WO2008053783A1 - Electric vehicle and its control method - Google Patents
Electric vehicle and its control method Download PDFInfo
- Publication number
- WO2008053783A1 WO2008053783A1 PCT/JP2007/070837 JP2007070837W WO2008053783A1 WO 2008053783 A1 WO2008053783 A1 WO 2008053783A1 JP 2007070837 W JP2007070837 W JP 2007070837W WO 2008053783 A1 WO2008053783 A1 WO 2008053783A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- secondary battery
- vehicle
- engine
- battery
- electric vehicle
- Prior art date
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K6/00—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units
- B60K6/20—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
- B60K6/22—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
- B60K6/28—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the electric energy storing means, e.g. batteries or capacitors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K6/00—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units
- B60K6/20—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
- B60K6/42—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
- B60K6/48—Parallel type
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L50/00—Electric propulsion with power supplied within the vehicle
- B60L50/10—Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
- B60L50/16—Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L50/00—Electric propulsion with power supplied within the vehicle
- B60L50/40—Electric propulsion with power supplied within the vehicle using propulsion power supplied by capacitors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L50/00—Electric propulsion with power supplied within the vehicle
- B60L50/50—Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
- B60L50/60—Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
- B60L50/61—Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries by batteries charged by engine-driven generators, e.g. series hybrid electric vehicles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L58/00—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
- B60L58/10—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
- B60L58/12—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
- B60L58/13—Maintaining the SoC within a determined range
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L58/00—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
- B60L58/10—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
- B60L58/18—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
- B60L58/20—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules having different nominal voltages
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2210/00—Converter types
- B60L2210/10—DC to DC converters
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2210/00—Converter types
- B60L2210/40—DC to AC converters
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2240/00—Control parameters of input or output; Target parameters
- B60L2240/10—Vehicle control parameters
- B60L2240/12—Speed
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2240/00—Control parameters of input or output; Target parameters
- B60L2240/40—Drive Train control parameters
- B60L2240/42—Drive Train control parameters related to electric machines
- B60L2240/421—Speed
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2240/00—Control parameters of input or output; Target parameters
- B60L2240/40—Drive Train control parameters
- B60L2240/42—Drive Train control parameters related to electric machines
- B60L2240/423—Torque
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2240/00—Control parameters of input or output; Target parameters
- B60L2240/40—Drive Train control parameters
- B60L2240/44—Drive Train control parameters related to combustion engines
- B60L2240/441—Speed
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2240/00—Control parameters of input or output; Target parameters
- B60L2240/40—Drive Train control parameters
- B60L2240/44—Drive Train control parameters related to combustion engines
- B60L2240/443—Torque
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2240/00—Control parameters of input or output; Target parameters
- B60L2240/40—Drive Train control parameters
- B60L2240/54—Drive Train control parameters related to batteries
- B60L2240/545—Temperature
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2240/00—Control parameters of input or output; Target parameters
- B60L2240/40—Drive Train control parameters
- B60L2240/54—Drive Train control parameters related to batteries
- B60L2240/547—Voltage
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2240/00—Control parameters of input or output; Target parameters
- B60L2240/40—Drive Train control parameters
- B60L2240/54—Drive Train control parameters related to batteries
- B60L2240/549—Current
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/62—Hybrid vehicles
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/64—Electric machine technologies in electromobility
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/70—Energy storage systems for electromobility, e.g. batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/7072—Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/72—Electric energy management in electromobility
Definitions
- the present invention relates to an electric vehicle and a control method thereof.
- a vehicle drive device mounted on an electric vehicle as an electric vehicle includes a drive motor, and the drive motor is driven by an electric current supplied from a battery. And the drive motor torque is transmitted to the drive wheels to drive the electric vehicle.
- a hybrid vehicle in which a vehicle drive device including an engine and a generator is mounted on the power of a drive motor as an electric vehicle.
- a part of the engine torque that is, a part of the engine torque is transmitted to the generator for power generation, and the rest is transmitted to the drive wheels.
- the engine is driven according to the driver request output required for the hybrid type vehicle when the driver depresses the accelerator pedal and the battery charge / discharge request output required for the hybrid type vehicle according to the remaining battery level.
- Patent Document 1 Japanese Patent Laid-Open No. 2000-282909
- the present invention solves the problems of the conventional hybrid type vehicle, and can increase the cruising distance of an electric vehicle that does not drive an engine, and can be driven at a high load. Further, it is an object of the present invention to provide an electric vehicle and a control method thereof that can achieve both downsizing and can reduce the influence on the environment.
- the electric machine an inverter for driving the electric machine, a secondary battery connected to the inverter and supplying a current to the electric machine, and the secondary
- a primary battery that is connected to the battery and has a lower output density than the secondary battery and a higher energy density; a remaining amount detection unit that detects a remaining charge of the secondary battery; and a remaining charge threshold (threshold).
- the battery has charging processing means for supplying current from the primary battery to the secondary battery and charging the secondary battery.
- an electric vehicle is! /, An electric machine, an inverter for driving the electric machine, and a secondary battery connected to the inverter and supplying current to the electric machine.
- a primary battery that is connected to the secondary battery has a lower output density than the secondary battery, and has a high energy density; a remaining amount detection unit that detects a remaining charge amount of the secondary battery; and the remaining charge amount When it becomes smaller than a threshold value, it has a charge processing means for supplying current from the primary battery to the secondary battery and charging the secondary battery.
- the electric vehicle since the output density of the secondary battery is high, the electric vehicle can be driven at a high load, and the energy density of the primary battery is high, so that the current of the primary battery is supplied to the secondary battery. Thus, the cruising distance can be increased.
- the electric vehicle can be downsized.
- FIG. 1 is a diagram showing an electric vehicle drive control device for a hybrid vehicle in an embodiment of the present invention.
- FIG. 2 is a flowchart showing the operation of the charge processing means in the embodiment of the present invention.
- FIG. 3 is a perspective view of a primary battery in an embodiment of the present invention.
- FIG. 4 is a perspective view showing a connector part of the primary battery in the embodiment of the present invention.
- FIG. 5 is a perspective view of a module according to the embodiment of the present invention.
- FIG. 1 is a diagram showing an electric vehicle drive control device for a hybrid vehicle according to an embodiment of the present invention
- FIG. 2 is a flowchart showing the operation of the charging processing means in the embodiment of the present invention.
- reference numeral 11 denotes an engine (E / G)
- reference numeral 13 denotes a power generated by driving the engine 11.
- a planetary gear unit as a differential device that receives the generated rotation and shifts the rotation, and 15 is a counter drive as an output gear that outputs the rotation after shifting is performed in the planetary gear unit 13
- a gear 16 is a generator (G) as a first electric machine coupled to the planetary gear unit 13, and 25 is a second coupled to the planetary gear unit 13 via the counter drive gear 15 and counter driven gear 31.
- Drive motors (M) 37 as electric machines are drive wheels connected to the planetary gear unit 13 through the counter drive gear 15 and the counter driven gear 31.
- the engine 11, the generator 16, the drive motor 25, and the drive wheel 37 are mechanically coupled to each other via the planetary gear unit 13 so as to be differentially rotatable.
- the planetary gear unit 13 includes at least a sun gear as a first differential element, a pinion that meshes with the sun gear, and a ring gear as a second differential element that meshes with the pinion. And a carrier as a third differential element that rotatably supports the pinion, the sun gear is connected to the generator 16, the ring gear is connected to the drive motor 25 and the drive wheels 37, and the carrier is connected to the engine 11.
- a one-way clutch F is disposed between the carrier and the case 10 of the vehicle drive device, and the one-way clutch F becomes free when the forward rotation from the engine 11 is transmitted to the carrier, and generates power.
- the reverse rotation is transmitted from the machine 16 or the drive motor 25 to the carrier, it is locked, and the rotation of the engine 11 is stopped so that the reverse rotation is not transmitted to the engine 11.
- the generator 16 includes a rotor 21 that is rotatably disposed, a stator 22 that is disposed around the rotor 21, and a coil 23 that is wound around the stator 22.
- the generator 16 generates an electric current by the rotation transmitted through the planetary gear unit 13.
- the coil 23 is connected to a capacitor 43 as a secondary battery having a high output density through an inverter 28 for driving the generator 16, and supplies a direct current to the capacitor 43.
- a generator brake B is disposed between the rotor 21 and the case 10, and the rotor 21 is fixed by engaging the generator brake B, and the rotation of the generator 16 is mechanically stopped.
- the drive motor 25 includes a rotor 40 that is rotatably arranged, a stator 41 that is disposed around the rotor 40, and a coil 42 that is wound around the stator 41.
- the drive motor 25 generates a drive motor torque TM by U-phase, V-phase, and W-phase currents, which are alternating currents supplied to the coil 42.
- the coil 42 is connected to the capacitor 43 via an inverter 29 for driving the drive motor 25, and a direct current from the capacitor 43 is converted into a current of each phase and supplied to the coil 42. It is done.
- the rotation generated by the engine 11 is generated by the drive motor 25 that can only be transmitted to the drive wheels 37 via the planetary gear unit 13, the counter drive gear 15, and the counter driven gear 31. Since the rotation thus transmitted can be transmitted to the drive wheel 37 via the counter driven gear 31, the hybrid vehicle can be driven by driving the engine 11 and the drive motor 25.
- the inverters 28 and 29 are connected to the capacitor 43 via the first switch SW1. When the first switch SW1 is on, a direct current is passed from the capacitor 43 to the inverter 29. Or supplied from the inverter 28 to the capacitor 43.
- Each of the inverters 28 and 29 includes a plurality of, for example, six transistors as switching elements, and each transistor is united to form a transistor module (IGBT) for each phase. .
- a smoothing capacitor C is connected between the capacitor 43 and the inverters 28 and 29.
- a vehicle control device 51 is provided in order to control the entire vehicle drive device.
- the vehicle control device 51 is connected to an engine control device 46, a generator control device 47 as a first electric machine control device, and a drive motor control device 49 as a second electric machine control device.
- Each of the vehicle control device 51, the engine control device 46, the generator control device 47, and the drive motor control device 49 includes a CPU, a recording device, and the like not shown, and functions as a computer according to a predetermined program, data, and the like.
- the engine control device 46 sends an instruction signal such as a throttle opening degree and a valve timing to the engine 11 in order to control the engine 11. Further, the generator control device 47 sends a drive signal SG1 to the inverter 28 in order to control the generator 16. And The drive motor control device 49 sends a drive signal SG 2 to the inverter 29 in order to control the drive motor 25.
- the engine control device 46, the generator control device 47, and the drive motor control device 49 are connected to the lower control device located below the vehicle control device 51.
- the vehicle control device 51 uses the engine control device 46, the generator A higher-order control device located above the control device 47 and the drive motor control device 49 is configured.
- the inverter 28 is driven in accordance with the drive signal SG1, receives a direct current from the capacitor 43 at the time of driving, generates currents IGU, IGV, IGW of each phase, and currents IGU, IGV, IGW is supplied to the generator 16, receives currents IGU, IGV, and IGW of each phase from the generator 16 during regeneration, generates a DC current, and supplies it to the capacitor 43.
- the inverter 29 is driven in accordance with the drive signal SG2, and receives a DC current from the capacitor 43 during driving to generate currents IMU, IMV, IMW of each phase, and currents IMU of each phase.
