定されている。これを利用してケーブル集 合化を行う例として、図 8の場合は、 InfiniBand規格の 4chを利用して、 PCIe X 4 (T x + /—、 Rx+/— X 4ch)を伝送するもので、 InfiniBand X 4chの集合ケーブル を用いて構成している。 [0056] InfiniBand規格のケーブルを利用した伝送として、 PCIeの信号をそのままケープ ルに載せた場合を説明したが、高速インタフェースを利用するケースでは、複数のレ ーンを用いて PCIeの 1レーン当たり 2. 5Gbpsの信号を何 chかまとめ、信号帯域を拡 張した高速インタフェースに変換して電子装置 102へその信号を伝送する。 The InfiniBand standard (communication standard promoted by industry groups) uses a composite cable that can extend 2.5 Gbps transmission per lane by 10 meters and a high transmission efficiency connector in order to increase speed. It is possible to use such commercially available collective cables and connectors for PCIe cable transmission. The InfiniBand standard currently defines Xlch, X4ch, and X12ch composite cables and connectors. As an example of cable aggregation using this, in the case of Figure 8, PCIe X 4 (T x + / —, Rx +/— X 4ch) is transmitted using 4 channels of the InfiniBand standard. InfiniBand X 4ch aggregate cable is used. [0056] The case where the PCIe signal was directly loaded onto the capeule as transmission using the InfiniBand standard cable was explained. However, in the case of using a high-speed interface, the lane per PCIe lane can be used with multiple lanes. 2. Collect several channels of 5Gbps signals, convert them to a high-speed interface with an expanded signal band, and transmit the signals to the electronic device 102.
[0057] 例えば、 2. 5Gbpsの信号を 4ch入力すると、合成して lOGbpsの差動シリアルに変 換可能な高速インタフェースの PCIe X 4inlOGbps変換 25を禾 IJ用して、 PCIe X 4を 伝送すること力 Sできる。 lOGbpsを伝送するためには光トランシーバ 26で OE (光一電 気)変換し、光通信ケーブル 10aでの伝送となる力 技術進歩は速いので近い将来、 lOGbpsをメタルケーブルで伝送可能になることも充分予想される。この場合、リセッ ト信号は、 4つのレーン全てのパケット信号に重畳される必要はなぐいずれかひとつ のレーンに重畳されるようにすればよ!/、。  [0057] For example, when 4ch of 2.5Gbps signal is input, PCIe X 4inlOGbps conversion 25, which is a high-speed interface that can be synthesized and converted to differential serial of lOGbps, is used for IJ and transmits PCIe X 4 Power S can be. In order to transmit lOGbps, OE (optical one-electric) conversion is performed by optical transceiver 26, and the power that can be transmitted by optical communication cable 10a is so fast that it is possible that lOGbps can be transmitted by metal cable in the near future. is expected. In this case, the reset signal should be superimposed on one of the lanes without having to be superimposed on the packet signals of all four lanes! /.
[0058] 図 10は、比較のため、 PCIeインタフェースを PC側に設けた従来の PCIe対応イン タフエースカード 110と接続した従来の産業用 CCDカメラシステムの構成図である。 今までは、一般的なケーブル伝送について説明した力 産業用 CCDカメラ 103とい うような具体的な製品を用いて、本発明の PCIeの物理層を有するインタフェースによ る伝送を PC (又は制御装置)と電子装置 102との間のケーブル伝送に利用すること により、実際にどの部分が省コストになるの力、、その効果を立証するものである。  FIG. 10 is a configuration diagram of a conventional industrial CCD camera system connected to a conventional PCIe interface card 110 provided with a PCIe interface on the PC side for comparison. Until now, using a specific product such as the power industrial CCD camera 103 that explained general cable transmission, transmission by the interface having the PCIe physical layer of the present invention is performed by a PC (or control device). ) And the electronic device 102 are used for cable transmission, which proves the power and the effect of which part is actually cost-saving.
[0059] 図 10は、従来の PCIe対応インタフェースカード(産業用カメラキヤプチャカード) 11 0を構成する場合、例えば、 2048 1024ドット 3(^ 丫1;¥161^の映像を出カ する産業用 CCDカメラ 103を、光トランシーバで PC取込み用の PCIe対応インタフエ ースカード(PCIe規格) 110と接続させる場合の一般的なブロック図である。  [0059] Figure 10 shows a conventional PCIe interface card (industrial camera capture card) 110, for example, an industrial product that outputs 2048 1024 dots 3 (^ 丫 1; ¥ 161 ^). FIG. 3 is a general block diagram when the CCD camera 103 is connected to a PCIe-capable interface card (PCIe standard) 110 for PC capture by an optical transceiver.
[0060] この場合、産業用 CCDカメラ 103からの映像データは、計算しやすいデータの単 純計算で、 960Mbps (120MB/sec)必要になる。また、シリアル伝送のエラーを少 なくするための 8b/10b変換を加えるとすると、 1. 2Gbps (150MB/sec)の転送レ ートが最低限必要になる。  [0060] In this case, the video data from the industrial CCD camera 103 is 960Mbps (120MB / sec), which is a simple calculation of data that is easy to calculate. In addition, if 8b / 10b conversion is added to reduce serial transmission errors, a transfer rate of 1.2Gbps (150MB / sec) is required at a minimum.
[0061] データの流れに沿って概略の制御動作を説明すると、先ず、産業用 CCDカメラ 10 3は、撮像素子 CCDセンサを、 CCD制御部で CCD駆動を行って撮像する。伝送制 御部は撮像した動画データを伝送できるように制御する。 1. 25Gbpsのインタフエ一 ス部では、動画データを、光トランシーバ 21を駆動する差動シリアルに変換する。産 業用 CCDカメラ 103側の光トランシーバ 21から、光通信ケーブル 10aを介して差動 シリアル信号を PC側の PCIe対応インタフェースカード 110の光トランシーバ 21へ伝 送する。 PCIe対応インタフェースカード 110では、 1. 25Gbpsのインタフェースで差 動シリアル信号を LVTTL (Low Voltage TTL)等に変換して取込み、伝送制御 部で動画データを受信できるように制御する。ブリッジ制御部は、 PCIeブリッジに受 け渡しできるように制御を行い、 PCIeブリッジは、 PCIe変換を行い、 PCIe規格の信 号を PC側の PCマザ一ボードの PCIeコネクタへ伝送する。 An outline of the control operation along the data flow will be described. First, the industrial CCD camera 103 performs imaging of the image sensor CCD sensor by driving the CCD with the CCD controller. The transmission control unit controls the captured moving image data so that it can be transmitted. 1. 25Gbps interface In the processing unit, the moving image data is converted into differential serial that drives the optical transceiver 21. A differential serial signal is transmitted from the optical transceiver 21 on the industrial CCD camera 103 side to the optical transceiver 21 of the PCIe interface card 110 on the PC side via the optical communication cable 10a. In the PCIe compatible interface card 110, 1. The differential serial signal is converted into LVTTL (Low Voltage TTL), etc., with a 25Gbps interface, and the transmission control unit controls the video data to be received. The bridge controller performs control so that it can be passed to the PCIe bridge, and the PCIe bridge performs PCIe conversion and transmits the PCIe standard signal to the PCIe connector on the PC mother board on the PC side.
[0062] 図 9は、図 10の回路を本発明に基づいて PCIeインタフェースを外部機器側、即ち 、産業用 CCDカメラ 103側に移し改善した実施形態の構成図である。図 9に示す産 業用 CCDカメラ 103は、撮像素子 CCDセンサを CCD制御部で制御して撮像する。 ブリッジ制御部は、この撮像信号を PCIeブリッジに受け渡しできるように制御し、 PCI eブリッジは PCIe変換を行い、 PCIeインタフェース信号を光トランシーバ 21から光通 信ケーブル 10aを介して、 PC側のインタフェースカード 101の光トランシーバ 21へ伝 送する。 PC側のインタフェースカード 101は PCの PCIeコネクタを介して PCのマザ一 ボードへ伝送する。 