- IMV, IMW are supplied to the drive motor 25, receive currents IMU, IMV, IMW of each phase from the drive motor 25 during regeneration, generate DC current, and supply it to the capacitor 43.
- 44 is a state of the capacitor 43, that is, a remaining amount detecting unit for detecting the remaining amount of capacitor SOC as a remaining charged amount
- 53 is a vehicle speed as a vehicle speed detecting unit for detecting the vehicle speed V of the hybrid type vehicle.
- 54 an accelerator pedal as an acceleration operation member
- 55 an accelerator switch as an acceleration operation detection unit for detecting the position (depression amount) of the accelerator pedal 54, that is, an accelerator pedal position AP, 61 as a braking operation member
- the brake pedal 62 is a brake switch as a braking operation detection unit for detecting the position (depression amount) of the brake pedal 61, that is, the brake pedal position BP.
- the vehicle control device 51 determines the engine speed, that is, the engine target speed NE * representing the target value of the engine speed NE, the torque of the generator 16, that is, the target value of the generator torque TG.
- the generator target torque TG * as the first electric machine target torque to be expressed, and the torque of the drive motor 25, that is, the drive motor target torque TM * as the second electric machine target torque to express the target value of the drive motor torque TM
- the generator control device 47 sets the rotation speed of the counter drive gear 15, that is, the generator target rotation speed NG * as the first electric machine target rotation speed that represents the target value of the generator rotation speed NG.
- the drive motor control device 49 sets a drive motor torque correction value ⁇ TM representing a correction value of the drive motor torque TM.
- vehicle request torque determination processing means (not shown) of the vehicle control device 51 performs vehicle request torque determination processing.
- the accelerator pedal position AP is transferred from the accelerator switch 55
- the brake pedal position BP is transferred from the brake switch 62
- the vehicle speed sensor is read from 53
- the vehicle required torque TO * required to drive the hybrid type vehicle which is set in advance corresponding to the accelerator pedal position AP, the brake pedal position BP, and the vehicle speed V, is determined.
- the vehicle control device 51 determines whether or not the vehicle required torque TO * is greater than the maximum value TMmax of the drive motor torque TM.
- the vehicle control device 51 determines whether or not the engine 11 is stopped, and when the engine 11 is stopped, the vehicle control device 51 performs a sudden acceleration (not shown).
- the control processing means performs a rapid acceleration control process and drives the drive motor 25 and the generator 16 to run the hybrid vehicle.
- the vehicle control device 51 when the vehicle required torque TO * is equal to or less than the maximum value TMmax, and when the vehicle required torque TO * is larger than the maximum value TMmax and the engine 11 is not stopped, the vehicle control device 51 is illustrated.
- the driver request output calculation processing means that is not performed performs a driver request output calculation process, and multiplies the vehicle request torque TO * and the vehicle speed V to express the driver request output PD that represents the output required by the driver.
- a capacitor charge / discharge request output calculation processing means (not shown) of the vehicle control device 51 performs a capacitor charge / discharge request output calculation process, reads the capacitor remaining amount SOC from the remaining amount detection unit 44, and Based on the remaining SOC of the capacitor, the capacitor charge / discharge request output PC, which represents the output required from the charge state of the capacitor 43, is calculated.
- the vehicle request output calculation processing means (not shown) of the vehicle control device 51 includes a vehicle Perform both required output calculation processing and add the driver required output PD and the capacitor charge / discharge required output PC
- the vehicle request output PO that represents the output required to drive the hybrid vehicle
- the engine control state setting processing means (not shown) of the vehicle control device 51 performs engine target operation state setting processing, and is recorded in a recording device (not shown) of the vehicle control device 51.
- the point at which the vehicle required output PO and the optimum fuel consumption curve L at which the efficiency of the engine 11 at each accelerator pedal position AP is highest intersects the engine 11 in the engine target operating state.
- the engine torque TE at the operating point is determined as the engine target torque TE * representing the target value of the engine torque TE
- the engine rotational speed NE at the operating point is determined as the engine target rotational speed NE.
- the engine target rotational speed NE * is sent to the engine control unit 46.
- the engine control device 46 refers to an engine drive region map (not shown) of the engine control device 46, and records whether or not the engine 11 is placed in the drive region. If the engine 11 is placed in the driving area and the engine 11 is driven! /, The engine control processing means (not shown) of the engine control device 46 performs engine control processing. Control engine 11.
- Engine start control The processing means performs an engine start control process and starts the engine 11. Further, when the engine 11 is being driven even though the engine 11 is not placed in the drive region, the engine stop control processing means (not shown) of the engine control device 46 performs engine stop control processing. Then, the drive of the engine 11 is stopped.
- a drive motor target torque calculation processing means (not shown) of the vehicle control device 51 is shown. Performs a drive motor target torque calculation process, calculates and determines the vehicle required torque TO * as the drive motor target torque TM *, and sends the drive motor target torque TM * to the drive motor controller 49.
- Drive motor control processing means (not shown) of the drive motor control device 49 performs drive motor control processing and performs torque control of the drive motor 25.
- a generator target rotation speed calculation processing means (not shown) of the generator control device 47 performs a generator target rotation speed calculation process, reads the rotor position ⁇ M of the drive motor 25, and the rotor position ⁇ M
- the ring gear rotational speed NR of the planetary gear unit 13 is calculated based on the engine target operating speed NE * determined in the engine target operating state setting process, and the rotational speed NR and the engine target rotational speed NE * are read. Calculate and determine the generator target rotational speed NG *.
- generator rotation speed control processing means (not shown) of the generator control device 47 performs generator rotation speed control processing, reads the generator target rotation speed NG *, and Read the generator rotation speed NG calculated based on the rotor position ⁇ G, and perform PI control based on the difference rotation speed ⁇ NG between the generator target rotation speed NG * and the generator rotation speed NG! Calculate and determine the generator target torque TG *.
- the generator torque control processing means (not shown) of the generator control device 47 performs generator torque control processing and torque control of the generator 16.
- the drive motor target torque calculation processing means subtracts the drive shaft torque TR / OUT generated on the output shaft of the drive motor 25 from the vehicle required torque TO * to drive the vehicle.
- the excess / shortage of the shaft torque TR / OUT is calculated and determined as the drive motor target torque TM *.
- the drive motor control processing means performs torque control of the drive motor 25 based on the determined drive motor target torque TM * to control the drive motor torque TM.
- the capacitor 43 having a high output density is used, the engine 11 is driven as necessary, and the output from the engine 11 is used.
- the capacitor 43 has a weight of about 10 [kg] and an output density of 3000 [kW / kg] or more. Gasochemical capacitors are used and permanently installed in hybrid vehicles.
- the capacitor 43 a capacitor having an energy density of 20 [kWh / kg] or more is used, but it is not high enough to increase the cruising distance.
- the primary battery 33 is connected to the capacitor 43 via a DC / DC converter 32 as a direct current transformer, and the power of the capacitor 43 is the same as after the hybrid vehicle is driven with a high load.
- the remaining capacity of the capacitor SOC is reduced, the current of the primary battery 33 is supplied to the capacitor 43.
- a second switch SW2 and a diode D1 are connected between the DC / DC converter 32 and the primary battery 33, and the remaining amount determination processing means (not shown) of the vehicle control device 51
- An amount determination process is performed to read the capacitor remaining amount SOC detected by the remaining amount detecting unit 44, and determine whether the remaining capacitor SOC is less than 70 [%] which is the first threshold value.
- the charging processing means (not shown) of the vehicle control device 51 performs the charging processing, turns on the second switch SW2, and turns on the primary battery 33.
- the current is supplied to 43 through the diode D1 and the DC / DC converter 32, and the capacitor 43 is charged.
- the charging processing means turns off the second switch SW2 and stops the charging of the capacitor 43.
- the output voltage of the primary battery 33 is 100 [V]
- the DC / DC converter 32 transforms the output voltage of 100 [V] to 2 to 3 times the voltage.
- the diode D1 is disposed to prevent current from flowing from the capacitor 43 to the primary battery 33.
- the hysteresis for turning on / off the second switch SW2 is set by setting the remaining capacity SOC of the capacitor to 70 [%] and 75 [%]. Force Since the second switch SW2 is configured in solid state, it is not always necessary to set hysteresis.
- the energy density per unit weight is 670 [Wh / kg] or more, the energy density per unit volume is (1000 [Wh / L]), and the per unit weight Output density is 170 [W / kgB, and the output density per unit volume is 250 [ W / L].
- the actual energy efficiency during traveling is set to 80 [%] or more, preferably 90 [%] or more. The actual energy efficiency is expressed by multiplying the efficiency due to the voltage drop when the first switch SW1 is turned on and the Coulomb efficiency.
- Step S 1 Set 0 to the flag f.
- Step S2 It is determined whether the flag f is 1. If the flag f is 1, the process proceeds to step S8. Otherwise, the process proceeds to step S3.
- Step S3 Read the remaining SOC of the capacitor.
- Step S4 Determine whether the remaining SOC of the capacitor is less than 70 [%]. If the remaining SOC of the capacitor is less than 70 [%]! /, Go to Step S5. If the remaining SOC of the capacitor is more than 70 [%], go to Step S7.
- Step S 5 Turn on the second switch SW2.
- Step S6 Set flag f to 1 and return.
- Step S 7 Turn off the second switch SW2 and return.
- Step S8 Determine whether the remaining SOC of the capacitor is greater than 75 [%]. If the remaining capacitor SOC is greater than 75 [%], the process proceeds to step S9, and if the remaining capacitor SOC is 75 [%] or less, the process returns.
- Step S 9 Set 0 to the flag f, and proceed to Step S 7.
- FIG. 3 is a perspective view of a primary battery according to an embodiment of the present invention
- FIG. 4 is a perspective view showing a connector portion of the primary battery according to an embodiment of the present invention
- FIG. 5 is an embodiment of the present invention. It is a perspective view of the module in it.
- the primary battery 33 is formed as a unit by stacking and integrating two to three, in this embodiment three modules Mi, so that the handle 64 can be gripped and transported.
- the primary battery 33 is a hybrid battery in which each module Mi is aligned by the slit 65. It is detachably attached to a predetermined portion of the main body of the type vehicle.
- Each module Mi is connected in parallel to the DC / DC converter 32 (FIG. 1) via connectors 66 and 67.
- Each module Mi has a diameter of about 100 [mm], a height of about 150 [mm], and the primary battery 33 has a height of about 500 [mm].
- the primary battery 33 is formed of two modules, the height of the primary battery 33 is rubbed by about 350 mm [mmB].
- the weight of the primary battery 33 is set to about 6 [kg].
- the weight of the primary battery 33 should be not less than l [kg] and not more than 10 [kg]. preferable.
- one cell is formed by sandwiching the separator Sp between the positive electrode Pp and the negative electrode Pm, and 30 cells are filled in the electrolytic solution and sealed in the sealed container 69.
- Each module Mi is formed by stacking these cells and connecting them in series.
- the output voltage of each module Mi is set to 100 [V].
- a metal sheet can be sandwiched between the cells.
- the separator Sp is formed of a resin such as polypropylene.
- the output voltage can be set to about 10 [V] by stacking two to three cells to form a winding type configuration.
- the DC / DC converter 32 performs a transformation of 20 to 30 times.
- Examples of the positive electrode Pp include graphite fluoride, metal oxides (such as copper oxide and manganese dioxide), and gold. Metal sulfides (such as iron sulfide) can be used. As the negative electrode Pm, alkaline earth metals (metal magnesium, metal calcium, etc.) can be used.
- the electrolytes include organic electrolytes containing alkaline earth metal ions (magnesium perchlorate / propylene carbonate solution (MgCIO / PC), calcium perchlorate / propylene carbonate solution).
- the reaction formula when the primary battery 33 is discharged is as follows. is there.
- reaction formula when the primary battery 33 is discharged is as follows.
- reaction formula when the primary battery 33 is discharged is as follows.
- the hybrid vehicle since the output density of the capacitor 43 is high, the hybrid vehicle can be driven at a high load, and the energy density of the primary battery 33 is high, so the primary battery 33 This is the power to increase the cruising distance by supplying this current to the capacitor 43.
- the hybrid vehicle can be downsized.
- the force described for the hybrid type vehicle can be applied to other electric vehicles such as an electric vehicle.
- the present invention is not limited to the above-described embodiment, and can be variously modified based on the gist of the present invention, and does not exclude the scope of the present invention.
Landscapes
- Engineering & Computer Science (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Power Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Electric Propulsion And Braking For Vehicles (AREA)
- Hybrid Electric Vehicles (AREA)
- Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
Abstract
An electric vehicle which can travel under a heavy load while satisfying miniaturization and reducing an impact on the environment by lengthening a range without driving an engine. The electric vehicle comprises an electric machine, inverters (28, 29) for driving the electric machine, a secondary battery connected with the inverters (28, 29) and supplying a current to the electric machine, a primary battery (33) connected with the secondary battery and having a lower output density and a higher energy density than the secondary battery, a section (44) for detecting the residual quantity of charge of the secondary battery, and a means for charging the secondary battery by supplying a current from the a primary battery (33) to the secondary battery when the residual quantity of charge becomes smaller than a threshold. Since the output density of the secondary battery is high, an electric vehicle can travel under a heavy load; and since the energy density of the primary battery (33) is high, a range can be lengthened by supplying the current of the primary battery (33) to the secondary battery.
Description
明 細 書 Specification
電動車両及びその制御方法 Electric vehicle and control method thereof
技術分野 Technical field
[0001] 本発明は、電動車両及びその制御方法に関するものである。 [0001] The present invention relates to an electric vehicle and a control method thereof.
背景技術 Background art
[0002] 従来、電動車両としての電気自動車に搭載された車両駆動装置は、駆動モータを 備え、該駆動モータをバッテリから供給された電流によって駆動し、駆動モータのトル ク、すなわち、駆動モータトルクを発生させ、該駆動モータトルクを駆動輪に伝達して 電気自動車を走行させるようにしてレ、る。 Conventionally, a vehicle drive device mounted on an electric vehicle as an electric vehicle includes a drive motor, and the drive motor is driven by an electric current supplied from a battery. And the drive motor torque is transmitted to the drive wheels to drive the electric vehicle.
[0003] ところ力 バッテリにおいては、単位重量当たりの容量を表すエネルギー密度を十 分に高くすることができないので、バッテリから供給された電流を使用して電動車両を 走行させようとする場合、航続距離を長くすることができない。 [0003] However, in a power battery, the energy density that represents the capacity per unit weight cannot be sufficiently increased. Therefore, when an electric vehicle is driven using the current supplied from the battery, The distance cannot be increased.
[0004] また、バッテリにおいては、単位重量当たりの出力される電力を表す出力密度が低 いので、高負荷で電動車両を走行させることができず、電気自動車の加速性を高く することができない。 [0004] In addition, in the battery, since the output density representing the output power per unit weight is low, the electric vehicle cannot be run at a high load, and the acceleration performance of the electric vehicle cannot be increased. .
[0005] そこで、電動車両として、駆動モータのほ力、に、エンジン及び発電機を備える車両 駆動装置が搭載されたハイブリッド型車両が提供されて!/、る。該ハイブリッド型車両 においては、エンジンのトルク、すなわち、エンジントルクの一部を発電機に伝達して 発電を行い、残りを駆動輪に伝達するようになっている。そして、運転者がアクセルぺ ダルを踏み込むことによってハイブリッド型車両に要求される運転者要求出力、及び ノ ッテリ残量によってハイブリッド型車両に要求されるバッテリ充放電要求出力に応じ てエンジンが駆動される。 [0005] Therefore, there is provided a hybrid vehicle in which a vehicle drive device including an engine and a generator is mounted on the power of a drive motor as an electric vehicle. In the hybrid type vehicle, a part of the engine torque, that is, a part of the engine torque is transmitted to the generator for power generation, and the rest is transmitted to the drive wheels. The engine is driven according to the driver request output required for the hybrid type vehicle when the driver depresses the accelerator pedal and the battery charge / discharge request output required for the hybrid type vehicle according to the remaining battery level. .
[0006] したがって、航続距離を長くすることができるとともに、高負荷でハイブリッド型車両 を走行させることができる(例えば、特許文献 1参照。)。 [0006] Therefore, the cruising distance can be increased and the hybrid vehicle can be driven with a high load (see, for example, Patent Document 1).
特許文献 1 :特開 2000— 282909号公報 Patent Document 1: Japanese Patent Laid-Open No. 2000-282909
発明の開示 Disclosure of the invention
発明が解決しょうとする課題
[0007] しかしながら、前記従来のハイブリッド型車両にお!/、ては、バッテリを搭載する必要 があるので、大型化してしまうだけでなぐバッテリ残量が小さくなつたり、高負荷で走 行させる必要が生じたりするたびにエンジンを駆動する必要があるので、環境に与え られる影響が大きくなつてしまう。 Problems to be solved by the invention [0007] However, since it is necessary to install a battery in the conventional hybrid type vehicle, it is necessary to reduce the remaining amount of the battery just by increasing the size of the vehicle or to run at a high load. Since it is necessary to drive the engine each time a problem occurs, the impact on the environment will increase.
[0008] 本発明は、前記従来のハイブリッド型車両の問題点を解決して、エンジンを駆動す ることなぐ電気自動車として走行する航続距離を長くすることができ、高負荷で走行 させること力 Sでき、しかも、小型化も両立することができ、環境に与えられる影響を小さ くすることができる電動車両及びその制御方法を提供することを目的とする。 [0008] The present invention solves the problems of the conventional hybrid type vehicle, and can increase the cruising distance of an electric vehicle that does not drive an engine, and can be driven at a high load. Further, it is an object of the present invention to provide an electric vehicle and a control method thereof that can achieve both downsizing and can reduce the influence on the environment.
課題を解決するための手段 Means for solving the problem
[0009] そのために、本発明の電動車両においては、電動機械と、該電動機械を駆動する ためのインバータと、該インバータに接続され、電動機械に電流を供給する二次電池 と、該二次電池と接続され、前記二次電池より出力密度が低ぐエネルギー密度が高 い一次電池と、前記二次電池の充電残量を検出する残量検出部と、前記充電残量 が閾(しきい)値より小さくなると、一次電池から二次電池に電流を供給し、二次電池 を充電する充電処理手段とを有する。 Therefore, in the electric vehicle of the present invention, the electric machine, an inverter for driving the electric machine, a secondary battery connected to the inverter and supplying a current to the electric machine, and the secondary A primary battery that is connected to the battery and has a lower output density than the secondary battery and a higher energy density; a remaining amount detection unit that detects a remaining charge of the secondary battery; and a remaining charge threshold (threshold). ) When the value is smaller than the value, the battery has charging processing means for supplying current from the primary battery to the secondary battery and charging the secondary battery.
発明の効果 The invention's effect
[0010] 本発明によれば、電動車両にお!/、ては、電動機械と、該電動機械を駆動するため のインバータと、該インバータに接続され、電動機械に電流を供給する二次電池と、 該二次電池と接続され、前記二次電池より出力密度が低ぐエネルギー密度が高い 一次電池と、前記二次電池の充電残量を検出する残量検出部と、前記充電残量が 閾値より小さくなると、一次電池から二次電池に電流を供給し、二次電池を充電する 充電処理手段とを有する。 [0010] According to the present invention, an electric vehicle is! /, An electric machine, an inverter for driving the electric machine, and a secondary battery connected to the inverter and supplying current to the electric machine. A primary battery that is connected to the secondary battery, has a lower output density than the secondary battery, and has a high energy density; a remaining amount detection unit that detects a remaining charge amount of the secondary battery; and the remaining charge amount When it becomes smaller than a threshold value, it has a charge processing means for supplying current from the primary battery to the secondary battery and charging the secondary battery.
[0011] この場合、二次電池の出力密度が高いので、電動車両を高負荷で走行させること ができ、一次電池のエネルギー密度が高いので、一次電池の電流を二次電池に供 給することによって、航続距離を長くすることができる。 [0011] In this case, since the output density of the secondary battery is high, the electric vehicle can be driven at a high load, and the energy density of the primary battery is high, so that the current of the primary battery is supplied to the secondary battery. Thus, the cruising distance can be increased.
[0012] また、一次電池の占める体積が小さ!/、ので、電動車両を小型化することができる。 [0012] Further, since the primary battery occupies a small volume, the electric vehicle can be downsized.
[0013] さらに、電動機械だけを駆動して電動車両を長時間走行させることができるので、 環境に与えられる影響を小さくすることができる。
図面の簡単な説明 [0013] Furthermore, since only the electric machine can be driven to run the electric vehicle for a long time, the influence on the environment can be reduced. Brief Description of Drawings
[0014] [図 1]本発明の実施の形態におけるハイブリッド型車両の電動車両駆動制御装置を 示す図である。 FIG. 1 is a diagram showing an electric vehicle drive control device for a hybrid vehicle in an embodiment of the present invention.
[図 2]本発明の実施の形態における充電処理手段の動作を示すフローチャートであ FIG. 2 is a flowchart showing the operation of the charge processing means in the embodiment of the present invention.
[図 3]本発明の実施の形態における一次電池の斜視図である。 FIG. 3 is a perspective view of a primary battery in an embodiment of the present invention.
[図 4]本発明の実施の形態における一次電池のコネクタ部を示す斜視図である。 FIG. 4 is a perspective view showing a connector part of the primary battery in the embodiment of the present invention.
[図 5]本発明の実施の形態におけるモジュールの斜視図である。 FIG. 5 is a perspective view of a module according to the embodiment of the present invention.
符号の説明 Explanation of symbols
16 発電機 16 Generator
25 馬区動モータ 25 Ma District Motor
28、 29 インバータ 28, 29 Inverter
32 DC/DCコンノ ータ 32 DC / DC converter
33 一次電池 33 Primary battery
43 キャパシタ 43 capacitors
44 残量検出部 44 Remaining capacity detector
49 駆動モータ制御装置 49 Drive motor controller
51 車両制御装置 51 Vehicle control device
Pm 負極 Pm negative electrode
PP 正極 PP positive electrode
Sp セパレータ Sp separator
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
[0016] 以下、本発明の実施の形態について図面を参照しながら詳細に説明する。この場 合、電動車両としてのハイブリッド型車両について説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In this case, a hybrid vehicle as an electric vehicle will be described.
[0017] 図 1は本発明の実施の形態におけるハイブリッド型車両の電動車両駆動制御装置 を示す図、図 2は本発明の実施の形態における充電処理手段の動作を示すフロー チャートである。 FIG. 1 is a diagram showing an electric vehicle drive control device for a hybrid vehicle according to an embodiment of the present invention, and FIG. 2 is a flowchart showing the operation of the charging processing means in the embodiment of the present invention.