FIG. 9 is a block diagram of an embodiment in which the circuit of FIG. 10 is improved by moving the PCIe interface to the external device side, ie, the industrial CCD camera 103 side, based on the present invention. The industrial CCD camera 103 shown in FIG. 9 controls the image sensor CCD sensor with a CCD control unit to capture an image. The bridge controller controls this imaging signal so that it can be passed to the PCIe bridge, the PCI e-bridge performs PCIe conversion, and the PCIe interface signal is sent from the optical transceiver 21 via the optical communication cable 10a to the interface card on the PC side. Transmit to 101 optical transceiver 21. The PC-side interface card 101 transmits to the PC motherboard via the PC PCIe connector.
このように、従来の図 10の構成と、本発明による図 9の構成要素を比較すると、 PC 側のインタフェースカード 101は、光トランシーバのみの構成となり、大幅な省コスト化 が実現できる。  In this way, comparing the configuration of the conventional FIG. 10 with the components of FIG. 9 according to the present invention, the PC-side interface card 101 has a configuration with only an optical transceiver, and a significant cost saving can be realized.
[0063] 最後に、図 9及び図 10で説明した産業用 CCDカメラ 103との信号伝送にリセット信 号を組み込んだ実施形態について図を参照して説明する。  Finally, an embodiment in which a reset signal is incorporated in signal transmission with the industrial CCD camera 103 described with reference to FIGS. 9 and 10 will be described with reference to the drawings.
図 12は、リセット回路を含む従来構成によるカメラシステムの構成図であり、図 11は 、本発明によるリセット回路を組み込んだ一実施例によるカメラシステムの構成図であ  FIG. 12 is a block diagram of a camera system having a conventional configuration including a reset circuit, and FIG. 11 is a block diagram of a camera system according to an embodiment incorporating the reset circuit according to the present invention.
PCIe規格そのものは、送受信各 2本合計 4本のみによる信号伝送を可能としており 、上述したように、特にクロック転送用の信号を必要としないが、 PCの PCIエタスプレ スのバスコネクタには、サイドバンド信号としてクロック信号やリセット信号が設けられ ており、必要に応じて使用することが可能となっている。図 11及び図 12は、このような クロック信号やリセット信号を使用してカメラシステムを構成した一例である。 The PCIe standard itself enables signal transmission using only four in total, two each for transmission and reception, and as described above, no signal for clock transfer is particularly required. A clock signal and reset signal are provided as band signals and can be used as needed. Figures 11 and 12 show such This is an example in which a camera system is configured using a clock signal and a reset signal.
[0064] 図 12に示すように、従来例では、 PCIe制御部及び変換部 111、 FPGAで構成され たカメラ制御部 112、 LVDS (Low Voltage Differential Signaling)ドライバ & レシーバ 113は、 PC側のインタフェースカード内にカメラ制御部を含むカメラキヤプ チヤカードとして設けられ、同じくカメラ側に設けられた LVDSドライバ &レシーバ 11 4との間を独自専用規格のカメラケーブルにより延長されて接続される。  [0064] As shown in FIG. 12, in the conventional example, the PCIe control unit and conversion unit 111, the camera control unit 112 configured by FPGA, the LVDS (Low Voltage Differential Signaling) driver & receiver 113 are the interface card on the PC side. It is provided as a camera capture card that includes a camera control unit, and is connected to the LVDS driver & receiver 114 provided on the camera side by an original dedicated camera cable.
[0065] 図 11に示すように、 PC側のインタフェースカード 101は、 PCIe信号にリセット信号 を重畳する PCIe制御部(1)及び光トランシーバを搭載し、カメラ側とは、同じく OE ( 光一電気信号)変換部を有する光トランシーバ 21と光通信ケーブル 10aで接続する 。光トランシーバ 21の OE変換部で変換された PCIe規格に基づく信号は、リセット信 号を抽出する PCIe制御部(2)及び変換部 12に受け渡される。  As shown in FIG. 11, the PC-side interface card 101 is equipped with a PCIe controller (1) that superimposes the reset signal on the PCIe signal and an optical transceiver. ) Connect to the optical transceiver 21 having the conversion unit with the optical communication cable 10a. The signal based on the PCIe standard converted by the OE conversion unit of the optical transceiver 21 is transferred to the PCIe control unit (2) and the conversion unit 12 that extract the reset signal.