[0018] 図において、 11はエンジン(E/G)、 13は該エンジン 11を駆動することによって発
生させられた回転を受け、該回転に対して変速を行う差動装置としてのプラネタリギ ャユニット、 15は該プラネタリギヤユニット 13において変速が行われた後の回転が出 力される出力ギヤとしてのカウンタドライブギヤ、 16は前記プラネタリギヤユニット 13と 連結された第 1の電動機械としての発電機 (G)、 25は前記カウンタドライブギヤ 15及 びカウンタドリブンギヤ 31を介して前記プラネタリギヤユニット 13と連結された第 2の 電動機械としての駆動モータ(M)、 37は前記カウンタドライブギヤ 15及びカウンタド リブンギヤ 31を介して前記プラネタリギヤユニット 13と連結された駆動輪である。なお 、前記エンジン 11、発電機 16、駆動モータ 25及び駆動輪 37は、プラネタリギヤュニ ット 13を介して互いに、差動回転自在に、かつ、機械的に連結される。 In the figure, reference numeral 11 denotes an engine (E / G), and reference numeral 13 denotes a power generated by driving the engine 11. A planetary gear unit as a differential device that receives the generated rotation and shifts the rotation, and 15 is a counter drive as an output gear that outputs the rotation after shifting is performed in the planetary gear unit 13 A gear 16 is a generator (G) as a first electric machine coupled to the planetary gear unit 13, and 25 is a second coupled to the planetary gear unit 13 via the counter drive gear 15 and counter driven gear 31. Drive motors (M) 37 as electric machines are drive wheels connected to the planetary gear unit 13 through the counter drive gear 15 and the counter driven gear 31. The engine 11, the generator 16, the drive motor 25, and the drive wheel 37 are mechanically coupled to each other via the planetary gear unit 13 so as to be differentially rotatable.
[0019] そして、前記プラネタリギヤユニット 13は、少なくとも、第 1の差動要素としてのサン ギヤ、該サンギヤと嚙(し)合するピニオン、該ピニオンと嚙合する第 2の差動要素とし てのリングギヤ、及び前記ピニオンを回転自在に支持する第 3の差動要素としてのキ ャリャを備え、前記サンギヤは発電機 16と、リングギヤは駆動モータ 25及び駆動輪 3 7と、キヤリャはエンジン 11と連結される。 The planetary gear unit 13 includes at least a sun gear as a first differential element, a pinion that meshes with the sun gear, and a ring gear as a second differential element that meshes with the pinion. And a carrier as a third differential element that rotatably supports the pinion, the sun gear is connected to the generator 16, the ring gear is connected to the drive motor 25 and the drive wheels 37, and the carrier is connected to the engine 11. The
[0020] 前記キヤリャと車両駆動装置のケース 10との間にワンウェイクラッチ Fが配設され、 該ワンウェイクラッチ Fは、エンジン 11から正方向の回転がキヤリャに伝達されたとき にフリーになり、発電機 16又は駆動モータ 25から逆方向の回転がキヤリャに伝達さ れたときにロックされ、エンジン 11の回転を停止させ、逆方向の回転がエンジン 11に 伝達されないようにする。 [0020] A one-way clutch F is disposed between the carrier and the case 10 of the vehicle drive device, and the one-way clutch F becomes free when the forward rotation from the engine 11 is transmitted to the carrier, and generates power. When the reverse rotation is transmitted from the machine 16 or the drive motor 25 to the carrier, it is locked, and the rotation of the engine 11 is stopped so that the reverse rotation is not transmitted to the engine 11.
[0021] そして、前記発電機 16は、回転自在に配設されたロータ 21、該ロータ 21の周囲に 配設されたステータ 22、及び該ステータ 22に巻装されたコイル 23から成る。前記発 電機 16は、プラネタリギヤユニット 13を介して伝達される回転によって電流を発生さ せる。前記コイル 23は、発電機 16を駆動するためのインバータ 28を介して出力密度 が高い二次電池としてのキャパシタ 43に接続され、該キャパシタ 43に直流の電流を 供 The generator 16 includes a rotor 21 that is rotatably disposed, a stator 22 that is disposed around the rotor 21, and a coil 23 that is wound around the stator 22. The generator 16 generates an electric current by the rotation transmitted through the planetary gear unit 13. The coil 23 is connected to a capacitor 43 as a secondary battery having a high output density through an inverter 28 for driving the generator 16, and supplies a direct current to the capacitor 43.
給する。前記ロータ 21と前記ケース 10との間に発電機ブレーキ Bが配設され、該発 電機ブレーキ Bを係合させることによってロータ 21を固定し、発電機 16の回転を機械 的に停止させることカでさる。
[0022] また、前記駆動モータ 25は、回転自在に配設されたロータ 40、該ロータ 40の周囲 に配設されたステータ 41、及び該ステータ 41に巻装されたコイル 42から成る。前記 駆動モータ 25は、コイル 42に供給される交流の電流である U相、 V相及び W相の電 流によって駆動モータトルク TMを発生させる。そのために、前記コイル 42は、駆動 モータ 25を駆動するためのインバータ 29を介して前記キャパシタ 43と接続され、該 キャパシタ 43からの直流の電流が各相の電流に変換されて前記コイル 42に供給さ れる。 To pay. A generator brake B is disposed between the rotor 21 and the case 10, and the rotor 21 is fixed by engaging the generator brake B, and the rotation of the generator 16 is mechanically stopped. In The drive motor 25 includes a rotor 40 that is rotatably arranged, a stator 41 that is disposed around the rotor 40, and a coil 42 that is wound around the stator 41. The drive motor 25 generates a drive motor torque TM by U-phase, V-phase, and W-phase currents, which are alternating currents supplied to the coil 42. For this purpose, the coil 42 is connected to the capacitor 43 via an inverter 29 for driving the drive motor 25, and a direct current from the capacitor 43 is converted into a current of each phase and supplied to the coil 42. It is done.
[0023] 前記エンジン 11によって発生させられた回転は、プラネタリギヤユニット 13、カウン タドライブギヤ 15及びカウンタドリブンギヤ 31を介して駆動輪 37に伝達することがで きるだけでなぐ駆動モータ 25によって発生させられた回転をカウンタドリブンギヤ 31 を介して駆動輪 37に伝達することができるので、エンジン 11及び駆動モータ 25を駆 動することによってハイブリッド型車両を走行させることができる。 [0023] The rotation generated by the engine 11 is generated by the drive motor 25 that can only be transmitted to the drive wheels 37 via the planetary gear unit 13, the counter drive gear 15, and the counter driven gear 31. Since the rotation thus transmitted can be transmitted to the drive wheel 37 via the counter driven gear 31, the hybrid vehicle can be driven by driving the engine 11 and the drive motor 25.
[0024] 前記インバータ 28、 29は第 1のスィッチ SW1を介してキャパシタ 43に接続され、前 記第 1のスィッチ SW1がオンのときに、直流の電流を、前記キャパシタ 43から前記ィ ンバータ 29に供給したり、インバータ 28からキャパシタ 43に供給したりする。前記各 インバータ 28、 29は、いずれも、複数の、例えば、 6個のスイッチング素子としてのト ランジスタを備え、各トランジスタは、一対ずつユニット化されて各相のトランジスタモ ジュール(IGBT)を構成する。なお、前記キャパシタ 43とインバータ 28、 29との間に 平滑用のコンデンサ Cが接続される。 The inverters 28 and 29 are connected to the capacitor 43 via the first switch SW1. When the first switch SW1 is on, a direct current is passed from the capacitor 43 to the inverter 29. Or supplied from the inverter 28 to the capacitor 43. Each of the inverters 28 and 29 includes a plurality of, for example, six transistors as switching elements, and each transistor is united to form a transistor module (IGBT) for each phase. . A smoothing capacitor C is connected between the capacitor 43 and the inverters 28 and 29.
[0025] ところで、車両駆動装置の全体の制御を行うために、車両制御装置 51が配設され る。該車両制御装置 51に、エンジン制御装置 46、第 1の電動機械制御装置としての 発電機制御装置 47及び第 2の電動機械制御装置としての駆動モータ制御装置 49 が接続される。前記車両制御装置 51、エンジン制御装置 46、発電機制御装置 47及 び駆動モータ制御装置 49は、いずれも、図示されない CPU、記録装置等から成り、 所定のプログラム、データ等に従ってコンピュータとして機能する。 Incidentally, a vehicle control device 51 is provided in order to control the entire vehicle drive device. The vehicle control device 51 is connected to an engine control device 46, a generator control device 47 as a first electric machine control device, and a drive motor control device 49 as a second electric machine control device. Each of the vehicle control device 51, the engine control device 46, the generator control device 47, and the drive motor control device 49 includes a CPU, a recording device, and the like not shown, and functions as a computer according to a predetermined program, data, and the like.
[0026] 前記エンジン制御装置 46は、エンジン 11の制御を行うために、スロットル開度、バ ルブタイミング等の指示信号をエンジン 11に送る。また、前記発電機制御装置 47は 、前記発電機 16の制御を行うために、駆動信号 SG1をインバータ 28に送る。そして
、駆動モータ制御装置 49は、前記駆動モータ 25の制御を行うために、駆動信号 SG 2をインバータ 29に送る。なお、前記エンジン制御装置 46、発電機制御装置 47及び 駆動モータ制御装置 49によって車両制御装置 51より下位に位置する下位の制御装 置が、前記車両制御装置 51によって、エンジン制御装置 46、発電機制御装置 47及 び駆動モータ制御装置 49より上位に位置する上位の制御装置が構成される。 The engine control device 46 sends an instruction signal such as a throttle opening degree and a valve timing to the engine 11 in order to control the engine 11. Further, the generator control device 47 sends a drive signal SG1 to the inverter 28 in order to control the generator 16. And The drive motor control device 49 sends a drive signal SG 2 to the inverter 29 in order to control the drive motor 25. The engine control device 46, the generator control device 47, and the drive motor control device 49 are connected to the lower control device located below the vehicle control device 51. The vehicle control device 51 uses the engine control device 46, the generator A higher-order control device located above the control device 47 and the drive motor control device 49 is configured.
[0027] 前記インバータ 28は、駆動信号 SG1に従って駆動され、カ行時にキャパシタ 43か ら直流の電流を受けて、各相の電流 IGU、 IGV、 IGWを発生させ、各相の電流 IGU 、 IGV、 IGWを発電機 16に供給し、回生時に発電機 16から各相の電流 IGU、 IGV 、 IGWを受けて、直流の電流を発生させ、キャパシタ 43に供給する。 [0027] The inverter 28 is driven in accordance with the drive signal SG1, receives a direct current from the capacitor 43 at the time of driving, generates currents IGU, IGV, IGW of each phase, and currents IGU, IGV, IGW is supplied to the generator 16, receives currents IGU, IGV, and IGW of each phase from the generator 16 during regeneration, generates a DC current, and supplies it to the capacitor 43.
[0028] 同様に、前記インバータ 29は、駆動信号 SG2に従って駆動され、カ行時にキャパ シタ 43から直流の電流を受けて、各相の電流 IMU、 IMV、 IMWを発生させ、各相 の電流 IMU、 IMV、 IMWを駆動モータ 25に供給し、回生時に駆動モータ 25から各 相の電流 IMU、 IMV、 IMWを受けて、直流の電流を発生させ、キャパシタ 43に供 給する。 [0028] Similarly, the inverter 29 is driven in accordance with the drive signal SG2, and receives a DC current from the capacitor 43 during driving to generate currents IMU, IMV, IMW of each phase, and currents IMU of each phase. , IMV, IMW are supplied to the drive motor 25, receive currents IMU, IMV, IMW of each phase from the drive motor 25 during regeneration, generate DC current, and supply it to the capacitor 43.
[0029] そして、 44は前記キャパシタ 43の状態、すなわち、充電残量としてのキャパシタ残 量 SOCを検出する残量検出部、 53はハイブリッド型車両の車速 Vを検出する車速検 出部としての車速センサ、 54は加速操作部材としてのアクセルペダル、 55は該ァク セルペダル 54の位置(踏込量)、すなわち、アクセルペダル位置 APを検出する加速 操作検出部としてのアクセルスィッチ、 61は制動操作部材としてのブレーキペダル、 62は該ブレーキペダル 61の位置(踏込量)、すなわち、ブレーキペダル位置 BPを検 出する制動操作検出部としてのブレーキスィッチである。 [0029] Then, 44 is a state of the capacitor 43, that is, a remaining amount detecting unit for detecting the remaining amount of capacitor SOC as a remaining charged amount, and 53 is a vehicle speed as a vehicle speed detecting unit for detecting the vehicle speed V of the hybrid type vehicle. 54, an accelerator pedal as an acceleration operation member, 55 an accelerator switch as an acceleration operation detection unit for detecting the position (depression amount) of the accelerator pedal 54, that is, an accelerator pedal position AP, 61 as a braking operation member The brake pedal 62 is a brake switch as a braking operation detection unit for detecting the position (depression amount) of the brake pedal 61, that is, the brake pedal position BP.
[0030] 前記車両制御装置 51は、エンジン 11の回転速度、すなわち、エンジン回転速度 N Eの目標値を表すエンジン目標回転速度 NE*、発電機 16のトルク、すなわち、発電 機トルク TGの目標値を表す第 1の電動機械目標トルクとしての発電機目標トルク TG *、及び駆動モータ 25のトルク、すなわち、駆動モータトルク TMの目標値を表す第 2 の電動機械目標トルクとしての駆動モータ目標トルク TM*を設定し、前記発電機制 御装置 47は、カウンタドライブギヤ 15の回転速度、すなわち、発電機回転速度 NG の目標値を表す第 1の電動機械目標回転速度としての発電機目標回転速度 NG*を
設定し、前記駆動モータ制御装置 49は、前記駆動モータトルク TMの補正値を表す 駆動モータトルク補正値 δ TMを設定する。 [0030] The vehicle control device 51 determines the engine speed, that is, the engine target speed NE * representing the target value of the engine speed NE, the torque of the generator 16, that is, the target value of the generator torque TG. The generator target torque TG * as the first electric machine target torque to be expressed, and the torque of the drive motor 25, that is, the drive motor target torque TM * as the second electric machine target torque to express the target value of the drive motor torque TM The generator control device 47 sets the rotation speed of the counter drive gear 15, that is, the generator target rotation speed NG * as the first electric machine target rotation speed that represents the target value of the generator rotation speed NG. Then, the drive motor control device 49 sets a drive motor torque correction value δ TM representing a correction value of the drive motor torque TM.
[0031] 次に、前記構成の電動車両駆動制御装置の動作について説明する。 Next, the operation of the electric vehicle drive control device having the above configuration will be described.
[0032] まず、車両制御装置 51の図示されない車両要求トルク決定処理手段は、車両要求 トルク決定処理を行い、アクセルスィッチ 55からアクセルペダル位置 APを、ブレーキ スィッチ 62からブレーキペダル位置 BPを、車速センサ 53から車速 Vを読み込み、ァ クセルペダル位置 AP、ブレーキペダル位置 BP及び車速 Vに対応させてあらかじめ 設定された、ハイブリッド型車両を走行させるのに必要な車両要求トルク TO*を決定 する。 [0032] First, vehicle request torque determination processing means (not shown) of the vehicle control device 51 performs vehicle request torque determination processing. The accelerator pedal position AP is transferred from the accelerator switch 55, the brake pedal position BP is transferred from the brake switch 62, and the vehicle speed sensor. The vehicle speed V is read from 53, and the vehicle required torque TO * required to drive the hybrid type vehicle, which is set in advance corresponding to the accelerator pedal position AP, the brake pedal position BP, and the vehicle speed V, is determined.
[0033] 次に、前記車両制御装置 51は、車両要求トルク TO*が駆動モータトルク TMの最 大値 TMmaxより大きいかどうかを判断する。車両要求トルク TO*が最大値 TMmax より大きい場合、前記車両制御装置 51はエンジン 11が停止中であるかどうかを判断 し、エンジン 11が停止中である場合、車両制御装置 51の図示されない急加速制御 処理手段は、急加速制御処理を行い、駆動モータ 25及び発電機 16を駆動してハイ ブリツド型車両を走行させる。 Next, the vehicle control device 51 determines whether or not the vehicle required torque TO * is greater than the maximum value TMmax of the drive motor torque TM. When the vehicle required torque TO * is larger than the maximum value TMmax, the vehicle control device 51 determines whether or not the engine 11 is stopped, and when the engine 11 is stopped, the vehicle control device 51 performs a sudden acceleration (not shown). The control processing means performs a rapid acceleration control process and drives the drive motor 25 and the generator 16 to run the hybrid vehicle.
[0034] また、車両要求トルク TO*が最大値 TMmax以下である場合、及び車両要求トルク TO*が最大値 TMmaxより大きぐかつ、エンジン 11が停止中でない場合、前記車 両制御装置 51の図示されない運転者要求出力算出処理手段は、運転者要求出力 算出処理を行い、前記車両要求トルク TO*と車速 Vとを乗算することによって、運転 者が必要とする出力を表す運転者要求出力 PD [0034] Further, when the vehicle required torque TO * is equal to or less than the maximum value TMmax, and when the vehicle required torque TO * is larger than the maximum value TMmax and the engine 11 is not stopped, the vehicle control device 51 is illustrated. The driver request output calculation processing means that is not performed performs a driver request output calculation process, and multiplies the vehicle request torque TO * and the vehicle speed V to express the driver request output PD that represents the output required by the driver.
PD=TO* ·ν PD = TO *
を算出する。 Is calculated.
[0035] 次に、前記車両制御装置 51の図示されないキャパシタ充放電要求出力算出処理 手段は、キャパシタ充放電要求出力算出処理を行い、前記残量検出部 44からキヤ パシタ残量 SOCを読み込み、該キャパシタ残量 SOCに基づいて、キャパシタ 43の 充電状態から見て必要とされる出力を表すキャパシタ充放電要求出力 PCを算出す Next, a capacitor charge / discharge request output calculation processing means (not shown) of the vehicle control device 51 performs a capacitor charge / discharge request output calculation process, reads the capacitor remaining amount SOC from the remaining amount detection unit 44, and Based on the remaining SOC of the capacitor, the capacitor charge / discharge request output PC, which represents the output required from the charge state of the capacitor 43, is calculated.
[0036] 続いて、前記車両制御装置 51の図示されない車両要求出力算出処理手段は、車
両要求出力算出処理を行い、前記運転者要求出力 PDとキャパシタ充放電要求出 力 PCとを加算 Subsequently, the vehicle request output calculation processing means (not shown) of the vehicle control device 51 includes a vehicle Perform both required output calculation processing and add the driver required output PD and the capacitor charge / discharge required output PC
することによって、ハイブリッド型車両を走行させるのに必要な出力を表す車両要求 出力 PO The vehicle request output PO that represents the output required to drive the hybrid vehicle
PO=PD+PC PO = PD + PC
を算出する。 Is calculated.
[0037] 次に、前記車両制御装置 51の図示されな!/、エンジン目標運転状態設定処理手段 は、エンジン目標運転状態設定処理を行い、前記車両制御装置 51の図示されない 記録装置に記録されたエンジン目標運転状態マップを参照し、前記車両要求出力 P Oと、各アクセルペダル位置 APにおけるエンジン 11の効率が最も高くなる最適燃費 曲線 Lとが交差するポイントを、エンジン目標運転状態であるエンジン 11の運転ボイ ントとして決定し、該運転ポイントにおけるエンジントルク TEを、エンジントルク TEの 目標値を表すエンジン目標トルク TE*として決定し、前記運転ポイントにおけるェン ジン回転速度 NEを前記エンジン目標回転速度 NE*として設定して決定し、該ェン ジン目標回転速度 NE*をエンジン制御装置 46に送る。 [0037] Next, the engine control state setting processing means (not shown) of the vehicle control device 51 performs engine target operation state setting processing, and is recorded in a recording device (not shown) of the vehicle control device 51. Referring to the engine target operating state map, the point at which the vehicle required output PO and the optimum fuel consumption curve L at which the efficiency of the engine 11 at each accelerator pedal position AP is highest intersects the engine 11 in the engine target operating state. The engine torque TE at the operating point is determined as the engine target torque TE * representing the target value of the engine torque TE, and the engine rotational speed NE at the operating point is determined as the engine target rotational speed NE. The engine target rotational speed NE * is sent to the engine control unit 46.
[0038] そして、該エンジン制御装置 46は、エンジン制御装置 46の図示されな!/、記録装置 に記録されたエンジン駆動領域マップを参照して、エンジン 11が駆動領域に置かれ ているかどうかを判断し、エンジン 11が駆動領域に置かれていて、かつ、エンジン 11 が駆動されて!/、る場合、エンジン制御装置 46の図示されな!/、エンジン制御処理手段 は、エンジン制御処理を行い、エンジン 11の制御を行う。 [0038] Then, the engine control device 46 refers to an engine drive region map (not shown) of the engine control device 46, and records whether or not the engine 11 is placed in the drive region. If the engine 11 is placed in the driving area and the engine 11 is driven! /, The engine control processing means (not shown) of the engine control device 46 performs engine control processing. Control engine 11.
[0039] また、エンジン 11が駆動領域に置かれているにもかかわらず、エンジン 11が駆動さ れて!/、な!/、場合、エンジン制御装置 46の図示されな!/、エンジン始動制御処理手段 は、エンジン始動制御処理を行い、エンジン 11を始動する。また、エンジン 11が駆動 領域に置かれていないにもかかわらず、エンジン 11が駆動されている場合、エンジン 制御装置 46の図示されな!/、エンジン停止制御処理手段は、エンジン停止制御処理 を行い、エンジン 11の駆動を停止させる。 [0039] In addition, even when the engine 11 is placed in the drive region, the engine 11 is driven! /, !!, in the case where the engine controller 46 is not shown! /, Engine start control The processing means performs an engine start control process and starts the engine 11. Further, when the engine 11 is being driven even though the engine 11 is not placed in the drive region, the engine stop control processing means (not shown) of the engine control device 46 performs engine stop control processing. Then, the drive of the engine 11 is stopped.