[0066] PCIe制御部(2)及び変換部 12は、 PC側から送られてきた受信パケットを解釈し、 その中にリセット信号を検出すると、リセット信号を抽出して生成する。その際、外部 発振器 (OSC 100MHz) 105からの信号と受信信号を基にクロック信号を再生して パケット信号を受信する。受信したパケット信号は、ローカル I/F (インタフェース)を 通してカメラ制御部 104に、抽出されたリセット信号と共に受け渡される。  [0066] The PCIe control unit (2) and the conversion unit 12 interpret the received packet sent from the PC side, and when the reset signal is detected in the received packet, the reset signal is extracted and generated. At that time, the packet signal is received by regenerating the clock signal based on the signal from the external oscillator (OSC 100 MHz) 105 and the received signal. The received packet signal is passed along with the extracted reset signal to the camera control unit 104 through a local I / F (interface).
[0067] 尚、 PCIe制御部(2)及び変換部 12からカメラ制御部 104に、受信したパケット信号 と共に抽出された PC (又は制御部)側からのリセット信号が受け渡される力 S、カメラ制 御部 104も、リセット信号を生成してカメラ制御部 104自身をリセットする機能を有す る。カメラ制御部 104には、そのための電源立ち上げ時のパワーオンリセット回路 10 6及びリセットスィッチ 107が設けられている。また、図 4及び図 5に示したように最初 に PC側からカメラ側にリセット検出照会信号を送出し、リセット検出照会信号に応答 してカメラ側から PC側にリセット検出確認応答信号を送信するように構成できることは 勿論である。  [0067] It should be noted that the force S for transferring the reset signal from the PC (or control unit) side extracted together with the received packet signal from the PCIe control unit (2) and the conversion unit 12 to the camera control unit 104, and the camera control. The control unit 104 also has a function of generating a reset signal and resetting the camera control unit 104 itself. The camera control unit 104 is provided with a power-on reset circuit 106 and a reset switch 107 when the power is turned on. As shown in Figs. 4 and 5, first, a reset detection inquiry signal is sent from the PC side to the camera side, and a reset detection confirmation response signal is sent from the camera side to the PC side in response to the reset detection inquiry signal. Of course, it can be configured as follows.
[0068] 以上、上述した実施例では、 PCIe規格のパケット信号内に、 PCIe規格のシリアル 信号以外の第 2の信号の一例として、リセット信号 (サイドバンド信号)を重畳して伝達 する場合を説明したが、これ以外にも必要とする制御信号 (サイドバンド信号)を複数 伝達するように構成することが可能であり、また、第 1の電子装置 (PC)から第 2の電 子装置 (外部機器)側への伝達だけではなぐ第 2の電子装置 (外部機器)から第 2の 電子装置 (PC)側へ必要とする信号を重畳して伝達することも、さらには送受信の両 方の信号に重畳して双方向化することも可能である。 [0068] As described above, in the above-described embodiments, a case where a reset signal (sideband signal) is transmitted as an example of a second signal other than a PCIe standard serial signal in a PCIe standard packet signal is described. However, it can be configured to transmit a plurality of other necessary control signals (sideband signals), and the first electronic device (PC) can transmit the second power. In addition to transmission to the slave device (external device) side, the necessary signal can be superimposed and transmitted from the second electronic device (external device) to the second electronic device (PC) side. It is also possible to make it bidirectional by superimposing both signals.

Claims

請求の範囲 The scope of the claims
[1] 第 1の電子装置と接続する PCIe (PCI Express)規格の物理層を少なくとも有する 第 1のインタフェース部と、  [1] a first interface unit having at least a PCIe (PCI Express) standard physical layer connected to the first electronic device;
第 2の電子装置と接続する PCIe規格の物理層を少なくとも有する第 2のインタフエ ース部と、  A second interface unit having at least a PCIe standard physical layer connected to the second electronic device;
前記第 1及び第 2のインタフェース部間を接続するための、電気信号により信号転 送するメタルケーブル用コネクタ、又は光通信により信号転送する光トランシーバ及 び光通信ケーブル用コネクタからなる光伝送モジュールと、を少なくとも具備し、 前記第 1のインタフェース部は、前記第 1の電子装置から前記 PCIe規格のシリアル 信号以外の第 2の信号を送出する場合、前記第 1の電子装置から受信した前記 PCI e規格のシリアル信号のパケット信号内に該第 2の信号を組み込み、該第 2の信号が 重畳されたパケット信号を前記第 2のインタフェース部に送信する信号重畳手段を有 し、  An optical transmission module comprising a metal cable connector for transferring a signal by an electric signal or an optical transceiver and an optical communication cable connector for transferring a signal by optical communication for connecting the first and second interface units. The first interface unit transmits the second signal other than the PCIe standard serial signal from the first electronic device, and receives the PCI e received from the first electronic device. A signal superimposing means for incorporating the second signal into a packet signal of a standard serial signal and transmitting the packet signal on which the second signal is superimposed to the second interface unit;
前記第 2のインタフェース部は、前記第 1のインタフェース部から受信したパケット信 号を判読し、該パケット信号内に前記第 2の信号を検出した場合、前記第 2の信号を 抽出して前記第 2の電子装置に前記第 2の信号を伝送する信号抽出手段を有するこ とを特徴とするインタフェース装置。  The second interface unit interprets the packet signal received from the first interface unit, and when the second signal is detected in the packet signal, extracts the second signal and extracts the second signal. An interface device comprising signal extraction means for transmitting the second signal to the second electronic device.
[2] 第 1の電子装置と接続する PCIe (PCI Express)規格の物理層を少なくとも有する 第 1のインタフェース部と、 [2] a first interface unit having at least a physical layer of a PCIe (PCI Express) standard connected to the first electronic device;
第 2の電子装置と接続する PCIe規格の物理層を少なくとも有する第 2のインタフエ ース部と、  A second interface unit having at least a PCIe standard physical layer connected to the second electronic device;
前記第 1及び第 2のインタフェース部間を接続するための、電気信号により信号転 送するメタルケーブル用コネクタ、又は光通信により信号転送する光トランシーバ及 び光通信ケーブル用コネクタからなる光伝送モジュールと、を少なくとも具備し、 前記第 1のインタフェース部は、前記第 1の電子装置からリセット信号を検出した場 合、前記第 1の電子装置から受信したパケット信号内に該リセット信号を組み込み、 該リセット信号が重畳されたパケット信号を前記第 2のインタフェース部に送信するリ セット信号重畳手段を有し、 前記第 2のインタフェース部は、前記第 1のインタフェース部から受信したパケット信 号を判読し、該パケット信号内にリセット信号を検出した場合、前記第 2の電子装置を リセットするためのリセット信号を生成するリセット信号生成手段を有することを特徴と するインタフェース装置。 An optical transmission module comprising a metal cable connector for transferring a signal by an electric signal or an optical transceiver and an optical communication cable connector for transferring a signal by optical communication for connecting the first and second interface units. When the first interface unit detects a reset signal from the first electronic device, the first interface unit incorporates the reset signal in a packet signal received from the first electronic device, and A reset signal superimposing means for transmitting the packet signal superimposed with the signal to the second interface unit; The second interface unit reads a packet signal received from the first interface unit, and when a reset signal is detected in the packet signal, the second interface unit outputs a reset signal for resetting the second electronic device. An interface device comprising reset signal generation means for generating.
[3] 第 1の電子装置と接続する PCIe (PCI Express)規格の物理層を少なくとも有する 第 1のインタフェース部と、 [3] a first interface unit having at least a physical layer of a PCIe (PCI Express) standard connected to the first electronic device;
第 2の電子装置と接続する PCIe規格の物理層を少なくとも有する第 2のインタフエ ース部と、  A second interface unit having at least a PCIe standard physical layer connected to the second electronic device;
前記第 1及び第 2のインタフェース部間を接続するための、電気信号により信号転 送するメタルケーブル用コネクタ、又は光通信により信号転送する光トランシーバ及 び光通信ケーブル用コネクタからなる光伝送モジュールと、を少なくとも具備し、 前記第 1のインタフェース部は、  An optical transmission module comprising a metal cable connector for transferring a signal by an electric signal or an optical transceiver and an optical communication cable connector for transferring a signal by optical communication for connecting the first and second interface units. The first interface unit includes:
パケット信号に重畳されて前記第 1のインタフェース部から送出されるリセット信号を 検出できるか否かの照会信号を前記第 2のインタフェース部に送信しその応答信号 を受信するリセット検出照会手段と、  Reset detection inquiry means for transmitting an inquiry signal to the second interface unit and receiving a response signal as to whether or not a reset signal transmitted from the first interface unit can be detected by being superimposed on a packet signal;
前記リセット検出照会手段で前記第 2のインタフェース部からリセット信号の検出が 可能との応答が有り、且つ前記第 1の電子装置からリセット信号を検出した場合、前 記第 1の電子装置から受信したパケット信号内に該リセット信号を組み込み、該リセッ ト信号が重畳されたパケット信号を前記第 2のインタフェース部に送信するリセット信 号重畳手段と、を有することを特徴とするインタフェース装置。  When the reset detection inquiry means has a response that the reset signal can be detected from the second interface unit, and the reset signal is detected from the first electronic device, the reset signal is received from the first electronic device. An interface device comprising: reset signal superimposing means for incorporating the reset signal in a packet signal and transmitting the packet signal on which the reset signal is superimposed to the second interface unit.
[4] 前記第 2のインタフェース部は、 [4] The second interface unit includes:
前記第 1のインタフェース部から前記照会信号を受信した場合、前記第 1のインタフ エース部から受信するパケット信号内に重畳されるリセット信号を検出できる旨の応 答信号を前記第 1のインタフェース部に送信し、  When the inquiry signal is received from the first interface unit, a response signal indicating that the reset signal superimposed on the packet signal received from the first interface unit can be detected is sent to the first interface unit. Send
前記第 1のインタフェース部から受信したパケット信号内にリセット信号を検出した 場合、前記第 2の電子装置をリセットするためのリセット信号を生成するリセット信号生 成手段を有することを特徴とする請求項 3に記載のインタフェース装置。  The reset signal generating means for generating a reset signal for resetting the second electronic device when a reset signal is detected in a packet signal received from the first interface unit. 3. The interface device according to 3.
[5] 前記第 2のインタフェース部は、パケット信号及び外部基準信号を基にクロック信号 を再生して生成するクロック再生手段を有することを特徴とする請求項 1乃至 3のいず れかに記載のインタフェース装置。 [5] The second interface unit includes a clock signal based on the packet signal and the external reference signal. 4. The interface device according to claim 1, further comprising a clock recovery means for generating and generating the clock.
[6] 前記第 1及び第 2のインタフェース部は、信号転送の際の伝送距離を延長するため の伝送補償回路を有することを特徴とする請求項 1又は 2に記載のインタフェース装 置。 6. The interface device according to claim 1 or 2, wherein the first and second interface units have a transmission compensation circuit for extending a transmission distance during signal transfer.
[7] 前記第 1及び第 2のインタフェース部は、一つの電子装置との間で複数のレーンを 使用して信号転送を行うマルチリンク機能を有することを特徴とする請求項 1乃至 3の 7. The first and second interface units according to claim 1, wherein the first and second interface units have a multilink function of performing signal transfer with a single electronic device using a plurality of lanes.
V、ずれかに記載のインタフェース装置。 V, an interface device as described in any of the above.
[8] 前記第 1又は第 2のインタフェース部は、複数の電子装置と接続し複数チャネルの 信号転送を行う PCIe規格対応の HUBデバイスを更に有することを特徴とする請求 項 1乃至 3のいずれかに記載のインタフェース装置。 [8] The first or second interface unit further includes a PCIe standard-compliant HUB device that is connected to a plurality of electronic devices and performs signal transfer of a plurality of channels. The interface device described in 1.
[9] 制御装置と接続する PCIe規格の物理層及び該 PCIe規格に基づく信号転送を制 御する PCIe制御部を少なくとも有するインタフェース部と、 [9] A PCIe standard physical layer connected to the control device and an interface unit having at least a PCIe control unit for controlling signal transfer based on the PCIe standard;
電子装置本体と前記インタフェース部との間の通信規格を相互変換して接続し信 号転送を行う本体制御部と、を少なくとも具備し、  At least a main body control unit for performing a signal transfer by mutually converting communication standards between the electronic device main body and the interface unit;
前記 PCIe制御部は、前記制御装置から前記インタフェース部を介して受信したパ ケット信号を判読し、該パケット信号内にリセット信号を検出した場合、電子装置本体 をリセットするためのリセット信号を生成するリセット信号生成手段を有することを特徴 とする電子装置。  The PCIe control unit reads a packet signal received from the control unit via the interface unit, and generates a reset signal for resetting the electronic device main body when a reset signal is detected in the packet signal. An electronic device comprising a reset signal generating means.
PCT/JP2007/071066 2006-11-01 2007-10-29 Interface device and electronic device WO2008053858A2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008542111A JP5252292B2 (en) 2006-11-01 2007-10-29 Interface device and electronic device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-297867 2006-11-01
JP2006297867 2006-11-01