[0040] そして、エンジン 11が駆動領域に置かれておらず、エンジン 11が駆動されていな い場合、前記車両制御装置 51の図示されない駆動モータ目標トルク算出処理手段
は、駆動モータ目標トルク算出処理を行い、前記車両要求トルク TO*を駆動モータ 目標トルク TM*として算出するとともに決定し、該駆動モータ目標トルク TM*を駆動 モータ制御装置 49に送る。該駆動モータ制御装置 49の図示されない駆動モータ制 御処理手段は、駆動モータ制御処理を行い、駆動モータ 25のトルク制御を行う。 [0040] When the engine 11 is not placed in the drive region and the engine 11 is not driven, a drive motor target torque calculation processing means (not shown) of the vehicle control device 51 is shown. Performs a drive motor target torque calculation process, calculates and determines the vehicle required torque TO * as the drive motor target torque TM *, and sends the drive motor target torque TM * to the drive motor controller 49. Drive motor control processing means (not shown) of the drive motor control device 49 performs drive motor control processing and performs torque control of the drive motor 25.
[0041] 次に、発電機制御装置 47の図示されない発電機目標回転速度算出処理手段は、 発電機目標回転速度算出処理を行い、駆動モータ 25のロータ位置 θ Mを読み込み 、該ロータ位置 θ Mに基づいてプラネタリギヤユニット 13のリングギヤの回転速度 NR を算出するとともに、エンジン目標運転状態設定処理において決定されたエンジン 目標回転速度 NE*を読み込み、回転速度 NR及びエンジン目標回転速度 NE*に基 づいて、発電機目標回転速度 NG*を算出し、決定する。 Next, a generator target rotation speed calculation processing means (not shown) of the generator control device 47 performs a generator target rotation speed calculation process, reads the rotor position θ M of the drive motor 25, and the rotor position θ M The ring gear rotational speed NR of the planetary gear unit 13 is calculated based on the engine target operating speed NE * determined in the engine target operating state setting process, and the rotational speed NR and the engine target rotational speed NE * are read. Calculate and determine the generator target rotational speed NG *.
[0042] そして、発電機制御装置 47の図示されな!/、発電機回転速度制御処理手段は、発 電機回転速度制御処理を行い、発電機目標回転速度 NG*を読み込むとともに、発 電機 16のロータ位置 Θ Gに基づいて算出された発電機回転速度 NGを読み込み、 発電機目標回転速度 NG*と発電機回転速度 NGとの差回転速度 Δ NGに基づ!/、て PI制御を行い、発電機目標トルク TG*を算出し、決定する。 [0042] Then, generator rotation speed control processing means (not shown) of the generator control device 47 performs generator rotation speed control processing, reads the generator target rotation speed NG *, and Read the generator rotation speed NG calculated based on the rotor position Θ G, and perform PI control based on the difference rotation speed Δ NG between the generator target rotation speed NG * and the generator rotation speed NG! Calculate and determine the generator target torque TG *.
[0043] 続!/、て、前記発電機制御装置 47の図示されな!/、発電機トルク制御処理手段は、発 電機トルク制御処理を行い、発電機 16のトルク制御を行う。 [0043] Next, the generator torque control processing means (not shown) of the generator control device 47 performs generator torque control processing and torque control of the generator 16.
[0044] 次に、前記駆動モータ目標トルク算出処理手段は、前記車両要求トルク TO*から、 駆動モータ 25の出力軸に発生させられている駆動軸トルク TR/OUTを減算するこ とによって、駆動軸トルク TR/OUTでは過不足する分を駆動モータ目標トルク TM* として算出し、決定する。 [0044] Next, the drive motor target torque calculation processing means subtracts the drive shaft torque TR / OUT generated on the output shaft of the drive motor 25 from the vehicle required torque TO * to drive the vehicle. The excess / shortage of the shaft torque TR / OUT is calculated and determined as the drive motor target torque TM *.
[0045] そして、前記駆動モータ制御処理手段は、決定された駆動モータ目標トルク TM* に基づ!/、て駆動モータ 25のトルク制御を行い、駆動モータトルク TMを制御する。 Then, the drive motor control processing means performs torque control of the drive motor 25 based on the determined drive motor target torque TM * to control the drive motor torque TM.
[0046] ところで、一般的に、普通乗用車においては、高負荷時に 60〔kW/kg〕程度の出 力が必要とされる。そこで、前述されたように、本実施の形態においては、出力密度 が高いキャパシタ 43を使用し、必要に応じてエンジン 11が駆動され、該エンジン 11 による出力が利用されるようになっている。本実施の形態においては、前記キャパシ タ 43として、重量が 10〔kg〕程度であり、出力密度が 3000〔kW/kg〕以上である電
気化学キャパシタが使用され、ハイブリッド型車両内に恒久的に搭載される。 [0046] By the way, in general, an ordinary passenger car needs an output of about 60 [kW / kg] at high load. Therefore, as described above, in the present embodiment, the capacitor 43 having a high output density is used, the engine 11 is driven as necessary, and the output from the engine 11 is used. In the present embodiment, the capacitor 43 has a weight of about 10 [kg] and an output density of 3000 [kW / kg] or more. Gasochemical capacitors are used and permanently installed in hybrid vehicles.
[0047] ところ力 前記キャパシタ 43として、エネルギー密度が、 20 [kWh/kg]以上のもの が使用されるが、航続距離を長くするために十分なだけ高くない。 [0047] However, as the capacitor 43, a capacitor having an energy density of 20 [kWh / kg] or more is used, but it is not high enough to increase the cruising distance.
[0048] そこで、前記キャパシタ 43に直流の変圧装置としての DC/DCコンバータ 32を介 して一次電池 33が接続され、高負荷でハイブリッド型車両を走行させた後のように、 キャパシタ 43の電力が消費され、キャパシタ残量 SOCが小さくなると、一次電池 33 の電流がキャパシタ 43に供給されるようになっている。 Therefore, the primary battery 33 is connected to the capacitor 43 via a DC / DC converter 32 as a direct current transformer, and the power of the capacitor 43 is the same as after the hybrid vehicle is driven with a high load. When the remaining capacity of the capacitor SOC is reduced, the current of the primary battery 33 is supplied to the capacitor 43.
[0049] そのために、前記 DC/DCコンバータ 32と一次電池 33との間に、第 2のスィッチ S W2及びダイオード D1が接続され、前記車両制御装置 51の図示されない残量判定 処理手段は、残量判定処理を行い、前記残量検出部 44によって検出されたキャパ シタ残量 SOCを読み込み、該キャパシタ残量 SOCが第 1の閾値である 70〔%〕より小 さいかどうかを判断する。 [0049] For this purpose, a second switch SW2 and a diode D1 are connected between the DC / DC converter 32 and the primary battery 33, and the remaining amount determination processing means (not shown) of the vehicle control device 51 An amount determination process is performed to read the capacitor remaining amount SOC detected by the remaining amount detecting unit 44, and determine whether the remaining capacitor SOC is less than 70 [%] which is the first threshold value.
[0050] キャパシタ残量 SOCが 70〔%〕より小さい場合、車両制御装置 51の図示されない 充電処理手段は、充電処理を行い、第 2のスィッチ SW2をオンにして、一次電池 33 力、らキャパシタ 43にダイオード D1及び DC/DCコンバータ 32を介して電流を供給 し、キャパシタ 43を充電する。そして、キャパシタ残量 SOCが第 2の閾値である 75〔 %〕より大きくなると、前記充電処理手段は、第 2のスィッチ SW2をオフにして、キャパ シタ 43の充電を停止させる。 [0050] When the remaining capacity SOC of the capacitor is smaller than 70 [%], the charging processing means (not shown) of the vehicle control device 51 performs the charging processing, turns on the second switch SW2, and turns on the primary battery 33. The current is supplied to 43 through the diode D1 and the DC / DC converter 32, and the capacitor 43 is charged. When the remaining capacity SOC of the capacitor becomes larger than the second threshold value of 75 [%], the charging processing means turns off the second switch SW2 and stops the charging of the capacitor 43.
[0051] 前記一次電池 33の出力電圧は 100〔V〕であり、 DC/DCコンバータ 32は 100〔V 〕の出力電圧を 2〜3倍の電圧に変圧する。前記ダイオード D1は、キャパシタ 43から 一次電池 33に電流が流れないようにするために配設される。また、本実施の形態に おいて、キャパシタ残量 SOCが 70〔%〕及び 75〔%〕になることによって第 2のスイツ チ SW2をオン ·オフさせるためのヒステリシスが設定されるようになっている力 第 2の スィッチ SW2をソリッドステートで構成するようになっているので、必ずしもヒステリシス を設定する必要はない。 [0051] The output voltage of the primary battery 33 is 100 [V], and the DC / DC converter 32 transforms the output voltage of 100 [V] to 2 to 3 times the voltage. The diode D1 is disposed to prevent current from flowing from the capacitor 43 to the primary battery 33. Further, in the present embodiment, the hysteresis for turning on / off the second switch SW2 is set by setting the remaining capacity SOC of the capacitor to 70 [%] and 75 [%]. Force Since the second switch SW2 is configured in solid state, it is not always necessary to set hysteresis.
[0052] 前記一次電池 33に必要な特性として、単位重量当たりのエネルギー密度が 670〔 Wh/kg]以上に、単位容積当たりのエネルギー密度が(1000 [Wh/L] )にされ、 単位重量当たりの出力密度が 170〔W/kgBこ、単位容積当たりの出力密度が 250〔
W/L〕にされる。また、走行時の実エネルギー効率は 80〔%〕以上、好ましくは、 90 [ %〕以上にされる。なお、実エネルギー効率は、第 1のスィッチ SW1がオンに される際の電圧降下による効率及びクーロン効率を乗算することによって表される。 [0052] As the characteristics required for the primary battery 33, the energy density per unit weight is 670 [Wh / kg] or more, the energy density per unit volume is (1000 [Wh / L]), and the per unit weight Output density is 170 [W / kgB, and the output density per unit volume is 250 [ W / L]. Further, the actual energy efficiency during traveling is set to 80 [%] or more, preferably 90 [%] or more. The actual energy efficiency is expressed by multiplying the efficiency due to the voltage drop when the first switch SW1 is turned on and the Coulomb efficiency.
[0053] 次に、フローチャートについて説明する。 Next, a flowchart will be described.
ステップ S 1 フラグ fに 0をセットする。 Step S 1 Set 0 to the flag f.
ステップ S2 フラグ fが 1であるかどうかを判断する。フラグ fが 1である場合はステップ S8に、 1でない場合はステップ S3に進む。 Step S2: It is determined whether the flag f is 1. If the flag f is 1, the process proceeds to step S8. Otherwise, the process proceeds to step S3.
ステップ S3 キャパシタ残量 SOCを読み込む。 Step S3 Read the remaining SOC of the capacitor.
ステップ S4 キャパシタ残量 SOCが 70〔%〕より小さいかどうかを判断する。キャパシ タ残量 SOCが 70〔%〕より小さ!/、場合はステップ S5に、キャパシタ残量 SOCが 70〔 %]以上である場合はステップ S7に進む。 Step S4 Determine whether the remaining SOC of the capacitor is less than 70 [%]. If the remaining SOC of the capacitor is less than 70 [%]! /, Go to Step S5. If the remaining SOC of the capacitor is more than 70 [%], go to Step S7.
ステップ S 5 第 2のスィッチ SW2をオンにする。 Step S 5 Turn on the second switch SW2.
ステップ S6 フラグ fに 1をセットし、リターンする。 Step S6 Set flag f to 1 and return.
ステップ S 7 第 2のスィッチ SW2をオフにし、リターンする。 Step S 7 Turn off the second switch SW2 and return.