Publications (2)

Publication Number Publication Date
WO2008053858A2 true WO2008053858A2 (en) 2008-05-08
WO2008053858A3 WO2008053858A3 (en) 2008-07-24

Family

ID=39344704

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/071066 WO2008053858A2 (en) 2006-11-01 2007-10-29 Interface device and electronic device

Country Status (2)

Country Link
JP (1) JP5252292B2 (en)
WO (1) WO2008053858A2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010045763A (en) * 2008-08-13 2010-02-25 Korea Electronics Telecommun High-speed pcie signal transmission apparatus, and method of controlling the same
JP2010257348A (en) * 2009-04-27 2010-11-11 Fuji Xerox Co Ltd External equipment connecting device, signal conversion apparatus, network system, printing system, and connection control program
JP2011186968A (en) * 2010-03-11 2011-09-22 Ricoh Co Ltd Adaptor, information device, information system and communication method
JP2011203946A (en) * 2010-03-25 2011-10-13 Kyocera Mita Corp Integrated circuit and information processing system using the same
JP2012022477A (en) * 2010-07-13 2012-02-02 Ricoh Co Ltd Communication unit and information processor
JP2012022463A (en) * 2010-07-13 2012-02-02 Ricoh Co Ltd Communication unit, information equipment, and information system
JP2012146041A (en) * 2011-01-11 2012-08-02 Hitachi Ltd Computer device and signal transmission method
WO2013046814A1 (en) * 2011-09-27 2013-04-04 日本電気株式会社 Distributed computer system
JP2013153259A (en) * 2012-01-24 2013-08-08 Ricoh Co Ltd Communication device and communication method
JP2014057263A (en) * 2012-09-13 2014-03-27 Ricoh Co Ltd Communication apparatus, communication system, and image forming apparatus
JP5626334B2 (en) * 2010-03-17 2014-11-19 日本電気株式会社 Storage system
US8938567B2 (en) 2010-03-11 2015-01-20 Ricoh Company, Limited Communication apparatus, communication system and adapter
JP2016503210A (en) * 2012-12-31 2016-02-01 華為技術有限公司Huawei Technologies Co.,Ltd. Method for detecting receiving end, detection circuit, optical module and system
JP2016184858A (en) * 2015-03-26 2016-10-20 ソニー株式会社 Communication device, communication system, and communication method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102173089B1 (en) * 2014-08-08 2020-11-04 삼성전자주식회사 Interface circuit and packet transmission method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005260360A (en) * 2004-03-09 2005-09-22 Seiko Epson Corp Data transfer control device and electronic device
JP2005268910A (en) * 2004-03-16 2005-09-29 Kawasaki Microelectronics Kk Data receiver

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US576424A (en) * 1897-02-02 Railway and railroad switch
JPH11338587A (en) * 1998-05-26 1999-12-10 Matsushita Electric Ind Co Ltd Noncontact information transmission device
US20050262269A1 (en) * 2004-05-20 2005-11-24 Pike Jimmy D System and method for information handling system PCI express advanced switching

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005260360A (en) * 2004-03-09 2005-09-22 Seiko Epson Corp Data transfer control device and electronic device
JP2005268910A (en) * 2004-03-16 2005-09-29 Kawasaki Microelectronics Kk Data receiver