ステップ S8 キャパシタ残量 SOCが 75〔%〕より大きいかどうかを判断する。キャパシ タ残量 SOCが 75〔%〕より大きい場合はステップ S9に進み、キャパシタ残量 SOCが 7 5〔%〕以下である場合はリターンする。 Step S8: Determine whether the remaining SOC of the capacitor is greater than 75 [%]. If the remaining capacitor SOC is greater than 75 [%], the process proceeds to step S9, and if the remaining capacitor SOC is 75 [%] or less, the process returns.
ステップ S 9 フラグ fに 0をセットし、ステップ S 7に進む。 Step S 9 Set 0 to the flag f, and proceed to Step S 7.
[0054] 次に、前記一次電池 33の構造について説明する。 Next, the structure of the primary battery 33 will be described.
[0055] 図 3は本発明の実施の形態における一次電池の斜視図、図 4は本発明の実施の形 態における一次電池のコネクタ部を示す斜視図、図 5は本発明の実施の形態におけ るモジュールの斜視図である。 FIG. 3 is a perspective view of a primary battery according to an embodiment of the present invention, FIG. 4 is a perspective view showing a connector portion of the primary battery according to an embodiment of the present invention, and FIG. 5 is an embodiment of the present invention. It is a perspective view of the module in it.
[0056] 図において、 33は 100〔V〕の出力電圧の一次電池、 Mi (i= l、 2、 3)はモジュール 、 64は最も上方のモジュール M3に取り付けられた取手、 65は各モジュール Miにわ たって形成されたガイド用のスリットである。一次電池 33は、 2〜3個、本実施の形態 においては 3個のモジュール Miを積み重ねて一体化することによってユニットとして 形成され、取手 64を把持して運搬することができるようになつている。また、一次電池 33は、前記スリット 65によって各モジュール Miを位置合せした状態で、ハイブリッド
型車両の本体の所定の箇所に着脱自在に取り付けられる。 [0056] In the figure, 33 is a primary battery with an output voltage of 100 [V], Mi (i = 1, 2, 3) is a module, 64 is a handle attached to the uppermost module M3, 65 is each module Mi It is a slit for the guide formed over. The primary battery 33 is formed as a unit by stacking and integrating two to three, in this embodiment three modules Mi, so that the handle 64 can be gripped and transported. . Further, the primary battery 33 is a hybrid battery in which each module Mi is aligned by the slit 65. It is detachably attached to a predetermined portion of the main body of the type vehicle.
[0057] 各モジュール Miは、コネクタ 66、 67を介して DC/DCコンバータ 32 (図 1)に対し て、互いに並列に接続される。なお、前記各モジュール Miは、直径が約 100〔mm〕 であり、高さが約 150〔mm〕であり、一次電池 33の高さは約 500〔mm〕にされる。ま た、一次電池 33が二つのモジュールで形成される場合、一次電池 33の高さは約 35 0〔mmBこされる。なお、このときの一次電池 33の重量は、約 6〔kg〕にされるカ 一次 電池 33の取扱いを容易にするために、 l〔kg〕以上、かつ、 10〔kg〕以下にするのが 好ましい。 Each module Mi is connected in parallel to the DC / DC converter 32 (FIG. 1) via connectors 66 and 67. Each module Mi has a diameter of about 100 [mm], a height of about 150 [mm], and the primary battery 33 has a height of about 500 [mm]. When the primary battery 33 is formed of two modules, the height of the primary battery 33 is rubbed by about 350 mm [mmB]. At this time, the weight of the primary battery 33 is set to about 6 [kg]. In order to facilitate the handling of the primary battery 33, the weight of the primary battery 33 should be not less than l [kg] and not more than 10 [kg]. preferable.
[0058] 前記一次電池 33を、ハイブリッド型車両の本体に、総重量が約 30 [kg]になるよう に複数個搭載すると、駆動モータ 25だけを駆動する EV走行において、 150〜200〔 km〕の航続距離を走行することができる。したがって、二酸化炭素の排出量、及びガ ソリンの消費量を著しく抑制することができる。さらに、約 30〔L〕の容量のガソリンタン クを搭載し、必要に応じてエンジン 11を駆動すると、合ゎせて約600〜700 ¾111〕の 航続距離を走行することができる。この場合、一次電池 33及びガソリンタンクの占め る体積は約 50〔L〕になる。したがって、これまでのガソリン車とほとんど変わらない航 続距離及び車内空間を得ることができる。 [0058] When a plurality of the primary batteries 33 are mounted on the main body of the hybrid type vehicle so that the total weight is about 30 [kg], 150 to 200 [km] in EV traveling that drives only the drive motor 25 Can travel the cruising range of. Therefore, carbon dioxide emissions and gasoline consumption can be significantly suppressed. Furthermore, if a gasoline tank with a capacity of about 30 [L] is installed and the engine 11 is driven as required, the vehicle can travel a total cruising distance of about 600 to 700 ¾111]. In this case, the volume occupied by the primary battery 33 and the gasoline tank is about 50 [L]. Therefore, it is possible to obtain a cruising distance and interior space that is almost the same as conventional gasoline vehicles.
[0059] 前記一次電池 33は、極めて高いエネルギー密度を必要とするので、以下のような 構成 [0059] Since the primary battery 33 requires a very high energy density, the following configuration is used.
にされる。すなわち、図 5に示されるように、正極 Ppと負極 Pmとの間にセパレータ Sp を挟むことによって一つのセルを形成し、電解液が充填(てん)され、密閉された容器 69内に 30個のセルを積層し、直列に接続することによって、各モジュール Miが形成 される。なお、各モジュール Miの出力電圧は 100〔V〕にされる。また、各セル間に金 属製のシートを挟むことができる。前記セパレータ Spはポリプロピレン等の樹脂で形 成される。 To be. That is, as shown in FIG. 5, one cell is formed by sandwiching the separator Sp between the positive electrode Pp and the negative electrode Pm, and 30 cells are filled in the electrolytic solution and sealed in the sealed container 69. Each module Mi is formed by stacking these cells and connecting them in series. The output voltage of each module Mi is set to 100 [V]. In addition, a metal sheet can be sandwiched between the cells. The separator Sp is formed of a resin such as polypropylene.
[0060] なお、必要に応じて、各モジュール Miにおいて、 2〜3個のセルを積層し、巻回型 の構成にすることによって出力電圧を約 10〔V〕とすることができる。その場合、 DC/ DCコンバータ 32において 20〜30倍の変圧が行われる。 [0060] Note that, if necessary, in each module Mi, the output voltage can be set to about 10 [V] by stacking two to three cells to form a winding type configuration. In that case, the DC / DC converter 32 performs a transformation of 20 to 30 times.
[0061] 前記正極 Ppとしては、フッ化黒鉛、金属酸化物(酸化銅、二酸化マンガン等)、金
属硫化物 (硫化鉄等)等を使用することができる。また、負極 Pmとしては、アルカリ土 類金属(金属マグネシウム、金属カルシウム等)を使用することができる。そして、電解 液としては、アルカリ土類金属イオンを含有する有機電解液 (過塩素酸マグネシウム /炭酸プロピレン溶液(MgCIO /PC)、過塩素酸カルシウム/炭酸プロピレン溶 [0061] Examples of the positive electrode Pp include graphite fluoride, metal oxides (such as copper oxide and manganese dioxide), and gold. Metal sulfides (such as iron sulfide) can be used. As the negative electrode Pm, alkaline earth metals (metal magnesium, metal calcium, etc.) can be used. The electrolytes include organic electrolytes containing alkaline earth metal ions (magnesium perchlorate / propylene carbonate solution (MgCIO / PC), calcium perchlorate / propylene carbonate solution).
4 Four
液(CaCIO /PC)等)を使用すること力 Sできる。 It is possible to use liquid (CaCIO / PC) etc.
4 Four
[0062] 前記正極 Ppとしてフッ化黒鉛を、負極 Pmとして金属カルシウムを、電解液として過 塩素酸カルシウム/炭酸プロピレン溶液を使用した場合、一次電池 33が放電すると きの反応式は以下のとおりである。 [0062] When the fluorinated graphite is used as the positive electrode Pp, the metallic calcium is used as the negative electrode Pm, and the calcium perchlorate / propylene carbonate solution is used as the electrolytic solution, the reaction formula when the primary battery 33 is discharged is as follows. is there.
[0063] 負極 nCa→nCa2+ + 2ne— [0063] Negative electrode nCa → nCa 2+ + 2ne—
正極 (CF) n + ne—→nC + nF— Positive electrode (CF) n + ne— → nC + nF—
nCa + 2 (CF) n→2nC + nCaF nCa + 2 (CF) n → 2nC + nCaF
また、正極 Ppとして酸化銅を、負極 Pmとして金属カルシウムを、電解液として過塩 素酸カルシウム/炭酸プロピレン溶液を使用した場合、一次電池 33が放電するとき の反応式は以下のとおりである。 Further, when copper oxide is used as the positive electrode Pp, metallic calcium is used as the negative electrode Pm, and a calcium perchlorate / propylene carbonate solution is used as the electrolytic solution, the reaction formula when the primary battery 33 is discharged is as follows.
[0064] 負極 Ca→Ca2++ 2e— [0064] Negative electrode Ca → Ca 2+ + 2e—
正極 CuO + 2e——Cu + O ^ Positive electrode CuO + 2e——Cu + O ^
Ca + CuO→Cu + CaO Ca + CuO → Cu + CaO
そして、正極 Ppとして硫化鉄を、負極 Pmとして金属カルシウムを、電解液として過 塩素酸カルシウム/炭酸プロピレン溶液を使用した場合、一次電池 33が放電すると きの反応式は以下のとおりである。 When iron sulfide is used as the positive electrode Pp, metallic calcium is used as the negative electrode Pm, and a calcium perchlorate / propylene carbonate solution is used as the electrolytic solution, the reaction formula when the primary battery 33 is discharged is as follows.
[0065] 負極 2Ca→2Ca2+ + 4e— [0065] Negative electrode 2Ca → 2Ca 2+ + 4e—
正極 FeS +4e-→Fe + 2S— Positive electrode FeS + 4e- → Fe + 2S—
2. 2.
2Ca + FeS →Fe + 2CaS 2Ca + FeS → Fe + 2CaS
次に、一次電池 33を回収し、再生する方法について説明する。 Next, a method for collecting and regenerating the primary battery 33 will be described.
[0066] 例えば、正極 Ppとして酸化銅を、負極 Pmとして金属カルシウムを、電解液として過 塩素酸カルシウム/炭酸プロピレン溶液を使用した場合、電解液及びセパレータ Sp を除いた活物質のうち、酸化カルシウム及び金属銅が残渣として残る。 [0066] For example, when using copper oxide as the positive electrode Pp, calcium metal as the negative electrode Pm, and calcium perchlorate / propylene carbonate solution as the electrolyte, among the active materials excluding the electrolyte and the separator Sp, calcium oxide And metallic copper remains as a residue.
[0067] 前記酸化カルシウムを弱酸又は水で溶解分離させた後、塩酸を加えて塩化カルシ
ゥムを生成すること力 Sできる。そして、金属カルシウムは、塩化カルシウムを融解 (塩) 電解することによって生成することができ、酸化銅は金属銅を酸化処理することによ つて生成すること力 Sできる。なお、金属カルシウムを融解電解によって生成する際の 電力として、深夜電力等を利用することが好ましい。前記融解電解は、電解したい塩 化カルシウムを高温 [0067] After the calcium oxide is dissolved and separated with a weak acid or water, hydrochloric acid is added to the calcium chloride. Can generate S Metallic calcium can be generated by melting (salt) electrolysis of calcium chloride, and copper oxide can be generated by oxidizing metallic copper. In addition, it is preferable to use late-night power or the like as the power for generating metallic calcium by melting electrolysis. In the melting electrolysis, calcium chloride to be electrolyzed
にして、溶解した後、電解分離する方法である。 Thus, after dissolution, electrolytic separation is performed.