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010045763A (en) * 2008-08-13 2010-02-25 Korea Electronics Telecommun High-speed pcie signal transmission apparatus, and method of controlling the same
JP2010257348A (en) * 2009-04-27 2010-11-11 Fuji Xerox Co Ltd External equipment connecting device, signal conversion apparatus, network system, printing system, and connection control program
JP2011186968A (en) * 2010-03-11 2011-09-22 Ricoh Co Ltd Adaptor, information device, information system and communication method
US9361249B2 (en) 2010-03-11 2016-06-07 Ricoh Company, Ltd. Communication apparatus, communication system and adapter
US8938567B2 (en) 2010-03-11 2015-01-20 Ricoh Company, Limited Communication apparatus, communication system and adapter
JP5626334B2 (en) * 2010-03-17 2014-11-19 日本電気株式会社 Storage system
US8966199B2 (en) 2010-03-17 2015-02-24 Nec Corporation Storage system for data replication
JP2011203946A (en) * 2010-03-25 2011-10-13 Kyocera Mita Corp Integrated circuit and information processing system using the same
JP2012022477A (en) * 2010-07-13 2012-02-02 Ricoh Co Ltd Communication unit and information processor
JP2012022463A (en) * 2010-07-13 2012-02-02 Ricoh Co Ltd Communication unit, information equipment, and information system
JP2012146041A (en) * 2011-01-11 2012-08-02 Hitachi Ltd Computer device and signal transmission method
WO2013046814A1 (en) * 2011-09-27 2013-04-04 日本電気株式会社 Distributed computer system
JPWO2013046814A1 (en) * 2011-09-27 2015-03-26 日本電気株式会社 Distributed computer system
JP2013153259A (en) * 2012-01-24 2013-08-08 Ricoh Co Ltd Communication device and communication method
US9331788B2 (en) 2012-01-24 2016-05-03 Ricoh Company, Limited Communication device and communication method
JP2014057263A (en) * 2012-09-13 2014-03-27 Ricoh Co Ltd Communication apparatus, communication system, and image forming apparatus
JP2016503210A (en) * 2012-12-31 2016-02-01 華為技術有限公司Huawei Technologies Co.,Ltd. Method for detecting receiving end, detection circuit, optical module and system
JP2016184858A (en) * 2015-03-26 2016-10-20 ソニー株式会社 Communication device, communication system, and communication method
US10700898B2 (en) 2015-03-26 2020-06-30 Sony Corporation Communication device, communication system, communication method, and surgical system

Also Published As

Publication number Publication date
JPWO2008053858A1 (en) 2010-02-25
WO2008053858A3 (en) 2008-07-24
JP5252292B2 (en) 2013-07-31

Similar Documents

Publication Publication Date Title
JP5252292B2 (en) Interface device and electronic device
US10180927B2 (en) Device, system and method for communication with heterogeneous physical layers
US6388591B1 (en) Apparatus and method for receiving data serially for use with an advanced technology attachment packet interface (atapi)
JP5933115B2 (en) Provision of low power physical unit to load / store communication protocol
US6388590B1 (en) Apparatus and method for transmitting data serially for use with an advanced technology attachment packet interface (atapi)
EP1116122B1 (en) Method and apparatus for transmitting and receiving network protocol compliant signal packets over a platform bus
US20100183004A1 (en) System and method for dual mode communication between devices in a network
EP1684188B1 (en) Data transferring system and electronic apparatus
US20090063717A1 (en) Rate Adaptation for Support of Full-Speed USB Transactions Over a High-Speed USB Interface
CN102474438B (en) Node device, integrated circuit and control method in ring transmission system
EP1471434B1 (en) Information transfer protocol
US11693813B2 (en) Alternative protocol over physical layer
CN108780430B (en) Sending Universal Serial Bus (USB) data over an alternate mode connection
CN115203109A (en) PCIe interface and interface system
JP5151176B2 (en) Data communication apparatus, image processing system, and data communication method
US20200257649A1 (en) Transmitting displayport 2.0 information using usb4
US20170287102A1 (en) Link aggregator for an electronic display
WO2018102076A1 (en) Controller-phy connection using intra-chip serdes
US20110167190A1 (en) Apparatus and method for distant bus extended system
JP2007233998A (en) Data transfer control device and electronic device
JP2009037474A (en) Data transfer control device and electronic device
US20230342325A1 (en) Alternative protocol over physical layer
JP2005166027A (en) Image system
Anderson Introduction to USB 3.0
JP2005332372A (en) Image processing apparatus and image forming apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07830800

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 2008542111

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07830800

Country of ref document: EP

Kind code of ref document: A2