[0068] 例えば、活物質が CaO及び Cuである場合、塩化カルシウムは次の式で表されるよ うに生成される。 [0068] For example, when the active materials are CaO and Cu, calcium chloride is generated as represented by the following formula.
[0069] CaO + 2HCl→CaCl + H O [0069] CaO + 2HCl → CaCl + H 2 O
また、金属カルシウムは次の式で表されるように生成される。 Further, metallic calcium is generated as represented by the following formula.
[0070] CaCl →Ca + Cl [0070] CaCl → Ca + Cl
そして、酸化銅は次の式で表されるように生成される。 And copper oxide is produced | generated so that it may be represented with the following formula | equation.
[0071] 2Cu + 0 →2CuO [0071] 2Cu + 0 → 2CuO
したがって、正極 Ppに使用される酸化銅及び負極 Pmに使用される金属カルシウム を再生すること力 Sできる。 Therefore, it is possible to regenerate the copper oxide used for the positive electrode Pp and the metallic calcium used for the negative electrode Pm.
[0072] このように、本実施の形態においては、キャパシタ 43の出力密度が高いので、ハイ ブリツド型車両を高負荷で走行させることができ、一次電池 33のエネルギー密度が 高いので、一次電池 33の電流をキャパシタ 43に供給することによって、航続距離を 長くすること力でさる。 Thus, in the present embodiment, since the output density of the capacitor 43 is high, the hybrid vehicle can be driven at a high load, and the energy density of the primary battery 33 is high, so the primary battery 33 This is the power to increase the cruising distance by supplying this current to the capacitor 43.
[0073] また、一次電池 33及びガソリンタンクの占める体積は小さいので、ハイブリッド型車 両を小型化することができる。 [0073] Further, since the volume occupied by the primary battery 33 and the gasoline tank is small, the hybrid vehicle can be downsized.
[0074] さらに、通常の走行パターン(市街地走行、高速巡航時等)においては、平均して 5 [0074] Further, in a normal driving pattern (city driving, high-speed cruise, etc.), an average of 5
〔kW〕の出力があればよいので、高負荷での走行が長時間(例えば、 30秒以上)続く 場合を除いて、駆動モータ 25だけを駆動してハイブリッド型車両を走行させることが できる。したがって、エンジン 11が駆動される時間を極めて短くすることができるので 、環境に与えられる影響を小さくすることができる。 Since the output of [kW] is sufficient, it is possible to drive the hybrid vehicle by driving only the drive motor 25, except when traveling at a high load continues for a long time (for example, 30 seconds or more). Therefore, since the time during which the engine 11 is driven can be extremely shortened, the influence on the environment can be reduced.
[0075] 本実施の形態においては、ハイブリッド型車両について説明している力 本発明を 電気自動車等の他の電動車両に適用することができる。
なお、本発明は前記実施の形態に限定されるものではなぐ本発明の趣旨に基づ いて種々変形させることが可能であり、それらを本発明の範囲力 排除するものでは ない。
In the present embodiment, the force described for the hybrid type vehicle can be applied to other electric vehicles such as an electric vehicle. It should be noted that the present invention is not limited to the above-described embodiment, and can be variously modified based on the gist of the present invention, and does not exclude the scope of the present invention.
Claims
[1] 電動機械と、該電動機械を駆動するためのインバータと、該インバータに接続され [1] an electric machine, an inverter for driving the electric machine, and connected to the inverter
、電動機械に電流を供給する二次電池と、該二次電池と接続され、前記二次電池よ り出力密度が低ぐエネルギー密度が高い一次電池と、前記二次電池の充電残量を 検出する残量検出部と、前記充電残量が閾値より小さくなると、一次電池から二次電 池に電流を供給し、二次電池を充電する充電処理手段とを有することを特徴とする 電動車両。 A secondary battery that supplies electric current to the electric machine, a primary battery that is connected to the secondary battery and has a lower output density and a higher energy density than the secondary battery, and detects a remaining charge of the secondary battery. An electric vehicle comprising: a remaining amount detecting unit that performs charging, and a charging processing unit that supplies current from the primary battery to the secondary battery when the remaining charge becomes smaller than a threshold value, and charges the secondary battery.
[2] 前記二次電池と一次電池との間に変圧装置が接続される請求項 1に記載の電動 車両。 [2] The electric vehicle according to [1], wherein a transformer is connected between the secondary battery and the primary battery.
[3] 前記一次電池は、正極と負極との間にセパレータを挟むことによって形成されたセ ルを電解液中で積層することにより形成される請求項 1に記載の電動車両。 3. The electric vehicle according to claim 1, wherein the primary battery is formed by stacking cells formed by sandwiching a separator between a positive electrode and a negative electrode in an electrolytic solution.
[4] 電動車両を走行させるのに必要な車両要求出力を算出する車両要求出力算出処 理手段と、前記車両要求出力に基づいてエンジン目標トルクを算出するエンジン目 標運転状態設定処理手段と、前記エンジン目標トルクに基づ!/、て駆動モータを制御 する駆動モータ制御処理手段とを有する請求項 1に記載の電動車両。 [4] Vehicle request output calculation processing means for calculating a vehicle request output necessary for driving the electric vehicle, engine target operating state setting processing means for calculating an engine target torque based on the vehicle request output, 2. The electric vehicle according to claim 1, further comprising drive motor control processing means for controlling the drive motor based on the engine target torque.
[5] 電動機械、該電動機械を駆動するためのインバータ、該インバータに接続され、電 動機械に電流を供給する二次電池、及び該二次電池と接続され、前記二次電池より 出力密度が低ぐエネルギー密度が高い一次電池を有する電動車両の制御方法に おいて、前記二次電池の充電残量を検出し、該充電残量が閾値より小さくなると、一 次電池から二次電池に電流を供給し、二次電池を充電することを特徴とする電動車 両の制御方法。
[5] An electric machine, an inverter for driving the electric machine, a secondary battery connected to the inverter and supplying current to the electric machine, and connected to the secondary battery, the output density from the secondary battery In a control method for an electric vehicle having a primary battery with a low energy density and a low energy density, the remaining charge of the secondary battery is detected, and when the remaining charge becomes smaller than a threshold value, the primary battery changes to the secondary battery. A method for controlling an electric vehicle, characterized by supplying a current and charging a secondary battery.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006295231A JP4775853B2 (en) | 2006-10-31 | 2006-10-31 | Electric vehicle |
JP2006-295231 | 2006-10-31 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2008053783A1 true WO2008053783A1 (en) | 2008-05-08 |
Family
ID=39344125
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2007/070837 WO2008053783A1 (en) | 2006-10-31 | 2007-10-25 | Electric vehicle and its control method |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP4775853B2 (en) |
WO (1) | WO2008053783A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103863084A (en) * | 2012-12-11 | 2014-06-18 | 福特全球技术公司 | Trip oriented energy management control |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5794091B2 (en) * | 2011-10-11 | 2015-10-14 | 株式会社豊田中央研究所 | Power system |
KR101474400B1 (en) | 2012-05-31 | 2014-12-19 | 주식회사 엘지화학 | Apparatus and method for driving vehicle using plural batteries |
JP6486880B2 (en) * | 2016-09-27 | 2019-03-20 | 本田技研工業株式会社 | Power system |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09298806A (en) * | 1996-05-01 | 1997-11-18 | Yamaha Motor Co Ltd | Electric power supply method and device for electric vehicle |
JP2003070106A (en) * | 2001-08-28 | 2003-03-07 | Furukawa Electric Co Ltd:The | Power storage system for automobile |
JP2004048872A (en) * | 2002-07-10 | 2004-02-12 | Matsushita Electric Ind Co Ltd | Motor drive system and electric vehicle using the same |
JP2004328840A (en) * | 2003-04-22 | 2004-11-18 | Toyota Motor Corp | Driving device control device, vehicle equipped with the same, and driving device control method |
JP2005269823A (en) * | 2004-03-19 | 2005-09-29 | Yanmar Co Ltd | Hybrid system |
-
2006
- 2006-10-31 JP JP2006295231A patent/JP4775853B2/en not_active Expired - Fee Related
-
2007
- 2007-10-25 WO PCT/JP2007/070837 patent/WO2008053783A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09298806A (en) * | 1996-05-01 | 1997-11-18 | Yamaha Motor Co Ltd | Electric power supply method and device for electric vehicle |
JP2003070106A (en) * | 2001-08-28 | 2003-03-07 | Furukawa Electric Co Ltd:The | Power storage system for automobile |
JP2004048872A (en) * | 2002-07-10 | 2004-02-12 | Matsushita Electric Ind Co Ltd | Motor drive system and electric vehicle using the same |
JP2004328840A (en) * | 2003-04-22 | 2004-11-18 | Toyota Motor Corp | Driving device control device, vehicle equipped with the same, and driving device control method |
JP2005269823A (en) * | 2004-03-19 | 2005-09-29 | Yanmar Co Ltd | Hybrid system |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103863084A (en) * | 2012-12-11 | 2014-06-18 | 福特全球技术公司 | Trip oriented energy management control |
Also Published As
Publication number | Publication date |
---|---|
JP4775853B2 (en) | 2011-09-21 |
JP2008113507A (en) | 2008-05-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4984010B2 (en) | Vehicle power supply system and electric vehicle equipped with the same | |
EP2221208B1 (en) | Vehicle | |
JP4466772B2 (en) | Vehicle control device | |
JP5099230B2 (en) | Electric vehicle power supply system and control method thereof | |
US8538616B2 (en) | Power supply system for electrically powered vehicle, electrically powered vehicle, and method for controlling the same | |
WO2010050038A1 (en) | Power supply system for electric vehicle and control method for the same | |
JP2014131404A (en) | Vehicle charger | |
JPWO2010044132A1 (en) | Control device and control method for hybrid vehicle | |
JP2011072067A (en) | Power supply system for vehicle and electric vehicle equipped with the same | |
JP2010064499A (en) | Hybrid vehicle | |
JP4915273B2 (en) | Electrical device and method for controlling electrical device | |
JP4775853B2 (en) | Electric vehicle | |
JP6966871B2 (en) | Battery system | |
JP2007282357A (en) | Vehicle drive power supply system | |
JP4192658B2 (en) | Vehicle control apparatus and control method | |
JP2008273253A (en) | Hybrid vehicle, its control method, and computer readable recording medium recording program for causing computer to implement this control method | |
JP2007174867A (en) | Power supply unit for vehicle | |
JP2010115050A (en) | Power supply system for vehicle | |
JP5717004B2 (en) | Driving method of moving body and moving body | |
JP2006254565A (en) | Power supply device and motor drive device including the same | |
JP2006136131A (en) | Vehicle control device | |
JP6930363B2 (en) | Drive device | |
JP2007089264A (en) | Motor driver | |
JP5960659B2 (en) | Hybrid vehicle control system | |
WO2014038442A1 (en) | Hybrid vehicle control apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 07830571 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 07830571 Country of ref document: EP Kind code of ref document: A1 |